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Abstract

We consider the problem of estimating a signal corruptednisfependent interference with the assistance of a
cost-constrained helper who knows the interference clgusahoncausally. When the interference is known causally,
we characterize the minimum distortion incurred in estintathe desired signal. In the noncausal case, we present a
general achievable scheme for discrete memoryless systechaovel lower bounds on the distortion for the binary
and Gaussian settings. Our Gaussian setting coincidesthathof assisted interference suppression introduced by
Grover and Sahai. Our lower bound for this setting is basetherrelation recently established by Verdu between
divergence and minimum mean squared error. We illustratie avfew examples that this lower bound can improve
on those previously developed. Our bounds also allow us a&oacterize the optimal distortion in several interesting
regimes. Moreover, we show that causal and noncausal é¢wtimere not equivalent for this problem. Finally, we
consider the case where the desired signal is also avadhkie helper. We develop new lower bounds for this setting
that improve on those previously developed, and charaetdhie optimal distortion up to a constant multiplicative
factor for some regimes of interest.

I. INTRODUCTION

Consider a joint source channel coding problem as depictelligure[1. We have two memoryless sources
S1 (the desired signal) and; (the interfering signal). The decoder’s aim is to estiméie $ource sequencs
from Y™, with the goal of minimizing the average per symbol distortis(}")" | d(S1;(Y™), S1;))/n. The encoder
(helper), who knows the interfering signé}, aids the decoder in reconstructing the sigfalthrough his choice
of X, subject to a cost constraiptX).
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Fig. 1: Estimation with a helper who knows the interferenidee interfering signal is3 while the desired signal is
ST. The encoder (helper) tries to help the decoder in estimeétijhby reducing the interference due $a, subject
to a per symbol cost constraint on its transmissioh.
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Applications may arise in sensor networks or cognitivegagistems. As a motivating example, suppose Alice is
talking to Bob in his office. As a result of ongoing constioatwork near Bob’s office, there is high interference
which makes it hard for Bob to listen to Alice. FortunatelyglBrecently purchased a noise cancellation device
which has a microphone placed near the construction site.microphone measures the interfering signal from
the construction site and transmits it to a noise cancefiatpeaker situated in Bob’s office. Since electromagnetic
waves travel faster than sound, the noise cancellationkspdaows the interfering signal noncausally. Due to a
power constraint on the speaker, it cannot cancel the ertamte fully. What then, is the minimum distortion that
can be achieved by Bob in trying to reconstruct Alice’s sp&ec

Our setup is closely related to several strands of work wiagl communication over channels with states. In
[1], the authors considered the problem of State Amplifizatwhere a message is to be sent to the decoder and
the decoder also forms a list of possilsié sequences. The goal is to maximize the message transmissgoand
reduce the uncertainty the decoder has regarding.e. reduce the list size of possibl sequences. Recently,
the problem of state amplification with a distortion coastt was considered in][2], with an additional condition
that the encoder only knows the staffe causally. This setting is similar to our setting, with theimdifference
being that the decoder wishes to reconstiictather thanS;. When our setting is specialized to the Gaussian case
with the mean squared error distortion between the reaactg&in and the signal, our setting becomes equivalent
to the problem of Assisted Interference Suppression censitin [3]. As detailed in[]3], this problem is closely
related to Witsenhausen’s counterexample in Optimum @©biitneory [4].

In this paper, we consider both the case wisgns available causally at the encoder, and the case v#hes
available non causally at the encoder. Our main contribstare as follows:

1) WhenS; is available causally at the encoder, we characterize tingmmim achievable distortion i§;. We
borrow certain ideas used in the characterization of thtedisn cost region for the causal state amplification
problem in [2] to establish our result.

2) For the noncausal setting, we first give an achievablemsehfor the general discrete memoryless system
and then focus our attention on the case whereand S, are independent Bernoulli random variables and
the distortion measure is Hamming. We give two lower bournishe achievable distortion for this binary
setting. The first lower bound is based on ideas from thesteadilnterference Suppression problém [3], while
the second lower bound is based on ideas from the problem mfp@ssion with Actions [5]. Neither bound
contains the other and one bound can be better than the démmnding on the regime of interest. Using our
lower and upper bounds, we characterize the minimum achle\distortion in several regimes. In particular,
we provide an example to show that causal and noncausaladgtimof S; are not equivalent and causal
knowledge ofS, could incur a higher distortion than noncausal knowledg&-0&t the encoder. A complete
characterization of the minimum achievable distortionlie honcausal case remains open.

3) In the Gaussian case, whe$e and .S, are independent Gaussian random variables with finiteaaasd, the
distortion measure is the mean square error #nd= X + S; + S, we note that our setting coincides
with that of Assisted Interference Suppression [3]. Fos ggtting, we give a lower bound on the minimum
achievable distortion which in some places improves onghagn in [3], and also its improved version given
in [6]. The proof of our lower bound relies on an applicaticdnMerdu’s relation between relative entropy
and mismatched estimation in Gaussian ndise [7]. In receatsy since the seminal papel [8] established
the relationship between minimum mean square error estmé@MSE) in Gaussian noise and the Mutual
Information between the signal and the output, there has inéerest in applying these information-estimation
relations to problems in Information Theory (see €.¢. [l §&0]). Our lower bound, which seems difficult
to obtain by traditional techniques such as the Entropy Pdnexuality [11, Chapter 2], provides another
application of these information-estimation relations.

4) In the Gaussian case, we also consider the setting whesnttealer has access.$ noncausally, in addition
to S». This setting is a special case of a problem considered ih J¥2 give a lower bound for this setting
that contains the previous bounds [in][12] and can be strbglyer in some cases. Furthermore, we establish
constant gap results between the achievable distortioroantbwer bound.

We first provide the formal definitions in the next sectidn. Section[Ill, we consider the causal case. In

Sectior TV, we consider the noncausal case, present anvatiéescheme for general discrete memoryless systems
and analyze the binary setting in detail. Sectidn V deald lie Gaussian version of this problem, while we



consider the Gaussian setting whgnis also available noncausally at the encoder in Se¢fidn \&.ddhclude in
Section VII with a summary of our findings and directions fature work.

II. DEFINITIONS
In this section, we give formal definitions for our problemattings. We will follow the notation of[[11],

and assume throughout this paper that the channel in coasime is memoryless. That ig(y™|z™, sT, s5) =
[T, p(yilzs, s14, s2;). We also assume that? and % are independent i.i.d. sequences.

A. Estimation with interference known at the helper

A (n,C) code for the setting shown in Figuré 1 when the interfereadenbwnnoncausally consists of

e An encoder that maps the interferen§g to X", f: &3 — &A™, R

e A decoder that maps the outplit* to the reconstruction sequensg, g : V" — S5
such thatE """ | p(X;)/n < C. The expected per symbalistortion, D, is given by D = Ed(S?, S)) =
EZ?:I d(Sli, S’M)/n

A distortion D is said to be achievable under the cost constréint there exists a sequence 6h,C + ¢€,)
codes, where,, — 0 asn — oo, and

limsup E d(S}, $") < D.
n—r00

The minimum achievable distortion, D(C')min, is then defined as the infinum of the set of achievable distas
under the cost constraiidt.

When the interference is only knovaausally, the definitions are mostly the same, with the differendadpéhat
the encoder is restricted to causal mapping:

fi:Sh— X foriell:n].

B. Estimation with source and interference known at the helper

This setting is shown in Figurgl 2. For this setting, we restdttention to the case wherg and S, are
independent Gaussian random variablgs,~ N(0, P;) and Ss ~ N(0, P»). Furthermore, we assume that both
S1 and .S, are known noncausally at the encoder, and the distortiorsaneas the mean square error betwegn
and its reconstruction. That ig(s1, ;1) = (51 — 81)2. The channel is specified by = X + S; + S, + Z, where
Z ~ N(0,N) is independent of; andS,. The cost constraint is the expected power constréiff."_, X2 /n).

As the definitions are similar to the previous setting, wdyamention the difference. That is, the encoder now
maps bothS} and S% to X™:

FiSP xSy A

IIl. CAUSAL ESTIMATION WITH A HELPER

In this section, we give the distortion-cost tradeoff regfor the setting given il ll-A under the condition that
the interfering signalss, is causally known at the encoder. We will discuss some attiores between our setting
and that of the problem of Causal State Amplification diseasin [2].

Theorem 1. The distortion-cost region for the problem of estimation with a helper when the interfering signal is
causally known at the encoder is given by

D(C)min = U%{ng Ed(S1, 5.(U,V,Y))
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Fig. 2: Gaussian estimation with a helper that knows bothirtterference and the source. The random variables
S1, S2 and Z are independent zero mean Gaussian random variables. Tohdezrhas knowledge &f* and 53
noncausally and the decoder tries to perform lossy reasetgin of S7'. The distortion criterion is the mean square
error criterion and the cost constraint is the expected paweastraint on the encoder outpu,

for some p(u)p(v|u, s2)p(s1)p(s2) and functions z(u, s2) and $; (u,v,y) such that

I(U;Y) > 1(V; 8:|U,Y),
Ep(X) <C.

The cardinalities of the auxiliary random variables may be upper bounded by [U/| < |Ss|(]X] — 1) + 2 and
VI < U|(S2 + 1)

The achievability scheme in this Theorem is actually the esam that used in the problem of Causal State
Amplification considered in[[2], where the focus was on mstouctingS; instead ofS;. The expressions for the
distortion-cost tradeoff are also similar, with the diface being that in the Causal State Amplification setting,
one is interested in minimizing the distortion betwegnand its reconstruction, rather than betwegnand its
reconstruction. Of course, the optimizing choice of aaxitirandom variables in the two problems are different,
since in our setting, we try to minimize the interferen&®)(as much as possible subjected to a cost constraint,
whereas in the setting of Causal State Amplification, onestto amplify the interfering signal. As a (trivial)
example, consider the case wh&n S>, X € {0,1} andY = X & 5; & S3 and no cost constraint. Then, clearly, in
our problem of causal estimation with a helper, we et S, to cancel out the interference completely, thereby
recoveringsS; losslessly. In contrast, for the problem of Causal State Wiogtion, we will not cancel outSs,
since that is the signal we are trying to recover.

