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Corrected Version of ‘A Unifying Variational
Perspective on Some Fundamental Information

Theoretic Inequalities’
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Abstract

This paper proposes a unifying variational approach for proving some fundamental information theoretic in-
equalities. Fundamental information theory results such as maximization of differential entropy, minimization of
Fisher information (Cramér-Rao inequality), worst additive noise lemma, and extremal entropy inequality (EEI) are
interpreted as functional problems and proved within the framework of calculus of variations. Several applications
and possible extensions of the proposed results are briefly mentioned.

Index Terms

Maximizing Entropy, Minimizing Fisher Information, WorstAdditive Noise, Extremal Entropy Inequality, Cal-
culus of Variations

I. INTRODUCTION

I N the information theory realm, it is well-known that given the second-order moment (or variance), a Gaussian
density function maximizes the differential entropy. Similarly, given the second-order moment, the Gaussian

density function minimizes the Fisher information, a result which is referred to as the Cramér-Rao inequality in the
signal processing literature. Surprisingly, the proofs proposed in literature for these fundamental results are quite
diverse, and no unifying feature exists. Since differential entropy or Fisher information is a functional with respect
to a probability density function, the most natural way to establish these results is by approaching them from the
perspective of functional analysis. This paper presents a unifying variational framework to address these results as
well as numerous other fundamental information theoretic results. A challenging information theoretic inequality,
referred to as the extremal entropy inequality (EEI) [2], can be dealt with successfully in the proposed functional
framework. Furthermore, the proposed variational calculus perspective is useful in establishing other novel results,
applications and extensions of the existing information theoretic inequalities.

The main theme of this paper is to illustrate how some tools from calculus of variations can be used successfully
to prove some of the fundamental information theoretic inequalities, which have been widely used in information
theory and other fields, and to establish some applications.The proposed variational approach provides alternative
proofs for some of the fundamental information theoretic inequalities and enables finding novel extensions of the
existing results. This statement is strengthened by the fact that the proposed variational framework is quite general
and powerful, and it allows easy integration of various linear and inequality constraints into the functional that is to
be optimized. Therefore, we believe that a large number of applications could benefit of these tools. The proposed
variational approach offers also a potential guideline forfinding the optimal solution for many open problems.

Variational calculus techniques have been used with great success in solving important problems in image pro-
cessing and computer vision [3] such as image reconstruction (denoising, deblurring), inverse problems, and image
segmentation. Recently, variational techniques were alsoadvocated for optimization of multiuser communication
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systems [4], for deriving analytical wireless channel models using the maximum entropy principle when only
limited information about the environment is available [5], and for designing optimal training sequences for radar
and sonar applications [6]-[7]. Maximum entropy principlefound also applications in spectral estimation (e.g.,
Burg’s maximum entropy spectral density estimator [1]) andBayesian statistics [8].

The major results of this paper are enumerated as follows. First, using calculus of variations, the maximizing dif-
ferential entropy and minimizing Fisher information theorems are proved under the classical (standard) assumptions
found in the literature as well as under a different set of assumptions. It is shown that a Gaussian density function
maximizes the differential entropy but it minimizes the Fisher information, given the second-order moment. It is also
shown that a half normal density function maximizes the differential entropy over the set of non-negative random
variables, given the second-order moment. Furthermore, itis shown that a half normal density function minimizes
the Fisher information over the set of non-negative random variables, provided that the regularity condition1 is
ignored and the second-order moment is given. It is also shown that a chi density function minimizes the Fisher
information over the set of non-negative random variables,under the assumption that the regularity condition holds
and the second-order moment is given.

Second, a novel proof of the worst additive noise lemma [9] isprovided in the proposed functional framework.
Previous proofs of the worst additive noise lemma were basedon Jensen’s inequality or data processing inequality
[9], [10]. Unlike the previous proofs, our approach is purely based on calculus of variations techniques, and the
vector version of the lemma is treated.

Third, EEI is studied from the perspective of a functional problem. The main advantage of the proposed new
proof is that neither the channel enhancement technique andthe entropy power inequality (EPI), adopted in [2], nor
the equality condition of data processing inequality and the technique based on the moment generating functions,
used in [11], are required. Using a technique based on calculus of variations, an alternative proof of EEI is provided.
Finally, several applications and extensions of the proposed results are discussed.

The rest of this paper is organized as follows. Some variational calculus preliminary results and their corollaries
are first reviewed in Section II. Maximizing differential entropy theorem and minimizing Fisher information theorem
(Cramér-Rao inequality) are proved in Section III. In Section IV, the worst additive noise lemma is introduced and
proved based on variational arguments. EEI is proved in Section V. In Section VI, some additional applications of
the proposed variational techniques are briefly mentioned.Finally, Section VII concludes this paper.

II. SOME PRELIMINARY CALCULUS OF VARIATIONS RESULTS

In this section, we will review some of the fundamental results from variational calculus, and establish the
concepts, notations and results that will be used constantly throughout the rest of the paper. These results are
standard and therefore will be described briefly without further details. Additional details can be found in calculus
of variations books such as [12]-[14].

Definition 1. A functionalU [f ] might be defined as

U [f ] =

∫ b

a

K(x, f(x), f ′(x))dx, (1)

which is defined on the set of continuous functions(f(x)) with continuous first-order derivatives(f ′(x) = df(x)/dx)
on the interval[a, b]. The functionf(x) is assumed to satisfy the boundary conditionsf(a) = A and f(b) = B.
The functionalK(·, ·, ·) is also assumed to have continuous first-order and second-order (partial) derivatives with
respect to (wrt) all of its arguments.

Definition 2. The increment of a functionalU [f ] is defined as

∆U [t] = U [f + t]− U [f ], (2)

where the functiont(x), that satisfies the boundary conditionst(a) = t(b) = 0, represents the admissible increment
of f(x), and it is assumed independent of the functionf(x) and twice differentiable.

1The regularity condition is defined in Theorems 6 and 7.
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Definition 3. Suppose that givenf(x), the increment in (2) is expressed as

∆U [t] = ϕ [t] + ǫ‖t‖, (3)

whereϕ [t] is a linear functional,ǫ goes to zero as‖t‖ approaches zero, and‖ · ‖ denotes a norm defined in the
case of a functionf(x) as:

‖f‖ =

n∑

i=0

max
a≤x≤b

∣
∣
∣f (i)(x)

∣
∣
∣ , (4)

wheref (i)(x) = dif(x)/dxi are assumed to exist and be continuous fori = 0, . . . , n on the interval[a, b], and the
summation upper indexn might vary depending on the normed linear space considered (e.g., if the normed linear
space consists of all continuous functionsf(x), which have continuous first-order derivative on the interval [a, b],
‖f‖ = maxa≤x≤b |f(x)|+maxa≤x≤b |f

′(x)|, and in this casen = 1; see e.g., [12] for further details). Under the
above assumptions, the functionalU [f ] is said to be differentiable, and the major part of the increment ϕ [t] is
called the (first-order) variation of the functionalU [f ] and it is expressed asδU [f ].

Based on Definitions 1, 2, 3 and Taylor’s theorem (see e.g., [12]-[14] for additional justifications), the first-order
and the second-order variations of a functionalU [f ] can be expressed as

δU [f ]=

∫
[
K ′

f

(
x, f, f ′

)
t(x) +K ′

f ′

(
x, f, f ′

)
t′(x)

]
dx (5)

δ2U [f ]=
1

2

∫ [

K ′′
ff

(
x, f, f ′

)
t(x)2 + 2K ′′

ff ′

(
x, f, f ′

)
t(x)t′(x) +K ′′

f ′f ′

(
x, f, f ′

)
t′(x)

2
]

dx

=
1

2

∫ [

K ′′
f ′f ′t′

2
+

(

K ′′
ff −

d

dx
K ′′

ff ′

)

t2
]

dx, (6)

whereK ′
f andK ′

f ′ stand for the first-order partial derivatives wrtf andf ′, respectively,K ′′
ff ′ denotes the second-

order partial derivative wrtf and f ′, K ′′
ff represents the second-order partial derivative wrtf , andK ′′

f ′f ′ is the
second-order partial derivative wrtf ′. Throughout the paper to simplify the exposition, the arguments of functionals
or functions are omitted unless the arguments are ambiguousor confusing. Also, the range of integration in various
integrals will not be explicitly marked unless the range is ambiguous.

Theorem 1 ([12]). A necessary condition for the functionalU [f ] in (1) to have an extremum (or local optimum)
for a given functionf = f∗ is that its first variation vanishes atf = f∗:

δU [f∗] = 0, (7)

for all admissible increments.This implies

K ′
f∗ −

d

dx
K ′

f ′∗ = 0, (8)

a result which is known as Euler’s equation. When the functional in (1) includes multiple functions (e.g.,f1, . . . , fm)
and multiple integrals wrtx1, . . . , xn, i.e.,

∫

· · ·

∫

K
(
x1, . . . , xn, f1, . . . , fm, f

′
1, . . . , f

′
m

)
dx1 · · · dxn,

then Euler’s equation in (8) takes the form of the system of equations:

K ′
f∗
i
−

n∑

j=1

d

dxj
K ′

f ′∗
i
= 0, i = 1, . . . ,m. (9)

In particular, when the functional does not depend on the first-order derivative of the functionsf1, . . . , fm, the
equations in (9) reduce to

K ′
f∗
i
= 0, i = 1, . . . ,m. (10)

Proof: Details of the proof of this theorem can be found, e.g., in [12]-[14].
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Theorem 2 ([12]). A necessary condition for the functionalU [f ] in (1) to have a minimum for a givenf = f∗ is
that the second variation of functionalU [f ] be nonnegative:

δ2U [f∗] ≥ 0, (11)

for all admissible increments. This implies

K ′′
f ′∗f ′∗ ≥ 0. (12)

In particular, when the functional in (1) does not depend on the first-order derivative of the functionf , (12)
simplifies to

K ′′
f∗f∗ ≥ 0. (13)

When the functional in (1) includes multiple functions (e.g., f1, . . . , fm) and multiple integrals wrtx1, . . . , xn, i.e.,
∫

· · ·

∫

K (x1, . . . , xn, f1, . . . , fm) dx1 · · · dxn,

then the condition in (13) is expressed in terms of the positive semi-definiteness of the matrix:





K ′′
f1f1

· · · K ′′
f1fm

...
. . .

