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Abstract

We consider two fundamental tasks in quantum information theory, data compression with quantum side infor-
mation as well as randomness extraction against quantum side information. We characterize these tasks for general
sources using so-called one-shot entropies. These characterizations — in contrast to earlier results — enable us to
derive tight second order asymptotics for these tasks in the i.i.d. limit. More generally, our derivation establishes
a hierarchy of information quantities that can be used to investigate information theoretic tasks in the quantum
domain: The one-shot entropies most accurately describe an operational quantity, yet they tend to be difficult to
calculate for large systems. We show that they asymptotically agree (up to logarithmic terms) with entropies related
to the quantum and classical information spectrum, which are easier to calculate in the i.i.d. limit. Our technique
also naturally yields bounds on operational quantities for finite block lengths.

I. INTRODUCTION

THE characterization of information theoretic tasks that are repeated only once (the one-shot setting) or a finite
number of times (the finite block length setting) has recently generated great interest in classical information

theory [29], [16]. In particular, these studies investigate the asymptotic performance of information theoretic tasks
in the second order, i.e., they determine precisely the contribution to the rate that is proportional to 1/

√
n when

we consider n independent and identically distributed (i.i.d.) repetitions of a task. In any practical application of
quantum information theory, the available resources are limited and a finite block length analysis allows to quantify
the performance of information theoretic tasks in this setting. More specifically, it provides fundamental limits
bounding the efficiency of optimal protocols performing the task for blocks of length n away from the asymptotic
Shannon limit which can only be (approximately) achieved when n is very large. This is important, for example,
as a benchmark to compare the performance of practical protocols with the non-asymptotic optimum. Among the
tasks that have been studied in this way are noiseless source coding [22], [15], Slepian-Wolf coding [2], [34],
random number generation when the source distribution is known [15], the classical statistical evaluation used for
parameter estimation in quantum cryptography [14], and channel coding [29], [16], [28].

Concurrently, progress has been made towards characterizing tasks utilizing quantum resources in the same setting.
Two different, but related [8], techniques have been proposed to achieve this: one-shot entropies [31] and a quantum
generalization [17], [24] of the information spectrum method [11], [12]. The one-shot approach provides bounds
on operational quantities in terms of entropies for general sources. These can be computed for small examples,
but are generally difficult to calculate even in the i.i.d. case. We relate these entropies to the information spectrum
of the source, which can be approximated in the i.i.d. setting [15] to yield an asymptotic second order expansion.
Combining the two techniques, we thus derive a second order expansion of operational quantities. This is the first
such expansion in the quantum regime.

We give a brief overview of the two techniques and discuss related work.

A. One-Shot Entropies

Motivated by classical cryptography, Renner and coworkers generalized the min-entropy (i.e. the Rényi en-
tropy [33] of order ∞) to the quantum setting and used it to investigate randomness extraction against quantum
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adversaries [32], [31]1. Together with a technique called smoothing, i.e. an optimization of the min-entropy over
close states, this result implies a direct bound on randomness extraction against quantum side information, which
is tight in the first order [31]. Subsequently, the smooth entropy framework has been refined [36], [37], [35] and
used to characterize other tasks in quantum information theory, for example source coding [30], state merging [3],
and quantum channel coding [5].

Generally, these results consider operational quantities in the one-shot setting and provide direct and converse
bounds on them that are valid for general sources and channels. In this work, given a source that emits a random
variable, X , and (potentially quantum) side information, B, about X , the following two operational quantities are
considered.
• The maximal number of random and secret bits, ε-close to uniform and independent of B, that can be extracted

from X is denoted `ε(X|B). This task was first investigated by Renner and König [32] in the quantum setting
and has various applications in cryptography.

• The minimal length in bits of an encoding M of X , such that X can be recovered up to an error ε from B and
M is denoted mε(X|B). This is noiseless source compression with side information and has been investigated
by Devetak and Winter [9] in the quantum setting.

Direct and converse bounds on these operational quantities are then given in terms of quantities we henceforth
call one-shot entropies, of which Renner’s smooth min-entropy, Hε

min(X|B), is the most prominent example. These
entropies exhibit useful monotonicity properties, similar to those of the Shannon entropy. Moreover, they can be
evaluated numerically for small examples and asymptotically converge to the conditional von Neumann entropy.

For the operational quantities mentioned above, their one-shot characterization in [31] and [30] directly implies
that [35]

`ε(Xn|Bn) = nH(X|B) +O(
√
n) and

mε(Xn|Bn) = nH(X|B) +O(
√
n), (1)

where 0 < ε < 1 is kept constant and the operational quantities are evaluated for n i.i.d. copies of the source. This
should be read as follows: independent of the allowed error ε, the tasks can be achieved if and only if the rate is
below the Shannon limit, H(X|B). Note that these asymptotic results can be proven more directly, as has been
done in [9] for source coding with side information. However, in addition to the asymptotic results, the one-shot
approach often naturally yields bounds for finite block lengths, i.e., explicit expressions for the terms O(

√
n) for

finite n.

B. The Information Spectrum Method

The information spectrum technique has been introduced by Han and Verdú [11] as a method to treat general
information sources beyond the i.i.d. scenario. Han succeeded in treating many major topics in information theory
from a unified viewpoint [12] by describing the asymptotic optimal performance in terms of the asymptotic stochastic
behavior of the logarithmic likelihood ratio and the logarithmic likelihood. Recently, the information spectrum
method was employed to analyze the second order asymptotics of various tasks [15], most prominently channel
coding [16].

1) Classical Information Spectrum: Given a probability distribution, P (x), and a second, not necessarily nor-
malized, distribution, Q(x), the logarithmic likelihood ratio is the random variable Z = logP (X) − logQ(X)
where X follows the distribution P . To investigate tasks in the i.i.d. limit in first order, it is often sufficient to
investigate the expectation value of the likelihood ratio, which evaluates to the relative entropy, E[Z] = D(P‖Q) =∑

x P (x)
(

logP (x)− logQ(x)
)
.

However, going beyond i.i.d. sources, the information spectrum method is concerned with the full spectrum of
this random variable. In this work, we thus introduce the classical entropic information spectrum,

Dε
s(P‖Q) = sup{R ∈ R |P{Z ≤ R} ≤ ε}. (2)

(The relation of this quantity to a more traditional formulation of the information spectrum is discussed in
Section VIII.)

1This is also known as the Leftover Hash Lemma in cryptography.
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The following crucial observation highlights the usefulness of the classical information spectrum to derive a
second order expansion. We consider n-fold i.i.d distributions Pn(~x) =

∏
i P (xi) and Qn(~x) =

∏
iQ(xi). Then,

the classical entropic information spectrum evaluates to

Dε
s(P

n‖Qn) = sup
{
R ∈ R

∣∣∣Pn{∑Zi ≤ R
}
≤ ε
}
,

where Zi = logP (Xi)− logQ(Xi) and we are thus left with the spectrum of a sum of i.i.d. random variables. In
this case, the central limit theorem implies that the distribution of∑

i Zi − nµ√
n s

, where µ = E[Z] and s =
√
E
[
(Z − µ)2

]
,

converges to the normal distribution. The Berry-Esseen theorem (see, e.g. [10]) quantifies this notion and implies
that

Dε
s(P

n‖Qn) = nD(P‖Q) +
√
nV (P‖Q)Φ−1(ε) +O(1),

where V (P‖Q) = E
[
(Z −D(P‖Q))2

]
is the variance of the logarithmic likelihood ratio or information variance

and Φ is the cumulative normal distribution. The information spectrum thus has a natural second order expansion
in the i.i.d. limit. (This derivation is presented in more detail in Section VI.)

2) Quantum Information Spectrum: A first quantum extension of the information spectrum was investigated by
Nagaoka and one of the present authors [17], [24] in order to treat classical-quantum (CQ) channel coding and
hypothesis testing for general sequences of channels and sources. In [24], they also clarified the relation between
CQ channel coding and quantum hypothesis testing (see also [20], [18], [19], [25] for important contributions to
quantum hypothesis testing). The quantum entropic information spectrum is denoted Dε

s(ρ‖σ), and reduces to (2)
if ρ and σ commute. (We will define it in Section V.)