Theoren(dl gives the optimal cost-distortion tradeoff fog #stimation problem when the encoder knows the
interfering signal causally. A natural question to ask issthier there is any penalty incurred in this restriction? In
the next section, we will give an example of a binary estiorativith a helper problem under Hamming loss and
show that there is indeed a penalty incurred in only knowhmyinterfering signal causally.

Proof of Theorem [T

Sketch of Achievability: As the achievability scheme is similar to thatlin [2], we gomdy a sketch in AppendiX |
for completeness.

Converse: Given a(n,C') code that achieves distortiaBl, we have
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= I(YQ+1a52Q 1§YQ|Q) - I(YQ+1,SQ 1'S2Q|Q)
<I(Y31,Q, 8871 Yg) — I(V541, 551, Qs S2q)
=I(U,V;Y)—1(U,V;Ss),

where in(a), we used the Csiszar sum lemmal[13];(i), we used the fact thaf; is a memoryless source; in
(¢), we defined@ in the standard manner to be uniformly distributed oMer n] and independent of every other
random variable; and in the last step, we define= (Ug, Q) = (S¢7',Q) andV = V = Y- With these
definitions of auxiliary random variables, it is clear thHatis independent of; and also, the encoder outpiit,

is a function of bothU and S». Further, using the relationship thét is independent o, andV — (U, Sy) —

the condition that/ (U, V;Y) — I(U,V;S2) > 0 reduces to

IU;Y) = I(V; 5:|U,Y).

It now remains to show that the achievable distortion canoet bounded by this choice of auxiliary random
variables. To this end, we will use a technique for lower lbog distortion found in[[14]. We have

1 — .
D+e, > - 2Ed(5u7 S1(Y™))

1< X .
=~ > _Bd(Su, $u(Y:, Y}, Y')

=1

1 — . .
= ZEd(Sm Sy:(Yi, Vi, YT 1Y)

=1

Y

1 n . . .
=3 Bd(Su, S1,(V, Vi, YL SEY), @
n

i=1

where the last step follows from the observation that we emoverS,; from S, by simply ignoringS; . Next,
consider the ternk d(Sy;, 57, (Y, Vi, Y71, S;‘l)),

Ed(Su, S1,(Yi, Vi, Y71, 8571)

= Ed(S1, 57,(Yi, Vi, Y7, Uy)

= ZP(Sli,uuUz‘, yiry' (510, 81 (yi vy wi)

=Y oy, 00) Y p(y " sualwi, yi, vi)d(s1, S1(gi vy ws)
w > op(wi) > ply' ™ fwi)p(siiwi)d(sii, 87 (wi, v )

= " p(wi) Y p(yHwi) > plsislwi)d(sis, St (wi,y' )

yi—1 S14
(b)

= > plwi) Zp (v ) D psushwn)d(si, S ()

S1i

= Zp w;, s14)d(s1i, Sli(wi))
where in(a), we definew; = (u;, y;, v;) for notational convenience and the fact the' !, s1;|w;) = p(y*~t|w;)p(s1i|w;)
follows from the Markov Chairﬁ”"l. — W; — S1;, which in turn, follows from the fact tha$, is only causally
known at the encoder. Hence, givsi * and alsoX*~! since it is a function ofsi 1, Yj—l is independent of;.
(b) follows from definingy'~"* = argminyi—1 Y, = p(s1ifw;)d(s1s, 57;(wi, y* ")) and S, (w;) = S, (wi, y* ™).



Combining inequality[(R) into inequality 1) then gives us

1 — -
D+ ey 2 EEEd(Su,SMm,W,Um
= Eq(E(d(S1q. 510 (V0. Va,Ug))|Q))
> B(d(S1, 51(Y, V,U)).

The bounds on cardinality of the auxiliary random variatfiefow from standard arguments (see for elg.|[11,
Appendix C]). This completes the proof of converse. [ |

IV. NONCAUSAL ESTIMATION WITH A HELPER

Having established the distortion-cost region for the rditc memoryless estimation with a helper problem when
the interfering signal is causally known, we now turn to trencausal setting, that is, whe#y is noncausally
known at the encoder. This setting is more complicated aeddiktortion-cost region is still unknown. In this
section, we first give an achievability scheme based onéhkently proposed technique of hybrid codihgl[15]. We
then specialize our setting to the case of binary estimatiitin a helper.

The problem of binary estimation with a helper is one wh&re- Bern(p;), Sz ~ Bern(ps), 0 < p1,p2 < 1/2,

X e{0,1},Y =X @S @S5, andd(Sy, Sl) Sy @Sy, ie., Hamming distortion. The cost is given pyX) = 1
if X =1 and0 otherwise. The objective of the problem is to design a codinategy that minimizes the Hamming
distortion in S;.

Specializing to the case of binary estimation with a helglems us to derive a number of additional results of
interest. In subsectidn TVJA, we give a (non-trivial) coticih on the cost constraint that allows us to achieve zero
expected distortion. We then show that in the binary casetlts a penalty involved i is known only causally
instead of noncausally. As a result, the distortion inadiireS; is higher if S, is only known causally as opposed
to it being known noncausally. In subsection 1V-B, we deserihe two lower bounds for the problem of binary
estimation with a helper and then compare them. In subset#eC] we briefly mention a non-binary setting for
which we can characterize the distortion-cost tradeoff, stmow that symbol by symbol encoding is optimal in that
setting.

A. Achievable scheme

We first give an achievable scheme for the general discretmanyless estimation with a helper problem based
on hybrid coding[[15]. We will extend this scheme to the Garsgase in the next section.

Theorem 2. An achievable distortion for the problem of estimation with a helper is given by
D(C) < infEd(Sy, S1(U,Y)),
where the minimization is over distribution p(u|s2) and functions x = f(s2,u) and §; (u,y) such that
I(U;Y) > I(U; S2),
Ep(X) <C.

Sketch of Achievability: The achievability scheme follows that of the hybrid codimtpeme given in[[15]. We
give only a sketch here. The codebook generation consistgenérating2”!(UiS2)+€) sequences accordmg to
[T, p(u;). For encoding, given ar} sequence, the encoder looks fora sequence such th&u™, s3) € 7
If there is more than one, it selects one sequence unifortnigredlom from the set of jointly typical sequences. It
then outputst™ according tof (u;, so;) for @ € [1 : n]. The decoder looks for the uniqué” sequence such that
(a™,y") € 7. 1t can be shown as in[T15] that the probability of decodingegoes to zero as — oo if

I(U;Y) > I(U; S2) + 2e.

The decoder then reconstruci§ according tos; (i, y;) for ¢ € [1: n].



We now specialize the achievable distortion-cost regioiftieoren R to the case of binary estimation with a
helper. The next result shows that, in the binary case, zqueated distortion is achievable under a condition on
the cost constraint.

Proposition 1. For the problem of binary estimation with a helper,

D(C)min =0
if Ho(C) > H(X @ S2|Y), where Hs(.) is the binary entropy function, X ~ Bern(C) independent of S, and
Y=X&5 & 5.

Proof: The sufficient condition on the cost constraint followsrfra particular choice of auxiliary random
variab[eU in Theoren{ 2. We lefX ~ Bern(C') independent of5; and letU = X @ S,. The decoder reconstructs
S1 asS1 =Y @ U = Sy, incurring zero expected distortion. We now note that th& constraint is satisfied since
X ~ Bern(C). To satisfy the mutual information condition on the choidgant distribution, we require

I(U;Y) > I(U; Ss)

= H(U|S2) > H(U|Y)
= H(X|S2) > H(X ¢ S2|Y)
= Hy(C) > H(X ® S2[Y).

Weakening Propositionl 1 leads to the following simple sigfat condition for zero distortion.
Corollary 1. If C' > p1, D(C)min = 0.
Proof of Corollary1 follows readily from Propositiéd 1. 8m0 < C,p; < 1/2, if C > py, then

Hy(C) > Ha(p1)
= H(S51)
> H(5:]Y)
=H(X & S:|Y).

Remark IV.1. A trivial condition for zero distortion is when C' > p, in which case, the encoder just performs
symbol by symbol cancellation of S, to allow the decoder to recover S; losslessly. Corollary [I shows that zero
expected distortion can be achieved even if C' < p, aslong as C' > ps.

By choosingU = (U’, V') in Theoreni®2, where(u|s2) = p(v/)p(v' v, s2), we obtain the distortion-cost region
when S, is restricted to be causally known at the encBder natural guestion to ask is whether the achievable
distortion for the same cost constraint can be lowereshifs noncausally known at the encoder rather than only
causally known. This is indeed the case for the problem cdfyirestimation with a helper.

Proposition 2. For the problem of binary estimation with a helper, the achievable distortion when S, is noncausally
known at the encoder can be strictly smaller than the achievable distortion when S is only causally known at the
encoder, with the same cost constraint.

Proof: To prove Propositiofil2, we exhibit an example where we caresetzero expected distortion when
Ss is noncausally known at the encoder, but for which the abtsdistortion is strictly greater than zero when
S is only causally known. To this end, we let = 0.1, p; = 0.5 andC = 0.11. SinceC > p;, from Corollary(1,
an expected distortion o can be achieved wheRf; is noncausally known at the encoder. That is, we have
D(0.11) min—noncausal = 0. Proof of this proposition is completed using the followiclgim, which states that the
minimum expected distortion whe$y, is only causally known at the encodép{0.11),in—causal, 1S Strictly greater
than zero.

