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Abstract

We study the compressed sensing reconstruction problem for a broad class of random, band-
diagonal sensing matrices. This construction is inspired by the idea of spatial coupling in coding
theory. As demonstrated heuristically and numerically by Krzakala et al. [KMS+11], message
passing algorithms can effectively solve the reconstruction problem for spatially coupled measure-
ments with undersampling rates close to the fraction of non-zero coordinates.

We use an approximate message passing (AMP) algorithm and analyze it through the state
evolution method. We give a rigorous proof that this approach is successful as soon as the
undersampling rate δ exceeds the (upper) Rényi information dimension of the signal, d(pX). More
precisely, for a sequence of signals of diverging dimension n whose empirical distribution converges
to pX , reconstruction is with high probability successful from d(pX)n+o(n) measurements taken
according to a band diagonal matrix.

For sparse signals, i.e. sequences of dimension n and k(n) non-zero entries, this implies
reconstruction from k(n)+o(n) measurements. For ‘discrete’ signals, i.e. signals whose coordinates
take a fixed finite set of values, this implies reconstruction from o(n) measurements. The result
is robust with respect to noise, does not apply uniquely to random signals, but requires the
knowledge of the empirical distribution of the signal pX .

1 Introduction and main results

1.1 Background and contributions

Assume that m linear measurements are taken of an unknown n-dimensional signal x ∈ Rn, according
to the model

y = Ax . (1)

The reconstruction problem requires to reconstruct x from the measured vector y ∈ Rm, and the
measurement matrix A ∈ Rm×n.

It is an elementary fact of linear algebra that the reconstruction problem will not have a unique
solution unless m ≥ n. This observation is however challenged within compressed sensing. A
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large corpus of research shows that, under the assumption that x is sparse, a dramatically smaller
number of measurements is sufficient [Don06a, CRT06a, Don06b]. Namely, if only k entries of x
are non-vanishing, then roughly m & 2k log(n/k) measurements are sufficient for A random, and
reconstruction can be solved efficiently by convex programming. Deterministic sensing matrices
achieve similar performances, provided they satisfy a suitable restricted isometry condition [CT05].
On top of this, reconstruction is robust with respect to the addition of noise [CRT06b, DMM11], i.e.
under the model

y = Ax+ w , (2)

with –say– w ∈ Rm a random vector with i.i.d. components wi ∼ N(0, σ2). In this context, the
notions of ‘robustness’ or ‘stability’ refers to the existence of universal constants C such that the
per-coordinate mean square error in reconstructing x from noisy observation y is upper bounded by
C σ2.

From an information-theoretic point of view it remains however unclear why we cannot achieve
the same goal with far fewer than 2 k log(n/k) measurements. Indeed, we can interpret Eq. (1) as
describing an analog data compression process, with y a compressed version of x. From this point
of view, we can encode all the information about x in a single real number y ∈ R (i.e. use m = 1),
because the cardinality of R is the same as the one of Rn. Motivated by this puzzling remark, Wu
and Verdù [WV10] introduced a Shannon-theoretic analogue of compressed sensing, whereby the
vector x has i.i.d. components xi ∼ pX . Crucially, the distribution pX is available to, and may be
used by the reconstruction algorithm. Under the mild assumptions that sensing is linear (as per
Eq. (1)), and that the reconstruction mapping is Lipschitz continuous, they proved that compression
is asymptotically lossless if and only if

m ≥ nd(pX) + o(n) . (3)

Here d(pX) is the (upper) Rényi information dimension of the distribution pX . We refer to Section
1.2 for a precise definition of this quantity. Suffices to say that, if pX is ε-sparse (i.e. if it puts mass
at most ε on nonzeros) then d(pX) ≤ ε. Also, if pX is the convex combination of a discrete part
(sum of Dirac’s delta) and an absolutely continuous part (with a density), then d(pX) is equal to the
weight of the absolutely continuous part.

This result is quite striking. For instance, it implies that, for random k-sparse vectors, m ≥
k + o(n) measurements are sufficient. Also, if the entries of x are random and take values in –
say– {−10,−9, . . . ,−9,+10}, then a sublinear number of measurements m = o(n), is sufficient! At
the same time, the result of Wu and Verdù presents two important limitations. First, it does not
provide robustness guarantees1 of the type described above. It therefore leaves open the possibility
that reconstruction is highly sensitive to noise when m is significantly smaller than the number of
measurements required in classical compressed sensing, namely Θ(k log(n/k)) for k-sparse vectors.
Second, it does not provide any computationally practical algorithms for reconstructing x from
measurements y.

1While this paper was about to be posted, we became aware of a paper by Wu and Verdù [WV11b] claiming that
the boundary δ = D(pX)(see below for a definition of D(pX)) is achievable in principle by the Bayes minimum mean
square error rule. Their result seems to be conditional on the validity of the replica method in this setting, which is
not yet proved.
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In an independent line of work, Krzakala et al. [KMS+11] developed an approach that leverages
on the idea of spatial coupling. This idea was introduced for the compressed sensing literature by
Kudekar and Pfister [KP10] (see [KRU11] and Section 1.5 for a discussion of earlier work on this
topic). Spatially coupled matrices are –roughly speaking– random sensing matrices with a band-
diagonal structure. The analogy is, this time, with channel coding.2 In this context, spatial coupling,
in conjunction with message-passing decoding, allows to achieve Shannon capacity on memoryless
communication channels. By analogy, it is reasonable to hope that a similar approach might enable
to sense random vectors x at an undersampling rate m/n close to the Rényi information dimension
of the coordinates of x, d(pX). Indeed, the authors of [KMS+11] evaluate this approach numerically
on a few classes of random vectors and demonstrate that it indeed achieves rates close to the fraction
of non-zero entries. They also support this claim by insightful statistical physics arguments.

In this paper, we fill the gap between the above works, and present the following contributions:

Construction. We describe a construction for spatially coupled sensing matrices A that is some-
what broader than the one of [KMS+11] and give precise prescriptions for the asymptotics of
various parameters. We also use a somewhat different reconstruction algorithm from the one
in [KMS+11], by building on the approximate message passing (AMP) approach of [DMM09,
DMM10]. AMP algorithms have the advantage of smaller memory complexity with respect to
standard message passing, and of smaller computational complexity whenever fast multiplica-
tion procedures are available for A.

Rigorous proof of convergence. Our main contribution is a rigorous proof that the above ap-
proach indeed achieves the information-theoretic limits set out by Wu and Verdù [WV10].
Indeed, we prove that, for sequences of spatially coupled sensing matrices {A(n)}n∈N, A(n) ∈
Rm(n)×n with asymptotic undersampling rate δ = limn→∞m(n)/n, AMP reconstruction is with
high probability successful in recovering the signal x, provided δ > d(pX).

Robustness to noise. We prove that the present approach is robust3 to noise in the following sense.
For any signal distribution pX and undersampling rate δ, there exists a constant C such that
the output x̂(y) of the reconstruction algorithm achieves a mean square error per coordinate
n−1E{‖x̂(y) − x‖22} ≤ C σ2. This result holds under the noisy measurement model (2) for a
broad class of noise models for w, including i.i.d. noise coordinates wi with E{w2

i } = σ2 <∞.

Non-random signals. Our proof does not apply uniquely to random signals x with i.i.d. compo-
nents, but indeed to more general sequences of signals {x(n)}n∈N, x(n) ∈ Rn indexed by their
dimension n. The conditions required are: (1) that the empirical distribution of the coordinates
of x(n) converges (weakly) to pX ; and (2) that ‖x(n)‖22 converges to the second moment of the
asymptotic law pX .

Interestingly, the present framework changes the notion of ‘structure’ that is relevant for reconstruct-
ing the signal x. Indeed, the focus is shifted from the sparsity of x to the information dimension
d(pX).

2Unlike [KMS+11], we follow here the terminology developed within coding theory.

3This robustness bound holds for all δ > D(pX), where D(pX) = d(pX) for a broad class of distributions pX

(including distributions without singular continuous component). When d(pX) < D(pX), a somewhat weaker robustness
bound holds for d(pX) < δ ≤ D(pX).
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In the rest of this section we state formally our results, and discuss their implications and limita-
tions, as well as relations with earlier work. Section 2.3 provides a precise description of the matrix
construction and reconstruction algorithm. Section 3 reduces the proof of our main results to two
key lemmas. One of these lemmas is a (quite straightforward) generalization of the state evolution
technique of [DMM09, BM11a]. The second lemma characterizes the behavior of the state evolution
recursion, and is proved in Section 5. The proof of a number of intermediate technical steps is
deferred to the appendices.

1.2 Formal statement of the results

We consider the noisy model (2). An instance of the problem is therefore completely specified by the
triple (x,w,A). We will be interested in the asymptotic properties of sequence of instances indexed
by the problem dimensions S = {(x(n), w(n), A(n))}n∈N. We recall a definition from [BM11b]. (More
precisely, [BM11b] introduces the B = 1 case of this definition.)

Definition 1.1. The sequence of instances S = {x(n), w(n), A(n)}n∈N indexed by n is said to be
a B-converging sequence if x(n) ∈ Rn, w(n) ∈ Rm, A(n) ∈ Rm×n with m = m(n) is such that
m/n→ δ ∈ (0,∞), and in addition the following conditions hold:

(a) The empirical distribution of the entries of x(n) converges weakly to a probability measure pX
on R with bounded second moment. Further n−1

∑n
i=1 xi(n)2 → EpX{X2}.

(b) The empirical distribution of the entries of w(n) converges weakly to a probability measure pW
on R with bounded second moment. Further m−1

∑m
i=1wi(n)2 → EpW {W 2} ≡ σ2.

(c) If {ei}1≤i≤n, ei ∈ Rn denotes the canonical basis, then lim sup
n→∞

maxi∈[n] ‖A(n)ei‖2 ≤ B,

lim inf
n→∞

mini∈[n] ‖A(n)ei‖2 ≥ 1/B.

We further say that {(x(n), w(n))}n≥0 is a converging sequence of instances, if they satisfy conditions
(a) and (b). We say that {A(n)}n≥0 is a B-converging sequence of sensing matrices if they satisfy
condition (c) above. We say S is a converging sequence if it is B-converging for some B.

Finally, if the sequence {(x(n), w(n), A(n))}n≥0 is random, the above conditions are required to
hold almost surely.

Notice that standard normalizations of the sensing matrix correspond to ‖A(n)ei‖22 = 1 (and
hence B = 1) or to ‖A(n)ei‖22 = m(n)/n. Since throughout we assume m(n)/n→ δ ∈ (0,∞), these
conventions only differ by a rescaling of the noise variance. In order to simplify the proofs, we allow
ourselves somewhat more freedom by taking B a fixed constant.

Given a sensing matrix A, and a vector of measurements y, a reconstruction algorithm produces
an estimate x̂(A; y) ∈ Rn of x. In this paper we assume that the empirical distribution pX , and the
noise level σ2 are known to the estimator, and hence the mapping x̂ : (A, y) 7→ x̂(A; y) implicitly
depends on pX and σ2. Since however pX , σ2 are fixed throughout, we avoid the cumbersome notation
x̂(A, y, pX , σ2).

Given a converging sequence of instances S = {x(n), w(n), A(n)}n∈N, and an estimator x̂, we
define the asymptotic per-coordinate reconstruction mean square error as

MSE(S; x̂) = lim sup
n→∞

1
n

∥∥x̂(A(n); y(n)
)
− x(n)

∥∥2
. (4)
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Notice that the quantity on the right hand side depends on the matrix A(n), which will be random,
and on the signal and noise vectors x(n), w(n) which can themselves be random. Our results hold
almost surely with respect to these random variables. In some applications it is more customary to
take the expectation with respect to the noise and signal distribution, i.e. to consider the quantity

MSE(S; x̂) = lim sup
n→∞

1
n

E
∥∥x̂(A(n); y(n)

)
− x(n)

∥∥2
. (5)

It turns out that the almost sure bounds imply, in the present setting, bounds on the expected mean
square error MSE, as well.

In this paper we study a specific low-complexity estimator, based on the AMP algorithm first
proposed in [DMM09]. This proceed by the following iteration (initialized with x1

i = EpXX for all
i ∈ [n]).

xt+1 = ηt(xt + (Qt �A)∗rt) , (6)
rt = y −Axt + bt � rt−1 . (7)

Here, for each t, ηt : Rn → Rn is a differentiable non-linear function that depends on the in-
put distribution pX . Further, ηt is separable4, namely, for a vector v ∈ Rn, we have ηt(v) =
(η1,t(v1), . . . , ηn,t(vn)). The matrix Qt ∈ Rm×n and the vector bt ∈ Rm can be efficiently computed
from the current state xt of the algorithm, � indicates Hadamard (entrywise) product and X∗ de-
notes the transpose of matrix X. Further Qt does not depend on the problem instance and hence
can be precomputed. Both Qt and bt are block-constants. This property makes their evaluation,
storage and manipulation particularly convenient. We refer to the next section for explicit definitions
of these quantities. In particular, the specific choice of ηi,t is dictated by the objective of minimizing
the mean square error at iteration t+ 1, and hence takes the form of a Bayes optimal estimator for
the prior pX . In order to stress this point, we will occasionally refer to this as to the Bayes optimal
AMP algorithm.

We denote by MSEAMP(S;σ2) the mean square error achieved by the Bayes optimal AMP al-
gorithm, where we made explicit the dependence on σ2. Since the AMP estimate depends on the
iteration number t, the definition of MSEAMP(S;σ2) requires some care. The basic point is that we
need to iterate the algorithm only for a constant number of iterations, as n gets large. Formally, we
let

MSEAMP(S;σ2) ≡ lim
t→∞

lim sup
n→∞

1
n

∥∥xt(A(n); y(n)
)
− x(n)

∥∥2
. (8)

As discussed above, limits will be shown to exist almost surely, when the instances (x(n), w(n), A(n))
are random, and almost sure upper bounds on MSEAMP(S;σ2) will be proved. (Indeed MSEAMP(S;σ2)
turns out to be deterministic.) On the other hand, one might be interested in the expected error

MSEAMP(S;σ2) ≡ lim
t→∞

lim sup
n→∞

1
n

E
{∥∥xt(A(n); y(n)

)
− x(n)

∥∥2}
. (9)

We will tie the success of our compressed sensing scheme to the fundamental information-theoretic
limit established in [WV10]. The latter is expressed in terms of the Rényi information dimension of
the probability measure pX .

