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1Estimation with a helper who knows the
interference

Yeow-Khiang Chia∗, Rajiv Soundararajan† and Tsachy Weissman‡

Abstract

We consider the problem of estimating a signal corrupted by independent interference with the assistance of a
cost-constrained helper who knows the interference causally or noncausally. When the interference is known causally,
we characterize the minimum distortion incurred in estimating the desired signal. In the noncausal case, we present a
general achievable scheme for discrete memoryless systemsand novel lower bounds on the distortion for the binary
and Gaussian settings. Our Gaussian setting coincides withthat of assisted interference suppression introduced by
Grover and Sahai. Our lower bound for this setting is based onthe relation recently established by Verdú between
divergence and minimum mean squared error. We illustrate with a few examples that this lower bound can improve
on those previously developed. Our bounds also allow us to characterize the optimal distortion in several interesting
regimes. Moreover, we show that causal and noncausal estimation are not equivalent for this problem. Finally, we
consider the case where the desired signal is also availableat the helper. We develop new lower bounds for this setting
that improve on those previously developed, and characterize the optimal distortion up to a constant multiplicative
factor for some regimes of interest.

I. I NTRODUCTION

Consider a joint source channel coding problem as depicted in Figure 1. We have two memoryless sources
S1 (the desired signal) andS2 (the interfering signal). The decoder’s aim is to estimate the source sequenceSn

1

from Y n, with the goal of minimizing the average per symbol distortionE(
∑n

i=1 d(Ŝ1i(Y
n), S1i))/n. The encoder

(helper), who knows the interfering signalS2, aids the decoder in reconstructing the signalS1 through his choice
of X , subject to a cost constraintρ(X).
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Fig. 1: Estimation with a helper who knows the interference.The interfering signal isSn
2 while the desired signal is

Sn
1 . The encoder (helper) tries to help the decoder in estimating Sn

1 by reducing the interference due toS2, subject
to a per symbol cost constraint on its transmissionXn.
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Applications may arise in sensor networks or cognitive radio systems. As a motivating example, suppose Alice is
talking to Bob in his office. As a result of ongoing construction work near Bob’s office, there is high interference
which makes it hard for Bob to listen to Alice. Fortunately, Bob recently purchased a noise cancellation device
which has a microphone placed near the construction site. The microphone measures the interfering signal from
the construction site and transmits it to a noise cancellation speaker situated in Bob’s office. Since electromagnetic
waves travel faster than sound, the noise cancellation speaker knows the interfering signal noncausally. Due to a
power constraint on the speaker, it cannot cancel the interference fully. What then, is the minimum distortion that
can be achieved by Bob in trying to reconstruct Alice’s speech?

Our setup is closely related to several strands of work involving communication over channels with states. In
[1], the authors considered the problem of State Amplification, where a message is to be sent to the decoder and
the decoder also forms a list of possibleSn

2 sequences. The goal is to maximize the message transmissionrate and
reduce the uncertainty the decoder has regardingS2; i.e. reduce the list size of possibleSn

2 sequences. Recently,
the problem of state amplification with a distortion constraint was considered in [2], with an additional condition
that the encoder only knows the stateS2 causally. This setting is similar to our setting, with the main difference
being that the decoder wishes to reconstructS2 rather thanS1. When our setting is specialized to the Gaussian case
with the mean squared error distortion between the reconstruction and the signal, our setting becomes equivalent
to the problem of Assisted Interference Suppression considered in [3]. As detailed in [3], this problem is closely
related to Witsenhausen’s counterexample in Optimum Control Theory [4].

In this paper, we consider both the case whenS2 is available causally at the encoder, and the case whenS2 is
available non causally at the encoder. Our main contributions are as follows:

1) WhenS2 is available causally at the encoder, we characterize the minimum achievable distortion inS1. We
borrow certain ideas used in the characterization of the distortion cost region for the causal state amplification
problem in [2] to establish our result.

2) For the noncausal setting, we first give an achievable scheme for the general discrete memoryless system
and then focus our attention on the case whereS1 andS2 are independent Bernoulli random variables and
the distortion measure is Hamming. We give two lower bounds on the achievable distortion for this binary
setting. The first lower bound is based on ideas from the Assisted Interference Suppression problem [3], while
the second lower bound is based on ideas from the problem of Compression with Actions [5]. Neither bound
contains the other and one bound can be better than the other,depending on the regime of interest. Using our
lower and upper bounds, we characterize the minimum achievable distortion in several regimes. In particular,
we provide an example to show that causal and noncausal estimation of S1 are not equivalent and causal
knowledge ofS2 could incur a higher distortion than noncausal knowledge ofS2 at the encoder. A complete
characterization of the minimum achievable distortion in the noncausal case remains open.

3) In the Gaussian case, whereS1 andS2 are independent Gaussian random variables with finite variance, the
distortion measure is the mean square error andY = X + S1 + S2, we note that our setting coincides
with that of Assisted Interference Suppression [3]. For this setting, we give a lower bound on the minimum
achievable distortion which in some places improves on thatgiven in [3], and also its improved version given
in [6]. The proof of our lower bound relies on an application of Verdu’s relation between relative entropy
and mismatched estimation in Gaussian noise [7]. In recent years, since the seminal paper [8] established
the relationship between minimum mean square error estimation (MMSE) in Gaussian noise and the Mutual
Information between the signal and the output, there has been interest in applying these information-estimation
relations to problems in Information Theory (see e.g. [9] and [10]). Our lower bound, which seems difficult
to obtain by traditional techniques such as the Entropy Power Inequality [11, Chapter 2], provides another
application of these information-estimation relations.

4) In the Gaussian case, we also consider the setting when theencoder has access toS1 noncausally, in addition
to S2. This setting is a special case of a problem considered in [12]. We give a lower bound for this setting
that contains the previous bounds in [12] and can be strictlybetter in some cases. Furthermore, we establish
constant gap results between the achievable distortion andour lower bound.

We first provide the formal definitions in the next section.In Section III, we consider the causal case. In
Section IV, we consider the noncausal case, present an achievable scheme for general discrete memoryless systems
and analyze the binary setting in detail. Section V deals with the Gaussian version of this problem, while we

2



consider the Gaussian setting whenS1 is also available noncausally at the encoder in Section VI. We conclude in
Section VII with a summary of our findings and directions forfuture work.

II. D EFINITIONS

In this section, we give formal definitions for our problem settings. We will follow the notation of [11],
and assume throughout this paper that the channel in consideration is memoryless. That is,p(yn|xn, sn1 , s

n
2 ) =

∏n

i=1 p(yi|xi, s1i, s2i). We also assume thatSn
1 andSn

2 are independent i.i.d. sequences.

A. Estimation with interference known at the helper

A (n,C) code for the setting shown in Figure 1 when the interference is knownnoncausally consists of

• An encoder that maps the interferenceSn
2 to Xn, f : Sn

2 → Xn;
• A decoder that maps the outputY n to the reconstruction sequencêSn

1 , g : Yn → Ŝn
1 ;

such thatE
∑n

i=1 ρ(Xi)/n ≤ C. The expected per symboldistortion, D, is given by D = E d(Sn
1 , Ŝ

n
1 ) =

E
∑n

i=1 d(S1i, Ŝ1i)/n.
A distortion D is said to be achievable under the cost constraintC if there exists a sequence of(n,C + ǫn)

codes, whereǫn → 0 asn → ∞, and

lim sup
n→∞

E d(Sn
1 , Ŝ

n
1 ) ≤ D.

The minimum achievable distortion, D(C)min, is then defined as the infinum of the set of achievable distortions
under the cost constraintC.

When the interference is only knowncausally, the definitions are mostly the same, with the difference being that
the encoder is restricted to causal mapping:

fi : Si
2 → X for i ∈ [1 : n].

B. Estimation with source and interference known at the helper

This setting is shown in Figure 2. For this setting, we restrict attention to the case whereS1 and S2 are
independent Gaussian random variables,S1 ∼ N (0, P1) andS2 ∼ N (0, P2). Furthermore, we assume that both
S1 andS2 are known noncausally at the encoder, and the distortion measure is the mean square error betweenS1

and its reconstruction. That is,d(s1, ŝ1) = (s1 − ŝ1)
2. The channel is specified byY = X + S1 + S2 + Z, where

Z ∼ N (0, N) is independent ofS1 andS2. The cost constraint is the expected power constraint:E(
∑n

i=1 X
2
i /n).

As the definitions are similar to the previous setting, we only mention the difference. That is, the encoder now
maps bothSn

1 andSn
2 to Xn:

f : Sn
1 × Sn

2 → Xn.

III. C AUSAL ESTIMATION WITH A HELPER

In this section, we give the distortion-cost tradeoff region for the setting given in II-A under the condition that
the interfering signal,S2, is causally known at the encoder. We will discuss some connections between our setting
and that of the problem of Causal State Amplification discussed in [2].

Theorem 1. The distortion-cost region for the problem of estimation with a helper when the interfering signal is
causally known at the encoder is given by

D(C)min = min
U,V,X,Ŝ1

E d(S1, Ŝ1(U, V, Y ))

3
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Fig. 2: Gaussian estimation with a helper that knows both theinterference and the source. The random variables
S1, S2 andZ are independent zero mean Gaussian random variables. The encoder has knowledge ofSn

1 andSn
2

noncausally and the decoder tries to perform lossy reconstruction ofSn
1 . The distortion criterion is the mean square

error criterion and the cost constraint is the expected power constraint on the encoder output,X .

for some p(u)p(v|u, s2)p(s1)p(s2) and functions x(u, s2) and ŝ1(u, v, y) such that

I(U ;Y ) ≥ I(V ;S2|U, Y ),

E ρ(X) ≤ C.

The cardinalities of the auxiliary random variables may be upper bounded by |U| ≤ |S2|(|X | − 1) + 2 and
|V| ≤ |U|(|S2|+ 1).

The achievability scheme in this Theorem is actually the same as that used in the problem of Causal State
Amplification considered in [2], where the focus was on reconstructingS2 instead ofS1. The expressions for the
distortion-cost tradeoff are also similar, with the difference being that in the Causal State Amplification setting,
one is interested in minimizing the distortion betweenS2 and its reconstruction, rather than betweenS1 and its
reconstruction. Of course, the optimizing choice of auxiliary random variables in the two problems are different,
since in our setting, we try to minimize the interference (S2) as much as possible subjected to a cost constraint,
whereas in the setting of Causal State Amplification, one tries to amplify the interfering signal. As a (trivial)
example, consider the case whenS1, S2, X ∈ {0, 1} andY = X⊕S1⊕S2 and no cost constraint. Then, clearly, in
our problem of causal estimation with a helper, we setX = S2 to cancel out the interference completely, thereby
recoveringS1 losslessly. In contrast, for the problem of Causal State Amplification, we will not cancel outS2,
since that is the signal we are trying to recover.

Theorem 1 gives the optimal cost-distortion tradeoff for the estimation problem when the encoder knows the
interfering signal causally. A natural question to ask is whether there is any penalty incurred in this restriction? In
the next section, we will give an example of a binary estimation with a helper problem under Hamming loss and
show that there is indeed a penalty incurred in only knowing the interfering signal causally.