However, in contrast to the classical information spectrum, its quantum extension is difficult to calculate or
approximate, even in the i.i.d. limit, due to the non-commutativity of ρ and σ. A potential remedy was proposed
by Hiai and Petz [19] in the context of hypothesis testing. They considered the joint measurement of σ and Eσ(ρ),
where the latter is modified from ρ by pinching in the spectral decomposition of σ. In [13], these two density
operators were then used to introduce an alternative quantum extension of the information spectrum, Dε

s(Eσ(ρ)‖σ).
Since the operators σ and Eσ(ρ) commute, this quantum version can be treated similar to the information spectrum
of two classical distributions. Moreover, Hiai and Petz [19] showed that D(Eσn(ρn)‖σn) = nD(ρ‖σ) + o(n) for
i.i.d. product states ρn = ρ⊗n and σn = σ⊗n. This analysis was generalized [13] to show that Dε

s(Eσn(ρn)‖σn) =
nD(ρ‖σ)+o(n). However, a major drawback of this definition is that Eσn(ρn) is generally not i.i.d. even if ρn and
σn are i.i.d product states, which makes a second order evaluation of the information spectrum in the asymptotic
limit difficult.

Furthermore, in order to show the converse part of the quantum Chernoff bound in hypothesis testing, Nussbaum
and Szkoła [26] introduced a pair of distributions related to ρ and σ, which inherit the i.i.d. structure of ρ and
σ and have the convenient property that the first two moments of their likelihood ratio coincides with the first
two moments of the likelihood ratio of ρ and σ. Using the eigenvalue decompositions ρ =

∑
x rx|vx〉〈vx| and

σ =
∑

y sy|uy〉〈uy|, these distributions are given by

Pρ,σ(x, y) = rx|〈vx|uy〉|2 and Qρ,σ(x, y) = sy|〈vx|uy〉|2,

and their entropic information spectrum, Dε
s(Pρ,σ, Qρ,σ), will play an important role in our analysis.

C. Main Results

In this work, we improve the analysis leading to the asymptotic expansion of the operational quantities in Eq. (1),
relying on techniques developed for the smooth entropy framework as well as the quantum information spectrum
method.
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1) Second Order Expansion of Operational Quantities: Our first contribution is to show that both the direct and
converse bounds on the operational quantities converge to the same expression in the second order. In particular, in
Corollaries 16 and 15 we find the following asymptotic expansion for n i.i.d. copies of the source and ε ∈ (0, 1):

`ε(Xn|Bn) = nH(X|B) +
√
nV (X|B)Φ−1(ε2) +O(log n), (3)

mε(Xn|Bn) = nH(X|B)−
√
nV (X|B)Φ−1(ε) +O(log n), (4)

where H(X|B) is the conditional von Neumann entropy of the source, Φ is the cumulative normal distribution
function, and V (X|B) is the quantum conditional information variance of the source (cf., Definition 1). Note, in
particular, that Φ−1(ε) is negative for small ε and changes sign when ε exceeds 1

2 . To the best of our knowledge,
this constitutes the first second order expansion of an operational quantity involving quantum resources.

The above statements (without the logarithmic term) are called the Gaussian approximation of the finite block
length operational quantities `ε and mε, respectively, and we have thus shown that the Gaussian approximation is
valid up to terms logarithmic in n for these two tasks. The Gaussian approximation is easy to evaluate for arbitrary
n and ε and mostly yields good estimates of the finite block length quantities that are of interest.

Note that the constants implicit in the O(log n) notation depend on ε in general and the convergence to the second
order approximation in Eqs. (3)–(4) is expected to be slow for very small ε. In this work, we do not investigate
the related problem where ε is chosen as a function of n itself. The techniques presented can easily be adapted
for the case where ε drops polynomially in n. However, to investigate values of ε that are exponentially small in
n, different techniques are required. For the problem of randomness extraction, it was recently investigated [41]
whether an exponential evaluation (where ε is taken exponentially small in n) or the techniques used in this
work give better bounds for given, fixed n and ε. It was found that our techniques yield stronger bounds than an
exponential evaluation as long as ε is not too small.

2) Finite Block Length Analysis: Our analysis naturally yields both direct and converse bounds on the operational
quantities for finite n, which can be evaluated numerically.

We give an example of such a finite block length analysis in Figure 1. For this purpose, we consider the state
that results when transmitting either |0〉 or |1〉 through the complementary channel of a Pauli channel with a phase
error p = 0.05 that is independent of the bit flip error. The resulting state is

ρXB =
1

2
|0〉〈0| ⊗ |φ0〉〈φ0|+ 1

2
|1〉〈1| ⊗ |φ1〉〈φ1|, where

|φx〉 =
√
p |0〉+ (−1)x

√
1− p |1〉 .

We are interested in the rate r = 1
n`
ε(Xn|Bn) at which uniform and independent randomness can be extracted

from X if we require that ε = 10−6. In the first order, the rate approaches H(X|B) = 1 − h(p) ≈ 0.714. The
deviation from this bound in the second order is significant for small n. We have

√
V (X|B)Φ−1(ε2) ≈ −9.6 for

this example, which leads to a drop of 10% in the rate at n ≈ 1.8 · 104. Converse bounds for finite n are relevant
as they allow us to investigate how close the performance of a given protocol is to the maximal achievable rate.
From Fig. 1, we can deduce that it is impossible to securely extract more then 95% of the Shannon entropy for
n = 104. The calculations leading to the direct and converse bounds on `ε(Xn|Bn) for this example are discussed
in Appendix A.

3) Tight One-Shot Characterization: In order to prove our results, we first find a suitable characterizations for
`ε and mε in terms of one-shot entropies. We bound `ε in terms of the smooth min-entropy, Hε

min(X|B) of the
source, and use a conditional version of the hypothesis testing entropy [40], Hε

h(X|B), to bound mε. This results
in the following bounds, for any 0 < η ≤ ε < 1 (cf., Theorem 8 and 9):

Hε−η
min (X|B)− log

1

η4
− 3 ≤ `ε(X|B) ≤ Hε

min(X|B),

Hε
h(X|B) ≤ mε(X|B) ≤ Hε−η

h (X|B) + log
ε

η2
+ 3. (5)

Here, ε is a parameter of the problem and is kept constant, whereas η can be optimized over.
These one-shot characterizations are tighter than earlier results in [31], [30]. In particular, even if we choose

η = poly(n)−1, the additive terms grow at most as log n for large enough n. The smoothing parameter of the
one-shot entropies (in both bounds) thus inherits the operational interpretation of ε as the allowed error. This is
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Fig. 1. This plot shows direct and converse bounds on the extraction rate for n ∈ [104, 108]. For increasing n the bounds first converge to
each other, then to the second order asymptotics, and finally to the Shannon rate.

Class Role Quantities
Class 1 Describes the optimal achievable performance. mε(X|B)

The calculation is very difficult, even for small examples. lε(X|B),
Class 2 Bound for general sources in terms of one-shot entropies. Hε±η

h (X|B), Hε±η
min (X|B),

The calculation is possible for small examples, using an SDP. Dε±η
h (ρ‖σ), Dε±η

max(ρ‖σ)

Class 3 Quantum version of the entropic information spectrum. Dε±δ
s (ρ‖σ), Dε±δ

s (Eσ(ρ)‖σ)

Class 4 Classical entropic information spectrum. Dε±δ
s (Pρ,σ‖Qρ,σ)

The calculation is approximately possible for i.i.d. sources.
Class 5 Second order asymptotic expansion (Gaussian approximation). nD(ρ‖σ) +

√
nV (ρ‖σ)Φ−1(ε)

The calculation is easy for arbitrarily large n. nH(X|B) +
√
nV (X|B)Φ−1(ε)

Classes Difference Method
1 → 2 O(log n) with η ∝ 1√

n
One-shot analysis, random coding and monotonicity (cf., Thms. 8-9).

2 → 4 O(log n) with δ ∝ 1√
n

Relations between relative entropies (cf., Prop. 13 and Thm. 14).
4 → 5 O(1) Berry-Esseen Theorem (cf., Eq. (33)).