4We refer to [DJM11] for a study of non-separables denoisers in AMP algorithms.
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Definition 1.2. Let pX be a probability measure over R, and X ∼ pX . The upper and lower
information dimension of pX are defined as

d(pX) = lim sup
`→∞

H([X]`)
log `

. (10)

d(pX) = lim inf
`→∞

H([X]`)
log `

. (11)

Here H( · ) denotes Shannon entropy and, for x ∈ R, [x]` ≡ b`xc/`, and bxc ≡ max{k ∈ Z : k ≤ x}.
If the lim sup and lim inf coincide, then we let d(pX) = d(pX) = d(pX).

Whenever the limit of H([X]`)/ log ` exists and is finite, the Rényi information dimension can also
be characterized as follows. Write the binary expansion of X, X = D0.D1D2D3 . . . with Di ∈ {0, 1}
for i ≥ 1. Then d(pX) is the entropy rate of the stochastic process {D1, D2, D3, . . . }. It is also
convenient to recall the following result form [Rén59, WV10].

Proposition 1.3 ([Rén59, WV10]). Let pX be a probability measure over R, and X ∼ pX . Assume
H(bXc) to be finite. If pX = (1 − ε)νd + εν̃ with νd a discrete distribution (i.e. with countable
support), then d(pX) ≤ ε. Further, if ν̃ has a density with respect to Lebesgue measure, then d(pX) =
d(pX) = d(pX) = ε. In particular, if P{X 6= 0} ≤ ε then d(pX) ≤ ε.

In order to present our result concerning the robust reconstruction, we need the definition of
MMSE dimension of the probability measure pX .

Given the signal distribution pX , we let mmse(s) denote the minimum mean square error in
estimating X ∼ pX from a noisy observation in gaussian noise, at signal-to-noise ratio s. Formally

mmse(s) ≡ inf
η:R→R

E
{[
X − η(

√
sX + Z)

]2}
, (12)

where Z ∼ N(0, 1). Since the minimum mean square error estimator is just the conditional expecta-
tion, this is given by

mmse(s) = E
{[
X − E[X|Y ]

]2}
, Y =

√
sX + Z . (13)

Notice that mmse(s) is naturally well defined for s = ∞, with mmse(∞) = 0. We will therefore
interpret it as a function mmse : R+ → R+ where R+ ≡ [0,∞] is the completed non-negative real
line.

We recall the inequality

0 ≤ mmse(s) ≤ 1
s
, (14)

obtained by the estimator η(y) = y/
√
s. A finer characterization of the scaling of mmse(s) is provided

by the following definition.

Definition 1.4 ([WV11a]). The upper and lower MMSE dimension of the probability measure pX
over R are defined as

D(pX) = lim sup
s→∞

s ·mmse(s) , (15)

D(pX) = lim inf
s→∞

s ·mmse(s) . (16)

If the lim sup and lim inf coincide, then we let D(pX) = D(pX) = D(pX).
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It is also convenient to recall the following result from [WV11a].

Proposition 1.5 ([WV11a]). If E{X2} <∞, then

D(pX) ≤ d(pX) ≤ d(pX) ≤ D(pX). (17)

Hence, if D(pX) exists, then d(pX) exists and D(pX) = d(pX). In particular, this is the case if
pX = (1− ε)νd + εν̃ with νd a discrete distribution (i.e. with countable support), and ν̃ has a density
with respect to Lebesgue measure.

We are now in position to state our main results.

Theorem 1.6. Let pX be a probability measure on the real line and assume

δ > d(pX). (18)

Then there exists a random converging sequence of sensing matrices {A(n)}n≥0, A(n) ∈ Rm×n,
m(n)/n → δ (with distribution depending only on δ), for which the following holds. For any ε > 0,
there exists σ0 such that for any converging sequence of instances {(x(n), w(n))}n≥0 with parameters
(pX , σ2, δ) and σ ∈ [0, σ0], we have, almost surely

MSEAMP(S;σ2) ≤ ε . (19)

Further, under the same assumptions, we have MSEAMP(S;σ2) ≤ ε.

Theorem 1.7. Let pX be a probability measure on the real line and assume

δ > D(pX). (20)

Then there exists a random converging sequence of sensing matrices {A(n)}n≥0, A(n) ∈ Rm×n,
m(n)/n → δ (with distribution depending only on δ) and a finite stability constant C = C(pX , δ),
such that the following is true. For any converging sequence of instances {(x(n), w(n))}n≥0 with
parameters (pX , σ2, δ), we have, almost surely

MSEAMP(S;σ2) ≤ C σ2 . (21)

Further, under the same assumptions, we have MSEAMP(S;σ2) ≤ C σ2.

Notice that, by Proposition 1.5, D(pX) ≥ d(pX), and D(pX) = d(pX) for a broad class of
probability measures pX , including all measures that do not have a singular continuous component
(i.e. decomposes into a pure point mass component and an absolutely continuous component).

The noiseless model (1) is covered as a special case of Theorem 1.6 by taking σ2 ↓ 0. For the
reader’s convenience, we state the result explicitly as a corollary.

Corollary 1.8. Let pX be a probability measure on the real line. Then, for any δ > d(pX) there exists
a random converging sequence of sensing matrices {A(n)}n≥0, A(n) ∈ Rm×n, m(n)/n → δ (with
distribution depending only on δ) such that, for any sequence of vectors {x(n)}n≥0 whose empirical
distribution converges to pX , the Bayes optimal AMP asymptotically almost surely recovers x(n)
from m(n) measurements y = A(n)x(n) ∈ Rm(n). (Namely, MSEAMP(S; 0) = 0 almost surely, and
MSEAMP(S; 0) = 0.)
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1.3 Discussion

Theorem 1.6 and Corollary 1.8 are, in many ways, puzzling. It is instructive to spell out in detail a
few specific examples, and discuss interesting features.

Example 1 (Bernoulli-Gaussian signal). Consider a Bernoulli-Gaussian distribution

pX = (1− ε) δ0 + ε γµ,σ (22)

where γµ,σ(dx) = (2πσ2)−1/2 exp{−(x − µ)2/(2σ2)}dx is the Gaussian measure with mean µ and
variance σ2. This model has been studied numerically in a number of papers, including [BSB19,
KMS+11]. By Proposition 1.3, we have d(pX) = ε, and by Proposition 1.5, D(pX) = D(pX) = ε as
well.

Construct random signals x(n) ∈ Rn by sampling i.i.d. coordinates x(n)i ∼ pX . Glivenko-
Cantelli’s theorem implies that the empirical distribution of the coordinates of x(n) converges almost
surely to pX , hence we can apply Corollary 1.8 to recover x(n) from m(n) = nε+o(n) measurements
y(n) ∈ Rm(n). Notice that the number of non-zero entries in x(n) is, almost surely, k(n) = nε+o(n).
Hence, we can restate the implication of Corollary 1.8 as follows. A sequence of vectors x(n) with
Bernoulli-Gaussian distribution and k(n) nonzero entries can almost surely recovered by m(n) =
k(n) + o(n) measurements.

Example 2 (Mixture signal with a point mass). The above remarks generalize immediately
to arbitrary mixture distributions of the form

pX = (1− ε) δ0 + ε q , (23)

where q is a measure that is absolutely continuous with respect to Lebesgue measure, i.e. q(dx) =
f(x) dx for some measurable function f . Then, by Proposition 1.3, we have d(pX) = ε, and by
Proposition 1.5, D(pX) = D(pX) = ε as well. Arguing as above we have the following.

Consequence 1.9. Let {x(n)}n≥0 be a sequence of vectors with i.i.d. components x(n)i ∼ pX where
pX is a mixture distribution as per Eq. (23). Denote by k(n) the number of nonzero entries in x(n).
Then, almost surely as n→∞, Bayes optimal AMP recovers the signal x(n) from m(n) = k(n)+o(n)
spatially coupled measurements.

Under the regularity hypotheses of [WV10], no scheme can do substantially better, i.e. reconstruct
x(n) from m(n) measurements if lim sup

n→∞
m(n)/k(n) < 1.

One way to think about this result is the following. If an oracle gave us the support of x(n), we
would still need m(n) ≥ k(n)− o(n) measurements to reconstruct the signal. Indeed, the entries in
the support have distribution q, and d(q) = 1. Corollary 1.8 implies that the measurements overhead
for estimating the support of x(n) is sublinear, o(n), even when the support is of order n.

It is sometimes informally argued that compressed sensing requires at least Θ(k log(n/k)) for
‘information-theoretic reasons’, namely that specifying the support requires about nH(k/n) ≈
k log(n/k) bits. This argument is of course incomplete because it assumes that each measurement yi
is described by a bounded number of bits. Lower bounds of the form m ≥ C k log(n/k) are proved in
the literature but they do not contradict our results. Specifically, [Wai09, ASZ10] prove information-
theoretic lower bounds on the required number of measurements, under specific constructions for the
random sensing matrix A. Further, these papers focus on the specific problem of exact support re-
covery. The paper [RWY09] proves minimax bounds for reconstructing vectors belonging to `p-balls.
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However, as the noise variance tends to zero, these bounds depend on the sensing matrix in a way
that is difficult to quantify. In particular, they provide no explicit lower bound on the number of
measurements required for exact recovery in the noiseless limit. Similar bounds were obtained for
arbitrary measurement matrices in [CD11]. Again, these lower bounds vanish as noise tends to zero
as soon as m(n) ≥ k(n).

A different line of work derives lower bounds from Gelfand’ width arguments [Don06a, KT07].
These lower bounds are only proved to be a necessary condition for a stronger reconstruction guar-
antees. Namely, these works require the vector of measurements y = Ax to enable recovery for all
k-sparse vectors x ∈ Rn. This corresponds to the ‘strong’ phase transition of [DT05, Don06b], and
is also referred to as the ‘for all’ guarantee in the computer science literature [BGI+08].

The lower bound that comes closest to the present setting is the ‘randomized’ lower bound
[BIPW10]. The authors use an elegant communication complexity argument to show that m(n) =
Ω(k(n) log(n/k(n))) is necessary for achieving stable recovery with an `1 − `1 error guarantee. This
is a stronger stability condition than what is achieved in Theorem 1.7, allowing for a more powerful
noise process. Indeed the same paper also proves that recovery is possible from m(n) = O(k(n))
measurements under stronger conditions.

Example 3 (Discrete signal). Let K be a fixed integer, a1, . . . , aK ∈ R, and (p1, p2, . . . , pK)
be a collection of non-negative numbers that add up to one. Consider the probability distribution
that puts mass pi on each ai

pX =
K∑
i=1

pi δai , (24)

and let x(n) be a signal with i.i.d. coordinates x(n)i ∼ pX . By Proposition 1.3, we have d(pX) = 0.
As above, the empirical distribution of the coordinates of the vectors x(n) converges to pX . By
applying Corollary 1.8 we obtain the following

Consequence 1.10. Let {x(n)}n≥0 be a sequence of vectors with i.i.d. components x(n)i ∼ pX
where pX is a discrete distribution as per Eq. (24). Then, almost surely as n → ∞, Bayes optimal
AMP recovers the signal x(n) from m(n) = o(n) spatially coupled measurements.

It is important to further discuss the last statement because the reader might be misled into too
optimistic a conclusion. Consider any signal x ∈ Rn. For practical purposes, this will be represented
with finite precision, say as a vector of `-bit numbers. Hence, in practice, the distribution pX is
always discrete, with K = 2`. One might conclude from the above that a sublinear number of
measurements m(n) = o(n) is sufficient for any signal.

This is of course too optimistic. The key point is that Theorem 1.6 and Corollary 1.8 are
asymptotic statements. As demonstrated in [KMS+11], for some classes of signals this asymptotic
behavior is already relevant when n is of the order of a few thousands. On the other hand, the
same will not be true for a discrete signal with a large number of levels K (which is the case for an
`-bit representation as in the above example, with ` moderately large). In particular, a necessary
condition in that case is n� K. It would of course be important to substantiate/refine such a rule
of thumb by numerical simulations or non-asymptotic bounds.

Example 4 (A discrete-continuous mixture). Consider the probability distribution

pX = ε+ δ+1 + ε−δ−1 + ε q , (25)
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where ε+ + ε− + ε = 1 and the probability measure q has a density with respect to Lebesgue
measure. Again, let x(n) be a vector with i.i.d. components x(n)i ∼ pX . We can apply Corollary
1.8 to conclude that m(n) = nε + o(n) spatially coupled measurements are sufficient. This should
be contrasted with the case of sensing matrices with i.i.d. entries studied in [DT10] under convex
reconstruction methods. In this case m(n) = n(1 + ε)/2 + o(n) measurements are necessary.

In the next section we describe the basic intuition behind the surprising phenomenon in Theorems
1.6 and 1.7, and why are spatially-coupled sensing matrices so useful. We conclude by stressing once
more the limitations of these results:

• The Bayes-optimal AMP algorithm requires knowledge of the signal distribution pX . Notice
however that only a good approximation of pX (call it p eX , and denote by X̃ the corresponding
random variable) is sufficient. Assume indeed that pX and p eX can be coupled in such a way
that E{(X − X̃)2} ≤ σ̃2. Then

x = x̃+ u (26)

where ‖u‖22 . nσ̃2. This is roughly equivalent to adding to the noise vector z further ‘noise’
z̃ with variance σ̃2/δ. Indeed, it can be shown that the guarantee in Theorem 1.7 degrades
gracefully as p eX gets different from pX .

Finally, it was demonstrated numerically in [VS11, KMS+11] that, in some cases, a good ‘proxy’
for pX can be learnt through an EM-style iteration.

• As mentioned above, the guarantees in Theorems 1.6 and 1.7 are only asymptotic. It would
be important to develop analogous non-asymptotic results.

• The stability bound (21) is non-uniform, in that the proportionality constant C depends on
the signal distribution. It would be important to establish analogous bounds that are uniform
over suitable classes of distributions. (We do not expect Eq. (21) to hold uniformly over all
distributions.)

