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Abstract

This paper proposes a unifying variational approach fowipg some fundamental information theoretic in-
equalities. Fundamental information theory results sushmaximization of differential entropy, minimization of
Fisher information (Cramér-Rao inequality), worst an@itnoise lemma, and extremal entropy inequality (EEI) are
interpreted as functional problems and proved within tlengwork of calculus of variations. Several applications
and possible extensions of the proposed results are briefiytiomed.

Index Terms

Maximizing Entropy, Minimizing Fisher Information, Worgtdditive Noise, Extremal Entropy Inequality, Cal-
culus of Variations

. INTRODUCTION

N the information theory realm, it is well-known that givedretsecond-order moment (or variance), a Gaussian

density function maximizes the differential entropy. Sarly, given the second-order moment, the Gaussian
density function minimizes the Fisher information, a résuhich is referred to as the Cramér-Rao inequality in the
signal processing literature. Surprisingly, the proofspmsed in literature for these fundamental results aree quit
diverse, and no unifying feature exists. Since differdrdi@ropy or Fisher information is a functional with respect
to a probability density function, the most natural way ttablish these results is by approaching them from the
perspective of functional analysis. This paper presentsifging variational framework to address these results as
well as numerous other fundamental information theorefgults. A challenging information theoretic inequality,
referred to as the extremal entropy inequality (EEI) [2]h ¢ dealt with successfully in the proposed functional
framework. Furthermore, the proposed variational cakylerspective is useful in establishing other novel results
applications and extensions of the existing informatiozotietic inequalities.

The main theme of this paper is to illustrate how some to@mfcalculus of variations can be used successfully
to prove some of the fundamental information theoretic iraditjes, which have been widely used in information
theory and other fields, and to establish some applicatibms.proposed variational approach provides alternative
proofs for some of the fundamental information theoretiegimalities and enables finding novel extensions of the
existing results. This statement is strengthened by thetlfiat the proposed variational framework is quite general
and powerful, and it allows easy integration of variousdinand inequality constraints into the functional that is to
be optimized. Therefore, we believe that a large number pfiegtions could benefit of these tools. The proposed
variational approach offers also a potential guidelineffioding the optimal solution for many open problems.

Variational calculus techniques have been used with grgatess in solving important problems in image pro-
cessing and computer visianl [3] such as image reconstru@ienoising, deblurring), inverse problems, and image
segmentation. Recently, variational techniques were athacated for optimization of multiuser communication
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systems [[4], for deriving analytical wireless channel nisdesing the maximum entropy principle when only

limited information about the environment is availaklé, [&hd for designing optimal training sequences for radar
and sonar applications |[6[H[7]. Maximum entropy princigtaund also applications in spectral estimation (e.g.,
Burg’s maximum entropy spectral density estimator [1]) &ayesian statistics [8].

The major results of this paper are enumerated as followst, fising calculus of variations, the maximizing dif-
ferential entropy and minimizing Fisher information thexms are proved under the classical (standard) assumptions
found in the literature as well as under a different set otiag#ions. It is shown that a Gaussian density function
maximizes the differential entropy but it minimizes thel&sinformation, given the second-order moment. It is also
shown that a half normal density function maximizes theedéhtial entropy over the set of non-negative random
variables, given the second-order moment. Furthermoig,shown that a half normal density function minimizes
the Fisher information over the set of non-negative randamables, provided that the regularity condiflois
ignored and the second-order moment is given. It is also shtwt a chi density function minimizes the Fisher
information over the set of non-negative random variahlesler the assumption that the regularity condition holds
and the second-order moment is given.

Second, a novel proof of the worst additive noise lemma [9jr@vided in the proposed functional framework.
Previous proofs of the worst additive noise lemma were basedensen’s inequality or data processing inequality
[9], [20]. Unlike the previous proofs, our approach is pyrbhsed on calculus of variations techniques, and the
vector version of the lemma is treated.

Third, EEI is studied from the perspective of a functionablgem. The main advantage of the proposed new
proof is that neither the channel enhancement techniquéhaneintropy power inequality (EPI), adoptedlin [2], nor
the equality condition of data processing inequality arel tdchnique based on the moment generating functions,
used in[[11], are required. Using a technigue based on ce@flvariations, an alternative proof of EEI is provided.
Finally, several applications and extensions of the predagsults are discussed.

The rest of this paper is organized as follows. Some vanatioalculus preliminary results and their corollaries
are first reviewed in Sectidnl ll. Maximizing differentialtespy theorem and minimizing Fisher information theorem
(Cramér-Rao inequality) are proved in Section Ill. In $@clV] the worst additive noise lemma is introduced and
proved based on variational arguments. EEI is proved ini@e8 In Sectio VI, some additional applications of
the proposed variational techniques are briefly mentioRetlly, Sectiof VIl concludes this paper.

Il. SOME PRELIMINARY CALCULUS OF VARIATIONS RESULTS

In this section, we will review some of the fundamental resdtom variational calculus, and establish the
concepts, notations and results that will be used congtaimtbughout the rest of the paper. These results are
standard and therefore will be described briefly withoutter details. Additional details can be found in calculus
of variations books such as [12]-[14].

Definition 1. A functionalU[f] might be defined as

b
Ulf) = / K(x, f(z), f'(x))de, 1)

which is defined on the set of continuous functigfis:)) with continuous first-order derivativég’(z) = df (z)/dx)
on the intervalla, b]. The functionf(z) is assumed to satisfy the boundary conditigita) = A and f(b) = B.
The functionalK (-, -, -) is also assumed to have continuous first-order and secoderdpartial) derivatives with
respect to (wrt) all of its arguments.

Definition 2. The increment of a functiondl[f] is defined as
AU[t] = U[f +t] = ULf], )
where the function(z), that satisfies the boundary conditiot{a) = ¢(b) = 0, represents the admissible increment

of f(x), and it is assumed independent of the functfgm) and twice differentiable.

The regularity condition is defined in Theorefds 6 &hd 7.



Definition 3. Suppose that giveri(z), the increment in[{2) is expressed as

AU [t] = @ [t] + €], ©)
wherey [t] is a linear functional,e goes to zero agt|| approaches zero, anfi- || denotes a norm defined in the
case of a functiory(x) as:

n

171 =" max |1 ()

a<z<b

; (4)

1=

where f()(z) = d' f(x)/dz" are assumed to exist and be continuousifer 0, ..., n on the intervalla, b], and the
summation upper index might vary depending on the normed linear space considerayq, (f the normed linear
space consists of all continuous functiofis:), which have continuous first-order derivative on the ingéér, b],

| fIl = maxa<z<p | f(2)] + maxa<z<p | f/(x)], and in this caser = 1; see e.qg.,[[12] for further details). Under the
above assumptions, the functioriadl[f] is said to be differentiable, and the major part of the incesry [t] is
called the (first-order) variation of the functiondl [f] and it is expressed a8 [f].

Based on Definitionsl 1] 2] 3 and Taylor's theorem (see &.8];[[l4] for additional justifications), the first-order
and the second-order variations of a functiobidlf] can be expressed as

U171 = [ 1K} (o ") ta) + K (o 1.57) V(o) ©
82U [f] :% / [K}/f (, f, 1) t(2)2 + 2K, (x, £, ) t@)t (2) + Klhpo (2, £, F) t’(x)z}dw

1 2 d 2

where K, and K, stand for the first-order partial derivatives witand f’, respectivelyk’;, denotes the second-
order partial derivative wrif and f, K}’f represents the second-order partial derivative fyrand K}’,f, is the
second-order partial derivative wft. Throughout the paper to simplify the exposition, the argots of functionals
or functions are omitted unless the arguments are ambiguocsnfusing. Also, the range of integration in various
integrals will not be explicitly marked unless the range risbiguous.