Fig. 2. Hierarchy of information quantities. We consider operational quantities for a constant ε ∈ (0, 1) and n i.i.d. uses of the source. The
one-shot entropies (Class 2) provide a “microscopic” analysis of the optimal performance of a task (Class 1) for general sources, whereas
the information spectrum (Classes 3 and 4) and their asymptotic expansion (Class 5) give a “macroscopic” view that can be approximately
calculated for sources with sufficient structure. (Note that Class 3 and Class 4 are unified if ρ and σ commute.)

of crucial importance as the second order expansion we aim to show is a function of ε, and we thus need to find
lower and upper bounds in terms of the same parameter.

4) Hierarchy of Information Quantities: Furthermore, we establish a hierarchy of information quantities (cf., Fig-
ure 2) that can be used to analyze quantum information tasks beyond the examples discussed above. The hierarchy
is partly inspired by recent results in hypothesis testing and constitutes the main technical contribution of this paper.

The operational quantities (Class 1) describe the optimal achievable performance of a task, and they depend
strongly on the exact specification of the considered task. For example, in the case of randomness extraction, this
quantity depends on the precise security requirement we impose on the extracted random variable. To calculate
these quantities, one needs to optimize the performance over all valid protocols, which is difficult even for small
examples. In a first step, we thus bound the operational quantities in terms of one-shot entropies (Class 2), in our
case Hε

min and Hε
h. These quantities can be formulated as semi-definite optimization problems (SDPs)2 and can

2The min-entropy can be formulated as an SDP [21] and an extension of this to the smooth min-entropy is possible. The SDP for hypothesis
testing is discussed in Section II.
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therefore be calculated for small examples.
In the i.i.d. setting for large block lengths (e.g., n� 10), however, these optimization problems quickly become

intractable as their complexity scales exponentially in n. Thus, we relate the one-shot entropies to the quantum
information spectrum (Class 3) and then the classical information spectrum of the corresponding Nussbaum-Szkoła
distributions (Class 4), which can often be approximated even for large n. This can be done incurring an additive
error term that scales at most logarithmically in n. Finally, the classical entropic information spectrum allows us
to evaluate the second order asymptotic expansion precisely (Class 5).

Formally, we show that the following quantities are equivalent in an appropriate sense, where Dmax and Dh are
the relative entropies corresponding to the conditional entropies Hmin and Hh, respectively (cf., Proposition 13 and
Theorem 14):

D
√
1−ε

max (ρ|σ) ≈ Dε
h(ρ|σ) ≈ Dε

s(ρ‖σ) ≈ Dε
s(Eσ(ρ)‖σ) ≈ Dε

s(Pρ,σ‖Qρ,σ).

The approximation is to be understood in the following way. First, ε is varied by an additive optimization parameter
in some relations, analogously to the situation in Eq. (5). More importantly, the equivalence only holds up to additive
terms log θ(σ), where θ(σ) is the logarithm of the ratio between the largest and smallest eigenvalue of σ. In the i.i.d.
setting, it is evident that θ(σn) grows at most linearly in n and this additive term thus grows at most as O(log n).
Hence, our results imply that the smoothing parameter for all these quantities can be chosen as ε ± poly(n)−1

without incurring a penalty that grows faster than O(log n).
5) Convergence to Relative Entropy: Our analysis also improves on earlier work [31], [36], [1], [35] that

investigated the convergence of one-shot entropies in the i.d.d. setting for finite n. Given a quantum state ρ and an
a positive semi-definite operator σ, these earlier results imply that the i.i.d. product states ρn and σn satisfy

Dε
max(ρn‖σn) = nD(ρ‖σ) +O(

√
n), and

Dε
h(ρn‖σn) = nD(ρ‖σ) +O(

√
n),

where Dε
h is the hypothesis testing entropy and Dε

max a relative entropy version of the smooth min-entropy. These
results also establish explicit upper and lower bounds on the convergence for finite n, however, the second order
term, scaling as

√
n, is not tight. Our analysis implies improved bounds for finite n, which are tight in the second

order. We find

Dε
max(ρn‖σn) = nD(ρ‖σ)−

√
nV (ρ‖σ)Φ−1(ε2) +O(log n),

Dε
h(ρn‖σn) = nD(ρ‖σ) +

√
nV (ρ‖σ)Φ−1(ε) +O(log n), (6)

where V (ρ‖σ) is the quantum information variance (cf., Definition 1). These statements are shown in Section VI-A.
We also point the reader to independent and concurrent work by Li [23], who also reports the i.i.d. second order

asymptotics for hypothesis testing, Eq. (6).

D. Outline

The remainder of the paper is structured as follows. In Section II, we introduce the notation and the one-shot
entropies required for our discussion. We show some properties of these one-shot entropies, which we will need
for subsequent proofs. In Sections III and IV we characterize source compression and randomness extraction with
quantum side information in the one-shot setting, respectively. Section V then introduces relations between different
information quantities which are used extensively to derive our asymptotic results. Section VI is devoted to the
analysis of the two operational tasks in the i.i.d. asymptotic setting and Section VII covers finite block lengths.
Finally, Section VIII illuminates the relation between the traditional formulation of the information spectrum method
and its entropic version used in this work.

II. PRELIMINARIES

A. Notation and Definitions

For a finite-dimensional Hilbert space H, we denote by L(H) and P(H) linear and positive semi-definite
operators on H, respectively. Quantum states are in the set S(H) = {ρ ∈ P(H) : tr(ρ) = 1} and we also
define the set of sub-normalized quantum states, S≤(H) = {ρ ∈ P(H) : 0 < tr(ρ) ≤ 1}. On L(H), we employ
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the Schatten ∞-norm ‖ · ‖, which evaluates to the largest singular value, and the Hilbert-Schmidt inner product
〈L,M〉 = tr(L†M).

We write A ≥ B if and only if A−B ∈ P(H). When comparing a scalar to a matrix, we implicitly assume that
it is multiplied by the identity matrix, which we denote by 1. We use {A ≥ B} to denote the projector onto the
space spanned by the eigenvectors of A−B that corresponds to non-negative eigenvalues. Clearly, this definition
implies that {A ≥ B}A ≥ {A ≥ B}B. Moreover, we have {A > B} = 1− {A ≤ B}.

Multipartite quantum systems are described by tensor product spaces. We use capital letters to denote the different
systems and subscripts to indicate on what subspace an operator acts. For example, if LAB is an operator on
HAB = HA ⊗HB , then LA = trB(LAB) is implicitly defined as its marginal on A. On the other hand, we call
LAB an extension of LA. We call a state classical-quantum (CQ) if it is of the form ρXA =

∑
x px|x〉〈x| ⊗ φxA,

where φxA ∈ S(HA), px a probability distribution, and {|x〉} an orthonormal basis of HX . We call X a register to
distinguish it from genuinely quantum systems.

Definition 1: Let ρ ∈ S≤(H) and σ ∈ P(H). We define the quantum relative entropy and the quantum
information variance, respectively, as

D(ρ‖σ) := tr(ρ(log ρ− log σ)) and V (ρ‖σ) := tr(ρ(log ρ− log σ)2) .

Let ρAB ∈ S≤(HA ⊗ HB). We define the quantum conditional entropy and quantum conditional information
variance, respectively, as

H(A|B)ρ := −D(ρAB‖1A ⊗ ρB) and V (A|B)ρ := V (ρAB‖1A ⊗ ρB) .

A map E : L(H)→ L(H′) is called a completely positive map (CPM) if it maps P(H⊗H′′) into P(H′⊗H′′)
for any H′′. It is called trace-preserving (TP) if tr(E(X)) = tr(X) for any X ∈ P(H). It is called unital if E(1) = 1
and sub-unital if E(1) ≤ 1. The adjoint map E† of a map E is defined via the relation 〈E(L),M〉 = 〈L, E†(M)〉 for
all L,M . Adjoint maps of CPMs are CPMs. Moreover, adjoint maps of TP-CPMs are unital CPMs and vice versa.
As an example, consider the pinching TP-CPM MX: L 7→

∑
x |x〉〈x|L|x〉〈x| and note that this map is self-adjoint

with regards to the Hilbert Schmidt inner product and, thus, also unital.
The following result generalizes pinching.
Lemma 1: Let A ∈ P(H) and let E : L(H)→ L(H′) be a sub-unital CPM. Then, ‖E(A)‖ ≤ ‖A‖.