...
K ′′

fmf1
· · · K ′′

fmfm




 � 0. (14)

Proof: The inequality in (13) is easily derived from the inequality in (12) sinceK ′′
f ′
Xf ′

X
andK ′′

fXf ′
X

are vanishing
in (6) when the functional in (1) does not depend on the first-order derivative of the functionfX. The remaining
details of the proof can be tracked in [12].

Theorem 3 ([12]). Given the functional

U [f1, f2] =

∫ b

a

K(x, f1, f2, f
′
1, f

′
2)dx, (15)

assume that the admissible functions satisfy the followingboundary conditions:

f1(a) = A1, f1(b) = B1, f2(a) = A2, f2(b) = B2,

k(x, f1, f2) = 0, (16)

L[f1, f2] =

∫ b

a

L̃(x, f1, f2, f
′
1, f

′
2)dx = l, (17)

wherea, b, A1, B1, A2, B2, andl are constants,k(x, f1, f2) is a functional wrtf1 andf2, andU [f1, f2] is assumed
to have an extremum forf1 = f∗1 and f2 = f∗2 .

If f∗1 and f∗2 are not extremals ofL[f1, f2], or k′
f∗
1

and k′
f∗
2

do not vanish simultaneously at any point in (16),
there exist a constantλ and a functionλ(x) such thatf∗1 and f∗2 are extremals of the functional

∫ b

a

(K(x, f1, f2, f
′
1, f

′
2) + λL̃(x, f1, f2, f

′
1, f

′
2) + λ(x)k(x, f1, f2))dx. (18)

Based on Theorem 3, the following corollary is derived.

Corollary 1. Given the functional

U [fX, fY ] =

∫ b

a

∫ b

a

K(x, y, fX , fY )dxdy, (19)

assume that the admissible functions satisfy the followingboundary conditions:

fX(a) = AX , fX(b) = BX , fY (a) = AY , fY (b) = BY ,

k(y, fX , fY ) = g(y, fY )−

∫ b

a

k̃(x, y, fX)dx = 0,

Li[fX, fY ] =

∫ b

a

∫ b

a

L̃i(x, y, fX , fY )dxdy = li, i = 1, 2, · · · , n, (20)
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wherea, b, AX, BX , AY , andBY stand for some constants,fX is a function ofx, fY is a function ofy, g(y, fY )
is a function offY , and k̃(x, y, fX) is a function offX. The functionalU [fX , fY ] is assumed to have an extremum
at fX = fX∗ and fY = fY ∗ .

Unless fX∗ and fY ∗ are extremals ofLi[fX , fY ], or k′fX∗
and k′fY ∗

simultaneously vanish at any point of
k(y, fX , fY ), there exist constantsλi, i = 1, 2, · · · , n, and a functionλ(y) such thatfX = fX∗ and fY = fY ∗

is an extremal of the functional
∫ b

a

{[∫ b

a

(K(x, y, fX , fY ) +

n∑

i=1

λiL̃i(x, y, fX , fY )− λ(y)k̃(x, y, fX))dx
]

+ λ(y)g(y, fY )
}

dy. (21)

Proof: See Appendix A.

Based on Theorems 1, 2 and Corollary 1, we can derive the following corollary, which will be repeatedly used
throughout this paper.

Corollary 2. Based on the functional defined in (21), the following necessary conditions are derived for the optimal
solutionsfX∗ and fY ∗ :

∫

K ′
fX∗ (x, y, fX∗ , fY ∗) +

n∑

i=1

λiL̃i
′

fX∗ (x, y, fX∗ , fY ∗)− λ(y)k̃′fX∗ (x, y, fX∗)dy = 0, (22)

∫

K ′
fY ∗ (x, y, fX∗ , fY ∗) +

n∑

i=1

λiL̃i
′

fY ∗ (x, y, fX∗ , fY ∗)dx+ λ(y)g′fY ∗ (y, fY ∗) = 0, (23)

and the matrix
[
G′′

fX∗fX∗
G′′

fX∗fY ∗

G′′
fY ∗fX∗

G′′
fY ∗fY ∗

]

, (24)

is positive semi-definite. The functionalG is defined as

G(x, y, fX∗ , fY ∗) = K(x, y, fX∗ , fY ∗) +

N∑

i=1

λiL̃i(x, y, fX∗ , fY ∗)− λ(y)k̃(x, y, fX∗) + λ(y)g(y, fY ∗)q(x),

and q(x) is a (arbitrary but fixed) function which satisfies
∫ b

a
q(x)dx = 1, and it is introduced to homogenize the

functional in (21). In particular, if functiong(y, fY ) only involves first order component offY , i.e., g(y, fY ) = fY ,
the necessary condition reduces to check the positive semi-definiteness of the matrix

[
H ′′

fX∗fX∗
H ′′

fX∗fY ∗

H ′′
fY ∗fX∗

H ′′
fY ∗fY ∗

]

,

where

H(x, y, fX∗ , fY ∗) = K(x, y, fX∗ , fY ∗) +

N∑

i=1

λiL̃i(x, y, fX∗ , fY ∗)− λ(y)k̃(x, y, fX∗).

Proof: See Appendix A.

III. MAX E NTROPY AND MIN F ISHER INFORMATION

This simple but significant result–given the second-order moment (or variance) of a random vector, a Gaussian
random vector maximizes the differential entropy–is well-known. In this section, a completely rigorous and general
derivation of the distribution achieving the maximum entropy will be first provided. This proof sets up the variational
framework for establishing a second important result in this section, namely the Cramér-Rao bound, which states
that for a given mean and correlation matrix, a normally distributed random vector minimizes the Fisher information
matrix.

Theorem 4 ([1], [10]). Given (a vector meanµ
X

and) a correlation matrixΩX , a Gaussian random vectorXG

with the correlation matrixΩX (and the vector meanµ
X

) maximizes the differential entropy, i.e.,

h(X) ≤ h(XG), (25)
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whereh(·) denotes differential entropy,X is an arbitrary (but fixed) random vector with the correlation matrix
ΩX.

Proof: We first construct a functional, which represents theinequality in (25) and required constraints, as
follows:

min
fX

∫

fX(x) log fX(x)dx, (26)

s. t.
∫

fX(x)dx = 1, (27)
∫

xfX(x)dx = µ
X

(28)
∫

xxTfX(x)dx = ΩX. (29)

Using Theorem 3, the functional in (26) is expressed as

min
fX

U [fX], (30)

whereU [fX] =
∫
K(x, fX)dx =

∫
fX(x)

(

log fX(x) + α+
∑n

i=1 ζixi +
∑n

i=1

∑n
j=1 λijxixj

)

dx, α is the La-
grange multiplier associated with the constraint (27), andζi and λij stand for the Lagrange multipliers corre-
sponding to the constraints (28) and (29), respectively.

Based on Theorem 1, by checking the first-order variation condition, we can find the optimal solutionfX∗(x) as
follows:

K ′
fX

∣
∣
∣
fX=fX∗

= 1 + log fX∗(x) + α+ ζTx+ xTΛx = 0 (31)

with ζ = [ζ1, · · · , ζn]
T and the matrixΛ = [λij ], i, j = 1, . . . , n. Considering the constraints in (27) - (29), from

(31) it turns out that

fX∗(x) = exp
{
−xTΛx− ζTx− α− 1

}

= (2π)−
n

2

∣
∣
∣
∣

1

2
Λ−1

∣
∣
∣
∣

− 1

2

exp

{

−
1

2
(x− µ)T

(
1

2
Λ−1

)−1

(x− µ)

}

(2π)
n

2

∣
∣
∣
∣

1

2
Λ−1

∣
∣
∣
∣

1

2

exp
{
−1− α+ µTΛµ

}

= (2π)−
n

2 |ΩX |
− 1

2 exp

{

−
1

2
(x− µ)TΩ−1

X
(x− µ)

}

, (32)

where

α = −1 + µTΛµ+
1

2
log (2π)n |ΩX | ,

Λ =
1

2
Ω−1

X
,

ζ = −2Λµ. (33)

Two remarks are now in order. First, the correlation matrixΩX is assumed to be invertible. When the correlation
matrix is non-invertible, similar to the method shown in [2], we can equivalently re-write the functional problem
in (26) as

min
fX(x)

−h(X) ⇔ min
fX̄(x)

−h(X̄), (34)

where X = QΩX̄, and in the spectral factorizationΩX = QΩΛΩQ
T

Ω
, QΩ is an orthogonal matrix,ΛΩ =

diag (Λ1, . . . , Λm, 0, . . . , 0) and diag denotes a diagonal matrix.
Let X̄ =

[
X̄T

a , X̄
T

b

]
T

, where the dimensions of̄Xa and X̄b are m and n −m, respectively. It can be observed
that the correlation matrix (or covariance matrix) of̄X, ΩX̄ , is equal to the diagonal matrixΛΩ. Furthermore,
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the correlation ofX̄b is a zero matrix and̄Xb can be considered as a deterministic vector. Thus,X̄a and X̄b are
statistically independent and the equation in (34) and constraints in (27)-(29) are equivalently re-written as

min
fX̄a

(x)
−h(X̄a),

s.t.
∫

fX̄a
(x)dx = 1,

∫

xfX̄a
(x)dx = µ,

∫

xxTfX̄a
(x)dx = ΛΩa

,

whereΛΩa
= diag(Λ1, . . . ,Λm) ≻ 0 is a positive-definite matrix. Therefore, without loss of generality, we can

assume that the correlation matrixΩX is invertible.
Based on Theorem 2, since

K ′′
fXfX

∣
∣
∣
fX=fX∗

=
1

fX∗(x)
> 0,

the second-order variationδ2U [fX∗ ] is positive, and the optimal solutionfX∗ is a minimal solution for the
variational problem in (26).

Therefore, the negative of differential entropy−h(X) is minimized (or equivalentlyh(X) is maximized) whenX
is a multi-variate Gaussian random vector. Even though Theorems 1, 2 are necessary conditions for the minimum,
in this case, a multi-variate Gaussian density function is the actual solution since there is only one solution, namely
the multi-variate Gaussian density function, in the feasible set. An alternative justification of global optimality of
multi-variate Gaussian pdf can be achieved by exploiting the convexity ofK(x, fX) wrt fX.

Remark 1. The proof in [1] relies on calculus of variations to find the first-order necessary condition, which only
represents a necessary (and not sufficient) condition for optimality. Therefore, an additional technique, referred to
as the Kullback-Leibler divergence, was used to prove that the necessary solution globally maximizes the differential
entropy. Unlike this proof, by confirming the convexity of the variational problem, we show that Gaussian distribution
is indeed the global optimal solution solely based on calculus of variations arguments.

