
ar
X

iv
:1

20
7.

67
62

v5
 [

cs
.IT

]
19

 J
ul

 2
01

3
1

Cooperative Regenerating Codes
Kenneth W. Shum,Member, IEEE,and Yuchong Hu

Abstract—One of the design objectives in distributed storage
system is the minimization of the data traffic during the repair
of failed storage nodes. By repairing multiple failures simulta-
neously and cooperatively rather than successively and indepen-
dently, further reduction of repair traffic is made possible. A
closed-form expression of the optimal tradeoff between therepair
traffic and the amount of storage in each node for cooperative
repair is given. We show that the points on the tradeoff curve
can be achieved by linear cooperative regenerating codes, with
an explicit bound on the required finite field size. The proof
relies on a max-flow-min-cut-type theorem from combinatorial
optimization for submodular flows. Two families of explicit
constructions are given.

Index Terms—Distributed storage system, network coding,
regenerating codes, decentralized erasure codes, submodular
function, submodular flow, polymatroid.

I. I NTRODUCTION

In order to provide high data reliability, distributed storage
systems disperse data to a number of storage nodes. Redun-
dancy is introduced in order to protect against node failures.
There are two common methods in introducing redundancy,
namelyreplication codingand erasure coding. In the former
method, a data file is replicated several times, and the resulting
pieces of data are stored in different storage nodes. A coding
scheme in which a data file is replicated three times is
employed by the Google file system [1]. Although replication
coding is easy to implement and manage, it has lower storage
efficiency than erasure codes, such as Reed-Solomon (RS)
codes. In order to achieves higher storage efficiency, RS code
is recently adopted in several cloud storage systems, including
Oceanstore [2] and Windows Azure [3], etc.

In a large-scale storage system, failure of storage nodes
is a frequent event. The deployment of erasure codes incurs
a significant overhead of network traffic during the repair
process, because we need to download the whole data file
from other surviving nodes in order to recover the lost data.
The required traffic for repairing a failed node, calledrepair
bandwidth per node, is of particular importance in bandwidth-
limited storage networks.Regenerating codeswas introduced
by Dimakis et al. for the purpose of reducing the repair
bandwidth [4].

The material in this paper was presented in part at the IEEE Int. Conf. on
Communications, Kyoto, June, 2011, in part at the Int. Symp.on Network
Coding, Beijing, July, 2011, and in part at the IEEE Int. Symp. on Information
Theory, St. Petersburg, August, 2011.

This work was done while Y. Hu was with Institute of Network Coding,
the Chinese University of Hong Kong.

K. W. Shum is with Institute of Network Coding, the Chinese University
of Hong Kong.

Emails: wkshum@inc.cuhk.edu.hk., yuchunghu@gmail.com
The work described in this paper was substantially supported by a grant

from University Grants Committee of the Hong Kong Special Administrative
Region, China (Project No. AoE/E-02/08).

There are two modes of repair in regenerating codes. In the
first one, calledexact repair, the content of the new node is
exactly the same as the content of the failed nodes. Most of
the explicit constructions of regenerating codes are for exact
repair [5]–[10]. In some works in the literature, such as frac-
tional repetition codes [11], self-repairing codes [12], simple
regenerating code [13] and locally repairable codes [14]–[16],
a failed node is repaired by downloading data from some
specific subsets of surviving nodes. In this paper, however,we
focus on the model as in [4], and assume that the new node
can contact and download data from any subset ofd surviving
nodes during the repair process, whered is a constant called
the repair degree.

The second mode of repair is calledfunctional repair.
With functional repair, the content of the new node are not
necessarily identical to the failed nodes, but the propertythat
a data collector connecting to anyk nodes is able to decode
the data file is preserved. By showing that the minimum repair
bandwidth can be calculated by solving a single-source multi-
casting problem in network coding theory [17], the optimal
tradeoff for functional repair between repair bandwidth and
the storage in each node is derived in [4].

Most of the studies on regenerating codes in the literature
focus on single-failure recovery. In large-scale distributed stor-
age systems, however, multiple-failure recovery is the norm
rather than the exception. Suppose we repair a large distributed
storage system periodically, say once every two days. If the
number of storage nodes is very large, very likely, we have
two or more node failures in a period of time. Multiple failures
occur naturally in this scenario. On the other hand, in some
practical systems such as TotalRecall [18], a recovery process
is triggered only after the number of failed nodes has reached
a predefined threshold. In this case, even though node failures
are detected one by one, the lazy repair policy treats them asa
multiple failures. Lastly, in peer-to-peer storage systems with
high churn rate, nodes may join and leave the system in batch.
This can also be regarded as multiple node failures.

In view of the motivations in the foregoing paragraph, we
address the problem of repairing multiple node failures simul-
taneously and jointly, by exploiting the opportunity of data
exchange among the new nodes. This mode of repair, called
cooperative repair, was first introduced by Huet al. in [19].
The new nodes first download some data from the surviving
nodes, and then exchange some data among themselves. It is
shown in [19] that cooperative repair is able to further reduce
the repair bandwidth, and a coding scheme is given in [20].
However, in [19], [20], only the special case of minimum
storage per node is considered. Cooperative repair in a more
general setting was investigated by Le Scouarnecet al., who
derived in [21], [22] the optimal repair bandwidth in two
extreme cases, namely, the minimum-repair and minimum-

http://arxiv.org/abs/1207.6762v5

2

Fig. 1. Repairing a single node failure.

bandwidth cooperative repair.
We will call a regenerating code with the functionality

of cooperative repair acooperative regenerating code. In
this paper, we derive the fundamental tradeoff between the
storage per node and the repair bandwidth per node, and give
closed-form expressions for the points on the tradeoff curve.
The derivation is based on the information flow graph for
cooperative repair. As there are potentially unlimited number
of data collectors, the information flow graph could be an
infinite graph. The unboundedness of the information flow
graph incurs technical difficulty in achieving the tradeoffcurve
by linear network codes. Existing algorithms for network code
construction, such as the Jaggi-Sanderet al.’s algorithm [23],
assume that the graph is finite, and requires that the finite
field size grows as the number of sink nodes increases. We
therefore cannot apply the Jaggi-Sanderet al.’s algorithm
directly, unless we truncate the infinite information flow graph
to a finite subgraph. If random network coding is employed,
the required field size also grows as the number of destination
nodes increases [24], [25]. The techniques in [24], [25] do
not go through if there are infinitely many data collectors.
It is therefore not straightforward to see whether we can
support arbitrarily large number of repairs without re-starting
the system. Nevertheless, in the single-loss case, Wu in [26]
succeeded in showing, by exploiting the structure of the
information flow graph, that we can work over a fixed finite
field and sustain the distributed storage systemad infinitum.
In this paper, we generalize the results in [26] to cooperative
repair.

A. An Example of Cooperative Repair

We examine the following example taken from [27] (Fig. 1).
Four native data packetsA1, A2, B1 andB2 are distributed
to four storage nodes. Each storage node stores two packets.
The first one storesA1 andA2, the second storesB1 andB2.

The third node contains two parity-check packetsA1+B1 and
2A2+B2, and the last node contains2A1+B1 andA2+B2.
Here, we interpret a packet as an element in a finite field,
and carry out the additions and multiplications as finite field
operations. We can takeF5, the finite field of five elements,
as the underlying finite field in this example. It can be readily
checked that any data collector connecting to any two storage
nodes can decode the four original packets.

Suppose that the first node fails. We want to replace it
by a new node, called thenewcomer. The naive method to
repair the first node is to first reconstruct the four packets
by connecting to any other two nodes, from which we can
recover the two required packetsA1 and A2. Four packet
transmissions are required in the naive method. The repair
bandwidth can be reduced from four packets to three by
making three connections. Each of the three remaining nodes
adds the stored packets and sends the sum of packets to the
newcomer, who can then subtract offB1 + B2 and obtain
A1+2A2 and2A1+A2. The packetsA1 andA2 can now be
solved readily. Hence, the lost information can be regenerated
exactly by sending three packets to the newcomer.

If two storage nodes fail simultaneously, four packet trans-
missions per newcomer are required if we generate the content
in the two new nodes separately (see Fig. 2). Each of the new-
comers has to download four packets from the two surviving
nodes. For example, in order to recover packetB1, the first
newcomer has to download packetsA1 and A1 + B1. For
packetB2, packetsA2 and2A2+B2 have to be downloaded.
The two new nodes essentially rebuild the whole data file
A1, A2, B1 andB2, and re-encode the desired packets. The
total repair bandwidth is eight. If exchange of data among the
two newcomers is enabled, the total repair bandwidth can be
reduced from eight packets to six packets (see Fig. 3). The first
newcomer getsA1 andA1 +B1, while the second newcomer
getsA2 and2A2+B2. The first newcomer then figures outB1

and2A1+B1 by taking the difference and the sum of the two
inputs. The packetB1 is stored and2A1 + B1 is sent to the
second newcomer. Likewise, the second newcomer computes
B2 andA2 + B2, storesA2 + B2 and sendsB2 to the first
newcomer. The content of the failed nodes are regenerated
after six packet transmissions. This example illustrates the
potential benefit of cooperative repair.

B. Formal Definition of Cooperative Repair

Let Q be an alphabet set of sizeq. We will call an element
in Q a symbol. The data is regarded as aB-tuple m ∈ QB,
with each component drawn fromQ. The distributed storage
system consists ofn nodes, with each node storingα symbols.
We index the storage nodes from 1 ton.

Time is divided into stages, and we index the stages by non-
negative integers. Upon the failures of some storage nodes,
we repair the failed nodes and advance to the next stage; the
repair process is carried out in the transition from one stage
to the next stage. Fort ≥ 0, let the content of thei-th node
at thet-th stage be denoted by anα-tuple x(t, i) ∈ Qα. The
distributed storage system is initialized at stage 0 by setting
x(0, i) = ei(m) for i = 1, 2, . . . , n, whereei : QB → Qα is
an encoding function.

3

Fig. 2. Individual repair of multiple failures.

Fig. 3. Cooperative regeneration of multiple failures.

For a subsetS of {1, 2, . . . , n}, we let

x(t,S) := (x(t, i))i∈S

be the content of the storage nodes indexed byS at thet-th
stage. The design objective is two-fold.

(1) File retrieval. At each stage, a data collector can
reconstruct the data file,m, by connecting to anyk out of the
n storage nodes. We will call this property the(n, k) recovery
property. Mathematically, this means that for anyk-subsetS
of {1, 2, . . . , n} andt ≥ 0, there is a decoding function

ft,S : Qkα → QB

such thatft,S(x(t,S)) = m.
(2) Multi-node recovery.When the number of node failures

at stages − 1 reaches a threshold, sayr, we replace the

failed nodes byr newcomers, and advance to stages. For
s = 1, 2, 3, . . ., letRs be the set ofr storage nodes which fail
at stages−1 and are repaired in the transition from stages−1
to stages. The setRs containsr elements in{1, 2, . . . , n}.
For each storage nodei ∈ Rs, let Hs,i be the set of storage
nodes at stages − 1, called thehelpers, from which data is
downloaded to nodei during the repair process. We assume
that the the repair degree is a constantd, regardless of the
stage numbers and the index of the failed nodei, and different
newcomers may connect to different sets ofd helpers. In other
words, the setHs,i can be any subset of{1, 2, . . . , n} \ Rs

with cardinalityd.

The repair procedure is divided into three phases.

In the first phase, each of ther newcomers downloads
β1 symbols from thed helpers. Fori ∈ Rs and j ∈ Hs,i,
the symbols sent from nodej to newcomeri is denoted by
gs,j,i(x(s− 1, j)), where

gs,j,i : Q
α → Qβ1

is an encoding function.

In the second phase, ther newcomers exchange data among
themselves. Every newcomer sendsβ2 symbols to each of the
otherr − 1 newcomers. Fori1, i2 ∈ Rs (i1 6= i2), let

g′s,i1,i2 : Qdβ1 → Qβ2

be the encoding functions in the second phase, and

y(s, i1, i2) = g′s,i1,i2({gs,j,i1(x(s− 1, j)) : j ∈ Hs,i1})

be the symbols sent from newcomeri1 to newcomeri2.

In the third phase, for eachi ∈ Rs, the content of the new
nodei, x(s, i), is obtained by applying a mapping

hs,i : Q
dβ1+(r−1)β2 → Qα

to gs,j,i(x(s− 1, j)) for j ∈ Hs,i andy(s, i′, i) for i′ ∈ Rs \
{i}.

For those storage nodes that do not fail at stages− 1, the
content of them do not change, i.e.,x(s, i) = x(s − 1, i) for
i 6∈ Rs.

A cooperative regenerating code, or acooperative regener-
ation scheme, is a collection of encoding functionsei, ft,S ,
gs,j,i, g′s,i1,i2 andhs,i, such that the(n, k) recovery property
holds at all stagest ≥ 0, for all possible failure patternsRs

and all choices of helper setsHs,i, s ≥ 1.
A few more definitions and remarks are in order.
• The multi-node recovery process makes sense only when

the total number of storage nodes,n, is larger than equal
or to the sum of the number of nodes repaired jointly,r,
and the repair degree,d. Henceforth we will assume that
n ≥ d+r. The results in this paper hold for alln ≥ d+r.

• If each storage node containsB/k symbols, then the
regenerating code is said to have themaximal-distance
separable(MDS) property.

• If x(t, i) = x(0, i) for all t ≥ 0 andi = 1, 2, . . . , n, then
the regenerating code is said to beexact.

• The repair bandwidthper newcomer is denoted by

γ := dβ1 + (r − 1)β2.

4

• The encoding functionsgs,j,i, g′s,i1,i2 , and hs,i depend
on the indices of the failed nodes,Rs, the indices of the
helper nodes,Hs,i, and possiblyRt andHt,i for t ≤ s,
i.e., the cooperative regeneration scheme is causal. For
the ease of notation, this dependency is suppressed in the
notations.

• The encoding and decoding are performed over a fixed
alphabet setQ at all stages.

• In practice, the file size is typically very large and can
be regarded as infinitely divisible. It will be convenient
to choose a unit of data such that the file sizeB is
normalized to 1, and hence the file sizeB does not matter
in the analysis. After normalization, a pair(γ/B, α/B)
is called anoperating point. The first (resp. second)
coordinate is the ratio of the repair bandwidthγ (resp.
storage per nodeα) to the file sizeB. We use the tilde
notation α̃ = α/B, β̃1 = β1/B, β̃2 = β2/B, and
γ̃ = γ/B for variables after normalization. All variables
with tilde are between 0 and 1.

• An operating point(γ̃, α̃) is said to beadmissibleif there
is a cooperative regeneration scheme over an alphabet set
Q with parametersB, α, β and γ, such that(γ̃, α̃) =
(γ/B, α/B). For givend, k and r, let CAD(d, k, r) be
the closure of all admissible operating points achieved
by cooperative regenerating codes with parametersd, k
andr. We callCAD(d, k, r) the admissible region. If the
parametersd, k andr are clear from the context, we will
simply write CAD. We let

γ∗(α̃) := min{x : (x, α̃) ∈ CAD(d, k, r)}. (1)

The value ofγ∗(α̃) is the optimal repair bandwidth when
the amount of data stored in a node isα̃.

• In the single-loss failure model (r = 1), it is shown in [4]
that we only need to considerd ≥ k without loss of
generality. In multiple-loss failure model (r > 1), there
is no a-priori reason whyd cannot be strictly less thank.
However, the mathematics for the cased ≥ k is simpler
and more tractable. In this paper, we will assume thatd
is larger than or equal tok. We will also assume that
k ≥ 2, because regenerating code withk = 1 is trivial.

We summarize the notations as follows:
B : The size of the source file.
n : The total number of storage nodes.
d : Each newcomer connects tod surviving nodes.
k : Each data collector connects tok storage nodes.
r : The number of nodes repaired simultaneously.
α : Storage per node.
β1 : Repair bandwidth per newcomer in the 1st phase.
β2 : Repair bandwidth per newcomer in the 2nd phase.
γ : Total repair bandwidth per newcomer.

C. Main Results

The main result of this paper gives a closed-form expression
for the regionCAD(d, k, r). The statement of the main theorem
(Theorem 1) requires the following notations.

Definitions: For j = 1, 2, . . . , k, define

α̃j :=
d− k + j + r−1

2

Dj
, (2)

γ̃j :=
d+ r−1

2

Dj
, (3)

whereDj is a short-hand notation for

Dj := k
(
d− k + j +

r − 1

2

)
−

j(j − 1)

2
. (4)

The points(γ̃j , α̃j) are calledoperating points of the first type.
For ℓ = 0, 1, . . . , ⌊k/r⌋, define

α̃′
ℓ :=

d− k + r(ℓ + 1)

D′
ℓ

, (5)

γ̃′
ℓ :=

d+ r − 1

D′
ℓ

, (6)

where

D′
ℓ := k(d+ r(ℓ + 1)− k)−

r2ℓ(ℓ+ 1)

2
. (7)

The points(γ̃′
ℓ, α̃

′
ℓ) are calledoperating points of the second

type.

For non-negative integerj and positive integerr, let

Ψj,m := ⌊j/m⌋m2 + (j − ⌊j/m⌋m)2. (8)

Let µ : {0, 1, . . . , k} → R∪ {∞}, be a function defined by
µ(0) := 0, and

µ(j) :=

{
j(d−k)+(j2+Ψj,r)/2

jr−Ψj,r
if Ψj,r < jr,

∞ if Ψj,r = jr.

for j = 1, 2, . . . , k. The motivation for the definition ofµ(j)
will be given in Section IV.

Theorem 1. The admissible regionCAD(d, k, r) is equal to
the convex hull of the union of

{

(γ̃j , α̃j) : j = 2, 3, . . . , k − 1, d ≤ (r − 1)µ(j)
}

,

(9)
{

(γ̃′
⌊j/r⌋, α̃

′
⌊j/r⌋) : j = 2, 3, . . . , k − 1, d > (r − 1)µ(j)

}

,

(10)
{

(γ̃′
0 + c, α̃′

0) : c ≥ 0
}

, (11)

and {

(γ̃k, α̃k + c) : c ≥ 0
}

. (12)

Whenr = 1, we use the convention0·∞ =∞ in (9) and (10).
Furthermore, linear regenerating codes meeting this bound

exist for alln ≥ d+r, provided that we work over a sufficiently
large finite field.

We note that each of the sets in (9) and (10) contains at
mostk− 2 points. The set in (11) is a horizontal ray, and the
set in (12) is a vertical ray. The proof of Theorem 1 is given
in Sections III to VI.

Remark:The quantityΨj,m defined in (8) can be interpreted
as the maximum value of

∑j
i=1 x

2
i subject to the constraints

5

∑j
i=1 xi = j and 0 ≤ xi ≤ m for all i. If we divide j by

m, the quotient and remainder are, respectively,⌊j/m⌋ and
j − ⌊j/m⌋. We haveΨ0,m = 0 andΨ1,m = 1 for all m ≥ 1.
Also, for j ≥ 2 and m ≥ 1, we havej < Ψj,m ≤ jm.
EqualityΨj,m = jm holds if and only ifj is divisible bym.
In particular, we haveΨj,1 = j for all j ≥ 1.
Definitions: There are two particular operating points of
special interest. The first one,

(γ̃MSCR, α̃MSCR) := (γ̃′
0, α̃

′
0) =

(d+ r − 1

k(d+ r − k)
,
1

k

)

,

is called the minimum-storage cooperative regenerating
(MSCR) point. This point is the end point of the half-line (11).
The second one,

(γ̃MBCR, α̃MBCR) := (γ̃k, α̃k) =
2d+ r − 1

k(2d+ r − k)
(1, 1),

is called theminimum-bandwidth cooperative regenerating
(MBCR) point. This point is the end point of the half-line
in (12).