Theorem 1 ([12]). A necessary condition for the function@lf] in (I) to have an extremum (or local optimum)
for a given functionf = f* is that its first variation vanishes gt = f*:

SU[f] =0, (7
for all admissible increments.This implies
d
K}‘* - %K}‘/* — 07 (8)
a result which is known as Euler’s equation. When the funetiin (1) includes multiple functions (e.¢f4, ..., fin)

and multiple integrals wrtcq, ..., x,, i.e.,

/"'/K(xlv"'vmfwfl?"'7fm7f{7--.7fr/n)d$1"'dxnv

then Euler's equation in(8) takes the form of the system ofggns:

K};—Z%K}f:o, i=1,...,m. 9)
j=1 "7
In particular, when the functional does not depend on thed-&rder derivative of the functiongi, ..., f,., the
equations in[(P) reduce to
K}::O, i=1,...,m. (10)

Proof: Details of the proof of this theorem can be found,,arg[12]-[14]. [ |



Theorem 2 ([12]). A necessary condition for the functiondlf] in () to have a minimum for a givefi= f* is
that the second variation of function&l[f] be nonnegative:

U] >0, (11)
for all admissible increments. This implies
K”,*f,* > 0. (12)

In particular, when the functional in({1) does not depend be first-order derivative of the functiofi, (12)
simplifies to

K. >0. (13)

When the functional i {1) includes multiple functions (efg, . .., f,,) and multiple integrals wrteq, ..., x,, i.e.,

/---/K(ﬂj‘l,...,:L'n,fl,...,fm)dl'l"'dﬂj‘n,

then the condition in[(13) is expressed in terms of the pasgemi-definiteness of the matrix:

" "
Kf1f1 Kflfm

= 0. (14)

K}/ A K}/ f
Proof: The inequality in[(1I3) is easily derived from the inafity in (12) smceK”, Ffi andK}’ i are vanishing
in (@ when the functional in{1) does not depend on the firdenderivative of the functlorfx “The remaining
details of the proof can be tracked in_[12]. [ |

Theorem 3 ([12]). Given the functional

b
Ul ol = [ Ko i, o i, £ (15)
assume that the admissible functions satisfy the followsimgndary conditions:

Ji(a) = A1, fi1(b) = By, fa(a) = Az, f2(b) = Bo,
k(thlafZ) = 07 (16)

b
L[f1, f2] Z/ L(z, f1, f, f1, f3)dz = 1, (17)

whereq, b, A1, By, Aa, Bs, andl are constantsk(z, f1, f2) is a functional wrtf; and f,, andU|f1, f2] is assumed
to have an extremum fof; = f;" and fy = f3.

If f; and f; are not extremals oL [fi, f2], or k;{f and k;z do not vanish simultaneously at any point [n](16),
there exist a constant and a function\(z) such thatf; and f; are extremals of the functional

b
/ (K (2, f1, fo, 1, £5) + AL(2, f1, fo, 1. £3) + M@)k(z, f1, f2))dw. (18)

Based on Theorein 3, the following corollary is derived.

Corollary 1. Given the functional

Ulte s = [ [ Ky g gy, 19)
assume that the admissible functions satisfyatheafollowmgndary conditions:
fx(a) = Ax, fx(b) = Bx, fv(a) = Ay, fv(b) = By,
ko fus ) =9l )~ [ e )i =0,

bopb
Li[fx,fy]z/ / L,y fur fr)dady =1, i=1,2,- ,n, (20)



wherea, b, A, By, A,, and B, stand for some constantg, is a function ofz, f, is a function ofy, g(y, f)
is a function off,., and /;(x,y, fx) is a function off,. The functionalU[f,, f,] is assumed to have an extremum
at fy = fx- and f, = fy-.

Unless f,- and f,- are extremals ofL;[fx, f,], or k:}x* and k}y* simultaneously vanish at any point of
k(y, fx, fv), there exist constanty;,: = 1,2,--- ,n, and a function\(y) such thatf, = fy- and f, = f,-
is an extremal of the functional

b b n
[ b+ S nLiew. £ f) = M)y £O)s] + Mgty f) . @D)
@ @ i=1

Proof: See Appendix]A. [

Based on Theorenis fI] 2 and Corollafy 1, we can derive thewfiitp corollary, which will be repeatedly used
throughout this paper.

Corollary 2. Based on the functional defined in21), the following nemgssonditions are derived for the optimal
solutionsf,- and f,.:

n _, ~
/K}X* (wayafx*afY*) + Z)\iLifX* (%%thfy*) - )‘(y)k}x* (x7y7 fx*)dy = 07 (22)
=1
o ~/
/K}Y* (x7y7 fX*7fY*) +Z)‘2L7,fy* (%Z% fX*7fY*)dw+)‘(y)g}y* (y7 fY*) = 07 (23)

i=1
and the matrix
1 1
Gfx*fx* Gfx*fy* (24)
G// G// I
Jy=fx Jy=fye
is positive semi-definite. The function@lis defined as

N
G(ﬂj‘, Y, fX*> fY*) = K(:L'v Y, fx*> fY*) + Z /\sz(aj> Y, fX*? fY*) - /\(y)k:(a:, Y, fx*) + A(y)g(y> fY*)Q(:E)»
i=1
and ¢(z) is a (arbitrary but fixed) function which satisfiefé’ q(z)dz =1, and it is introduced to homogenize the

functional in (21). In particular, if functiory(y, f, ) only involves first order component 6§, i.e., g(y, fv) = fv,
the necessary condition reduces to check the positive defimiteness of the matrix

" "
|: HJ;X*fX* Hf,x*fy* :| ,
ny*fx* ny*fy*

where
N ~ ~
H(ﬂj‘,y, fX*?fY*) = K($7y7fX*7fY*) + Z/\iLi(mayan*afY*) - /\(y)k:(a:,y, fx*)'
=1
Proof: See Appendix]A. [ |

1. MAX E NTROPY AND MIN FISHER INFORMATION

This simple but significant result—given the second-ordemmnt (or variance) of a random vector, a Gaussian
random vector maximizes the differential entropy—is vkelbwn. In this section, a completely rigorous and general
derivation of the distribution achieving the maximum epiravill be first provided. This proof sets up the variational
framework for establishing a second important result is #8ction, namely the Cramér-Rao bound, which states
that for a given mean and correlation matrix, a normallyritisted random vector minimizes the Fisher information
matrix.

Theorem 4 ([1], [10]). Given (a vector meam, and) a correlation matrix(2,, a Gaussian random vectdX .
with the correlation matrix2?, (and the vector meap,) maximizes the differential entropy, i.e.,

h(X) < WXq), (25)



where h(-) denotes differential entropyX is an arbitrary (but fixed) random vector with the correlationatrix
Q.

Proof: We first construct a functional, which represents thequality in {25) and required constraints, as
follows:

min [ .60 log £ (x)dx (26)
s. t. /fx(x)dx =1, (27)
[ xtexidx = (28)
/xfoX (x)dx = Q. (29)
Using Theoreml3, the functional ih (26) is expressed as
min Ulfxl, (30)

whereU[fy] = [ K(x, fx)dx = [ fy(x) (log fe(x) +a+ 300 G+ 300 >0 /\ijxiznj> dx, « is the La-
grange multiplier associated with the constraintl(27), afjdand \;; stand for the Lagrange multipliers corre-
sponding to the constraints_(28) arld [29), respectively.

Based on Theoref 1, by checking the first-order variatiordi@m, we can find the optimal solutiofy-(x) as

follows:
!

K}, =1+4log fe-(x) +a+¢Tx+x"Ax =0 (31)

Ix=fx~

with ¢ = [¢1,--+,¢,]T and the matrixA = [)\;;], i,j = 1,...,n. Considering the constraints il_(27) (29), from
(31) it turns out that

for(x) = exp {—x"Ax — ¢Tx—a — 1}

1|7 1 1o\ NI
= (2m) 2 §A_1 exp{—i(x—u)T <§A_1> (x—,u)}(27r)2 §A_1 exp{—1-a+p"Ap}
—_n _1 1 T —1
= (27T) 2 ’QX‘ 2 exp —§(X—[J/) QX (X—[,l,) ) (32)
where
1
o = —1+uTAu+§log(27r)"\QX],
A= o
2
¢ = —2Au. (33)

Two remarks are now in order. First, the correlation matf, is assumed to be invertible. When the correlation
matrix is non-invertible, similar to the method shown fin,[2}e can equivalently re-write the functional problem

in (26) as

min —h(X) <  min —A(X), 34

fx (%) X) fx(x) X) (34)
where X = Q,X, and in the spectral factorizatiof2, = Q,A,Q’, Q. is an orthogonal matrix,A,, =
diag (A1,..., Ap,0,...,0) and diag denotes a diagonal matrix.