Proof of Theorem 1:
Sketch of Achievability: As the achievability scheme is similar to that in [2], we giveonly a sketch in Appendix I

for completeness.
Converse: Given a(n,C) code that achieves distortionD, we have

0 ≤ 1

n

n
∑

i=1

I(Y n
i+1;Yi)

=
1

n

n
∑

i=1

(I(Y n
i+1, S

i−1
2 ;Yi)− I(Si−1

2 ;Yi|Y n
i+1))

(a)
=

1

n

n
∑

i=1

(I(Y n
i+1, S

i−1
2 ;Yi)− I(Y n

i+1;S2i|Si−1
2 ))
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(b)
=

1

n

n
∑

i=1

(I(Y n
i+1, S

i−1
2 ;Yi)− I(Y n

i+1, S
i−1
2 ;S2i))

(c)
= I(Y n

Q+1, S
Q−1
2 ;YQ|Q)− I(Y n

Q+1, S
Q−1
2 ;S2Q|Q)

≤ I(Y n
Q+1, Q, SQ−1

2 ;YQ)− I(Y n
Q+1, S

Q−1
2 , Q;S2Q)

= I(U, V ;Y )− I(U, V ;S2),

where in(a), we used the Csiszár sum lemma [13]; in(b), we used the fact thatS2 is a memoryless source; in
(c), we definedQ in the standard manner to be uniformly distributed over[1 : n] and independent of every other
random variable; and in the last step, we defineU = (UQ, Q) = (SQ−1

2 , Q) and V = VQ = Y n
Q+1. With these

definitions of auxiliary random variables, it is clear thatU is independent ofS2 and also, the encoder outputX ,
is a function of bothU andS2. Further, using the relationship thatU is independent ofS2 andV − (U, S2)− Y ,
the condition thatI(U, V ;Y )− I(U, V ;S2) ≥ 0 reduces to

I(U ;Y ) ≥ I(V ;S2|U, Y ).

It now remains to show that the achievable distortion can be lower bounded by this choice of auxiliary random
variables. To this end, we will use a technique for lower bounding distortion found in [14]. We have

D + ǫn ≥ 1

n

n
∑

i=1

E d(S1i, Ŝ1i(Y
n))

=
1

n

n
∑

i=1

E d(S1i, Ŝ1i(Yi, Y
n
i+1, Y

i−1))

=
1

n

n
∑

i=1

E d(S1i, Ŝ1i(Yi, Vi, Y
i−1))

≥ 1

n

n
∑

i=1

E d(S1i, Ŝ
′
1i(Yi, Vi, Y

i−1, Si−1
2 )), (1)

where the last step follows from the observation that we can recoverŜ1i from Ŝ′
1i by simply ignoringSi−1

2 . Next,
consider the termE d(S1i, Ŝ

′
1i(Yi, Vi, Y

i−1, Si−1
2 )).

E d(S1i, Ŝ
′
1i(Yi, Vi, Y

i−1, Si−1
2 ))

= E d(S1i, Ŝ
′
1i(Yi, Vi, Y

i−1, Ui))

=
∑

p(s1i, ui, vi, yi, y
i−1)d(s1i, Ŝ

′
1i(yi, vi, y

i−1, ui))

=
∑

p(ui, yi, vi)
∑

p(yi−1, s1i|ui, yi, vi)d(s1i, Ŝ
′
1i(yi, vi, y

i−1, ui))

(a)
=
∑

p(wi)
∑

p(yi−1|wi)p(s1i|wi)d(s1i, Ŝ
′
1i(wi, y

i−1))

=
∑

p(wi)
∑

yi−1

p(yi−1|wi)
∑

s1i

p(s1i|wi)d(s1i, Ŝ
′
1i(wi, y

i−1))

(b)

≥
∑

p(wi)
∑

yi−1

p(yi−1|wi)
∑

s1i

p(s1i|wi)d(s1i, Ŝ
∗
1i(wi))

=
∑

p(wi, s1i)d(s1i, Ŝ
∗
1i(wi))

= E d(S1i, Ŝ
∗
1i(Wi)), (2)

where in(a), we definewi = (ui, yi, vi) for notational convenience and the fact thatp(yi−1, s1i|wi) = p(yi−1|wi)p(s1i|wi)
follows from the Markov ChainY i−1 − Wi − S1i, which in turn, follows from the fact thatS2 is only causally
known at the encoder. Hence, givenSi−1

2 and alsoX i−1 since it is a function ofSi−1
2 , Y i−1 is independent ofS1i.

(b) follows from definingyi−1∗ = argminyi−1

∑

s1i
p(s1i|wi)d(s1i, Ŝ

′
1i(wi, y

i−1)) and Ŝ∗
1i(wi) = Ŝ′

1i(wi, y
i−1∗).
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Combining inequality (2) into inequality (1) then gives us

D + ǫn ≥ 1

n

n
∑

i=1

E d(S1i, Ŝ
∗
1i(Yi, Vi, Ui))

= EQ(E(d(S1Q, Ŝ
∗
1Q(YQ, VQ, UQ))|Q))

≥ E(d(S1, Ŝ1(Y, V, U)).

The bounds on cardinality of the auxiliary random variablesfollow from standard arguments (see for e.g. [11,
Appendix C]). This completes the proof of converse.

IV. N ONCAUSAL ESTIMATION WITH A HELPER

Having established the distortion-cost region for the discrete memoryless estimation with a helper problem when
the interfering signal is causally known, we now turn to the noncausal setting, that is, whenS2 is noncausally
known at the encoder. This setting is more complicated and the distortion-cost region is still unknown. In this
section, we first give an achievability scheme based on the recently proposed technique of hybrid coding [15]. We
then specialize our setting to the case of binary estimationwith a helper.

The problem of binary estimation with a helper is one whereS1 ∼ Bern(p1), S2 ∼ Bern(p2), 0 ≤ p1, p2 ≤ 1/2,
X ∈ {0, 1}, Y = X ⊕ S1 ⊕ S2 andd(S1, Ŝ1) = S1 ⊕ Ŝ1, i.e., Hamming distortion. The cost is given byρ(X) = 1
if X = 1 and0 otherwise. The objective of the problem is to design a codingstrategy that minimizes the Hamming
distortion inS1.

Specializing to the case of binary estimation with a helper allows us to derive a number of additional results of
interest. In subsection IV-A, we give a (non-trivial) condition on the cost constraint that allows us to achieve zero
expected distortion. We then show that in the binary case, there is a penalty involved ifS2 is known only causally
instead of noncausally. As a result, the distortion incurred in S1 is higher ifS2 is only known causally as opposed
to it being known noncausally. In subsection IV-B, we describe the two lower bounds for the problem of binary
estimation with a helper and then compare them. In subsection IV-C, we briefly mention a non-binary setting for
which we can characterize the distortion-cost tradeoff, and show that symbol by symbol encoding is optimal in that
setting.

A. Achievable scheme

We first give an achievable scheme for the general discrete memoryless estimation with a helper problem based
on hybrid coding [15]. We will extend this scheme to the Gaussian case in the next section.

Theorem 2. An achievable distortion for the problem of estimation with a helper is given by

D(C) ≤ inf E d(S1, Ŝ1(U, Y )),

where the minimization is over distribution p(u|s2) and functions x = f(s2, u) and ŝ1(u, y) such that

I(U ;Y ) > I(U ;S2),

E ρ(X) ≤ C.

Sketch of Achievability: The achievability scheme follows that of the hybrid coding scheme given in [15]. We
give only a sketch here. The codebook generation consists ofgenerating2n(I(U ;S2)+ǫ) sequences according to
∏n

i=1 p(ui). For encoding, given ansn2 sequence, the encoder looks for aun sequence such that(un, sn2 ) ∈ T (n)
ǫ .

If there is more than one, it selects one sequence uniformly at random from the set of jointly typical sequences. It
then outputsxn according tof(ui, s2i) for i ∈ [1 : n]. The decoder looks for the uniquêun sequence such that
(ûn, yn) ∈ T (n)

ǫ . It can be shown as in [15] that the probability of decoding error goes to zero asn → ∞ if

I(U ;Y ) > I(U ;S2) + 2ǫ.

The decoder then reconstructsSn
1 according toŝ1(ûi, yi) for i ∈ [1 : n].
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We now specialize the achievable distortion-cost region inTheorem 2 to the case of binary estimation with a
helper. The next result shows that, in the binary case, zero expected distortion is achievable under a condition on
the cost constraint.

Proposition 1. For the problem of binary estimation with a helper,

D(C)min = 0

if H2(C) > H(X ⊕ S2|Y ), where H2(.) is the binary entropy function, X ∼ Bern(C) independent of S2 and
Y = X ⊕ S1 ⊕ S2.

Proof: The sufficient condition on the cost constraint follows from a particular choice of auxiliary random
variableU in Theorem 2. We letX ∼ Bern(C) independent ofS2 and letU = X ⊕ S2. The decoder reconstructs
S1 as Ŝ1 = Y ⊕U = S1, incurring zero expected distortion. We now note that the cost constraint is satisfied since
X ∼ Bern(C). To satisfy the mutual information condition on the choice of joint distribution, we require

I(U ;Y ) > I(U ;S2)

⇒ H(U |S2) > H(U |Y )

⇒ H(X |S2) > H(X ⊕ S2|Y )

⇒ H2(C) > H(X ⊕ S2|Y ).

Weakening Proposition 1 leads to the following simple sufficient condition for zero distortion.

Corollary 1. If C > p1, D(C)min = 0.

Proof of Corollary 1 follows readily from Proposition 1. Since 0 ≤ C, p1 ≤ 1/2, if C > p1, then

H2(C) > H2(p1)

= H(S1)

≥ H(S1|Y )

= H(X ⊕ S2|Y ).

Remark IV.1. A trivial condition for zero distortion is when C ≥ p2 in which case, the encoder just performs
symbol by symbol cancellation of S2 to allow the decoder to recover S1 losslessly. Corollary 1 shows that zero
expected distortion can be achieved even if C < p2 as long as C > p1.

By choosingU = (U ′, V ′) in Theorem 2, wherep(u|s2) = p(u′)p(v′|u′, s2), we obtain the distortion-cost region
whenS2 is restricted to be causally known at the encoder1. A natural question to ask is whether the achievable
distortion for the same cost constraint can be lowered ifS2 is noncausally known at the encoder rather than only
causally known. This is indeed the case for the problem of binary estimation with a helper.

Proposition 2. For the problem of binary estimation with a helper, the achievable distortion when S2 is noncausally
known at the encoder can be strictly smaller than the achievable distortion when S2 is only causally known at the
encoder, with the same cost constraint.

Proof: To prove Proposition 2, we exhibit an example where we can achieve zero expected distortion when
S2 is noncausally known at the encoder, but for which the achievable distortion is strictly greater than zero when
S2 is only causally known. To this end, we letp1 = 0.1, p2 = 0.5 andC = 0.11. SinceC > p1, from Corollary 1,
an expected distortion of0 can be achieved whenS2 is noncausally known at the encoder. That is, we have
D(0.11)min−noncausal = 0. Proof of this proposition is completed using the followingclaim, which states that the
minimum expected distortion whenS2 is only causally known at the encoder,D(0.11)min−causal, is strictly greater
than zero.

Claim 1. D(0.11)min−causal > 0 for any choice of U, V satisfying the constraints given in Theorem 1.

Claim 1 is proven in Appendix II.

1The boundary case ofI(U ; Y ) = I(V ;S2|U, Y ) is treated in a similar fashion as in the causal setting.
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B. Lower bounds for binary estimation with helper

We now turn to lower bounds for the binary estimation with a helper problem. The first lower bound that we
will present uses ideas from [3] adapted from the Gaussian tothe binary setting.