1.4 How does spatial coupling work?

Spatially-coupled sensing matrices A are –roughly speaking– band diagonal matrices. It is convenient
to think of the graph structure that they induce on the reconstruction problem. Associate one node
(a variable node in the language of factor graphs) to each coordinate i in the unknown signal x.
Order these nodes on the real line R, putting the i-th node at location i ∈ R. Analogously, associate
a node (a factor node) to each coordinate a in the measurement vector y, and place the node a at
position a/δ on the same line. Connect this node to all the variable nodes i such that Aai 6= 0. If A
is band diagonal, only nodes that are placed close enough will be connected by an edge. See Figure 1
for an illustration.

In a spatially coupled matrix, additional measurements are associated to the first few coordinates
of x, say coordinates x1, . . . , xn0 with n0 much smaller than n. This has a negligible impact on the
overall undersampling ratio as n/n0 → ∞. Although the overall undersampling remains δ < 1,
the coordinates x1, . . . , xn0 are oversampled. This ensures that these first coordinates are recovered
correctly (up to a mean square error of order σ2). As the algorithm is iterated, the contribution
of these first few coordinates is correctly subtracted from all the measurements, and hence we can

10



€ 

1
δ

€ 

1

Additional  measurements  
associated to the first few coordinates 

Figure 1: Graph structure of a spatially coupled matrix. Variable nodes are shown as circle and check nodes
are represented by square.

effectively eliminate those nodes from the graph. In the resulting graph, the first few variables are
effectively oversampled and hence the algorithm will reconstruct their values, up to a mean square
error of order σ2. As the process is iterated, variables are progressively reconstructed, proceeding
from left to right along the node layout.

While the above explains the basic dynamics of AMP reconstruction algorithms under spatial
coupling, a careful consideration reveals that this picture leaves open several challenging questions.
In particular, why does the overall undersampling factor δ have to exceed d(pX) for reconstruction
to be successful? Our proof is based on a potential function argument. We will prove that there
exists a potential function for the AMP algorithm, such that, when δ > d(pX), this function has
its global minimum close to exact reconstruction. Further, we will prove that, unless this minimum
is essentially achieved, AMP can always decrease the function. This technique is different from the
one followed in [KRU11] for the LDPC codes over the binary erasure channel, and we think it is of
independent interest.

1.5 Further related work

The most closely related earlier work was already discussed above.
More broadly, message passing algorithms for compressed sensing where the object of a number of

studies studies, starting with [BSB19]. As mentioned, we will focus on approximate message passing
(AMP) as introduced in [DMM09, DMM10]. As shown in [DJM11] these algorithms can be used in
conjunction with a rich class of denoisers η( · ). A subset of these denoisers arise as posterior mean
associated to a prior pX . Several interesting examples were studied by Schniter and collaborators
[Sch10, Sch11, SPS10], and by Rangan and collaborators [Ran11, KGR11].

Spatial coupling has been the object of growing interest within coding theory over the last few
years. The first instance of spatially coupled code ensembles were the convolutional LDPC codes of
Felström and Zigangirov [FZ99]. While the excellent performances of such codes had been known for
quite some time [SLJZ04], the fundamental reason was not elucidated until recently [KRU11] (see also
[LF10]). In particular [KRU11] proved –for communication over the binary erasure channel (BEC)–
that the thresholds of spatially coupled ensembles under message passing decoding coincide with the
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thresholds of the base LDPC code under MAP decoding. In particular, this implies that spatially
coupled ensembles achieve capacity over the BEC. The analogous statement for general memoryless
symmetric channels remains open, but substantial evidence was put forward in [KMRU10]. The
paper [HMU10] discusses similar ideas in a number of graphical models.

The first application of spatial coupling ideas to compressed sensing is due to Kudekar and Pfister
[KP10]. Their proposed message passing algorithms do not make use of the signal distribution pX ,
and do not fully exploit the potential of spatially coupled matrices. The message passing algorithm
used here belongs to the general class introduced in [DMM09]. The specific use of the minimum-mean
square error denoiser was suggested in [DMM10]. The same choice is made in [KMS+11].

Finally, let us mention that robust sparse recovery of k-sparse vectors from m = O(k log log(n/k))
measurement is possible, using suitable ‘adaptive’ sensing schemes [IPW11].

2 Matrix and algorithm construction

In this section, we define an ensemble of random matrices, and the corresponding choices of Qt, bt, ηt
that achieve the reconstruction guarantees in Theorems 1.6 and 1.7. We proceed by first introducing
a general ensemble of random matrices. Correspondingly, we define a deterministic recursion named
state evolution, that plays a crucial role in the algorithm analysis. In Section 2.3, we define the
algorithm parameters and construct specific choices of Qt, bt, ηt. The last section also contains a
restatement of Theorems 1.6 and 1.7, in which this construction is made explicit.

2.1 General matrix ensemble

The sensing matrix A will be constructed randomly, from an ensemble denoted byM(W,M,N). The
ensemble depends on two integers M,N ∈ N, and on a matrix with non-negative entries W ∈ RR×C

+ ,
whose rows and columns are indexed by the finite sets R, C (respectively ‘rows’ and ‘columns’). The
matrix is roughly row-stochastic, i.e.

1
2
≤
∑
c∈C

Wr,c ≤ 2 , for all r ∈ R . (27)

We will let |R| ≡ Lr and |C| = Lc denote the matrix dimensions. The ensemble parameters are
related to the sensing matrix dimensions by n = NLc and m = MLr.

In order to describe a random matrix A ∼M(W,M,N) from this ensemble, partition the columns
and row indices in –respectively– Lc and Lr groups of equal size. Explicitly

[n] = ∪s∈CC(s) , |C(s)| = N ,

[m] = ∪r∈RR(r) , |R(r)| = M .

Here and below we use [k] to denote the set of first k integers [k] ≡ {1, 2, . . . , k}. Further, if i ∈ R(r)
or j ∈ C(s) we will write, respectively, r = g(i) or s = g(j). In other words g( · ) is the operator
determining the group index of a given row or column.

With this notation we have the following concise definition of the ensemble.

Definition 2.1. A random sensing matrix A is distributed according to the ensemble M(W,M,N)
(and we write A ∼ M(W,M,N)) if the entries {Aij , i ∈ [m], j ∈ [n]} are independent Gaussian
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random variables with 5

Aij ∼ N
(

0,
1
M

Wg(i),g(j)

)
. (28)

2.2 State evolution

State evolution allows an exact asymptotic analysis of AMP algorithms in the limit of a large number
of dimensions. As indicated by the name, it bears close resemblance to the density evolution method
in iterative coding theory [RU08]. Somewhat surprisingly, this analysis approach is asymptotically
exact despite the underlying factor graph being far from locally tree-like.

State evolution was first developed in [DMM09] on the basis of heuristic arguments, and substan-
tial numerical evidence. Subsequently, it was proved to hold for Gaussian sensing matrices with i.i.d.
entries, and a broad class of iterative algorithm in [BM11a]. These proofs were further generalized
in [Ran11], to cover ‘generalized’ AMP algorithms.

In the present case, state evolution takes the following form. 6

Definition 2.2. Given W ∈ RR×C
+ roughly row-stochastic, and δ > 0, the corresponding state

evolution maps T′W : RR
+ → RC

+, T′′W : RC
+ → RR

+, are defined as follows. For φ = (φa)a∈R ∈ RR
+,

ψ = (ψi)i∈C ∈ RC
+, we let:

T′W (φ)i = mmse
(∑
b∈R

Wb,iφ
−1
b

)
, (29)

T′′W (ψ)a = σ2 +
1
δ

∑
i∈C

Wa,i ψi . (30)

We finally define TW = T′W ◦ T′′W .

In the following, we shall omit the subscripts from TW whenever clear from the context.

Definition 2.3. Given W ∈ RLr×Lc
+ roughly row-stochastic, the corresponding state evolution se-

quence is the sequence of vectors {φ(t), ψ(t)}t≥0, φ(t) = (φa(t))a∈R ∈ RR
+, ψ(t) = (ψi(t))i∈C ∈ RC

+,
defined recursively by φ(t) = T′′W (ψ(t)), ψ(t+ 1) = T′W (φ(t)), with initial condition

ψi(0) =∞ for all i ∈ C . (31)

Hence, for all t ≥ 0,

φa(t) = σ2 +
1
δ

∑
i∈C

Wa,i ψi(t) ,

ψi(t+ 1) = mmse
(∑
b∈R

Wb,iφ
−1
b (t)

)
.

(32)

5As in many papers on compressed sensing, the matrix here has independent Gaussian entries; however, unlike
standard practice, here the entries are of widely different variances.

6In previous work, the state variable concerned a single scalar, representing the mean-squared error in the current
reconstruction, averaged across all coordinates. In this paper, the dimensionality of the state variable is much larger,
because it contains ψ an individualized MSE for each coordinate of the reconstruction and also φ a pseudo-data MSE
for each measurement coordinate.
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In words, and as implicit in Definition 2.3, ψ = T ′W (φ) computes the formal MSE ψ of coordinates
of x, for a specified level of formal MSE φ of coordinates of pseudo-data r. Similarly φ = T ′′W (ψ)
computes the formal MSE in components of r given the formal MSE of coordinates of x. Section 4
below gives an heuristic derivation of state evolution.

2.3 General algorithm definition

In order to fully define the AMP algorithm (6), (7), we need to provide constructions for the matrix
Qt, the nonlinearities ηt, and the vector bt. In doing this, we exploit the fact that the state evolution
sequence {φ(t)}t≥0 can be precomputed.

We define the matrix Qt by

Qtij ≡
φg(i)(t)−1∑Lr

k=1Wk,g(j)φk(t)−1
. (33)

Notice that Qt is block-constant: for any r, s ∈ [L], the block QtR(r),C(s) has all its entries equal.
As mentioned in Section 1, the function ηt : Rn → Rn is chosen to be separable, i.e. for v ∈ RN :

ηt(v) =
(
ηt,1(v1), ηt,2(v2), . . . , ηt,N (vN )

)
. (34)

We take ηt,i to be a conditional expectation estimator for X ∼ pX in gaussian noise:

ηt,i(vi) = E
{
X
∣∣X + sg(i)(t)

−1/2Z = vi
}
, sr(t) ≡

∑
u∈R

Wu,rφu(t)−1 . (35)

Notice that the function ηt,i( · ) depends on i only through the group index g(i), and in fact only
parametrically through sg(i)(t).

Finally, in order to define the vector bti, let us introduce the quantity

〈η′t〉u =
1
N

∑
i∈C(u)

η′t,i
(
xti + ((Qt �A)∗rt)i

)
. (36)

The vector bt is then defined by

bti ≡
1
δ

∑
u∈C

Wg(i),uQ̃
t−1
g(i),u 〈η

′
t−1〉u , (37)

where we defined Qti,j = Q̃tr,u for i ∈ R(r), j ∈ C(u). Again bti is block-constant: the vector btC(u)
has all its entries equal.

This completes our definition of the AMP algorithm. Let us conclude with a few computational
remarks:

1. The quantities Q̃t, φ(t) can be precomputed efficiently iteration by iteration, because they are
–respectively– Lr × Lc and Lr-dimensional, and, as discussed further below, Lr, Lc are much
smaller than m,n. The most complex part of this computation is implementing the iteration
(32), which has complexity O((Lr+Lc)3), plus the complexity of evaluating the mmse function,
which is a one-dimensional integral.
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2. The vector bt is also block-constant, so can be efficiently computed using Eq. (37).

3. Instead of computing φ(t) analytically by iteration (32), φ(t) can also be estimated from data
xt, rt. In particular, by generalizing the methods introduced in [DMM09, Mon12], we get the
estimator

φ̂a(t) =
1
M
‖rtR(a)‖

2
2 , (38)

where rtR(a) = (rtj)j∈R(a) is the restriction of rt to the indices in R(a). An alternative more
robust estimator, would be

φ̂a(t)1/2 =
1

Φ−1(3/4)
|rtR(a)|(M/2) , (39)

where Φ(z) is the Gaussian distribution function, and, for v ∈ RK , |v|(`) is the `-th largest
entry in the vector (|v1|, |v2|, . . . , |vK |). The idea underlying both of the above estimator is
that the components of rtR(a) are asymptotically i.i.d. with mean zero and variance φa(t)

2.4 Choices of parameters

In order to prove our main Theorem 1.6, we use a sensing matrix from the ensemble M(W,M,N)
for a suitable choice of the matrix W ∈ RR×C. Our construction depends on parameters ρ ∈ R+,
L,L0 ∈ N, and on the ‘shape function’ W. As explained below, ρ will be taken to be small, and
hence we will treat 1/ρ as an integer to avoid rounding (which introduces in any case a negligible
error).

Definition 2.4. A shape function is a function W : R → R+ continuously differentiable, with
support in [−1, 1] and such that

∫
RW(u) du = 1, and W(−u) =W(u).

We let C ∼= {−2ρ−1, . . . , 0, 1, . . . , L − 1}, so that Lc = L + 2ρ−1. The rows are partitioned as
follows:

R = R0 ∪
{
∪−1
i=−2ρ−1 Ri

}
,

where R0
∼= {−ρ−1, . . . , 0, 1, . . . , L− 1 + ρ−1}, and |Ri| = L0. Hence Lr = Lc + 2ρ−1L0.

Finally, we take N so that n = NLc, and let M = Nδ so that m = MLr = N(Lc + 2ρ−1L0)δ.
Notice that m/n = δ(Lc+ 2ρ−1L0)/Lc. Since we will take Lc much larger than L0/ρ, we in fact have
m/n arbitrarily close to δ.

Given these inputs, we construct the corresponding matrix W = W (L,L0,W, ρ) as follows

1. For i ∈ {−2ρ−1, . . . ,−1}, and each a ∈ Ri, we let Wa,i = 1. Further, Wa,j = 0 for all j ∈ C\{i}.

2. For all a ∈ R0
∼= {−ρ−1, . . . , 0, . . . , L− 1 + ρ−1}, we let

Wa,i = ρW
(
ρ (a− i)

)
i ∈ {−2ρ−1, . . . , L− 1}. (40)

See Fig. 2 for an illustration of the matrix W . In the following we occasionally use the shorthand
Wa−i ≡ ρW

(
ρ (a− i)

)
.
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Figure 2: Matrix W

It is not hard to check that W is roughly row-stochastic. Also, the restriction of W to columns
in C0 is roughly column-stochastic.