Claim 1. D(0.11)min—causa1 > 0 for any choice of U, V' satisfying the constraints given in Theorem[1
Claim[1 is proven in AppendikIl. [ |

1The boundary case di(U;Y) = I(V;S2|U,Y) is treated in a similar fashion as in the causal setting.



B. Lower bounds for binary estimation with helper
We now turn to lower bounds for the binary estimation with #be problem. The first lower bound that we
will present uses ideas frornl[3] adapted from the Gaussighedinary setting.

Theorem 3. A lower bound for the achievable distortion for the problem of binary estimation with a helper is
given by

D(C)min > min Hy '(H(Sy) + H(S:) — H(Y)) — E X,

where we define H;l = 0 if the argument is negative or greater than 1, and the minimization is over joint
distribution p(z|s2) such that EX < C.

Proof: We first start with a simple claim.

Claim 2. Let 87 (y™) be an optimal reconstruction function (with respect to Hammi ng distortion) for s and Z"(y™)
be an optimal reconstruction for s5 @ z™. Then, d(s7, $1(y™)) = d(s§ & z™, & (y™)).

To prove this claim, observe thal'(sl,sl(y ) = >r 51 D S1(y" ). Consider now the functiod’(y™) =
$1:(y™) @ yi. Sinced;(y™) is optimal ford(s4 @ =™, 2" (y™)), we have

n
d(sy © 2", 8" (y") <Y 5o @ a; B #(y")
=1

= ZSm ©x; ®81i(y") Sy

— S1i @511

i=1

= d(s7, 51(y"))-

Hence, we havel(sy @ =™, 2" (y™)) < d(st,51(y™)). For the other direction, consider the functiéfy =

Z;(y™) @ y,;. Repeating the same arguments d0s7, $,(y™)) instead ofd(sy @ z™, 2" (y™)), it is easy to show that
d(s1 81(y™)) < d(s% @ 2™, 2™ (y™)), which completes the proof of claifid 2.

As an aside, the proof of claild 2 shows that the optimal rettooson functions for the respective problems
are related byi" (y™) = 87 (y™) @ y»

We now continue W|th our Iower bound for the binary case. gsitaim[2, we have

d(St, 57 (V")) = d(X" @ 55, 2" (Y™))
> d(Sy,z"(Y"™)) — d(Sy, X" & Sp). (3)

The second line follows from the fact that the Hamming distais a proper distance metric, and it therefore
satisfies the triangular inequality. Hence,

1 1
R (S}, $(") = ~ Bd(X" & 87,5 (V™)

> Leaesy ey = Lracsy, xm e sp).
n n

Let @ be uniform[1 : n], independent of other random variables. Then,
1
~Ed(Sy, X" ® 855) = ZX

_EXQ
=EX 4)



This is the expected number of onesXi". For the termE d(S%, 2" (Y™))/n, we lower bound it by

1 A1 n 1 . a n
—Ed(Sz, 8" (Y")) = ~ Z;Ed(szusm(y ) )
wheres,(Y™) is an optimal reconstruction function with respect to Hamgnidlistortion forSs. The right hand side
of inequality [®) is then further lower bounded by the foliogy argument. From data processing inequalityl [16],
we have

I(Sy;SMy < I

—

Sy Y™)

M=

(H(Y:) = H(Yi|S3, X™))

.
Il

H(Y;) — nH(Slz)

I
M=

1
H(Y) —nH(S)).

.
I

IN
N

On the other hand,

1(Sy;85) > Z(H(Szz) — H(Sy @ Sa))

1 n
> - - i 8o (Y™
= nHQ(Sg) 7’LH2 (TL ;Ed(SQl, SQZ(Y ))) N
where the last line follows from concavity of entropy [16]oi@bining the upper and lower bounds gives us
1 — o _
- > Ed(Si, 824(Y™) > Hy '(H(S1) + H(S2) — H(Y)), (6)
i=1

where we define, ' (.) := 0 if the argument is negative or greater than 1.
Substituting [(b),[(6) and_[4) intd]3), we have

D(C)min > Hy '(H(S1) + H(S2) = H(Y)) — EX,

whereE X < C from the cost constraint. [ |

Using the lower bound in Theorem 3, we can show that wher 1/2, symbol by symbol cancellation o,
is optimal and hence, when = 1/2, the minimum achievable distortion for the same cost cairdtis the same
regardless of whethe¥, is known causally or noncausally.

Proposition 3. When p; = 1/2 and p, > C, the distortion-cost region is given by
D(C)min =p2 — C.

Proof: When S; ~ Bern(1/2), Y ~ Bern(1/2), regardless of the distribution ¢f; & X. Hence, Theorerfl 3
reduces to

D(O)min Z P2 — EX
>p2—C.
Achievability of this lower bound follows from Theorelmh 1 bgting V' = @, U to be a random variable such that
1 w.p. p% if So=1
X=70 wpl-C ifS=1
0 otherwise



The existence of such @ follows from the functional representation lemmal[11, Apgi B]. It is easy to verify

that the expected cost constraint is satisfied with thisaghof distributionp(z|s2). The reconstruction function in

this case is simply5; = Y. It also easy to verify that the distortion constraint isisfad. [ |
The optimization problem in Theorelnh 3 can be simplified inumber of cases.

Corollary 2. Theorem[3 simplifies under the following conditions
1) Under the condition p; + (1 — 2p1)(p2 — C) > 1/2, Theorem[3 simplifies to

D(Cmin = Hy '(H(S1) + H(S2) = H(p1 + (1 = 2p1)(p2 — €))) — C.
2) Under the condition p; 4+ (1 — 2p1)(p2 + C) < 1/2, Theorem[3 simplifies to
D(C)min = Hy ' (H(S1) + H(S2) — H(p1 + (1 = 2p1)(p2 — €))) - C.

Proof: The proof follows from observing thais — C < EX @ Sy < ps + C. DefineEX @© 52 := pugs,-
Then,Y ~ Bern(p: + (1 — 2p1)psas, ). If condition one in the corollary is satisfied, thgfi(Y') is a decreasing
function of p,«s,. It is then easy to see from the expression in Thedrem 3 tleaimihimizing distribution is one
wherep.qs, =p2 — C andE X = C. A similar proof applies for the second condition, which quetes proof of
this corollary. [ |

It appears to be quite difficult to obtain an explicit analgt solution for the general case pf + (1 —2p1)(p2 —
C) < 1/2 < p1+ (1 —2p1)(p2 + C). A looser bound in this case is

Corollary 3.
D(C)min > Hy '(H(S1) + H(Sy) — 1) — C.

Proof of this corollary is omitted as it follows directly fto TheoreniB.

We now present another lower bound for the binary settingguisieas from the proof of converse for Gel'fand-
Pinsker coding given in_[11, Chapter 7], and also ideas fri8jn The main intuition in this lower bound comes
from Claim[2 used in the proof of Theordrh 3, which shows thatdbtimum distortion incurred in reconstructing
X @S, is the same as the optimum distortion incurred in reconstruis;. We then try to lower boun®(C') i
by lower bounding the distortion incurred in reconstrugtiki & S,. We will see in the sequel that in some cases,
this lower bound is better than the previous lower bound iveTheoreniB.

Theorem 4. A lower bound for the achievable distortion for the problem of binary estimation with a helper is
given by
D(C)min > min Hy Y(H(Sy) + H(X ® So|U) + I(U; So) — H(Y)),

where we minimize over p(ulsz) and x = f(u, s2) such that EX < C. The cardinality of the auxiliary random
variable U may be upper bounded by |/| < |S2|(]X'| — 1) + 2. In the binary case that we are interested in, || < 4.

Proof: For notational convenience, It represent the optimal reconstruction f&re Sy andZ = X & S,.
From data processing inequality,

I(Z" 2™ < I(Y™; Z™).
On the one hand,
I(Z" 2" > H(Z") — H(Z"|Z")

(H(Z|Z"™") — H(Z; & Z;))

NE

~

vV

@
I
A

—
S
~

(H(Zi| Z"7, 858 141) + 1(55 415 Zil Z'7 1)) = Ha(D(C)min)

I

N
Il
-

(H(Zi| 27", 83,41) + (2715 82i18341)) — H2(D(C)umin)
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|

@
Il
A

(H(Zi| 271,88 1) + 1277, 85 1115.82:)) — Ha(D(C)min)

(H(Z;i|U;) 4+ 1(Uy; S2i)) — Ha(D(C)min)-

|

@
Il
—

In (a), we used concavity of entropy and Cldith 2, which states th@bptimum distortion foX @ S, is the same
as the optimum distortion fof;. Next,

(Y™ 2" = HY™) — HY"|Z")

< S HY) - HSD)

= Z(H(Yi) — H(51)).

Defining the standard uniform random variable ovét : n] independent of other random variabl&s= (Ug, Q),
Yo=Y, Sig =51, S20 = S2 and Zg = Z then gives us the following lower bound

D > Hy "(H(S1) + H(Z|U) + I(U; S2) — H(Y)),

where we minimize ovep(u|ss)p(z|u, s2) such thatE X < C. Reducing the cost constraint to this single letter
expressionf X < O) follows the same procedure as in Theolgm 3.

Next, we note that instead of minimizing ovgfz|u, s2), it suffices to minimize over: = f(u, s2). TOo see
this, note that we can always find 1, independent ofU, S2, such thatp(z|u, s2) = f(u,v,s2). Now, define
U = (U, V). Observe that since we preserve bpttt @ s;) andp(z), the cost constraint anH (Y) = H(Z @ S1)
remains unchanged. Now, note that

H(Z|U) < H(Z|U),
and

I(U;S2) = I(U; S2) + I(V; So|U)
= I(U, Sg)

The bound on the cardinality @f follows from standard techniques and we omit it here. Thimletes the proof
of the lower bound. |

Theoren# involves minimizing over joint distributions anHoice of auxiliary random variabl&. A looser
bound that is easier to compute is given by the following targ.