Theorem 3. A lower bound for the achievable distortion for the problem of binary estimation with a helper is
given by

D(C)min ≥ minH−1
2 (H(S1) +H(S2)−H(Y ))− EX,

where we define H−1
2 = 0 if the argument is negative or greater than 1, and the minimization is over joint

distribution p(x|s2) such that EX ≤ C.

Proof: We first start with a simple claim.

Claim 2. Let ŝn1 (y
n) be an optimal reconstruction function (with respect to Hamming distortion) for sn1 and x̂n(yn)

be an optimal reconstruction for sn2 ⊕ xn. Then, d(sn1 , ŝ1(y
n)) = d(sn2 ⊕ xn, x̂n(yn)).

To prove this claim, observe thatd(sn1 , ŝ1(y
n)) =

∑n

i=1 s1i ⊕ ŝ1i(y
n). Consider now the function̂x′

i(y
n) =

ŝ1i(y
n)⊕ yi. Sincex̂i(y

n) is optimal ford(sn2 ⊕ xn, x̂n(yn)), we have

d(sn2 ⊕ xn, x̂n(yn)) ≤
n
∑

i=1

s2i ⊕ xi ⊕ x̂′
i(y

n)

=

n
∑

i=1

s2i ⊕ xi ⊕ ŝ1i(y
n)⊕ yi

=
n
∑

i=1

s1i ⊕ ŝ1i(y
n)

= d(sn1 , ŝ1(y
n)).

Hence, we haved(sn2 ⊕ xn, x̂n(yn)) ≤ d(sn1 , ŝ1(y
n)). For the other direction, consider the functionŝ′1i =

x̂i(y
n)⊕ yi. Repeating the same arguments ford(sn1 , ŝ1(y

n)) instead ofd(sn2 ⊕xn, x̂n(yn)), it is easy to show that
d(sn1 , ŝ1(y

n)) ≤ d(sn2 ⊕ xn, x̂n(yn)), which completes the proof of claim 2.
As an aside, the proof of claim 2 shows that the optimal reconstruction functions for the respective problems

are related bŷxn(yn) = ŝn1 (y
n)⊕ yn.

We now continue with our lower bound for the binary case. Using claim 2, we have

d(Sn
1 , ŝ

n
1 (Y

n)) = d(Xn ⊕ Sn
2 , x̂

n(Y n))

≥ d(Sn
2 , x̂

n(Y n))− d(Sn
2 , X

n ⊕ Sn
2 ). (3)

The second line follows from the fact that the Hamming distance is a proper distance metric, and it therefore
satisfies the triangular inequality. Hence,

1

n
E d(Sn

1 , ŝ
n
1 (Y

n)) =
1

n
E d(Xn ⊕ Sn

2 , x̂
n(Y n))

≥ 1

n
E d(Sn

2 , x̂
n(Y n))− 1

n
E d(Sn

2 , X
n ⊕ Sn

2 ).

Let Q be uniform[1 : n], independent of other random variables. Then,

1

n
E d(Sn

2 , X
n ⊕ Sn

2 ) = E(
1

n

n
∑

i=1

Xi)

= EXQ

= EX (4)
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This is the expected number of ones inXn. For the term,E d(Sn
2 , x̂

n(Y n))/n, we lower bound it by

1

n
E d(Sn

2 , x̂
n(Y n)) ≥ 1

n

n
∑

i=1

E d(S2i, ŝ2i(Y
n)) (5)

whereŝ2(Y n) is an optimal reconstruction function with respect to Hamming distortion forS2. The right hand side
of inequality (5) is then further lower bounded by the following argument. From data processing inequality [16],
we have

I(Sn
2 ; Ŝ

n
2 ) ≤ I(Sn

2 ;Y
n)

≤
n
∑

i=1

(H(Yi)−H(Yi|Sn
2 , X

n))

=

n
∑

i=1

H(Yi)− nH(S1i)

≤ nH(Y )− nH(S1).

On the other hand,

I(Sn
2 ; Ŝ

n
2 ) ≥

n
∑

i=1

(H(S2i)−H(S2i ⊕ Ŝ2i))

≥ nH2(S2)− nH2

(

1

n

n
∑

i=1

E d(S2i, ŝ2i(Y
n))

)

,

where the last line follows from concavity of entropy [16]. Combining the upper and lower bounds gives us

1

n

n
∑

i=1

E d(S2i, ŝ2i(Y
n)) ≥ H−1

2 (H(S1) +H(S2)−H(Y )), (6)

where we defineH−1
2 (.) := 0 if the argument is negative or greater than 1.

Substituting (5), (6) and (4) into (3), we have

D(C)min ≥ H−1
2 (H(S1) +H(S2)−H(Y ))− EX,

whereEX ≤ C from the cost constraint.
Using the lower bound in Theorem 3, we can show that whenp1 = 1/2, symbol by symbol cancellation ofS2

is optimal and hence, whenp1 = 1/2, the minimum achievable distortion for the same cost constraint is the same
regardless of whetherS2 is known causally or noncausally.

Proposition 3. When p1 = 1/2 and p2 > C, the distortion-cost region is given by

D(C)min = p2 − C.

Proof: WhenS1 ∼ Bern(1/2), Y ∼ Bern(1/2), regardless of the distribution ofS2 ⊕X . Hence, Theorem 3
reduces to

D(C)min ≥ p2 − EX

≥ p2 − C.

Achievability of this lower bound follows from Theorem 1 by settingV = ∅, U to be a random variable such that

X =







1 w. p. C
p2

if S2 = 1

0 w. p. 1− C
p2

if S2 = 1

0 otherwise
.

9



The existence of such aU follows from the functional representation lemma [11, Appendix B]. It is easy to verify
that the expected cost constraint is satisfied with this choice of distributionp(x|s2). The reconstruction function in
this case is simplŷS1 = Y . It also easy to verify that the distortion constraint is satisfied.

The optimization problem in Theorem 3 can be simplified in a number of cases.

Corollary 2. Theorem 3 simplifies under the following conditions

1) Under the condition p1 + (1− 2p1)(p2 − C) ≥ 1/2, Theorem 3 simplifies to

D(C)min ≥ H−1
2 (H(S1) +H(S2)−H(p1 + (1− 2p1)(p2 − C))) − C.

2) Under the condition p1 + (1− 2p1)(p2 + C) ≤ 1/2, Theorem 3 simplifies to

D(C)min ≥ H−1
2 (H(S1) +H(S2)−H(p1 + (1− 2p1)(p2 − C))) − C.

Proof: The proof follows from observing thatp2 − C ≤ EX ⊕ S2 ≤ p2 + C. Define EX ⊕ S2 := px⊕s2 .
Then,Y ∼ Bern(p1 + (1 − 2p1)px⊕s2). If condition one in the corollary is satisfied, thenH(Y ) is a decreasing
function of px⊕s2 . It is then easy to see from the expression in Theorem 3 that the minimizing distribution is one
wherepx⊕s2 = p2 −C andEX = C. A similar proof applies for the second condition, which completes proof of
this corollary.

It appears to be quite difficult to obtain an explicit analytical solution for the general case ofp1+(1−2p1)(p2−
C) < 1/2 < p1 + (1− 2p1)(p2 + C). A looser bound in this case is

Corollary 3.

D(C)min ≥ H−1
2 (H(S1) +H(S2)− 1)− C.

Proof of this corollary is omitted as it follows directly from Theorem 3.
We now present another lower bound for the binary setting, using ideas from the proof of converse for Gel’fand-

Pinsker coding given in [11, Chapter 7], and also ideas from [5]. The main intuition in this lower bound comes
from Claim 2 used in the proof of Theorem 3, which shows that the optimum distortion incurred in reconstructing
X ⊕S2 is the same as the optimum distortion incurred in reconstructing S1. We then try to lower boundD(C)min

by lower bounding the distortion incurred in reconstructing X ⊕ S2. We will see in the sequel that in some cases,
this lower bound is better than the previous lower bound given in Theorem 3.

Theorem 4. A lower bound for the achievable distortion for the problem of binary estimation with a helper is
given by

D(C)min ≥ minH−1
2 (H(S1) +H(X ⊕ S2|U) + I(U ;S2)−H(Y )),

where we minimize over p(u|s2) and x = f(u, s2) such that EX ≤ C. The cardinality of the auxiliary random
variable U may be upper bounded by |U| ≤ |S2|(|X |−1)+2. In the binary case that we are interested in, |U| ≤ 4.

Proof: For notational convenience, let̂Z represent the optimal reconstruction forX ⊕ S2 andZ = X ⊕ S2.
From data processing inequality,

I(Zn; Ẑn) ≤ I(Y n;Zn).

On the one hand,

I(Zn; Ẑn) ≥ H(Zn)−H(Ẑn|Zn)

≥
n
∑

i=1

(H(Zi|Zi−1)−H(Ẑi ⊕ Zi))

(a)

≥
n
∑

i=1

(H(Zi|Zi−1, Sn
2,i+1) + I(Sn

2,i+1;Zi|Zi−1))−H2(D(C)min)

=

n
∑

i=1

(H(Zi|Zi−1, Sn
2,i+1) + I(Zi−1;S2i|Sn

2,i+1))−H2(D(C)min)
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=

n
∑

i=1

(H(Zi|Zi−1, Sn
2,i+1) + I(Zi−1, Sn

2,i+1;S2i))−H2(D(C)min)

=
n
∑

i=1

(H(Zi|Ui) + I(Ui;S2i))−H2(D(C)min).

In (a), we used concavity of entropy and Claim 2, which states that the optimum distortion forX⊕S2 is the same
as the optimum distortion forS1. Next,

I(Y n;Zn) = H(Y n)−H(Y n|Zn)

≤
n
∑

i=1

H(Yi)−H(Sn
1 )

=
n
∑

i=1

(H(Yi)−H(S1i)).

Defining the standardQ uniform random variable over[1 : n] independent of other random variables,U = (UQ, Q),
YQ = Y , S1Q = S1, S2Q = S2 andZQ = Z then gives us the following lower bound

D ≥ H−1
2 (H(S1) +H(Z|U) + I(U ;S2)−H(Y )),

where we minimize overp(u|s2)p(x|u, s2) such thatEX ≤ C. Reducing the cost constraint to this single letter
expression (EX ≤ C) follows the same procedure as in Theorem 3.

Next, we note that instead of minimizing overp(x|u, s2), it suffices to minimize overx = f(u, s2). To see
this, note that we can always find aV , independent ofU, S2, such thatp(x|u, s2) = f(u, v, s2). Now, define
Ũ = (U, V ). Observe that since we preserve bothp(x⊕ s2) andp(x), the cost constraint andH(Y ) = H(Z ⊕ S1)
remains unchanged. Now, note that

H(Z|Ũ) ≤ H(Z|U),

and

I(Ũ ;S2) = I(U ;S2) + I(V ;S2|U)

= I(U ;S2).

The bound on the cardinality ofU follows from standard techniques and we omit it here. This completes the proof
of the lower bound.

Theorem 4 involves minimizing over joint distributions andchoice of auxiliary random variableU . A looser
bound that is easier to compute is given by the following corollary.

Corollary 4.

D(P )min ≥ H−1
2 (H2(p1) + min

p2−c≤α≤p2+c
{H2(α)−H2(α ∗ p1)} − I(U ;Z) + I(U ;S2)).

for some joint distribution p(u|s2) and x = f(u, s) satisfying EX ≤ C, and Z = X ⊕ S2.