The maximum entropy result can be extended in various ways. Asimple variation of the maximum entropy
considers only non-negative random variables. Then it turns out that Gaussian random variables are no longer the
optimal solution that maximizes the differential entropy.The following theorem can be easily established and states
that a half-normal random variable maximizes the differential entropy over the set of non-negative random variables.

Theorem 5. Within the class of non-negative random variables with given second-order momentm2
X

, a half-normal
random variableXHN maximizes the differential entropy, i.e.,

h(X) ≤ h(XHN), (35)

whereX is an arbitrary (but fixed) non-negative random variable with the second-order momentm2
X

, and h(·)
denotes differential entropy.

Proof: The proof is omitted since it can be established following similar steps to the proof of Theorem 4.

Adopting a similar variational approach to the one in Theorem 4, we can also determine the probability density
function that minimizes the Fisher information matrix as shown by the following theorem.

Theorem 6 (Cramér-Rao Inequality (a vector version)). Given a vector meanµ
X

and a correlation matrixΩX , the
Gaussian density function with the vector meanµ

X
and the correlation matrixΩX minimizes the Fisher information

matrix, i.e.,

J(X) � J(XG), (36)
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whereX andXG stand for an arbitrary (but fixed) random vector and Gaussianrandom vector, respectively, with
given meanµ

X
and correlation matrixΩX, andJ(·) denotes the Fisher information matrix:

J(X) =






s11 · · · s1n
...

. . .
...

sn1 · · · snn




 , (37)

sij =

∫
(

d
dxi
fX(x)

fX(x)

)(
d

dxj
fX(x)

fX(x)

)

fX(x)dx.

Proof: We first represent the inequality in (36) as a functional with the required constraints as follows:

min
fX

∫

ξT∇fX(x)∇fX(x)
Tξ

1

fX(x)
dx, (38)

s. t.
∫

fX(x)dx = 1,
∫

xfX(x)dx = µ
X
,

∫

xxT fX(x)dx = ΩX , (39)

whereξ is an arbitrary but fixed non-zero vector, defined asξ = [ξ1, . . . , ξn]
T .

Using Theorem 3, the functional problem in (38) is expressedas

min
fX

U [fX], (40)

whereU [fX] =
∫
K(x, fX,∇fX)dx,K(x, fX ,∇fX) = (ξT∇fX(x)∇fX(x)

Tξ/fX(x))+αfX(x)+fX(x)
∑n

i=1 ζixi+
fX(x)

∑n
i=1

∑n
j=1 λijxixj, andα, ζi, andλij are the Lagrange multipliers corresponding to the three constraints

in (39).
Based on Theorem 1, by confirming the first-order variation condition, i.e.,δU [fX∗ ] = 0, we can find the optimal

solutionfX∗(x) as follows:

K ′
fX

−

n∑

i=1

∂

∂xi
K ′

f ′
Xi

∣
∣
∣
∣
∣
fX=fX∗

= 0, (41)

where

K ′
fX

= −
ξT∇fX(x)∇fX(x)

Tξ

fX(x)2
+ α+ ζTx+ xTΛx,

∂

∂xi
K ′

f ′
Xi

=
∂

∂xi








2
n∑

j=1

∂
∂xj

fX(x)ξiξj

fX(x)








=

2
n∑

j=1

∂
∂xi

∂
∂xj

fX(x)ξiξj

fX(x)
−

2
n∑

j=1

∂
∂xj

fX(x)ξiξj
∂
∂xi
fX(x)

fX(x)2
. (42)

Therefore, the left-hand side of the equation in (41) is expressed as

K ′
fX

−

n∑

i=1

∂

∂xi
K ′

f ′
Xi

=

n∑

i=1

n∑

j=1

∂
∂xi
fX(x)

∂
∂xj

fX(x)ξiξj

fX(x)2
−

2
n∑

i=1

n∑

j=1

∂
∂xi

∂
∂xj

fX(x)ξiξj

fX(x)
+ α+

n∑

i=1

ζixi +

n∑

i=1

n∑

j=1

λijxixj

= 0. (43)
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Unlike Theorem 4, we cannot directly calculatefX∗(x) from (41). Fortunately, the first two parts in equation
(43) are expressed as quadratic forms whenfX∗(x) is a multi-variate Gaussian density function, and therefore,
the multi-variate Gaussian density function satisfies the equality in (43). WhenfX∗(x) is a multi-variate Gaussian
density function:

fX∗(x) = (2π)−
n

2 |ΣX |
− 1

2 e−
(x−µX)T Σ

−1

X (x−µX)
2

with ΣX = ΩX − µ
X
µT

X
and

Σ−1
X

=






σ2
X11

· · · σ2
X1n

...
. . .

...
σ2

Xn1
· · · σ2

Xnn




 , (44)

its partial derivatives can be expressed as follows:

∂

∂xi
fX∗(x) = −

1

2
(

n∑

l=1

σ2
Xil

(
xl − µXl

)
+

n∑

m=1

σ2
Xmi

(xm − µXm
))fX∗(x),

∂

∂xj

∂

∂xi
fX∗(x) = −

1

2

(

σ2
Xij

+ σ2
Xji

)

fX∗(x) +
1

4

(
n∑

l=1

σ2
Xil

(
xl − µXl

)
+

n∑

m=1

σ2
Xmi

(xm − µXm
)

)

·

(
n∑

l=1

σ2
Xjl

(
xl − µXl

)
+

n∑

m=1

σ2
Xmj

(xm − µXm
)

)

fX∗(x) (45)

By substituting (45) into (43), it turns out that

K ′
fX∗ −

n∑

i=1

∂

∂xi
K ′

f ′
X∗

i

=
1

4

n∑

i=1

n∑

j=1

ξiξj

(
n∑

l=1

(
σ2

Xil
+ σ2

Xli

) (
xl − µXl

)

)(
n∑

m=1

(σ2
Xjm

+ σ2
Xmj

) (xm − µXm
)

)

+

n∑

i=1

n∑

j=1

(σ2
Xij

+ σ2
Xji

)ξiξj + α+

n∑

i=1

ζixi +

n∑

i=1

n∑

j=1

λijxixj

=

n∑

l=1

n∑

m=1

ωlm

(
xl − µXl

)
(xm − µXm

) +

n∑

i=1

n∑

j=1

(

σ2
Xij
σ2

Xji

)

ξiξj + α+

n∑

i=1

ζixi +

n∑

i=1

n∑

j=1

λijxixj

= xTΩx+ xTΛx+ ζTx− 2µT

X
Ωx+ µT

X
Ωµ

X
+ ξTΨξ + α

= 0, (46)

where

ΣXlm
=






Σlm

X11
· · · Σlm

X1n

...
. . .

...
Σlm

Xn1
· · · Σlm

Xnn




 , Λ=






λ11 · · · λ1n
...

.. .
...

λn1 · · · λnn




 ,

Ψ=






ψ11 · · · ψ1n
...

. . .
...

ψn1 · · · ψnn




 , Ω=






ω11 · · · ω1n
...

. ..
...

ωn1 · · · ωnn






Σlm

Xij
=

1

4

(
σ2

Xil
+ σ2

Xli

) (

σ2
Xjm

+ σ2
Xmj

)

=σ2
Xli
σ2

Xjm
, i, j = 1, . . . , n, l,m = 1, . . . , n

ψij =2σ2
Xij
, i, j = 1, . . . , n

ωlm=ξTΣXlm
ξ, l,m = 1, . . . , n. (47)

Therefore, the Lagrange multipliersα and λij must be selected as

α = −µT

X
Ωµ

X
− ξTΨξ,

ζ = 2Ωµ
X
,

Λ = −Ω. (48)
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Since the second-order variation is positive:

K ′′
∇fX∇fX

∣
∣
∣
fX=fX∗

= 2
ξξT

fX∗(x)
� 0, (49)

based on Theorem 2, the Gaussian distributionfX∗(x) is necessary optimal for the variational problem in (38).
Even though Theorems 1 and 2 are necessary conditions for theminimum, in this case, the multi-variate Gaussian
density function is sufficiently the global minimum solution since this is a convex optimization problem (the objective
function is strictly convex and its constraint set is convex).

Using similar variational arguments, one can show that a half-normal and a chi density function minimize the
Fisher information over the set of non-negative random variables as shown by the following two theorems.

Theorem 7. Within the class of non-negative continuous random variables with fixed second-order momentm2
X

,
the Fisher information is minimized by a half-normal randomvariableXHN :

J(X) � J(XHN), (50)

whereX is an arbitrary (but fixed) non-negative random variable with the second-order momentm2
X

, and J(·)
denotes the Fisher information.

Remark 2. Theorem 7 does not assume the following regularity condition:
∫ ∞

0
∇f(x)dx = 0. (51)

for the Fisher information.

The following result establishes the counterpart of Theorem 7 for the class of non-negative random variables
with fixed second order moment and whose distribution satisfies the regularity condition in (51).

Theorem 8([15]). Within the class of non-negative continuous random variablesX with fixed second-order moment
and whose distributions satisfy the regularity condition in (51), the Fisher information is minimized by a chi-
distributed random variableXC :

J(X) � J(XC), (52)

whereJ(·) stands for the Fisher information.
Proof: Unlike the proof in [15], by considering the first-order and the second-order moments instead of

variance, we construct a variational problem and address the problem using the first-order and second-order
necessary conditions, as well as the convexity property of the problem. The details of the proof are omitted because
of the similar steps to those encountered in the proof of Theorem 6.

IV. WORST ADDITIVE NOISE LEMMA

Worst additive noise lemma was introduced and exploited in several references [9], [10], [18], and it has been
widely used in numerous other applications. One of the main applications of the worst additive noise lemma pertains
to the capacity calculation of a wireless communication channel subject to different constraints such as Gaussian
MIMO broadcasting, Gaussian MIMO wire-tap, etc. In this section, the worst additive noise lemma for random
vectors will be proved solely based on variational arguments.

Theorem 9. AssumeX is an arbitrary but fixed random vector andXG is a Gaussian random vector, whose mean
and correlation matrix are identical to those ofX, denoted asµ

X
andΩX, respectively. Given a Gaussian random

vectorWG, assumed independent of bothX andXG and with zero mean and the correlation matrixΩW , then the
following relation holds:

I(X+WG;WG) ≥ I(XG +WG;WG). (53)

Proof: Our proof is entirely anchored in the variational calculus framework. A summary of our proof runs as
follows. First, we construct a variational problem, which represents the inequality in (53) and required constraints in
a functional form. Second, using the first-order variation condition, we find the necessary optimal solutions, which
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satisfy Euler’s equation. Third, using the second-order variation condition, we show that the optimal solutions are
necessarily local minima. Finally, we justify that the local minimum is also global.