An operating point(γ̃♭, α̃♭) is said to Pareto-dominate
another point (γ̃♯, α̃♯) if γ̃♭ ≤ γ̃♯ and α̃♭ ≤ α̃♯. An
operating point(γ̃, α̃) is called Pareto-optimal if it is in
CAD(d, k, r) and not Pareto-dominated by other operating
points inCAD(d, k, r). The MSCR (resp. MBCR) point is the
Pareto-optimal point with minimum̃α (resp.γ̃).

Whenr = 1, Theorem 1 reduces to the corresponding result
for single-loss recovery in [4]. Indeed, we haveµ(j) =∞ for
j = 1, 2, . . . , k whenr = 1. Using the convention0 ·∞ =∞,
the set in (9) containsk − 2 operating points

(γ̃j , α̃j) =
2

2k(d− k + j)− j(j − 1)

(
d, d− k + j

)
, (13)

for j = 2, 3, . . . , k − 1, while the set in (10) is empty. For
r = 1, the extreme points ofCAD(d, k, 1) are the points in (13),
and

(γ̃MSR, α̃MSR) := (γ̃′
0, α̃

′
0) =

(d

k(d+ 1− k)
,
1

k

)

, (14)

(γ̃MBR, α̃MBR) := (γ̃k, α̃k) =
2d

k(2d+ 1− k)
(1, 1).

We define thestorage efficiencyas the number of symbols
in the data file divided by the total number of symbols in then
storage nodes. In terms of the normalized storage per node, the
storage efficiency is equal to1/(nα̃). The storage efficiency
of an MSCR code isk/n.

For MBCR, the storage efficiency is

k(2d+ r − k)

n(2d+ r − 1)
.

If we fix n, d and k, and increase the value ofr, then the
storage efficiency increases. Alternately, if we fixn, k and
r, and increase the value ofd, the storage efficiency also
increases. However, the storage efficiency cannot exceed1/2.
One can see this by first upper bounding it by

k(2d+ r − k)

(d+ r)(2d + r − 1)
,

and then show that

1− 2
k(2d+ r − k)

(d+ r)(2d+ r − 1)

=
2(d− k)2 + (r − k)2 + k2 + (2r − 1)d+ (r − 1)d

(d+ r)(2d + r − 1)
> 0.

In Section VII, two families of cooperative regenerating
codes for exact repair are constructed explicitly. Both families
have the propertyd = k. The first family matches the MSCR
point, and has parametersB = kr, n ≥ d + r, α = r
and γ = d + r − 1. The second family matches the MBCR
point and has parametersB = k(k + r), n = d + r and
α = γ = 2d+ r − 1.

D. Numerical Illustrations

We illustrate the admissible regionCAD(5, 4, 3) (with pa-
rametersd = 5, k = 4, r = 3) in Fig. 4. The solid line (marked
by squares) is the boundary of the regionCAD(5, 4, 3). The set
in (9) contains two points, namely

(γ̃2, α̃2) =
(d+ r−1

2

D2
,
d− k + 2 + r−1

2

D2

)

= (6/15, 4/15)
.
= (0.4, 0.2667),

and

(γ̃3, α̃3) =
(d+ r−1

2

D3
,
d− k + 3 + r−1

2

D3

)

= (6/17, 5/17)
.
= (0.3529, 0.2941).

The set in (10) is empty. The MSCR and MBCR points are,
respectively,

(γ̃MSCR, α̃MSCR) =
(d+ r − 1

k(d+ r − k)
,
1

k

)

= (7/16, 1/4) = (0.4375, 0.25),

and

(γ̃MBCR, α̃MBCR) =
(2d+ r − 1

k(2d+ r − k)
,

2d+ r − 1

k(2d+ r − k)

)

= (1/3, 1/3)
.
= (0.3333, 0.3333).

For comparison, we also plot in Fig. 4 the optimal tradeoff
curve for single-failure repair with parametersd = 5, k = 4
andr = 1 (marked by circles). We observe that the boundary
of the admissible region is piece-wise linear.

Even though the statement in Theorem 1 is a little bit
complicated, we can plot the tradeoff curve by the procedure
described in Algorithm 1. As a numerical example, we plot
the tradeoff curves with parametersB = 1, d = 21, k = 20,
and r = 1, 3, 5, 7, 9, 11, 13 in Fig. 5. The curve forr = 1
is the tradeoff curve for single-node-repair regeneratingcode.
The repair degreed = 21 is kept constant, and the number
of storage nodes can be any integer larger than or equal to
d + 13 = 34. We can see in Fig. 5 that we have a better
tradeoff curve when the number of cooperating newcomers
increases. We indicate the operating points of the first typeby
dots and operating points of the second type by squares. We
observe that all but one operating points of the second type

6

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Repair bandwidth per failed node, γ

S
to

ra
ge

 p
er

 n
od

e,
 α

Single−loss Recovery
Cooperative Repair

r=1

r=3

Fig. 4. Tradeoff between storage and repair bandwidth,B = 1, d = 5,
k = 4. The solid line is forr = 3 and the dashed line is forr = 1.

Algorithm 1 Plot the tradeoff curve for cooperative repair
Input: d, k, r.
Output: The tradeoff curve of storage per node versus repair

bandwidth per node.
1: γ̃ ← γ̃MSCR, α̃← α̃MSCR.
2: for j = 2, 3, . . . , k do
3: if r = 1 or d ≤ (r − 1)µ(j) then
4: x← γ̃j , y ← α̃j .
5: else
6: x← γ̃′

⌊j/r⌋, y ← α̃′
⌊j/r⌋.

7: end if
8: Draw a line segment from(γ̃, α̃) to (x, y).
9: γ̃ ← x, α̃← y.

10: end for
11: Draw a horizontal ray from (γ̃MSCR, α̃MSCR) to

(∞, α̃MSCR).
12: Draw a vertical ray from (γ̃MBCR, α̃MBCR) to

(γ̃MBCR,∞).

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.05

0.06

0.07

0.08

0.09

Repair bandwidth per failed node, γ

S
to

ra
ge

 p
er

 n
od

e,
 α

Single−loss recovery
Cooperative recovery (type 1 OP)
Cooperative recovery (type 2 OP)

r=9

r=7
r=5

r=13
r=11

r=1
r=3

Fig. 5. Tradeoff between storage and repair bandwidth (B = 1, d = 21,
k = 20, r = 1, 3, 5, 7, 9, 11, 13).

are on the horizontal lineα = 0.05. The exceptional operation
point of the second type lies on the trade-off curve withr = 3.

We compare below the repair bandwidth of three different
modes of repair in a distributed storage system ofn = 7 nodes.
We require that anyk = 3 nodes is sufficient in decoding the
original file. Each node contains the minimum amount of data,
i.e., α̃ = 1/3.

Suppose that three nodes have failed.
(i) Individual repair without newcomer cooperation. Each

newcomer connects to the four remaining storage nodes.
From (14), the normalized repair bandwidth per newcomer
is

γ̃MSR =
d

k(d+ 1− k)
=

4

3(4 + 1− 3)

.
= 0.6667.

(ii) One-by-one repair. We repair the failed nodes one by
one. The newly repaired nodes are utilized as the helpers
during the repair of the remaining failed nodes. The average
repair bandwidth per newcomer is

1

3

(4

3(4 + 1− 3)
+

5

3(5 + 1− 3)
+

6

3(6 + 1− 3)

)
.
= 0.5741.

The first term in the parenthesis is the repair bandwidth of
the first newcomer, who downloads from the four surviving
nodes, the second term is the repair bandwidth of the second
newcomer, who connects to the four surviving nodes and the
first newcomer, and so on.

(iii) Full cooperation among the three newcomers. With
r = k = 3 and d = 4, the normalized repair bandwidth per
newcomer is

γ̃MSCR =
d+ r − 1

k(d+ r − k)
=

4 + 3− 1

3(4 + 3− 3)
= 0.5.

We thus see that the full cooperation in (iii) gives the smallest
repair bandwidth.

E. Organization

This paper is organized as follows. In Section II, we review
the information flow graph for cooperative repair, and state
some definitions and theorems from combinatorial optimiza-
tion. In Section III, a lower bound on repair bandwidth for
cooperative recovery is derived. The lower bound is expressed
in terms of a linear programming problem. In Section IV, we
solve the linear program explicitly. In Section V we show
that the lower bound is tight by using some results from the
theory of submodular flow. We prove in Section VI that we can
construct linear network codes over a fixed finite field, which
match this lower bound on repair bandwidth. Two explicit
constructions for exact-repair cooperative regeneratingcodes
are given in Section VII. Appendix B discusses the scenario
of heterogeneous download traffic. Some of the longer proofs
are relegated to the remaining appendices.

II. PRELIMINARIES

A. Polymatroid and submodular flow

We collect some definitions and basic facts of submodu-
lar functions and polymatroids. We refer the readers to the
texts [28]–[30] for more details.

7

Definitions: Let R be the set of real numbers andR+ be the
set of non-negative real numbers. For a finite setV , we denote
the cardinality ofV by |V|. We letRV be the set of vectors
with components indexed by the elements inV , andR

V
+ be

subset of vectors inRV with non-negative components. In the
rest of this paper, a vector will be identified with a real-valued
function onV .

Let the set of all subsets ofV be 2V . A set functionf :
2V → R is calledsubmodularif it satisfies

f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T) (15)

for all S, T ⊆ V . To show that a functionf is submodular, it
is sufficient to check that

f(S ∪ {u}) + f(S ∪ {v}) ≥ f(S) + f(S ∪ {u, v})

for all subsetsS ⊆ V andu, v ∈ V (See [28, Thm 44.1]).
If (15) holds with equality for allS and T in 2V , thenf

is called modular. For a given vectorx = (xi)i∈V , we can
define a modular function by

x(S) :=
∑

i∈S

xi,

for all subsetsS ⊆ V .
A submodular functionf is said to bemonotoneif f(S) ≤

f(T) wheneverS ⊆ T . Furthermore, a monotone submodular
function f satisfyingf(∅) = 0 is called apolymatroidal rank
function, or simply arank function.

The polymatroidcorresponding to a rank functionf is the
polyhedron defined as

P(f) := {x ∈ R
V
+ : x(S) ≤ f(S), ∀S ⊆ V}.

The face of the polymatroid consisting of the points satisfying
x(V) = f(V) is called thebase-polymatroidassociated with
the rank functionf . It is well known that the base-polymatroid
is non-empty (See e.g. [29, Thm. 2.3]). We will use the symbol
B(f) to denote the base-polymatroid corresponding to rank
function f ,

B(f) := {x ∈ P(f) : x(V) = f(V)}.

For a given vectorx ∈ R
V
+, we sort the components ofx

in non-increasing order and let thej-th largest component in
x be denoted byx[j], i.e.,

x[1] ≥ x[2] ≥ · · · ≥ x[|V|].

Given two vectorsx andy in R
V
+, we say thatx is majorized

by y if

x[1] + x[2] + · · ·+ x[i] ≤ y[1] + y[2] + · · ·+ y[i],

for i = 1, 2, . . . , |V| − 1 and

|V|
∑

j=1

x[j] =

|V|
∑

j=1

y[j].

In this paper, we will construct polymatroids and rank
functions by the following lemma [29, p.44].

Lemma 2. Let V be a finite set andu be a given vector in
R

V
+. The functionf : 2V → R+ defined by

f(S) :=

|S|
∑

j=1

u[j]

is a rank function. The set of vectors inRV
+ which are

majorized byu is precisely the base-polymatroid associated
with the rank functionf .

Proof: (Sketch) For the submodularity, it is sufficient to
check that the condition

2f(|S|+ 1) ≥ f(|S|) + f(|S|+ 2) (16)

for all S ⊆ V with |S| ≤ |V| − 2. The inequality in (16) is
equivalent tou[|S|+1|] ≥ u[|S|+2], which holds by construction.
The functionf is monotone because the function

∑i
j=1 u[j]

is monotonically nondecreasing as a function ofi.
It is obvious that any submodular functionf(S) constructed

as in Lemma 2 only depends on the size ofS. We give a
numerical example for Lemma 2. Letf be the rank function

f(S) =

0 if S = ∅

2 if |S| = 1

4 if |S| = 2

5 if |S| = 3

induced from the vectoru = (2, 2, 1). The base-polymatroid
B(f) consists of the vectors(x, y, z) in R

3
+ which satisfy

x ≤ 2, y ≤ 2, z ≤ 2, x+ y ≤ 4, y + z ≤ 4, z + x ≤ 4,

x+ y + z = 5.

The vectors inB(f) are precisely the vectors inR3
+ which are

majorized byu.
Definitions: Let H = (V , E) be a directed graph. For a given
subsetT of V , define the set of incoming edges and the set
of out-going edges, respectively, by

∆−T := {e = (u, v) ∈ E : u 6∈ T , v ∈ T },

∆+T := {e = (u, v) ∈ E : u ∈ T , v 6∈ T }.

WhenT is a singleton{v}, ∆−{v} is the set of edges which
terminate at vertexv, and∆+{v} is the set of edges which
emanate fromv. We will write

∆−v := ∆−{v} and∆+v := ∆+{v}.

Let φ : E → R be a real-valued function on the edges
of H . We extend the functionφ naturally to a set function, by
defining

φ(E ′) :=
∑

e∈E′

φ(e)

for E ′ ⊆ E . The boundary ofφ, denoted by∂φ, is the set
function on2V defined by

∂φ(T) = φ(∆+T)− φ(∆−T).

The boundary ofφ is a modular function, and can be inter-
preted as the net out-flow of the subset of verticesT with

8

respect toφ. For a given a submodular functionf : 2V → R,
we say that a functionφ : E → R is anf -submodular flow, if

∂φ(T) ≤ f(T) (17)

for all T ⊆ V . We will simply write “submodular flow” instead
of “f -submodular flow” iff is understood from the context.

Let lb : E → R ∪ {−∞} and ub : E → R ∪ {∞} be
two functions defined on the edge set, called, respectively,the
lower and upper bound onE , satisfyinglb(e) ≤ ub(e) for all
e ∈ E . For a given subsetE ′ of the edge setE , we define

lb(E ′) :=
∑

e∈E′

lb(e),

ub(E ′) :=
∑

e∈E′

ub(e).

A submodular flowφ is said to befeasibleif lb(e) ≤ φ(e) ≤
ub(e) for all e ∈ E .

The following theorem characterizes the existence of a
submodular flow. It is a generalization of the max-flow-min-
cut theorem, and is essential in the proof of the main theorem
in this paper.

Theorem 3 (Frank [31]). Suppose thatf is a submodular
function defined on the vertex setV of a directed graph(V , E)
and lb andub be the lower bound and upper bound functions
defined on the edge setE , satisfyingf(∅) = f(V) = 0 and
lb(e) ≤ ub(e) for all e ∈ E . There exists a feasiblef -
submodular flow if and only if

lb(∆+S)− ub(∆−S) ≤ f(S) (18)

for all subsetsS ⊆ V . Moreover, iflb, ub and f are integer-
valued, then there is a feasiblef -submodular flow which is
integer-valued.

Proof of Frank’s theorem can be found in [29, Thm 5.1]
or [30, Thm 12.1.4].

B. Information Flow Graph and the Max-Flow Bound

We review the information flow graph for cooperative repair
as defined in [19].

The information flow graph is divided into stages, starting
from stage−1. Given parametersn, k, d andr, any directed
graphG = (V , E) which can be constructed according to the
following procedure is called aninformation flow graph. An
example of information flow graph is shown in Fig. 6.

• There is one single source vertexS at stage−1, repre-
senting the original data file.

• The n storage nodes after initialization are represented
by n vertices at stage 0, calledOuti, for i = 1, 2, . . . , n.
There is a directed edge from the source vertexS to each
of the “out” vertices at stage 0.

• For s ≥ 1 and for eachj in Rs, we put three vertices at
stages: Inj , Midj andOutj . For eachj ∈ Rs, there is a
directed edge fromInj to Midj and a directed edge from
Midj to Outj . For eachi ∈ Hs,j , we put a directed edge
from Outi at stages− 1 to Inj at stages. The exchange
of data among ther newcomers are modeled by putting

Stage -1 Stage 0 Stage 1

Fig. 6. An example of information flow graphG(5, 3, 2, 2;α, β1, β2). Nodes
2 and 3 are repaired at stage 1 (R1 = {2, 3}).

a directed fromIni to Midj for all pairs of distincti and
j in Rs.

• For each data collector who shows up at stages, we put
a vertex, with labelDC, to the information flow graph.
This vertex is connected tok “out” vertices at thes-th or
earlier stages. The contacted “out” vertices did not fail
recently up to stages.

We assign capacities to the edges as follows.

• The capacity of an edge terminating at an “out” vertex
is α. This models the storage requirement in each storage
node.

• The capacity of an edge from an “in” vertex to a “mid”
vertex is infinity. It models the transfer of data inside
the newcomer, which does not contribute to the repair
bandwidth.

• The capacity fromOuti at stages− 1 to Inj at stages is
β1, for i ∈ Hs,j . This signifies the amount of data sent
from Outi to Inj in the first phase of the repair process.
The edge fromInj to Midℓ at stages, for j, ℓ ∈ Rs with
j 6= ℓ, is assigned a capacity ofβ2. This signifies the data
exchange in the second phase.

• The edges terminating at a data collector are all of infinite
capacity.

The information flow graph so constructed is a directed
acyclic graph. It may be an infinite graph, as the number
of stages is unlimited. We will denote an information flow
graph byG(n, d, k, r;α, β1, β2). If the values of parameters
are understood from the context, we will simply writeG.
Definitions: Let H = (V , E) be a directed graph, in which
each edgee ∈ E is assigned a non-negative capacityc(e). For
two distinct verticesS andT in V , an (S, T)-flow in H is a
function φ : E → R+, such thatφ(e) ≤ c(e) for all e ∈ E ,
and∂φ({v}) = 0 for every vertexv in V \{S, T }. A flow φ is
calledintegral if φ(e) is an integer for every edgee. Thevalue
of an (S, T)-flow φ is defined asφ(∆−T). An (S, T)-cut is a
partition(Wc,W) of the vertex setV of H such thatS ∈ Wc

andT ∈ W . (The superscriptc stands for the set complement

9

S

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

In

In

In

In

Mid

Mid

Mid

Mid

Stage 0 Stage 1 Stage 2

4

5

6

2

2

2
2

1 1

7 7

7

2

1

2

4 5

1

DC

7

7 5

4

7

2

2

Fig. 7. An example of flow in an information flow graph. The parameters aren = 6, d = 4, k = 3, r = 2, α = 7, β1 = 2 andβ2 = 1. The labels of the
edges indicate a flow on the graph (the arrows in red are assigned positive flow value and the arrows in black are assigned zero value). A cut with capacity
19 is illustrated by a dashed line.

in V .) The capacityof an (S, T)-cut (Wc,W) is defined as

c(∆−W) :=
∑

e∈∆−W

c(e),

the sum of the capacities of the edges fromWc to W .
The max-flow-min-cut theoremstates that the minimal cut

capacity and maximal flow value coincide. Furthermore, if the
edge capacities are all integer-valued, then there is a maximal
flow which is integral. In Appendix A, we illustrate that
the max-flow-min-cut theorem is a special case of Frank’s
theorem.
Definitions: For a given data collectorDC in the information
flow graphG, we let

maxflow(G,DC)

be the maximal flow value from the source vertexS to DC.
Even though the graphG may be infinite, the computation

of the flow from the source vertex to a particular data collector
DC at staget only involves the subgraph ofG from stage−1
to staget. For eachDC, the problem of determining the max-
flow reduces to a max-flow problem in a finite graph.