In Corollary 4, we need to perform maximization ofI(U ;Z)− I(U ;S2) subjected to a cost constraintEX ≤ C.
This is nothing but the problem of maximization of the capacity of a Gel’fand-Pinsker channel subjected to a cost
constraint. There are efficient numerical algorithms for performing this maximization, cf. [17, Page 555-556] for
a description of the algorithm.

Proof:
Starting from Theorem 4, consider the termH(Z|U) + I(U ;S2)−H(Y ) in the Theorem.

H(Z|U) + I(U ;S2)−H(Y ) = H(Z,U)−H(U |S2)−H(Y )

= H(Z)−H(Y ) +H(U |Z)−H(U |S2)

= (H(Z)−H(Y ))− (I(U ;Z)− I(U ;S2)).

11



We now minimize the terms(H(Z) − H(Y )) and −(I(U ;Z) − I(U ;S2)) separately. We have discussed
maximizing the termI(U ;Z)− I(U ;S2) earlier. As for the term(H(Z)−H(Y )), using the observationp2−C ≤
EZ ≤ p2 + C, we have

min{H(Z)−H(Y )} = min
p2−C≤α≤p2+C

{H2(α)−H2(α ∗ p1)},

which completes the proof.

Comparison of lower bounds

As we mentioned, the expressions in Theorems 3 and 4 can be difficult to compute. For the purpose of simulations,
we compare the expressions of Corollary 2 with those of Corollary 4, when the conditions given in Corollary 2 are
satisfied. Note that since Corollary 4 can be weaker than Theorem 4 whereas Corollary 2 gives the same bounds
as Theorem 3 when the conditions are satisfied, an advantageof this comparison is that it shows when Theorem 4
can be strictly larger than Theorem 3.

For our numerical example, we setp2 = 0.1, vary the cost from0.01 to 0.03 and compute plots forp1 = 0.05, 0.09.
In general, the bound in Theorem 3 is better, but we focus on small values of cost,p1 andp2 to show that there
are regimes in which the expression in Theorem 4 is better. The plots are shown in Figures 3 and 4. As can be
seen in Figure 3, there are regions for which Theorem 4 is strictly better than Theorem 3. However, Theorem 3
does give a better bound for a wider range of values as compared to Theorem 4.
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Fig. 3: Comparison of bounds forp1 = 0.05. Y-axis represents the distortion level while X-axis represents the cost.

C. Erasure estimation with helper

For most of this section, we have focused on the binary estimation with helper setup. In this subsection, we
briefly mention a setting, erasure estimation with helper,for which we can characterize the distortion-cost function
and also, for which symbol by symbol cancellation ofS2 is optimal.
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Fig. 4: Comparison of bounds forp1 = 0.1. Y-axis represents the distortion level while X-axis represents the cost.
In this case, the bound given by Corollary 2 is strictly better than that for Corollary 4.

The setting is defined byS1 ∼ p(s1), S2 ∼ Bern(p2), X ∈ {0, 1} andY is defined as follows

Y =

{

S1 if X ⊕ S2 = 0
e if X ⊕ S2 = 1

.

This is a model of a channel in which when the interfering signal is large, the desired signal is erased. When the
interfering signal is small, decoder receives the signal perfectly. The helper tries to help the decoder by canceling
the interference. The distortion-cost region is characterized by the following proposition.

Proposition 4. The distortion-cost region for the problem of erasure estimation with helper is given by

D(C)min = min

{

P(X ⊕ S2 = 1)(min
ŝ1

E d(S1, ŝ1))

+P(X ⊕ S2 = 0)(min
ŝ1

E d(S1, ŝ1))

}

,

where the minimization is over p(x|s2) satisfying E ρ(X) ≤ C.

Proof: Achievability of the distortion-cost region uses a modified version of the achievability scheme used in
Proposition 3. The modification comes in the reconstruction function where

ŝ1(Y ) =

{

argminx d(Y, x) if Y = S1,
argminx E d(S1, x) if Y = e

.

With this choice of reconstruction function and noting thatP(Y = S1) = P(X ⊕ S1 = 0) and P(Y = e) =
P(X ⊕S1 = 1), it is easy to see that the achievable distortion-cost region simplifies to the expression given in the
Proposition.

For the converse, fixing a(n,C) code achieving distortionD, we have

D =
1

n

n
∑

i=1

E d(S1i, Ŝ1i(Y
n)).
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Consider now the termE d(S1i, Ŝ1i(Y
n)). We have

E d(S1i, Ŝ1i(Y
n)) =

∑

p(s1i, y
n\i, yi)d(s1i, ŝ1i(y

n))

=
∑

(

p(s1i, y
n\i, yi, x⊕ s2i = 0)d(s1i, ŝ1i(y

n))

+p(s1i, y
n\i, yi, x⊕ s2i = 1)d(s1i, ŝ1i(y

n))
)

(a)
=
∑

(

p(s1i, y
n\i, yi, x⊕ s2i = 0)d(s1i, ŝ1i(y

n))

+p(s1i, y
n\i, x⊕ s2i = 1)d(s1i, ŝ1i(y

n\i, yi = e))
)

=
∑

p(s1i, x⊕ s2i = 0)p(yn\i, yi|s1i, x⊕ s2i = 0)d(s1i, ŝ1i(y
n))

+
∑

p(s1i, y
n\i, x⊕ s2i = 1)d(s1i, ŝ1i(y

n\i, yi = e)),

where(a) follows from the fact that whenx⊕s2i = 1, yi = e. Next, focusing on the first term in the sum, we note
thatP(Yi = S1i|X ⊕ S2 = 0, S1i) = 1. Hence, using1{.} to denote the indicator function, the first term simplifies
to the following

∑

p(s1i, x⊕ s2i = 0)p(yn\i, yi|s1i, x⊕ s2i = 0)d(s1i, ŝ1i(y
n))

=
∑

p(s1i, x⊕ s2i = 0)p(yn\i|s1i, x⊕ s2i = 0, yi)1yi=s1id(s1i, ŝ1i(y
n))

≥
∑

p(s1i, x⊕ s2i = 0)p(yn\i|s1i, x⊕ s2i = 0, yi)

(

min
x∈Ŝ1

d(s1i, x)

)

=
∑

p(s1i)p(x⊕ s2i = 0)

(

min
x∈Ŝ1

d(s1i, x)

)

= P(Xi ⊕ S2i = 0)E

(

min
x∈Ŝ1

d(s1i, x)

)

.

Hence,E d(S1i, Ŝ1i(Y
n)) is lower bounded by

E d(S1i, Ŝ1i(Y
n)) ≥ P(Xi ⊕ S2i = 0)E

(

min
x∈Ŝ1

d(s1i, x)

)

+
∑

p(s1i, y
n\i, x⊕ s2i = 1)d(s1i, ŝ1i(y

n\i, yi = e)),

= P(Xi ⊕ S2i = 0)E

(

min
x∈Ŝ1

d(s1i, x)

)

+
∑

p(s1i)p(y
n\i, x⊕ s2i = 1)d(s1i, ŝ1i(y

n\i, yi = e))

≥ P(Xi ⊕ S2i = 0)E

(

min
x∈Ŝ1

d(s1i, x)

)

+
∑

p(yn\i, x⊕ s2i = 1)

(

min
x∈Ŝ1

∑

p(s1i)d(s1i, x)

)

= P(Xi ⊕ S2i = 0)E

(

min
x∈Ŝ1

d(s1i, x)

)

+
∑

P(Xi ⊕ S2i = 1)

(

min
x∈Ŝ1

E d(S1i, x)

)

.

We note now that ifyi = 0 or 1, then we can achieve the minimum possible distortionminŝ1 d(s1, ŝ1) using only
knowledge ofyi, sinces1i is known in this case.
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We therefore obtain

D =
1

n

n
∑

i=1

E d(S1i, Ŝ1i(Y
n))

≥ 1

n

n
∑

i=1

(

P(Xi ⊕ S2i = 0)E

(

min
x∈Ŝ1

d(s1i, x)

)

+
∑

P(Xi ⊕ S2i = 1)

(

min
x∈Ŝ1

E d(S1i, x)

))

.

Defining Q ∼ Unif [1 : n] independent of other random variables then give us

D ≥ P(X ⊕ S2 = 1)(min
ŝ1

E d(S1, ŝ1))

+ P(X ⊕ S2 = 0)E(min
ŝ1

d(S1, ŝ1)).

For the cost constraint, we have

E(
1

n

n
∑

i=1

Xi) = EXQ

= EX,

which completes the proof.

V. GAUSSIAN ESTIMATION WITH HELPER

In this section, we extend our setup to the Gaussian case, whereS1 ∼ N(0, 1), S2 ∼ N(0, P2), Y = X+S1+S2,
d(S1, Ŝ1) = (S1 − Ŝ1)

2 and the cost constraint isEX2 ≤ P . As we mentioned in the Introduction, the problem in
the Gaussian case is equivalent to the problem of Assisted Interference Suppression considered in [3]. We present a
new lower bound for this problem that can improve on that derived in [3] and [6]. The lower bound derived in [6]
includes the lower bound derived in [3] as a special case and can be strictly better, but for clarity of presentation,
we will first compare our lower bound to that in [3] in subsection V-C, and then compare our bound with the lower
bound derived in [6] in subsection V-D. We begin with an achievability argument based on Theorem 2.

A. Achievable distortion-cost region

We specialize Theorem 2 to the Gaussian case by choosing the auxiliary random variables as Gaussian random
variables. The achievability scheme presented here is essentially the same as the scheme presented in [3], but we
derive it via different means.

Theorem 5. An achievable distortion for the problem of Gaussian estimation with a helper is given by

D(P )min ≤ inf 1− EU2

EY 2 EU2 − (EUY )2
,

where

√
P ′ =

−2αβ
√
P +

√

4α2β2P + 4(1− α2)P

2
,

EU2 = P ′ + 2γβ
√

P ′P2 + γ2P2,

E(UY ) = αβ
√
PP ′ + P ′ + αγ

√

PP2 + γβ
√

P ′P2 + β
√

P ′P2 + γP2,

EY 2 = P + 1 + P2 + 2α
√

PP2 + 2β
√

P ′P2.

and the infinum is taken over −1 ≤ α ≤ 1, −1 ≤ β ≤ 1 and γ ∈ R satisfying the constraint

(1− β2)P ′ > EU2 − (E(UY ))2

E Y 2
.
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We defer the proof of Theorem 5 to Appendix III.
Similar to the binary setup, we can derive a nontrivial condition betweenP and the power of the sourceS1

(normalized to 1), such that zero expected distortion can beachieved.

Proposition 5. For the problem of Gaussian estimation with a helper, D(C)min = 0 if

P > 1− 1

P + P2 + 1
.

Proof: Proof of this Proposition follows from a choice ofα andβ in Theorem 5. However, we give a slightly
different proof that gives more intuition to this conditionand also has parallels with the problem of dirty paper
coding [18] (see also [11, Chapter 7]).

Starting from Theorem 2, we letU = X + S2, whereX ∼ N(0, P ) independent ofS2. Note that the cost
constraint is satisfied from this choice ofU . If the decoder can decodeU , then the distortion incurred is zero, since
S1 = Y − U . It therefore remains to satisfy the decoding condition, which is

I(U ;Y ) > I(U ;S2).