Proof: We may write the Schatten infinity norm (of positive semi-definitive operators) as an SDP

‖A‖ = max
Q≥0

tr(Q)≤1

tr
(
AQ
)

= min
A≤γ1

γ .

Thus, if γ∗ is minimal for ‖A‖, we have E(A) ≤ γ∗E(1) ≤ γ∗. Hence, ‖E(A)‖ ≤ γ∗, concluding the proof.

B. The Smooth Entropy Framework

We use the purified distance [37] on sub-normalized quantum states and write ρ ≈εσ if and only if P (ρ, σ) ≤ ε,
where P (ρ, σ) :=

√
1− F 2(ρ, σ) and

F (ρ, σ) := tr |√ρ
√
σ|+

√
(1− tr ρ)(1− tr σ) .

generalizes the fidelity to sub-normalized states. The purified distance has the following properties [37].
• Uhlmann’s theorem: Let ρAB ∈ S≤(HAB) be a bipartite state and τA ∈ S≤(HA) with τA ≈ε ρA. Then, there

exists an extension τAB of τA such that τAB ≈ε ρAB .
• Monotonicity: Let E be a trace non-increasing CPM. Then, ρ ≈ε τ =⇒ E(ρ) ≈ε E(τ).
• Fuchs-van de Graaf: D(ρ, τ) ≤ P (ρ, τ) ≤

√
2D(ρ, τ), where D(ρ, τ) = 1

2 tr |ρ−τ |+ 1
2 | tr ρ−tr τ | ≤ tr |ρ−τ |.

For any sub-normalized state ρ ∈ S≤(H), we use Bε(ρ) := {ρ̃ ∈ S≤(H) | ρ̃ ≈ε ρ} to denote the set of states
close to ρ.

We use the following relative and conditional entropies [7], [37], which are based on Renner’s initial definition
of the smooth min-entropy [31].

Definition 2: Let ρ ∈ S(H), σ ∈ P(H), and 0 ≤ ε < 1. Then, the relative max-entropy is defined as

Dε
max(ρ‖σ) := min

ρ̃≈ερ
inf{λ ∈ R | ρ̃ ≤ 2λσ} .



8

where we optimize over all ρ̃ ∈ S≤(H) with ρ̃ ≈ε ρ.
Definition 3: Let ρAB ∈ S(HAB) and 0 ≤ ε < 1. Then, the smooth min-entropy is defined as

Hε
min(A|B)ρ := max

σB
−Dε

max(ρAB, 1A ⊗ σB),

where the optimization is over all σB ∈ S(HB).
We employ the following property of this entropy [37].
Lemma 2: Let ρAB ∈ S≤(HAB) and let U : A→ A′ be an isometry. Then, Hε

min(A|B)ρ = Hε
min(A′|B)UρU† .

Moreover, the smooth min-entropy is monotonous under the application of classical functions.3

Proposition 3: Let ρXAB =
∑

x px|x〉〈x| ⊗ φxAB be a state in S≤(HXAB) and let f : X → Z be a function.
Then,

Hε
min(XA|B)ρ ≥ Hε

min(f(X)A|B)ρ , where

ρZAB =
∑
z

|z〉〈z| ⊗
( ∑
x∈f−1(z)

pxφ
x
AB

)
.

Proof: We first show the statement for the trivial function f(x) = 1, i.e. we show that Hε
min(XA|B)ρ ≥

Hε
min(A|B)ρ.
For a state ρ̃AB ≈ε ρAB that maximizes Hε

min(A|B)ρ, we define an extension ρ̃XAB ∈ S≤(HXAB) with
ρ̃XAB ≈ε ρXAB using Uhlmann’s theorem for the purified distance. Furthermore, using the pinching MX : L 7→∑

x |x〉〈x|L|x〉〈x|, we define

ρ̂XAB :=MX(ρ̃XAB) ≈εMX(ρXAB) = ρXAB.

Now, note that ρ̂XAB has the form ρ̂XAB =
∑

x p̂x|x〉〈x| ⊗ φ̂xAB and ρ̃AB =
∑

x p̂xφ̂
x
AB ≤ 2−λ1A ⊗ σB for

λ = Hε
min(A|B)ρ and some σB ∈ S(HB) by definition. Moreover,

∀x : p̂xφ̂
x
AB ≤ 2−λ1A ⊗ σB =⇒ ρ̂XAB ≤ 2−λ1XA ⊗ σB

and we thus have Hε
min(XA|B)ρ ≥ λ, concluding the proof for this special case.

For general functions f , we first apply the isometry Uf : |x〉 7→ |x〉 ⊗ |f(x)〉 from X to XZ. We then define
the state

τXZAB = UfρXABU
†
f =

∑
x,z

pxδz,f(x)|x〉〈x| ⊗ |z〉〈z| ⊗ φxAB ,

which is an extension of both ρXAB and ρZAB . The statement now follows from the relation

Hε
min(XA|B)ρ = Hε

min(XZA|B)τ ≥ Hε
min(ZA|B)τ ,

where the equality is due to Lemma 2 and the inequality is covered by the special case already shown.

C. The Hypothesis Testing Entropy

Another one-shot entropy has been used in hypothesis testing and channel coding [40].
Definition 4: Let ρ ∈ S(H), σ ∈ P(H) and 0 ≤ ε ≤ 1. Then, the ε-hypothesis testing relative entropy is defined

as

2−D
ε
h(ρ‖σ) := inf

{
〈Q, σ〉

∣∣ 0 ≤ Q ≤ 1 ∧ 〈Q, ρ〉 ≥ 1− ε
}
.

It is easy to verify that the infimum is always attained and Dε
h(ρ‖σ) takes values in [0,∞] when we supplement

the real axis by ∞ and define − log 0 ≡ ∞ for the binary entropy log.
We will use conditional versions of this entropy, defined as follows.
Definition 5: Let ρAB ∈ S(HAB), σB ∈ S(HB) and 0 ≤ ε ≤ 1. The conditional ε-hypothesis testing entropies

are defined as Hε
h(A|B)ρ|σ := −Dε

h(ρAB ‖ 1A ⊗ σB) and Hε
h(A|B)ρ := maxσH

ε
h(A|B)ρ|σ.

3See also [35]. Renner [31] showed this property for ε = 0.
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The following two expressions for 2H
ε
h(A|B)ρ are equivalent due to the strong duality of semi-definite programs [4].

primal problem dual problem

min: ‖QB‖ max: η
(
1− ε− tr(NAB)

)
s.t.: 0 ≤ QAB ≤ 1 s.t.: η ≥ 0, NAB ≥ 0, σB ≥ 0

〈QAB, ρAB〉 ≥ 1− ε ρAB ≤
1

η
1A ⊗ σB +NAB

tr(σB) ≤ 1

Accordingly, we call an operator QAB that satisfies 0 ≤ QAB ≤ 1 and 〈QAB, ρAB〉 ≥ 1− ε primal feasible. If
it also attains the minimum, we call it primal optimal. Similarly, a triple {NAB, σB, η} of positive semi-definite
operators is called dual feasible if it satisfies ρAB ≤ 1

η1A ⊗ σB + NAB and tr(σB) ≤ 1. It is called dual optimal
if it also attains the maximum.

We now explore some properties of the hypothesis testing entropy. It satisfies a data-processing inequality.
Proposition 4: Let ρAB ∈ S(HAB), let E : A→ A′ be a sub-unital TP-CPM, and let F : B → B′ be a TP-CPM.

Then, τA′B′ = E ◦ F
(
ρAB

)
satisfies Hε

h(A|B)ρ ≤ Hε
h(A′|B′)τ .