An example of flow in an information flow graph forn = 6,
d = 4, k = 3, r = 2 is shown in Fig. 7. The data collector
DC is connected to one “out” vertex at stage 2 and two “out”
vertices at stage 1. All edges from “out” vertex to “in” vertex,
corresponding to the first phase of the repair process, have
capacityβ1 = 2. All edges from “in” vertex to “mid” vertex,
corresponding to the second phase, have capacityβ2 = 1. All
edges terminating at an “out” vertex have capacityα = 7.
The edges with positive flow are labeled (and drawn in red
color). The flow value is equal to 19. This is indeed a flow
with maximal value, because there is a cut with capacity 19
(shown as the dashed line in Fig. 7).

According to the max-flow bound of network coding [32]
[33, Theorem 18.3], if all data collectors are able to to retrieve
the original file, then the file sizeB is upper bounded by

B ≤ min
DC

maxflow(G,DC). (19)

The minimum in (19) is taken over all data collectorDC in
graphG. This gives an upper bound on the supported file size
for a given information flow graphG. Since we want to build
cooperative regenerating schemes that can repair any pattern
of node failures, which are unknown the system is initialized,
we take the minimum

B ≤ min
G

min
DC

maxflow(G,DC). (20)

over all information flow graphsG(n, d, k, r;α, β1, β2).
Definitions: For given parametersn, d, k, r, we denote by

CMF(d, k, r) (21)

the set of operating points((dβ1+(r−1)β2)/B, α/B) which
satisfy the condition in (20). For a giveñα = α/B, let

γ∗
MF(α̃) := min{x : (x, α̃) ∈ CMF(d, k, r)}. (22)

Any operating point not inCMF(d, k, r) violates the max-
flow bound for some information flow graph, and hence is not
admissible. We have the following inclusion,

CMF(d, k, r) ⊇ CAD(d, k, r). (23)

We note that for fixedα, β1 andβ2, if B satisfies (20), then
(20) is satisfied for allB′ between 0 andB. Hence, if(γ̃, α̃) ∈
CMF(d, k, r), then(cγ̃, cα̃) ∈ CMF(d, k, r) for all c ≥ 1.

III. A C UT-SET BOUND ON THE REPAIR BANDWIDTH

Consider a data collectorDC connected tok storage nodes.
By re-labeling the storage nodes, we can assume without loss
of generality that theDC downloads data from nodes 1 tok.
Suppose that among thesek nodes,ℓ0 of them do not undergo
any repair, and the remainingk − ℓ0 nodes are repaired at
stage 1 tos for some positive integers. For j = 1, 2, . . . , s,
suppose that there areℓj nodes which are repaired at stagej
and connected to the data collectorDC. We have

ℓ0 + ℓ1 + · · ·+ ℓs = k

and
1 ≤ ℓj ≤ r

10

S

Stage 0 Stage 1 Stage 2

DC

1

2

3

4

5

6

7

8

Stage 3

Fig. 8. A cut of type (2, 1, 1, 2) in a distributed storage system with
parametersd = 6, k = 6 andr = 2.

for j ≥ 1. After some re-labeling again, we can assume that
theℓ0 unrepaired nodes are node 1 to nodeℓ0, the nodes which
are repaired at stage 1 are nodeℓ0 + 1 to nodeℓ0 + ℓ1, and
so on.

In the information flow graph, the data collectorDC is
connected toℓj “out” vertices at stagej. A cut (Wc,W) with
W consisting of the data collectorDC, the ℓ0 “out” vertices
at stage 0 associated with nodes 1 toℓ0, and

ℓj⋃

i=ℓj−1+1

{Ini,Midi,Outi}

at stagej, for j = 1, 2, . . . , s, is called a cut of type

(ℓ0, ℓ1, ℓ2, . . . , ℓs).

An example of a cut of type(2, 1, 1, 2) is shown in Fig. 8.
Nodes 3 and 4 are repaired at stage 1, nodes 4 and 7 are
repaired at stage 2, and nodes 5 and 6 are repaired at stage 3.
The data collector connects to nodes 1 to 6. The vertices in
W are drawn in shaded color in Fig. 8.

Theorem 4. For any(s+1)-tuples of integers(ℓ0, ℓ1, . . . , ℓs)
satisfying

∑s
j=0 ℓj = k and 1 ≤ ℓj ≤ r for j ≥ 1, the file

sizeB is upper bounded by

ℓ0α+

s∑

j=1

[

ℓj
(
d−

j−1
∑

i=0

ℓi
)
β1 + ℓj(r − ℓj)β2

]

. (24)

(The value ofd−
∑j−1

i=0 ℓi in (24) is nonnegative, because
the summation of theℓi’s is no larger thank, andk is assumed
to be less than or equal tod.)

Proof: Let (ℓ0, ℓ1, . . . , ℓs) be an(s + 1)-tuple satisfying
the condition in the theorem. Since we take the minimum over
all information flow graphs in the max-flow bound (19), it
suffices to show that there exists an information flow graph
G, in which we can find a cut of type(ℓ0, ℓ1, . . . , ℓs), whose
capacity is equal to (24). Then it follows that the supported
file size is less than or equal to (24).

Consider an information flow graphs and the cut(Wc,W)
described as in the beginning of this section. The capacities
of the edges terminating at theℓ0 “out” vertices at stage 0
in W sum to ℓ0α. This is the first term in (24). Forj = 1,

consider an “in” vertex at stage 1 inW . We can re-connect the
edges terminating at this “in” vertex so that there are exactly
d − ℓ0 edges which are emanating from some “out” vertices
in Wc. Thus, Theℓ1 “in” vertices contributeℓ1(d− ℓ0)β1 to
the summation in (24). The termℓ1(r − ℓ1)β2 is the sum of
the edge capacities to the “mid” vertices inW at stage 1.

For j = 2, . . . , s, we can re-arrange the edges if necessary,
so that for each “in” vertices at stagej inW , there are exactly
d−

∑j−1
i=0 ℓi edges which start from some “out” vertices inWc.

Then, the sum of capacities of the edges terminating at some
vertices inW at stagej is ℓj

(
d−

∑j−1
i=0 ℓi

)
β1+ ℓj(r− ℓj)β2.

This completes the proof of Theorem 4.

Theorem 5. If a data file of sizeB is supported by a
cooperative regenerating code with parametersn, d, k, r, α,
β1 and β2, then fors = 0, 1, . . . , k, we have

1 ≤
α

B
(k − s) +

sβ1

B

[

d− k +
s+ 1

2

]

+
β2

B
s(r − 1) (25)

and

1 ≤
α

B
(k− s)+

β1

B

[

s(d− k)+
s2 +Ψs,r

2

]

+
β2

B
(sr−Ψs,r),

(26)
whereΨs,r is given in(8).

Proof: The upper bound in (25) comes from a cut of type

(ℓ0, ℓ1, . . . , ℓs) = (k − s, 1, 1, . . . , 1
︸ ︷︷ ︸

s

).

The lasts components are all equal to 1. The derivation of (25)
follows from

s∑

j=1

ℓj(d−

j−1
∑

i=0

ℓi)

= (d− k + s) + (d− k + s− 1) + · · ·+ (d− k + 1)

= s
[

d− k +
s+ 1

2

]

.

The upper bound in (26) comes from a cut of type

(ℓ0, ℓ1, . . . , ℓQ+1) = (k − s, r, r, . . . , r
︸ ︷︷ ︸

Q

, R),

whereQ and R are defined as the quotient and remainder
when we divides by r, respectively. (Q andR are integers
satisfyings = Qr +R and0 ≤ R < r.)

Straightforward calculations show that

Q+1
∑

j=1

ℓj(d−

j−1
∑

i=0

ℓi)

= Qr
[

d− k + s−
(Q− 1)r

2

]

+ (d− k + s−Qr)R

= s(d− k + s) +
1

2
(Qr2 −Q2r2 − 2QrR)

= s(d− k + s) +
1

2
(Qr2 − s2 +R2)

= s(d− k) +
1

2
(s2 +Ψs,r).

11

We have used the notationΨs,r = Qr2 + R2. On the other
hand, we have
Q+1
∑

j=1

ℓj(r − ℓj) = R(r −R) = (s−Qr)r −R2 = sr −Ψs,r.

This proves the inequality in (26).
Remarks:
(i) When s = 0, the two inequalities in (25) and (26) are

identical and can be simplified to

B ≤ kα. (27)

(ii) When s = 1, (25) and (26) are also identical and can
be written as

B ≤ (k − 1)α+ (d− k + 1)β1 + (r − 1)β2. (28)

(iii) We note that the coefficients ofα, β1 andβ2 in (25)
and (26) are non-negative.

(iv) In the special case of a single-loss repair, i.e., when
r = 1, the coefficients ofβ2 in (25) and (26) vanish.
Example: We can now show that the example of the cooper-
ative regenerating code mentioned in the introductory section
is optimal. The system parameters areB = 4, α = 2 and
d = k = r = 2. After puttings = 1 ands = 2 in (26), we get

4 ≤ 2 + β1 + β2,

4 ≤ 4β1.

(We have used the fact thatΨ1,2 = 1 andΨ2,2 = 4.) If we
want to minimize the repair bandwidthγ = 2β1 + β2, over
the regionβ1 ≥ 1 andβ1 + β2 ≥ 2 in the β1-β2 plane, the
optimal solution is attained at(β∗

1 , β
∗
2) = (1, 1). The optimal

repair bandwidth is thus equal to2β∗
1 + β∗

2 = 3. The above
analysis also shows that if the repair bandwidth is equal to
the optimal value 3, the values ofβ1 and β2 must both be
equal to 1. This is indeed the case in the example given in the
introduction.

We note that the bounds in (25) and (26) only depend on
the ratiosα/B, β1/B andβ2/B. This motivates the following
linear programming problem, with the ratiosβ1/B andβ2/B
as variables.
Definitions: Let α̃ := α/B, β̃1 := β1/B, β̃2 := β2/B, and
γ̃ := γ/B be the normalized values ofα, β1, β2 and γ,
respectively. Consider the following optimization problem:

Minimize γ̃ = dβ̃1 + (r − 1)β̃2 (29)

subject to (25) and (26) fors = 1, 2, . . . , k, and

β̃1, β̃2 ≥ 0.

This is a parametric linear programming problem withα̃ being
the parameter. Letγ∗

LP(α̃) be the optimal value of this linear
program, and

CLP(k, d, r) := {(γ̃, α̃) ∈ R
2 : the linear program in

(29) has feasible solution(β̃1, β̃2) and

γ̃ = dβ̃1 + (r − 1)β̃2}. (30)

The regionCLP is a convex region. Suppose(γ̃, α̃) and
(γ̃′, α̃′) are inCLP. This means that we can find(β̃1, β̃2) (resp.

(β̃′
1, β̃

′
2)) satisfying the linear constraints (25) and (26) of the

linear program with parameter̃α (resp.α̃′) for s = 1, 2, . . . , k,
such that̃γ = dβ̃1 + (r − 1)β̃2 (resp.γ̃′ = dβ̃′

1 + (r − 1)β̃′
2).

If (γ̃′′, α̃′′) = λ(γ̃, α̃) + λ′(γ̃′, α̃′) is a linear combination
of (γ̃, α̃) and (γ̃′, α̃′), for some constant0 ≤ λ, λ′ ≤ 1 and
λ+λ′ = 1, thenλ(β̃1, β̃2)+λ′(β̃′

1, β̃
′
2) satisfies the constraints

of the linear program with parameterλα̃+ λ′α̃′.
At this point, we have established the following relationship

CLP ⊇ CMF ⊇ CAD. (31)

The second inclusion follows from the max-flow bound in
network coding, and the first from a weaker form of max-flow-
min-cut theorem, namely, the value of any flow is no larger
than the capacity of any cut (the weak duality theorem). In
the formulation of the linear program, we only consider some
specific cuts in the information flow graph. Not all possible
cuts are taken into account. Nevertheless, in later sections, we
will show by other means that equalities hold in (31).

The bound in Theorem 5 is based on the assumption that the
download traffic is homogeneous, meaning that a newcomer
downloads equal amount of data fromd surviving nodes, and
each pair of newcomers exchanges equal amount of data. In
Appendix B, we show that at the minimum-storage point, the
relaxation of the homogeneity in download traffic does not
help in further reducing the repair bandwidth. In the remaining
of this paper, we will assume that the download traffic is
homogeneous.
Example: Consider a cooperative regenerating code with
parametersd = 5, k = 4 andr = 3. The number of nodesn
can be any integer larger than or equal to 8. We have following
constraints based on (25) and (26):

1
1
1
1
1
1
1
1

≤

4 0 0
3 2 2
2 6 2
2 5 4
1 12 0
1 9 6
0 17 2
0 14 8

α̃

β̃1

β̃2

 , (32)

with the inequality being understood componentwise. We
consider the case wheñα = 1/4, i.e., the minimum-storage
case. We minimizedβ̃1 + (r − 1)β̃2 subject toβ̃1, β̃2 ≥ 0
and the constraints in (32) by linear programming. The linear
constraints and the objective function are illustrated graph-
ically in Fig. 9. The seven solid lines (in blue color) in
Fig. 9 are the boundary of the half planes associated with
the seven constraints (row 2 to row 8) in (32). The objective
function is shown as a dashed line (in red) passing through
the optimal point. The feasible region is the area to the right
and above these seven straight lines. The optimal solution
β̃1 = β̃2 = 0.625 is indicated by the square in Fig. 9. The
optimal repair bandwidth is

γ∗
LP(1/4) = (d+ r− 1) · 0.625 = (5+ 3− 1) · 0.625 = 4.375.

We take note of a few points on the linẽβ1 = 2β̃2 in
Fig. 9, which will play an important role in solving the linear
programming explicitly in the next section. The pointP1 is

12

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

β
1

β 2

P
3

β
1
 = 2 β

2

β
1
 = β

2
P

2

P
1

P
4

Fig. 9. Repair bandwidth minimization as a linear program (d = 5, k = 4,
r = 3, andα = 1/4). In this figure, the file sizeB is normalized to 1, so that
β1 and β2 are the same as̃β1 and β̃2, respectively. The objective function
5β̃1 + 2β̃2 is minimized atβ̃1 = β̃2 = 0.625.

the intersection point of the straight line associated withrow
2, i.e.,1 = 3α̃+2β̃1 +2β̃2, and the lineβ̃1 = 2β̃2. The point
P2 is the intersection point of the straight lines associated with
rows 3 and 4 in (32). The pointP3 is the intersection point of
the straight lines associated with rows 5 and 6, and so on.

IV. SOLVING THE PARAMETRIC L INEAR PROGRAM

In a general parametric linear program with variablesx =
(x1, x2, . . . , xn), we want to minimize the dot product ofx
and a coefficient vectorc, subject toAx = b + λb∗, where
λ is a real-valued parameter,A is anm × n matrix, andb
andb∗ arem-dimensional vectors. It is well-known that the
optimal value of a parametric linear program is a piece-wise
linear convex function of the parameterλ [34].

The linear program (29) in the previous section is paramet-
ric, with α̃ as the parameter. For a given value ofα̃, and we
want to minimizedβ̃1 + (r − 1)β̃2, subject to the constraints
(25) and (26), fors = 1, 2, . . . , k, andβ̃1, β̃2 ≥ 0. The optimal
value γ∗

LP(α̃) is a piece-wise linear convex function of the
parameterα̃. If α̃ < 1/k, the constraint in (27) is violated.
Thusγ∗

LP(α̃) =∞ for α̃ < 1/k. As α̃ increases, the feasible
region of the linear program is enlarged, and thusγ∗

LP(α̃) is
monotonically non-increasing as a function ofα̃.

Consider the boundary ofCLP, which is the piece-wise
linear graph

{(γ∗
LP(α̃), α̃) : α̃ ≥ 1/k} ∪ {(γ∗

LP(1/k) + c, 1/k) : c ≥ 0}.

An operating point(γ∗
LP(α̃), α̃) on the boundary ofCLP is

called acorner pointif there is a change of slope,

γ∗
LP(α̃+ h)− γ∗

LP(α̃)

h
>

γ∗
LP(α̃− h)− γ∗

LP(α̃)

(−h)
,

for all sufficiently small and positiveh. In this section we
derive all corner points of the parametric linear program (29).

Definitions: For j = 1, 2, . . . , k, we letLj(α̃) be the straight
line in the β̃1-β̃2 plane with equation

1 = (k−j)α̃+
(

j(d−k)+
j2 +Ψj,r

2

)

β̃1+(jr−Ψj,r)β̃2 (26’)

andL′
j(α̃) be the straight line with equation

1 = (k − j)α̃+
(

j(d− k) +
j2 + j

2

)

β̃1 + (jr − j)β̃2, (25’)

whereΨj,r is defined in (8).
Whenr = 1, we note that for allj = 1, 2, . . . , k, the lines

Lj(α̃) andL′
j(α̃) coincide, and they are vertical lines in the

β̃1-β̃2 plane (becauseΨj,1 = j).
We record some geometric facts in the following lemma.

Lemma 6. Supposer > 1.

1) For j = 1, 2, . . . , k, the magnitude of the slope ofLj(α̃)
is equal toµ(j).

2) For j = 1, 2, . . . k, the slope of lineL′
j(α̃) is

−
d− k + (j + 1)/2

r − 1
,

and the magnitude is strictly less thand/(r − 1).
3) If r dividesj, then the slope of the lineLj(α̃) is infinite.
4) The lineL1(α̃) is identical to the lineL′

1(α̃), and the
slope has magnitudeµ(1) < d/(r − 1).

5) For j = 2, 3, . . . , k, the magnitude of the slope ofLj(α̃)
is strictly larger than the magnitude of the slope of
L′
j(α̃). Lj(α̃) and L′

j(α̃) intersect at a point lying on
the line β̃1 = 2β̃2 in the β̃1-β̃2 plane.

6) µ(k) > d/(r − 1).

Proof:
1) Obvious.
2) The slope of the lineL′

j(α̃) has magnitude

j(d− k) + (j2 + j)/2

jr − j
=

d− k + (j + 1)/2

r − 1
,

which is strictly less thand/(r − 1) for r ≥ 2 andj ≤ k.
3) It follows from the fact thatΨj,r = jr if r dividesj.
4) Whenj = 1, we haveΨj,r = j = 1 for all r ≥ 2.
5) For j = 2, 3, . . . , k, the determinant

∣
∣
∣
∣
∣

j(d− k) +
j2+Ψj,r

2 jr −Ψj,r

j(d− k) + j2+j
2 jr − j

∣
∣
∣
∣
∣

is equal to

j(Ψj,r − j)[d− k + (r + j)/2].