Since all the random variables are Gaussian, this decoding condition reduces toh(U |S2) > h(U |Y ).

h(U |S2) = h(X |S2)

=
1

2
log 2πeP.

On the other hand,

h(U |Y ) = h(−S1|Y )

(a)
= h(−S1 − E(−S1|Y ))

=
1

2
log 2πe

(

1− 1

P1 + P2 + 1

)

,

where(a)follows from the fact that for Gaussian random variables, the difference betweenS1 and its Minimum
Mean Square Error Estimator is independent of the observation, Y .

We therefore derive the condition

P > 1− 1

P + P2 + 1
.

Note that, similar to the binary case, the expected distortion can be made to be zero even ifP2 is much larger
thanP .

B. Lower bounds

We now turn to lower bounds for the problem of Gaussian Estimation with helper. We first state the following
lower bound given in [3] and its improved version given in [6].

Theorem 6. [3] A lower bound for the problem of Gaussian estimation with helper is given by

D(P )min ≥





[
√

P2

P22 + 2
√
PP2 + P + 1

−
√
P

]+




2

,

where [.]+ denotes the positive part.

As shown in [6], the lower bound given in Theorem 6 can be improved to the following.
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Theorem 7. [6] A lower bound for the problem of Gaussian estimation with helper is given by

D(P )min ≥ inf
σXS2

sup
γ>0

1

γ2





[√

P2

1 + P2 + P + 2σXS2

−
√

(1− γ)2P2 + γ2P − 2γ(1− γ)σXS2

]+




2

,

where [.]+ denotes the positive part and σXS2
∈ [−√

P2

√
P,

√
P2

√
P ].

From the lower bound in Theorem 6 and Proposition 5, we can show that as the power of the interfering signal
goes to infinity,P2 → ∞, zero expected distortion is achievable if and only ifP ≥ 1.

Proposition 6. limP2→∞ D(P )min = 0 if and only if P ≥ 1.

Proof: From Proposition 5, the sufficient condition for zero expected distortion reduces toP > 1 asP2 → ∞.

From Theorem 6, we can show that this is also necessary. From Theorem 6,limP2→∞ D(P )min ≥
(

[

1−
√
P
]+
)2

,

which is zero if and only ifP ≥ 1.
We now turn to our lower bound. For clarity, we first present aproof of a special case of our lower bound before

turning to the more general expression.

Proposition 7. A lower bound for the problem of Gaussian estimation with a helper is given by

D(P )min ≥ 1

(γ − 1)

[

ln

(

1 + γP2

1 + P2

)

+
2
√
P√

P2(1 + γP2)
− 2

√
P√

P2(1 + P2)
− γP

]

,

for any γ ≥ 1.

It should be noted that while finding the optimal value ofγ thatmaximizes this lower bound is a hard optimization
problem,any γ ≥ 1 constitutes a lower bound forD(P )min. Hence, Proposition 7 in fact gives afamily of lower
bounds.

Proof: This proof hinges on an application of a relationship between mismatched estimation and relative
entropy given in [7, Equality (14)]. The main idea behind theproof lies in considering a decoder that performs
the estimation (and reconstruction) using a wrong (or mismatched) distribution forPSn

1
|Y n . In particular, we will

consider amismatched decoder that attempts to estimateSn
1 assuming thatXn ≡ 0. That is, the decoder assumes

that the encoder does not do anything to help the decoder. Theestimation error incurred by the mismatched decoder,
MSEQ, is clearly larger than that incurred by an optimum decoder that uses the correct (true) distribution,D(P )min.
We then rely on results in [7] to lower bound the difference betweenD(P )min andMSEQ, thereby giving us a
lower bound onD(P )min.

To derive our bound, we first consider a more general sourceS1 ∼ N(0, 1/γ) and letS2 ∼ N(0, P2) as before.
The value ofγ that we are concerned about isγ = 1, which will appear later in the proof.

DefineMSEQ(γ) as

MSEQ(γ) := E

∣

∣

∣

∣

∣

∣

∣

∣

Sn
1 −

1
γ

1
γ
+ P2

(Xn + Sn
1 + Sn

2 )

∣

∣

∣

∣

∣

∣

∣

∣

2

.

Let α =
1

γ
1

γ
+P2

and note thatŜ1 = αY is the Minimum Mean Square Error (MMSE) estimate ofS1 that the

decoder would employ if it assumes thatXn ≡ 0. We first give a lower bound forMSEQ(γ). Note that under
the true distribution,E ||Xn||2 ≤ nP .

E ||Sn
1 − α(Xn + Sn

1 + Sn
2 )||2 = E ||Sn

1 − α(Sn
1 + Sn

2 )||2 − 2αE < Sn
1 − α(Sn

1 + Sn
2 ), X

n > +α2 E ||Xn||2

= nαP2 + 2α2 E < Sn
2 , X

n > +α2 E ||Xn||2
(a)

≥ nαP2 − 2α2
√

E ||Sn
2 ||2 E ||Xn||2 + α2 E ||Xn||2

≥ nαP2 − 2α2
√

n2P2P

= nαP2 − 2nα2
√

P2P ,
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where(a) follows by Cauchy-Schwartz inequality.
Now, let S̃n = Sn

2 +Xn and letPS̃n denote the distribution ofSn
2 +Xn under the optimum encoding scheme.

Let QS̃n denote the corresponding distribution under the encoding scheme ofXn ≡ 0. Note now that

MSEQ(γ) = E ||Sn
1 − α(Sn

1 + S̃n)||2
(a)
= E ||Y n − S̃n − EQ(S

n
1 |Y n)||2

(b)
= E ||Y n − S̃n − (Y n − EQ(S̃

n|Y n)||2

= E ||S̃n − EQ(S̃
n|Y n)||2

:= MSEQ,S̃n(γ). (7)

(a) follows from the fact thatα(Sn
1 + S̃n) is the optimum MMSE estimator forSn

1 underQ; that is, under the
assumption ofXn ≡ 0. (b) follows from Sn

1 = Y n − S̃n.
Next, note that this analysis also holds when the decoder knows that S̃n is distributed according toPS̃n . That

is, we have

MMSE(γ) := E ||Sn
1 − EP (S

n
1 |Y n)||2

= E ||S̃n − EP (S̃
n|Y n)||2

:= MMSEP,S̃n(γ). (8)

Note thatnD(P )min = MMSE(1).
We now relateMSEQ(γ) to the optimumMMSE of Sn

1 given that an optimum estimator and coding scheme
were used. From (7) and (8), we see that it suffices to consider MSEQ,S̃n(γ) andMMSEP,S̃n(γ). Using the
relation between mismatched estimation and relative entropy given in [7, Equality 14], we have

D(P
(γ0)
Y n ||Q(γ0)

Y n ) =
1

2

∫ γ0

0

MSEQ,S̃n(γ)−MMSEP,S̃n(γ)dγ (9)

Here,PY n represents the distribution ofY n induced byPS̃n . Similarly, QY n represents the distribution ofY n

induced byQS̃n .
We first give a bound onD(P

(γ)
Y n ||Q(γ)

Y n).

D(P
(γ)
Y n ||Q(γ)

Y n) ≤ D(P
(γ)
Y n,Sn

2

||Q(γ)
Y n,Sn

2

)

= ESn
2
D(P

(γ)
Y n|Sn

2

||Q(γ)
Y n|Sn

2

).

Note that sinceXn is a function ofSn
2 , we have the following.

UnderP (γ)
Y n|Sn

2

: Y n|Sn
2 ∼ N(Sn

2 +Xn,
1

γ
In×n),

UnderQ(γ)
Y n|Sn

2

: Y n|Sn
2 ∼ N(Sn

2 ,
1

γ
In×n).

Hence,D(P
(γ)
Y n|Sn

2

||Q(γ)
Y n|Sn

2

) is given by the divergence between two multivariate Gaussian random variables
with the same covariance matrix. In our case, the divergenceis given by

D(P
(γ)
Y n|Sn

2

||Q(γ)
Y n|Sn

2

) =
1

2
γ||Xn||2.

Hence,

D(P
(γ)
Y n ||Q(γ)

Y n) ≤ ESn
2
D(P

(γ)
Y n|Sn

2

||Q(γ)
Y n|Sn

2

)

= ESn
2
(
γ

2
||Xn||2)

≤ nγP

2

18



From (9), we have
∫ γ1

γ0

MSEQ,S̃n(γ)−MMSEP,S̃n(γ)dγ = 2D(P
(γ1)
Y n ||Q(γ1)

Y n )− 2D(P
(γ0)
Y n ||Q(γ0)

Y n )

for γ1 ≥ γ0. Hence,
∫ γ1

γ0

MMSEP,S̃n(γ)dγ ≥
∫ γ1

γ0

MSEQ,S̃n(γ)dγ − 2D(P
(γ1)
Y n ||Q(γ1)

Y n )

≥
∫ γ1

γ0

MSEQ,S̃n(γ)dγ − nγ1P (10)

SinceMMSEP,S̃n(γ) is a non-increasing function inγ, we have
∫ γ1

γ0

MMSEP,S̃n(γ)dγ ≤ (γ1−γ0)MMSEP,S̃n(γ0) =
(γ1 − γ0)MMSE(γ0). Next, we note thatα = 1/(1 + γP2), so we can write

MSEQ,S̃n(γ) = MSEQ(γ)

≥ nP2

1 + γP2
− 2n

√
P2P

(1 + γP2)2
.

From (10) and the arguments above, we have

(γ1 − γ0)MMSE(γ0) ≥
∫ γ1

γ0

nP2

1 + γP2
− 2n

√
P2P

(1 + γP2)2
dγ − nγ1P

= n ln(
1 + γ1P2

1 + γ0P2
) +

2n
√
P√

P2(1 + γ1P2)
− 2n

√
P√

P2(1 + γ0P2)
− nγ1P.

Finally, using the relationship thatD(P )min = MMSE(1)/n, γ0 = 1 and the above completes the proof of the
lower bound.

In Proposition 7, we related the minimum mean square error that a decoder incurs when it uses the true distribution
to the mean square error incurred by a decoder if it uses the possibly erroneous distribution ofXn ≡ 0. Clearly,
we do not need to chooseXn ≡ 0 as the erroneous distribution, but we can also choose other distributions. This
is the main idea behind our generalization of Proposition 7,which we state in Theorem 8.

Theorem 8. A lower bound for the problem of Gaussian estimation with helper is given by

(γ − 1)D(P )min ≥ log(
1 + γPI

1 + PI

) +
1

(1 + γPI)
− 1

(1 + PI)

− P2

PI(1 + γPI)
+

P2

PI(1 + PI)
− c2γ

1 + γrP
P2

− 1

1 + γ1rP
+ 1 + log(

1

1 + γ1rP
)

+ ax∗2 − bx∗,

where a = 1
PI(1+PI )

− 1
PI (1+γPI)

− γ
1+γrP

, b = |2( 1
PI (1+PI )

− 1
PI (1+γPI)

+ cγ
1+γrP

)|√P2 and

x∗ =







√
P if a ≤ 0

b/2a if a > 0 and b/2a <
√
P√

P otherwise
,

for any γ ≥ 1, real number c and r ≥ 0.