By settingY = X + WG, whereX and WG are independent of each other, in (53), the mutual information
I(X+WG;WG) can be expressed as

I(X+WG;WG) = h(Y)− h(Y|WG) = h(Y)− h(X).

Then, we consider the functional:

min
fX

−

∫∫

fX(x)fY |X(y|x) log

(∫

fX(x)fY |X(y|x)dx

)

dxdy +

∫∫

fX(x)fY |X(y|x) log fX(x)dxdy (54)

s. t.
∫

fX(x)dx = 1,
∫

xfX(x)dx = µ
X
,

∫

xxTfX(x)dx = ΩX. (55)

The density functionfY (y) and conditional density functionfY |X(y|x) are expressed as

fY (y) =

∫

fX(x)fY |X(y|x)dx, (56)

fY |X(y|x) = fW (y − x), (57)

respectively. Therefore, by substitutingfY (y) for
∫
fX(x)fY |X(y|x)dx and fW (y − x) for fY |X(y|x), respectively,

and appropriately changing the constrains in (55), the variational problem in (54) is expressed as

min
fX ,fY

∫∫

fX(x)fW (y − x) [− log fY (y) + log fX(x)] dxdy (58)

s. t.
∫∫

fX(x)fW (y − x)dxdy = 1, (59)
∫∫

xfX(x)fW (y − x)dxdy = µ
X
, (60)

∫∫

xxTfX(x)fW (y − x)dxdy = ΩX, (61)
∫∫

yfX(x)fW (y − x)dxdy = µ
Y
, (62)

∫∫

yyTfX(x)fW (y − x)dxdy = ΩY , (63)

fY (y) =

∫

fX(x)fW (y − x)dx. (64)

Based on Corollary 1, the functional problem in (58) can be re-cast into the following equivalent form:

min
fX ,fY

∫

(

∫

fX(x)fW (y − x)[− log fY (y) + log fX(x) + α0 +

n∑

i=1

ζixi +

n∑

i=1

n∑

j=1

γijxixj +

n∑

i=1

ηiyi

+

n∑

i=1

n∑

j=1

θijyiyj − λ(y)]dx) + fY (y)λ(y)dy, (65)

wherexT = [x1, . . . , xn], yT = [y1, . . . , yn], andα0, ζi, γij, ηi, θij, andλ(y) stand for the Lagrange multipliers
corresponding to the constraints (59), (60), (61), (62), (63), and (64), respectively.

Define now the functionalU as

U [fX, fY ] =

∫ (∫

K(x,y, fX , fY )dx

)

+ K̃(y, fY )dy,
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where

K(x,y, fX , fY ) = fX(x)fW (y − x)[− log fY (y) + log fX(x) + α0 +

n∑

i=1

ζixi +

n∑

i=1

n∑

j=1

γijxixj

+

n∑

i=1

ηiyi +

n∑

i=1

n∑

j=1

θijyiyj − λ(y)],

K̃(y, fY ) = λ(y)fY (y). (66)

Based on Corollary 2, we can find the optimal solutionfX∗ and fY ∗ as follows:
∫

K ′
fX

∣
∣
∣
fX=fX∗ ,fY =fY ∗

dy =

∫

fW (y − x)(− log fY ∗(y) + log fX∗(x) + α0 + ζxT + xTΓx+ ηTy

+ yTΘy+ 1− λ(y))dy

= 0 (67)
∫

K ′
fY
dx+ K̃ ′

fY

∣
∣
∣
∣
∣
fX=fX∗ ,fY =fY ∗

= −

∫
fX∗(x)fW (y − x)dx

fY ∗(y)
+ λ(y)

= 0, (68)

where

Γ =






γ11 · · · γ1n
...

. . .
...

γn1 · · · γnn




 , Θ =






θ11 · · · θ1n
...

. . .
...

θn1 · · · θnn




 (69)

ζ = [ζ1, . . . , ζn]
T andη = [η1, . . . , ηn]

T .
The following relationships satisfy the necessary conditions (67) and (68):

0 = − log fY ∗(y) + log fX∗(x) + α0 + ζxT + xTΓx+ ηTy + yTΘy + 1− λ(y),

0 = −1 + λ(y). (70)

Considering the constraints in (59)-(64),fX∗(x) and fY ∗(y) in (70) can be expressed as

fX∗(x)=(2π)−
n

2 |ΣX |
− 1

2 e−
(x−µX)T Σ

−1

X (x−µX)
2

fY ∗(y)=(2π)−
n

2 |ΣY |
− 1

2 e−
(y−µY )T Σ

−1

Y (y−µY )
2

whereΣX = ΩX − µ
X
µT

X
, ΣY = ΣX +ΣW , andΣW is the covariance matrix ofWG. Based on the equations in

(71), it turns out that

α0 =
1

2
log (2π)n |ΣX|+

1

2
µT

X
Σ−1

X
µ

X
−

1

2
log (2π)n |ΣY | −

1

2
µT

Y
Σ−1

Y
µ

Y
,

Γ =
1

2
Σ−1

X
,

ζ = −Σ−1
X

µ
X
,

Θ = −
1

2
Σ−1

Y
,

η = −Σ−1
Y

µ
Y
. (71)

Therefore,fX∗ andfY ∗ are multi-variate Gaussian density functions (without loss of generality, and we can assume
that the covariance matrixΣX is invertible due to the arguments mentioned in Appendix B).

Now, by confirming the second-order variation condition, wewill show that the optimal solutionsfX∗ and fY ∗

are necessarily local minima. Using Corollary 2, we will show that the following matrix is positive semi-definite:
[
K ′′

fXfX
K ′′

fXfY

K ′′
fY fX

K ′′
fY fY

] ∣
∣
∣
∣
fX=fX∗ ,fY =fY ∗

� 0. (72)
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Since the elements of the matrix in (72) are defined as

K ′′
fXfX

∣
∣
∣
fX=fX∗ ,fY =fY ∗

=
fW (y − x)

fX∗(x)
,

K ′′
fY fY

∣
∣
∣
fX=fX∗ ,fY =fY ∗

=
fX∗(x)fW (y − x)

fY ∗(y)2
,

K ′′
fXfY

∣
∣
∣
fX=fX∗ ,fY =fY ∗

= −
fW(y − x)

fY ∗(y)
,

K ′′
fY fX

∣
∣
∣
fX=fX∗ ,fY =fY ∗

= −
fW(y − x)

fY ∗(y)
, (73)

the matrix is a positive semi-definite matrix, and thereforeδ2U ≥ 0. Because of the convexity of functional
K(x,y, fX , fY ) wrt variables fX and fY , the optimal solutionsfX∗ and fY ∗ actually globally minimize the
variational functional in (58). Even though these optimal solutions are necessarily optimal, there exists only one
solution, which is the multi-variate Gaussian density function and it satisfies Euler’s equation in (67) and (68).
Therefore,fX∗ and fY ∗ are also sufficient in this case.

An alternative more detailed proof of the fact thatfX∗ and fY ∗ represent global optimal solutions is to show
that U [fX̂, fŶ ] ≥ U [fX∗ , fY ∗ ], wherefX̂, fŶ denote any arbitrary functions satisfying the boundary conditions and
the constraints. First, the following functionals are defined:

F (x,y, fX , fY ) = fX(x)fW (y − x)[− log fY (y) + log fX(x)],

F0(x,y, fX) = fX(x)fW (y − x),

F
(i)
1 (x,y, fX) = xifX(x)fW (y − x),

F
(i,j)
2 (x,y, fX) = xixjfX(x)fW (y − x),

F
(i)
3 (x,y, fX) = yifX(x)fW (y − x),

F
(i,j)
4 (x,y, fX) = yiyjfX(x)fW (y − x),

and thusK(x,y, fX , fY ) can be expressed as

K(x,y, fX , fY ) = F (x,y, fX , fY ) + α0F0(x,y, fX) +

n∑

i=1

ζiF
(i)
1 (x,y, fX) +

n∑

i=1

n∑

j=1

γijF
(i,j)
2 (x,y, fX)

+

n∑

i=1

ηiF
(i)
3 (x,y, fX) +

n∑

i=1

n∑

j=1

θijF
(i,j)
4 (x,y, fX)− λ(y)fX(x)fW (y − x).

Since the Hessian matrix ofK(x,y, fX , fY ) wrt fX and fY is given by
[

fW (y − x)/fX(x) −fW (y − x)/fY (y)
−fW (y − x)/fY (y) fX(x)fW (y − x)/fY (y)

2

]

,

which is positive semi-definite,K(x,y, fX , fY ) is convex wrtfX and fY , and the following inequality holds

K(x,y, fX̂ , fŶ )−K(x,y, fX∗ , fY ∗) ≥
[
(fX̂ − fX∗)K ′

fX
+ (fŶ − fY ∗)K ′

fY

]
∣
∣
∣
fX=fX∗ ,fY =fY ∗

, (74)
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due to the fact that the convex function lies above its tangents. Therefore, it follows that

U [fX̂, fŶ ]− U [fX∗ , fY ∗ ]

=

∫∫

F (x,y, fX̂ , fŶ )− F (x,y, fX∗ , fY ∗)dxdy

=

∫∫

F (x,y, fX̂ , fŶ )− F (x,y, fX∗ , fY ∗)dxdy + α0

∫∫

F0(x,y, fX̂)− F0(x,y, fX∗)dxdy

+

n∑

i=1

ζi

∫∫

F
(i)
1 (x,y, fX̂)−F

(i)
1 (x,y, fX∗)dxdy +

n∑

i=1

n∑

j=1

γij

∫∫

F
(i,j)
2 (x,y, fX̂)−F

(i,j)
2 (x,y, fX∗)dxdy

+

n∑

i=1

ηi

∫∫

F
(i)
3 (x,y, fX̂)−F

(i)
3 (x,y, fX∗)dxdy +

n∑

i=1

n∑

j=1

θij

∫∫

F
(i,j)
4 (x,y, fX̂)−F

(i,j)
4 (x,y, fX∗)dxdy

+

∫

λ(y)

[

fŶ (y)−

∫

fX̂(x)fW (y − x)dx

]

dy −

∫

λ(y)

[

fY ∗(y) −

∫

fX∗(x)fW (y − x)dx

]

dy

=

∫∫

K(x,y, fX̂ , fŶ )−K(x,y, fX∗ , fY ∗)dxdy +

∫

(fŶ − fY ∗)λ(y)dy

(75)

Based on (74), the righthand side of (75) can be lower boundedas follows:

U [fX̂ , fŶ ]− U [fX∗ , fY ∗ ]

≥

∫∫
[
(fX̂−fX∗)K ′

fX
+(fŶ−fY ∗)K ′

fY

]
∣
∣
∣
fX=fX∗ ,fY =fY ∗

dxdy

+

∫

(fŶ − fY ∗)λ(y)dy

(a)
=

∫

(fX̂ − fX∗)

[∫

K ′
fX

∣
∣
∣
fX=fX∗ ,fY =fY ∗

dy

]

dx

+

∫

(fŶ − fY ∗)

[∫

K ′
fY
dx+ K̃ ′

fY

] ∣
∣
∣
fX=fX∗ ,fY =fY ∗

dy

(b)
=0,

(76)

where (a) follows from the fact that
K̃ ′

fY

∣
∣
∣
fX=fX∗ ,fY =fY ∗

= λ(y),

and (b) is due to (67) and (68). This proves the sufficiency of the Gaussian distributions, and therefore,fX∗ and
fY ∗ minimize the variational problem.