Let X = [X;,Xg]T, where the dimensions &, and X, are m andn — m, respectively. It can be observed
that the correlation matrix (or covariance matrix) &, Q ¢, is equal to the diagonal matriA,,. Furthermore,



the correlation ofX; is a zero matrix andX; can be considered as a deterministic vector. TiXis,and X, are
statistically independent and the equation[inl(34) and taists in (27)-[29) are equivalently re-written as

min —h(X,),
Jnin (Xa)

where A, = diag(A1,...,A,,) > 0 is a positive-definite matrix. Therefore, without loss ohelity, we can
assume that the correlation matrf , is invertible.
Based on Theorefd 2, since

_ 1
fx=Ffx~ fxx (X)
the second-order variation?U [f..] is positive, and the optimal solutiofi,- is a minimal solution for the
variational problem in[(ZB).

Therefore, the negative of differential entropy.(X) is minimized (or equivalentli(X) is maximized) wheiX

is a multi-variate Gaussian random vector. Even though Téme[1[ 2 are necessary conditions for the minimum,
in this case, a multi-variate Gaussian density functiorhis actual solution since there is only one solution, namely
the multi-variate Gaussian density function, in the fekesget. An alternative justification of global optimality of
multi-variate Gaussian pdf can be achieved by exploitirg ¢bnvexity of{ (x, fx) wrt f.

> 0,

1!
K px

Remark 1. The proof in [1] relies on calculus of variations to find thestiorder necessary condition, which only

represents a necessary (and not sufficient) condition foinmagity. Therefore, an additional technique, referred to

as the Kullback-Leibler divergence, was used to prove thaniecessary solution globally maximizes the differential
entropy. Unlike this proof, by confirming the convexity & #ariational problem, we show that Gaussian distribution
is indeed the global optimal solution solely based on caiswf variations arguments.

The maximum entropy result can be extended in various waysin#ple variation of the maximum entropy
considers only non-negative random variables. Then itstaut that Gaussian random variables are no longer the
optimal solution that maximizes the differential entropire following theorem can be easily established and states
that a half-normal random variable maximizes the diffaedm@ntropy over the set of non-negative random variables.

Theorem 5. Within the class of non-negative random variables with gisecond-order moment?, a half-normal
random variableX, , maximizes the differential entropy, i.e.,

MX) < h(Xuy), (35)

where X is an arbitrary (but fixed) non-negative random variablewthe second-order moment2, and h(-)
denotes differential entropy.
Proof: The proof is omitted since it can be established foihg similar steps to the proof of Theorém 4

Adopting a similar variational approach to the one in Theolk we can also determine the probability density
function that minimizes the Fisher information matrix a®wh by the following theorem.

Theorem 6 (Cramér-Rao Inequality (a vector version§iven a vector meap, and a correlation matrix2,, the
Gaussian density function with the vector mganand the correlation matriX2, minimizes the Fisher information
matrix, i.e.,

IX) = I(Xo), (36)



whereX and X, stand for an arbitrary (but fixed) random vector and Gaussiandom vector, respectively, with
given meary, and correlation matrix2,, and J(-) denotes the Fisher information matrix:

IX)=1 :+ -~ | (37)

2 fe ) (@)
= dz; J x)dx.
‘/( RS )( RS )fx( )

Proof: We first represent the inequality in_{36) as a funcéibwith the required constraints as follows:

1
min Vi)V fe(x)" dx, 38
in [ €910V E (39
S. t. /fx(x)dx =1,
[t =
/xfoX(x)dx =Q,, (39)
whereg is an arbitrary but fixed non-zero vector, defined@s [¢1,...,&,]".
Using Theoreni]3, the functional problem in(38) is expressed
min  U[f], (40)

X

whereU[f] = [ K(x, fx,Vfx)dx, K(x, fx, V<) = (§"Vx(x)V fx(x)7€/ fx () Fafx(x)+fx(x) 20 Gait
Fx(x)>0, Z;‘:l Nijzixg, anda, ¢;, and \;; are the Lagrange multipliers corresponding to the threestoints
in (39).

Based on Theorefd 1, by confirming the first-order variationdition, i.e.,oU|[f«-] = 0, we can find the optimal
solution f-(x) as follows:

9
Kpo =2 50 Kn, =0 (41)
=1 """ Fx=fx+
where
K; = £ va(X)V‘éX(X) 3 +a+("x + x"Ax,
fx(x)
2 3 i x\X)CiCH
9., _ o j:laxff (x)&&;
dx; X T Ox fx(x)

23" e (08 22 gy ()88 3 ()

7o) - ) ' 42)

Therefore, the left-hand side of the equation[inl (41) is esped as

" 0 ISP R TR S ID OE ot A
r K., = 1=17= _i=lg= N s
fo zz:; ox; Kin fX(X)Z Fo(x) + o+ ZZ:;CZ‘TZ + Z Z NijTiT;

i=1 j=1
—0. (43)




Unlike Theorenil4, we cannot directly calculafe-(x) from (41). Fortunately, the first two parts in equation
(43) are expressed as quadratic forms whén(x) is a multi-variate Gaussian density function, and therefor
the multi-variate Gaussian density function satisfies tipeadity in (43). Whenf,- (x) is a multi-variate Gaussian
density function:

(e—nx)T=3 (x—nx)

frer(x) = (2m) 7% B2 e ?
with ¥, = Q, — p, p% and
2 2
2 .. 0'2
its partial derivatives can be expressed as follows:
0
%fx* (x)= -3 Z Ox - le Z Xons — fx,, ) fxe (%),
o 9 1 L1 =\
%ja—xifx*(x) =73 ( +0' >fx Z (; — Hx, +m2::1ffxm( ,Uxm)>

: (Zaijl(ﬂfl - iqu)—i_Zo-?cmj(l'm - /‘Xm)>fX* (X) (45)
=1 m=1

By substituting[(45) intd_(43), it turns out that

n

)
K =2 gk, = 12066 (Z o) - w) (Zwijm £ o)

i=1 ] 1 m=1
+ ZZ(O’;% §z§y+a+ZCz$z+ZZ/\zﬂ Zj
i=1 j=1 = 1] 1
n n
D) SEACETSITEYARES 9 DIC T HECERED MEUED 9p VRS
=1 m=1 i=1 j=1 i=1 j=1
=x"Ox+x"Ax+{"x -2 Qx + p Qu, + EPE+
=0, (46)
where
E;nn El;in M1 o Ain
Exlm: : ) : ’ A: ' : ’
L g ZL;;" An1 Ann
[ Yn Y1n w11 Win
v= : , Q=
L wnl o wnn Wnpl - Wnn
m_ L9 2 2 2
EX” =1 (aX“ + O’X”) <0ij + axmj>
:Uilif’ijyn,ijzl ,n, ILbm=1,...,n
Vi =20" Xy bJ =1,
Wi = &7 lemf, l,mzl,...,n. 47
Therefore, the Lagrange multiplieks and \;; must be selected as
a = _IJ’XQI'LX ET‘I’£7
¢ = 2Qpu,,

A = —-Q. (48)
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Since the second-order variation is positive:

K%f v = 2 &’ =0 (49)
xVix fx=fx= fxe(x) 7

based on Theoref 2, the Gaussian distributjon(x) is necessary optimal for the variational problem [n](38).
Even though Theorera$ 1 and 2 are necessary conditions fanihienum, in this case, the multi-variate Gaussian
density function is sufficiently the global minimum solutéince this is a convex optimization problem (the objective
function is strictly convex and its constraint set is cofvex [ |

Using similar variational arguments, one can show that &r@imal and a chi density function minimize the
Fisher information over the set of non-negative randomaideis as shown by the following two theorems.

Theorem 7. Within the class of non-negative continuous random vaeshtith fixed second-order momenﬁ,
the Fisher information is minimized by a half-normal randeariable X, :

J(X) = J(Xuw), (50)

where X is an arbitrary (but fixed) non-negative random variable wthe second-order moment2, and J(-)
denotes the Fisher information.

Remark 2. Theoreni 7 does not assume the following regularity coritio

/ V f(x)dx = 0. (51)
0
for the Fisher information.