We are now in position to restate Theorem 1.6 in a more explicit form.

Theorem 2.5. Let pX be a probability measure on the real line with δ > d(pX), and let W : R→ R+

be a shape function. For any ε > 0, there exist L0, L, ρ, t0, σ2
0 > 0 such that L0/(Lρ) ≤ ε, and

further the following holds true for W = W (L,L0,W, ρ).
For N ≥ 0, and A(n) ∼ M(W,M,N) with M = Nδ, and for all σ2 ≤ σ2

0, t ≥ t0, we almost
surely have

lim sup
N→∞

1
n

∥∥xt(A(n); y(n)
)
− x(n)

∥∥2 ≤ ε . (41)

Further, under the same assumptions, we have

lim sup
N→∞

1
n

E
{∥∥xt(A(n); y(n)

)
− x(n)

∥∥2} ≤ ε . (42)

In order to obtain a stronger form of robustness, as per Theorem 1.7, we slightly modify the
sensing scheme. We construct the sensing matrix Ã from A by appending 2ρ−1L0 rows in the
bottom.

Ã =
(

A

0 I

)
, (43)
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where I is the identity matrix of dimensions 2ρ−1L0. Note that this corresponds to increasing the
number of measurements; however, the asymptotic undersampling rate remains δ, provided that
L0/(Lρ)→ 0, as n→∞.

The reconstruction scheme is modified as follows. Let x1 be the vector obtained by restricting
x to entries in ∪iC(i), where i ∈ {−2ρ−1, · · · , L − 2ρ−1 − 1}. Also, let x2 be the vector obtained
by restricting x to entries in ∪iC(i), where i ∈ {L − 2ρ−1, · · · , L − 1}. Therefore, x = (x1, x2)T .
Analogously, let y = (y1, y2)T where y1 is given by the restriction of y to ∪i∈RR(i) and y2 corresponds
to the additional 2ρ−1L0 rows. Define w1 and w2 from the noise vector w, analogously. Hence,(

y1

y2

)
=
(

A

0 I

)(
x1

x2

)
+
(
w1

w2

)
. (44)

Note that the sampling rate for vector x2 is one, i.e., y2 and x2 are of the same length and are
related to each other through the identity matrix I. Hence, we have a fairly good approximation of
these entries. We use the AMP algorithm as described in the previous section to obtain an estimation
of x1. Formally, let xt be the estimation at iteration t obtained by applying the AMP algorithm.
The modified estimation is then x̃t = (xt1, y2)T .

As we will see later, this modification in the sensing matrix and algorithm, while not necessary,
simplifies some technical steps in the proof.

Theorem 2.6. Let pX be a probability measure on the real line with δ > D(pX), and letW : R→ R+

be a shape function. There exist L0, L, ρ, t0 and a finite stability constant C = C(pX , δ), such that
L0/(Lρ) < ε, for any given ε > 0, and the following holds true for the modified reconstruction
scheme.

For t ≥ t0, we almost surely have,

lim sup
N→∞

1
n

∥∥x̃t(A(n); y(n)
)
− x(n)

∥∥2 ≤ Cσ2. (45)

Further, under the same assumptions, we have

lim sup
N→∞

1
n

E
{∥∥x̃t(A(n); y(n)

)
− x(n)

∥∥2} ≤ Cσ2. (46)

It is obvious that Theorems 2.5 and 2.6 respectively imply Theorems 1.6 and 1.7. We shall
therefore focus on the proofs of Theorems 2.5 and 2.6 in the rest of the paper.

3 Key lemmas and proof of the main theorems

Our proof is based in a crucial way on state evolution. This effectively reduces the analysis of the
algorithm (6), (7) to the analysis of the deterministic recursion (32).

Lemma 3.1. Let W ∈ RR×C
+ be a roughly row-stochastic matrix (see Eq. (27))and φ(t), Qt, bt be

defined as in Section 2.3. Let M = M(N) be such that M/N → δ, as N → ∞. Define m = MLr,
n = NLc, and for each N ≥ 1, let A(n) ∼ M(W,M,N). Let {(x(n), w(n))}n≥0 be a converging
sequence of instances with parameters (pX , σ2). Then, for all t ≥ 1, almost surely we have

lim sup
N→∞

1
N
‖xtC(i)(A(n); y(n))− xC(i)‖22 = mmse

(∑
a∈R

Wa,iφ
−1
a (t− 1)

)
. (47)

for all i ∈ C.
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This lemma is a straightforward generalization of [BM11a]. Since a formal proof does not require
new ideas, but a significant amount of new notations, it is presented in a separate forthcoming
publication [BLM12] which covers an even more general setting. In the interest of self-containedness,
and to develop useful intuition on state evolution, we present an heuristic derivation of the state
evolution equations (32) in Section 4.

The next Lemma provides the needed analysis of the recursion (32).

Lemma 3.2. Let δ > 0, and pX be a probability measure on the real line. Let W : R → R+ be a
shape function.

(a) If δ > d(pX), then for any ε > 0, there exist σ0, ρ, L∗ > 0, such that for any σ2 ∈ [0, σ2
0], L0 >

3/δ, and L > L∗, the following holds for W = W (L,L0,W, ρ):

lim
t→∞

1
L

L+ρ−1−1∑
a=−ρ−1

φa(t) ≤ ε. (48)

(b) If δ > D(pX), then there exist ρ, L∗ > 0, and a finite stability constant C = C(pX , δ), such
that for L0 > 3/δ, and L > L∗, the following holds for W = W (L,L0,W, ρ).

lim
t→∞

1
L

L−ρ−1−1∑
a=−ρ−1

φa(t) ≤ Cσ2. (49)

The proof of this lemma is deferred to Section 5 and is indeed the technical core of the paper.
Now, we have in place all we need to prove our main results.

Proof (Theorem 2.5). Recall that C ∼= {−2ρ−1 · · · , L− 1}. Therefore,

lim sup
N→∞

1
n

∥∥xt(A(n); y(n)
)
− x(n)

∥∥2 =
1
Lc

∑
i∈C

lim sup
N→∞

1
N

∥∥xtC(i)

(
A(n); y(n)

)
− xC(i)(n)

∥∥2

(a)

≤ 1
Lc

L−1∑
i=−2ρ−1

mmse

(∑
a∈R

Wa,iφ
−1
a (t− 1)

)
(b)

≤ 1
Lc

L−1∑
i=−2ρ−1

mmse

(
1
2
φ−1
i+1/ρ(t− 1)

)
(c)

≤ 1
Lc

L+ρ−1−1∑
a=−ρ−1

2φa(t− 1).

(50)

Here, (a) follows from Lemma 3.1; (b) follows from the fact that φa(t) is nondecreasing in a for every
t (see Lemma 5.9 below) and from the fact that W is roughly column-stochastic; (c) follows from
the inequality mmse(s) ≤ 1/s. The result is immediate due to Lemma 3.2, Part (a).

The claim regarding the expected error follows readily since X has bounded second moment.
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Proof (Theorem 2.6). The proof proceeds in a similar manner to the proof of Theorem 1.6.

lim sup
N→∞

1
n

∥∥x̃t(A(n); y(n)
)
− x(n)

∥∥2

=
1
Lc

{ L−2ρ−1−1∑
i=−2ρ−1

lim sup
N→∞

1
N

∥∥xtC(i)

(
A(n); y(n)

)
− xC(i)(n)

∥∥2 + lim
N→∞

1
N

∥∥w2(n)
∥∥2
}

≤ 1
Lc

{ L−2ρ−1−1∑
i=−2ρ−1

mmse

(∑
a∈R

Wa,iφ
−1
a (t− 1)

)
+ lim
N→∞

1
N

∥∥w2(n)
∥∥2
}

≤ 1
Lc

{ L−2ρ−1−1∑
i=−2ρ−1

mmse

(
1
2
φ−1
i+1/ρ(t− 1)

)
+ lim
N→∞

1
N

∥∥w2(n)
∥∥2
}

≤ 1
Lc

{ L−ρ−1−1∑
a=−ρ−1

2φa(t− 1) + lim
N→∞

1
N

∥∥w2(n)
∥∥2
}
≤ C σ2,

(51)

where the last step follows from Part (b) in Lemma 3.1, and Part (b) in Definition 1.1.
Again, the claim regarding the expected error is immediate since X has bounded second moment.

4 State evolution: an heuristic derivation

This section presents an heuristic derivation of the state evolution equations (32). Our objective is to
provide some basic intuition: a proof in a more general setting will appear in a separate publication
[BLM12]. An heuristic derivation similar to the present one, for the special cases of sensing matrices
with i.i.d. entries was presented in [BM11a].

Consider the recursion (32), and introduce the following modifications: (i) At each iteration,
replace the random matrix A with a new independent copy A(t); (ii) Replace the observation vector
y with yt = A(t)x0 + w; (iii) Eliminate the last term in the update equation for rt. Then, we have
the following update rules:

xt+1 = ηt(xt + (Qt �A(t))∗rt) , (52)
rt = yt −A(t)xt , (53)

whereA(0), A(1), A(2), · · · are i.i.d. random matrices distributed according to the ensembleM(W,M,N),
i.e.,

Aij(t) ∼ N
(

0,
1
M
Wg(i),g(j)

)
. (54)

Rewriting the recursion by eliminating rt, we obtain:

xt+1 = ηt((Qt �A(t))∗yt + (I − (Qt �A(t))∗A(t))xt)
= ηt(x0 + (Qt �A(t))∗w +B(t)(xt − x0)) ,

(55)

where B(t) = I − (Qt � A(t))∗A(t) ∈ Rn×n. Note that the recursion (55) does not correspond
to the AMP update rules defined per Eqs. (6) and (7). In particular, it does not correspond to
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any practical algorithm. However, it is much easier to analyze, as it allows to neglect completely
correlations induced by the fact that we should use the same sensing matrix A across different
iterations. Also, it is useful for presenting the intuition behind the AMP algorithm and to emphasize
the role of the term bt� rt−1 in the update rule for rt. As it emerges from the proof of [BM11a], this
term does asymptotically cancels dependencies across iterations.

By virtue of the central limit theorem, each entry of B(t) is approximately normal. More specifi-
cally, Bij(t) is approximately normal with mean zero and variance (1/M)

∑
r∈RWr,g(i)Wr,g(j)Qr,g(i),

for i, j ∈ [n]. Define τ̂t(s) = limN→∞ ‖xtC(s) − xC(s)‖2/N , for s ∈ C. It is easy to show that distinct
entries in B(t) are approximately independent. Also, B(t) is independent of {B(s)}1≤s≤t−1, and in
particular, of xt − x0. Hence, B(t)(xt − x0) converges to a vector, say v, with i.i.d. normal entries,
and for i ∈ [n],

E{vi} = 0, E{v2
i } =

N

M

∑
s∈C

∑
r∈R

Wr,g(i)Wr,sQr,g(i) τ̂
2
t (s). (56)

Conditional on w, (Qt � A(t))∗w is a vector of i.i.d. normal entries with mean 0. Also, the
variance of its ith entry, for i ∈ [n], is

1
M

∑
r∈R

Wr,g(i)Qr,g(i)‖wR(r)‖2 =
1
M

∑
r∈R

‖wR(r)‖2, (57)

which converges to σ2, by the law of large numbers. With slightly more work, it can be shown that
these entries are approximately independent of the ones of B(t)(xt − x0).

Summarizing, the ith entry of the vector in the argument of ηt in Eq. (55) converges to X +
τt(g(i))Z with Z ∼ N(0, 1) independent of X, and

τ2
t (s) = σ2 +

1
δ

∑
u∈C

∑
r∈R

Wr,sWr,uQr,s τ̂
2
t (u),

τ̂2
t (s) = lim

N→∞

1
N
‖xtC(s) − xC(s)‖2,

(58)

for s ∈ C. In addition, using Eq. (55) and invoking Eqs. (34), (35), each entry of xt+1
C(s) − xC(s)

converges to ηt,s(X + τt(s)Z)−X, for s ∈ C. Therefore,

τ̂2
t+1(s) = lim

N→∞

1
N
‖xt+1

C(s) − xC(s)‖2

= E{[ηt,s(X + τt(s)Z)−X]2} = mmse(τ−2
t (s)).

(59)

Using Eqs. (58) and (59), we obtain:

τt+1(s)2 = σ2 +
1
δ

∑
r∈R

Wr,sQr,s

(∑
u∈C

Wr,u mmse(τ−2
t (u))

)
. (60)

Applying the change of variable τ−2
t (u) =

∑
b∈RWb,uφ

−1
b (t), and substituting for Qr,s, from

Eq. (33), we obtain the state evolution recursion, Eq. (32).
In conclusion, we showed that the state evolution recursion would hold if the matrix A was re-

sampled independently from the ensembleM(W,M,N), at each iteration. However, in our proposed
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AMP algorithm, the matrix A is constant across iterations, and the above argument is not valid
since xt and A are dependent. This dependency cannot be neglected even in the large system limit
N → ∞. Indeed, the term bt � rt−1 in the update rule for rt (which was removed in our argument
above) leads to an asymptotic cancellation of these dependencies as in [BM11a].

5 Analysis of state evolution

Throughout this section pX is a given probability distribution over the real line, and X ∼ pX . Also,
we will take σ > 0. The result for the noiseless model (Corollary 1.8) follows by letting σ ↓ 0. Recall
the inequality

mmse(s) ≤ min(Var(X),
1
s

) . (61)

Definition 5.1. For two vectors φ, φ̃ ∈ RK , we write φ � φ̃ if all φr ≥ φ̃r for r ∈ {1, . . . ,K}.

Proposition 5.2. For any W ∈ RR×C
+ , the map TW : RR

+ → RR
+ is monotone; i.e., if φ � φ̃ then

TW (φ) � TW (φ̃). Analogously, T′W and T′′W are also monotone.