Coroallary 4.
D(P)wmin > Hy '(Ha(p1) +  min  {Ha(a) = Ha(ax p1)} = I(U; Z) + 1(U; S2)).

p2—c<as<pa+c
for some joint distribution p(u|sz) and x = f(u, s) satisfying EX < C,and Z = X @ 5.

In Corollary[4, we need to perform maximization BfU; Z) — I(U; S2) subjected to a cost constraiit < C.
This is nothing but the problem of maximization of the capaoif a Gel'fand-Pinsker channel subjected to a cost
constraint. There are efficient numerical algorithms ferfprming this maximization, cf.[[17, Page 555-556] for
a description of the algorithm.

Proof:

Starting from Theorerfil4, consider the te#i(Z|U) + I(U; S;) — H(Y') in the Theorem.
H(Z|U)+I(U;S3) = H(Y) = H(Z,U) = H(U|S2) = H(Y)
=H(Z)-H(Y)+H(U|Z) - H({U|S2)

—~

H(Z) = H(Y)) = (I(U; Z) = I(U; 52))-



We now minimize the term$H(Z) — H(Y)) and —(I(U; Z) — I(U;S2)) separately. We have discussed
maximizing the termi (U; Z) — I(U; S,) earlier. As for the tern{H (Z) — H(Y')), using the observatiop, — C' <
EZ < ps + C, we have

min{H(Z) - H(Y)} = prcfgnifglpﬁc{ffﬂa) — Hy(axp1)},

which completes the proof. |

Comparison of lower bounds

As we mentioned, the expressions in Theoreins 3and 4 canfmilifo compute. For the purpose of simulations,
we compare the expressions of Corollaty 2 with those of CamgpH, when the conditions given in Corolldry 2 are
satisfied. Note that since Corollaly 4 can be weaker tharofiém[4 whereas Corollafy 2 gives the same bounds
as Theorem]3 when the conditions are satisfied, an advaonfathé comparison is that it shows when Theofédm 4
can be strictly larger than Theordrh 3.

For our numerical example, we ggt = 0.1, vary the cost fron.01 to 0.03 and compute plots fgr; = 0.05, 0.09.

In general, the bound in Theordr 3 is better, but we focus aallsralues of costp; andps to show that there
are regimes in which the expression in Theofdm 4 is betteg. dibts are shown in Figurés 3 ahH 4. As can be
seen in Figurél3, there are regions for which Theoém 4 ististrbetter than Theoreil 3. However, Theorgn 3
does give a better bound for a wider range of values as comparéheorenf K.

p1=0.05
0.02 T

Corollary 2
Corollary 4 1

0.018

0016k i
0.014 ) 7
-] \\\\\\\\\W 7

0.008 ]

0.006

0.004 | l

0.002 .

| | | | | | I e

0
0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03

0
0

Fig. 3: Comparison of bounds fa@r = 0.05. Y-axis represents the distortion level while X-axis reganets the cost.

C. Erasure estimation with helper

For most of this section, we have focused on the binary etttimavith helper setup. In this subsection, we
briefly mention a setting, erasure estimation with helperwhich we can characterize the distortion-cost function
and also, for which symbol by symbol cancellation%fis optimal.
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p1=0.1
0.045 ‘ ‘
Corollary 2
Corollary 4
0.04 b

0.035

0.03} 1
0.025 1
0.02} . ]

0.015

T
/
L

0.01
0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03

0
0

Fig. 4: Comparison of bounds fgrn = 0.1. Y-axis represents the distortion level while X-axis resamats the cost.
In this case, the bound given by Corollddy 2 is strictly betten that for Corollary14.

The setting is defined b; ~ p(s1), S2 ~ Bern(ps2), X € {0,1} andY is defined as follows
v — Sy if X®S,=0
Tl e if X®S=1
This is a model of a channel in which when the interfering aldgs large, the desired signal is erased. When the

interfering signal is small, decoder receives the signalgotly. The helper tries to help the decoder by canceling
the interference. The distortion-cost region is charaerby the following proposition.

Proposition 4. The distortion-cost region for the problem of erasure estimation with helper is given by

D(C)min = min {P(X DSy = 1)(n%ilnEd(Sl,§1))

where the minimization is over p(z|s2) satisfying E p(X) < C.
Proof: Achievability of the distortion-cost region uses a modifieersion of the achievability scheme used in
Propositior B. The modification comes in the reconstrucfinction where
$1(Y) = argmin, d(Y, z) if Y =51,
o1 ~ | argming Ed(S1,z) ifY =e
With this choice of reconstruction function and noting thg” = S;) = P(X @ S; = 0) andP(Y = ¢) =
P(X ®S; =1), itis easy to see that the achievable distortion-cost regimplifies to the expression given in the

Proposition.
For the converse, fixing &, C') code achieving distortiol, we have

1 & .
D=~ > B d(Sw, S1(Y™)).

i=1

13



Consider now the terni d(SM, S‘h—(Y")). We have

Ed(Su, Su(Y™) = > p(sii,y™ yi)d(s1:, 81:(y™))
= Z ( P(s16, 4™ i, @ ® 525 = 0)d(s14, 315 (y™))
(51, ™ i, & @ s2; = 1)d(s14, §1i(yn)))
w > ( $10, Y™V iy @ @ $25 = 0)d(s1, 51:(y™))
+p(s14, Y™V, T @ 521 = 1)d(s14, 514 (y™ V', y 6)))
= ZP (810, @ s2; = 0) (Y™ yils1i, @ © s = 0)d(s14, 81:(y™))
+ Zp 516, Y™, @ @ 59 = 1)d(s14, 51:(y™ N, yi = e€)),
where(a) follows from the fact that whem @ so; = 1, y; = e. Next, focusing on the first term in the sum, we note

that P(Y; = S1;| X @ S2 = 0, S1;) = 1. Hence, usind (; to denote the indicator function, the first term simplifies
to the following

D p(s1iw @ s = 0)p(y™, yils1i, @ @ 595 = 0)d(s14, 514(y"™))
- ZP(SM,CC @ s9; = 0)p(y" ' [s15, 2 B 525 = 0,3) 1y, —s,, d(514, 314 (y™))

= Zp S1i, T D So; = O) ( n\z|511 TDs2 =0 %) <m1¥1 d(slivx))
€Sy
_ Zp $1.)p(x @B s2; = 0) (mip d(s14, :C))
r€eSy

z€Sy
Hence,E d(S1;, S‘h—(Y")) is lower bounded by

Ed(Sli, Sll(yn)) > P(Xl ® Sy = O) E (mlp d(Sli,LL'))
x€Sy
+ ) pls1i,y™, x ® 59 = V(514,81 (™, v = ),

€Sy
+ Zp Slz , X D Ss9; = 1)d(81i, §1i(yn\i, yi = 6))
>P(X; @S2 =0)E <Inip d(su,x))
€Sy

+ Zp(yn\iaiﬂ @ s2i = 1) (mln ZP (s1:)d(s15, 2 )
=P(X;® 55 =0)E <mip d(su,x))

€Sy

We note now that ify; = 0 or 1, then we can achieve the minimum possible distortigng, d(s1,$1) using only
knowledge ofy;, sincesy; is known in this case.

14



We therefore obtain
1 & .
D= > B d(Sy, 51 (Y™))

=1

5 (P, -0 i )

€S,

Y

+> P(X; @ Sai = 1) (mip Ed(S;, :17))) .

r€eSy

Defining @ ~ Unif[1 : n] independent of other random variables then give us
D>P(X @& Sy =1)(minEd(Sy,51))
+P(X @ Sy = 0) E(mind(S1, §1)).

For the cost constraint, we have

n

1
B(~Y X)) =EXq
=1

=EX,

which completes the proof. [ |

V. GAUSSIAN ESTIMATION WITH HELPER

In this section, we extend our setup to the Gaussian caseewhe- N(0,1), So ~ N (0, P,), Y = X +51 455,
d(Sh, 5‘1) = (51— 5‘1)2 and the cost constraint 8X? < P. As we mentioned in the Introduction, the problem in
the Gaussian case is equivalent to the problem of Assistedi¢énence Suppression consideredin [3]. We present a
new lower bound for this problem that can improve on thatwéetiin [3] and [6]. The lower bound derived inl [6]
includes the lower bound derived inl [3] as a special case andbe strictly better, but for clarity of presentation,
we will first compare our lower bound to that inl[3] in subsen{V-C, and then compare our bound with the lower
bound derived in[[6] in subsectidn V}D. We begin with an avhlility argument based on Theoréin 2.

A. Achievable distortion-cost region

We specialize Theorefd 2 to the Gaussian case by choosingitileaey random variables as Gaussian random
variables. The achievability scheme presented here isvesibe the same as the scheme presentedlin [3], but we
derive it via different means.

Theorem 5. An achievable distortion for the problem of Gaussian estimation with a helper is given by

EU?
EY?EU? — (RUY)?’

D(P)in < inf 1—

where

—2aBVP + \/4a2B2P + 4(1 — a?)P
VP =
2 )
EU? = P’ +2v3+/P'Ps +~%P5,
E(UY) =aBVPP + P' + ay\/ PPy +vB8\/P' Py + B\/ P' Py + v Py,

EY2=P+14 P, +20\/PP, +23\/P'P,.

and the infinum is taken over —1 < a <1, -1 < <1 and v € R satisfying the constraint

(EUY)?