Remark 3. The constraints related to the vector means in (60) and (62) are unnecessary. Without these constraints,
the optimal solutions are still multi-variate Gaussian density functions but the vector means are equal to zero.

V. EXTREMAL ENTROPY INEQUALITY

Extremal entropy inequality, proposed by Liu and Viswanath[2], was motivated by multi-terminal information
theoretic problems such as the vector Gaussian broadcast channel and the distributed source coding with a single
quadratic distortion constraint. EEI is an entropy power inequality which includes a covariance constraint. Because
of the covariance constraint, the extremal entropy inequality could not be proved directly by using the classical
Entropy Power Inequality (EPI). Therefore, new techniques([16], [11]) were adopted in the proofs reported in [2],
[11]. In this section, the extremal entropy inequality willbe proved using a variational approach.

Theorem 10. Assume thatµ ≥ 1 is an arbitrary but fixed constant andΣ is a positive semi-definite matrix. A
Gaussian random vectorWG with positive definite covariance matrixΣW is assumed to be independent of an
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arbitrary random vectorX whose covariance matrixΣX satisfiesΣX � Σ. Then, there exists a Gaussian random
vectorX∗

G
with covariance matrixΣX∗ which satisfies the following inequality:

h(X)− µh(X+WG) ≤ h(X∗
G
)− µh(X∗

G
+WG), (77)

whereΣX∗ � Σ.
Proof: By settingY = X+WG, we first consider the following variational problem (without loss of generality,

we assume thatX, WG, andY have zero mean):

min
fX ,fY

∫ ∫

fX(x)fW (y − x)(−µ log fY (y) + log fX(x) + µ (µ− 1) log fW (y − x))dxdy (78)

s.t.
∫ ∫

fX(x)fW (y − x)dxdy = 1,
∫ ∫

yyTfX(x)fW (y − x)dxdy =

∫ ∫

xxTfX(x)fW (y − x)dxdy

+

∫ ∫

(y − x) (y − x)T fX(x)fW (y − x)dxdy,
∫ ∫

xxTfX(x)fW (y − x)dxdy � Σ,
∫ ∫

yyTfX(x)fW (y − x)dxdy = ΣY ∗ ,

−

∫ ∫

fX(x)fW (y − x) log fX(x)dxdy ≥ pX,

fY (y) =

∫

fX(x)fW (y − x)dx, (79)

where pX is a constant, andΣY ∗ stands for the covariance matrix of the optimal solutionY. The constraint
−
∫∫

fX(x)fW (y − x) log fX(x)dxdy ≥ px means that the differential entropy ofX is greater than a constant
px, i.e.,H(X) ≥ px, and it is introduced because it helps to convexify the problem by enforcing the semi-positive
definiteness of the resulting functional second-order variation. This is due to the fact that this constraint introduces
an additional Lagrange multiplierα1, which can be selected appropriately to ensure the non-negative definiteness
of the second-order variation. Sincepx can be any arbitrary small number, we believe that adding this additional
constraint is reasonable. In addition, the termµ(µ−1)

∫∫
fX(x)fW (y−x) log fW (y − x)dxdy = µ(µ−1)h(WG)

is added to the objective functional (78), and being a constant, it does not affect the optimization problem. Without
loss of generality, the matrixΣ is assumed to be a positive definite matrix due to the same arguments mentioned
in [2].

The optimization problem (78) is re-cast as follows:

min
fX ,fY

∫∫

fX(x)fW (y − x)[−µ log fY (y) + log fX(x) + µ (µ− 1) log fW (y − x)]dxdy (80)

s.t.
∫∫

fX(x)fW (y − x)dxdy = 1, (81)
∫∫ (

yiyj − xixj − (y − x)i (y − x)j

)

fX(x)fW (y − x)dxdy = 0, (82)

n∑

i=1

n∑

j=1

(∫ ∫

xixjξiξjfX(x)fW (y − x)dxdy

)

≤

n∑

i=1

n∑

j=1

σ2ijξiξj , (83)

∫∫

yiyjfX(x)fW (y − x)dxdy = σ2
Y ∗
ij
, (84)

−

∫∫

fX(x)fW (y − x) log fX(x)dxdy ≥ pX, (85)

fY (y) =

∫

fX(x)fW (y − x)dx, (86)
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where the arbitrary deterministic non-zero vectorξ is defined as[ξ1, . . . , ξn]T , σ2ij andσ2
Y ∗
ij

denote theith row and

jth column entry ofΣ andΣY ∗ (i = 1, . . . , n, and j = 1, . . . , n), respectively.
Using Lagrange multipliers, as shown in Corollary 1, the functional problem in (80) and the constraints in

(81)-(86) can be expressed in terms of the Lagrangian:

min
fX ,fY

∫ (∫

K(x,y, fX , fY )dx

)

+ K̃(y, fY )dy,

(87)

where

K(x,y, fX , fY ) = fX(x)fW (y − x)[−µ log fY (y) + log fX(x) + µ (µ− 1) log fW (y − x) + α0

+

n∑

i=1

n∑

j=1

(γijyiyj − γijxixj − γij (y − x)i (y − x)j + θxixjξiξj + φijyiyj)− α1 log fX(x)− λ(y)],

K̃(y, fY ) = λ(y)fY (y). (88)

The Lagrange multipliersα0, γij , θ, φij, α1, andλ(y) correspond to the constraints in (81), (82), (83), (84), (85),
and (86), respectively.

To find the optimal solutions, based on Corollary 2, the first-order variation condition is checked as follows:
∫

K ′
fX

∣
∣
∣
fX=fX∗ ,fY =fY ∗

dy =

∫

fW (y − x)[−µ log fY ∗(y) + (1− α1) log fX∗(x) + µ (µ− 1) log fW (y − x) + α0

+

n∑

i=1

n∑

j=1

(γijyiyj − γijxixj − γij (y − x)i (y − x)j + θxixjξiξj + φijyiyj)− λ(y) + 1− α1]dy

= 0. (89)
∫

K ′
fY
dx+ K̃ ′

fY

∣
∣
∣
fX=fX∗ ,fY =fY ∗

= −
µ
∫
fX(x)fW (y − x)dx

fY (y)
+ λ(y) = 0. (90)

The following expressions satisfy the equalities in (89) and (90):

λ(y) = µ,

fY ∗(y) = (2π)−
n

2

∣
∣
∣−
µ

2
(Γ+Φ)−1

∣
∣
∣

− 1

2

exp

{

−
1

2
yT

(

−
µ

2
(Γ+Φ)−1

)−1
y

}

(2π)
n

2

∣
∣
∣−
µ

2
(Γ+Φ)−1

∣
∣
∣

1

2

exp

{
cY
µ

}

fW (y − x) = (2π)−
n

2

∣
∣
∣
∣
−
µ (µ− 1)

2
Γ−1

∣
∣
∣
∣

− 1

2

exp

{

−
1

2
(y − x)T

(

−
µ (µ− 1)

2
Γ−1

)−1

(y − x)

}

· (2π)
n

2

∣
∣
∣
∣
−
µ (µ− 1)

2
Γ−1

∣
∣
∣
∣

1

2

exp

{

−
cW

µ (µ− 1)

}

,

fX∗(x) = (2π)−
n

2

∣
∣
∣
∣
−
1− α1

2
(Γ− θΞ)−1

∣
∣
∣
∣

− 1

2

exp

{

−
1

2
xT

(

−
1− α1

2
(Γ− θΞ)−1

)−1

x

}

· (2π)
n

2

∣
∣
∣
∣
−
1− α1

2
(Γ− θΞ)−1

∣
∣
∣
∣

1

2

exp

{
−α0 + µ− 1 + α1 + cW + cY

1− α1

}

, (91)

where

Φ=






φ11 · · · φ1n
...

. . .
...

φn1 · · · φnn




 , Γ =






γ11 · · · γ1n
...

. . .
...

γn1 · · · γnn






Ξ=






ξ1ξ1 · · · ξ1ξn
...

. . .
...

ξnξ1 · · · ξnξn




 ,

x=[x1, · · · , xn]
T ,

y=[y1, · · · , yn]
T .
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Now considering the constraints in (81)-(86), the equations in (91) are further processed as follows:

fY ∗(y) = (2π)−
n

2 |ΣY ∗ |−
1

2 exp

{

−
1

2
yTΣ−1

Y ∗ y

}

fW (y − x) = (2π)−
n

2 |ΣW |−
1

2 exp

{

−
1

2
(y− x)T Σ−1

W
(y − x)

}

fX∗(x) = (2π)−
n

2 |ΣX∗ |−
1

2 exp

{

−
1

2
xTΣ−1

X∗x

}

(92)

where

α0 = µ− (1− α1) +
µ (µ− 1)

2
log (2π)n |ΣW |

−
µ

2
log (2π)n |ΣY ∗ |+

1− α1

2
log (2π)n |ΣX∗ | ,

Γ = −
µ (µ− 1)

2
Σ−1

W
,

Φ = −Γ−
µ

2
Σ−1

Y ∗

=
µ (µ− 1)

2
Σ−1

W
−
µ

2
(ΣX∗ +ΣW )−1 ,

ΣX∗ = −
1− α1

2
(Γ− θΞ)−1

=
1− α1

2

(
µ (µ− 1)

2
Σ−1

W
+ θΞ

)−1

θ ≥ 0, (93)

α1 ≤ 1− µ, (94)

cW =
µ (µ− 1)

2
log (2π)n |ΣW | ,

cY = −
µ

2
log (2π)n |ΣY ∗ | ,

|ΣX∗ | =

(
1

2πe
exp

{
2

n
pX

})n

.