Proof: Let {NAB, σB, η} be dual optimal for Hε
h(A|B)ρ. Then, applying E ◦F on both sides of the inequality

ρAB ≤ 1
η1A ⊗ σB +NAB leads to

τAB ≤
1

η
E(1A)⊗F(σB) + E ◦ F(NAB) ≤ 1

η
1A′ ⊗ σ̃B′ + ÑA′B′ ,

where ÑA′B′ = E◦F(NAB) and σ̃B′ = F(σB). Hence, the triple {ÑA′B′ , σ̃B′ , η} is dual feasible and Hε
h(A′|B′)τ ≥

η
(
1− ε− tr(ÑA′B′)

)
= Hε

h(A|B)ρ.
The following result implies that structure of the state can be translated into structure of the optimal primal and

dual.
Lemma 5: Let ρAB ∈ S(HAB) and let E : A → A be a unital TP-CPM and F : B → B be a TP-CPM such

that E ◦ F(ρAB) = ρAB . Then, the following holds for the SDP for Hε
h(A|B)ρ: (1) If Q′AB is primal optimal

then QAB = E† ◦ F†
(
Q′AB

)
is primal optimal too. (2) If {N ′AB, σ′B, η} is dual optimal, then {NAB, σB, η} with

NAB = E ◦ F
(
N ′AB

)
and σB = F(σ′B) is dual optimal too.

Proof: Let Q′AB be primal optimal. The operator QAB as defined above is feasible since the inner product
satisfies 〈E†◦F†(Q′AB), ρAB〉 = 〈Q′AB, E◦F(ρAB)〉 and QAB ≤ 1AB since the maps E† and F† are unital. Moreover,
‖F†(QB)‖ ≤ ‖QB‖ due to Lemma 1, which implies that QAB must be optimal. Similarly, let {N ′AB, σ′B, η} be
dual optimal, then {NAB, σB, η} as defined above is clearly dual feasible and optimal.

Corollary 6: Let ρXAY B ∈ S(HXAY B) be classical on X and Y . Then, the SDP for Hε
h(AX|BY )ρ has a

primal optimal operator of the form QXAY B =
∑

x,y |x〉〈x| ⊗ |y〉〈y| ⊗Q
xy
AB and dual optimal operators of the form

NXAY B =
∑

x,y |x〉〈x| ⊗ |y〉〈y| ⊗N
xy
AB and σY B =

∑
y |y〉〈y| ⊗ σ

y
B .

The following proposition gives bounds on the entropy of classical information.
Proposition 7: Let ρXAB =

∑
x px |x〉〈x| ⊗ φxAB be a state in S(HXAB). Then, using |X| = | supp{px}|,

Hε
h(A|B)ρ ≥ Hε

h(A|XB)ρ ≥ Hε
h(XA|B)ρ − log |X|, (7)

Hε
h(A|XB)ρ ≤ Hε

h(XA|B)ρ ≤ Hε
h(A|B)ρ + log |X| . (8)

Proof: We prove the four inequalities separately and apply Corollary 6, which ensures that the primal optimal
operators are classical on X .

The first inequality in (7) follows from Proposition 4 using the partial trace over X as a TP-CPM.
To prove the second inequality in (7), let QXAB =

∑
x: px>0 |x〉〈x|⊗QxAB be primal optimal for Hε

h(A|XB)ρ =
log maxx ‖QxB‖. Thus, QXAB is primal feasible for Hε

h(XA|B)ρ and we find

Hε
h(XA|B)ρ ≤ log

∥∥trXA(QXAB)
∥∥ = log

∥∥∥∥ ∑
x: px>0

QxB

∥∥∥∥
≤ log

(∣∣supp{px}
∣∣max

x
‖QxB‖

)
,

which implies the result.
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The first inequality of (8) follows in a similar fashion, only this time we choose QXAB to be primal optimal for
Hε
h(XA|B)ρ. Clearly,

Hε
h(A|XB)ρ ≤ log max

x
‖QxB‖ ≤ log

∥∥∥∥ ∑
x: px>0

QxB

∥∥∥∥
= Hε

h(XA|B)ρ .

Finally, to prove the second inequality in (8), we consider the SDP for Hε
h(A|B)ρ = log ‖QB‖ with QAB primal

optimal. Then, the operator QXAB =
∑

x: px>0 |x〉〈x| ⊗ QAB is primal feasible for Hε
h(XA|B)ρ. In particular, it

satisfies

tr(QXABρXAB) =
∑

x: px>0

pxtr(QAB φ
x
AB)

= tr(QABρAB) ≥ 1− ε ,

where the last inequality follows from the primal feasibility of QAB . Hence, we have Hε
h(XA|B)ρ ≤ log

∥∥trXA(QXAB)
∥∥ =

log
∣∣ supp{px}

∣∣+ log ‖QB‖, which concludes the proof.

III. ONE-SHOT CHARACTERIZATION OF RANDOMNESS EXTRACTION

Given a state ρXB =
∑

x px|x〉〈x| ⊗ φxB that is classical on X , we want to extract a random string, Z, that
is independent of the quantum side information B. We consider randomized protocols P = {S,Z, ps, hs} that
consists of a seed, S, an output set Z , and for all s ∈ S, a probability ps and a hash function hs : X → Z.

The protocol now acts on the initial state ρXBS = ρXB ⊗
∑

s ps|s〉〈s| by applying the function hs depending on
the value s in the register S. This results in τZBS =

∑
s ps|s〉〈s|⊗ τ sZB , where τ sZB =

∑
z |z〉〈z|⊗

∑
x∈h−1

s (z) pxφ
x
B .

Alternatively, this evaluation can be modeled using a TP-CPM F from XS to ZS, such that τZBS = F(ρXBS).
We characterize the extractable randomness of a state ρXB by the amount of randomness (in bits) that can be

extracted such that Z is close to uniform and independent of B and S.
Definition 6: Let ρXB ∈ S(HXB) be a CQ state. Then, we define the maximal extractable randomness as

`ε(X|B)ρ := max{` ∈ N | ∃P : log |Z| ≥ ` ∧ dsec ≤ ε},

where P is any protocol defined above and dsec(P, ρXB) := minσB P (τZBS , πZ ⊗ σB ⊗ τS) evaluated for the final
state τZBS obtained using P and πZ = 1Z/|Z| fully mixed.4

We show that the operational quantity `ε can be characterized by the smooth min-entropy in the following sense.
Theorem 8: Let ρXB ∈ S(HXB) be a CQ state and 0 < η ≤ ε < 1. Then,

Hε−η
min (X|B)ρ − log

1

η4
− 3 ≤ `ε(X|B)ρ ≤ Hε

min(X|B)ρ.

We prove the direct part (left-hand inequality) and converse part (right-hand inequality) separately.

A. Proof of Converse

The converse employes the monotonicity of the smooth min-entropy under classical functions and is adapted
from [38], [35].

Proof of Converse of Theorem 8: We prove the statement by contradiction, i.e. we show that for all protocols
P ,

log |Z| > Hε
min(X|B)ρ =⇒ dsec(P, ρXB) > ε , (9)

which implies the converse.

4Note that the independence of the resulting randomness is often quantified using the trace distance instead of the purified distance. In
particular, universal composability [31] requires that

dcomp(P, ρXB) :=
1

2
tr |τXBS − πZ ⊗ τBS | ≤ 2 dsec(P, ρXB)

is small. However, we are only able to derive tight second order asymptotics for the relaxed requirement used to define `ε.
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For this purpose, let P be any such protocol with log |Z| > Hε
min(X|B)ρ. Hence, for any s ∈ S, we have

Hε
min(Z|B)τs < log |Z| due to Proposition 3. By the definition of the smooth min-entropy, this implies that

πZ ⊗ σB /∈ Bε(τ sZB) and, thus, F (τ sZB, πZ ⊗ σB) <
√

1− ε2 for any σB . Hence,

max
σ

F (τZBS , πZ ⊗ σB ⊗ τS)

= max
σ

∑
s

psF (τ sZB, πZ ⊗ σB) <
√

1− ε2,

which shows the implication (9) and concludes the proof.