_ p2ypr 2
(1-pB*P >EU e

15



We defer the proof of Theorefd 5 to Appendix Ill.
Similar to the binary setup, we can derive a nontrivial ctindi betweenP and the power of the sourcg;
(normalized to 1), such that zero expected distortion caadbéeved.

Proposition 5. For the problem of Gaussian estimation with a helper, D(C)in = 0 if
_
P+P+1

Proof: Proof of this Proposition follows from a choice afand3 in Theorenb. However, we give a slightly
different proof that gives more intuition to this conditiamd also has parallels with the problem of dirty paper
coding [18] (see alsd [11, Chapter 7]).

Starting from Theorerh]2, we l&f = X + S5, where X ~ N(0, P) independent ofS,. Note that the cost
constraint is satisfied from this choice Gt If the decoder can decodé, then the distortion incurred is zero, since
S1 =Y —U. It therefore remains to satisfy the decoding conditionicivtis

I(U;Y) > I(U; Ss).
Since all the random variables are Gaussian, this decodindition reduces t&(U|S2) > h(U[Y).

h(U|S52) = h(X|S2)

P>1-

= %log 2meP.
On the other hand,
h(U[Y) = h(=$1[Y)
@ (=81 — B(-51|Y))

1 1
= Zlog2me (1 - —
5 08 ”e< P1+P2+1)’

where (a)follows from the fact that for Gaussian random variables, difference betwee; and its Minimum
Mean Square Error Estimator is independent of the observati.
We therefore derive the condition

1

P>1— ———.
- P+ P +1

[ |
Note that, similar to the binary case, the expected distortian be made to be zero evenHf is much larger
than P.

B. Lower bounds

We now turn to lower bounds for the problem of Gaussian Edtonawith helper. We first state the following
lower bound given in[[3] and its improved version given|in.[6]

Theorem 6. [3] A lower bound for the problem of Gaussian estimation with helper is given by

+ 2
P =
DPminZ - VP )
(P) ( \/P22+2s/PP2—|—P+1 ] )

where [.]T denotes the positive part.

As shown in [[6], the lower bound given in Theoréi 6 can be inpcbto the following.

16



Theorem 7. [6] A lower bound for the problem of Gaussian estimation with helper is given by
2

+
P
\/ : — V(1 =7)2P+ 7P — 2y(1 - 'Y)UX52] ,

1
D(P)min > inf sup —
IXS2 v>0 '72

1+P2+P+20'XS2

where [.]T denotes the positive part and oxs, € [—vP2V P, vVP\/P).

From the lower bound in Theorelh 6 and Proposifibn 5, we cawghat as the power of the interfering signal
goes to infinity, », — oo, zero expected distortion is achievable if and onlyif> 1.

Proposition 6. limp, oo D(P)min = 0 if and only if P > 1.
Proof: From Propositioii]5, the sufficient condition for zero exigelcdistortion reduces t& > 1 as P, — oo.

2
+
From Theorerflle, we can show that this is also necessary. Fhemor&niblimp, o0 D(P)min > ({1 — \/ﬁ} ) ,

which is zero if and only ifP > 1.
We now turn to our lower bound. For clarity, we first presemtraof of a special case of our lower bound before
turning to the more general expression.

Proposition 7. A lower bound for the problem of Gaussian estimation with a helper is given by

1 L+9P, 2v/P 2v/P
D(P)minz 1) [1n< )J’_\/E - )_7P]a

(v— 1+ P (1++vP) VP(1+ P
for any v > 1.

It should be noted that while finding the optimal valueyathat maximizes this lower bound is a hard optimization
problem,any v > 1 constitutes a lower bound fdd(P)..i,. Hence, Proposition] 7 in fact givesfamily of lower
bounds.

Proof: This proof hinges on an application of a relationship betwe@smatched estimation and relative
entropy given in[[7, Equality (14)]. The main idea behind fiveof lies in considering a decoder that performs
the estimation (and reconstruction) using a wrong (or mishead) distribution fo®s»|y». In particular, we will
consider amismatched decoder that attempts to estimeig assuming thatX™ = 0. That is, the decoder assumes
that the encoder does not do anything to help the decoderedtiraation error incurred by the mismatched decoder,
MSEq, is clearly larger than that incurred by an optimum decoldat ises the correct (true) distributidd(P)mix.
We then rely on results in[7] to lower bound the differencén®en D(P),.;, and M SEg, thereby giving us a
lower bound onD(P)pin-

To derive our bound, we first consider a more general sofice N(0,1/~) and letS; ~ N(0, P») as before.
The value ofy that we are concerned aboutys= 1, which will appear later in the proof.

Define M SEqg(v) as

1
1 %‘FPQ( 1 2)

2

wsa =]

1 N
Let o = 77 and note thatS; = «aY is the Minimum Mean Square Error (MMSE) estimate $f that the

decoder would employ if it assumes th&* = 0. We first give a lower bound fot/SEq(v). Note that under
the true distributionE || X™||? < nP.
E|[S] — a(X™ + 57+ SH)|2 = E||ST — a(S7 + SP)||* — 2aE < ST — a(S] + 53), X" > +a* E|| X2
=naPy +2a*E < S X" > +a2E|| X2

(@)
> naby — 2az\/EHSSH?E||X"||2 +a? Bl X"

> naPy — 2a%y/n2P,P
= noabPs — 2na2\/P2P,
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where(a) follows by Cauchy-Schwartz inequality.
Now, let.S™ = S3 + X™ and letPg, denote the distribution of3 4+ X™ under the optimum encoding scheme.
Let Q5. denote the corresponding distribution under the encodihgrae ofX™ = 0. Note now that

MSEq(7) = E||ST — a(S7 + 5|17
(a) n an n|yn
= E[|Y" - 8" — Eq(ST|Y™)|]?
(0) n an n an|yn
= E[Y" - 5" — (Y™ — Eg(S"[Y™)|[?
:E||S"—EQ(5"|Y")||2
= MSE, 5.(7). (7)

(a) follows from the fact that (S + S") is the optimum MMSE estimator fof}" under@; that is, under the
assumption ofX™ = 0. (b) follows from S} = Y™ — 5™, 3

Next, note that this analysis also holds when the decodew&rnbatS™ is distributed according t@z,. That
is, we have

MMSE(y) := E[|S] — Ep(ST[Y™)|?
=E[[S" —Ep(s"[Y")|?
= MMSEp 5.(7). 8)

Note thatnD(P)min = MMSE(1).

We now relateM SEq(v) to the optimumM M SE of ST given that an optimum estimator and coding scheme
were used. Fron7) andl(8), we see that it suffices to conside E, 3. (v) and MM SE 5. (7). Using the
relation between mismatched estimation and relative pytgiven in [7, Equality 14], we have

DIRPIQE) = 5 [ MSEq 50() ~ MMSEp 5. (i (©)

Here, Py~ represents the distribution &f™ induced by Ps, . Similarly, Qy~ represents the distribution af”
induced byQg...

We first give a bound od)( IIQW)
D(PX1QY)) < D(PYY 1100 4p)
= ES" ( YnISn”Qg;glsg)-

Note that sinceX” is a function ofS3', we have the following.

1
Under Py) g, : Y[ S5 ~ N(S + X", S Tnxcn)

UnderQynlsn Y"|SY ~ N(Sg,g Inxn)-

Hence, D(Pfﬂn Sn||QYn‘Sn) is given by the divergence between two multivariate Ganssidom variables
with the same covariance matrix. In our case, the divergengésen by

D(PJ) 4,100, 5) = 57||X”||2.

Hence,
D(PCIQY)) < Esy D(PY) g, 10, 5,)
=Esg(§||Xn|| )
< mP
- 2
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From [9), we have
71

MSEg 5.(7) — MMSEp 5. (v)dy = 2D(PYV||QF) — 2D(PYY(|QF2)

Yo

for v1 > 79. Hence,
Y1

71
[ warsEns. oyt = [ arsEy s )i - 2D 142
i

0 Yo
71

> MSEngn (v)dy —nm P (10)
Yo
SinceM M SE}, 5.(7) is a non-increasing function in, we have 7”01 MMSEp gn (y)dy < (r1—v0)MMSEp 5. (v0) =
(71 — 70)MMSE(vy). Next, we note thaty = 1/(1 + vP), SO we can write

MSEg g.(v) = MSEq(7)

- nPs _ 2n/P, P

Tl (LR
From [10) and the arguments above, we have
Py 2n\/Po P

— dvy —nm P

14+~P,  (14~Py)?
1+nP; 2nvP 2n\/P
1+7P VP11 +mP) VP(1+%P)
Finally, using the relationship thd®(P)min = MMSE(1)/n, 7o = 1 and the above completes the proof of the

lower bound. |

In Propositioi V7, we related the minimum mean square eredraiiecoder incurs when it uses the true distribution
to the mean square error incurred by a decoder if it uses thsilp erroneous distribution oX” = 0. Clearly,
we do not need to choosE™ = 0 as the erroneous distribution, but we can also choose otb&ibdtions. This

is the main idea behind our generalization of Proposftiowfich we state in Theorefd 8.

(11 — 70) MMSE (o) > /

0

=nln( —nmP.

Theorem 8. A lower bound for the problem of Gaussian estimation with helper is given by

1+~F; 1 1
— D)D(P)yin > 1o " N
(v = 1)D(P) &1 p, ) A+~P) (1t P
P Py 027

- + - P
Pi(1+~P)  P(1+P) 14~rP °?

! + 1+ log( ! )
S oo(—mF=
1+ yrP & 1+yrP

+ azx*? — ba*,

where a = PI(11+PI) - PI(lJlr'yPI) - 1+:Yy'rP’ b= |2(PI(11+PI) - PI(lJlr'yPI) + 1+C;er)|vp2 and
VP ifa<0
z*=1¢ b/2a ifa>0andb/2a <P
VP otherwise

for any v > 1, real number ¢ and r > 0.