As with Proposition 7, Theorem 8 gives a family of bounds.Any γ > 1, real numberc andr ≥ 0 yields a bound
on the achievable distortion. Theorem 8 is proved in Appendix IV.
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C. Comparison of bounds I

We now show some plots comparing the various bounds we derived with the lower bound proposed in [3]
(Theorem 6). For the purpose of comparisons, we setP2 at a fixed level and vary the power of the encoder.
We then compute the lower bounds on distortion given in Theorem 5, Proposition 7, Theorem 8 as well as the
achievable distortion given in Theorem 5.

The plots forP2 = 0.1, P2 = 1 andP2 = 10 are shown in Figures 5, 6 and 7 respectively. As we can see from
the plots, the generalized lower bound in Theorem 8 can significantly improve on the lower bound of Theorem 5
for several different levels ofP2.
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Fig. 5: Comparison of bounds forP2 = 0.1. Y-axis represents distortion level and X-axis representsthe power
constraint.

D. Comparison of bounds II

In this subsection, we compare our lower bound given in Theorem 8 to the lower bound given in [6] (Theorem
7). For ease of numerical computation, we compare our lower bound to the followingupper bound on Theorem 7.

D(P )min ≥ min
σXS2

∈A
sup
γ>0

1

γ2





[
√

P2

1 + P2 + P + 2σXS2

−
√

(1− γ)2P2 + γ2P − 2γ(1− γ)σXS2

]+




2

, (11)

where [.]+ denotes the positive part andA is a discretization of the interval[−√
P2

√
P ,

√
P2

√
P ]. The plots

showing comparisons of the lower bound proposed in Theorem 8and the lower bound given in inequality (11) for
P2 = 1, 10, 100 are given in Figures 8, 9 and 10 respectively.

As can be seen from the plots, the two bounds now cross each other. While the lower bound given [6] can be
better than that given in Theorem 8 in some regimes, we can also see that Theorem 8 can be strictly better than
Theorem 7 in other regimes, particularly whenP2 is large and the power budgetP of the encoder is small.
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Fig. 6: Comparison of bounds forP2 = 1. Y-axis represents distortion level and X-axis representsthe power
constraint.
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Fig. 7: Comparison of bounds forP2 = 10. Y-axis represents distortion level and X-axis representsthe power
constraint.
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Fig. 8: Comparison of bounds forP2 = 1. Y-axis represents distortion level and X-axis representsthe power
constraint.
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Fig. 9: Comparison of bounds forP2 = 10. Y-axis represents distortion level and X-axis representsthe power
constraint.
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Fig. 10: Comparison of bounds forP2 = 100. Y-axis represents distortion level and X-axis representsthe power
constraint.

VI. W HEN S1 IS ALSO AVAILABLE AT THE ENCODER

In this section, we turn our attention to the problem of reconstructingS1 when bothS1 andS2 are available at
the encoder, as defined in Section II-B. As with previous sections, the focus of this section is on lower bounds
for this setup, but we also use lower and upper bounds to derive constant multiplicative gap results between the
achievable distortions and lower bounds. As we mentioned inthe Introduction, our setting is a special case of the
setting considered in [12]. We first review some known results found in that paper specialized to our setting, and
then present our results, which include a generalization ofthe lower bound [12] that can be strictly larger.

A. Upper and lower bounds

We first present an achievability scheme for this setting.

Theorem 9. (See also [12]) An acheivable distortion-cost region for the problem of estimation with a helper who
has non-causal access to both the interference and the signal is given by

D(P )min ≤ P1
(

1 +

(

α
√

P
P1

+1
)

2

P1

(

β
√

P
P2

+1
)

2

P2+P (1−α2−β2)+N

)

(

1 + P (1−α2−β2)
N

)

,

where we minimize over −1 ≤ α ≤ 1, −1 ≤ β ≤ 1 and 0 ≤ α2 + β2 ≤ 1.2

As the achievability scheme is largely the same as that in [12], we only give a sketch in Appendix V.
We now turn to lower bounds on the distortion-cost region. Wefirst present without proof two lower bounds in

the following two propositions. For their proofs cf. [12] orthe proof of Theorem 10 below.

2In [12], the authors minimize only over0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and0 ≤ α2 + β2 ≤ 1, but it is easy to see that their proof carries over to
the range stated in this Theorem.
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Proposition 8. A lower bound for the problem of estimation with a helper who knows both the interference and
the signal noncausally is given by

D(P )min ≥ P1
(

1 + P1

P2

)

(

1 + P
N

)

.

Remark VI.1. When P2 → ∞, we see that D(P )min ≥ P1

1+ P
N

. This bound is achievable by noting that for

α = β = 0, we have D = P1

1+ P
N

in Theorem 9. Thus a separation scheme is optimal when P2 → ∞.

Proposition 9. A lower bound for the problem of estimation with a helper who knows both the interference and
the signal noncausally is given by

D(P )min ≥ P1
(

1 + (
√
P+

√
P1)2

N

) .

Remark VI.2. As P2 → 0, our setting reduces to that of state amplification [1]. From the results therein, the
bound of Proposition 9 is optimal when P2 → 0.

We now present our lower bound.

Theorem 10. A lower bound for the problem of estimation with a helper that knows both the interference and the
signal noncausally is given by

D(P )min ≥
( α2P1P2

P1+α2P2

)N

MSE(α)

for any α ∈ R, α 6= 0, where MSE(α) is given by the optimum value of the following convex (quadratic)
optimization problem:

max
|ρXS1

|≤
√
PP1,|ρXS2

|≤
√
PP2

P + (1− α)2P2 + 2(1− α)ρXS2
+N − ((1− α)αP2 + αρXS2

+ ρXS1
)2

P1 + α2P2
.

It can be shown that settingα = 1 andα → ∞ recovers the bounds in Propositions 8 and 9, respectively. The
cases ofα = 1 andα = ∞ correspond to supplyingS1 + S2 andS2, respectively to the decoder and then lower
bounding the distortion.

Note that while finding the optimum value ofα may be difficult, Theorem 10 gives a lower bound for every
α. We note also that while computation of the lower bound requires solving an optimization problem for each
α, unlike the lower bounds in Propositions 8 and 9, the optimization problem is quadratic and can be efficiently
solved [19], [20].

Proof: The idea in the proof of Theorem 10 lies in giving side information S1+αS2 to the decoder instead of
just S1+S2 or S2 as in Propositions 8 and 9 respectively, and then a more careful bounding of the terms appearing
in the distortion calculation using Linear minimum mean square error estimation and convex optimization.

From the data processing inequality,

I(Sn
1 ; Ŝ

n
1 |Sn

1 + αSn
2 ) ≤ I(Sn

1 ;Y
n|Sn

1 + αSn
2 )

= h(Y n|Sn
1 + αSn

2 )− h(Zn)

≤
n
∑

i=1

h(Yi|S1i + αS2i)−
n

2
log 2πeN

(a)

≤ nh(Y |S1 + αS2, Q)− n

2
log 2πeN

≤ nh(Y |S1 + αS2)−
n

2
log 2πeN.
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In (a), we definedQ ∼ Unif [1 : n] independent of all other random variables andYQ = Y , S1Q = S1, S2Q = S2

and Ŝ1Q = Ŝ1. On the other hand, we have

I(Sn
1 ; Ŝ

n
1 |Sn

1 + αSn
2 ) =

n
∑

i=1

h(S1i|S1i + αS2i)− h(Sn
1 |Ŝn

1 , S
n
1 + αSn

2 )

≥
n
∑

i=1

h(S1i|S1i + αS2i)−
n
∑

i=1

h(S1i|Ŝ1i)

≥
n
∑

i=1

h(S1i|S1i + αS2i)−
n
∑

i=1

h(S1i − Ŝ1i)

(a)

≥ nh(S1|S1 + αS2)−
n

2
log 2πeD(P )min

=
n

2
log

(

2πe
α2P1P2

P1 + α2P2

)

− n

2
log 2πeD(P )min,

where(a) follows from concavity of differential entropy and the property that a Gaussian distribution maximizes
the differential entropy for a given second moment. Therefore,

1

2
log

(

2πe
α2P1P2

P1 + α2P2

)

− 1

2
log 2πeD(P )min ≤ h(Y |S1 + αS2)−

1

2
log 2πeN

= h(X + (1− α)S2 + Z|S1 + αS2)−
1

2
log 2πeN

≤ h(X + (1− α)S2 + Z − k(S1 + αS2))−
1

2
log 2πeN,

wherek is defined as

k :=
(1 − α)αP2 + αρXS2

+ ρXS1

P1 + α2P2
,

with EXS1 := ρXS1
and EXS2 := ρXS2

. From Cauchy-Schwartz inequality and the power constrainton X ,
|ρXS1

| ≤
√

PPS1
and |ρXS2

| ≤
√

PPS2
.

Continuing with our bound, we have

h(X + (1− α)S2 + Z − k(S1 + αS2)) ≤
1

2
log(2πe(E(X + (1− α)S2 + Z − k(S1 + αS2))

2)).

In turn, we have

E(X + (1 − α)S2 + Z − k(S1 + αS2))
2 = P + (1− α)2P2 + 2(1− α)ρXS2

+N − ((1− α)αP2 + αρXS2
+ ρXS1

)2

P1 + α2P2

:= MSE(α, ρXS1
, ρXS2

).

Note now that forα fixed, MSE(α, ρXS1
, ρXS2

) is a concave (quadratic) function ofρXS1
and ρXS2

, and the
constraints|ρXS1

| ≤
√

PPS1
and|ρXS2

| ≤
√

PPS2
are linear constraints. Hence, we can find the maximum value

using convex optimization. Lettingρ∗XS1
andρ∗XS2

denote the optimal solutions to the optimization problem, we
arrive at the lower bound for the achievable distortion:

D(P )min ≥
( α2P1P2

P1+α2P2

)N

MSE(α, ρ∗XS1
, ρ∗XS2

)
.
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figure gives a plot of the various bounds on distortion for different values ofP2

Comparison of bounds

As we mentioned earlier, Theorem 10 includes the bounds in Proposition 8 and 9. It can also be larger, as we
now show in an example.

Let P1 = 1, N = 1 andP = 1. We varyP2 and compare the bounds obtained with different values ofP2. The
plots comparing the various upper and lower bounds are givenin Figure 11. As can be seen from Figure 11, the
lower bound given by Theorem 10 can be strictly better than that given by previous lower bounds. As we noted in
the proof of Theorem 10, the improvement comes from two aspects: givingS1 + αS2 to the decoder and a more
careful bounding via Linear Minimum Mean Square Error Estimation and Convex Optimization. The reader may
ask whether it is necessary to useS1 + αS2 instead of just settingα = 1 or α → ∞ and calculate the bounds
more carefully using Linear Estimation and Convex Optimization. In our simulation, we noted that for some values
of P2, moderate values ofα, such asα = 2, 3 give better bounds thanα = 1 or α = 20. This shows that using
S1 + αS2 does lead to better bounds than usingS1 + S2 or S2 alone.

B. Constant gap results

In our simulations, we note that the upper bound and lower bounds appear to be quite close. This suggests that
constant multiplicative gap results on the distortion may be possible, under some conditions on the input, source
and interference powers. This is indeed the case as stated inour next result that when the interference power is
larger than a threshold (that depends on the system parameters), the lower and upper bounds are within a constant
multiplicative gap.