The inequality in (94) is due to the second-order variation condition, which will be presented later in this proof.
The inequality (93) is based on the theory of KKT conditions since the multiplier associated with the inequality
constraint is nonnegative. Moreover, the complementary slackness condition in the KKT conditions leads to the
following relationship:

θ

[
∫∫

(
n∑

i=1

n∑

j=1

xixjξiξj

)

fX∗(x)fW (y − x)dxdy −

n∑

i=1

n∑

j=1

σ2ijξiξj

]

= 0. (95)

Based on Corollary 2, to make the second variation nonnegative, the positive semi-definiteness of the following
matrix is required:

[
K ′′

fX∗fX∗
K ′′

fX∗fY ∗

K ′′
fY ∗fX∗

K ′′
fY ∗fY ∗

]

, (96)

which further reduces to the following condition:

[
hX hY

]
[
K ′′

fX∗fX∗
K ′′

fX∗fY ∗

K ′′
fY ∗fX∗

K ′′
fY ∗fY ∗

] [
hX

hY

]

=K ′′
fX∗fX∗h

2
X
+K ′′

fY ∗fY ∗h
2
Y
+ (K ′′

fX∗fY ∗ +K ′′
fY ∗fX∗ )hY hX

≥ 0, (97)
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wherehX andhY are arbitrary admissible functions. SinceK ′′
fX∗fX∗

, K ′′
fX∗fY ∗

, K ′′
fY ∗fX∗

, andK ′′
fY ∗fY ∗

are defined
as

K ′′
fX∗fX∗ =

(1− α1)fW (y − x)

fX∗(x)
,

K ′′
fX∗fY ∗ = −

µfW (y − x)

fY ∗(y)
,

K ′′
fY ∗fX∗ = −

µfW (y − x)

fY ∗(y)
,

K ′′
fY ∗fY ∗ =

µfX∗(x)fW (y − x)

fY ∗(y)2
, (98)

the condition in (97) requires

(1− α1)fW (y − x)

fX∗(x)
hX(x)

2 − 2
µfW (y − x)

fY ∗(y)
hX(x)hY (y) +

µfX∗(x)fW (y − x)

fY ∗(y)2
hY (y)

2

≥
µfW(y − x)

fX∗(x)

(

hX(x)−
fX∗(x)

fY ∗(y)
hY (y)

)2

, (99)

which holds true if1−α1 ≥ µ (i.e.,α1 ≤ 1−µ ≤ 0). Conditionα1 ≤ 0 is also imposed by the KKT complementary
slackness condition corresponding to the constraint (85).Therefore, the optimal solutionsfX∗ and fY ∗ minimize
the functional problem in (80), and the proof is completed because of convexity of the functionalK(x,y, fX , fY )
wrt variablesfX and fY .

A more detailed alternative justification of the fact the Gaussian distributionsfX∗ and fY ∗ are global minima
is next presented. We will prove the sufficiency of the Gaussian distributions by showingU [fX̂, fŶ ] ≥ U [fX∗ , fY ∗ ],
whereU [·, ·] represents the objective functional in the problem andfX̂, fŶ denote any arbitrary functions satisfying
the boundary conditions and the constraints. First, the following functionals are defined:

F (x,y, fX , fY ) = fX(x)fW (y − x)(−µ log fY (y) + log fX(x) + µ(µ − 1) log fW (y − x)),

F0(x,y, fX) = fX(x)fW (y − x),

F
(i,j)
1 (x,y, fX) =

(

yiyj − xixj − (y − x)i (y − x)j

)

fX(x)fW (y − x),

F2(x,y, fX) =





n∑

i=1

n∑

j=1

xixjξiξj



 fX(x)fW (y − x),

F
(i,j)
3 (x,y, fX) = yiyjfX(x)fW (y − x),

F4(x,y, fX) = −fX(x)fW (y − x) log fX(x),

and thus

K(x,y, fX , fY ) = F (x,y, fX , fY ) + α0F0(x,y, fX) +

n∑

i=1

n∑

j=1

γijF
(i,j)
1 (x,y, fX) + θF2(x,y, fX)

+

n∑

i=1

n∑

j=1

φijF
(i,j)
3 (x,y, fX) + α1F4(x,y, fX)− λ(y)fX(x)fW (y − x).

It can be verified that the Hessian matrix ofK(x,y, fX , fY ) w.r.t fX and fY is given by
[
(1− α1)fW (y − x)/fX(x) −µfW (y − x)/fY (y)

−µfW(y − x)/fY (y) µfX(x)fW (y − x)/fY (y)
2

]

,

which is positive semi-definite due to (94). The convexity property ofK(x,y, fX , fY ) yields that

K(x,y, fX̂ , fŶ )−K(x,y, fX∗ , fY ∗) ≥
[
(fX̂ − fX∗)K ′

fX
+ (fŶ − fY ∗)K ′

fY

]
∣
∣
∣
fX=fX∗ ,fY =fY ∗

, (100)
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and it follows that

U [fX̂, fŶ ]−U [fX∗, fY ∗ ]

=

∫∫

F (x,y, fX̂ , fŶ )− F (x,y, fX∗ , fY ∗)dxdy

(a)

≥

∫∫

F (x,y, fX̂ , fŶ )− F (x,y, fX∗ , fY ∗)dxdy + α0

[∫∫

F0(x,y, fX̂)− F0(x,y, fX∗)dxdy

]

+

n∑

i=1

n∑

j=1

γij

[∫∫

F
(i,j)
1 (x,y, fX̂)− F

(i,j)
1 (x,y, fX∗)dxdy

]

+ θ

[∫∫

F2(x,y, fX̂)− F2(x,y, fX∗)dxdy

]

+

n∑

i=1

n∑

j=1

φij

[∫∫

F
(i,j)
3 (x,y, fX̂)− F

(i,j)
3 (x,y, fX∗)dxdy

]

+ α1

[∫∫

F4(x,y, fX̂)− F4(x,y, fX∗)dxdy

]

+

∫

λ(y)

[

fŶ (y) −

∫

fX̂(x)fW (y − x)dx

]

dy −

∫

λ(y)

[

fY ∗(y)−

∫

fX∗(x)fW (y − x)dx

]

dy (101)

=

∫∫

K(x,y, fX̂ , fŶ )−K(x,y, fX∗ , fY ∗)dxdy +

∫

λ(y) (fŶ (y) − fY ∗(y)) dy

(b)

≥

∫∫
[
(fX̂ − fX∗)K ′

fX
+ (fŶ−fY ∗)K ′

fY

]
∣
∣
∣
fX=fX∗ ,fY =fY ∗

dxdy +

∫

λ(y) (fŶ (y)− fY ∗(y)) dy

=

∫

(fX̂ − fX∗)

[∫

K ′
fX

∣
∣
∣
fX=fX∗ ,fY =fY ∗

dy

]

dx+

∫

(fŶ − fY ∗)

[∫

K ′
fY

∣
∣
∣
fX=fX∗ ,fY =fY ∗

dx+ λ(y)

]

dy

(c)
=0, (102)

where the inequality (a) follows from the complementary slackness condition in the KKT conditions (95). Indeed,
sincefX̂ only represents an arbitrary feasible solution andθ ≥ 0, it follows that

θ





∫∫

F2(x,y, fX∗)dxdy −

n∑

i=1

n∑

j=1

σ2ijξiξj



 = 0,

and

θ





∫∫

F2(x,y, fX̂)dxdy −

n∑

i=1

n∑

j=1

σ2ijξiξj



 ≤ 0,

and therefore,θ
[∫∫

F2(x,y, fX̂)− F2(x,y, fX∗)dxdy
]
≤ 0. Similarly, the complementary slackness condition

associated with (85) leads toα1

[∫∫
F4(x,y, fX̂)− F4(x,y, fX∗)dxdy

]
≤ 0. In addition, (b) is due to (100), and

(c) follows from (89) and (90). This proves the sufficiency ofGaussian distributions.

Remark 4. The proposed proof only exploits calculus of variations tools. Unlike the previous proofs, this proof
does not adopt neither the channel enhancement technique and EPI as in [2] nor the EPI and data processing
inequality as in [11].

Theorem 11. Assume thatµ ≥ 1 is an arbitrary but fixed constant andΣ is a positive semi-definite matrix.
Independent Gaussian random vectorsWG with covariance matrixΣW and VG with covariance matrixΣV are
assumed to be independent of an arbitrary random vectorX with covariance matrixΣX � Σ. Both covariance
matricesΣW and ΣV are assumed to be positive definite. Then, there exists a Gaussian random vectorX∗

G
with

covariance matrixΣX∗ which satisfies the following inequality:

h(X+WG)− µh(X+VG)≤h(X
∗
G
+WG)− µh(X∗

G
+VG), (103)

whereΣX∗ � Σ.
Proof: See Appendix C.
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Remark 5. The proposed proof does not borrow any techniques from [2]. Even though the proposed proof adopts
the equality condition for the data processing inequality,a result which was also exploited in [11], the proposed
proof is different from the one in [11] due to the following features. First, the proposed proof uses the equality
condition of the data processing inequality only once whilethe proof in [11] uses it twice. The proof in [2]
exploited the channel enhancement technique twice, which is equivalent to using the equality condition in the data
processing inequality. Second, the proposed proof does notuse the moment generating function technique unlike the
proof proposed in [11]; instead the current proof directly exploits a property of the conditional mutual information
pertaining to a Markov chain.

VI. A PPLICATIONS

Because of the easiness to incorporate a broad class of constraints, the proposed variational framework finds
usage in a large number of applications. Herein section, we will briefly illustrate some potential applications in this
regard and state several open research problems which mightbe also addressed within the considered functional
framework.

A. Gaussian Wire-tap Channel

The secrecy capacity of Gaussian wire-tap channel has been studied by many researchers [20], [33]. We will
approach the Gaussian wire-tap problem from the estimationviewpoint, rather than considering the secrecy capacity
from an information theoretic perspective.