SinceΨj,r > j for j ≥ 2, and d ≥ k by assumption, the
determinant is positive, and thus the magnitude of the slope
of L′(α̃) is strictly larger than the magnitude of the slope of
L(α̃). By subtracting (25’) from (26’), we obtaiñβ1 = 2β̃2

after some simplifications.
6) The inequalityµ(k) > d/(r − 1) is equivalent to

∣
∣
∣
∣
∣

k(d− k) +
k2+Ψk,r

2 kr −Ψk,r

d r − 1

∣
∣
∣
∣
∣
> 0. (33)

To prove the above inequality, we distinguish two cases:

13

Case 1,k < r: We haveΨk,r = k2 in this case. Hence, the
determinant in (33) can be simplified to

∣
∣
∣
∣

kd kr − k2

d r − 1

∣
∣
∣
∣
= dk(k − 1),

which is clearly positive.
Case 2,k ≥ r: Write k = Qr + R, whereQ andR are,

respectively, the quotient and the remainder we obtain whenk
is divided byr. Sincek ≥ r by assumption, we haveQ ≥ 1.
The determinant in (33) becomes

∣
∣
∣
∣

k(d− k) + (k2 +Ψk,r)/2 R(r −R)
d r − 1

∣
∣
∣
∣
.

If R = 0, then the determinant is

(r − 1)(k(d− k) + (k2 +Ψk,r)/2) > 0.

(Recall that we assumed ≥ k in this paper.)
For 1 ≤ R < r, this determinant can be lower bounded by

∣
∣
∣
∣

k(d− k) + (k2 +Ψk,r)/2 R(r − 1)
d r − 1

∣
∣
∣
∣

= (r − 1)[k(d− k) + (k2 +Ψk,r)/2−Rd]

= (r − 1)[(k − r)(d − k) + (k2 +Ψk,r)/2−Rk]

= (r − 1)
[

(k − r)(d − k) +
Q2r2 +Qr2

2

]

> 0.

This completes the proof ofµ(k) > d/(r − 1).

Motivated by part 4) and 5) in the previous lemma, we make
the following definition.
Definitions: For j = 1, 2, 3, . . . , k, let Pj(α̃) be the intersec-
tion point ofLj(α̃), L′

j(α̃) and the lineβ̃1 = 2β̃2.

Lemma 7. For j = 1, 2, . . . , k, the coordinates ofPj(α̃) in
the β̃1-β̃2 plane is

1− (k − j)α̃

j(2d− 2k + r + j)
(2, 1). (34)

Proof: Put β̃1 = 2β̃2 in (25’).
For d = 5, k = 4 and r = 3, the pointsPj(1/4), for

j = 1, 2, 3, 4, are shown in Fig. 9. By the above lemma, we
can explicitly calculate their coordinates:

P1(1/4) = (1/12, 1/24) = (0.0833, 0.0417),

P2(1/4) = (1/14, 1/28) = (0.0714, 0.0357),

P3(1/4) = (1/16, 1/32) = (0.0625, 0.0313),

P4(1/4) = (1/18, 1/36) = (0.0556, 0.0278).

From the expression (34), we observe that if we increaseα̃
gradually, the pointsP1(α̃) to Pk(α̃) will “slide down” along
the line β̃1 = 2β̃2 with various speed. In the following, we
compute the value of̃α such thatPj(α̃) andPj−1(α̃) coincide,
for j = 2, 3, . . . , k. It suffices to solve the following system
of two linear equations

1 = (k − j)α̃+
(

j(d− k) +
j2 + j

2

)

β̃1 + j(r − 1)
β̃1

2
,

1 = (k − j + 1)α̃+
(

(j − 1)(d− k) +
(j − 1)2 + j − 1

2

)

β̃1

+ (j − 1)(r − 1)
β̃1

2
.

for α̃ and β̃1. The short-hand notationDj defined in (4) is
precisely the determinant of this system of equations. We can
write the solution as

β̃1 =
1

k(d− k + j + r−1
2)− j(j−1)

2

=
1

Dj
,

α̃ =
1

Dj
(d− k + j +

r − 1

2
).

This gives the operating point of the first type in (9). For
j = 2, 3, . . . , k, the constant̃αj in (2) is defined such that

Pj(α̃j) = Pj−1(α̃j).

The corresponding repair bandwidth is

γ̃ = dβ̃1 + (r − 1)β̃2 =
1

Dj
(d+

r − 1

2
).

We have thus derived the operating points of the first type.

For the operating points of the second type, we begin with
the observation that the linesL1(1/4), L2(1/4) andL3(1/4)
in Fig. 9 intersect at the same point on the lineβ̃1 = β̃2.
The operating points of the second type are obtained by
generalizing this observation. For notational convenience, we
let L0(α̃) be the set of points in thẽβ1-β̃2 plane satisfying the
equation1 = α̃k, i.e., it is either the whole plane if̃α = 1/k
or the empty set if̃α > 1/k.

Lemma 8. Let ℓ be an integer between 0 and⌊k/r⌋. We can
chooseα̃ such thatLj(α̃), for j = ℓr, ℓr + 1, . . . , ℓr + r,
and the lineβ̃1 = β̃2 have a common intersection point in the
β̃1-β̃2 plane.

Proof: Let j be an integer betweenℓr and ℓr + r. We
write j = ℓr + c for some integerc in the range0 ≤ c ≤ r.
In terms ofr andc, we get

Ψℓr+c,r = ℓr2 + c2.

For 0 ≤ c ≤ r, we re-write the equation ofLℓr+c(α̃) in (26’)
as

1 = (k − ℓr − c)α̃+
(

(ℓr + c)(d− k)

+
ℓ2r2 + ℓr2 + 2ℓrc+ 2c2

2

)

β̃1 + c(r − c)β̃2. (35)

We want to prove that the above equation, forc = 0, 1, . . . , r,
and β̃1 = β̃2, have a common solution.

After substitutingβ̃1 = β̃2, in (35), we obtain

1 = c
(
− α̃+ (d− k + rℓ + r)β̃1

)

+ (k − ℓr)α̃+
(

ℓr(d− k) +
r2ℓ(ℓ+ 1)

2

)

β̃1.

We note that the terms involvingc2 in (35) are canceled. If
we takeα̃ = (d − k + rℓ + r)β̃1, we can eliminatec in the
above equation and get

1 = (k − ℓr)(d − k + rℓ + r)β̃1

+
(

ℓr(d− k) +
r2ℓ(ℓ+ 1)

2

)

β̃1,

14

7 7.5 8 8.5 9 9.5 10

x 10
−3

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

x 10
−3

β
1

β 2

P
3
=P

6

Q
1

P
5

β
1
=β

2

P
4 β

1
=2β

2

Fig. 10. The linear programming problem ford = 19, k = 18, r = 3,
B = 1, and α̃ = 7/117 = 0.0598. The file sizeB is normalized to 1,
so thatβ1 and β2 are the same as̃β1 and β̃2, respectively. The objective
function 19β̃1 + 2β̃2 is minimized at the pointQ1 = (1/117, 1/117) =
(0.00854, 0.00854).

which can be further simplified to

β̃1 =
1

k(d+ r(ℓ + 1)− k)− r2ℓ(ℓ+1)
2

=
1

D′
ℓ

.

Hence, whenα̃ = (d + r(ℓ + 1) − k)/D′
ℓ, the point

(1/D′
ℓ, 1/D

′
ℓ) in the β̃1-β̃2 plane is a common intersection

point of Lj(α̃), for j = ℓr, ℓr + 1, . . . , ℓr + r.
Definition: For ℓ = 0, 1, 2, . . . , ⌊k/r⌋, defineQℓ as the point

Qℓ := (1/D′
ℓ, 1/D

′
ℓ) (36)

in the β̃1-β̃2 plane.
The pointsQℓ, for ℓ = 0, 1, 2, . . . , ⌊k/r⌋, correspond to the

operating points of the second type in (10). Whenℓ = 0, we
have

Q0 =
(1

k(d+ r − k)
,

1

k(d+ r − k)

)

,

which corresponds to the MSCR point(γ̃MSCR, α̃MSCR) =
((d+ r − 1)/(k(d+ r − k)), 1/k).

An illustration is shown in Fig. 10. The pointQ1 is the point
marked by a square on the linẽβ1 = β̃2. This is the common
intersection point ofL3(7/117), L4(7/117), L5(7/117) and
L6(7/117). LinesL3(7/117) andL6(7/117) coincide.

Theorem 9. The corner points of the parametric linear
program in (29) are precisely the operating points in
{

(γ̃j , α̃j) : j = 2, 3, . . . , k − 1, d ≤ (r − 1)/µ(j)
}

, (37)

and
{

(γ̃′
⌊j/r⌋, α̃

′
⌊j/r⌋) : j = 2, 3, . . . , k − 1, d > (r − 1)/µ(j)

}

,

(38)
and (γ̃k, α̃k) and (γ̃′

0, α̃
′
0).

The proof is technical and is given in Appendix C.
Remarks:In the special case of single-loss recovery, i.e.,

when r = 1, the variableβ̃2 can take any value without

Out

Out

Out

Out

Out

Out

Out

Out

Out

Out

In

In

Mid

Mid

Mid

Mid

Stage 0 Stage 1 Stage 2

7 7

7

4

51

DC
7

Out

Out

Out

Out

Out

Out
7

Out

Out
7

6

4

2

In

In

7

0

0

0

2

3

0

0

5

7

7

Fig. 11. An example of modified information flow graph (n = 6, d = 4,
k = 3, r = 2, α = 7, β1 = 2, β2 = 1). Nodes 1 and 2 are repaired in the
transition from stage 0 to stage 1 (R1 = {1, 2}). Nodes 3 and 4 are repaired
in the transition from stage 1 to stage 2 (R2 = {3, 4}).

affecting the repair bandwidth, because the second phase of
repair is vacuous. This is reflected by the geometrical fact that
the lineLj(α̃) andL′

j(α̃) representing the linear constraints
are vertical lines in thẽβ1-β̃2 plane. Naturally, we takẽβ2 = 0
in the repair of a single failed node. However, in order to give
a unified treatment covering both single-loss recoveryr = 1
and mutli-loss recoveryr ≥ 2, we allow the variablẽβ2 to
take positive value in the single-loss case. Whenr = 1, the
β̃2 coordinates ofPj(α̃j) and Qℓ are nonzero, but it does
not matter because in the calculation of repair bandwidth
dβ̃1 + (r − 1)β̃2, we multiply β̃2 by 0. The results in the
next two sections hold forall r ≥ 1.

V. CONSTRUCTION OFMAXIMAL FLOW

In this section, the parametersB, α, β1 andβ2 are assumed
to be integers. There is no loss of generality because we can
always scale them up by a common factor.

We modify the information flow graph by adding more “out”
vertices, so that at each stage, each storage node is associated
with a unique “out” vertex. If the storage node is not repaired
at stages, we draw a directed edge with infinite capacity from
the “out” node at stages−1 to it. With these new vertices, all
inter-stage edges are between two consecutive stages. A data
collector connects tok “out” vertices at the same stage.

A modified information flow graph is denoted by
Gm(n, d, k, r;α, β1, β2). As an example, the modified infor-
mation flow graphGm(6, 4, 3, 2; 7, 2, 1) for the example in
Fig. 6 is shown in Fig. 11.

In this section we study the “vertical” cuts that separate two
consecutive stages in the modified information flow graph.
Definition: A vector v ∈ R

n
+ is called transmissive at stage

s (s ≥ 0), if in all possible modified information flow graph
Gm(n, d, k, r;α, β1, β2), we can assign a non-negative real
numberF (e) to the edgese at and before stages, such that

(i) for every edgee at or before stages, F (e) does not
exceed the capacity of edgee,

(ii) for all vertices at stage1 to s− 1, the in-flow is equal
to the out-flow, i.e.,

∂F ({ν}) = 0

15

for all verticesν between stage 1 ands − 1 in the modified
information flow graph,

(iii) the in-flow of the i-th “out” vertex at stages is equal
to the i-th component in the given vectorv.

Let Υs to be the set of transmissive vectors at stages. A
vector v ∈ R

n
+ which is transmissive at all stages is called

transmissive, i.e., a vector is transmissive if and only if it
belongs to∩s≥0Υs.

Some comments on transmissive vectors are in order.
(a) To determine whether a vector is transmissive at stage

s, we have to consider all possible information flow graphs
with at leasts stages.

(b) No data collector is involved in the definition of trans-
missive vectors. The number of non-zero components in a
transmissive vector may be more thank.

(c) A vector which is transmissive at one stage may not
be transmissive at another stage. For example, the vector
(α, α, . . . , α) with all components equal toα is in Υ0, but not
in Υs for s ≥ 1. This is why we need to take the intersection
∩s≥0Υs in the definition of transmissive vectors.

It is trivial that the all-zero vector is a transmissive vector.
We next show that non-trivial transmissive vectors exist. In
Theorem 10, we show that the vectors in a certain base-
polymatroid are transmissive, corresponding to the operating
points of the first type. In Theorem 13, we show that the
vectors in another base-polymatroid are transmissive, corre-
sponding to the operating points of the second type.

For z = 0, 1, . . . , k − 2, let

pz := (α, ..., α
︸ ︷︷ ︸

z+1 times

, α− 2, α− 4, ..., α− 2(k − z − 1)
︸ ︷︷ ︸

k−z−1 terms

, 0, ..., 0
︸ ︷︷ ︸

n−k times

),

(39)
with components in non-increasing order. Forj = 0, 1, . . . , n,
let

θj := (min(k, j) · α)−

min(k,j)−z−1
∑

i=0

2i (40)

be the sum of the firstj components of the vectorpz. (If
the upper limit of a summation is negative, the summation is
equal to 0 by convention.) Note thatθ0 = 0 and

θk = θk+1 = · · · = θn = kα−
k−z−1∑

i=1

2i

= kα− (k − z − 1)(k − z).

Theorem 10. Let z be an integer between 0 andk − 2, and
let

α = 2(d− z) + r − 1, and

β1 = 2, β2 = 1.

If h ∈ R
n
+ is majorized bypz, thenh is transmissive. Hence,

we can construct a flow to any possible data collector with
flow value

θk = k(2d+ r − k)− z − z2.

Furthermore, if the components of the vectorh are non-
negative integers, then the flow can be chosen to be integral.

v4

v5

v6

Out1

Out2

M��1

���2

Stage s-1 Stage s

Out3

Out4

Out5

Out6

In1

In2

���3In3

Fig. 12. An example of an auxiliary graph.

Let f be the rank function on{1, 2, . . . , n} defined by
f(S) = θj for S ⊆ {1, 2, . . . , n} with |S| = j. By Lemma 2,
the base polymatroidB(f) consists of the vectors inRn

+ which
are majorized by vectorpz in (39). Theorem 10 asserts that
the vectors inB(f) are transmissive.

For a distributed storage system with parameters as in the
example in Fig. 11, we can apply Theorem 10 withz = 1 and
show that any vector inR6

+ majorized by(7, 7, 5, 0, 0, 0) is
transmissive.

The proof of Theorem 10 relies on the layered structure
of the modified information flow graph, and the important
property that the subgraph obtained by restricting to one stage
is isomorphic to the subgraph obtained by restricting to another
stage. This allows us to reduce the analysis to only one stage.

Consider the subgraph of the modified information flow
graph consisting of the vertices at stages and then “out”
vertices at stages − 1. We call this theauxiliary graph, and
let V ′ be the vertex set of this auxiliary graph. By re-labeling
the storage nodes, we assume without loss of generality that
nodes 1 tor are regenerated at stages. The first r “out”
vertices at stages − 1 are disconnected from the rest of the
auxiliary graph. In order to distinguish the “out” verticesat
stages − 1 and s, we re-label then − r “out” vertices at
stages− 1 by vr+1, vr+2, . . . , vn. An example forn = 6 and
d = r = 3 is given in Fig. 12.

The construction of the flow in Theorem 10 is recursive. We
consider the vertices on the left of the auxiliary graph as input
vertices and the vertices on the right as output vertices. Let h
be a vector inB(f). The components inh are majorized by the
vector in (39) and the sum of the components is equal toθn.
The vectorh is regarded as the demand from the “out” vertices
on the right-hand side of the auxiliary graph. We want to look
for a valid flow assignment in the auxiliary graph such that
the flow to each “out” vertices is equal to the corresponding
components inh, and meanwhile, the input flow assignment
is in the base polymatroidB(f).

Define a submodular functionσ : 2V
′

→ R+ as follows.
Let Os−1 be the set of “out” vertices{vr+1, vr+2, . . . , vn}
at stage s − 1, and Os be the set of “out” vertices

16

{Out1,Out2, . . . ,Outn} at stages − 1. Given a subsetS of
vertices in the auxiliary graph, define

σ(S) := f(S ∩Os−1)− h(S ∩ Os).

The notationh(S ∩Os) in the above definition means

h(S ∩ Os) =
∑

i
Outi∈S

hi.

The functionσ(S) is submodular because it is the sum of
a submodular functionf(S ∩ Os−1) and a modular function
−h(S ∩ Os). Also, we note that

σ(V ′) = f(Os−1)− h1 − h2 − . . .− hn = θn − θn = 0.

We define upper bounds and lower bounds on the edges
in the auxiliary graph. Fori = r + 1, r + 2, . . . , n, the edge
joining vi andOuti has lower bound and upper bound equal
to hi. An edge terminating at an “in” vertex has lower bound 0
and upper boundβ1. An edge fromIni to Midj for i 6= j, has
lower bound 0 and upper boundβ2, while an edge from from
Ini to Midj for i = j, has lower bound 0 and upper bound
∞. An edge from a “mid” vertex to an “out” vertex has lower
bound 0 and upper boundα. We summarize the lower and
upper bounds on the edges in the auxiliary graph as follows.

Edgee lb(e) ub(e)

(vi,Outi) hi hi

(vi, Inj) 0 β1

(Ini,Midj), i 6= j 0 β2

(Ini,Midj), i = j 0 ∞
(Midi,Outi) 0 α

To apply Theorem 3, we need to verify that condition (18)
holds for all subsetsS ⊆ V ′.

Lemma 11. With notation as in Theorem 10, we have

lb(∆+S)− ub(∆−S) ≤ σ(S), (41)

for all S ⊆ V ′.

The proof of Lemma 11 is given in Appendix D.
Proof of Theorem 10:We proceed by induction on stages.

Let h be a vector inB(f). Since each component ofh is less
than or equal toα, we can always assign a flow on the edges
from the source vertex to the vertices at stage 0 such that
h(0) = h, without violating any capacity constraint. Henceh
is transmissive at stage 0.

Suppose that all vectors inB(f) are transmissive at stage
s− 1. Consider the auxiliary graph consisting of the vertices
at stages and the n “out” vertices at stages − 1. By
applying Frank’s theorem (Theorem 3), there exists a feasible
submodular flow on the auxiliary graph. Letφ be a submodular
flow on the auxiliary graph.

By the defining property of a submodular flow, we have

∂φ({Outi}) = −φ(∆
−
Outi) ≤ −hi,

and
∂φ({vr+1, vr+2, . . . , vn}) ≤ f(Os−1) = θn.

Let S0 be the subset

S0 := {In1, In2, . . . , Inr,Mid1,Mid2, . . .Midr}

of vertices in the auxiliary graph. We have

0 = σ(S0) ≥ ∂φ(S0) = −∂φ(S
c
0)

= −
n∑

i=1

∂φ({Outi})− ∂φ({vr+1, . . . , vn})

≥
n∑

i=1

hi − f({vr+1, vr+2, . . . , vn})

= θn − θn = 0.