The following result establishes the counterpart of Thedi# for the class of non-negative random variables
with fixed second order moment and whose distribution sasigfie regularity condition in_(51).

Theorem 8 ([15]). Within the class of non-negative continuous random vaeialil with fixed second-order moment
and whose distributions satisfy the regularity condition (E1), the Fisher information is minimized by a chi-
distributed random variableX.:

JX) = J(Xo), (52)

where J(-) stands for the Fisher information.

Proof: Unlike the proof in [[15], by considering the first-agd and the second-order moments instead of
variance, we construct a variational problem and address gioblem using the first-order and second-order
necessary conditions, as well as the convexity propertiieptoblem. The details of the proof are omitted because
of the similar steps to those encountered in the proof of féme®. [ |

IV. WORSTADDITIVE NOISE LEMMA

Worst additive noise lemma was introduced and exploiteceiresal references [9]._[10],._[18], and it has been
widely used in numerous other applications. One of the mpili@ations of the worst additive noise lemma pertains
to the capacity calculation of a wireless communicationneigh subject to different constraints such as Gaussian
MIMO broadcasting, Gaussian MIMO wire-tap, etc. In thisteeg the worst additive noise lemma for random
vectors will be proved solely based on variational argument

Theorem 9. AssumeX is an arbitrary but fixed random vector aid,, is a Gaussian random vector, whose mean
and correlation matrix are identical to those &, denoted ags,, and 2, respectively. Given a Gaussian random
vectorW,, assumed independent of bathand X, and with zero mean and the correlation matfi, , then the
following relation holds:

I(X+WG§WG) > I(XG+WG§WG)' (53)

Proof: Our proof is entirely anchored in the variational calus framework. A summary of our proof runs as
follows. First, we construct a variational problem, whidakpresents the inequality i (53) and required constraints i
a functional form. Second, using the first-order variatiandition, we find the necessary optimal solutions, which
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satisfy Euler’s equation. Third, using the second-ordeiatéon condition, we show that the optimal solutions are
necessarily local minima. Finally, we justify that the lbcainimum is also global.

By settingY = X + W, whereX and W are independent of each other, in{53), the mutual infororati
I(X + W,; W,) can be expressed as

(X + Wi W) = h(Y) — h(Y[W.) = h(Y) — h(X).

Then, we consider the functional:

win— [ [ru 00y ( f72 601y sy + [[ 7,608 (v 10w £, iy ()

S. t./fX(x)dx =1,

/ xfx(x)dx = py,

/xfoX (x)dx = Q. (55)

The density functiorf, (y) and conditional density functiof, . (y|x) are expressed as
iy = / Fe(x) frrs (7)1, (56)
fy\x(y‘x) = - X), (57)

respectively. Therefore, by substitutiig(y) for [ fi(x fY‘X(y|X)dX and f,, (y — x) for f, «(y|x), respectively,
and appropriately changing the constralns [n1(55), the a#dnal problem in[(G}) is expressed as

suin [ [7.60 £, (v = %) [ 10g £,(3) + log £, (9] dxdy (58)
5.t / () fu (y — X)dxdy = 1, (59)
J[xteuty = xjaxdy = .. (60)

[ [ 1001ty = iy = 2. (61)
[ 800100 - xjaxdy = u,. (62)
[ £ty - xaxdy = ., (63)

y) =[£GSy~ x)ax (64)

Based on Corollary11, the functional problem [n(58) can becast into the following equivalent form:

J[I)I(lljg//fx fw _X)[ long( )—i—lngX +a0+zgz$z+22’7wx %-i-Z??zyz

i=1 j=1
S Oy — A + £ )My, (65)
i=1 j=1

wherex” = [z1,...,2,], ¥ = [y1,-..,yn], and oo, G, vij, mi, 055, and A(y) stand for the Lagrange multipliers

corresponding to the constraints {59), (6Q), [(61).1(62B)(6and [64), respectively.
Define now the functiondl as

vitet) = [ < / K(x,y,fx,fy>dx> T+ Ry, f,)dy,
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where

K(X7y7fX7fY) = fx(x)fw(y - X)[_ long(y) + long(X) + o + Zszz + ZZ’W%%
i=1

i=1 j=1
+Z77iyi -I-Z Z%‘yz’yj =AW,
i=1

i=1 j=1
K(y, fv) = X¥) fr () (66)

Based on Corollary 2, we can find the optimal solutifypn and f,. as follows:

J 5

Fxmfrn fomf dy = /fw(}’—x)(—logfy*(Y)+10gfx*(X)+ao+CxT+XTI‘x+nTy
+y"®y +1—A(y))dy

=0 (67)
[ g ax - - [ LRl 20y
Fx=fx+.fr=Fv+ i
=0, (68)
where
Y1 Min b - O
r= S , ©®@= s (69)
Ynl " Unn Hnl e enn
C = [Clv"'><n]T andn = [7717--- 7777L]T'
The following relationships satisfy the necessary cood#i{67) and[(68):
0 = —log fy(y) +1og fx:(x) + g+ ¢x" +x'Tx+n'y +y Oy + 1 - Ay),
0 = —14+Ay). (70)

Considering the constraints il (b9)-(64).- (x) and f,-(y) in (Z0) can be expressed as

Cnq it ()T (eonx)
fX*(X):(27T) 2 |EX| ze 2
_n 1 (eey)TEr (voey)
fr(y)=02n) 2%, 2e 2
whereX, = Q, —p,p%, =, =%, +3,, and X, is the covariance matrix oW . Based on the equations in
(Z1), it turns out that

1 1 1 1
a = Flog (2m)" [Z| + i By — S log (2m)" [By| = Sp T s,
1,
F - 52)(17
C = _2;1ﬂx7
1,
@ - _52)/17
no= -, (7D

Therefore,f,- and f,. are multi-variate Gaussian density functions (withouslo$ generality, and we can assume
that the covariance matrix is invertible due to the arguments mentioned in Appendix B).

Now, by confirming the second-order variation condition, wi# show that the optimal solutiong,- and f,-
are necessarily local minima. Using Corollary 2, we will shthat the following matrix is positive semi-definite:

K/l Kl/
ol yh} -0, (72)

K fx=Fx~.fy=Fv~

fy fx Kfy Iy
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Since the elements of the matrix [n](72) are defined as

fw(y - X)
K" = — -
PP pem e fr=fe fr- (%)
K// _ fx*(x)fw(y - X)
Pl = fr=fie f(y)?
K" _ fW( _X)7
Xfy fX:fX*va:fY* fY ( )
fW( —X)
K" = , 73
foX fX:fX*va:fY* fY ( ) ( )

the matrix is a positive semi-definite matrix, and theref6t® > 0. Because of the convexity of functional
K(x,y, fx, fy) wrt variables f, and f,, the optimal solutionsf,- and f,. actually globally minimize the
variational functional in [[58). Even though these optimalusions are necessarily optimal, there exists only one
solution, which is the multi-variate Gaussian density fiort and it satisfies Euler's equation i (67) arld 68).
Therefore,f. and f,. are also sufficient in this case.

An alternative more detailed proof of the fact that. and f,. represent global optimal solutions is to show
that Ul fx, fv] > Ulfx-, fv+], Where f¢, fy denote any arbitrary functions satisfying the boundaryditons and
the constraints. First, the following functionals are defin

(xy fX?fY) = fx(x)fw(y_x)[_long(y)+10gfx(x)]a

Fo(,y, ) = fx(0)fuly — %),
FOx,y, f) = @ifx(X)fuly =),
Fy Dy, f) = aizif () fuly — %),
By, ) = i) fuly — ),

)
F4(ZJ (X7y7fx) = yzy]fx(x)fw(y X)

and thusK (x,y, fv, fy) can be expressed as

KXy, fx: fv) = F(x,5, fo, fv) + a0 Fo(x,, f) +Z@F“ (%, ¥ fx) +ZZ%J D x,y, fr)

=1 j=1
+ 3 P (x,y, fx) + Z Z 0, Fy) (x5, fx) = M) fx (%) fu (y — ).
i=1 =1 j=1
Since the Hessian matrix df (x,y, f«, fv) wrt fy and f, is given by

|: fw(y_x)/fx(x) _fW(y_X)/fY(y) :|
—fu(y = %)/, (¥) [x®)fuly =x)/f(y)* |’

which is positive semi-definités (x,y, f«, fy) IS convex wrtf, and f,, and the following inequality holds