Proof. It follows immediately from the fact that s 7→ mmse(s) is a monotone decreasing function.

Proposition 5.3. The state evolution sequence {φ(t), ψ(t)}t≥0 with initial condition ψi(0) =∞, for
i ∈ C, is monotone decreasing, in the sense that φ(0) � φ(1) � φ(2) � . . . and ψ(0) � ψ(1) � ψ(2) �
. . . .

Proof. Since ψi(0) =∞ for all i, we have ψ(0) � ψ(1). The thesis follows from the monotonicity of
the state evolution map.

Lemma 5.4. Assume δL0 > 3. Then there exists t0 (depending only on pX), such that, for all t ≥ t0
and all i ∈ {−2ρ−1, . . . ,−1}, a ∈ Ri, we have

ψi(t) ≤ mmse
( L0

2σ2

)
≤ 2σ2

L0
, (62)

φa(t) ≤ σ2 +
1
δ
mmse

( L0

2σ2

)
≤
(

1 +
2
δL0

)
σ2 . (63)

Proof. Take i ∈ {−2ρ−1, · · · ,−1}. For a ∈ Ri, we have φa(t) = σ2 + (1/δ)ψi(t). Further from
mmse(s) ≤ 1/s, we deduce that

ψi(t+ 1) = mmse
(∑
b∈R

Wb,iφ
−1
b (t)

)
≤
(∑
b∈R

Wb,iφ
−1
b (t)

)−1

≤
(∑
a∈Ri

Wa,iφ
−1
a (t)

)−1
=
(
L0φ

−1
a (t)

)−1
=
φa(t)
L0

.

(64)

Substituting in the earlier relation, we get ψi(t+1) ≤ (1/L0)(σ2+(1/δ)ψi(t)). Recalling that δL0 > 3,
we have ψi(t) ≤ 2σ2/L0, for all t sufficiently large. Now, using this in the equation for φa(t), a ∈ Ri,
we obtain

φa(t) = σ2 +
1
δ
ψi(t) ≤

(
1 +

2
δL0

)
σ2. (65)
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We prove the other claims by repeatedly substituting in the previous bounds. In particular,

ψi(t) = mmse
(∑
b∈R

Wb,iφ
−1
b (t− 1)

)
≤ mmse

(∑
a∈Ri

Wa,iφ
−1
a (t)

)
= mmse(L0φ

−1
a (t)) ≤ mmse

( L0

(1 + 2
δL0

)σ2

)
≤ mmse

( L0

2σ2

)
,

(66)

where we used Eq. (65) in the penultimate inequality. Finally,

φa(t) ≤ σ2 +
1
δ
ψi(t) ≤ σ2 +

1
δ
mmse

( L0

2σ2

)
, (67)

where the inequality follows from Eq. (66).

Next we prove a lower bound on the state evolution sequence. Here and below C0 ≡ C \
{−2ρ−1, . . . ,−1} ∼= {0, . . . , L − 1}. Also, recall that R0 ≡ {−ρ−1, . . . , 0, . . . , L − 1 + ρ−1}. (See
Fig. 2).

Lemma 5.5. For any t ≥ 0, and any i ∈ C0, ψi(t) ≥ mmse(2σ−2). Further, for any a ∈ R0 and any
t ≥ 0 we have φa(t) ≥ σ2 + (2δ)−1mmse(2σ2).

Proof. Since φa(t) ≥ σ2 by definition, we have, for i ≥ 0, ψi(t) ≥ mmse(σ−2
∑

bWbi) ≥ mmse(2σ−2),
where we used the fact that the restriction of W to columns in C0 is roughly column-stochastic.
Plugging this into the expression for φa, we get

φa(t) ≥ σ2 +
1
δ

∑
i∈C

Wa,i mmse(2σ−2) ≥ σ2 +
1
2δ

mmse(2σ−2) . (68)

Notice that for L0,∗ ≥ 4 and for all L0 > L0,∗, the upper bound for ψi(t), i ∈ {−2ρ−1, · · · ,−1},
given in Lemma 5.4 is below the lower bound for ψi(t), with i ∈ C0, given in Lemma 5.5; i.e. for all
σ,

mmse
( L0

2σ2

)
≤ mmse

( 2
σ2

)
. (69)

Motivated by the above, we introduce modified state evolution maps F′W : RR0
+ → RC0

+ , F′′W :
RC0

+ → RR0
+ , by letting, for φ = (φa)a∈R0 ∈ RR0

+ , ψ = (ψi)i∈C0 ∈ RC0
+ , and for all i ∈ C0, a ∈ R0:

F′W (φ)i = mmse
( ∑
b∈R0

Wb−iφ
−1
b

)
, (70)

F′′W (ψ)a = σ2 +
1
δ

∑
i∈Z

Wa−i ψi . (71)

where, in the last equation we set by convention, ψi(t) = mmse(L0/(2σ2)) for i ≤ −1, and ψi = ∞
for i ≥ L. We also let FW = F′W ◦ F′′W .
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Definition 5.6. The modified state evolution sequence is the sequence {φ(t), ψ(t)}t≥0 with φ(t) =
F′′W (ψ(t)) and ψ(t + 1) = F′W (φ(t)) for all t ≥ 0, and ψi(0) = ∞ for all i ∈ C0. We also adopt the
convention that, for i ≥ L, ψi(t) = +∞ and for i ≤ −1, ψi(t) = mmse(L0/(2σ2)), for all t.

Lemma 5.4 then implies the following.

Lemma 5.7. Let {φ(t), ψ(t)}t≥0 denote the state evolution sequence as per Definition 2.3, and
{φmod(t), ψmod(t)}t≥0 denote the modified state evolution sequence as per Definition 5.6. Then, there
exists t0 (depending only on pX), such that, for all t ≥ t0, φ(t) � φmod(t−t0) and ψ(t) � ψmod(t−t0).

Proof. Choose t0 = t(L0, δ) as given by Lemma 5.4. We prove the claims by induction on t. For the
induction basis (t = t0), we have from Lemma 5.4, ψi(t0) ≤ mmse(L0/(2σ2)) = ψmod

i (0), for i ≤ −1.
Also, we have ψmod

i (0) =∞ ≥ ψi(t0), for i ≥ 0. Further,

φmod
a (0) = F′′W (ψmod(0))a ≥ T′′W (ψmod(0))a ≥ T′′W (ψ(t0))a = φa(t0), (72)

for a ∈ R0. Here, the last inequality follows from monotonicity of T′′W (Proposition 5.2). Now,
assume that the claim holds for t; we prove it for t+ 1. For i ∈ C0, we have

ψmod
i (t+ 1− t0) = F′W (φmod(t− t0))i = T′W (φmod(t− t0))i

≥ T′W (φ(t))i = ψi(t+ 1),
(73)

where the inequality follows from monotonicity of T′W (Proposition 5.2) and the induction hypothesis.
In addition, for a ∈ R0,

φmod
a (t+ 1− t0) = F′′W (ψmod(t+ 1− t0))a ≥ T′′W (ψmod(t+ 1− t0))a

≥ T′′W (ψ(t+ 1))a = φa(t+ 1).
(74)

Here, the last inequality follows from monotonicity of T′′W and Eq. (73).

By Lemma 5.7, we can now focus on the modified state evolution sequence in order to prove
Lemma 3.2. Notice that the mapping FW has a particularly simple description in terms of a shift-
invariant state evolution mapping. Explicitly, define T′W,∞ : RZ → RZ, T′′W,∞ : RZ → RZ, by letting,
for φ, ψ ∈ RZ and all i, a ∈ Z:

T′W,∞(φ)i = mmse
(∑
b∈Z

Wb−iφ
−1
b

)
, (75)

T′′W,∞(ψ)a = σ2 +
1
δ

∑
i∈Z

Wa−i ψi . (76)

Further, define the embedding H : RC0 → RZ by letting

(Hψ)i =


mmse(L0/(2σ2)) if i < 0,
ψi if 0 ≤ i ≤ L− 1,
+∞ if i ≥ L,

(77)

And the restriction mapping H′a,b : RZ → Rb−a+1 by H′a,bψ = (ψa, . . . , ψb).
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Lemma 5.8. With the above definitions, FW = H′0,L−1 ◦ TW,∞ ◦ H.

Proof. Clearly, for any ψ = (ψi)i∈C0 , we have T′′W ◦ H(ψ)a = F′′W ◦ H(ψ)a for a ∈ R0, since the
definition of the embedding H is consistent with the convention adopted in defining the modified
state evolution. Moreover, for i ∈ C0

∼= {0, . . . , L− 1}, we have

T′W,∞(φ)i = mmse
(∑
b∈Z

Wb−iφ
−1
b

)
= mmse

( ∑
−ρ−1≤b≤L−1+ρ−1

Wb−iφ
−1
b

)
= mmse

( ∑
b∈R0

Wb−iφ
−1
b

)
= F′W (φ)i.

(78)

Hence, T′W,∞◦T′′W,∞◦H(ψ)i = F′W ◦F′′W ◦H(ψ)i, for i ∈ C0. Therefore, H′0,L−1◦TW,∞◦H(ψ) = FW ◦H(ψ),
for any ψ ∈ RC0

+ , which completes the proof.

We will say that ψ ∈ RK is nondecreasing if, for every 1 ≤ i < j ≤ K, ψi ≤ ψj .

Lemma 5.9. If ψ ∈ RC0 is nondecreasing, with ψi ≥ mmse(L0/(2σ2)) for all i, then FW (ψ) is
nondecreasing as well. In particular, if {φ(t), ψ(t)}t≥0 is the modified state evolution sequence, then
φ(t) and ψ(t) are nondecreasing for all t.

Proof. By Lemma 5.8, we know that FW = H′0,L−1◦TW,∞◦H. We first notice that, by the assumption
ψi ≥ mmse(L0/(2σ2)), we have that H(ψ) is nondecreasing.

Next, if ψ ∈ RZ is nondecreasing, TW,∞(ψ) is nondecreasing as well. In fact, the mappings T′W,∞
and T′′W,∞ both preserve the nondecreasing property, since both are shift invariant, and mmse( · ) is
a decreasing function. Finally, the restriction of a nondecreasing vector is obviously nondecreasing.

This proves that FW preserves the nondecreasing property. To conclude that ψ(t) is nondecreasing
for all t, notice that the condition ψi(t) ≥ mmse(L0/(2σ2)) is satisfied at all t by Lemma 5.5 and
condition (69). The claim for ψ(t) follows by induction.

Now, since F′′W preserves the nondecreasing property, we have φ(t) = F′′W (ψ(t)) is nondecreasing
for all t, as well.

5.1 Continuum state evolution

We start by defining the continuum state evolution mappings. For Ω ⊆ R, let M (Ω) be the space of
non-negative measurable functions on Ω (up to measure-zero redefinitions). Define F ′W : M ([−1, `+
1]) → M ([0, `]) and F ′′W : M ([0, `]) → M ([−1, ` + 1]) as follows. For φ ∈ M ([−1, ` + 1]), ψ ∈
M ([0, `]), and for all x ∈ [0, `], y ∈ [−1, `+ 1], we let

F ′W(φ)(x) = mmse
(∫ `+1

−1
W(x− z)φ−1(z)dz

)
, (79)

F ′′W(ψ)(y) = σ2 +
1
δ

∫
R
W(y − x)ψ(x)dx , (80)

where we adopt the convention that ψ(x) = mmse(L0/(2σ2)) for x < 0, and ψ(x) =∞ for x > `.

Definition 5.10. The continuum state evolution sequence is the sequence {φ( · ; t), ψ( · ; t)}t≥0, with
φ(t) = F ′′W(ψ(t)) and ψ(t+ 1) = F ′W(φ(t)) for all t ≥ 0, and ψ(x; 0) =∞ for all x ∈ [0, `].

24



Recalling Eq. (61), we have ψ(x; t) = F ′W(φ(t − 1))(x) ≤ Var(X), for t ≥ 1. Also, φ(x; t) =
F ′′W(ψ(t))(x) ≤ σ2 + (1/δ)Var(X), for t ≥ 1. Define,

ΦM = 1 +
1
δ

Var(X). (81)

Assuming σ < 1, we have φ(x; t) < ΦM , for all t ≥ 1.

Lemma 5.11. Let {φ( · ; t), ψ( · ; t)}t≥0 be the continuum state evolution sequence and {φ(t), ψ(t)}t≥0

be the modified discrete state evolution sequence, with parameters ρ and L = `/ρ. Then for any t ≥ 0

lim
ρ→0

1
L

L−1∑
i=0

∣∣ψi(t)− ψ(ρi; t)
∣∣ = 0 , (82)

lim
ρ→0

1
L

L−ρ−1−1∑
a=−ρ−1

∣∣φa(t)− φ(ρa; t)
∣∣ = 0 . (83)

Lemma 5.11 is proved in Appendix A.

Corollary 5.12. The continuum state evolution sequence {φ( · ; t), ψ( · ; t)}t≥0, with initial condition
ψ(x) = mmse(L0/(2σ2)) for x < 0, and ψ(x) = ∞ for x > `, is monotone decreasing, in the sense
that φ(x; 0) ≥ φ(x; 1) ≥ φ(x; 2) ≥ · · · and ψ(x; 0) ≥ ψ(x; 1) ≥ ψ(x; 2) ≥ · · · , for all x ∈ [0, `].

Proof. Follows immediately from Lemmas 5.3 and 5.11.

Corollary 5.13. Let {φ( · ; t), ψ( · ; t)}t≥2 be the continuum state evolution sequence. Then for any
t, x 7→ ψ(x; t) and x 7→ φ(x; t) are nondecreasing Lipschitz continuos functions.

Proof. Nondecreasing property of functions x 7→ ψ(x; t), and x 7→ φ(x; t) follows immediately from
Lemmas 5.9 and 5.11. Further, since ψ(x; t) is bounded for t ≥ 1, and W( · ) is Lipschitz continuos,
recalling Eq. (80), the function x 7→ φ(x; t) is Lipschitz continuos as well, for t ≥ 1. Similarly, since
σ2 < φ(x; t) < ΦM , invoking Eq. (79), the function x 7→ ψ(x; t) is Lipschitz continuos for t ≥ 2.