Theorem 11. If

√

P2 ≥

√

γ2P + γ
√
P (2 + γ

√
P )(P (1− γ2) +N)− γ

√
P

γ
√
P (2 + γ

√
P )

, (12)

with γ =
√

ǫ(P+N)
2P , 0 ≤ ǫ ≤ P

P+N
, then the multiplicative gap between the upper bound in Theorem 9, Dachievable,
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and the lower bound in Proposition 8, Dlb, is at most 1/(1− ǫ). That is,

Dachievable

Dlb
≤ 1

1− ǫ
.

Proof: We begin the proof by evaluating the distortion achieved by Theorem 9 forα = −β =
√

ǫ(P+N)
2P . We

have

1 +
P (1− α2 − β2)

N
= 1 +

P

N

(

1− ǫ(P +N)

P

)

= (1− ǫ)

(

1 +
P

N

)

. (13)

Now from the condition onP2 stated in the Theorem (see (12)), it follows that,

P2α
√
P (2 + α

√
P ) +

√

P22α
√
P − P (1− α2)−N ≥ 0

⇒ P2α
√
P (2 + α

√
P ) +

√

P2(2 + α
√
P )α

√
P − α2P − P (1− 2α2)−N ≥ 0

⇒ P2

[

α
√
P (2 + α

√
P )− α2P√

P2

+
(2 + α

√
P )α

√
P√

P2

− α2P

P2

]

≥ P (1− 2α2) +N

⇒ P2

[(

α
√
P +

α
√
P√
P2

)(

2 + α
√
P − α

√
P√
P2

)]

≥ P (1− 2α2) +N

⇒ P2





(

1 + α
√
P
)2

−
(

1− α

√

P

P2

)2


 ≥ P (1− 2α2) +N

⇒ (α
√
P + 1)2

(−α
√

P
P2

+ 1)2P2 + P (1− 2α2) +N
≥ 1

P2
.

Therefore we have,


1 +
(α

√
P + 1)2P1

(β
√

P
P2

+ 1)2P2 +N + P (1− α2 − β2)





(

1 +
P (1− α2 − β2)

N

)

≥
(

1 +
P1

P2

)(

1 +
P

N

)

(1− ǫ),

which implies
Dachievable

Dlb
≤ 1

1− ǫ
.

VII. C ONCLUSION

In this paper, we defined and analyze the problem of estimation with a helper that knows the interference. In
the discrete memoryless case when the interfering signal,S2, is known causally at the encoder, we characterized
the distortion-cost region. WhenS2 is known noncausally, we proposed an achievability scheme based on hybrid
coding. In the binary estimation with a helper problem, we also proposed two lower bounds. Using the upper and
lower bounds, we characterized the distortion-cost regionwhen the problem parametersC, p1 andp2 satisfy one
of several nontrivial conditions.

In the Gaussian case, we derived a lower bound based on a recent result by Verdú between divergence and
mismatched estimation. We showed through numerical simulations that this lower bound can be strictly better than
previous lower bound derived in [3]. Similar to the binary case, we also characterized the distortion-cost region
when the problem parametersP , P1 andP2 satisfy one of several conditions.

We also extended our analysis in the Gaussian case to consider the case when the helper knows bothS1 andS2

noncausally. In this case, we derived a lower bound that contains previous lower bounds proposed in [12] and can
be strictly better. We also obtained constant multiplicative gap results for this setting.

In deriving our lower bound for the Gaussian case when only the interfering signal is known at the helper, we
used a relationship between mismatched estimation and divergence. In the discrete case, a relationship between
divergence and Hamming distortion exists too. One such relationship is Marton’s inequality [21, Lemma 6.3]. An
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interesting open question is whether one can use such relationships to derive a lower bound for the binary case
that is strictly better than the bounds we proposed.

ACKNOWLEDGMENT

We thank Mr Gowtham Kumar of Stanford University for discussions that motivated this work, and Professor
Sriram Vishwanath of The University of Texas at Austin for helpful discussions during the course of this work.

REFERENCES

[1] Y. H. Kim, A. Sutivong, and T. Cover, ‘‘State amplification,’’ IEEE Trans. Inf. Theory, vol. 54, no. 5, pp. 1850--1859, May 2008.
[2] C. Choudhuri, Y.-H. Kim, and U. Mitra, ‘‘Causal state amplification,’’ in Proc. IEEE International Symposium on Information Theory,

St Petersburg, Russia, August 2011.
[3] P. Grover and A. Sahai, ‘‘Witsenhausen’s counterexample as assisted interference suppression,’’ submitted to International Journal of

Systems, Control and Communications. Available online at http://www.eecs.berkeley.edu/sahai/Papers/VectorWitsenhausenJournal.pdf.
[4] H. Witsenhausen, ‘‘A counterexample in stochastic optimum control,’’ SIAM J. Control, vol. 6, no. 1, pp. 131--147, February 1968.
[5] L. Zhao, Y. K. Chia, and T. Weissman, ‘‘Compression with actions,’’ in Allerton conference on communications, control and computing,

Monticello, Illinois, September 2011.
[6] P. Grover, A. Wagner, and A. Sahai, ‘‘Information embedding and the triple role of control,’’ submitted to Transactions on Information

Theory. Available online at http://www.eecs.berkeley.edu/ pulkit/papers/InfoEmbeddingITTransDec8.pdf.
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APPENDIX I
SKETCH OF ACHIEVABILITY FOR THEOREM 1

We use block Markov coding overB blocks. The scheme in each block is basically a separation scheme, where
we use the random variableU for transmission of a message from the previous block. The message itself is a
Wyner-Ziv description [22] ofSn

2 from the previous block. More concretely, in each blockj ∈ [1 : B], the trans-
mission codebook is generated as follows: Generate2n(I(U ;Y )−ǫ) Un(l) sequences according to

∏n

i=1 p(ui). The
compression codebook is generated by the following two step procedure: Generate2n(I(V ;S2,U)+ǫ) V n sequences
according to

∏n

i=1 p(vi). Partition the set ofV n sequences into2n(I(V ;S2|U,Y )+2ǫ) bins,B(Mj).
For encoding, at the end of blockj, assume that the codewordUn(mj) was sent. The encoder then finds aV n(j)

sequence that is jointly typical with(Un(mj), S
n
2 (j)). If there is more than one such sequence, it picks from one

uniformly at random from the set of jointly typical sequences. This operation succeeds with high probability as
n → ∞ since there are2n(I(V ;S2,U)+ǫ) V n(j) sequences. The encoder then finds the bin indexMj+1 such that
V n ∈ B(Mj+1). It then sends out the indexMj+1 in block j + 1 by selectingUn(j + 1) and sending out theXn

sequence encoded asxi = f(ui(Mj+1), s2i(j + 1)). For the first block, the encoder sends an arbitrary message.
This encoding operation requires the condition that

I(U ;Y )− ǫ > I(V ;S2|U, Y ) + 2ǫ.
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For decoding, at the end of blockj+1, the decoder first decodes the bin indexMj+1. From standard arguments
(see for e.g. [11, Chapter 7]), this decoding operation succeeds with high probability provided

I(U ;Y )− ǫ > I(V ;S2|U, Y ) + 2ǫ.

Once the decoder recovers the bin indexMj+1, it then recovers the trueV n(j) codeword by looking forvn(j) ∈
B(Mj+1) such that(un(mj), y

n(j), vn(j)) ∈ T (n)
ǫ . It then reconstructsSn

1 (j) as ŝ1(ui(mj), yi(j), vi(j)) for
i ∈ [1 : n]. From the rates given and standard arguments (see [11, Chapter 3 and Chapter 11]), the expected
distortion for Sn

1 (j) in block j is less than or equal toE d(S1, Ŝ1(U, V, Y )) + (.ǫ), where (.ǫ) → 0 as ǫ → 0.
This decoding and reconstruction procedure applies for thefirst B − 1 blocks and for theBth block, we simply
reconstructSn

1 (B) according to an arbitrary symbolŝ1 ∈ Ŝ1, incurring a distortion that is bounded byDmax, where
Dmax := maxŝ1 E d(S1, ŝ1). The per symbol distortion overB-blocks is then upper bounded byD + ’.(ǫ) where
’.(ǫ) → 0 as ǫ → 0.

We now note that the above achievability scheme takes care ofthe case whenI(U ;Y ) > I(V ;S2|U, Y ). The
boundary case ofI(U ;Y ) = I(V ;S2|U, Y ) can be handled as follow. Assume first thatI(U ;Y ) > 0. Define
U ′ = (U,Q), Q ∈ {1, 2} independent of other random variables,V ′ = V whenQ = 1 andV = ∅ whenQ = 2.
X = f(U, S2) regardless ofQ andŝ1(U ′, V ′, Y ′) = ŝ1(U, V, Y ) if Q = 1 andŝ∗1 if Q = 2, whereŝ∗1 is an arbitrary
symbol belonging toŜ1. Let P(Q = 1) = p1. We have

I(U ′;Y ′) ≥ I(U ;Y ),

I(V ′;S2|U ′, Y ′) = p1I(V ;S2|U, Y ),

E d(S1, Ŝ1(U
′, V ′, Y ′)) ≤ p1 E d(S1, Ŝ1(U, V, Y )) + (1 − p1)Dmax.

With this choice of random variables,I(U ′;Y ′) > I(V ′;S2|U ′, Y ′) wheneverp1 < 1 and we can then apply the
achievability scheme we discussed, at the expense of largerdistortion. By choosingp1(n) = 1− ǫn, whereǫn → 0
asn → ∞, we can apply our achievability scheme for blocklengthn sufficiently large, with the resulting expected
distortion converging toE d(S1, Ŝ1(U, V, Y )) asn → ∞.

For the case ofI(U ;Y ) = I(V ;S2|U, Y ) = 0, it can be shown that in this case, the decoder can perform the
reconstruction based only on̂s1(Yi, Ui) for i ∈ [1 : n]. Achievability in this case requires no block Markov coding.
We only need to generate one transmission codewordUn and transmitXn according toxi = f(ui, s2i). The
decoder reconstructsSn

1 as ŝ1(ui, yi) for i ∈ [1 : n].

APPENDIX II
PROOF OFCLAIM 1

The causal region in Theorem 1 is given by

min E d(S1, Ŝ1(U, V, Y ))

subject to

I(U ;Y ) ≥ I(V ;S2|U, Y )

EX ≤ C

for somep(u)p(v|u, s2) and functionx(u, s2). We prove thatD(0.11)min−causal > 0 by contradiction. Suppose
that there existsU, V satisfying the constraints such thatE d(S1, Ŝ1(U, V, Y )) = 0. This implies in particular that
H(S1|U, V, Y ) = 0. Hence,

I(V ;S2|U, Y ) = I(V, S1;S2|U, Y )

≥ I(S1;S2|U, Y )

= H(S1|U, Y )−H(S1|S2, U, Y )

= H(S1|U, Y )

= H(S1, Y |U)−H(Y |U)

= H(S1) +H(Y |U, S1)−H(Y |U).
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The last step follows fromU being independent ofS1. Since we requireI(U ;Y ) ≥ I(V ;S2|U, Y ), and we know
thatH(S1) +H(Y |U, S1)−H(Y |U) ≤ I(V ;S2|U, Y ), a necessary condition forE d(S1, Ŝ1(U, V, Y )) = 0 is

H(S1) +H(Y |U, S1)−H(Y |U) ≤ I(U ;Y ),

⇒ H(S1) +H(Y |U, S1) ≤ H(Y ).