Therefore, all inequalities above are in fact equalities. Thus
φ(∆−Outi) = hi for all i.

To show that the flow conservation constraint is satisfied
for the “in” and “mid” vertices in the auxiliary graph, we
add the inequalities∂φ({Ini}) ≤ 0 and ∂φ({Midi}) ≤ 0 for
i = 1, 2, . . . , r, and get

0 ≥
r∑

i=1

(∂φ({Ini}) + ∂φ({Midi})) = ∂φ(S0) = σ(S0) = 0.

We note that∂φ(S0) = σ(S0) follows from last paragraph.
Since equality holds in the above inequality, we have

∂φ({Ini}) = ∂φ({Midi}) = 0

for i = 1, 2, . . . , r.
If we take any subsetA of {vr+1, vr+2, . . . , vn} at stage

s− 1, from the definition of a submodular flow, we obtain

∂φ(A) = φ(∆+A) ≤ σ(A) = f(A).

The “input” at the(s−1)-th stage is thus transmissive at stage
s−1. By the induction hypothesis, we can assign real values to
the edges from stage−1 to s− 1 in the modified information
flow graph, such that the flow conservation constraint is
satisfied and the in-flow of the “out” vertices at stages − 1
is precisely the inputs of the corresponding vertices in the
auxiliary graph. This gives a flow at thes-th stage of the
modified information flow graph yielding the desired vector
h, and proves thath is transmissive at stages.

If the components ofh are non-negative integers, by the
second statement in Theorem 3, we can find a flow which is
integral. This completes the proof of Theorem 10.

Theorem 12. For j = 2, 3, . . . , k, the operating point(γ̃j , α̃j)
is in CMF(d, k, r). Thus, all operating points of the first type
are in CMF(d, k, r).

Proof: Consider a data collectorDC who connects tok
storage nodes at stages. Let z be an integer between 0 and
k − 2. We want to construct a flow from the source node to
DC such that the flow of thek links from thek “out” vertices
to the data collector are precisely the non-zero components
in (39), i.e.,

α, α, . . . α
︸ ︷︷ ︸

z+1 times

, α− 2, α− 4, . . . , α− 2(k − z + 1).

By Theorem 10, for any failure pattern, we can always find
a flow with flow valuek(2d+r−k)−z−z2, α = 2(d−z)+r−1

17

andγ = 2d+r−1. Hence, forz = 0, 1, . . . , k−2, the operating
point

1

k(2d+ r − k)− z − z2
(
2d+ r − 1, 2(d− z) + r − 1

)

is in CMF(d, k, r). After a change of the indexing variable by

z = k − j,

we check that the denominator in the above fraction is

k(2d+ r − k)− (k − j)− (k − j)2

= k(2d+ r − k)− k + j − k2 + 2kj − j2

= k(2d− 2k + 2j + r − 1) + j − j2

= 2Dj.

Thus, forj = 2, 3, . . . , k, the operating point

(γ̃j , α̃j) =
1

Dj

(
d+

r − 1

2
, d− k + j +

r − 1

2

)

is in CMF(d, k, r).

Analogous to Theorem 10 and Theorem 12, we have the
following two theorems for the operating points of the second
type. Forℓ = 0, 1, . . . , ⌊k/r⌋, let

qℓ := (α, . . . , α
︸ ︷︷ ︸

k−ℓr times

, α− r, . . . , α− r
︸ ︷︷ ︸

r times

, α− 2r, . . . , α− 2r
︸ ︷︷ ︸

r times

,

. . . , α− ℓr, . . . , α− ℓr
︸ ︷︷ ︸

r times

, 0, . . . , 0
︸ ︷︷ ︸

n−k times

). (42)

For j = 0, 1, . . . , n, let

ϕj := min(k, j)α−

min(k,j)−k+ℓr
∑

i=0

⌈i/r⌉r (43)

be the sum of the firstj components of the vectorqℓ. We
check that

ϕk = ϕk+1 = · · · = ϕn = (k − ℓr)α + r
ℓ∑

i=1

(α − ir)

= kα− r2
ℓ∑

i=1

i = kα− r2
ℓ(ℓ+ 1)

2
.

Theorem 13. Let ℓ be an integer between 0 and⌊k/r⌋, and
let

α = d+ r(ℓ + 1)− k, and

β1 = β2 = 1.

Every vectorh ∈ R
n
+ majorized byqℓ is transmissive. Hence,

we can construct a flow to any possible data collector with
flow value

φk = k(d+ r(ℓ + 1)− k)−
r2ℓ(ℓ+ 1)

2
.

Furthermore, if the components ofh are non-negative integers,
then the flow can be chosen to be integral.

Theorem 13 asserts that the vectors in the base-polymatroid
B(g) associated with the rank functiong defined byg(S) =
ϕ|S|, for S ∈ {1, 2, . . . , n}, are transmissive.

The proof of Theorem 13 is given in Appendix E.

Theorem 14. For ℓ = 0, 1, 2, . . . , ⌊k/r⌋, the operating point
(γ̃′

ℓ, α̃
′
ℓ) is in CMF(d, k, r). Thus, all operating points of the

second type are inCMF(d, k, r).

The proof of Theorem 14 is similar to the proof of Theo-
rem 12 and is omitted.

In summary, we have shown that all the corner points in
Theorem 9 are inCMF(d, k, r). This implies that all operating
points in CLP(d, k, r) are also inCMF(d, k, r). We have thus
proved

Corollary 15. CLP(d, k, r) = CMF(d, k, r).

VI. L INEAR NETWORK CODES FORCOOPERATIVE REPAIR

The objective of this section is to show that the Pareto-
optimal operating points inCMF can be achieved by linear
network coding, with an explicit bound on the required finite
field size.

Let Fq denote the finite field of sizeq, whereq is a power of
prime. The size ofFq will be determined later in this section.
In this section and the next section, we scale the value ofB,
β1, β2, andα, so that they are all integers, and normalize the
unit of data such that an element inFq is one unit of data.
The whole data file is divided into a number of chunks, and
each chunk containsB finite field elements. As each chunk of
data will be encoded and treated in the same way, it suffices
to describe the operations on one chunk of data. A packet is
identified with an element inFq, and we will use “an element
in Fq”, “a packet” and “a symbol” synonymously.

A chunk of data is represented by aB-dimensional column
vectorm ∈ F

B
q . The data packet stored in a storage node is a

linear combination of the components inm, with coefficients
taken fromFq. The coefficients associated with a packet form
a vector, called theglobal encoding vectorof the packet. For
i = 1, 2, . . . , n, and t ≥ 0, the packets stored in nodei are
represented byM(t)

i m, whereM(t)
i is anα×B matrix and the

rows of M(t)
i are the global encoding vectors of the packets

in node i at staget. We use superscript(t) to signify that
a variable is pertaining to staget. We will assume that the
global encoding vectors are stored together with the packets
in the storage nodes. The overhead on storage incurred by
the global encoding vectors can be made vanishingly small
when the number of chunks is very large. The(n, k) recovery
property is translated to the requirement that the totalityof
the global encoding vectors in anyk storage nodes span the
vector spaceFB

q .

The realization of cooperative repair using a linear network
code is described as follows.

Stage 0:For i = 1, 2, . . . , n, nodei is initialized by storing
theα components inM(0)

i m.
Staget: We suppose without loss of generality that node 1

to noder fail at staget, and we want to regenerate them at
staget+ 1.

• Phase 1.For j = 1, 2, . . . , r andi ∈ Ht,j , theβ1 packets
sent from nodei to nodej are linear combinations of the
packets stored in nodei at staget. For ℓ = 1, 2, . . . , β1,

18

let the ℓ-th packet sent from nodei to node j be
p
(t)
ijℓM

(t)
i m, wherep(t)

ijℓ is a 1× α row vector overFq.
• Phase 2.Stack thedβ1 received packets by nodej into

a column vector calledu(t)
j . For j1, j2 ∈ {1, 2, . . . , r}

and j1 6= j2, nodej1 sendsβ2 packets to nodej2. For
ℓ = 1, 2, . . . , β2, theℓ-th packet sent from nodej1 to node
j2 is q

(t)
j1,j2,ℓ

u
(t)
j1

, whereq(t)
j1,j2,ℓ

is a (dβ1)-dimensional
row vector overFq.

The (r − 1)β2 packets received by newcomerj during
phase 2 are put together to form an((r − 1)β2)-dimensional
column vectorv(t)

j . For ℓ = 1, 2, . . . , α, newcomerj takes

the inner product of the vector obtained by concatenatingu
(t)
j

andv
(t)
j , and a vectorr(t)jℓ of length (dβ1 + (r − 1)β2). The

resulting finite field element is stored as theℓ-th packet in the
memory.

The vectorsp(t)
ijℓ’s, q(t)

j1,j2,ℓ
’s andr(t)j ’s are called thelocal

encoding vectors. The components in the local encoding
vectors are variables assuming values inFq. The total number
of “degrees of freedom” in choosing the local encoding vectors
is

N = rdβ1α+ r(r − 1)β2(dβ1) + rα(dβ1 + (r − 1)β2).

We will call theseN variables thelocal encoding variablesat
staget.

The local encoding vectors are chosen in order to satisfy a
special property. In the followings,p is a vector of dimension
n, whose components are non-negative integers summing to
the file sizeB.

Let Zn
+ be the set of all vectors of dimensionn with non-

negative integral components, andr be a vector inZn
+. For

eacht ≥ 0 andh = (h1, h2, . . . , hn) in Z
n
+ majorized byr,

let D(t)
h

be the determinant of the matrix obtained by putting
together the firsthi rows ofM(t)

i for i = 1, 2, . . . , n.
Regularity property with respect to r: We say that the
regularity property with respect tor is satisfied if

D
(t)
h
6= 0

for all t ≥ 0 and all vectorsh in Z
n
+ majorized byr.

We borrow the terminology in [35] and call the vectorr the
rank accumulation profile.

We are interested in regularity property with respect to either
pz or qℓ, defined in (39) and (42), respectively. The regularity
property implies the(n, k) recovery property, because there are
preciselyk non-zero entries in the rank accumulation profiles
in (39) and (42), and the sum of the components in (39) or
(42) is equal to the file sizeB. For example, if we consider
z = 1 in (39), then we haveα = 2(d − 1) + r − 1, and the
rank accumulation profile in (39) becomes

(α, α, α− 2, α− 4, . . . , α− 2(k − 2), 0, . . . , 0
︸ ︷︷ ︸

n−k times

).

If the regularity property with respect to this rank accumu-
lation profile is satisfied, then the global encoding vectorsin
any storage node have rankα, the global encoding vectors in
any pair of storage nodes have rank2α, the global encoding
vectors in any three storage nodes have rank3α−2, and so on.

The construction depends on the layered structure of the
modified information flow graph defined in the last section,
and the factorization of the “transfer function” into products
of matrices. We concatenate all packets in then storage nodes
at staget into an (nα)-dimensional vector, and write

s(t) := M(t)m,

whereM(t) is the(αn) ×B matrix

M(t) :=

M
(t)
1

M
(t)
2
...

M
(t)
n

.

At stage 0, the distributed storage system is initialized by
s(0) = M(t)m. The entries inM(0) are variables, with values
drawn fromFq.

For t ≥ 1, the packets at staget can be obtained by
multiplying s(t−1) by an (nα)× (nα) transfer matrixT(t),

s(t) = T(t)s(t−1). (44)

Suppose that nodes 1 tor fail and are repaired at staget. The
matrix T(t) can be partitioned into

T(t) =

[
0 A

0 I

]

, (45)

whereI is the identity matrix of size(n−r)α× (n−r)α, and
A is an rα × (n − r)α matrix. The entries ofA are multi-
variable polynomials with theN local encoding variables at
staget as the variables. In summary, we can write

s(t) = T(t)T(t−1) · · ·T(1)M(0)m.

A multi-variable polynomial is said to benon-zeroif, after
expanding it as a summation of terms, there is at least one
term with non-zero coefficient. Thelocal degreewith respect
to a given variable is defined as the maximal exponent of
this variable, with the maximal taken over all terms. A multi-
variable polynomial induces a function, called theevaluation
mapping, by substituting the variables by values inFq. The
next lemma gives sufficient condition under which the induced
evaluation mapping is not identically zero.

Lemma 16. If F is a non-zero multi-variable polynomial
overFq with local degree with respect to each variable strictly
less thanq, then we can assign values to the variables such
that the polynomial is evaluated to a non-zero value.

We refer the reader to [36, p.143] or [37, IV.1.8] for a proof
of Lemma 16.

Lemma 17. The entries of the matrixA in (45) are multi-
variable polynomials with local degree at most 1 in each of
the local encoding variables.

Proof: We can see this by fixing all but one local
encoding variables. Then each packet generated during the
repair process is an affine function of the variable which is
not fixed.

In the following, we treat the two different types of Pareto-
optimal operating points separately.

19

Pareto-optimal operating point of the first type: Let z
be an integer between 0 andk − 2. We want to construct a
linear cooperative regenerating code with parameters

B = 2Dk−z = k(2d+ r − k)− z − z2,

β1 = 2, β2 = 1, α = 2(d− z) + r − 1, andγ = 2d+ r − 1,

and rank accumulation profilepz given as in (39). LetPz be
the subset of vectors inZn

+ which are majorized bypz , and
|Pz| be the cardinality ofPz. We will show by mathematical
induction that the regularity property can be maintained asthe
number of stages increases.

At stage 0, we choose the entries inM(0) such that the
regularity property with respect topz holds at stage 0, i.e.,
the determinantD(0)

h
defined in the regularity property is non-

zero for allh ∈ Pz. This is equivalent to choosing the entries
in M(0) such that

∏

h∈Pz
D

(0)
h
6= 0. For eachh ∈ Pz, the

entries inD(0)
h

are distinct variables. Hence, the local degree
of each entry with respect to each local encoding variable is
equal to one. We can loosely upper bound the local degree of
∏

h∈Pz
D

(0)
h

by |Pz|. By Lemma 16, we can pickM(0) such
that the regularity property is satisfied att = 0 if q > |Pz|.

Let t be a stage number larger than or equal to 1. Suppose
that D(t−1)

h
is non-zero for allh ∈ Pz. For eachh ∈ Pz,

we let T(t)
h

be theB × (αn) submatrix ofT(t) obtained by
extracting the rows associated withh. If the rows ofT(t) is
divided inton blocks, with each block consisting ofα rows,
thenT(t)

h
is obtained by retaining the firsthi rows of thei-th

block of rows ofT(t)
h

, for i = 1, 2, . . . , n. The entries inT(t)
h

involve the local encoding variables to be determined, but the
entries inM(t−1) are fixed elements inFq. The determinant
D

(t)
h

can be written as

D
(t)
h

= det(T
(t)
h
M(t−1)).

By Theorem 10, there is an integral flow in the auxiliary
graph with inputg and outputh, for some integral transmissive
vectorg. This means that if the local encoding variables are
chosen appropriately, the square submatrix ofT

(t)
h

obtained
by retaining the columns associated withg is a permutation
of the identity matrix, while the other columns not associated
with g are zero. The square submatrix ofM(t−1) obtained by
retaining the rows associated withg has non-zero determinant
by the induction hypothesis. We can thus choose the local
encoding variables such thatD(t)

h
is evaluated to a non-zero

value. In particular,D(t)
h

is a non-zero polynomial with the
local encoding variables as the variables.

After multiplying D
(t)
h

over all h ∈ Pz, we see that
∏

h∈Pj
D

(t)
h

is also a non-zero polynomial. Each local en-
coding variable appears in at mostrα rows in the determinant
D

(t)
h

. By Lemma 17, the local degree of
∏

h∈Pz
D

(t)
h

can be
upper bounded byrα|Pz |. By Lemma 16, we can choose
the local encoding vector at staget such that the regularity
property will continue to hold at staget provided that

q > rα|Pz | = r(2(d − z) + r − 1)|Pz|.

The cardinality ofPz is a constant that does not depend on the
total number of stages nor the total number of data collectors.

After a change of indexing variablez = k− j, we see that the
operating points(γ̃j , α̃j), for j = 2, 3, . . . , k, can be achieved
by linear network coding over a sufficiently large finite field.

Pareto-optimal operating point of the second type:Let
ℓ be an integer between 0 and⌊k/r⌋, and set

B = D′
ℓ = k(d+ r(ℓ + 1)− k)−

r2ℓ(ℓ+ 1)

2
,

β1 = β2 = 1, α = d− k + r(ℓ + 1), andγ = d+ r − 1.

Consider the rank accumulation profileqℓ defined in (42).
Let Qℓ be the subset of vectors inZn

+ which are majorized
by qℓ. By similar arguments for the operation point of the
first type, we can guarantee that the regularity property with
respect toqℓ is satisfied at all stages provided that the size of
the finite field is lower bounded by

q > r(d− k + r(ℓ + 1))|Qℓ|.

The next theorem summarizes the main result in this section.

Theorem 18. If the size of the finite fieldq is larger than

max
j=2,...,k

r(2(d − k + j) + r − 1)|Pk−j |, and

max
ℓ=0,...,⌊k/r⌋

r(d− k + r(ℓ + 1))|Qℓ|,

then we can implement linear network codes overFq for
functional and cooperative repair, attaining the boundary
points ofCMF. Thus,CMF = CAD.

Proof: We have already shown that the corner points of
CMF can be achieved by linear network coding. By an analog
of “time-sharing” argument, we see that all boundary points
of CMF are achievable by linear network coding, if the finite
field size is sufficiently large. Therefore,CAD ⊇ CMF. The
reverse inclusionCAD ⊆ CMF is shown in (23). We conclude
that CMF = CAD.

The cardinality ofPz andQℓ depend on parametersn, k,
d and r, but do not depend on the number of stages. Hence
a fixed finite field is sufficient to maintain the(n, k) recovery
property at all stages. The proof Theorem 1 is now completed.

Corollary 19. The operating point of the first type (in par-
ticular the MBCR point(γ̃MBCR, α̃MBCR)) is achieved if and
only if β1 = 2β2. On the other hand, the operating point of the
second type (in particular the MSCR point(γ̃MSCR, α̃MSCR))
is achieved if and only ifβ1 = β2.

VII. T WO FAMILIES OF EXPLICIT COOPERATIVE

REGENERATINGCODES

In this section we present two families of explicit con-
structions of optimal cooperative regenerating codes for exact
repair, one for MSCR and one for MBCR. The constructed
regenerated codes aresystematic, meaning that the native data
packets are stored somewhere in the storage network. Hence,if
a data collector is interested in part of the data file, he/shecan
contact some particular storage nodes and download directly
without any decoding. Both constructions are for the case
d = k. We note that all single-failure regenerating codes for
d = k are trivial, but in the multi-failure case, something
interesting can be done whend = k. As in the previous
section, a finite field element is referred to as a packet.

20

A. Construction of MSCR Codes for Exact Repair

In this construction, the number of packets in a storage node
is identical to the number of nodes contacted by a newcomer,
namelyα = r. The parameters of the cooperative regenerating
code in the first family are

d = k, B = kr, n ≥ d+ r,

α = r, γ = d+ r − 1.