As with Propositioril7, Theorefd 8 gives a family of bounésy v > 1, real number andr > 0 yields a bound
on the achievable distortion. Theoréin 8 is proved in Appelid]
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C. Comparison of bounds |

We now show some plots comparing the various bounds we demvith the lower bound proposed inl[3]
(Theorem[B). For the purpose of comparisons, we RBefat a fixed level and vary the power of the encoder.
We then compute the lower bounds on distortion given in TéedB, Propositiofi]7, Theorehi 8 as well as the
achievable distortion given in Theordmh 5.

The plots forP, = 0.1, P, = 1 and P, = 10 are shown in Figurels| §] 6 ahdl 7 respectively. As we can see from
the plots, the generalized lower bound in Theofém 8 can faignily improve on the lower bound of Theoréh 5
for several different levels of.

Comparison of bounds for P2 =0.1

0.1 T
TheorenTh
0.09 ~ TheoreniB T
— Propositior[ ¥
0.08 Theoren{® i

0.07 |
0.06
0.05
0.04
0.03
0.02

0.01

0 ,
0 001 002 003 004 005 006 0.07 008 009 0.1

Fig. 5: Comparison of bounds faf, = 0.1. Y-axis represents distortion level and X-axis represéimespower
constraint.

D. Comparison of bounds Il

In this subsection, we compare our lower bound given in Té@b8 to the lower bound given iql[6] (Theorem
[7). For ease of numerical computation, we compare our lowend to the followingupper bound on Theoreni 7.

1
D(P)ypin > min sup —
( )mm = oxs,eA ’Y>I(; 72

2
P
— VA=A, + 2P —2y(1 - 11
\/1+P2+P+2UXS2 \/( 7) 2+’Y 7( ’Y)O'X52 5 ( )

where []* denotes the positive part and is a discretization of the intervdl-+/P;v/P, /P,/P]. The plots
showing comparisons of the lower bound proposed in Theblemdsthe lower bound given in inequalify {11) for
P, =1,10,100 are given in FigureEl§.]19 ahd]10 respectively.

As can be seen from the plots, the two bounds now cross eaeh. dhile the lower bound given|[6] can be
better than that given in Theordm 8 in some regimes, we cansals that Theorefd 8 can be strictly better than
Theoren{¥ in other regimes, particularly whéx is large and the power budgét of the encoder is small.
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Comparison of bounds for P2 =1
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~ Theorenib
~ TheoreniB
Propositiorl N
 Theoren®

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6: Comparison of bounds faP, = 1. Y-axis represents distortion level and X-axis represdinés power
constraint.

Comparison of bounds for P,= 10
1 T T
Theoren{h
TheoreniB
— Propositior
Theoren{®

-0.2 L L L L L L L L L
0

Fig. 7: Comparison of bounds faP, = 10. Y-axis represents distortion level and X-axis represéméspower
constraint.
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Fig. 8: Comparison of bounds faP, = 1. Y-axis represents distortion level and X-axis represdinés power

constraint.

Fig. 9: Comparison of bounds faP, = 10. Y-axis represents distortion level and

constraint.
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Comparison of bounds for P2 =100
1 T T

TheoreniB
0.9 Inequality 1) 4

Fig. 10: Comparison of bounds fd?, = 100. Y-axis represents distortion level and X-axis represéimspower
constraint.

VI. WHEN S IS ALSO AVAILABLE AT THE ENCODER

In this section, we turn our attention to the problem of restonrcting.S; when bothS; and S, are available at
the encoder, as defined in Section1I-B. As with previoudises, the focus of this section is on lower bounds
for this setup, but we also use lower and upper bounds to el@instant multiplicative gap results between the
achievable distortions and lower bounds. As we mentionatiénintroduction, our setting is a special case of the
setting considered in_[12]. We first review some known restbdund in that paper specialized to our setting, and
then present our results, which include a generalizatiotheflower bound[12] that can be strictly larger.

A. Upper and lower bounds
We first present an achievability scheme for this setting.

Theorem 9. (See also [[12]) An acheivable distortion-cost region for the problem of estimation with a helper who
has non-causal access to both the interference and the signal is given by

Py

(a PiJrl)zPl P(1—a2—32) ’
L 8./ 2 +1 2P2-1i-P(1—a2—B2)+N (1+ N )
TE Ea

where we minimizeover —1 <a <1, -1<g<1and0<a?+ 32 <18

D(P)min S

As the achievability scheme is largely the same as thdt’ify [ only give a sketch in Appendix]V.
We now turn to lower bounds on the distortion-cost region. fik& present without proof two lower bounds in
the following two propositions. For their proofs cf. [12] the proof of Theorerh 10 below.

2|n [12], the authors minimize only ovér < o < 1,0 < 8 < 1 and0 < a2 + 32 < 1, but it is easy to see that their proof carries over to
the range stated in this Theorem.
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Proposition 8. A lower bound for the problem of estimation with a helper who knows both the interference and
the signal noncausally is given by

Py
(e f) (4 8)
Remark VI.1. When P, — oo, we see that D(P)min > lflz. This bound is achievable by noting that for
N

a=p=0,wehave D = lfl% in Theorem[@ Thus a separation scheme is optimal when P, — oc.

D(P)min 2

Proposition 9. A lower bound for the problem of estimation with a helper who knows both the interference and
the signal noncausally is given by
Py

D(P)ain 2 (1 N <\/ﬁ+Nm>2)'

Remark VI.2. As P, — 0, our setting reduces to that of state amplification [[I]. From the results therein, the
bound of Proposition[@ is optimal when P, — 0.

We now present our lower bound.

Theorem 10. A lower bound for the problem of estimation with a helper that knows both the interference and the
signal noncausally is given by

(o N
D(P)pyy > —12227
(P) MSE(a)
for any a« € R, a # 0, where MSE(«) is given by the optimum value of the following convex (quadratic)
optimization problem:

(1 — a)aPy + apxs, + pxs,)’

max P+(1—Q)2P2+2(1—Oé)pxs + N —
lpx 5, 1<VPPL | pxs,|<VPPy 2 P + o2P,

It can be shown that setting = 1 anda — oo recovers the bounds in Propositidds 8 &hd 9, respectivélg. T
cases ofox = 1 anda = oo correspond to supplying; + S2 and S,, respectively to the decoder and then lower
bounding the distortion.

Note that while finding the optimum value of may be difficult, Theoreni_10 gives a lower bound for every
«. We note also that while computation of the lower bound negusolving an optimization problem for each
«, unlike the lower bounds in Propositiohk 8 ddd 9, the optatidn problem is quadratic and can be efficiently
solved [19], [20].

Proof: The idea in the proof of Theorelm]10 lies in giving side infotima S; + .S, to the decoder instead of
justS; + S5 or S, as in Propositions]8 arid 9 respectively, and then a morewdetinding of the terms appearing
in the distortion calculation using Linear minimum mean &aguerror estimation and convex optimization.

From the data processing inequality,

1(S7; 8718 + aSy) < I(S)Y™[S) 4 aSy)

= h(Y"|S}? + aSy) — h(Z™)
Zh(Yz‘|Su + aSy;) — g log 2meN
=1

IN

(@)
< nh(Y)S1 + aS2,Q) — glog 2reN

< nh(Y]S1 + aS2) — glog 2meN.
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In (a), we defined® ~ Unif[l : n] independent of all other random variables ang=Y, Sig = S1, S2g = 52

andSig = S;. On the other hand, we have

3

I(S7; 87|87 + aSy) = h(S1]S1s + aSa;) — h(SP|ST, ST + aSY)

N
Il
-

h(S1i|S1i + aSa;) — > h(S1i]S1i)

-
M-

N
Il
-
-
Il
A

h(S1; — S1;)

v

Il
A

I

N
Il
-

> h(S1i|S1; + aSa;) —

(@)
> nh(S1]S1 + aSs2) — glog 2weD(P)min
042P1P2
P1 + a2P2
where(a) follows from concavity of differential entropy and the pespy that a Gaussian distribution maximizes
the differential entropy for a given second moment. Theefo
Oé2pl Pg
P1 + a2P2

= glog (27re ) - glog 2meD(P)min,

1 1 1
3 log (27re ) -5 log 2meD(P)min < h(Y[S1 + aS2) — 3 log 2mre N

1
=h(X +(1—-a)Ss+ Z|S1 + aS2) — 3 log 2mreN
1
<X+ (1 —a)So+Z —k(S1 +aS2)) — 5 log 2meN,

wherek is defined as

(1 —a)aPs +apxs, + pxs,
P+ o2P, ’
with E XS; := pxs, andE XS, := pxg,. From Cauchy-Schwartz inequality and the power constramiX,

lpxs,| < \/PPs, and|pxs,| < \/PPs,.

Continuing with our bound, we have

k=

R(X 4+ (1 —a)Sy+ Z — k(S1 + aSs)) < =log(2me(E(X 4 (1 — a)Ss + Z — k(S1 + S2))?)).

N =

In turn, we have
EX+(1—a)Se+Z—k(S; +aS2)*=P+(1—-a)’P, +2(1 — a)pxs,
(1 — a)aPy + apxs, + pxs;)?
P1 + a2P2
= MSE(aapXSprS2)-

+N -

Note now that fora fixed, MSE(«, pxs,, pxs,) iS @ concave (quadratic) function pfys, andpxs,, and the
constraintypxs, | < +/PPs, and|pxs,| < \/PPs, are linear constraints. Hence, we can find the maximum value
using convex optimization. Letting, 5 and p% g, denote the optimal solutions to the optimization problere, w
arrive at the lower bound for the achievable distortion:
2
> (I%erﬂlczpf?b )N )
T MSE(a, pks, s Pis,)

D(P)
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Fig. 11: Comparison of bounds for estimation with a helpat #tnows both the interference and the source. This
figure gives a plot of the various bounds on distortion fdfedtent values ofP;

Comparison of bounds

As we mentioned earlier, Theordm] 10 includes the bounds dpdaition[ and19. It can also be larger, as we
now show in an example.