B. Proof of Achievability

We build directly on the original analysis of this task due to Renner [31].
Proof of Direct Part of Theorem 8: We employ Corollary 5.5.2 in [31], which states that, for any protocol P

using two-universal hashing, and any CQ state ρ̂XB ∈ S≤(HXB), the state τ̂ZBS = F(ρ̂XB) satisfies

tr |τ̂ZBS − πZ ⊗ τ̂BS | ≤
√
|Z| 2−Hmin(X|B)ρ̂ . (10)

Now, let ρ̂XB ∈ Bε−η(ρXB) be such that Hε−η
min (X|B)ρ = Hmin(X|B)ρ̂. Then,

dsec(P, ρXB) ≤ P (τZBS , πZ ⊗ τ̂E ⊗ τS)

≤ P (τ̂ZBS , πZ ⊗ τ̂E ⊗ τS) + P (τ̂ZBS , τZBS)

≤
√

2 tr |τ̂ZBS − πZ ⊗ τ̂E ⊗ τS |+ ε− η

≤
√

2
(
|Z| 2−Hmin(X|B)ρ̂

) 1

4 + ε− η .

Here, we used the Fuchs-van de Graaf inequality, Eq. (10), and the fact that P (τ̂ZBS , τZBS) ≤ P (ρ̂XB, ρXB) ≤ ε−η.
Thus, the condition dsec(P, ρXB) ≤ ε is satisfied when

√
2
(
|Z| 2−H

ε−η
min (X|B)ρ

) 1

4 ≤ η

and we find that the choice

` = log |Z| =
⌊
Hε−η

min (X|B)ρ + log η4 − 2
⌋

achieves the required bound.

IV. ONE-SHOT CHARACTERIZATION OF SOURCE COMPRESSION

Given a state ρXB =
∑

x px|x〉〈x|⊗φxB that is classical on X , we are interested in compressing X into a register
M such that M and the quantum system B allow to recover X with an error at most ε, where 0 < ε < 1 is a
fixed constant. We consider a general class of randomized compression protocols.

A protocol P =
{
S,M, {ps}, {es}, {Ds,m}

}
consists of a seed, S, a code book, M, and, for all s ∈ S, a

probability ps and an encoder function es : X →M . Furthermore, for every s ∈ S and every m ∈ M, we have a
decoder POVM Ds,m = {M s,m

x }x that measures X ′ on B. The protocol can be split into an encoding and decoding
part:
• The encoding protocol acts on the initial state ρXBSS′ = ρXB ⊗

∑
s ps|ss〉〈ss|SS′ with the isometry Ue =∑

x,s |x〉〈x|X ⊗|es(x)〉M ⊗ |s〉〈s|S . Informally, this means that, depending on the value s ∈ S in the register
S, the function es is applied on X and the result is stored in M , while a copy of X is kept. This operation
results in the state τXMBSS′ := UeρXBSS′U

†
e .

• The decoding protocol acts on the systems S′, M and B to extract X ′. We describe this operation using a
TPCPM D, which reads out s ∈ S from S′ and m ∈M from M and then applies the measurement Ds,m on
B. This is given by the TP-CPM D from MBS′ to X ′S′,

D : τXMBSS′ 7→
∑
x,s

|x〉〈x|X′ ⊗ |s〉〈s|S′ ⊗

trMBS′
(
(|s〉〈s|S′ ⊗ |m〉〈m|M ⊗M s,m

x )τXMBSS′
)
.



12

We denote the final state by ωXX′SS′ := D(τXMBSS′).
Using this class of protocols, we characterize the compressibility of a state ρXB by the minimal compression

length (in bits), mε, required to achieve an error probability of at most ε.
Definition 7: Let ρXB ∈ S(HXB) be a CQ state. Then, we define the minimal compression length as

mε(X|B)ρ := min{m ∈ N | ∃P : log |M| ≤ m ∧ perr ≤ ε},

where P is any protocol defined above and perr(P, ρXB) := Es←ps
(
Pr[X 6= X ′|S = s]

)
evaluated for the state

ωXX′SS′ as defined above.5

We show that the operational quantity mε can be characterized by the hypothesis testing entropy in the following
sense.

Theorem 9: Let ρXB ∈ S(HXB) be a CQ state and 0 < η ≤ ε < 1. Then,

Hε
h(X|B)ρ ≤ mε(X|B)ρ ≤ Hε−η

h (X|B)ρ|ρ + log
ε

η2
+ 3.

We prove the direct part (right-hand inequality) and converse part (left-hand inequality) separately.

A. Proof of Converse

The proof of the converse utilizes various monotonicity properties of the hypothesis testing entropy.
Proof of Converse of Theorem 9: It is sufficient to show that, for every protocol P as defined above, the

requirement perr(P, ρXB) ≤ ε implies Hε
h(X|B)ρ ≤ log |M|.

Let P be any fixed protocol with perr(P, ρXB) ≤ ε and let ρXBSS′ , τXMBSS′ and ωXX′SS′ be defined as above.
We employ the projector QXX′SS′ =

∑
x,s |xx〉〈xx|⊗|ss〉〈ss| and note that tr(QXX′SS′ωXX′SS′) =

∑
s ps Pr[X =

X ′|S = s] ≥ 1− ε due to the requirement on perr(P, ρXB). Thus, QXX′SS′ is primal feasible for Hε
h(XS|X ′S′)ω

and we have

0 = log
∥∥QX′S′∥∥

≥ Hε
h(XS|X ′S′)ω

≥ Hε
h(XS|MBS′)τ [cf., Prop. 4]

≥ Hε
h(XMS|BS′)τ − log |M| [cf., Prop. 7]

= Hε
h(XS|BS′)ρ − log |M| [cf., Prop. 4]

= Hε
h(X|B)ρ − log |M| .

The final equality follows from the following observation. Let QAB and {NAB, σB, η} be primal and dual
optimal for Hε

h(X|B)ρ, respectively. Then, it is easy to verify that QAB ⊗
∑

s |ss〉〈ss| is primal feasible and
{NAB ⊗ ρSS′ , σB ⊗ ρS , η} is dual feasible for Hε

h(XS|BS′)ρ, which implies equality.

B. Proof of Achievability

The proof is heavily based on [17] (see also [40], [30]); in particular, we need the following result [17]:
Lemma 10: For any c > 0, 0 ≤ S ≤ 1 and T ≥ 0, we have 1− (S+T )−

1

2S(S+T )−
1

2 ≤ (1 + c)(1−S) + (2 +
c+ 1

c )T .
The proof now employs two-universal hashing in the encoder as well as pretty good measurements in the decoder.

Proof of Direct Part of Theorem 9: We propose the following protocol. The encoder creates M from X through
two-universal hashing [6], i.e. we consider a family of encoders and a seed satisfying Prs←ps [es(x) = es(z)] ≤ 1

|M|
if x 6= z. Let QXB =

∑
x |x〉〈x| ⊗QxB be primal optimal for Hε−η

h (X|B)ρ|ρ. Then, we use the decoding POVMs
Ds,m = {M s,m

x }x, where

M s,m
x = δes(x),m

( ∑
z∈e−1

s (m)

QzB

)− 1

2

QxB

( ∑
z∈e−1

s (m)

QzB

)− 1

2

.

5Note that this definition implies that the optimal protocol for a fixed state ρXB is deterministic since we can always fix the seed to the
value that achieves the lowest error probability in the average.
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It remains to bound the average error of this protocol on the state ρXB . To do this, first note that perr(P, ρXB) =

Es←ps, x←px
[
tr
(
ρxB(1B −M s,es(x)

x )
)]

, where 1B −M s,es(x)
x can be upper-bounded using Lemma 10 as

1B −

( ∑
z, es(z)=es(x)

QzB

)− 1

2

QxB

( ∑
z, es(z)=es(x)

QzB

)− 1

2

≤ (1+c)(1B −QxB) +
(
2+c+

1

c

)∑
z 6=x

δes(z)=es(x)Q
z
B

for any c > 0 (to be optimized over below). We now substitute this to bound perr(P, ρXB), i.e.

perr(P, ρXB) ≤ (1+c) E
x←px

[
tr(ρxB(1B −QxB))

]
+
(
2+c+

1

c

)
E

s←ps, x←px

[∑
z 6=x

δes(z)=es(x)tr(ρ
x
BQ

z
B)
]

The second expectation value can be simplified using the two-universal property: Es←ps [δes(z)=es(x)] ≤
1
|M| if

x 6= z. We can thus upper bound the whole expression by

perr(P, ρXB) ≤ (1 + c) tr
(
ρBX(1XB −QXB)

)
+

(c+ 1)2

c |M| E
x←px

[
tr
(
ρxB
∑
z 6=x

QzB
)]

≤ (1 + c)(ε− η) +
(c+ 1)2

c |M|
2H

ε−η
h (X|B)ρ .