The operating point

(α̃, γ̃) =
1

B
(α, γ) =

(1

k
,
d+ r − 1

kr

)

attains the MSCR point whend = k.
We divide the data file into chunks. Each chunk contains

B = kr elements in finite fieldFq. We needr matricesGj ,
for j = 1, 2, . . . , r, as building blocks. For eachj, the matrix
Gj is ann × k matrix overFq (with n > k), satisfying that
property that anyk×k submatrix is non-singular. For example,
Gj may be a Vandermonde matrix with distinct rows. Hence,
the finite field size can be any prime power larger than or equal
to n. We can also use the samen× k matrix for all Gj ’s, but
the construction also works if theGj ’s are different. For1 ≤
a ≤ n, and anya distinct integersi1, i2, . . . , ia between 1 and
n, we let the matrix obtained by retaining rowsi1, i2, . . . , ia
in Gj by Gj [i1, i2, . . . , ia].

In a chunk of data, there areB = kr source packets. We
divide thekr source packets intor groups, with each group
containingk packets. Ther groups of packets are represented
by k-dimensional column vectors,m1, m2, . . . ,mr. For i =
1, 2, . . . , n, and j = 1, 2, . . . , r, we storeGj [i] · mj as the
j-th packet stored in thei-th storage node, where “·” denotes
the dot product of two vectors. In other words, ther packets
stored in nodei are

G1[i] ·m1, G2[i] ·m2, . . . , Gr[i] ·mr.

Suppose that a data collector connects to nodesi1,
i2, . . . , ik. It downloads all thekr packets stored in these
k nodes, namely,Gj [iℓ] · mj , for ℓ = 1, 2, . . . , k, and
j = 1, 2, . . . , r. For eachj, the k symbols Gj [iℓ] · mj,
ℓ = 1, 2, . . . , k, can be put together as a column vector

Gj [i1, i2, . . . , ik] ·mj.

The k × k matrix Gj [i1, i2, . . . , ik] is non-singular by con-
struction. We can thus solve formj . This establishes the(n, k)
recovery property.

Suppose that nodesi1, i2, . . . , ir fail. We want to repair
them exactly with repair bandwidthd+ r − 1 per newcomer.
In the first phase of the repair process, ther newcomers have to
agree upon an ordering among themselves, so that we can talk
about the first newcomer, second newcomer, and third new-
comer, etc. Suppose that nodei1 is the first newcomer,i2 is the
second newcomer, and so on. Forj = 1, 2, . . . , r, newcomer
ij connects to anyd surviving storage nodes, say nodesνj,1,
νj,2, . . . , νj,d, and downloads packetGj [νj,x] ·mj from node
νj,x, for x = 1, 2, . . . , d. We note that no arithmetic operation
is required in the first phase, because the packetGj [νj,x] ·mj

can be read from the memory of nodeνj,x directly. The traffic

required in the first phase isrd packet transmissions. At the
end of the first phase, newcomerij can decodemj by inverting
the k × k matrix Gj [νj,1, νj,2, . . . , νj,d].

In the second phase of the repair process, forj = 1, 2, . . . , r,
newcomerij computes and sendsGj [iℓ] ·mj to newcomeriℓ,
for ℓ ∈ {1, 2, . . . , r} \ {j}. This can be done becausemj

has been decoded in the first phase, andGj [iℓ] is known to
every newcomer. A total ofr(r − 1) packet transmissions are
required in the second phase. To complete the regeneration
process, newcomerij computes and storesGj [ij] ·mj . The
total repair bandwidth equalsr(d + r − 1) and matches the
MSCR operating point.

The example in Section I-A can be obtained by this con-
struction, with parametersd = k = r = α = 2, n = B = 4,
and

G1 =

1 0
0 1
1 1
2 1

, G2 =

1 0
0 1
2 1
1 1

.

B. Construction of MBCR Codes for Exact Repair

The second construction matches the MBCR point. The
parameters are

d = k, B = k(k + r),

n = d+ r, α = γ = 2d+ r − 1.

The operating point matches the MBCR point ford = k,

(α̃, γ̃) =
1

B
(α, γ) =

(2d+ r − 1

k(k + r)
,
2d+ r − 1

k(k + r)

)
.

In this construction, we needn matricesHi as building
blocks. Fori = 1, 2, . . . , n, Hi is an (n− 1)× k matrix over
Fq, such that anyk × k submatrix is non-singular. As in the
previous construction, we can use Vandermonde matrices for
instance, and the field size requirement is thusq ≥ n− 1.

We divide the data into chunks, such that each chunk
of data consists ofB = kn data packets. In each chunk
we denote thekn data packets byx0, x1, . . . , xkn−1. We
divide these kn packets inton groups. The first group
consists ofx0, x1, . . . , xk−1, the second group consists of
xk, xk+1, . . . , x2k−1, and so on. Fori = 1, 2, . . . , n, we
represent the packets in thei-th group by row vector

xi := (x(i−1)k, x(i−1)k+1, . . . , x(i−1)k+k−1).

For 1 ≤ a ≤ n− 1, and anya distinct integersi1, i2, . . . , ia
between 1 andn− 1, we let the matrix obtained by retaining
rows i1, i2, . . . , ia in Hi by Hi[i1, i2, . . . , ia]. We present the
encoding by ann× n arrayA (see Table. I for an example).
The content of arrayA is obtained as follows.

1) For i = 1, 2, . . . , n, the diagonal entryA(i, i) contains
the k packets inxi.

2) For i = 1, 2, . . . , n− 1 and j = i + 1, i+ 2, . . . , n, the
entryA(i, j) contains one packetHj [i] · xj .

3) For i = 2, 3, . . . , n and j = 1, 2, . . . , i − 1, the entry
A(i, j) contains one packetHj [i− 1] · xj .

We note that for eachi = 1, 2, . . . , n, each of the packets
Hi[1] · xi, Hi[2] · xi, . . . ,Hi[n − 1] · xi, appears once and

21

TABLE I
THE ARRAY A IN THE EXPLICIT CONSTRUCTION OFMBCR CODE FOR

n = 5, d = k = 3 AND r = 2.

x1 H2[1] · x2 H3[1] · x3 H4[1] · x4 H5[1] · x5

H1[1] · x1 x2 H3[2] · x3 H4[2] · x4 H5[2] · x5

H1[2] · x1 H2[2] · x2 x3 H4[3] · x4 H5[3] · x5

H1[3] · x1 H2[3] · x2 H3[3] · x3 x4 H5[4] · x5

H1[4] · x1 H2[4] · x2 H3[4] · x3 H4[4] · x4 x5

exactly once in thei-th column of the array. Each diagonal
entry ofA containsk packets, while each off-diagonal entry of
A contains 1 packet. Fori = 1, 2, . . . , n, the i-th node stores
the content ofA(i, 1), A(i, 2), . . . ,A(i, n) in the i-th row of
arrayA. The number of packets in a storage node is

k + (n− 1) = d+ (d+ r − 1) = 2d+ r − 1.

The encoding has the important property that thei-th node
stores a copy of the packets in thei-th group of packets
uncoded so that nodei can compute any packet in thei-th
column of the arrayA.

For example, consider the parametersn = 5, k = d = 3,
r = 2, α = 7. Let

H1 = H2 = H3 = H4 = H5 =

1 0 0
0 1 0
0 0 1
1 1 1

be matrices overF2. We note that any three rows ofHi are
linearly independent overF2. A chunk of data consists ofB =
15 packetsx0, x1, . . . , x14, each packet contains one bit. The
content of the storage nodes is shown in the array in Table II.
The packets in each row of the array are the content of the
corresponding node.

Using the property of the matricesHi that anyk rows of
Hi form a non-singular matrix, it is straightforward to check
that theB packets in a chunk can be decoded from the content
of any k storage nodes.

Suppose that nodesi1, i2, . . . , ir fail, wherei1, i2, . . . , ir are
r distinct integers between 1 andn. We generate the content
of the new nodesi1, i2, . . . , ir as follows.

1) For j in {1, 2, . . . , n} \ {i1, i2, . . . , ir} and i ∈
{i1, i2, . . . , ir}, the surviving nodej computes the
packet inA(i, j) and sends it to newcomeri. This is
possible because thej-th node stores a copy of the
packets in thej-th group of packets uncoded, and hence
can compute any packet in thej-th column of the
arrayA.

2) For i ∈ {i1, i2, . . . , ir}, the surviving node with indexj
in {1, 2, . . . , n}\{i1, . . . , ir} sends the packet inA(j, i)
to the new nodei. After receivingk packets, the new
nodei, for i ∈ {i1, i2, . . . , ir}, is able to recover thek
packets inxi.

3) For i, i′ ∈ {i1, i2, . . . , ir}, i 6= i′, the new nodei
computes the packet inA(i, i′) and sends it to the new
nodei′.

The number of packet transmissions in steps 1, 2 and 3 are
r(n−r), r(n−r) andr(r−1), respectively. The total number
of packet transmissions in the repair process is thus

r(n − r + n− r + r − 1) = r(2d+ r − 1),

achieving the minimum repair bandwidth at the MBCR point.
For example, suppose nodes 4 and 5 fails in the example in

Table II. In the first step, node 1 transmitsx2 to node 4 and
x0 + x1 + x2 to node 5. Node 2 transmitsx5 to node 4 and
x3 + x4 + x5 to node 5. Node 3 transmitsx8 to node 4 and
x6 + x7 + x8 to node 5. In the second step, nodes 1, 2 and 3
send packetsx9, x10 andx11 to node 4, and packetsx12, x13

andx14 to node 5. Finally, node 4 computesx9 + x10 + x11

and sends it to node 5. Node 5 computesx12 +x13+x14 and
sends it to node 4. We also observe that in Table II, each row
has rank 7, every pair of two rows have rank 12, and every
three rows have rank 15.

VIII. C ONCLUDING REMARKS

We invoke an existence theorem of submodular flow to
obtain the value of max-flow in the special class of graph
induced from the cooperative scheme for functional repair.By
exploiting the layered structure of the information flow graph,
the computation of max-flow is decomposed into the analysis
of a section of the infinite graph. A closed-form expression of
the trade-off between storage and repair bandwidth is derived
by determining the rank accumulation profiles at the corner
points of the trade-off curve. We also show that the corners
point can be achieved by linear network codes.

In the literature, most of the existing works related to
the application of submodular flow to deterministic networks
focus on the the computation of max-flow algorithmically.
For example, submodular function minimization are used in
[38], [39] to determine the capacity of deterministic linear
networks introduced in [40]. Combinatorial algorithm for the
computation of the capacity deterministic linear networkscan
be found in [41]. Submodular flow technique is also used
in [42] to compute multi-commodity flows in polymatroidal
networks [43], and in [44] for minimum-cost multicast with
decentralized sources. Extension to a more general polylinking
flow network is given in [45].

The MBCR code construction in this paper is generalized
in [46]. In [47], a construction for all possible parameterson
the MBCR operating point is given. An explicit construction
of MSCR code fork = 2 is presented in [48]. Optimal
cooperative regenerating codes beyond the ones presented in
this paper and in [46]–[48] is an interesting direction for future
studies.

APPENDIX A
DERIVATION OF THE MAX -FLOW-MIN -CUT THEOREM

FROM FRANK ’ S THEOREM

To see that the max-flow-min-cut theorem is a special case
of Frank’s theorem, we consider a weighted directed graph
H = (V , E) with two distinguished verticesS and T . We
denote the capacity of an edgee ∈ E by c(e), which is a

22

TABLE II
AN MBCR CODE FORn = 5, d = k = 3 AND r = 2.

Node1 x0, x1, x2 x3 x6 x9 x12

Node2 x0 x3, x4, x5 x7 x10 x13

Node3 x1 x4 x6, x7, x8 x11 x14

Node4 x2 x5 x8 x9, x10, x11 x12 + x13 + x14

Node5 x0 + x1 + x2 x3 + x4 + x5 x6 + x7 + x8 x9 + x10 + x11 x12, x13, x14

non-negative real number. For a subsetE ′ of E , we let c(E ′)
be the sum of the capacities of the edges inE ′.

Suppose that the source vertexS has no incoming edge and
the sink vertexT has no out-going edge. Let the minimal cut
capacity be denoted byM . In the following, we prove the
existence of a flow with valueM by Theorem 3. Define a
function f : V → R by

f(x) =

M if x = S,

−M if x = T,

0 otherwise,

and extend it to a set function by defining

f(S) =
∑

x∈S

f(x)

for S ⊆ V . The set functionf is a modular, and hence is
submodular.

For e ∈ E , let the lower boundlb(e) be identically zero,
and the upper boundub(e) be the corresponding edge capacity
c(e). Hence, (18) is equivalent to

− c(∆−S) ≤ f(S). (46)

Now we check that (46) is satisfied for allS ⊆ V by
considering two cases.

(i) f(S) ≥ 0. The condition in (46) holds because right-
hand side is non-negative, while the left-hand side is less than
or equal to 0.

(ii) f(S) < 0. This case occurs only whenS contains the
sink vertexT but not source vertexS. The condition in (46)
can be re-written asM ≤ c(∆−S). The valuec(∆−S) is the
cut capacity of(S̄,S), which is at leastM by our assumption
that the minimal cut capacity isM .

It can be easily checked thatf(∅) = f(V) = 0. Thus all the
conditions in Theorem 3 are satisfied. By Theorem 3, there
exists a feasiblef -submodular flow, sayφ. We next verify
that φ is indeed an(S, T)-flow in H . By the definition of
submodular flow, we have∂φ({S}) ≤ M , ∂φ({T }) ≤ −M ,
and∂φ({v}) ≤ 0 for vertexv not equal toS or T . Using the
fact that

∑

v∈V ∂φ({v}) = 0, which holds in general for any
real-valued functionφ on E , we obtain

M ≤ −∂φ({T }) = ∂φ({S}) +
∑

v 6∈{S,T}

∂φ({v})

≤ ∂φ({S}) ≤M.

Since equalities hold throughout the above chain of inequal-
ities, we have∂φ({v}) = 0 for all verticesv other thanS
andT , i.e.,φ satisfies the flow conservation property. Finally,
we have∂φ({S}) = M = −φ({T }). This is the same as
saying that the flow value is equal toM .

APPENDIX B
THE MSCR POINT UNDER HETEROGENEOUSTRAFFIC

Homogeneous traffic is assumed in the main text of this
paper. We show in this appendix that the assumption of
homogeneous traffic is not essential at the minimum-storage
point, i.e., the repair bandwidth cannot be decreased even if
traffic is heterogeneous.

Let α = B/k. Let the average number of packets per link in
the first (resp. second) phase beβ̄1 (resp.β̄2). The total number
of packets transmitted in the first (resp. second) phase is thus
rdβ̄1 (resp.r(r−1)β̄2). In this heterogeneous traffic mode, it is
only required that the traffic in the first (resp. second) phase of
all repair processes are identical. It contains the homogeneous
traffic model as a special case if each newcomer downloads
β̄1 packets per link in the first phase and̄β2 packets per link
in the second phase.

Theorem 20. If α = B/k, then the average repair bandwidth
per newcomer under the heterogeneous traffic model is lower
bounded by

B
d+ r − 1

k(d+ r − k)
.

Proof: Consider the scenario where nodes 1 tor fail at
stage 1. Suppose that each newcomer connects to nodesr +
1, r + 2, . . . , r + d during the repair process. Fori = r +
1, r + 2, . . . , r + d and j = 1, 2, . . . , r, let the capacity of
the link from surviving nodei to newcomerj beβ1(i, j). Let
the capacity of the link fromInj1 to Midj2 , for j1 6= j2, be
β2(j1, j2). The average link capacities in the first and second
phase can be written, respectively, as

β̄1 =
1

dr

r+d∑

i=r+1

r∑

j=1

β1(i, j),

β̄2 =
1

r(r − 1)

r∑

j2=1

r∑

j1=1

j1 6=j2

β2(j1, j2).

The repair bandwidth per newcomer is thus

1

r

r+d∑

i=r+1

r∑

j=1

β1(i, j)+
1

r

r∑

j2=1

r∑

j1=1

j1 6=j2

β2(j1, j2) = dβ̄1+(r−1)β̄2.

Consider the set of a data collectors which connects to one
of the r newcomers andk − 1 nodes among nodesr + 1 to
r+d. For a data collectorDC connecting to nodej, for some
j ∈ {1, 2, . . . , r}, and nodesi1, i2, . . . , ik−1 ∈ {r + 1, r +
2, . . . , r + d}, consider the cut(Wc,W), with

W = {DC, Inj ,Midj ,Outj ,Outi1 ,Outi2 , . . . ,Outik−1
}.

23

Stage -1 Stage 0 Stage 1

Fig. 13. A data collector connects to one storage node among the first r
nodes andk − 1 storage nodes among the nodesr + 1 to r + d.

This cut yields an upper bound on the file sizeB. An example
is given in Fig. 13, withW drawn in shaded color.

There arer
(

d
k−1

)
distinct data collectors in this set. If we

sum over allr
(

d
k−1

)
corresponding inequalities, we obtain

r

(
d

k − 1

)

B ≤ r

(
d

k − 1

)

(k − 1)α

+

(
d− 1

k − 1

) r+d∑

i=r+1

r∑

j=1

β1(i, j)

+

(
d

k − 1

) r∑

j2=1

r∑

j1=1

j1 6=j2

β2(j1, j2).

The first term on the right-hand side comes from the fact that
each of ther

(
d

k−1

)
inequalities contributes(k − 1)α. For the

second term, we note that there are are
(
d−1
k−1

)
choices for the

“out” nodes to be included inW . Hence for eachi, j, the
termβ1(i, j) is multiplied by

(
d−1
k−1

)
. By similar argument we

can obtain the third term.
After dividing both sides byr

(
d

k−1

)
, we obtain

B ≤ (k − 1)α+ (d− k + 1)β̄1 + (r − 1)β̄2. (47)

In the rest of the proof we distinguish two cases.
Case 1:k ≥ r. Consider the class of data collectors which

download from nodes 1 tor, andk−r nodes among nodesr+1
to r+ d. For a data collectorDC in this class, say connecting
to nodes 1 tor, andi1, i2, . . . , ik−r ∈ {r+1, r+2, . . . , r+d},
we have an upper bound onB from the cut(Wc,W) with W
specified by

W = {DC,Outi1 ,Outi2 , . . . ,Outik−r
}∪

r⋃

j=1

{Inj ,Midj ,Outj}.

If we sum over the
(

d
k−r

)
inequalities arising from these cuts,

we get
(

d

k − r

)

B ≤

(
d

k − r

)

(k − r)α

+

(
d− 1

k − r

)

(k − r)

r+d∑

i=r+1

r∑

j=1

β1(i, j).

Upon dividing both sides by
(

d
k−r

)
, we obtain

B ≤ (k − r)α + (d− k + r)rβ̄1. (48)

With α = B/k, we infer from (47) and (48) that

dβ̄1 + (r − 1)β̄2 ≥
B(d+ r − 1)

k(d + r − k)
. (49)

Case 2:k < r. Consider the class of data collectors who
connects tok nodes among nodes 1 tor. To a data collector
DC connecting toj1, j2, . . . , jk ∈ {1, 2, . . . , r}, we associate
it with the cut (Wc,W) with W given by

W = {DC} ∪
k⋃

ℓ=1

{Iniℓ ,Midiℓ ,Outiℓ}.

The sum of the
(
r
k

)
resulting upper bounds onB is

(
r

k

)

B ≤

(
r − 1

k − 1

) r∑

i=1

r+d∑

j=r+1

β1(i, j)

+

(
r − 1

k − 1

) r∑

j2=1

r∑

j1=1

j1 6=j2

β2(j1, j2).