Free Energy. We define the mutual information between X and a noisy observation of X at
signal-to-noise ratio s by

I(s) ≡ I(X;
√
sX + Z) , (84)

with Z ∼ N(0, 1) independent of X ∼ pX . Recall the relation [GSV05]

d
ds

I(s) =
1
2

mmse(s) . (85)

Furthermore, the following identities relate the scaling law of mutual information under weak noise
to Rényi information dimension [WV11a].

Proposition 5.14. Assume H(bXc) <∞. Then

lim inf
s→∞

I(s)
1
2 log s

= d(pX),

lim sup
s→∞

I(s)
1
2 log s

= d(pX).
(86)
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A key role in our analysis is played by the free energy functional.

Definition 5.15. LetW(.) be a shape function, and σ, δ > 0 be given. The corresponding free energy
is the functional EW : M ([−1, `+ 1])→ R defined as follows for φ ∈M ([−1, `+ 1]):

EW(φ) =
δ

2

∫ `−1

−1

{σ2(x)
φ(x)

+ log φ(x)
}

dx+
∫ `

0
I
(∫
W(x− z)φ−1(z)dz

)
dx, (87)

where

σ2(x) = σ2 +
1
δ

(∫
y≤0
W(y − x)dy

)
mmse

( L0

2σ2

)
. (88)

Viewing EW as a function defined on the Banach space L2([−1, `]), we will denote by ∇EW(φ) its
Fréchet derivative at φ. This will be identified, via standard duality, with a function in L2([−1, `]).
It is not hard to show that the Fréchet derivative exists on {φ : φ(x) ≥ σ2} and is such that

∇EW(φ)(y) =
δ

2φ2(y)

{
φ(y)− σ2(y)− 1

δ

∫ `

0
W(x− y)mmse

( ∫
W(x− z)φ−1(z)dz

)
dx
}
, (89)

for −1 ≤ y ≤ `− 1.

Corollary 5.16. If {φ, ψ} is the fixed point of the continuum state evolution, then ∇EW (φ)(y) = 0,
for −1 ≤ y ≤ `− 1.

Proof. We have φ = F ′′W(ψ) and ψ = F ′W(φ), whereby for −1 ≤ y ≤ `− 1,

φ(y) = σ2 +
1
δ

∫
W(y − x)ψ(x)dx

= σ2 +
1
δ

(∫
x≤0
W(y − x)dx

)
mmse

(
L0

2σ2

)
+

1
δ

∫ `

0
W(y − x)mmse

(∫ `+1

−1
W(x− z)φ−1(z)dz

)
dx

= σ2(y) +
1
δ

∫ `

0
W(y − x)mmse

(∫ `+1

−1
W(x− z)φ−1(z)dz

)
dx.

(90)

The result follows immediately from Eq. (89).

Definition 5.17. Define the potential function V : R+ → R+ as follows.

V (φ) =
δ

2

(σ2

φ
+ log φ

)
+ I(φ−1). (91)

Using Eq. (86), we have for φ� 1,

V (φ) .
δ

2
(
σ2

φ
+ log φ) +

1
2
d(pX) log(φ−1)

=
δσ2

2φ
+

1
2

[δ − d(pX)] log(φ).
(92)
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Define

φ∗ = σ2 +
1
δ
mmse

( L0

2σ2

)
. (93)

Notice that σ2 < φ∗ ≤ (1 + 2/(δL0))σ2 < 2σ2, given that δL0 > 3. The following proposition upper
bounds V (φ∗) and its proof is deferred to Appendix B.

Proposition 5.18. There exists σ2 > 0, such that, for σ ∈ (0, σ2], we have

V (φ∗) ≤ δ

2
+
δ − d(pX)

4
log(2σ2). (94)

Now, we write the energy functional in term of the potential function.

EW(φ) =
∫ `−1

−1
V (φ(x)) dx+

δ

2

∫ `−1

−1

σ2(x)− σ2

φ(x)
dx+ ẼW(φ), (95)

with,

ẼW(φ) =
∫ `

0

{
I(W ∗ φ−1(y))− I(φ−1(y − 1))

}
dy. (96)

Lemma 5.19. Let δ > 0, and pX be a probability measure on the real line with δ > d̄(pX). For any
κ > 0, there exist `0, σ2

0, such that, for any ` > `0 and σ ∈ (0, σ0], and any fixed point of continuum
state evolution,{φ, ψ}, with ψ and φ nondecreasing Lipschitz functions and ψ(x) ≥ mmse(L0/(2σ2)),
the following holds. ∫ `−1

−1
|φ(x)− φ∗| dx ≤ κ`. (97)

Proof. The claim is trivial for κ ≥ ΦM , since φ(x) ≤ ΦM . Fix κ < ΦM , and choose σ1, such that
φ∗ < κ/2, for σ ∈ (0, σ1]. Since φ is a fixed point of continuum state evolution, we have ∇EW(φ) = 0,
on the interval [−1, `− 1] by Corollary 5.16. Now, assume that

∫ `−1
−1 |φ(x)− φ∗| > κ`. We introduce

an infinitesimal perturbation of φ that decreases the energy in the first order; this contradicts the
fact ∇EW(φ) = 0 on the interval [−1, `− 1].

Claim 5.20. For each fixed point of continuum state evolution that satisfies the hypothesis of
Lemma 5.19, the following holds. For any K > 0, there exists `0, such that, for ` > `0 there
exist x1 < x2 ∈ [0, `− 1), with x2 − x1 = K and κ/2 + φ∗ < φ(x), for x ∈ [x1, x2].

Claim 5.20 is proved in Appendix C.
Fix K > 2 and let x0 = (x1 + x2)/2. Thus, x0 ≥ 1. For a ∈ (0, 1], define

φa(x) =


φ(x), for x2 ≤ x,
φ( x2−x0

x2−x0−a x−
ax2

x2−x0−a), for x ∈ [x0 + a, x2),
φ(x− a), for x ∈ [−1 + a, x0 + a),
φ∗, for x ∈ [−1,−1 + a).

(98)

See Fig. 3 for an illustration. (Note that from Eq. (80), φ(−1) = φ∗). In the following, we bound
the difference of the free energies of functions φ and φa.
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Figure 3: An illustration of function φ(x) and its perturbation φa(x).

Proposition 5.21. For each fixed point of continuum state evolution, satisfying the hypothesis of
Lemma 5.19, there exists a constant C(K), such that∫ `−1

−1

{σ2(x)− σ2

φa(x)
− σ2(x)− σ2

φ(x)

}
dx ≤ C(K)a.

We refer to Appendix D for the proof of Proposition 5.21.

Proposition 5.22. For each fixed point of continuum state evolution, satisfying the hypothesis of
Lemma 5.19, there exists a constant C(κ,K), such that,

ẼW(φa)− ẼW(φ) ≤ C(κ,K)a.

Proof of Proposition 5.22 is deferred to Appendix E.
Using Eq. (95) and Proposition 5.22, we have

EW(φa)− EW(φ) ≤
∫ `−1

−1

{
V (φa(x))− V (φ(x))

}
dx+ C(κ,K)a, (99)

where the constants (δ/2)C(K) and C(κ,K) are absorbed in C(κ,K).
In addition,∫ `−1

−1

{
V (φa(x))− V (φ(x))

}
dx =

∫ `−1

x2

{
V (φa(x))− V (φ(x))

}
dx

+
(∫ x2

x0+a
V (φa(x))dx−

∫ x2

x0

V (φ(x))dx
)

+
(∫ x0+a

−1+a
V (φa(x))dx−

∫ x0

−1
V (φ(x))dx

)
+
∫ −1+a

−1
V (φa(x))dx.

(100)
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Notice that the first and the third terms on the right hand side are zero. Also,∫ x2

x0+a
V (φa(x))dx−

∫ x2

x0

V (φ(x))dx = − a

x2 − x0

∫ x2

x0

V (φ(x))dx,∫ −1+a

−1
V (φa(x))dx = aV (φ∗).

(101)

Substituting Eq. (101) in Eq. (100), we get∫ `−1

−1

{
V (φa(x))− V (φ(x))

}
dx =

a

x2 − x0

∫ x2

x0

{
V (φ∗)− V (φ(x))

}
dx. (102)

We proceed by proving the following claim.

Claim 5.23. For any C = C(κ,K) ≥ 0, there exists σ3, such that for σ ∈ (0, σ3], the following
holds. ∫ `−1

−1

{
V (φa(x))− V (φ(x))

}
dx < −2C(κ,K)a. (103)

Proof. By Proposition 5.18, we have

V (φ∗) ≤ δ

2
+
δ − d(pX)

4
log(2σ2), (104)

for σ ∈ (0, σ2]. Also, since φ(x) > κ/2 for x ∈ [x0, x2], we have V (φ(x)) ≥ (δ/2) log φ >
(δ/2) log(κ/2). Therefore,

1
2

∫ `−1

−1

{
V (φa(x))− V (φ(x))

}
dx =

a

2(x2 − x0)

∫ x2

x0

{
V (φ∗)− V (φ(x))

}
dx

<
a

2

[δ
2

+
δ − d(pX)

4
log(2σ2)− δ

2
log(

κ

2
)
]
.

(105)

It is now obvious that by choosing σ3 > 0 small enough, we can ensure that for values σ ∈ (0, σ3],

a

2

[δ
2

+
δ − d(pX)

4
log(2σ2)− δ

2
log(

κ

2
)
]
< −2C(κ,K)a. (106)

(Notice that the right hand side of Eq. (106) does not depend on σ).

Let σ0 = min{σ1, σ2, σ3}. As a result of Eq. (99) and Claim 5.23,

EW(φa)− EW(φ) <
∫ `−1

−1

{
V (φa(x))− V (φ(x))

}
dx+ C(κ,K)a

≤ −C(κ,K)a .
(107)

Since φ is a Lipschitz function by assumption, it is easy to see that ‖φa − φ‖2 ≤ C a, for some
constant C. By Taylor expansion of the free energy functional around function φ, we have

〈∇EW(φ), φa − φ〉 = EW(φa)− EW(φ) + o(‖φa − φ‖2)
≤ −C(κ,K)a+ o(a).

(108)
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However, since {φ, ψ} is a fixed point of the continuum state evolution, we have ∇EW(φ) = 0 on
the interval [−1, ` − 1] (cf. Corollary 5.16). Also, φa − φ is zero out of [−1, ` − 1]. Therefore,
〈∇EW(φ), φa − φ〉 = 0, which leads to a contradiction in Eq (108). This implies that our first
assumption

∫ `−1
−1 |φ(x)− φ∗| dx > κ` is false. The result follows.

Next lemma pertains to the robust reconstruction of the signal. Prior to stating the lemma, we
need to establish some definitions. Due to technical reasons in the proof, we consider an alternative
decomposition of EW(φ) to Eq. (95).

Define the potential function Vrob : R+ → R+ as follows.

Vrob(φ) =
δ

2

(σ2

φ
+ log φ

)
, (109)

and decompose the Energy functional as:

EW(φ) =
∫ `−1

−1
Vrob(φ(x)) dx+

δ

2

∫ `−1

−1

σ2(x)− σ2

φ(x)
dx+ ẼW,rob(φ), (110)

with,

ẼW,rob(φ) =
∫ `

0
I(W ∗ φ−1(y))dy. (111)

Lemma 5.24. Let δ > 0, and pX be a probability measure on the real line with δ > D(pX). There
exist `0, σ2

0, and C, such that , for any ` > `0 and σ ∈ (0, σ0], and for any fixed point of continuum
state evolution, {φ, ψ}, with ψ and φ nondecreasing Lipschitz functions and ψ(x) ≥ mmse(L0/(2σ2)),
the following holds. ∫ `−1

−1
|φ(x)− φ∗| dx ≤ Cσ2`. (112)

Proof. Suppose
∫ `−1
−1 |φ(x)−φ∗|dx > Cσ2`, for any constant C. Similar to the proof of Lemma 5.19,

we obtain an infinitesimal perturbation of φ which decreases the free energy in the first order,
contradicting the fact ∇EW(φ) = 0 on the interval [−1, `− 1].

By definition of upper MMSE dimension (Eq. (15)), for any ε > 0, there exists φ1, such that, for
φ ∈ [0, φ1],

mmse(φ−1) ≤ (D(pX) + ε)φ. (113)

Claim 5.25. For each fixed point of continuum state evolution that satisfies the hypothesis of
Lemma 5.24, the following holds. For any K > 0, there exists `0, such that, for ` > `0 there
exist x1 < x2 ∈ [0, `− 1), with x2 − x1 = K and Cσ2/2 ≤ φ(x) ≤ φ1, for x ∈ [x1, x2].

Claim 5.25 is proved in Appendix F. For positive values of a, define

φa(x) =

{
φ(x), for x ≤ x1, x2 ≤ x,
(1− a)φ(x) for x ∈ (x1, x2).

(114)

Our aim is to show that EW(φa)− EW(φ) ≤ −c a, for some constant c > 0.
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Invoking Eq. (95), we have

EW(φa)− EW(φ) =
∫ `−1

−1
{Vrobφa(x))− Vrob(φ(x))} dx

+
δ

2

∫ `−1

−1
(σ2(x)− σ2)

(
1

φa(x)
− 1
φ(x)

)
dx+ ẼW,rob(φa)− ẼW,rob(φ).

(115)

The following proposition bounds each term on the right hand side separately.

Proposition 5.26. For the function φ(x) and its perturbation φa(x), we have∫ `−1

−1
{Vrob(φa(x))− Vrob(φ(x))} dx ≤ δ

2
K log(1− a) +K

δa

C(1− a)
, (116)∫ `−1

−1
(σ2(x)− σ2)

(
1

φa(x)
− 1
φ(x)

)
dx ≤ K 2a

C(1− a)
, (117)

ẼW,rob(φa)− ẼW,rob(φ) ≤ −D(pX) + ε

2
(K + 2) log(1− a). (118)

We refer to Appendix G for the proof of Proposition 5.26.
Combining the bounds given by Proposition 5.26, we obtain

EW(φa)− EW(φ) ≤ K

2
log(1− a)

{
δ − (D(pX) + ε)(1 +

2
K

)
}

+K
2δa

C(1− a)
. (119)

Since δ > D(pX) by our assumption, there exist ε,K,C such that

c = δ − (D(pX) + ε)(1 +
2
K

)− 4δ
C(1− a)

> 0.