K(vava>fY) _K(X7Y>fx*>fY*) > [(fX - fX*)K}X + (fY _fY*)K}y] (74)

Fx=fxx fy=Fy+
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due to the fact that the convex function lies above its tatsgérherefore, it follows that
fX?fY - [fx* fy*]
// xny’fY - (xﬂyafx*7fY*)dXdy

:/ F(vaanafY/) _F(vavfx*>fY*)dXdy+a0//F0(Xayan) _FO(Xayan*)dXdy

+ZCZ/ F(x,y, o)~ (x,y, o )dxdy +ZZ%J/ F{ (x,y, f)—F (x,y, fo)dxdy

=1 j=1

+Z772//F( (x,y, fx) F( (%,¥, fx+) dxdy+ZZ¢9w// w9) (X, ¥, f<)— (X Y, fx-)dxdy

=1 j=1

+ ) [ﬁ(y) ~ [ronty - x)dx] iy~ ) [fy*(y) — [ 560y~ x)ax] v

:/ K(vaanaf?)_K(X>Y>fx*afY*)dXdY+ﬁfY_fY*)A(Y)dy

(75)
Based on[(74), the righthand side 6f(75) can be lower bouradefbllows:
U[fx>fi’] - U[fx*afy*]
Z/ [(fX_fX*)fo—i_(f?_fy*)KfY] fx=Ffx=,fy= fyledy
+ [ = Fnway
(76)

2 o[ 5] )
(fx fx) fx F=fan fr=Fye y

s =g | [ g axe &,
v,

d
fX:fX*va:fY* Y

where (a) follows from the fact that
K ‘ — Aly),
ettty )
and (b) is due to[(67) and_(68). This proves the sufficienchefGaussian distributions, and thereforg,- and
fv= minimize the variational problem.

Remark 3. The constraints related to the vector meandid (60) (8Ruanecessary. Without these constraints,
the optimal solutions are still multi-variate Gaussian diy functions but the vector means are equal to zero.

V. EXTREMAL ENTROPY INEQUALITY

Extremal entropy inequality, proposed by Liu and Viswan@h was motivated by multi-terminal information
theoretic problems such as the vector Gaussian broadcashehand the distributed source coding with a single
guadratic distortion constraint. EEI is an entropy powequality which includes a covariance constraint. Because
of the covariance constraint, the extremal entropy inétyuabuld not be proved directly by using the classical
Entropy Power Inequality (EPI). Therefore, new techniq(i&s], [11]) were adopted in the proofs reported (in [2],
[11]. In this section, the extremal entropy inequality vk proved using a variational approach.

Theorem 10. Assume thap, > 1 is an arbitrary but fixed constant anBl is a positive semi-definite matrix. A
Gaussian random vectoW . with positive definite covariance matriX,, is assumed to be independent of an
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arbitrary random vectorX whose covariance matriX, satisfies¥, < 3. Then, there exists a Gaussian random
vector X, with covariance matrixX - which satisfies the following inequality:

WX) = ph(X + Wo) < h(X5) — ph(XG + W), (77)

whereX . < 3.
Proof: By settingY = X+ W, we first consider the following variational problem (wititdoss of generality,
we assume thaX, W, andY have zero mean):

min [ [ £ G0y = x)(ulog £ (3) +og £ () + (= 1) log fuly — x)ixdy (78)

s.t. //fx(x)fw(y — x)dxdy =1,
[ [3y 50ty = xaxdy = [ [0 1,00l - x)axdy
[ [0 -0 £y - xaxdy,
[ [ 50ty - xaxiy =3,
//nyfx(X)fw(y —x)dxdy = 2y,
[ [ 169565~ %108 o )dxiy > .
£ ) = [ 160 Sy = x)ax (79)

where p, is a constant, and2, . stands for the covariance matrix of the optimal soluti¥h The constraint

— [ fx(x)fw(y — x)log fx(x)dxdy > p, means that the differential entropy & is greater than a constant
P, 1.6, H(X) > p,, and it is introduced because it helps to convexify the mobby enforcing the semi-positive
definiteness of the resulting functional second-orderat&n. This is due to the fact that this constraint introdsice
an additional Lagrange multipliery;, which can be selected appropriately to ensure the nonthegdefiniteness
of the second-order variation. Singg can be any arbitrary small number, we believe that adding #dditional
constraint is reasonable. In addition, the tegp(u — 1) [[ fx(x)fu (y — %) log fi (y — x)dxdy = pu(u—1)h(Wy)

is added to the objective functional {78), and being a cantstia does not affect the optimization problem. Without
loss of generality, the matri¥ is assumed to be a positive definite matrix due to the samearsgts mentioned

in 2.
The optimization probleni (¥8) is re-cast as follows:
min [ [ £uG0u (= 0)[plog £ (3) 4 Jog £1(00) + 1 (1~ 1) log fuy — x))dxdy (80)
st [[ 1600ty - xaxdy = 1. (81)
[ (s =i = =, = 2),) 100y~ )iy =0, (62)
Y < [ [znssiein s - x)dxdy) <Y e (83)
i=1 j=1 i=1 j=1
[ st 008 (5 = iy = o2, (84)
- / Fx () fu(y — %) log fx (x)dxdy > py, (85)

o) = / Fo () (y — ), (86)
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where the arbitrary deterministic non-zero vectis defined ag¢y, . . ., &,]7, afj and 0—353_ denote the™ row and
4™ column entry of and 3, (i =1,...,n, andj = 1,...,n), respectively.

Using Lagrange multipliers, as shown in Corollary 1, the dtianal problem in [(8D) and the constraints in
(81)-(88) can be expressed in terms of the Lagrangian:

min [ ([ Keoysfax) + K.y
(87)

where

K(x,y, fx: fv) = fx(x) fuw(y —x)[—plog fy(y) +log fx(x) + p (1 — 1) log fiw (y — %) + g

n

YO (igwiys — iz — i (Y — 2); (Y — 3); + 023,685 + diyiy;) — a1 log fi(x) — Ay)],
i=1 j=1

K(y. fv) = X¥)fr(y). (88)

The Lagrange multipliersy, ~;;, 0, ¢i;, a1, and X\(y) correspond to the constraints in (81, {8), (83).1(84).)(85
and [86), respectively.

To find the optimal solutions, based on Corollaty 2, the fingter variation condition is checked as follows:
| x5,

> (i — vigmiy — i (y — @) (y — 2); + 0332685 + bijwiys) — Ay) + 1 — au]dy

fx:fx*,fyzfy*dy = /fw(y —x)[—plog fy-(y) + (1 — a1)log fy-(x) + pu(p — 1) log fu (y —x) + ag

i=1 j=1
= 0. (89)
/ o __fox(x)fw(y_x)dx _

/Kfydx + Ky, ey ) + Ay) =0. (90)

The following expressions satisfy the equalitiesin (89) 10):
Ay) = m,
n _% 1\t n — % Yy
fro) = [ h e Cew{ -y (S ) Ty ent[-L e ew {2}

. 1 —3 1 1 -1
fuly =) = 2m)3 | p exp{—5 v - () <y—x>}
2| =1 __ Cw
(2m) > ' eXp{ u(u—l)}’
fo0) = ot |2 | e e (Lo 0 _gm)
X 2 = P73 2 =
ol - o o 1% —og+pu—1+ar+cw +oy
e} |52 - 0= e { L 3 (o1)
where
[ 11 o b Y1 o Vin
= o : , I'= : .o
| (bnl (bnn Tnl " Tnn
[ G& L&
| gnfl Sngn
x=[z1, ,an]"
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Now considering the constraints in {81)-(86), the equation(91) are further processed as follows:
_n _1 1 TN —
Frot) = @07 5 { - Sy ily

Fuly =) = () E B e {5 - %" 2 (v - 0

. , 1
fxe(x) = (2m) 2 |Bxe| 2 exp {—ixTE;}x} (92)
where
—1 n
ay = u—(l—al)—k%log(%r) |3 ]
1—
—Llog (2m)" [B,-] + —5— log (27)" [ B
p(p—1) oy
= B _»
2 W
& = -r-Hy-l
2
—1
AU LYl
2 2
1—
R e e
L—o (p(p—1) -
- ol 4 0=
2 < 2 wo
9 > 0, (93)
a < 1—up, (94)
-1
Cy = %bg(%mzwu
cy = —glog(27r)"]2y*],

1 2 "
Bl = (geew{in)
e n

The inequality in[(94) is due to the second-order variati@mdition, which will be presented later in this proof.