After dividing both sides by
(
r
k

)
, we get

B ≤ kdβ̄1 + k(r − k)β̄2. (50)

From (47) and (50), we can deduce (49).

APPENDIX C
PROOF OFTHEOREM 9

We first prove two lemmas. The first one is about the lower
envelope of a collection of straight lines.

Lemma 21. Let y = mjx + bj for j = 1, 2, . . . , N , be
N straight lines in thex-y plane, satisfying the following
conditions:

(a) The slopes are negative with decreasing magnitudes, i.e.,

−m1 > −m2 > · · · > −mN > 0.

(b) For j = 2, 3, . . . , N , thex-coordinates of the intersec-
tion point ofy = mjx + bj and y = mj−1x+ bj−1, denoted
by xj , are strictly increasing, i.e.,x2 < x3 < · · · < xN .

Then we have

max
1≤j≤N

{mjx+ bj}

=

m1x+ b1 for x < x2,

m2x+ b2 for x2 ≤ x < x3,
...

...

mN−1x+ bN−1 for xN−1 ≤ x < xN ,

mNx+ bN for x ≥ xN .

Proof: For i = 2, 3, . . . , N , since the slope ofLi−1 is
more negative then the slope ofLi, we get

mi−1x+ bi−1 > mix+ bi for x < xi,

mi−1x+ bi−1 = mix+ bi for x = xi,

mi−1x+ bi−1 < mix+ bi for x > xi.

24

For x between 0 andx2, we havex < xi for all i. Hence

m1x+ b1 > m2x+ b2 > · · · > mNx+ bN .

Therefore,maxj{mjx+ bj} = m1x+ b1, for x < x2.
Consider x in the interval [xi−1, xi), for some i =

3, 4, . . . , N − 1. Sincex ≥ xi−1 > xi−2 > · · · > x2, we
get

mix+ bi ≥ mi−1x+ bi−1 > · · · > m1x+ b1.

On the other hand, sincex < xi < · · · < xN , we get

mix+ bi > mi+1x+ bi > · · · > mNx+ bN .

Thereforemaxj=1,...,N{mjx + bj} = mix + bi for xi−1 ≤
x < xi. The proof of the last casex ≥ xN is similar and is
omitted.

The second lemma is a special case of duality in linear
programming. It gives a sufficient condition for checking the
optimality of a given point in the feasible region. The short
proof is given below for the sake of completeness.

Lemma 22. Consider a linear programming with objective
function c1x + c2y, wherex and y are variables andc1 and
c2 are constants, subject to constraintsai1x + ai2y ≥ bi, for
i = 1, 2, . . . , N , and x, y ≥ 0. We will only consider the
case wherec1, c2, ai1 and ai2, for i = 1, 2, . . . , N , are non-
negative. If(x̄, ȳ) is a point which
(a) satisfies all constraints,
(b) attains equality in two particular constraints whose slopes
are distinct, and the slope of the objective function is between
these two slopes,
then (x̄, ȳ) is the optimal solution to the linear programming
problem.

Proof: It suffices to show that the value of the objective
function cannot be smaller thanc1x̄ + c2ȳ without violat-
ing any constraints. By re-indexing the constraints, suppose
without loss of generality that(x̄, ȳ) satisfies the constraints
ai1x+ ai2y ≥ bi, for i = 1, 2, with equality. Suppose that the
magnitude of the slope of the first constraint is strictly larger
than the magnitude of the slope of the second constraint,

a11/a12 > a21/a22, (51)

andc1/c2 is sandwiched between them,

a11/a12 ≥ c1/c2 ≥ a21/a22. (52)

Let A :=

[
a11 a12
a21 a22

]

. By the assumption in (b), we have

A

[
x
y

]

≥

[
b1
b2

]

= A

[
x̄
ȳ

]

for any feasible solution(x, y).
The determinant ofA is positive by (51). Thus,A is

invertible. The values ofp andq defined by

[
p q

]
:=

[
c1 c2

]
A−1 =

[
c1a22 − c2a21 c2a11 − c1a12

]

a11a22 − a12a21

are non-negative by (52). For any feasible solution(x, y),

c1x+ c2y =
[
p q

]
A

[
x
y

]

≥
[
p q

]
A

[
x̄
ȳ

]

= c1x̄+ c2ȳ.

This proves that the optimal value isc1x̄+ c2ȳ.

We divide the proof of Theorem 9 into several propositions.
We need a few more notations.
Definitions: For j = 1, 2, . . . , k, let gj(α̃) be the β̃2-
coordinate ofPj(α̃), i.e.,

gj(α̃) :=
1− (k − j)α̃

j(2d− 2k + r + j)
,

and let
β̂2(α̃) := max

1≤j≤k
gj(α̃).

Proposition 23. For j = 1, 2, . . . , k, let α̃j be defined as in
(2), and for ℓ = 0, 1, . . . , ⌊k/r⌋, let α̃′

ℓ be defined as in(5).

1) For j = 2, 3, . . . , k, we havegj(α̃j) = gj−1(α̃j).
2)

1

k
= α̃1 < α̃2 < α̃3 < · · · < α̃k =

2d+ r − 1

k(2d+ r − k)
.

3) β̂2(α̃) is a piece-wise linear function of̃α,

β̂2(α̃) =

g1(α̃) for α̃1 ≤ α̃ < α̃2,

g2(α̃) for α̃2 ≤ α̃ < α̃3,
...

...

gk−1(α̃) for α̃k−1 ≤ α̃ < α̃k,

gk(α̃) for α̃ ≥ α̃k.

4) For j = 1, 2, . . . , k− 1, when the parameter̃α is in the
range α̃j ≤ α̃ ≤ α̃j+1, we have

Pj(α̃) ≻ Pj+1(α̃) ≻ Pj+2(α̃) ≻ · · · ≻ Pk(α̃),

and

Pj(α̃) ≻ Pj−1(α̃) ≻ Pj−2(α̃) ≻ · · · ≻ P1(α̃).

Whenα̃ ≥ α̃k, we have

Pk(α̃) ≻ Pk−1(α̃) ≻ Pk−2(α̃) ≻ · · · ≻ P1(α̃).

5) For ℓ = 0, 1, . . . ⌊k/r⌋ − 1, we have

α̃ℓr < α̃′
ℓ < α̃(ℓ+1)r.

Proof: (1) It follows from the fact that̃αj is defined as
the value such thatPj(α̃j) = Pj−1(α̃j).

(2) We compare two consecutive terms in the sequence
(α̃i)

k
i=1. For j = 2, 3, . . . , k, we have

α̃j > α̃j−1

⇔
d− k + j + r−1

2

k(d− k + j + r−1
2)− j(j−1)

2

>

d− k + j − 1 + r−1
2

k(d− k + j − 1 + r−1
2)− (j−1)(j−2)

2

⇔
1

k − j(j−1)
2d−2k+2j+r−1

>
1

k − (j−1)(j−2)
2d−2k+2j−2+r−1

⇔
j(j − 1)

2d− 2k + 2j + r − 1
>

(j − 1)(j − 2)

2d− 2k + 2j − 2 + r − 1
.

25

Since the value ofj is strictly larger than 1 in the above
inequalities, we can cancel the factorj − 1. After some more
algebraic manipulation, we obtain

α̃j > α̃j−1 ⇔ 4d− 4k + 2j + 2r − 2 > 0.

The last inequality holds becaused ≥ k, j ≥ 2 andr ≥ 1.
(3) We will apply Lemma 21 to prove the third part. We

have already verify part (b) of Lemma 21. For the condition
in part (a) of Lemma 21, we check that the magnitude of the
slope of the straight liney = gj(α̃) in the α̃-y plane is

k − j

j(2d+ 2k + r + j)
.

Whenj increases, the numerator decreases and the denomina-
tor increases. Hence the magnitude of the slope is a decreasing
function of j.

(4) It follows from the proof of Lemma 21.
(5) We can prove the asserted inequalities by straightforward

calculation. The details are omitted.

Proposition 24.

1) For j = 2, 3, . . . , k−1, the pointPj(α̃) is a feasible so-
lution to the linear program in(29) when the parameter
α̃ is in the rangeα̃j ≤ α̃ ≤ α̃j+1.

2) For ℓ = 0, 1, . . . , k, the pointQℓ is a feasible solution
to the linear program in(29) if α̃ = α̃′

ℓ.

Proof: (1) Consider the pointPj(α̃) for some j =
2, 3, . . . , k − 1. Let α̃ be a real number betweeñαj and
α̃j+1. For α̃ in this range, we havePi(α̃) ≺ Pj(α̃) for all
i ∈ {1, 2, . . . , k} \ {j}, by the third part in Prop. 23. We will
give a geometric proof thatPj(α̃) satisfies the inequalities in
(25) and (26) fors = 1, 2, . . . , k. We use the property that
the slope of the linear constraints in (25) and (26) are either
negative or infinite. Recall that for anyi = 1, 2, . . . , k, Pi(α̃)
is the intersection point ofLi(α̃) andL′

i(α̃). As the slope of
Li(α̃) andL′

i(α̃) are either infinite or negative, any pointP
in the β̃1-β̃2 plane that Pareto-dominatesPi(α̃) satisfies the
inequality (25) and (26) fors = i. SincePi(α̃) ≺ Pj(α̃)
for α̃j ≤ α̃ ≤ α̃j+1, we conclude thatPj(α̃) satisfies all
constraints in the linear program, and is thus feasible.

(2) From the last part Prop. 23, we havẽαℓr < α̃′
ℓ <

α̃(ℓ+1)r. By the third part of Prop. 23, we have

β̂2(α̃
′
ℓ) > gj(α̃

′
ℓ)

and thus
Pj(α̃

′
ℓ) ≺ Qℓ

for

j ∈ {1, 2, . . . , k} \ {ℓr, ℓr + 1, . . . ,min{k, (ℓ+ 1)r}}.

This proves thatQℓ satisfies the constraint (25) and (26) for
s in{1, 2, . . . , k} \ {ℓr, ℓr + 1, . . . ,min{k, (ℓ+ 1)r}}.

We give a geometric proof for the remaining constraints.
(See e.g. Fig. 10.) For̃α = α̃′

ℓ, the pointPℓr(α̃
′
ℓ) is vertically

belowQℓ in the β̃1-β̃2 plane. Consider an integer

j ∈ {ℓr, ℓr + 1, . . . ,min{k, (ℓ+ 1)r}}.

The pointPj(α̃
′
ℓ) is on the lineβ̃1 = 2β̃2 and is to the right

of Qℓ andPℓr(α̃
′
ℓ). Since the slope ofL′

j(α̃
′
ℓ) is negative and

has magnitude less thanµ(j), the lineL′
j(α̃

′
ℓ) intersects the

vertical line segment betweenQℓ andPℓr(α̃
′
ℓ). ThereforeQℓ

is lying above the lineL′
j(α̃

′
ℓ). Also, by definition,Qℓ is lying

on the lineLj(α̃
′
ℓ). This proves thatQℓ satisfies the constraints

in (25) and (26) fors = j.

Proposition 25. For j = 1, 2, . . . , k − 1, if
∣
∣
∣
∣

j(d− k) + (j2 +Ψj,r)/2 jr −Ψj,r

d r − 1

∣
∣
∣
∣
≥ 0 (53)

then

γ∗
LP(α̃) =

(2d+ r − 1)(1− (k − j)α̃)

j(2d− 2k + r + j)

for α̃j ≤ α̃ < α̃j+1.
Also, we have

γ∗
LP(α̃) =

2d+ r − 1

k(2d+ r − k)
= γ̃MBCR

for α̃ ≥ α̃k = α̃MBCR.

Proof: Considerα̃ in the interval [α̃j , α̃j+1), for some
j ∈ {1, 2, . . . , k − 1}. Suppose that the condition in (53) is
satisfied. We want to show thatPj(α̃) is the optimal solution
to the linear programming problem in (29). We have proved
in Prop. 24 thatPj(α̃) is a feasible solution. By Lemma 22,
it remains to show thatPj(α̃) satisfies two constraints with
equality, and the slope of the objective function is between
the slopes of these two constraints.

Since the condition in (53) is satisfied, the magnitude of the
slope ofLj(α̃), namely

µ(j) =
j(d− k) + (j2 +Ψj,r)/2

jr −Ψj,r
,

is larger than or equal tod/(r − 1). On the other hand, the
magnitude of the slope ofL′

j(α̃),

d− k + (j + 1)/2

r − 1

is strictly less thand/(r − 1). By Lemma 22,Pj(α̃) is the
optimal solution to the linear program in (29). Thus

γ∗
LP(α̃) = (2d+r−1)gj(α̃) = (2d+r−1)

1− (k − j)α̃

j(2d− 2k + r + j)

for α̃j ≤ α̃ < α̃j+1.
For the second part of the proposition,Pk(α̃k) is a feasible

solution for α̃ ≥ α̃k. From part (6) of Lemma 6, we know
that µk > d/(r − 1). On the other hand, the slope ofL′

k(α̃)
is strictly less thand/(r − 1). By Lemma 22,Pk(α̃k) is the
optimal solution of the linear program. Therefore

γ∗
LP(α̃) = gk(α̃k) =

2d+ r − 1

k(2d+ r − k)
= γ̃MBCR

for α̃ ≥ αk.
We now cover the remaining cases which are not covered

by Prop. 25. Suppose that there is an integeri between 1 andk
such thatµ(i) < d

r−1 . Let ℓ be the quotient wheni is divided
by r.

26

We claim thatµ(j) is a concave function ofj for j between
1 + ℓr and (r − 1) + ℓr. Consider integerj in the form j =
ℓr +R, for 0 ≤ R < r. Then,Ψj,r = ℓr2 +R2.

µ(ℓr +R)

=
(R + ℓr)(d− k) + ((R+ ℓr)2 + ℓr2 +R2)/2

(R+ ℓr)r − ℓr2 −R2

=
2R2 + 2R(ℓr + (d− k)) + ℓr(ℓr + r + 2(d− k))

2R(r −R)

=
R+ r + ℓr + (d− k)

r −R
+

ℓr(ℓr + r + 2(d− k))

2R(r −R)

= −1 +
r + ℓr + (d− k)

r − R
+

ℓr(ℓr + r + 2(d− k))

2R(r −R)
.

Each term in the above line is a concave function ofR.
Therefore the sum of them is also concave. This completes
the proof of the claim.

By the above claim, we can find an indexj0 such that

µ(j0) = min
ℓr<j<(ℓ+1)r

µ(j). (54)

Proposition 26. Suppose thatµ(i) < d/(r − 1) for somei,
and letj0 be defined as in(54). Let i2 be the smallest integer
larger than or equal toj0 such thatµ(i2) < d/(r − 1), and
let i1 be the largest integer smaller than or equal toj0 such
that µ(i1) < d/(r − 1).

1) The integersi1 and i2 are well-defined, and they satisfy
ℓr < i1 ≤ j0 ≤ i2 < min{k, r(ℓ+ 1)}.

2)

γ∗
LP(α̃

′
ℓ) =

1

D′
ℓ

(d+ r − 1).

In particular, we have

γ∗
LP(1/k) = γ∗

LP(α̃
′
0) =

d+ r − 1

k(d+ r − k)
.

3) Let

c1(j) := j(d− k) + (j2 +Ψj,r)/2, (55)

c2(j) := jr −Ψj,r, (56)

andA be the matrix

A :=

[
c1(j1 + 1) c2(j1 + 1)
c1(j1) c2(j1)

]

.

For α̃ betweenα̃′
ℓ and α̃j1+1, we have

γ∗
LP(α̃) =

[
d r − 1

]
A−1

[
1− (k − j1 − 1)α̃)

1− (k − j1)α̃

]

.

4) For α betweenα̃j2 and α̃′
ℓ, we have

γ∗
LP(α) =

[
d r − 1

]
B−1

[
1− (k − j2 + 1)α̃)

1− (k − j2)α̃

]

,

where

B :=

[
c1(j2 − 1) c2(j2 − 1)
c1(j2) c2(j2)

]

.

Proof: 1) The first part of the lemma follows from the
property thatµ(j) = ∞ if j is an integral multiple ofr
(Lemma 6 part 3.)

2) We want to show thatQℓ = (1/D′
ℓ, 1/D

′
ℓ) is the optimal

solution to the linear program wheñα = α̃′
ℓ. We have shown

in Prop. 24 thatQℓ is a feasible solution. Because the slope of
Lℓr(α̃

′
ℓ) is infinite and the magnitude of the slope ofLj0(α̃

′
ℓ)

is less thand/(r− 1), by Lemma 22,Qℓ is the optimal to the
linear program.

From part 4 of Lemma 6, we haveµ(1) < d/(r − 1).
Therefore,Q′

0 is the optimal solution to the linear program
when α̃ = α̃′

0 = 1/k, and we get

γ∗
LP(1/k) = γ∗

LP(α̃
′
0) =

1

D′
0

(d+ r − 1) =
d+ r − 1

k(d+ r − k)
.

3) Consider̃α which is within the rangẽα′
ℓ < α̃ < α̃i2 . Let

Popt(α̃) = (β̃1,opt(α̃), β̃2,opt(α̃)) be the intersection point of
Lj1(α̃) andLj1+1(α̃), i.e.,

[
β̃1,opt

β̃2,opt

]

= A−1

[
1− (k − i2 − 1)α̃
1− (k − i2)α̃

]

.

We have

(β̃1,opt(α̃
′
ℓ), β̃2,opt(α̃

′
ℓ)) = Qℓ, and

(β̃1,opt(α̃i2+1), β̃2,opt(α̃i2+1)) = Pi2+1(α̃i2+1).

For α̃ betweenα̃′
ℓ to α̃i2+1, the point(β̃1,opt(α̃), β̃2,opt(α̃))

is a convex combination ofQℓ to Pi2+1(α̃i2+1). Therefore,
(β̃1,opt(α̃), β̃2,opt(α̃)) is a feasible solution to the linear pro-
gram with the corresponding parameterα̃. (See the remark
after (30).) The slope ofLj1+1(α̃) has magnitude larger than
or equal tod/(r−1), while the slope ofLj1(α̃) has magnitude
strictly less thand/(r − 1). Thus by Lemma 22,Popt(α̃) is
the optimal solution to the linear program.

4) The proof is analogous to the previous part and is omitted.

For j = 1, 2, . . . , k, let

ξj =

{
1
Dj

(d− k + j + (r − 1)/2) if µ(j) ≥ d/(r − 1)
1

D′
⌊j/r⌋

(d− k + r(⌊j/r⌋+ 1)) if µ(j) < d/(r − 1),

be the α̃-coordinates of the operating points in Theorem 9.
Divide the interval[α̃MSCR, α̃MBCR) into subintervals

[ξ1, ξ2), [ξ2, ξ3), . . . , [ξk−1, ξk),

with ξ1 = α̃MSCR and ξk = α̃MBCR. From Lemma 25 and
Lemma 26, the functionγ∗

LP(α̃) is an affine function of̃α in
each subinterval. Consequently, the corner points of the graph

{(γ∗
LP(α̃), α̃) : α̃MSCR ≤ α̃ <∞}

are precisely the operating points defined in Theorem 9.

APPENDIX D
PROOF OFLEMMA 11

We first show that it is sufficient to verify that the condi-
tion (41) in Lemma 11 holds for subsetsS in the form of

S =
(⋃

i∈A

{Ini,Midi,Outi}
)

∪
(⋃

j∈B

{vj ,Outj}
)

, (57)

whereA is a subset of{1, 2, . . . , r} and B is a subset of
{r + 1, r + 2, . . . , n}.