Here, we used that tr
(
ρBXQXB)

)
≥ 1− (ε− η) and

2H
ε−η
h (X|B)ρ|ρ = tr(ρBQB) ≥

∑
x

px tr
(
ρxB
∑
z 6=x

QzB
)
.

Hence, this protocol will lead to an error of at most ε if we choose m = log |M| =
⌈
Hε−η
h (X|B)ρ|ρ +

log
2+c+ 1

c

η−c(ε−η)

⌉
. The choice c = η

2ε−η then leads to the desired bound.

V. HIERARCHY OF RELATIVE ENTROPIES

We will use the following properties of the relative entropies, which can be verified by a close inspection of
their respective definitions.
• Monotonicity: For any TP-CPM E ,

x = h,max : Dε
x(ρ‖σ) ≥ Dε

x(E(ρ)‖E(σ)). (11)

• When σ ≤ σ′, we find

x = h,max : Dε
x(ρ‖σ) ≥ Dε

x(ρ‖σ′). (12)

Furthermore, if σ and σ′ commute, this extends to x = s.
• When σ′ = 2−λσ, we further have

x = h,max, s : Dε
x(ρ‖σ′) = Dε

x(ρ‖σ) + λ. (13)

Furthermore, Lemma 9 of [13] is of pivotal for our analysis.
Lemma 11: For any ρ, σ ∈ P(H), we have ρ ≤ v(σ)Eσ(ρ), where v(σ) denotes the number of different

eigenvalues of σ and Eσ is a pinching that projects on the eigenspaces corresponding to the different eigenvalues
of σ.
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A. The Information Spectrum

We introduce the following quantity, which is as an entropic version of the quantum information spectrum [24].
(The relation of this quantity to the more traditional formulation of the information spectrum is explained in
Section VIII.)

Definition 8: Let ρ ∈ S≤(H), σ ∈ P(H), and 0 ≤ ε ≤ 1. Then, the information spectrum relative entropy is
defined as

Dε
s(ρ‖σ) := sup

{
R ∈ R

∣∣ tr ρ{ρ ≤ 2Rσ} ≤ ε
}
.

If ρ and σ commute, we may expand them in a common orthonormal eigenbasis, e.g. ρ =
∑

y ry|uy〉〈uy| and
σ =

∑
y sy|uy〉〈uy|. Consider now the distributions P (y) = ry and Q(y) = sy, we find that tr ρ{ρ ≤ eRσ} =

P{logP − logQ ≤ R}, and recover the classical information spectrum Dε
s(P‖Q) as defined in (2).

The information spectrum is intimately related to hypothesis testing, as has been pointed out in [24]. Here, we
present a proof in the one-shot setting for the convenience of the reader.

Lemma 12: Let ρ ∈ S(H), σ ∈ P(H), and δ > 0. Then,

Dε
s(ρ‖σ) ≤ Dε

h(ρ‖σ) ≤ Dε+δ
s (ρ‖σ)− log δ. (14)

Proof: The first inequality follows by considering the projector Q = {ρ > 2Rσ} that is primal feasible for
Dε
h(ρ‖σ) when R = Dε

s(ρ‖σ)− ξ for an arbitrary ξ > 0. Furthermore,

〈σ,Q〉 = tr σ{ρ > 2Rσ} ≤ 2−R tr ρ{ρ > 2Rσ} ≤ 2−R .

Hence, Dε
h(ρ‖σ) ≥ R, which implies the result when ξ → 0.

To get the second inequality, consider first the case where Dε
h(ρ‖σ) is finite, and an operator 0 ≤ Q ≤ 1 that is

primal optimal for Dε
h(ρ‖σ). Using µ = log δ +Dε

h(ρ‖σ), we find

tr ρ{ρ > 2µσ} ≥ tr
(
(ρ− 2µσ){ρ > 2µσ}

)
≥ tr

(
(ρ− 2µσ)Q

)
= 〈ρ,Q〉 − 2µ〈σ,Q〉

≥ 1− ε− δ , (15)

where the last inequality follows from the fact that Q is primal optimal. Thus, Dε+δ
s (ρ‖σ) ≥ µ, concluding the

proof. Finally, in the case where 〈σ,Q〉 = 0, Eq. (15) holds for any µ and, thus, both sides of the inequality diverge.

Furthermore, we consider the information spectrum for the state Eσ(ρ), where Eσ is a pinching of ρ in the
eigenbasis of σ, i.e.

Eσ(ρ) =
∑
s

P sσρP
s
σ , where P sσ =

∑
y:sy=s

|uy〉〈uy|

is the projector onto the eigenspace with eigenvalue s. We will see in the following that the entropies Dε
s(Eσ(ρ)‖σ)

and Dε
s(ρ‖σ) are related. Furthermore, Eσ(ρ) and σ commute.

In order to refine this analysis and make it applicable for the second order expansion, we employ the probability
introduced by Nussbaum and Szkoła [26]. Using the eigenvalue decompositions ρ =

∑
x rx|vx〉〈vx| and σ =∑

y sy|uy〉〈uy|, they defined two distributions:

Pρ,σ(x, y) := rx|〈vx|uy〉|2 and Qρ,σ(x, y) := sy|〈vx|uy〉|2.

These distributions have the very convenient property that the first two moments of logPρ,σ − logQρ,σ under
Pρ,σ agree with the respective moments of log ρ− log σ under ρ. Namely, it is easy to verify that

D(Pρ,σ‖Qρ,σ) = D(ρ‖σ) and V (Pρ,σ‖Qρ,σ) = V (ρ‖σ). (16)

Moreover, in the i.i.d. scenario, we have Pρn,σn = Pnρ,σ and Qρn,σn = Qnρ,σ using the notation introduced previously.
The asymptotic analysis can thus be reduced to the problem of finding suitable relations between the one-shot

entropies and the quantity Dε
s(Pρ,σ‖Qρ,σ) for general ρ and σ.
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B. Useful Inequalities for Relative Entropies

We obtain the following inequalities for relative entropies.
Proposition 13: Let ρ ∈ S(H), σ ∈ P(H), 0 < ε < 1, and 0 < δ < ε. Then, using ν = ν(σ), we obtain

D
√
1−ε

max (ρ‖σ) ≥ Dε−δ
s (ρ‖σ) + 2 log δ − 2− log ε, (17)

D
√
1−ε

max (ρ‖σ) ≤ Dε
s(Eσ(ρ)‖σ) + log ν − log(1− ε), (18)

Dε−δ
s (Eσ(ρ)‖σ) ≤ Dε

s(Pρ,σ‖Qρ,σ)− log δ, (19)

Dε
s(Eσ(ρ)‖σ) ≥ Dε−δ

s (Pρ,σ‖Qρ,σ) + log δ − log ν, (20)

D
√
1−ε

max (ρ‖σ) ≤ Dε
h(ρ‖σ) + log ν − log(1− ε), (21)

D
√
1−ε

max (ρ‖σ) ≥ Dε−δ
h (ρ‖σ) +3 log δ−3 log 3−log ε. (22)

Proof of (17): Assume D
√
1−ε

max (ρ‖σ) = R and choose ρ̃ such that ρ̃ ≤ 2Rσ and F (ρ̃, ρ)2 ≥ ε. Now, we
consider the binary projective measurement {{ρ ≤ 2R+δ′σ}, {ρ > 2R+δ′σ}} for some δ′ ≥ 0. The monotonicity of
F yields

√
ε ≤

√
tr ρ{ρ ≤ 2R+δ′σ}

√
tr ρ̃{ρ ≤ 2R+δ′σ}

+
√

tr ρ{ρ > 2R+δ′σ}
√

tr ρ̃{ρ > 2R+δ′σ}

≤
√

tr ρ{ρ ≤ 2R+δ′σ}+
√

tr ρ̃{ρ > 2R+δ′σ}. (23)

Moreover, the condition ρ̃ ≤ 2Rσ implies that

tr ρ̃{ρ > 2R+δ′σ} ≤ 2R trσ{ρ > 2R+δ′σ}
≤ 2−δ

′
tr ρ{ρ > 2R+δ′σ} ≤ 2−δ

′
.