Define the subsets ofU as follows.U0 := {u : x(u, s2) = 0}; U1 := {u : x(u, s2) = 1}; Us := {u : x(u, s2) = s2};
andUs̄ := {u : x(u, s2) = 1⊕ s2}. Note the following.
• For u ∈ U0, H(Y |U = u, S1) = 1 sinceS2 is independent ofU, S1.
• For u ∈ U1, H(Y |U = u, S1) = 1 sinceS2 is independent ofU, S1.
• For u ∈ Us, H(Y |U = u, S1) = 0 sinceS2 ⊕X = 0 andY = S2 ⊕X ⊕ S1.
• For u ∈ Us̄, H(Y |U = u, S1) = 0 sinceS2 ⊕X = 1 andY = S2 ⊕X ⊕ S1.

Further, definepu0 =
∑

u∈U0
p(u); pu1 =

∑

u∈U1
p(u); ps =

∑

u∈Us
p(u); andps̄ =

∑

u∈Us̄
p(u). Then,

H(S1) +H(Y |U, S1) = H2(p1) + pu0 + pu1

= H2(p1) + 1− Cs,

whereCs = ps + ps̄.
The cost constraint can be expressed as

EX = p1 +
1

2
(ps + ps̄)

= p1 +
1

2
Cs

≤ C,

whereC = 0.11. In particular, the cost constraint implies thatCs ≤ 2C. Hence,

H(S1) +H(Y |U, S1) ≥ 1 +H2(q)− 2C.

Now, sincep1 = 0.1 andC = 0.11, we see that

H(S1) +H(Y |U, S1) > 1

≥ H(Y ),

which is a contradiction.

APPENDIX III
DERIVATION OF THEOREM 5

The derivation of Theorem 5 follows from choosing the auxiliary random variables in Theorem 2. Starting from
Theorem 2, let

U = X ′ + γS2,

X = α

√

P

P2
S2 +X ′,

X ′ ∼ N(0, P ′),

E(S2X
′) = β

√

P2P ′,

whereP ′ is a quantity to be calculated, andα and β are restricted to be between -1 to 1 to satisfy the power
constraints. Observe thatX is a function ofU, S2 as required. For convenience, we will use the notationX |Y to
denote Minimum Mean Square Error ofX given Y . The reconstruction function is given by

Ŝ1 = E(S1|U, Y ).

We now determineP ′ from other variables usingEX2 = P .

EX2 = α2P + P ′ + 2αβ
√
PP ′ = P.
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Solving forP ′ gives

√
P ′ =

−2αβ
√
P +

√

4α2β2P + 4(1− α2)P

2
.

To satisfy the constraint in Theorem 2, we require

h(U |S2) > h(U |Y ).

SinceU, S2, Y are all Gaussian random variables, this condition reduces to

U |S2 > U |Y.
Now,

U |S2 = X ′|S2

= (1− β2)P ′.

As for U |Y , we have

U |Y = EU2 − (E(UY ))2

EY 2
,

and

EU2 = P ′ + 2γβ
√

P ′P2 + γ2P2,

E(UY ) = E((X ′ + γS2)(α

√

P

P2
S2 +X ′)) + β

√

P ′P2 + γP2

= αβ
√
PP ′ + P ′ + αγ

√

PP2 + γβ
√

P ′P2 + β
√

P ′P2 + γP2,

EY 2 = EX2 + ES2
1 + ES2

2 + 2E(S2(α

√

P

P2
S2 +X ′))

= P + 1 + P2 + 2α
√

PP2 + 2β
√

P ′P2.

The expected distortion is then given by isS1|(Y, U), which is

S1|(U, Y ) = 1− [E(US1) E(Y S1)]

[

EU2 E(UY )
E(UY ) EY 2

]−1 [
E(US1)
E(Y S1)

]

.

We note now thatE(US1) = 0 andE(S1Y ) = 1. The lower bound therefore works out to

S1|(U, Y ) = 1− EU2

EY 2 EU2 − (EUY )2
.

APPENDIX IV
PROOF OFTHEOREM 8

As Theorem 8 is a generalization of Proposition 7, the proof of this Theorem also follows closely that of
Proposition 7. As such, we will only mention areas where there are differences from the proof in Proposition 7 and
refer readers to Proposition 7 for the rest of the proof.

As we mentioned before, we generalize the bound by not assuming thatXn ≡ 0. Instead, let us assume that
under the mismatched distributionQ, X is distributed i.i.d according toX = cS2 + Z, whereZ ∼ N(0, rP )

independent ofS2 and r ≥ 0. Under this assumption,MSEQ(γ) andD(P
(γ)
Y n|Sn

2

||Q(γ)
Y n|Sn

2

) used in the proof of
Proposition 7 are now different. The bounds onMSEQ(γ) and the divergence between the true distribution and
the mismatched distribution are therefore different. We calculate them as follow.

Defineα as
α :=

1

1 + γPI

,
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wherePI = (1 + c)2P2 + rP . Let E ||Xn||22 = nx2, wherex2 ≤ P . We now have, forMSEQ(γ),

1

n
MSEQ(γ) =

1

n
E ||Sn

1 − α(Xn + Sn
1 + Sn

2 )||2

=
1

n
E ||Sn

1 − α(Sn
1 + Sn

2 )||2 −
2α

n
E < Sn

1 − α(Sn
1 + Sn

2 ), X
n > +

α2

n
E ||Xn||2

=
(1− α)2

γ
+ α2P2 +

2α2

n
E < Sn

2 , X
n > +α2x2

=
γP 2

I

(1 + γPI)2
+

P2

(1 + γPI)2
+

2α2

n
E < Sn

2 , X
n > +α2x2

=
PI

1 + γPI

− PI

(1 + γPI)2
+

P2

(1 + γPI)2
+

2

n(1 + γPI)2
E < Sn

2 , X
n > +

1

(1 + γPI)2
x2.

It remains to calculate an upper bound on the divergence. As before, P (γ)
Y n|Sn

2

∼ N(Sn
2 + Xn, 1

γ
I), but now,

Q
(γ)
Y n|Sn

2

∼ N((1 + c)Sn
2 , (

1
γ
+ rP )I). The (conditional) divergence is now given by

2

n
D(P

(γ)
Y n|Sn

2

||Q(γ)
Y n|Sn

2

) =
1

1 + γrP
− 1− log(

1

1 + γrP
) +

γ

n(1 + γrP )
||Xn − cSn

2 ||22.

Combining the divergence bound after taking expectation over Sn
2 with the MSEQ bound after integration gives

(see (10) in the proof of Proposition 7)

γ1 − γ0
n

MMSE(γ0) ≥ log(
1 + γ1PI

1 + γ0PI

) +
1

(1 + γ1PI)
− 1

(1 + γ0PI)
− P2

PI(1 + γ1PI)

+
P2

PI(1 + γ0PI)
− c2γ1

1 + γ1rP
P2 −

1

1 + γ1rP
+ 1 + log(

1

1 + γ1rP
)

+ (
1

PI(1 + γ0PI)
− 1

PI(1 + γ1PI)
− γ1

1 + γ1rP
)x2

+ 2(
1

PI(1 + γ0PI)
− 1

PI(1 + γ1PI)
+

cγ1
1 + γ1rP

)
E < Sn

2 , X
n >

n

≥ log(
1 + γ1PI

1 + γ0PI

) +
1

(1 + γ1PI)
− 1

(1 + γ0PI)
− P2

PI(1 + γ1PI)

+
P2

PI(1 + γ0PI)
− c2γ1

1 + γ1rP
P2 −

1

1 + γrP
+ 1 + log(

1

1 + γrP
)

+ (
1

PI(1 + γ0PI)
− 1

PI(1 + γ1PI)
− γ1

1 + γ1rP
)x2

− |2( 1

PI(1 + γ0PI)
− 1

PI(1 + γ1PI)
+

cγ1
1 + γ1rP

)|
√

P2|x|.

The final line follows from successive application of Cauchy-Schwartz onE < Sn
2 , X

n >. Minimizing the
bound over|x| ≤

√
P then gives the generalized lower bound. Leta = ( 1

PI (1+γ0PI)
− 1

PI(1+γ1PI )
− γ1

1+γ1rP
) and

b = |2( 1
PI (1+γ0PI )

− 1
PI (1+γ1PI )

+ cγ1

1+γ1rP
)|√P2. We note thatb ≤ 0 and letf(x) = ax2 − b|x|.

We note that ifa ≤ 0, f(x) is symmetric and decreasing inx. Therefore, we setx∗ =
√
P . If a > 0, then

x∗ = b/(2a) if b/(2a) <
√
P andx∗ =

√
P otherwise. The generalized lower bound is now given by

γ1 − γ0
n

MMSE(γ0) ≥ log(
1 + γ1PI

1 + γ0PI

) +
1

(1 + γ1PI)
− 1

(1 + γ0PI)
− P2

PI(1 + γ1PI)

+
P2

PI(1 + γ0PI)
− c2γ1

1 + γ1rP
P2 −

1

1 + γrP
+ 1 + log(

1

1 + γrP
)

+ (
1

PI(1 + γ0PI)
− 1

PI(1 + γ1PI)
− γ1

1 + γ1rP
)x∗2

− |2( 1

PI(1 + γ0PI)
− 1

PI(1 + γ1PI)
+

cγ1
1 + γ1rP

)|
√

P2x
∗,
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where we optimize overγ1 ≥ γ0, r ≥ 0 and c ∈ R. Noting thatMMSE(1)/n = D(P )min then completes the
proof.

APPENDIX V
SKETCH OF THEOREM 9

The achievability scheme in Theorem 9 closely resembles [12] and involves allocating a fraction of the power for
transmitting a message (corresponding to a compressed version of the desired sourceS1) using dirty paper coding
and using the remaining power for uncoded transmission of a linear combination ofS1 andS2. The compressed
index is generated based on Wyner-Ziv coding and then transmitted reliably over channel using dirty paper coding
as in [12]. The bin indices in Wyner-Ziv coding are transmitted at a rate equal to the capacity of the dirty paper
channel. Note that the interference in this channel also includes the signal due to uncoded transmission created at
the encoder. The compressed index is decoded at the receiverusing the receiver side informationY and both the
decoded codeword andY are used to estimate the sourceS1. Uncoded transmission helps in improving the signal
to noise ratio of the desired signalS1 in Y .

Let

U = X ′ +

(

α

√

P

P1
+ 1

)

S1 +

(

β

√

P

P2
+ 1

)

S2

X = X ′ + α

√

P

P1
S1 + β

√

P

P2
S2

X ′ ∼ N (0, P (1− α2 − β2)),

Y = X + S1 + S2 + Z,

whereX ′ is independent ofS1 andS2 and corresponds to the coded part of the signal. AuxiliaryU is used to

cancel the total interference toX ′ as in dirty paper coding. The total interference is equal to
(

α
√

P
P1

+ 1
)

S1 +
(

β
√

P
P2

+ 1
)

S2. As a result, a clean channel (without interference) is created betweenX ′ andY , which can be

used to transmit the description ofS1 at a Wyner-Ziv rate equal to12 log
(

1 + P (1−α2−β2)
N

)

. The received signal
Y can also be seen as a noisy version of the desired signalS1, and is used along with the message transmitted to
reconstructS1.

Therefore, the resulting distortion inS1 is given by

D =
P1

(

1 +

(

α
√

P
P1

+1
)

2

P1

(

β
√

P
P2

+1
)

2

P2+P (1−α2−β2)+N

)

(

1 + P (1−α2−β2)
N

)

.
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