Using Eq. (119), we get

EW(φa)− EW(φ) ≤ −cK
2
a. (120)

By an argument analogous to the one in the proof of Lemma 5.19, this is in contradiction with
∇EW(φ) = 0. The result follows.

5.2 Proof of Lemma 3.2

By Lemma 5.7, φa(t) ≤ φmoda (t − t0), for a ∈ R0
∼= {ρ−1, · · · , L − 1 + ρ−1} and t ≥ t1(L0, δ).

Therefore, we only need to prove the claim for the modified state evolution. The idea of the proof is
as follows. In the previous section, we analyzed the continuum state evolution and showed that at
the fixed point, the function φ(x) is close to the constant φ∗. Also, in Lemma 5.11, we proved that
the modified state evolution is essentially approximated by the continuum state evolution as ρ→ 0.
Combining these results implies the thesis.

Proof (Part(a)). By monotonicity of continuum state evolution (cf. Corollary 5.12), limt→∞ φ(x; t) =
φ(x) exists. Further, by continuity of state evolution recursions, φ(x) is a fixed point. Finally, φ(x)
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is a nondecreasing Lipschitz function (cf. Corollary 5.13). Using Lemma 5.19 in conjunction with
the Dominated Convergence theorem, we have, for any ε > 0

lim
t→∞

1
`

∫ `−1

−1
|φ(x; t)− φ∗|dx ≤ ε

4
, (121)

for σ ∈ (0, σ2
0] and ` > `0. Therefore, there exists t2 > 0 such that 1

`

∫ `−1
−1 |φ(x; t2) − φ∗|dx ≤ ε/2.

Moreover, for any t ≥ 0,

1
`

∫ `−1

−1
|φ(x; t)− φ∗|dx = lim

ρ→0

ρ

`

L−ρ−1−1∑
a=−ρ−1

|φ(ρa; t)− φ∗| = lim
ρ→0

1
L

L−ρ−1−1∑
a=−ρ−1

|φ(ρa; t)− φ∗|. (122)

By triangle inequality, for any t ≥ 0,

lim
ρ→0

1
L

L−ρ−1−1∑
a=−ρ−1

|φa(t)− φ∗| ≤ lim
ρ→0

1
L

L−ρ−1−1∑
a=−ρ−1

|φa(t)− φ(ρa; t)|+ lim
ρ→0

1
L

L−ρ−1−1∑
a=−ρ−1

|φ(ρa; t)− φ∗|

=
1
`

∫ `−1

−1
|φ(x; t)− φ∗|dx,

(123)

where the last step follows from Lemma 5.11 and Eq. (122). Since the sequence {φ(t)} is monotone
decreasing in t, we have

lim
ρ→0

lim
t→∞

1
L

L−ρ−1−1∑
a=−ρ−1

φa(t) ≤ lim
ρ→0

1
L

L−ρ−1−1∑
a=−ρ−1

φa(t2)

≤ lim
ρ→0

1
L

L−ρ−1−1∑
a=−ρ−1

(|φa(t2)− φ∗|+ φ∗)

≤ 1
`

∫ `−1

−1
|φ(x; t2)− φ∗|dx+ φ∗

≤ ε

2
+ φ∗.

(124)

Finally,

lim
t→∞

L+ρ−1−1∑
a=−ρ−1

φa(t) ≤
2ρ−1

L
ΦM +

ε

2
+ φ∗

≤ 2ρ−1

L∗
ΦM +

ε

2
+ 2σ0.

(125)

Clearly, by choosing L∗ large enough and σ0 sufficiently small, we can ensure that the right hand
side of Eq. (125) is less than ε.

Proof (Part(b)). Consider the following two cases.
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• σ ≤ σ0: In this case, proceeding along the same lines as the proof of Part (a), and using
Lemma 5.24 in lieu of Lemma 5.19, we have

lim
t→∞

1
L

L−ρ−1−1∑
a=−ρ−1

φa(t) ≤ C1σ
2, (126)

for some constant C1.

• σ > σ0: Since φa(t) ≤ ΦM for any t > 0, we have

lim
t→∞

1
L

L−ρ−1−1∑
a=−ρ−1

φa(t) ≤ ΦM . (127)

Choosing C = max{C1,ΦM/σ
2
0} proves the claim in both cases.
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Zdeborová for a stimulating exchange about their results. A.J. is supported by a Caroline and Fabian
Pease Stanford Graduate Fellowship. This work was partially supported by the NSF CAREER award
CCF- 0743978, the NSF grant DMS-0806211, and the AFOSR grant FA9550-10-1-0360.

33



A Proof of Lemma 5.11

We prove the first claim, Eq. (82). The second one follows by a similar argument. The proof
uses induction on t. It is a simple exercise to show that the induction basis (t = 1) holds (the
calculation follows the same lines as the induction step). Assuming the claim for t, we write, for
i ∈ {0, 1, . . . , L− 1}

|ψi(t+ 1)− ψ(ρi; t+ 1)| =
∣∣∣mmse

( ∑
b∈R0

Wb−i [σ2 +
1
δ

∑
j∈Z

Wb−jψj(t)]−1
)

−mmse
(∫ `+1

−1
W(z − ρi) [σ2 +

1
δ

∫
R
W(z − y)ψ(y; t)dy]−1dz

)∣∣∣
≤
∣∣∣mmse

( ∑
b∈R0

Wb−i [σ2 +
1
δ

∑
j∈Z

Wb−jψj(t)]−1
)

−mmse
( ∑
b∈R0

Wb−i [σ2 +
1
δ

∑
j∈Z

Wb−jψ(ρj; t)]−1
)∣∣∣

+
∣∣∣mmse

( ∑
b∈R0

ρW(ρ(b− i)) [σ2 +
1
δ

∑
j∈Z

ρW(ρ(b− j))ψ(ρj; t)]−1
)

−mmse
(∫ `+1

−1
W(z − ρi) [σ2 +

1
δ

∫
R
W(z − y)ψ(y; t)dy]−1dz

)∣∣∣.

(128)

Now, we bound the two terms on the right hand side separately. Note that the arguments of mmse( · )
in the above terms are at most 2/σ2. Since mmse has a continuous derivative, there exists a constant
C such that |d/ds mmse(s)| ≤ C, for s ∈ [0, 2/σ2]. Then, considering the first term in the upper
bound (128), we have∣∣∣mmse

( ∑
b∈R0

Wb−i [σ2 +
1
δ

∑
j∈Z

Wb−jψj(t)]−1
)
−mmse

( ∑
b∈R0

Wb−i [σ2 +
1
δ

∑
j∈Z

Wb−jψ(ρj; t)]−1
)∣∣∣

≤ C
∣∣∣ ∑
b∈R0

Wb−i

(
[σ2 +

1
δ

∑
j∈Z

Wb−jψj(t)]−1 − [σ2 +
1
δ

∑
j∈Z

Wb−jψ(ρj; t)]−1
)∣∣∣

≤ C

σ4

∑
b∈R0

Wb−i
1
δ

∣∣∣ L−1∑
j=−∞

Wb−j(ψ(ρj; t)− ψj(t))
∣∣∣

≤ C

δσ4

∑
b∈R0

Wb−i

L−1∑
j=−∞

Wb−j |ψ(ρj; t)− ψj(t)|

=
C

δσ4

L−1∑
j=0

( ∑
b∈R0

Wb−iWb−j

)
|ψ(ρj; t)− ψj(t)|

≤ C

δσ4

(∑
i∈Z

W 2
i

) L−1∑
j=0

|ψ(ρj; t)− ψj(t)|

≤ C ′ρ

δσ4

L−1∑
j=0

|ψ(ρj; t)− ψj(t)|.

(129)
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Here we used
∑

i∈ZW
2
i =

∑
i∈Z ρ

2W(ρi)2 ≤ C
∑
|i|≤ρ−1 ρ2 ≤ Cρ (where the first inequality follows

from the fact that W is bounded).
To bound the second term in Eq. (128), note that∣∣∣mmse

( ∑
b∈R0

ρW(ρ(b− i)) [σ2 +
1
δ

∑
j∈Z

ρW(ρ(b− j))ψ(ρj; t)]−1
)

−mmse
(∫ `+1

−1
W(z − ρi) [σ2 +

1
δ

∫
R
W(z − y)ψ(y; t)dy]−1dz

)∣∣∣
≤ C

∣∣∣ ∑
b∈R0

ρW(ρ(b− i)) [σ2 +
1
δ

∑
j∈Z

ρW(ρ(b− j))ψ(ρj; t)]−1

−
∫ `+1

−1
W(z − ρi) [σ2 +

1
δ

∫
R
W(z − y)ψ(y; t)dy]−1dz

∣∣∣
≤ C

∣∣∣ ∑
b∈R0

ρW(ρ(b− i)) [σ2 +
1
δ

∑
j∈Z

ρW(ρ(b− j))ψ(ρj; t)]−1

−
∑
b∈R0

ρW(ρ(b− i)) [σ2 +
1
δ

∫
R
W(ρb− y)ψ(y; t)dy]−1

∣∣∣
+ C

∣∣∣ ∑
b∈R0

ρW(ρ(b− i)) [σ2 +
1
δ

∫
R
W(ρb− y)ψ(y; t)dy]−1dz

−
∫ `+1

−1
W(z − ρi) [σ2 +

1
δ

∫
R
W(z − y)ψ(y; t)dy]−1dz

∣∣∣
≤ C

δσ4

∑
b∈R0

ρW(ρ(b− i))
∣∣∣∑
j∈Z

ρF1(ρb; ρj)−
∫

R
F1(ρb; y)dy

∣∣∣
+ C

∣∣∣ ∑
b∈R0

ρF2(ρb)−
∫ `+1

−1
F2(z)dz

∣∣∣

(130)

where F1(x; y) = W(x − y)ψ(y; t) and F2(z) = W(z − ρi) [σ2 + 1
δ

∫
RW(z − y)ψ(y; t)dy]−1. Since

the functions W( · ) and ψ( · ) have continuos (and thus bounded) derivative on compact interval
[0, `], the same is true for F1 and F2. Using the standard convergence of Riemann sums to Riemann
integrals, right hand side of Eq. (130) can be bounded by C3ρ/δσ

4, for some constant C3. Let
εi(t) = |ψi(t)− ψ(ρi; t)|. Combining Eqs. (129) and (130), we get

εi(t+ 1) ≤ ρ

δσ4

C ′ L−1∑
j=0

εj(t) + C3

 . (131)

Therefore,

1
L

L−1∑
i=0

εi(t+ 1) ≤ `

δσ4

C ′
L

L−1∑
j=0

εj(t)

+
C3ρ

δσ4
. (132)

The claims follows from the induction hypothesis.
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B Proof of Proposition 5.18

By Eq. (86), for any ε > 0, there exists φ0, such that for 0 ≤ φ ≤ φ0,

I(φ−1) ≤ d(pX) + ε

2
log(φ−1). (133)

Therefore,

V (φ) ≤ δσ2

2φ
+
δ − d(pX)− ε

2
log φ. (134)

Now let ε = (δ − d(pX))/2 and σ2 =
√
φ0/2. Hence, for σ ∈ (0, σ2], we get φ∗ < 2σ2 ≤ φ0.

Plugging in φ∗ for φ in the above equation, we get

V (φ∗) ≤ δσ2

2φ∗
+
δ − d(pX)

4
log φ∗

<
δ

2
+
δ − d(pX)

4
log(2σ2) .

(135)

C Proof of Claim 5.20

Recall that κ < ΦM and φ(x) is nondecreasing. Let

0 < θ =
ΦM − κ
ΦM − κ

2

< 1.

We show that φ(θ`− 1) ≥ κ/2 +φ∗. If this is not true, using the nondecreasing property of φ(x), we
obtain ∫ `−1

−1
|φ(x)− φ∗| dx =

∫ θ`−1

−1
|φ(x)− φ∗| dx+

∫ `−1

θ`−1
|φ(x)− φ∗| dx

<
κ

2
θ`+ ΦM (1− θ)`

= κ`,

(136)

contradicting our assumption. Therefore, φ(x) ≥ κ/2 + φ∗, for θ` − 1 ≤ x ≤ ` − 1. For given K,
choose `0 = K/(1 − θ). Hence, for ` > `0, interval [θ` − 1, ` − 1) has length at least K. The result
follows.

D Proof of Proposition 5.21

We first establish some properties of function σ2(x).

Remark D.1. The function σ2(x) as defined in Eq. (88), is non increasing in x. Also, σ2(x) =
σ2 + (1/δ) mmse(L0/(2σ2)), for x ≤ −1 and σ2(x) = σ2, for x ≥ 1. For δL0 > 3, we have
σ2 ≤ σ2(x) < 2σ2.
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Remark D.2. The function σ2(x)/σ2 is Lipschitz continuous. More specifically, there exists a
constant C, such that, |σ2(α1) − σ2(α2)| < Cσ2|α2 − α1|, for any two values α1, α2. Further, if
L0δ > 3 we can take C < 1.