The inequality [(OB) is based on the theory of KKT conditioinges the multiplier associated with the inequality

constraint is nonnegative. Moreover, the complementaagksiess condition in the KKT conditions leads to the
following relationship:

[// ( 23333]&63) fxx (X)fW( —X dXdy Zzamgz@] =0. (95)

=1 j=1 =1 j=1

Based on Corollary]2, to make the second variation nonnegathe positive semi-definiteness of the following
matrix is required:

1 1
Kfy fx= Kfy*fy*
which further reduces to the following condition:
Kl/ Kl/ h
[ hx hy ] |: .f/X*fX* .f/X*fY* :| |: X :|
Koo Kppopye 1L Iy
f s h2 +K// o h2 (K//X +K// e )h hx
> 0, (97)

|: K}(X Fx= K}{X*fY* :| , (96)
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whereh, and h, are arbitrary admissible functions. Sind€’ K" , K" ,and K" are defined
fx*fx * fy* * fY*fy*

as 1 fxx fy fx
1" . (1—oa)fwly —x)
fo*fx* - fx* (X) ’
" _ _pfwly—x)
Brer = "7 g
" _ _wa(y —X)
Bvere = =705
" _ pfxe (%) for (y — %)
b feey)? 7 (98)
the condition in[(97) requires
Lo ly =)y g = oLV =X (g )+ L2 BIR =), gy
,ufw(y B X) fx* (X) ?
> P (o - g e) ©9)

which holds true iftl —a; > p (i.e.,a; < 1—p < 0). Conditiona; < 0 is also imposed by the KKT complementary
slackness condition corresponding to the constrdint (8%)erefore, the optimal solutiong,- and f,- minimize
the functional problem in((80), and the proof is completedause of convexity of the functional(x,y, f«, fy)
wrt variables f, and f,.

A more detailed alternative justification of the fact the Gsian distributionsf,- and f,. are global minima
is next presented. We will prove the sufficiency of the Gangdistributions by showin@[f«, fv] > U[fx+, fv+],
whereU]|-, -] represents the objective functional in the problem grdf; denote any arbitrary functions satisfying
the boundary conditions and the constraints. First, théofeing functionals are defined:

F(x,y, fx, fv) = [x(X)fuly —x)(—plog fy (y) +log fx(x) + pu(p — 1) log fu (y — %)),
FO(X7Y7 fx) = &) fuly —x),
Fl(m)(X,y, fx) = (yiyj —ziw;— (y—x); (y - x)J') S @) fuly =),
Fy(x,y, fx) = (ZZ%‘%’&Q) fx(x) fu(y —x),
i=1 j=1
Fg(i’j)(x,y, fX) = yz’yij(X)fW(y _X),

F4(X7y7fx) = —fx(x)fw(y—x)logfx(x),
and thus

K(vaafxafY) = F(Xay7fX7fy)+040F0(X,Y,fx)+ZZV¢jF1(i’j)(X,y,fx)+9F2(X,y,fx)
i=1 j—1

+ S0S T 6uE D (xy, fi) + o Fa(x,y ) = M) (%) fur (y — %0).
i=1 j=1
It can be verified that the Hessian matrix 8f(x,y, fv, fy) W.r.t fy and f, is given by
|: (1_a1)fw(y_x)/fx(x) _,ufw(y_x)/fY(y) :|
—pfu(y =)/ (¥) ) fuly =x)/fr(y)? ]
which is positive semi-definite due f01(94). The convexibperty of K (x,y, f«, f,) yields that

K(X7Y7ff<7f?) - K(X7y7fx*7fY*) 2 [(fx - fx*)K}X + (fY - fY*)K}y] (100)

Fx=Fxe . fr=Ffys
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and it follows that

Ulfs, f51=Ulfx=, fre]
/ FX 'Y, fX;fY - (X7y7fx*7fY*)dXdy

2/ F(Xﬂyaff(afff)_F(X7y7fx*7fY*)dXdy+a0 |:/ FO(X7y7fX)_FO(X7y7fX*)dXdy:|

+ZZ%; [// Dy, fo) = P (x,y, for )dxdy] +6 U By(x,y, fx) = Fa(%,y, fx- )dxdy]

21]1

+ZZ¢U U/ Dy, fx) = B (x,y, fo )dXdY}‘i‘al[/ Fi(x,y, fx) = Fa(x,y, fx- )dxdy]

=1 j=1

#3160 = [1:608 = x| ay — [ |1 = [0ty = 0w ay (101)
= [ [K Gy g 1) = Ky fe £y + [A) (o(3) = £ ) dy

2 [[10: = 0K, + (=508,
= i -1 [/Kf

@,

e dxdy M) () = o) dy

fX:fx*va:fy*dy:| dX * /(fY - fy*) |:/Kfy
(102)

where the inequality (a) follows from the complementaryglat@ss condition in the KKT conditioris {95). Indeed,
since f; only represents an arbitrary feasible solution afd> 0, it follows that

0| [[ Fatoy gy - ZZ%@@] o,

=1 j=1

dx + A d
fx=Fx*fyr="Ffy* (Y):| Y

and

0| [[ Patxoy foraxiy - ZZ%%} <0,

i=1 j=1

and therefore,d [ff Fy(x,y, fx) — Fa(x,y, fx*)dxdy] < 0. Similarly, the complementary slackness condition
associated with[(85) leads to; [ [ Fu(x,y, fx) — Fi(x,y, fx-)dxdy] < 0. In addition, (b) is due to[(100), and
(c) follows from [(8P) and(90). This proves the sufficiencyzafissian distributions.

Remark 4. The proposed proof only exploits calculus of variationslgo®nlike the previous proofs, this proof
does not adopt neither the channel enhancement technigdiece®h as in [2] nor the EPI and data processing
inequality as in [11].

Theorem 11. Assume thajx > 1 is an arbitrary but fixed constant an® is a positive semi-definite matrix.
Independent Gaussian random vect®\, with covariance matrix2,, and V, with covariance matrix, are
assumed to be independent of an arbitrary random ve®towith covariance matrixx, < 3. Both covariance
matrices3,, and X, are assumed to be positive definite. Then, there exists as@ausndom vectoX?, with
covariance matrix® x- which satisfies the following inequality:

WX + W) — ph(X + V) SA(XE + W) — ph(X5 + V), (103)

whereX x. < 2.
Proof: See AppendixIC.
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Remark 5. The proposed proof does not borrow any techniques fidm [2&rEthough the proposed proof adopts
the equality condition for the data processing inequalityresult which was also exploited in [11], the proposed
proof is different from the one in_[11] due to the followingaferes. First, the proposed proof uses the equality
condition of the data processing inequality only once while proof in [11] uses it twice. The proof inl[2]
exploited the channel enhancement technique twice, whielquivalent to using the equality condition in the data
processing inequality. Second, the proposed proof doess®the moment generating function technique unlike the
proof proposed in[[11]; instead the current proof directlypdoits a property of the conditional mutual information
pertaining to a Markov chain.

VI. APPLICATIONS

Because of the easiness to incorporate a broad class ofr@iotst the proposed variational framework finds
usage in a large number of applications. Herein section, ilériefly illustrate some potential applications in this
regard and state several open research problems which iméghtso addressed within the considered functional
framework.

A. Gaussian Wire-tap Channel

The secrecy capacity of Gaussian wire-tap channel has liadied by many researchers [20], [33]. We will
approach the Gaussian wire-tap problem from the estimatewpoint, rather than considering the secrecy capacity
from an information theoretic perspective.