The following scalar Gaussian wire-tap channel is considered:

Y1 = aX +WG,

Y2 = aX +WG + ZG, (104)

whereX is an arbitrary but fixed random variable with zero mean and unit variance,a is a constant, andWG

andZG are Gaussian random variables with variancesσ2
W

andσ2
Z
, respectively. The random variablesWG andZG

are independent of each other, and they have zero mean. In thechannel model (104),Y1 andY2 are considered
as a legitimate receiver and as an eavesdropper, respectively. The goal of this problem is the following. Assume
that both receivers use minimum mean square error (MMSE) estimators. Given the value of the mean square error
(MSE), which allows to correctly decode the legitimate receiver, what is the optimal distribution which maximizes
the difference between the MSE in the legitimate receiver and the MSE in the eavesdropper?

The above mentioned problem adopts both practical and reasonable assumptions due to the following reasons.
First, the MMSE estimator is an optimal estimator in the sense that it minimizes the MSE. Therefore, it is
reasonable to use such an optimal estimator. Second, to prevent from eavesdropping, finding the signal distribution
that maximizes the difference between the MSEs corresponding to the legitimate receiver and the eavesdropper,
respectively, represents a legitimate design objective. To find the optimal distribution, the following functional
problem is constructed:

max
fX(x)

V ar(X|Y2)− V ar(X|Y1),

s.t. V ar(X|Y1) = R, (105)

whereV ar(X|Y ) = E

[

(X − E [X|Y ])2
]

, E[·] denotes the expectation operator, andR is a constant.
The optimization problem in (105) is expressed as

max
fX(x)

V ar(E [X|Y1] |Y2), (106)

s.t. E

[

E [X|Y1]
2
]

= 1−R. (107)

The equation in (106) is due to the total law of variance and the Markov chainX → Y1 → Y2. SinceE[X2] = 1,
the equation (107) follows from the constraint in (105).
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The objective function in (106) is further expressed as

V ar (E [X|Y1] |Y2) = E

[

E [X|Y1]
2
]

− E

[

E [X|Y2]
2
]

(108)

and using the equations (107), (108), the optimization problem in (106) is re-formulated in terms of the following
variational problem:

min
fY2

,g

∫
1

fY2
(y)

g(y)2dy, (109)
∫

y2fY2
(y)dy = m2

Y2
, (110)

g(y) =

∫

xfY2|X(y|x)fX(x)dx, (111)

wherefX(x) and fY2
(y) are the probability density functions ofX andY2, respectively, andm2

Y2
stands for the

second-order moment ofY2.
Since the first term in (108) is given and

E

[

E [X|Y2]
2
]

=

∫

fY2
(y)

(∫

x
fY2|X(y|x)fX(x)

fY2
(y)

dx

)2

dy,

the objective function in (109) is derived from the equation(106). Also, the additional constraint in (110) is required
to solve this variational problem.

Considering the Lagrange multipliersλ1 andλ(y) to account for the constraints in (110) and (111), respectively,
the following variational problem is constructed:

∫

K(y, fY2
, g)dy,

where

K(y, fY2
, g) =

g(y)2

fY2
(y)

+ λ1y
2fY2

(y) + λ(y)

(

g(y)−

∫

xfY2|X(y|x)fX(x)dx

)

. (112)

In accordance with Theorem 1, we can determineg∗ andf∗
Y2

to enforce the first-order variation to be zero:

Kf∗
Y2

= −
g∗(y)2

f∗
Y2
(y)2

+ λ1y
2 = 0, (113)

Kg∗ =
2g∗(y)

f∗
Y2
(y)

+ λ(y) = 0,

Taking into account (113), it follows further that

E [X∗|Y ∗
2 ] =

g∗(y)

f∗
Y2
(y)

=
√

λ1y. (114)

SinceE[X∗|Y ∗
2 ], the MMSE estimator, is a linear function ofy and the channel is corrupted with additive Gaussian

noise, it is necessary thatX∗ is a Gaussian random variable. Based on Theorem 2, it can be verified that the second-
order variation is nonnegative. Moreover, due to the convexity of K(y, fY2

, g) wrt fY2
andg, we can confirm that

the Gaussian solution is optimal, and the proof is completed.

B. Additional Applications

The importance of the variational framework in establishing some fundamental information theoretic inequalities
was already illustrated herein paper. At their turn, these information theoretic inequalities played a fundamental
role in establishing other important results and applications. For example, the minimum Fisher information theorem
(Cramér-Rao inequality) and maximum entropy theorem wereused for developing min-max robust estimation
techniques [25], results which were recently further extended to the more general framework of noise with arbitrary
distribution (and correlation) in [27] and used to explain why the MIMO channel estimation scheme proposed in
[26] exhibits a min-max robustness property. Along the sameline of potential applications, the extensions of the
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maximum entropy and minimum Fisher information results to positive random variables, as stated in Theorems
5, 7 and 8, play a fundamental role in developing robust clocksynchronization algorithms for wireless sensor
networks and other wireless networks that rely on message exchanges to acquire the timing information. A large
class of clock synchronization protocols (see e.g., TPSN, Internet, PBS [28]) rely on the two-way message exchange
mechanism and for which the timing synchronization approach reduces to estimating a linear regression model for
which the distribution of additive noise has positive support but it is otherwise arbitrary [28]. Designing robust
timing synchronization algorithms for such protocols is difficult, because of the variability of delay distributions
caused by the variable network traffic. However, this problem can now be resolved at the light of the results brought
by Theorems 5, 7 and 8. By optimizing the design of timing messages for the scenario of a chi or log-normal
distributed delay, then min-max robust time synchronization algorithms could be developed.

The extremal entropy inequality was used in the vector Gaussian broadcast channel [2], the distributed source
coding with a single quadratic distortion constraint problem [2], the Gaussian wire-tap channel [11], and many other
problems. Even though these applications were traditionally addressed using the information theoretic inequalities,
one can directly approach these applications by means of theproposed variational calculus techniques. One of the
benefits of such a variational approach is the fact that it cancope with many types of constraints as opposed to the
EEI which is still quite rigid in its formulation. As Prof. Max Costa suggested the authors of this paper in a private
communication, in the context of Z Gaussian interference channels, such a variational approach might be helpful to
develop novel entropy-power-like inequalities, where thelimiting variables are Gaussian and independent but not
anymore identically distributed, and to assess the capacity of the Z-Gaussian interference channel.

Additional important extensions of maximum entropy theorem, minimum Fisher information theorem, additive
worst noise lemma, and extremal entropy inequality might beenvisioned within the proposed variational framework
by imposing various restrictions on the range of values assumed by random variables/vectors (e.g., random variables
whose support is limited to a finite length interval or finite set of values) or on their second or higher-order moments
and correlations. For example, the problem of finding the worst additive noise under a covariance constraint [9] as
well as establishing multivariate extensions of Costa’s entropy power inequality [30] along the lines mentioned by
Liu et al. [21] and Palomar [31], [32] might be also addressedwithin the proposed variational framework. However,
all these challenges together with finding a variational proof of EPI remain open research problems for future study.

VII. C ONCLUSIONS

In this paper, we derived several fundamental information theoretic inequalities using a functional analysis
framework. The main benefit for employing calculus of variations is due to the fact for any information theoretic
inequality as long as it can be expressed in terms of a convex functional, the global optimal solution can be
obtained from the necessary conditions. A brief summary of this paper contributions is the following. First, the
entropy maximizing theorem and Fisher information minimizing theorem were derived under different assumptions.
Second, the worst additive noise lemma was proved from the perspective of a functional problem. Third, the extremal
entropy inequality was derived using calculus of variations techniques. Finally, applications and possible extensions
that could be addressed within the proposed variational framework were briefly presented. Many open research
problems were also formulated.

APPENDIX A
PROOF OFCOROLLARIES 1 AND 2

Even though the functionals in Corollary 1 involve double integrations, they can be regarded as a special case
of the functionals in Theorem 3. For example, the functionalU [fX, fY ] in (19) can be considered as

∫ b

a
G(y, fY )dy

whereG(y, fY ) =
∫ b

a
K(x, y, fX , fY )dx. In this way, the augmented functional is given by

J [fX, fY ] =

∫ b

a

[
∫ b

a

K(x, y, fX , fY )dx+

n∑

i=1

∫ b

a

L̃i(x, y, fX , fY )dx+ λ(y)

(

g(y, fY )−

∫ b

a

k̃(x, y, fX)dx

)]

dy

=

∫ b

a

{[∫ b

a

(K(x, y, fX , fY ) +

n∑

i=1

λiL̃i(x, y, fX , fY )− λ(y)k̃(x, y, fX))dx
]

+ λ(y)g(y, fY )
}

dy.

This completes the proof of Corollary 1.
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Based on the definitions in Section II, the first-order variation of the above augmented functional can be calculated
as

δJ [fX , fY ] =

∫ b

a

∫ b

a

{
∂K(x, y, fX , fY )

∂fX

η(x) +
∂K(x, y, fX , fY )

∂fY

ξ(y) +

n∑

i=1

[
∂L̃i(x, y, fX , fY )

∂fX

η(x)+

∂L̃i(x, y, fX , fY )

∂fY

ξ(y)

]

− λ(y)
∂k̃(x, y, fX)

∂fX

η(x)

}

dxdy +

∫ b

a

λ(y)
∂g(y, fY )

∂fY

ξ(y)dy

=

∫ b

a

{∫ b

a

∂K(x, y, fX , fY )

∂fX

+

n∑

i=1

∂L̃i(x, y, fX , fY )

∂fX

− λ(y)
∂k̃(x, y, fX)

∂fX

dy

}

η(x)dx

+

∫ b

a

{∫ b

a

∂K(x, y, fX , fY )

∂fY

+

n∑

i=1

∂L̃i(x, y, fX , fY )

∂fY

dx+ λ(y)
∂g(y, fY )

∂fY

}

ξ(y)dy,

(115)

whereη(x) andξ(y) represent any admissible increments forfX andfY , respectively. Due to Theorem 1, a necessary
condition for the functionJ [fX, fY ] to have an extremum for given functionsfX∗ andfY ∗ is thatδJ [fX , fY ] vanishes
at fX∗ andfY ∗ for any admissibleη(x) andξ(y). This leads to

∫

K ′
fX∗ (x, y, fX∗ , fY ∗) +

n∑

i=1

λiL̃i
′

fX∗ (x, y, fX∗ , fY ∗)− λ(y)k̃′fX∗ (x, y, fX∗)dy = 0,

∫

K ′
fY ∗ (x, y, fX∗ , fY ∗) +

n∑

i=1

λiL̃i
′

fY ∗ (x, y, fX∗ , fY ∗)dx+ λ(y)g′fY ∗ (y, fY ∗) = 0,

which are exactly (22) and (23).
In order to calculate the second-order variation ofJ [fX , fY ] from the first-order variation (115), we rewrite

the termλ(y)∂g(y,fY )
∂fY

in (115) as
∫ b

a
q(x)λ(y)∂g(y,fY )