The proof of Remarks D.1 and D.2 are immediate from Eq. (88).
To prove the proposition, we split the integral over the intervals [−1,−1+a), [−1+a, x0+a), [x0+

a, x2), [x2, `− 1), and bound each one separately. Firstly, note that∫ `−1

x2

{σ2(x)− σ2

φa(x)
− σ2(x)− σ2

φ(x)

}
dx = 0, (137)

since φa(x) and φ(x) are identical for x ≥ x2.
Secondly, let α = (x2 − x0)/(x2 − x0 − a), and β = (ax2)/(x2 − x0 − a). Then,∫ x2

x0+a

{σ2(x)− σ2

φa(x)
− σ2(x)− σ2

φ(x)

}
dx

=
∫ x2

x0

σ2(x+βα )− σ2

φ(x)
dx
α
−
∫ x2

x0+a

σ2(x)− σ2

φ(x)
dx

=
∫ x2

x0

{ 1
α

σ2(x+βα )− σ2

φ(x)
− σ2(x)− σ2

φ(x)

}
dx+

∫ x0+a

x0

σ2(x)− σ2

φ(x)
dx

(a)

≤ 1
σ2

∫ x2

x0

∣∣∣ 1
α
σ2
(x+ β

α

)
− σ2(x)

∣∣∣ dx+
(

1− 1
α

)∫ x2

x0

σ2

φ(x)
dx+

∫ x0+a

x0

σ2

φ(x)
dx

≤ 1
σ2

∫ x2

x0

(
1− 1

α

)
σ2
(x+ β

α

)
dx+

1
σ2

∫ x2

x0

∣∣∣σ2
(x+ β

α

)
− σ2(x)

∣∣∣ dx+
K

2

(
1− 1

α

)
+ a

≤
(

1− 1
α

)
K +

1
σ2

∫ x2

x0

∣∣∣σ2
(x+ β

α

)
− σ2(x)

∣∣∣ dx+
K

2

(
1− 1

α

)
+ a

(b)

≤
(

1− 1
α

)
K + CK2

(
1− 1

α

)
+ CK a+

K

2

(
1− 1

α

)
+ a

≤ C(K)a,

(138)

where (a) follows from the fact σ2 ≤ φ(x) and Remark D.1; (b) follows from Remark D.2.
Thirdly, recall that φa(x) = φ(x− a), for x ∈ [−1 + a, x0 + a). Therefore,∫ x0+a

−1+a

{σ2(x)− σ2

φa(x)
− σ2(x)− σ2

φ(x)

}
dx

=
∫ x0

−1

σ2(x+ a)− σ2

φ(x)
dx−

∫ x0+a

−1+a

σ2(x)− σ2

φ(x)
dx

=
∫ x0

−1

σ2(x+ a)− σ2(x)
φ(x)

dx−
∫ x0+a

x0

σ2(x)− σ2

φ(x)
dx+

∫ −1+a

−1

σ2(x)− σ2

φ(x)
dx

≤ 0 + 0 +
∫ −1+a

−1

σ2

φ(x)
dx

≤ a,

(139)

where the first inequality follows from Remark D.1 and the second follows from φ(x) ≥ σ2.
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Finally, using the facts σ2 ≤ σ2(x) ≤ 2σ2, and σ2 ≤ φ(x), we have∫ −1+a

−1

{σ2(x)− σ2

φa(x)
− σ2(x)− σ2

φ(x)

}
dx ≤ a. (140)

Combining Eqs. (137), (138), (139),and (140) implies the desired result.

E Proof of Proposition 5.22

Proof. Let ẼW(φa) = ẼW,1(φa) + ẼW,2(φa) + ẼW,3(φa), where

ẼW,1(φa) =
∫ `−1

x0+a
{I(W ∗ φ−1

a (y))− I(φ−1
a (y − 1))}dy,

ẼW,2(φa) =
∫ x0+a

a
{I(W ∗ φ−1

a (y))− I(φ−1
a (y − 1))}dy,

ẼW,3(φa) =
∫ a

0
{I(W ∗ φ−1

a (y))− I(φ−1
a (y − 1))}dy.

(141)

Also let ẼW(φ) = ẼW,1(φ) + ẼW,2,3(φ), where

ẼW,1(φ) =
∫ `−1

x0+a
{I(W ∗ φ−1(y))− I(φ−1(y − 1))}dy,

ẼW,2,3(φ) =
∫ x0+a

0
{I(W ∗ φ−1(y))− I(φ−1(y − 1))}dy.

(142)

The following remark is used several times in the proof.

Remark E.1. For any two values 0 ≤ α1 < α2,

I(α2)− I(α1) =
∫ α2

α1

1
2
mmse(z)dz ≤

∫ α2

α1

1
2z

dz =
1
2

log
(α2

α1

)
≤ 1

2

(
α2

α1
− 1
)
. (143)

• Bounding ẼW,1(φa)− ẼW,1(φ).
Notice that the functions φ(x) = φa(x), for x2 ≤ x. Also κ/2 < φa(x) ≤ φ(x) ≤ ΦM , for x1 < x < x2.
Let α = (x2 − x1)/(x2 − x1 − a), and β = (ax2)/(x2 − x1 − a). Then, φa(x) = φ(αx − β) for
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x ∈ [x0 + a, x2). Hence,

ẼW,1(φa)− ẼW,1(φ)

=
∫ x2+1

x0+a
I(W ∗ φ−1

a (y))− I(W ∗ φ−1(y)) dy +
∫ x2+1

x0+a
I(φ−1(y − 1))− I(φ−1

a (y − 1)) dy

≤ 1
2

∫ x2+1

x0+a

1
W ∗ φ−1(y)

(W ∗ φ−1
a (y)−W ∗ φ−1(y)) dy

≤ ΦM

2

∫ x2+1

x0+a

(∫ x2

x0+a−1
W(y − z)φ−1

a (z) dz −
∫ x2

x0+a−1
W(y − z)φ−1(z) dz

)
dy

=
ΦM

2

∫ x2+1

x0+a

(∫ x2

x0+a
W(y − z)φ−1(αz − β) dz +

∫ x0+a

x0+a−1
W(y − z)φ−1(z − a) dz

−
∫ x2

x0+a−1
W(y − z)φ−1(z) dz

)
dy

≤ ΦM

2

∫ x2+1

x0+a

{∫ x2

x0

( 1
α
W(y − z + β

α
)−W(y − z)

)
φ−1(z) dz

+
∫ x0

x0−1

(
W(y − z − a)−W(y − z)

)
φ−1(z) dz

+
∫ x0+a−1

x0−1
W(y − z)φ−1(z) dz

}
dy

≤ ΦM

2

∫ x2+1

x0+a

{∫ x2

x0

(
W(y − z + β

α
)−W(y − z)

)
φ−1(z) dz

+
∫ x0

x0−1

(
W(y − z − a)−W(y − z)

)
φ−1(z) dz

+
∫ x0+a−1

x0−1
W(y − z)φ−1(z) dz

}
dy

≤ C1(1− 1
α

) + C2
β

α
+ C3 a ≤ C4 a. (144)

Here C1, C2, C3, C4 are some constants that depend only on K and κ. The last step follows from the
facts that W( · ) is a bounded Lipschitz function and φ−1(z) ≤ 2/κ for z ∈ [x1, x2]. Also, note that
in the first inequality, I(φ−1(y − 1))− I(φ−1

a (y − 1)) ≤ 0, since φ−1(y − 1) ≤ φ−1
a (y − 1), and I( · ) is

nondecreasing.
• Bounding ẼW,2(φa)− ẼW,2,3(φ).
We have

ẼW,2(φa) =
∫ x0+a

x0+a−1
{I(W ∗ φ−1

a (y))− I(φ−1
a (y − 1))}dy

+
∫ x0+a−1

a
{I(W ∗ φ−1

a (y))− I(φ−1
a (y − 1))}dy.

(145)
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We treat each term separately. For the first term,∫ x0+a

x0+a−1
{I(W ∗ φ−1

a (y))− I(φ−1
a (y − 1))}dy

=
∫ x0+a

x0+a−1

{
I

(∫ x0+a+1

x0+a
W(y − z)φ−1

a (z) dz +
∫ x0+a

x0+a−2
W(y − z)φ−1

a (z) dz
)
− I(φ−1

a (y − 1))
}

dy

=
∫ x0+a

x0+a−1
I

(∫ x0+α

x0

W(y − z + β

α
)φ−1(z)

dz
α

+
∫ x0

x0−2
W(y − a− z)φ−1(z) dz

)
dy

−
∫ x0

x0−1
I(φ−1(y − 1))dy

=
∫ x0

x0−1
I

(∫ x0+α

x0

W(y + a− z + β

α
)φ−1(z)

dz
α

+
∫ x0

x0−2
W(y − z)φ−1(z) dz

)
dy

−
∫ x0

x0−1
I(φ−1(y − 1))dy

≤ C5 a+
∫ x0

x0−1

{
I

(∫ x0+1

x0−2
W(y − z)φ−1(z) dz

)
− I(φ−1(y − 1))

}
dy

= C5 a+
∫ x0

x0−1

{
I(W ∗ φ−1(y))− I(φ−1(y − 1))

}
dy, (146)

where the last inequality is an application of remark E.1. More specifically,

I

(∫ x0+α

x0

W(y + a− z + β

α
)φ−1(z)

dz
α

+
∫ x0

x0−2
W(y − z)φ−1(z) dz

)
− I

(∫ x0+1

x0−2
W(y − z)φ−1(z) dz

)
≤ ΦM

2

(∫ x0+α

x0

W(y + a− z + β

α
)φ−1(z)

dz
α
−
∫ x0+1

x0

W(y − z)φ−1(z) dz
)

≤ ΦM

2

∫ x0+α

x0+1
W(y + a− z + β

α
)φ−1(z) dz

+
ΦM

2

∫ x0+1

x0

(
W(y + a− z + β

α
)−W(y − z)

)
φ−1(z)dz

≤ C ′1(1− 1
α

) + C ′2
β

α
+ C ′3 a ≤ C5 a,

where C ′1, C
′
2, C

′
3, C5 are constants that depend only on κ. Here, the penultimate inequality follows

from α > 1, and the last one follows from the fact that W( · ) is a bounded Lipschitz function and
that φ−1(z) ≤ 2/κ, for z ∈ [x1, x2].

To bound the second term on the right hand side of Eq. (146), notice that φa(z) = φ(z − a), for
z ∈ [−1 + a, x0 + a), whereby∫ x0+a−1

a
{I(W ∗ φ−1

a (y))− I(φ−1
a (y − 1))}dy =

∫ x0−1

0
{I(W ∗ φ−1(y))− I(φ−1(y − 1))}dy. (147)
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Now, using Eqs. (142), (145) and (147), we obtain

ẼW,2(φa)− ẼW,2,3(φ) ≤ C5 a−
∫ x0+a

x0

{I(W ∗ φ−1(y))− I(φ−1(y − 1))}dy

≤ C5 a+
∫ x0+a

x0

log
(
φ−1(y − 1)
W ∗ φ−1(y)

)
≤ C5 a+ a log(

ΦM

κ
) = C6 a,

(148)

where C6 is a constant that depends only on κ.
• Bounding ẼW,3(φa).
Notice that φa(y) ≥ σ2. Therefore, I(W ∗ φ−1

a (y)) ≤ I(σ−2), since I( · ) is nondecreasing. Recall that
φa(y) = φ∗ < 2σ2, for y ∈ [−1,−1 + a). Consequently,

ẼW,3(φa) ≤
∫ a

0
{I(σ−2)− I(φ∗−1)}dy ≤ a

2
log
(φ∗
σ2

)
<
a

2
log 2, (149)

where the first inequality follows from Remark E.1.
Finally, we are in position to prove the proposition. Using Eqs. (144), (148) and (149), we get

ẼW(φa)− ẼW(φ) ≤ C4 a+ C6 a+
a

2
log 2 = C(κ,K) a. (150)

F Proof of Claim 5.25

Similar to the proof of Claim 5.20, the assumption
∫ `−1
−1 |φ(x) − φ∗|dx > Cσ2` implies φ(θ` − 1) >

Cσ2/2, where

0 < θ =
ΦM − Cσ2

ΦM − Cσ2

2

< 1.

Choose σ small enough such that φ∗ < φ1. Let κ = (φ1 − φ∗)(1 − θ)/2. Applying Lemma 5.11,
there exists `0, and σ0, such that,

∫ `−1
−1 |φ(x)−φ∗| dx ≤ κ`, for ` > `0 and σ ∈ (0, σ0]. We claim that

φ(µ`− 1) < φ1, with

µ = 1− κ

φ1 − φ∗
=

1 + θ

2
.

Otherwise, by monotonicity of φ(x),

(φ1 − φ∗)(1− µ)` ≤
∫ `−1

µ`−1
|φ(x)− φ∗| dx <

∫ `−1

−1
|φ(x)− φ∗| dx ≤ κ`. (151)

Plugging in for µ yield a contradiction.
Therefore, Cσ2/2 < φ(x) < φ1, for x ∈ [θ` − 1, µ` − 1], and (µ − θ)` = (1 − θ)`/2. Choosing

` > max{`0, 2K/(1− θ)} gives the result.

41



G Proof of Proposition 5.26

To prove Eq. (116), we write∫ `−1

−1
{Vrob(φa(x))− Vrob(φ(x))} dx = −

∫ x2

x1

∫ φ(x)

φa(x)
V ′(s) ds dx

≤ −
∫ x2

x1

∫ φ(x)

φa(x)

δ

2s2
(
s− σ2

)
ds dx

= −δ
2

∫ x2

x1

{
log
(
φ(x)
φa(x)

)
+

σ2

φ(x)
− σ2

φa(x)

}
dx

≤ δ

2
K log(1− a) +K

δa

C(1− a)
,

(152)

where the second inequality follows from the fact Cσ2/2 < φ(x), for x ∈ [x1, x2].
Next, we pass to prove Eq. (117).∫ `−1

−1
(σ2(x)− σ2)

(
1

φa(x)
− 1
φ(x)

)
dx =

∫ x2

x1

σ2(x)− σ2

φ(x)

(
1

1− a
− 1
)

≤ a

1− a

∫ x2

x1

σ2

φ(x)
dx ≤ K 2a

C(1− a)
,

(153)

where the first inequality follows from Remark D.1.
Finally, we have

ẼW,rob(φa)− ẼW,rob(φ) =
∫ `

0
{I(W ∗ φ−1

a (y))− I(W ∗ φ−1(y))}dy

=
∫ `

0

∫ W∗φ−1
a (y)

W∗φ−1(y)

1
2
mmse(s) ds dy

≤ D(pX) + ε

2

∫ `

0

∫ W∗φ−1
a (y)

W∗φ−1(y)
s−1ds dy

≤ D(pX) + ε

2

∫ `

0
log
(
W ∗ φ−1

a (y)
W ∗ φ−1(y)

)
dy

≤ −D(pX) + ε

2
(K + 2) log(1− a),

(154)

where the first inequality follows from Eq. (113) and Claim 5.25.
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