Let P, =1, N =1andP = 1. We vary P, and compare the bounds obtained with different value&,0fThe
plots comparing the various upper and lower bounds are givétigure[11. As can be seen from Figlird 11, the
lower bound given by Theorem 110 can be strictly better tha given by previous lower bounds. As we noted in
the proof of Theoreri 10, the improvement comes from two dspegiving S; + a.S» to the decoder and a more
careful bounding via Linear Minimum Mean Square Error Estiin and Convex Optimization. The reader may
ask whether it is necessary to uSe + .S, instead of just settingg = 1 or & — oo and calculate the bounds
more carefully using Linear Estimation and Convex Optirticza In our simulation, we noted that for some values
of P,, moderate values af, such asw = 2,3 give better bounds than = 1 or o = 20. This shows that using
S1 + aS; does lead to better bounds than ussig+ Ss or S, alone.

B. Constant gap results

In our simulations, we note that the upper bound and lowentsw@appear to be quite close. This suggests that
constant multiplicative gap results on the distortion maypossible, under some conditions on the input, source
and interference powers. This is indeed the case as statedrinext result that when the interference power is
larger than a threshold (that depends on the system panajdbe lower and upper bounds are within a constant
multiplicative gap.

Theorem 11. If
\/72P+7\/— P2 +~vVP)(P(1 —~2)+ N) —yV/P
VP ; (12)
YWP(2+~VP)
with v = (P *N ) ,0<e< P+—N, then the multiplicative gap between the upper bound in Theorem@, D.cpicvables
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and the lower bound in Proposition[8, Dy, is at most 1/(1 — ¢€). That is,

Dachicvablc < 1

Dy, ~1—€
Proof: We begin the proof by evaluating the distortion achieved hgdrenid fora = — 3 = %. We
have Pl-a>—8) P [ «P+N) P
—a” = €
1+T_1+N(1_T)_(1_6)<1+N) (13)

Now from the condition onP, stated in the Theorem (sde12)), it follows that,
PyaVP(2+ oVP) + \/P2aVP — P(1—a?) =N >0
= PyaVP(2+ aVP) + /P2 + aVP)avVP — a*P — P(1-2a%) = N >0

o’P (24 av/P)a/P a?P ] 5
=P, a\/ﬁ(2+a\/ﬁ)—m+ i — PQ_ZP(1—204)+N
a/P aVP | 9
= P (a\/ﬁ+ \/172> <2+a\/ﬁ— JE)_ > P(1—20%)+ N
.
=P, (1+a\/ﬁ)2—<1—a\/g> > P(1—20%)+ N
(/P +1)? o
= >
(—ay/& +12P+ P1—202)+ N P2
Therefore we have,
1+ (VP + 1P (1+—P(1_a2_52)) z(1+i) (1+£) (1-e),
(8% +1)2Ps + N + P(1 - a2 - 52) N Py N

which implies
Dachievable < 1
Dy, ~1—¢€

VII. CONCLUSION

In this paper, we defined and analyze the problem of estimatiith a helper that knows the interference. In
the discrete memoryless case when the interfering sigfalis known causally at the encoder, we characterized
the distortion-cost region. Whefi, is known noncausally, we proposed an achievability scheased on hybrid
coding. In the binary estimation with a helper problem, wsgbroposed two lower bounds. Using the upper and
lower bounds, we characterized the distortion-cost regiben the problem parametet§ p; andps satisfy one
of several nontrivial conditions.

In the Gaussian case, we derived a lower bound based on at meserft by Verdl between divergence and
mismatched estimation. We showed through numerical simonkthat this lower bound can be strictly better than
previous lower bound derived inl[3]. Similar to the binaryseawe also characterized the distortion-cost region
when the problem parameters P, and P, satisfy one of several conditions.

We also extended our analysis in the Gaussian case to cotis@lease when the helper knows bsthand S,
noncausally. In this case, we derived a lower bound thatadasifprevious lower bounds proposed|in][12] and can
be strictly better. We also obtained constant multiplia@aap results for this setting.

In deriving our lower bound for the Gaussian case when ondyitherfering signal is known at the helper, we
used a relationship between mismatched estimation andgd#imee. In the discrete case, a relationship between
divergence and Hamming distortion exists too. One suchioekhip is Marton’s inequality [21, Lemma 6.3]. An
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interesting open question is whether one can use suchomrdips to derive a lower bound for the binary case
that is strictly better than the bounds we proposed.
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APPENDIX |
SKETCH OF ACHIEVABILITY FOR THEOREM([I

We use block Markov coding oveB blocks. The scheme in each block is basically a separatioense, where
we use the random variablé for transmission of a message from the previous block. Thesage itself is a
Wyner-Ziv description[[22] ofS%} from the previous block. More concretely, in each blgck [1 : B], thetrans-
mission codebook is generated as follows: Geneite (V¥)=<) (1) sequences according {d}_, p(u;). The
compression codebook is generated by the following two step procedusme@ate2™(/(ViS2.U)+e) " sequences
according to[ [, p(v;). Partition the set of/™ sequences int@"(/(ViS21U:Y)+2€) hing, B(M;).

For encoding, at the end of blogk assume that the codewotd' (m ;) was sent. The encoder then find&&(j)
sequence that is jointly typical with7™(m;), S3(j)). If there is more than one such sequence, it picks from one
uniformly at random from the set of jointly typical sequesc@&his operation succeeds with high probability as
n — oo since there ar@"!(ViS2.U)+e) yn(j) sequences. The encoder then finds the bin indigx; such that
V™ e B(M,41). It then sends out the inde};;, in block j + 1 by selectingU™(j + 1) and sending out th&™
sequence encoded as = f(u;(M;41),s2:(j + 1)). For the first block, the encoder sends an arbitrary message
This encoding operation requires the condition that

IU;Y)—e>I(V;5|UY) + 2e.
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For decoding, at the end of blogkt 1, the decoder first decodes the bin inde. ;. From standard arguments
(see for e.g.[]11, Chapter 7]), this decoding operation eseds with high probability provided

IU;Y) —e>I(V;8:|U,Y) + 2e.

Once the decoder recovers the bin indéx. 1, it then recovers the trug” (;j) codeword by looking fou™(j) €
B(M,4+1) such that(u™(m;),y™(j),v"(j)) € 7 It then reconstructsST (j) as $1(ui(m;),v:(4),vi(y)) for
i € [1 : n]. From the rates given and standard arguments (s€e [11, &h3pnd Chapter 11]), the expected
distortion for S7(j) in block j is less than or equal t& d(S;,S:(U,V,Y)) + (e), where ¢) — 0 ase — 0.
This decoding and reconstruction procedure applies forfitae B — 1 blocks and for theBth block, we simply
reconstructS7(B) according to an arbitrary symbg] € Si, incurring a distortion that is bounded @y;,.,, where
Dinax := maxg, Ed(S1, $1). The per symbol distortion oveB-blocks is then upper bounded by + ’(e) where
"(e) > 0ase — 0.

We now note that the above achievability scheme takes catieeofase whed (U;Y) > I(V; Ss|U,Y). The
boundary case of (U;Y) = I(V;52|U,Y) can be handled as follow. Assume first thgt/;Y) > 0. Define
U = (U,Q), Q € {1,2} independent of other random variabl&s, = ¥ when@Q =1 andV = () whenQ@ = 2.

X = f(U,S2) regardless of) ands; (U, V', Y") = 5, (U, V,Y) if Q =1 andsj if Q =2, wheresj is an arbitrary
symbol belonging taS;. LetP(Q = 1) = p;. We have
H(usY") > 1(U;Y),
IV Sa|UY') = pil(V; 52|U.Y),
Ed(Sy, S (U, V', Y")) < p1t Ed(S1, 51(U,V,Y)) + (1 = p1) Dimax.
With this choice of random variableg(U’;Y") > I(V'; S2|U’,Y’) wheneverp, < 1 and we can then apply the
achievability scheme we discussed, at the expense of ldig@rtion. By choosing; (n) = 1 — ¢, wheree,, — 0
asn — oo, we can apply our achievability scheme for blocklengthkufficiently large, with the resulting expected
distortion converging td@ d(S, S1(U,V,Y)) asn — co.

For the case of (U;Y) = I(V;S:|U,Y) = 0, it can be shown that in this case, the decoder can perform the

reconstruction based only o (Y;, U;) for i € [1 : n]. Achievability in this case requires no block Markov coding

We only need to generate one transmission codewvigtdand transmitX™ according tox; = f(u;,s2;). The
decoder reconstructsy” as $; (u;,y;) for i € [1: n).

APPENDIXII
PROOF OFCLAIM [

The causal region in Theordm 1 is given by

min  Ed(Sy, 51 (U, V,Y))
subject to
I(U;Y) > I(V; S5|U,Y)
EXC
for somep(u)p(v|u, s2) and functionz(u, s2). We prove thatDQO.ll)min,musal > 0 by contradiction. Suppose
that there existd/, V' satisfying the constraints such tHawu(S;, 51 (U, V,Y)) = 0. This implies in particular that
H(S1|U,V,Y) = 0. Hence,
I(V:S:|UY) = I(V, S1; S2|U,Y)
> 1(51;5:|U,Y)
= H(S1|U,Y) — H(51]52,U,Y)
= H(51|U,Y)
S1,Y|U) - HY|U)
S1)+ HY|U,S:)— HY|U).