∂fY
dx, whereq(x) is an arbitrary but fixed function satisfying

∫ b

a
q(x)dx = 1. Thus, the first-order variation (115) can be rewritten as

∫ b

a

{∫ b

a

∂K(x, y, fX , fY )

∂fX

+

n∑

i=1

∂L̃i(x, y, fX , fY )

∂fX

− λ(y)
∂k̃(x, y, fX)

∂fX

dy

}

η(x)dx

+

∫ b

a

{∫ b

a

∂K(x, y, fX , fY )

∂fY

+

n∑

i=1

∂L̃i(x, y, fX , fY )

∂fY

+ q(x)λ(y)
∂g(y, fY )

∂fY

dx

}

ξ(y)dy

(116)

Based on (116), the second-order variation ofJ [fX, fY ] is derived as

δ2J [fX, fY ] =

∫ b

a

∫ b

a

[
η(x) ξ(y)

]
[
G′′

fXfX
G′′

fXfY

G′′
fY fX

G′′
fY fY

] [
η(x)
ξ(y)

]

dxdy,

where

G(x, y, fX∗ , fY ∗) = K(x, y, fX∗ , fY ∗) +

N∑

i=1

λiL̃i(x, y, fX∗ , fY ∗)− λ(y)k̃(x, y, fX∗) + λ(y)g(y, fY ∗)q(x),

Since a necessary condition for the functionalJ [fX , fY ] to have a minimum for given functionsfX∗ andfY ∗ is that
δ2J [fX , fY ] ≥ 0, this leads to the positive semi-definiteness of

[
G′′

fXfX
G′′

fXfY

G′′
fY fX

G′′
fY fY

]

and completes the proof of Corollary 2.
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APPENDIX B
NON-INVERTIBLE CORRELATION (OR COVARIANCE) MATRIX

Let ΩX = QΩΛΩQ
T

Ω
and X̄ = QT

Ω
X = [X̄T

a , X̄
T

b ], whereΛΩ = diag(Λ1, . . . ,Λm, 0, . . . , 0), ΩX is a singular
matrix, QΩ is an orthogonal matrix, anddiag(·) denotes a diagonal matrix. The correlation matrix ofX̄b is the
zero matrix, and therefore, it is considered as a deterministic vector. Without loss of generality, we can assume
X̄b = 0. The following matrices are also considered:

QT

Ω
ΩWQΩ =

[
A BT

B C

]

,

D =

[
I −BTC−1

0 I

]

, (117)

where the dimensions ofA, B, andC arem×m, (n−m)×m, and(n−m)× (n−m), respectively. Then,

DQT

Ω
X =

[
I −BTC−1

0 I

] [
X̄a

0

]

=

[
X̄a

0

]

,

DQT

Ω
WG =

[
W̄Ga

W̄Gb

]

,

E [DQT

Ω
WGW

T

G
QΩD

T ] =

[
A−BTC−1B 0

0 C

]

. (118)

Due to (118), the random vectors̄WGa
andW̄Gb

are statistically independent of each other.
The left-hand side of the equation in (53) can be re-expressed as

h(X+WG)− h(X)=h(DQT

Ω
X+DQT

Ω
WG)− h(DQT

Ω
X)

= h(X̄a + W̄Ga
, X̄b + W̄Gb

)− h(X̄a, X̄b)

= h(X̄a + W̄Ga
)− h(X̄a) + h(X̄b + W̄Gb

)− h(X̄b)
︸ ︷︷ ︸

(a)

. (119)

In (119),X̄b is considered as a deterministic variable,W̄Gb
is given, the term(a) can be ignored in the optimization,

and the correlation matrix of̄Xa is non-singular. Therefore, we can always assume the correlation matrix to be
invertible.

APPENDIX C
PROOF OFTHEOREM 11

Proof: First, choose a Gaussian random vectorW̃G whose covariance matrixΣW̃ satisfiesΣW̃ � ΣW and
ΣW̃ � ΣV . Since the Gaussian random vectorsVG andWG can be represented as the summation of two independent
random vectorsW̃G andV̂G, and the summation of two independent random vectorsW̃G andŴG, respectively,
the left-hand side of the equation in (103) is written as follows:

µh(X+VG)− h(X+WG)

≥µh(X+VG)− h(X+ W̃G)− h(WG) + h(W̃G)

=µh(X+ W̃G + V̂G)− h(X+ W̃G)− h(W̃G + ŴG) + h(W̃G). (120)

Since the expression will be minimized overfX(x), the last two terms in (120) are ignored, and by substituting
Y and X̂ for X + W̃G + V̂G andX+ W̃G, respectively, the inequality in (103) is equivalently expressed as the
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following variational problem:

min
fX̂ ,fY

µh(Y)− h(X̂)− µ (µ− 1) h(V̂G)

s. t.
∫∫

fX̂(x)fV̂ (y − x)dxdy − 1 = 0,
∫∫

fX̂(x)fV̂ (y − x)xxTdxdy −ΣX̂ � 0,
∫∫

fX̂(x)fV̂ (y − x)yyTdxdy −ΣY ∗ = 0,
∫∫

fX̂(x)fV̂ (y − x)(yyT − xxT − (y − x) (y − x)T)dxdy = 0,

−

∫∫

fX̂(x)fV̂ (y − x) log fX̂(x)dxdy ≥ pX̂ (121)

fY (y) =

∫

fX̂(x)fV̂ (y − x)dx,

whereX̂ = X + W̃G, Y = X̂+ V̂G, WG = W̃G + ŴG, VG = W̃G + V̂G, ΣX̂ = Σ +ΣW̃ , ΣY ∗ = ΣX∗ +ΣV ,
andΣX∗ is the covariance matrix of the optimal solutionX∗.

The variational problem in (121) is exactly the same as the one in (80). Therefore, using the same method as in
the proof of Theorem 10, we obtain the following inequality (see the details in the proof of Theorem 10):

µh(X+ W̃G + V̂G)− h(X+ W̃G)− h(W̃G + ŴG) + h(W̃G)

≥µh(X∗
G
+ W̃G + V̂G)− h(X∗

G
+ W̃G)− h(W̃G + ŴG) + h(W̃G). (122)

By appropriately choosingX∗
G

andW̃G, the right-hand side of the equation in (122) is expressed as

µh(X∗
G
+ W̃G + V̂G)− h(X∗

G
+ W̃G)− h(W̃G + ŴG) + h(W̃G)

=µh(X∗
G
+ W̃G + V̂G)− h(X∗

G
+WG). (123)

The equality in (123) is due to the equality condition of the data processing inequality in [11]. For the completeness
of the proof, we introduce a technique, which is slightly different from the one in [11].

To satisfy the equality in the equation (123), the equality condition in the following lemma must be satisfied.

Lemma 1 (Data Processing Inequality [1]). When three random vectorsY1, Y2, andY3 represent a Markov chain
Y1 → Y2 → Y3, the following inequality is satisfied:

I(Y1;Y3) ≤ I(Y1;Y2). (124)

The equality holds if and only ifI(Y1;Y2|Y3) = 0.

In Lemma 1,Y1, Y2, andY3 are defined asX∗
G
, X∗

G
+ W̃G, andX∗

G
+ W̃G +ŴG, respectively. Therefore, the

equality condition,I(Y1;Y2|Y3) = 0 is expressed as

I(Y1;Y2|Y3)

= h(Y1|Y3)− h(Y1|Y2,Y3)

=
1

2
log (2πe)n |ΣY1|Y3

| −
1

2
log (2πe)n |ΣY1|Y2

|

=
1

2
log (2πe)n

∣
∣ΣY1

−ΣY1
Σ−1

Y3
ΣY1

∣
∣−

1

2
log (2πe)n

∣
∣ΣY1

−ΣY1
Σ−1

Y2
ΣY1

∣
∣

=
1

2
log (2πe)n

∣
∣
∣ΣX∗ −ΣX∗ (ΣX∗ +ΣW̃ +ΣŴ )−1

ΣX∗

∣
∣
∣−

1

2
log (2πe)n

∣
∣
∣ΣX∗ −ΣX∗ (ΣX∗ +ΣW̃ )−1

ΣX∗

∣
∣
∣

=
1

2
log (2πe)n |ΣX∗ |

∣
∣
∣I − (ΣX∗ +ΣW̃ +ΣŴ )−1

ΣX∗

∣
∣
∣−

1

2
log (2πe)n |ΣX∗ |

∣
∣
∣I − (ΣX∗ +ΣW̃ )−1

ΣX∗

∣
∣
∣

=
1

2
log (2πe)n

∣
∣
∣I − (ΣX∗ +ΣW̃ +ΣŴ )−1

ΣX∗

∣
∣
∣−

1

2
log (2πe)n

∣
∣
∣I − (ΣX∗ +ΣW̃ )−1

ΣX∗

∣
∣
∣

=
1

2
log (2πe)n

∣
∣
∣I − (ΣX∗ +ΣW )−1

ΣX∗

∣
∣
∣−

1

2
log (2πe)n

∣
∣
∣I − (ΣX∗ +ΣW̃ )−1

ΣX∗

∣
∣
∣

= 0. (125)
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If (ΣX∗ +ΣW )−1
ΣX∗ = (ΣX∗ +ΣW̃ )−1

ΣX∗ , the equality in (125) is satisfied, the equality condition in Lemma
1 holds, and therefore, the equality in (123) is proved. The validity of (ΣX∗ +ΣW )−1

ΣX∗ = (ΣX∗ +ΣW̃ )−1
ΣX∗

is proved by Lemma8 in [11].
Therefore,I(Y1;Y2|Y3) = 0, and from the equations in (120), (122), and (123), we obtainthe following

extremal entropy inequality:

µh(X+VG)− h(X+WG) ≥ µh(X+VG)− h(X+ W̃G)− h(WG) + h(W̃G)

= µh(X+ W̃G + V̂G)− h(X+ W̃G)− h(W̃G + ŴG) + h(W̃G)

≥ µh(X∗
G
+ W̃G + V̂G)− h(X∗

G
+ W̃G)− h(W̃G + ŴG) + h(W̃G)

= µh(X∗
G
+ W̃G + V̂G)− h(X∗

G
+ W̃G)− h(W̃G + ŴG) + h(W̃G)

= µh(X∗
G
+VG)− h(X∗

G
+WG),

and the proof is completed.
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