The following scalar Gaussian wire-tap channel is consider

Vi = aX +W,,
Yo = aX +W,.+Z, (104)

where X is an arbitrary but fixed random variable with zero mean anitl variance,a is a constant, andiV,
and Z,, are Gaussian random variables with varianegsand o2, respectively. The random variabl&g, and Z,

are independent of each other, and they have zero mean. Ichtérnel model (104)y; andY; are considered
as a legitimate receiver and as an eavesdropper, respgciite goal of this problem is the following. Assume
that both receivers use minimum mean square error (MMSHhakirs. Given the value of the mean square error
(MSE), which allows to correctly decode the legitimate reee what is the optimal distribution which maximizes
the difference between the MSE in the legitimate receiver thie MSE in the eavesdropper?

The above mentioned problem adopts both practical and meb#® assumptions due to the following reasons.
First, the MMSE estimator is an optimal estimator in the setigt it minimizes the MSE. Therefore, it is
reasonable to use such an optimal estimator. Second, temirrem eavesdropping, finding the signal distribution
that maximizes the difference between the MSEs correspgnii the legitimate receiver and the eavesdropper,
respectively, represents a legitimate design objectieefifd the optimal distribution, the following functional
problem is constructed:

]Ifn?}g Var(X|Y2) — Var(X|Y1),
x(x

st. Var(X|V1) =R, (105)

whereVar(X|Y) =E [(X —E[X|Y])?|, E[] denotes the expectation operator, dhds a constant.
The optimization problem i (105) is expressed as

max Var(E [X|Y1] [Y2), (106)
st E [E [X\Ylﬂ ~1-R. (107)

The equation in[{106) is due to the total law of variance armdNtarkov chainX — Y; — Y5. SinceE[X?] =1,
the equation[(107) follows from the constraint [n_(1L05).
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The objective function in[{106) is further expressed as
Var (E[X[Yi]%2) = E |[E[X[Yi)?| - E [E[X]v2)’] (108)

and using the equations (107), (108), the optimization lerakin (106) is re-formulated in terms of the following
variational problem:

;Iylzig fY2 )2dy, (109)
/ V2 hr(y)dy = m?,, (110)
o(y) = / £ oy (912) (), (111)

where f, () and f,,(y) are the probability density functions of andY>, respectively, andn%2 stands for the
second-order moment af.
Since the first term in_(108) is given and

2
X’Yz /fy2 </ fyzxf:ix Jxlw )dw> dy,

the objective function ir[(@9) is derived from the equati{@@8). Also, the additional constraint in (110) is required
to solve this variational problem.

Considering the Lagrange multiplieds and\(y) to account for the constraints in (110) and (111), respelstiv
the following variational problem is constructed:

/K(y, frs9)dy,

where
Ky ) = S0 020+ 30) (900 = feboanluie) o)) 112)
In accordance with Theorefn 1, we can determjheand f;; to enforce the first-order variation to be zero:
g*(y)2 2
K¢ = — + My” =0, 113
& L Y (113)
2
Ke = 22U ) =0,

W)
Taking into account(113), it follows further that

E XYy (y = VA (114)
SinceE[X*|Y5], the MMSE estimator, is a linear function gfand the channel is corrupted with additive Gaussian
noise, it is necessary that* is a Gaussian random variable. Based on Theadem 2, it canrified¢hat the second-
order variation is nonnegative. Moreover, due to the coityet K(y, fy,,g) wrt fy, andg, we can confirm that
the Gaussian solution is optimal, and the proof is completed

B. Additional Applications

The importance of the variational framework in establighdome fundamental information theoretic inequalities
was already illustrated herein paper. At their turn, thedgermation theoretic inequalities played a fundamental
role in establishing other important results and appliceti For example, the minimum Fisher information theorem
(Cramér-Rao inequality) and maximum entropy theorem weged for developing min-max robust estimation
techniques[25], results which were recently further edézhto the more general framework of noise with arbitrary
distribution (and correlation) if_[27] and used to explaihywthe MIMO channel estimation scheme proposed in
[26] exhibits a min-max robustness property. Along the sdime of potential applications, the extensions of the
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maximum entropy and minimum Fisher information results tsifive random variables, as stated in Theorems
B, [ and(8, play a fundamental role in developing robust clsghchronization algorithms for wireless sensor
networks and other wireless networks that rely on messageaeges to acquire the timing information. A large
class of clock synchronization protocols (see e.g., TP8iyhet, PBS [28]) rely on the two-way message exchange
mechanism and for which the timing synchronization appna@ciuces to estimating a linear regression model for
which the distribution of additive noise has positive supgdmt it is otherwise arbitraryl [28]. Designing robust
timing synchronization algorithms for such protocols ifficiilt, because of the variability of delay distributions
caused by the variable network traffic. However, this probt&an now be resolved at the light of the results brought
by Theorem$15[ 17 and 8. By optimizing the design of timing ragss for the scenario of a chi or log-normal
distributed delay, then min-max robust time synchron@atilgorithms could be developed.

The extremal entropy inequality was used in the vector Gandsroadcast channell[2], the distributed source
coding with a single quadratic distortion constraint pesbl[2], the Gaussian wire-tap chanriell[11], and many other
problems. Even though these applications were traditipraldressed using the information theoretic inequalities
one can directly approach these applications by means gfrttyosed variational calculus techniques. One of the
benefits of such a variational approach is the fact that itaogre with many types of constraints as opposed to the
EEI which is still quite rigid in its formulation. As Prof. MaCosta suggested the authors of this paper in a private
communication, in the context of Z Gaussian interferenanakls, such a variational approach might be helpful to
develop novel entropy-power-like inequalities, where lildting variables are Gaussian and independent but not
anymore identically distributed, and to assess the cagpatithe Z-Gaussian interference channel.

Additional important extensions of maximum entropy theoreninimum Fisher information theorem, additive
worst noise lemma, and extremal entropy inequality migheiasioned within the proposed variational framework
by imposing various restrictions on the range of valuesrassiby random variables/vectors (e.g., random variables
whose support is limited to a finite length interval or finiet ef values) or on their second or higher-order moments
and correlations. For example, the problem of finding thestvadditive noise under a covariance constraint [9] as
well as establishing multivariate extensions of Costasogny power inequality[[30] along the lines mentioned by
Liu et al. [21] and Palomaf [31], [32] might be also addressétin the proposed variational framework. However,
all these challenges together with finding a variationabpaf EPI remain open research problems for future study.

VIlI. CONCLUSIONS

In this paper, we derived several fundamental informatibeotetic inequalities using a functional analysis
framework. The main benefit for employing calculus of vaoias is due to the fact for any information theoretic
inequality as long as it can be expressed in terms of a conwegtibnal, the global optimal solution can be
obtained from the necessary conditions. A brief summaryha paper contributions is the following. First, the
entropy maximizing theorem and Fisher information minimigtheorem were derived under different assumptions.
Second, the worst additive noise lemma was proved from trsppetive of a functional problem. Third, the extremal
entropy inequality was derived using calculus of variagibechniques. Finally, applications and possible exterssio
that could be addressed within the proposed variationahdveork were briefly presented. Many open research
problems were also formulated.

APPENDIXA
PROOF OFCOROLLARIES[I]AND

Even though the functionals in Corollary 1 involve doubléegrations, they can be regarded as a special case
of the functionals in Theorefd 3. For example, the functidigf,, f,] in (19) can be considered 4§ Gy, fy)dy

whereG(y, f,) = ffK(m,y,fX,fy)dm. In this way, the augmented functional is given by
b [ b nooeb b
I fv] = [ K(z,y, fx, fv)dz + Li(z,y, [y, fy)dx + \y) <9(y, fr)= | k(xy, fx)dw>] dy
L >) /

-/ K / (K fo f)+ S NLiwgFoe ) = MR £0a] + Aol )}
“ @ i=1

This completes the proof of Corollaky 1.
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Based on the definitions in Section I, the first-order vésiabf the above augmented functional can be calculated

as
fxafy / / {aK Z,Y, fX?fY)n(:E) + 8K(m>y>fX7fY)£(y)+Z |:8Li(x>y>fxaf§/)n(x)+

of- of, 2 dfs
. 7. b
et LesP ()| a2 by 1 [ 2288y
. noa L Y (115)
P b@K(x,y,fx,fy) OLi(z,y, fx, [v) Ok(z,y, fx)
aK X rJY azl Y 1J X2 JY a 1 JY
/ { e funhe) 3 OB Ln ) gy 4 ) 202 e,