H(
H(



The last step follows front/ being independent of;. Since we requird (U;Y) > I(V;52|U,Y), and we know
that H(S,) + H(Y|U, S1) — H(Y|U) < I(V; S2|U,Y), a necessary condition f@ d(S1,51(U,V,Y)) =0 is

H(S))+ H(Y|U,81) — H(Y|U) < I(U3Y),
= H(S1) + H(Y|U,8) < H(Y).

Define the subsets @f as follows.ly := {u : x(u, s2) = 0}; Uy = {u: x(u,s2) = 1}; Us := {u : z(u, s2) = s2};
andUs = {u : z(u, s2) = 1 @ s2}. Note the following.
e Foruely, HY|U =u,S;) =1 sinceS; is independent ot/ S;.
e Foruel, HY|U = u,S;) =1 sinceS; is independent o/, S;.
e ForueU,, HY|U =u,S5;)=0sinceSe @ X =0andY =S, & X & 5.
o Foruels;, HY|U =u,S5;)=0sinceSe @ X =1andY =S, & X & 5.
)i

Further, definepuo = >, cry P(W); Put = D yery, P(W); Ps = D _cqq. P(w); @ndps = 7 o, p(u). Then,
H(S51) + H(Y|U, S1) = Ha2(p1) + puo + pur
= Ha(p1) +1- G,

whereCy = ps + ps.
The cost constraint can be expressed as

1
EX =p + i(ps + ps)

1

=p1+ 503

<C,
whereC = 0.11. In particular, the cost constraint implies th@t < 2C. Hence,

H(Sl) + H(Y|U, Sl) >1+ HQ(L]) —2C.
Now, sincep; = 0.1 andC = 0.11, we see that
H(Sl) + H(Y|U, Sl) >1
> H(Y),

which is a contradiction.

APPENDIXIII
DERIVATION OF THEOREM[G

The derivation of Theorei 5 follows from choosing the aaxilirandom variables in Theordrh 2. Starting from
Theoren 2, let

U= X/—F’}/SQ,

| P
X = — S+ X'
« P2 2+ )
X'~ N(0, P"),

= [V PP,

where P’ is a quantity to be calculated, arnd and S are restricted to be between -1 to 1 to satisfy the power
constraints. Observe th& is a function ofU, S, as required. For convenience, we will use the notafioi” to
denote Minimum Mean Square Error &f givenY. The reconstruction function is given by

S =E(S,|U,Y).
We now determineg”’ from other variables usin§ X2 = P.
EX?=a?P + P +2a8VPP =
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Solving for P’ gives

P - —2a8VP + \/40422ﬁ2P +4(1-a?)P
To satisfy the constraint in Theordmh 2, we require

h(U|S2) > h(U]Y).

SinceU, Sy, Y are all Gaussian random variables, this condition reduzes t

UlS, > UJY.
Now,
U|Sy = X'| 52
=(1-p>P".
As for U]Y, we have
E(UY))?
Uly =EU* - (EOY))" ‘(EW)) :

and
EU? =P’ +2y8\/P'Py +7*Ps,
E(UY)=E((X' + 75‘2)(04\/282 + X))+ BVP' Py + P,
= afVPP' + P + ay\/PP;y + y8\/P' Py + /P Py + P,
EY?=EX’+ES;+ES; + 2E(52(a\/§;5§ + X))
=P +1+ Py +2a\/PP,+23\/P'P,.
The expected distortion is then given bySs|(Y, U), which is
EU? E(UY) ]1 [ E(US)) }

S1(U,Y) = 1~ [BUS) E(YS))] [

E(UY) EY? E(YS)
We note now thaE(US;) = 0 andE(S;Y) = 1. The lower bound therefore works out to
2
SIU,Y) =1 by

 EY2EU?—- (EUY)?

APPENDIX IV
PROOF OFTHEOREM[S

As Theorem B is a generalization of Propositldn 7, the prdofhis Theorem also follows closely that of
Propositior V. As such, we will only mention areas wheredrae differences from the proof in Propositidn 7 and
refer readers to Propositigh 7 for the rest of the proof.

As we mentioned before, we generalize the bound by not asguthat X = 0. Instead, let us assume that
under the mismatched distributiafl, X is distributed i.i.d according to¥ = ¢Ss + Z, where Z ~ N(0,rP)
independent ofS, andr > 0. Under this assumption}/SEq(v) and D(Pf/l)‘anQ%‘Sn) used in the proof of
Propositior[ ¥ are now different. The bounds bhSEq () and the divergencé between the true distribution and
the mismatched distribution are therefore different. Wiewdate them as follow.

Define o as 1

o=
14+~P;
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where Py = (1+¢)?P, + rP. Let E||X"||3 = na?, wherez? < P. We now have, folM SEq(v),

1 1
—MSEq(y) = —BIIST — a(X" + 87 + 53|

1 n n ny||2 20 n n n n CY2 ni|2
:EEHSI_Q(Sl + Sl —;E<5’1—a(51 +53), X >+;E||X I

1—a)? 20?
:%+a2p2+%E<sg,X">+a%2

VPIQ P2 20[2 n n 2 2
= + + —E< ST, X" > +a'x
(L+~PI)*  (1+~Pp)? ?
Pr Pr Py 2 1 )
= — + + E<Sy X" >+——u”
1+vPr (14+~Pp)2  (14+~P1)2  n(l+vP;)? 2 (1+~Pr)2

It remains to calculate an upper bound on the divergence. eferé, prY n‘sn ~ N(S% + X™, %I), but now,

93|s; ~ N((l +¢)Sy, (; +rP)I). The (conditional) divergence is now given by

1 1 ¥
P(’Y . ) on —1-1 X" — eS72.
DAy 10 ) = T = 1= 08 ) + X — 513

Combining the d|vergence bound after taking expectatiogr 6§ with the M SEg bound after integration gives
(see [(ID) in the proof of Propositidn 7)

Y1 — Y 1+vPr 1 1 P,
———MMSFE >lo + — —
n (o) > g(l‘i"YoPI) I+mPr)  (I+vPr) Pi(l+mPr)
Pg 62’}/1 1
+ = - +1+log(———
P](l‘i—’}/op[) 1+’}/17’P 2 1+’}/17’P g(1+’}/17’P)
1 1
+( _ _ 71 )CCQ
P](l—‘r’yopj) P[(l—‘r’ylP[) 1+’}/1TP
1 1 E<Sy X" >
+2( = SR .|
Pr(1+~Pr) P(1+mPr) 14+mrP n
1+7P 1 1 P
> log( 71 1) + _ _ 2
L+vPr” (1+mPr) (A+vP) Pr(l+mPr)
Pg 62’}/1 1
+ = - +1+log(———
Pr(l+~0Pr) 1+mrP 2 1+~vrP g(l—F'}/TP)
1 1
+( _ _ 71 )1'2
P](l—‘r’yopj) P[(l—‘r’ylP[) 1+’}/1TP
1 1
= 12( - )V Pall.

P[(I—F’yopj) P[(1+’71P]) 1+’7 rP
The final line follows from successive application of Caybchwartz onE < S3, X™ >. Minimizing the

bound 0ver|:z:| < /P then gives the generalized lower bound. ket (P1(1+170PI) - PI(1+171P1) — 1+31TP) and

= 2(prasory — Py T e |VPe- We note thab < 0 and let f(x) = aa® — bl
We note that ifa < 0, f(x) is symmetric and decreasing in Therefore, we set* = /P. If a > 0, then
r* =b/(2a) if b/(2a) < VP andz* = /P otherwise. The generalized lower bound is now given by

71— 1+mPr 1 1 P
L B MMSE(y) > 1o + - B
- (70) g(l +70PI) (1+vP) (+~P) P(l+vPr)
P 0271 1 !
N - - +1+ log(———
Pl +7P) 1+mrP > 1+7rP g(1+7rp)
1 1
N ( B - 71 )I*Q
P(1+7P) Pi(l+mP) 1+ WP
1 1
— 12 - IV Por”

Pr(1+~0Pr) P1(1+71P1) 1+71P
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where we optimize ovefy; > o, » > 0 andc¢ € R. Noting that M M SE(1)/n = D(P)min then completes the
proof.

APPENDIXV
SKETCH OF THEOREM[9

The achievability scheme in Theoréin 9 closely resemblesgda involves allocating a fraction of the power for
transmitting a message (corresponding to a compressemvafithe desired sourcé,;) using dirty paper coding
and using the remaining power for uncoded transmission @fieait combination of5; and S;. The compressed
index is generated based on Wyner-Ziv coding and then trideshreliably over channel using dirty paper coding
as in [12]. The bin indices in Wyner-Ziv coding are transedtiat a rate equal to the capacity of the dirty paper
channel. Note that the interference in this channel alslud®es the signal due to uncoded transmission created at
the encoder. The compressed index is decoded at the recmivey the receiver side informatidn and both the
decoded codeword and are used to estimate the sourge Uncoded transmission helps in improving the signal
to noise ratio of the desired signél in Y.

Let
[P [ P
U:X’—i—(a F+1>Sl+<ﬁ E+1>Sg
X:X/—i—oql S1+ﬂ\/ SQ

X"~ N(0, P(l—a - B%),

Y=X+5+5+ 7,
where X’ is independent of5; and S, and corresponds to the coded part of the signal. Auxilidrjs used to
cancel the total interference t§’ as in dirty paper coding. The total interference is equa(aq/% + 1) S1+
(ﬁ\/PZ;+ 1) Sy. As a result, a clean channel (without interference) isteedetweenX’ andY, which can be

used to transmit the description 6f at a Wyner-Ziv rate equal té log (1+ P(1+2752) . The received signal

Y can also be seen as a noisy version of the desired sigjnalnd is used along with the message transmitted to
reconstructs; .
Therefore, the resulting distortion is; is given by

Py

<1 +1 (oy/F1) P ) (1+ W)

8y & +1) PatP(1-a2—2)+ N

D =
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