27

An example of a subsetS in the form of (57) is illustrated
in Fig. 12. For notational convenience, we let

κ(S) := lb(∆+S) − ub(∆−S),

for subsetS of the vertices in the auxiliary graph.
(a) Suppose for somej ∈ {r+1, r+2, . . . , n}, S contains

vj but does not containOutj . Then the directed edgee =
(vj ,Outj) is in ∆+S, and makes a contribution ofhj to the
term lb(∆+S). But the inequalityκ(S) ≤ σ(S) holds if and
only if

lb(∆+S)− ub(∆−S)− hj ≤ σ(S) − hj ,

which is equivalent toκ(S ∪ {Outj}) ≤ σ(S ∪ {Outj}).
An analogous argument shows that ifS containsOutj but

does not containsvj for somej ∈ {r+ 1, r+ 2, . . . , n}, then
the validity ofκ(S) ≤ σ(S) is equivalent to

lb(∆+S)− ub(∆−S) + hj ≤ σ(S) + hj

⇔ κ(S \ {Outj}) ≤ σ(S \ {Outj}).

Hence it is sufficient to consider subsetS which either contains
both vj andOutj , or none of them.

(b) For eachi = 1, 2, . . . , r, we distinguish eight cases as
shown in the following table.

Case Ini ∈ S? Midi ∈ S? Outi ∈ S?
1 no no no
2 no no yes
3 no yes no
4 no yes yes
5 yes no no
6 yes no yes
7 yes yes no
8 yes yes yes

We want to show that case 2 to case 7 are dominated by
case 1 and 8, so that we only need to consider case 1 and 8.

Suppose thatS containsMidi. Since the link fromIni to
Midi has infinite upper bound, the left-hand side of (41) is
equal to−∞ if Ini is not included inS. Then the inequality in
(41) holds trivially. We can assume without loss of generality
that Ini ∈ S if Midi ∈ S. This eliminates case 3 and case 4
in the above table.

Suppose thatS containsMidi and Ini but notOuti (case
7), the inequalityκ(S) ≤ σ(S) is implied by

κ(S ∪ {Outi}) ≤ σ(S ∪ {Outi}).

Indeed, if we assume that the above inequality holds, then

κ(S) = κ(S ∪ {Outi}) ≤ σ(S ∪ {Outi})

= σ(S) − hi ≤ σ(S).

Thus case 7 is implied by case 8.
Consider case 2, whereS containsOuti but does not

containsIni andMidi. In this case, the inequalityκ(S) ≤ σ(S)
is implied by the following two inequalities

κ(S \ {Outi}) ≤ σ(S \ {Outi}), (58)

κ({Outi}) ≤ σ({Outi}). (59)

The inequality in (59) is simply equivalent to−α ≤ −hi,
which holds by the assumption onh. If we add (58) and (59),
we will get κ(S) ≤ σ(S). Thus case 2 can be eliminated.

Consider case 5. Suppose thatS containsIni but does not
containMidi and Outi. In this case the inequalityκ(S) ≤
σ(S) is implied by

κ(S \ {Ini}) ≤ σ(S \ {Ini}).

If we assume that the above inequality holds, then

κ(S) = κ(S \ {Ini}) ≤ σ(S \ {Ini}) = σ(S).

Finally, case 6 can be taken care of by combining the
argument as in case 2 and case 5. This completes the proof
of the claim.

Now, we prove that the inequality in (41) is valid for a
subsetS in the form of (57). We let the cardinality ofA and
B be a and b, respectively. Obviously we havea ≤ r and
b ≤ n− r.

In the following we will use(x)+ as a short-hand notation
for max(0, x).

Becauselb(∆+S) = 0, we have

κ(S) = − ub(∆−S)

≤ −a((d− b)+β1 + (r − a)β2)

= −a(2(d− b)+ + (r − a)).

It suffices to show that

−a(2(d− b)+ + (r − a)) ≤ σ(S).

Sinceσ(S) = θb − h(A) − h(B) andh(A) + h(B) ≤ θa+b

by hypothesis, it is sufficient to prove

−a(2(d− b)+ + r − a) ≤ θb − θa+b

or equivalently

θa+b − θb ≤ a(2(d− b)+ + r − a). (60)

We prove the asserted inequality in (60) by distinguishing
three cases.

Case A,a+ b ≤ k: We first note that forj ≤ k, we have

θj − θj−1 =

{

α if 0 < j ≤ z

α− 2(j − z − 1) if z < j ≤ k

or equivalently

θj − θj−1 = α− 2(j − z − 1)+ for 0 < j ≤ k.

Recall thatα = 2(d− z)+ r− 1. For 0 < j ≤ k, we have the
following upper bound

θj − θj−1 = 2(d− z) + r − 1− 2(j − z − 1)+

≤ 2(d− z) + r − 1− 2(j − z − 1)

= 2(d− j) + r + 1.

Summing the above inequality forj from b + 1 to a + b,
we obtain

θa+b − θb =

a+b∑

j=b+1

θj − θj−1 ≤
a+b∑

j=b+1

(2(d− j) + r + 1)

= a(2(d− b) + r − a)

= a(2(d− b)+ + r − a).

28

We have use the assumptions thatd ≥ k and k ≥ b for the
last equality.

Case B,b ≤ k < a + b: Sinceθk = θk+1 = · · · = θa+b in
this case, we have

θa+b − θb = θk − θb ≤ (k − b)(2(d− b) + r − (k − b)).

The inequality follows from the previous case. We observe
that the quadratic function

f(x) = x(2(d− b) + r − x)

is a concave with zeroesx = 0 andx = 2(d−b)+r. Thus we
havef(x) ≥ f(k−b) for all x betweenk−b and2d−b+r−k.
We check thata ≤ k− b, becausek ≤ a+ b by the hypothesis
in case B, anda ≤ 2d−b+r−k becausea ≤ r andd ≥ k ≥ b.
Therefore

θa+b − θb ≤ f(a) = a(2(d− b) + r − a)

= a(2(d− b)+ + r − a).

Case C,k < b: (60) holds becauseθa+b − θb = 0 on the
left-hand side, while the right-hand side is non-negative.

This completes the verification that condition (41) in
Lemma 11 holds.

APPENDIX E
PROOF OFTHEOREM 13

We give a sketch of proof of Theorem 13, which is along
the same line as in the proof of Theorem 10.

We draw the same auxiliary graph as in Fig. 12, except that
β1 is equal to 1,α is equal tod+r(ℓ+1)−k, andh is a vector
majorized by the vectorqℓ in (42). We define a submodular
function

ρ(S) := g(S ∩ Os−1)− h(S ∩ Os)

on the vertex set of the auxiliary graph.
As in Lemma 11, we want to show that the inequality

lb(∆+S) − ub(∆−S) ≤ ρ(S) holds for all subsetsS which
is in the form of (57).

Analogous to (60), we need to show

ϕa+b − ϕb ≤ a((d− b)+ + r − a) (61)

for 0 ≤ a ≤ r and0 ≤ b ≤ d.
We distinguish three cases:a+ b ≤ k, b ≤ k < a+ b and

k < b. We only consider the first casea + b ≤ k. The proof
for the second and third case is omitted.

Note that the differenceϕa+b−ϕb, i.e., thex-th component
in (61) can be written as

α−
⌈x− k + ℓr

r

⌉

r. (62)

We need to take the sum of (62) forb < x ≤ b+ a. Note that
the value of (62) is constant forr consecutive values ofx.
Sincea is not larger thanr, ⌈(x−k+ ℓr)/r⌉ assumes at most
two values forb < x ≤ b + a. We further divide into two
subcases.

First subcase:⌈(x−k+ℓr)/r⌉ is constant forb < x ≤ b+a.
For x in this range, we have

⌈(x− k + ℓr)/r⌉ = ⌈(a+ b− k + ℓr)/r⌉.

Hence,

a((d− b)+ + r − a)− (ϕa+b − ϕb)

= a((d− b)+ + r − a)−
a+b∑

x=b+1

(

α−
⌈a+ b− k + ℓr

r

⌉

r
)

≥ a
(

d− b + r − a− α+ (a+ b− k + ℓr)
)

= a(d+ (ℓ + 1)r − k − α) = 0.

Second subcase:⌈(x− k + ℓr)/r⌉ is not constant for

b < x ≤ b+ a.

Suppose thata + b > k − ℓr + ξr and b ≤ k − ℓr + ξr for
some integerξ. We have

⌈x− k + ℓr

r

⌉

=

{

ξ for b < x ≤ k − ℓr + ξr

ξ + 1 for k − ℓr + ξr < x ≤ a+ b.

For the ease of presentation, we useδ to stand fora + b −
(k − ℓr + ξr), and letY be d− b + r − a. The value ofδ is
positive. With these notations, we get

a((d− b)+ + r − a)− (ϕa+b − ϕb)

≥ aY − (ϕa+b − ϕb)

= aY − (a− δ)(α − ξr)− δ(α − (ξ + 1)r)

= (a− δ)(Y − α+ ξr) + δ(Y − α+ (ξ + 1)r).

Since

Y − α+ ξr = d− b+ r − a− d− rℓ − r + k + ξr = −δ,

we get

a((d− b)+ + r − a)− (ϕa+b − ϕb)

≥ −(a− δ)δ + δ(r − δ)

= δ(r − a) ≥ 0.

This proves (61) fora+ b ≤ k.
The proof proceeds by applying Frank’s theorem repeat-

edly, thereby iteratively constructing a flow on the modified
information flow graph.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google filesystem,” in
Proc. of the 19th ACM SIGOPS Symp. on Operating Systems Principles
(SOSP’03), Oct. 2003, pp. 29–43.

[2] J. Kubiatowicz et al., “OceanStore: an architecture forglobal-scale
persistent storage,” inProc. 9th Int. Conf. on Architectural Support for
programming Languages and Operating Systems (ASPLOS), Cambridge,
MA, Nov. 2000, pp. 190–201.

[3] B. Calder et al., “Windows Azure storage: a highly available cloud
storage service with strong consistency,” inProc. of the 23rd ACM Symp.
on Operation Systems Principles (SOSP), 2011, pp. 143–157.

[4] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[5] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Dis-
tributed storage codes with repair-by-transfer and non-achievability of
interior points on the storage-bandwidth tradeoff,”IEEE Trans. Inf.
Theory, vol. 58, no. 3, pp. 1837–1852, Mar. 2012.

[6] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction,”IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5227–
5239, Aug. 2011.

29

[7] C. Suh and K. Ramchandran, “Exact-repair MDS code construction
using interference alignment,”IEEE Trans. Inf. Theory, vol. 57, no. 3,
pp. 1425–1442, Mar. 2011.

[8] V. R. Cadambe, C. Huang, and J. Li, “Permutation codes: Optimal exact-
repair of a single failed node in MDS code based distributed storage
systems,” inProc. IEEE Int. Symp. Inf. Theory, St. Petersburg, Aug.
2011, pp. 1188–1192.

[9] D. Papailiopoulos and A. G. Dimakis, “Distributed storage codes through
Hadamard designs,” inProc. IEEE Int. Symp. Inf. Theory, St. Petersburg,
Aug. 2011, pp. 1193–1197.

[10] A. Thangaraj and C. Sankar, “Quasicyclic MDS codes for distributed
storage with efficient exact repair,” inProc. IEEE Inform. Theory
Workshop (ITW), Paraty, Brazil, Oct. 2011, pp. 45–49.

[11] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes for
repair in distributed storage systems,” inProc. Allerton conference on
commun. control and computing, Monticello, Sep. 2010, pp. 1510–1517.

[12] F. Oggier and A. Datta, “Self-repairing codes for distributed storage
– a projective geometric construction,” inIEEE Inf. Theory Workshop
(ITW), Paraty, Brazil, Oct. 2011, pp. 30–34.

[13] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, and J. Li,
“Simple regenerating codes: Network coding for cloud storage,” in Proc.
IEEE Int. Conf. on Computer Comm. (INFOCOM), Orlando, FL, Mar.
2012, pp. 2810–2805.

[14] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
in Proc. IEEE Int. Symp. Inf. Theory, Cambridge, MA, Jul. 2012, pp.
2771–2775.

[15] N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar, “Optimal linear
codes with local-error-correcting property,” inProc. IEEE Int. Symp. Inf.
Theory, Cambridge, MA, Jul. 2012, pp. 2776–2780.

[16] N. Silberstein, A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath,
“Optimal locally repairable codes via rank-metric codes,”in Trends in
Coding Theory, Ascona, Oct. 2012, available online at arXiv:1301.6331.

[17] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[18] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total
recall: system support for automated availability management,” in Proc.
of the 1st Conf. on Networked Systems Design and Implementation, San
Francisco, Mar. 2004, pp. 337–350.

[19] Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, “Cooperative recovery of
distributed storage systems from multiple losses with network coding,”
IEEE J. on Selected Areas in Commun., vol. 28, no. 2, pp. 268–276,
Feb. 2010.

[20] X. Wang, Y. Xu, Y. Hu, and K. Ou, “MFR: Multi-loss flexiblerecovery
in distributed storage systems,” inProc. IEEE Int. Conf. on Comm.
(ICC), Capetown, South Africa, May 2010.

[21] N. Le Scouarnec, “Coding for resource optimization in large-scale
distributed systems,” Ph.D. dissertation, Institut National des Sciences
Appliquèes de Rennes, Universitè de Rennes I, Dec. 2010.

[22] A.-M. Kermarrec, N. Le Scouarnec, and G. Straub, “Repairing multiple
failures with coordinated and adaptive regenerating codes,” in Proc. Int.
Symp. on Network Coding (Netcod), Beijing, Jul. 2011, pp. 88–93.

[23] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen, “Polynomial time algorithms for multicast network code
construction,”IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982,
Jun. 2005.

[24] T. Ho, M. Médard, R. Kötter, D. R. Karger, M. Effros, J.Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[25] H. Bally, X. Yan, and Z. Zhang, “On randomized linear network codes
and their error correction capabilities,”IEEE Trans. Inf. Theory, vol. 55,
no. 7, pp. 3148–3160, Jul. 2009.

[26] Y. Wu, “Existence and construction of capacity-achieving network codes
for distributed storage,”IEEE J. on Selected Areas in Commun., vol. 28,
no. 2, pp. 277–288, Feb. 2010.

[27] Y. Wu and A. G. Dimakis, “Reducing repair traffic for erasure coding-
based storage via interference alignment,” inProc. IEEE Int. Symp. Inf.
Theory, Seoul, Jul. 2009, pp. 2276–2280.

[28] A. Schrijver, Combinatorial optimization – polyhedra and efficiency.
Berlin Heidelberg: Springer, 2003, vol. B.

[29] S. Fujishige, Submodular functions and optimization, 2nd ed., ser.
Annals of discrete mathematics. Amsterdam: Elsevier, 2005, vol. 58.

[30] A. Frank, Connections in combinatorial optimization, ser. Oxford Lec-
ture Series in Math. and its Applications. Oxford: Oxford University
Press, 2011.

[31] ——, Bonn workshop on combinatorial optimization, ser. Annals of
Discrete Mathematics. North-Holland, 1982, vol. 16, ch. Analgorithm
for submodular functions on graphs, pp. 97–120.

[32] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network informa-
tion flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul.
2000.

[33] R. W. Yeung, Information theory and network coding. New York:
Springer, 2008.

[34] K. G. Murty, Linear programming. John Wiley & Son, 1983.
[35] G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with

local regeneration,” inInformation Theory and Applications Workshop,
San Diego, Feb. 2013, pp. 1–8.

[36] K. Ireland and M. Rosen,A classical introduction to modern number
theory, 2nd ed. New York: Springer-Verlag, 1990.

[37] S. Lang,Algebra, 3rd ed. Addison-Wesley, 1997.
[38] S. M. S. Tabatabaei Yazdi and S. A. Savari, “A max-flow/min-cut

algorithm for linear deterministic relay networks,”IEEE Trans. Inf.
Theory, vol. 57, no. 5, pp. 3005–3015, May 2011.

[39] M. X. Goemans, S. Iwata, and R. Zenklusen, “A flow model based on
polylinking system,”Math. Program. Ser. A, vol. 135, no. 1–2, pp. 1–23,
2012.

[40] A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, “Wireless network
information flow: A deterministic approach,”IEEE Trans. Inf. Theory,
vol. 57, no. 4, pp. 1872–1905, Apr. 2011.

[41] A. Amaudruz and C. Fragouli, “Combinatorial algorithms for wireless
information flow,” in Proc. of the 20th Annual ACM-SIAM Symp. on
Discrete Algorithms (SODA), 2009, pp. 555–564.

[42] C. Chekuri, S. Kannan, A. Raja, and P. Viswanath, “Multicommodity
flows and cuts in polymatroidal networks,” inProc. of the 3rd Inno-
vations in Theoretical Computer Science Conf. (ITCS’12), Cambridge,
MA, Jan. 2012, pp. 399–408.

[43] E. L. Lawler and C. U. Martel, “Computing maximal “polymatroidal”
network flows,”Math. Oper. Res., vol. 7, no. 3, pp. 334–337, 1982.

[44] N. Milosavljevic, S. Pawar, S. El Rouayheb, M. Gastpar,and K. Ram-
chandran, “Minimum cost multicast with decentralized sources,” Mar.
2012, arXiv:1203.2298 [cs.IT].

[45] S. Fujishige, “A note on polylinking flow networks,”Math. Program.
Ser. A, published online at Nov 2011.

[46] S. Jiekak and N. Le Scouarnec, “CROSS-MBCR: Exact minimum
bandwidth coordinated regenerating codes,” arXiv:1207.0854v1 [cs.IT],
Jul. 2012.

[47] A. Wang and Z. Zhang, “Exact cooperative regenerating codes with
minimum-repair-bandwidth for distributed storage,” arXiv:1207.0879v1
[cs.IT], Jul. 2012.

[48] N. Le Scouarnec, “Exact scalar minimum storage coordinated regenerat-
ing codes,” inProc. IEEE Int. Symp. Inf. Theory, Cambridge, Jul. 2012,
pp. 1197–1201.

http://arxiv.org/abs/1301.6331
http://arxiv.org/abs/1203.2298
http://arxiv.org/abs/1207.0854
http://arxiv.org/abs/1207.0879

	I Introduction
	I-A An Example of Cooperative Repair
	I-B Formal Definition of Cooperative Repair
	I-C Main Results
	I-D Numerical Illustrations
	I-E Organization

	II Preliminaries
	II-A Polymatroid and submodular flow
	II-B Information Flow Graph and the Max-Flow Bound

	III A Cut-set Bound on the Repair Bandwidth
	IV Solving the Parametric Linear Program
	V Construction of Maximal Flow
	VI Linear Network Codes for Cooperative Repair
	VII Two Families of Explicit Cooperative Regenerating Codes
	VII-A Construction of MSCR Codes for Exact Repair
	VII-B Construction of MBCR Codes for Exact Repair

	VIII Concluding Remarks
	Appendix A: Derivation of the Max-flow-min-cut Theorem from Frank's Theorem
	Appendix B: The MSCR Point under Heterogeneous Traffic
	Appendix C: Proof of Theorem 9
	Appendix D: Proof of Lemma 11
	Appendix E: Proof of Theorem 13
	References