=1

wheren(z) and{(y) represent any admissible increments forand f,., respectively. Due to Theorem 1, a necessary
condition for the function/[fy, f,] to have an extremum for given functioris. and f, is thatdJ[f, f,] vanishes
at fy~ and f,. for any admissible)(z) and£(y). This leads to

/K}X* (l'aya fX*?fY*) + Z )\if/i/fx* ($7y7 fX*>fY*) - )\(y)]}}x* (3373/7 fx*)dy = 07
=1

/K}Y* (m,y, fX*?fY*) + ZAZI:Z}y* (m,y, fX*»fY*)d':U + A(y)g}y* (y7 fY*) =0,
i=1

which are exactly[(22) and_(23).
In order to calculate the second-order variation df, f,,] from the first-order variation[(115), we rewrite
the term)\(y)% in (115) anf q(x)A\(y) 89@’ fY)dac whereg(z) is an arbitrary but fixed function satisfying

ff q(x)dx = 1. Thus, the first-order variat|0|h:(1115) can be rewritten as

b b n T 7
/ {/ 8K(x>ay}fxaf§/) +Z aLl(gj»az!/};fxafY) _)‘(y)ak(l‘éﬁ’ fX)dy}?](fL’)de’
a a x =1 x x
i (116)
b baK(m>y>fX7fY) g aLi(mvyva7fY) ag(yvfy)
s [ [ EE L l) 5 ORI D) ) 20 g ey

i=1
Based on[(116), the second-order variation/¢f,, f,] is derived as

Pattsd= [ [ soi[ghre Gor [1)]

N
G(ﬂi‘,y, fX*?fY*) = K(:Evya fX*?fY*) + Z/\zf/z(xyyy fX*?fY*) - /\(y)lzz(x,y, fx*) + A(y)g(yy fY*)Q(m)7
i=1

where

Since a necessary condition for the functioddf,, f, ] to have a minimum for given functiong,. and f, - is that
2J(f«, fv] > 0, this leads to the positive semi-definiteness of
[G%xfx Gif:xfy:|
GfoX nyfy
and completes the proof of Corollary 2.
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APPENDIX B
NON-INVERTIBLE CORRELATION (OR COVARIANCE) MATRIX
Let @, = Q,A,QI andX = QIX = [X7,X]], whereA,, = diag(A1,...,An,0,...,0), Q is a singular
matrix, Q. is an orthogonal matrix, andiag(-) denotes a diagonal matrix. The correlation matrix3of is the
zero matrix, and therefore, it is considered as a detertiinigctor. Without loss of generality, we can assume
X, = 0. The following matrices are also considered:

) A Br
&'ZQWQQ = |: B C :|7
I -B"C!
D - [0 . } (117)

where the dimensions dk, B, andC arem x m, (n —m) x m, and(n —m) x (n — m), respectively. Then,

- I -B"C! X, X,
parx = 7 [T ]

T _ WGa
DQQWG B |: ch :| ’
_prc-1
E[DQIW,WQ.D"] = { A-BCTB 0 } | (118)
Due to [1I8), the random vectoW . and W, are statistically independent of each other.
The left-hand side of the equation in_{53) can be re-exptease

MX+W,)—h(X)=h(DQ.X +DQ;W.) — h(DQ.X)
= h(XCL + WGaa Xb + ch) - h(XCw Xb)
= hXq +Wq,) = h(Xa) + h(Xp + We,) — M(Xy). (119)

N

(a)

In (I19),X, is considered as a deterministic variabl&,,, is given, the tern{a) can be ignored in the optimization,
and the correlation matrix oK, is non-singular. Therefore, we can always assume the atioelmatrix to be
invertible.

APPENDIXC
PROOF OFTHEOREM[ILI

Proof: First, choose a Gaussian random vedWt, whose covariance matrif,; satisfies¥,; < ¥, and
P Since~the Gal{ssian random vectdrs andW, can be represented as the §ummatiqn of two independent
random vectordW, and 'V, and the summation of two independent random vecWis and W, respectively,
the left-hand side of the equation in_(103) is written ascfol:

ph(X+Vg) —h(X + W)
> uh(X + V) — h(X 4+ W,) — h(W,) + h(W,)
=ph(X + W + Vo) = (X + W) = h(We + Wo) + h(Wo). (120)
Since the expression will be minimized ovgr(x), the last two terms in_(120) are ignored, and by substituting
Y andX for X + W, + V., andX + W, respectively, the inequality in_(103) is equivalently esgsed as the
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following variational problem:
min  ph(Y) = h(X) = (. — 1) h(Ve)

fX‘7 Y

f
st [[ £ty ~xaxdy —1-0,
[ re6s0ty ~ xpocraxdy - 2 <o,
/ fe(x) fo(y —x)yy"dxdy — 3y =0,
[0ty =2y x5 = ) (5~ )" )axdy = 0,
~ [ [1:605.5 = x)10g £ (x)axdy = s (121)

fr(y) = / Fe () fo (y — x)dx,

whereX =X+ W, Y=X+V, Woe=W.+W,, Vo=W,.+V,, S, =S+3%,, 2,.=%.+3,,
and X .. is the covariance matrix of the optimal solutidgi.

The variational problem if_(121) is exactly the same as theinr{80). Therefore, using the same method as in
the proof of Theorerh 10, we obtain the following inequalitgé the details in the proof of Theorénl 10):

ph(X +We + V) — (X +W,) — (W, + W) + h(W,)
> ph(XE + W + Vo) = h(XE + W) = h(We + W) + h(Wo). (122)
By appropriately choosing}, and W, the right-hand side of the equation [0 {122) is expressed as
ph(X:E + W + V) — (X5 + W) — (W, + W) 4+ h(W,)
—uh(X5 4+ Wq + Vi) — h(XE + W,). (123)

The equality in[(128) is due to the equality condition of tlaedprocessing inequality in [11]. For the completeness
of the proof, we introduce a technique, which is slightifetiént from the one in_[11].
To satisfy the equality in the equatidn (123), the equaldpdition in the following lemma must be satisfied.

Lemma 1 (Data Processing Inequality! [1]YWhen three random vectol;, Y., and Y3 represent a Markov chain
Y, — Y2 — Y3, the following inequality is satisfied:

I(Y1;Y3) <I(Y1;Y2). (124)
The equality holds if and only f(Y1;Y2|Y3) = 0.

In Lemma[l,Y1, Yo, andY; are defined aX?, X +WG, andX?, +VVG +WG, respectively. Therefore, the
equality condition,/(Y1;Y2|Y3) = 0 is expressed as

I(Yl;Y2|Y3)
= h(Y1|Y3) — h(Y1]Y2,Y3)

1 1
= 5 log (27’1’6)” |EY1‘Y3| — 5 log (271'6)” |2y1\y2|

= Liog (2me)" 1), - 2,305, | - %log (2me)" |2y, — 5,52y, |

[l \)

1
= —log (2me)" |By — B (B + B + Bp) 12| — 5108 (21)" | By — By (- + ¥p) S,

N

= —log (2me)" ||| = (B + By + ) ' B [— (B +3) '3,

1
~3 log (2me)" | X«-

1
log (2me)" [T — (Zxe + By + 2y) ' B | — 5 log (2me)" |1 = (B + ) S

log (27‘(@)” e (EX* + EW)_l p I I— (Ex* + EW)_l pIS

1
-3 log (2me)"

(=2 Y N N

(125)
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If (Sg-4+30) 'y = (B + Bw) ' By, the equality in[[I25) is satisfied, the equality conditionLiemma
[ holds, and therefore, the equality [ (123) is proved. Talkity of (2. + X,,) ' Ty = (T + Bw) " By
is proved by Lemma in [11].

Therefore,I(Y1;Y2|Y3) = 0, and from the equations in (120}, (122), and (123), we obtaé following
extremal entropy inequality:

ph(X 4+ V) — (X + W) > ph(X+ V) — (X + W) — h(We) + h(W,)
= ph(X + Wo + V) — (X + W) — (W, + W) +h(W,)
X4 W+ Vo) — h(XE + Wg) — h(We + W) + h(W,)
(
(

v
=

= ph(X: + W, 4+ V) — h(XE + W) — h(W, + W) + h(W,)
= Nh XZ + VG) - h(XZ + Wc)7

and the proof is completed.
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