Combining this with (23) and choosing
√

2−δ′ =
√
ε−
√
ε− δ, we find tr ρ{ρ ≤ 2R+δ′σ} ≥ ε− δ. Hence,

Dε−δ
s (ρ‖σ) < R+ δ′ ≤ R+ log

4ε

δ2
,

where we used
√
ε−
√
ε− δ ≥ δ

2
√
ε

in the last step.
Proof of (18): We set R = Dε

s(Eσ(ρ)‖σ) and define Q = {Eσ(ρ) ≤ 2Rσ}. Thus, Q satisfies tr(ρQ) =
tr(Eσ(ρ)Q) = ε, where we used that Eσ leaves Q invariant. Now, we choose

ρ̃ =
QρQ

tr(ρQ)
s.t. F (ρ̃, ρ)2 ≥ tr(ρQ) = ε .

Moreover, Lemma 11 shows that ρ ≤ ν Eσ(ρ) and, thus,

QρQ ≤ v QEσ(ρ)Q ≤ ν 2RQσQ ≤ ν 2R σ.

where we used the definition of Q and that it commutes with σ in the final two inequalites. Thus, ρ̃ ≤ ν 2R

1−εσ and

D
√
1−ε

max (ρ‖σ) ≤ inf{λ | ρ̃ ≤ 2λσ} ≤ log ν +R− log(1− ε),

completing the proof.
Proof of (19) and (20): Since Eσ(ρ) commutes with σ, there exists a common eigenvector system {uy}, i.e.

Eσ(ρ) =
∑
y

r′y|uy〉〈uy| and σ =
∑
y

sy|uy〉〈uy|.

Using the representation ρ =
∑

x rx|vx〉〈vx|, we can describe distributions Pρ,σ and Qρ,σ as follows

Pρ,σ(x, y) = rx|〈vx|uy〉|2 and Qρ,σ(x, y) = sy|〈vx|uy〉|2.

Furthermore, we define the distribution

Q′ρ,σ(x, y) := r′y|〈vx|uy〉|2
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and note that Dε
s(Eσ(ρ)‖σ) = Dε

s(Q
′
ρ,σ‖Qρ,σ). We drop the subscripts ρ and σ in the following. For real R and δ′,

we find

P
{

log
P

Q
≤ R

}
= P

{
log

Q′

Q
+ log

P

Q′
≤ R

}
≥ P

{
log

Q′

Q
≤ R− δ′ ∧ log

P

Q′
≤ δ′

}
= 1− P

{
log

Q′

Q
> R− δ′ ∨ log

P

Q′
> δ′

}
≥ 1− P

{
log

Q′

Q
> R− δ′

}
− P

{
log

P

Q′
> δ′

}
= P

{
log

Q′

Q
≤ R− δ′

}
− P

{
log

P

Q′
> δ′

}
. (24)

Similarly, we bound

P
{

log
Q′

Q
≤ R+ δ′

}
≥ P

{
log

P

Q
≤ R

}
− P

{
log

P

Q′
< −δ′

}
. (25)

Moreover, we have P{log P
Q′ < −δ

′} ≤ P{P < δ} < δ, where we chose δ′ = − log δ. Hence, if we further choose
R = Dε

s(P‖Q), we have P{log P
Q ≤ R} ≤ ε by definition. Together with (25), this yields

P
{

log
Q′

Q
≤ R+ δ′

}
> ε− δ ,

which directly implies (19).
To show (20), we first employ Markov’s inequality to obtain

P
{

log
P

Q′
> δ′

}
= P

{ P
Q′

> 2δ
′
}

≤
∑
x,y

P (x, y)
P (x, y)

Q′(x, y)
2−δ

′

= 2−δ
′
tr
(
ρ2Eσ(ρ)−1

)
.

Since the quantity tr(ρ2σ−1) decreases under the operation of TP-CPMs [27], it also satisfies joint convexity. Hence,
using the eigenvalue decomposition of ρ, we have

tr
(
ρ2Eσ(ρ)−1

)
≤
∑
x

rxtr
(
|vx〉〈vx|2Eσ

(
|vx〉〈vx|

)−1)
≤ max

φ

〈
φ
∣∣Eσ(|φ〉〈φ|)−1∣∣φ〉. (26)

Moreover, since Eσ is a projective measurement of the form {Mi}νi=1, we may write Eσ
(
|φ〉〈φ|

)
=
∑ν

i=1 αi|ψi〉〈ψi|
for coefficients αi = 〈φ|Mi|φ〉 and orthonormal vectors |ψi〉 = 1√

αi
Mi|φ〉. The expression (26) now yields

〈
φ
∣∣Eσ(|φ〉〈φ|)−1∣∣φ〉 =

ν∑
i=1
αi> 0

1

αi

∣∣〈φ|ψi〉∣∣2 =

ν∑
i=1
αi> 0

1 ≤ ν .

Finally, we thus find P{log P
Q′ > δ′} ≤ 2−δ

′
ν. The choices δ = 2−δ

′
ν and R = Dε−δ(P‖Q) together with (24)

yield

P
{

log
Q′

Q
≤ R− log

ν

δ

}
≤ P

{
log

P

Q
≤ R

}
+ δ ≤ ε,

which concludes the proof.
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Proof of (21) and (22): The last two inequalities follow from the previous relations. We have

D
√
1−ε

max (ρ‖σ) ≤ Dε
s(Eσ(ρ)‖σ) + log ν − log(1− ε) [cf., Eq. (18)]

≤ Dε
h(Eσ(ρ)‖σ) + log ν − log(1− ε) [cf., Eq. (14)]

≤ Dε
h(ρ‖σ) + log ν − log(1− ε). [cf., Eq. (11)]

Furthermore, using Eqs. (17) and (14)

D
√
1−ε

max (ρ‖σ) ≥ Dε−δ1
s (ρ‖σ) + 2 log δ1 − 2− log ε

≥ Dε−δ1−δ2
h (ρ‖σ) + log δ21δ2 − 2− log ε,

and the choice δ1 = 2δ
3 , δ2 = δ

3 yields (22).

C. One-Shot Entropies and the Information Spectrum

The above relations allow us to bound the hypothesis testing and smooth entropies in terms of the classical
information spectrum of Pρ,σ and Qρ,σ.

In order to refine these statements, we need the following notation. For a given positive semi-definite matrix σ,
we denote the number of distinct eigenvalues of σ by ν(σ). We also define the number λ(σ) := log λmax(σ) −
log λmin(σ), where λmax is the maximum and λmin the minimum eigenvalue of σ. Finally, we employ

θ(σ) := min{2dλ(σ)e, ν(σ)}.

The bounds can now be stated as follows.
Theorem 14: Let ρ ∈ S(H), σ ∈ P(H) and 0 < ε < 1 and 0 < δ < min{ε, 1 − ε}. Then, using θ = θ(σ),

P = Pρ,σ and Q = Qρ,σ, we have

Dε
h(ρ‖σ) ≤ Dε+δ

s (P‖Q) + log
28(ε+ δ)θ

δ4(1−ε−δ)
, (27)

Dε
h(ρ‖σ) ≥ Dε−δ

s (P‖Q)− log θ + log δ, (28)

D
√
1−ε

max (ρ‖σ) ≤ Dε+δ
s (P‖Q) + log θ − log

(
δ(1−ε)

)
, (29)

D
√
1−ε

max (ρ‖σ) ≥ Dε−δ
s (P‖Q)− log(33εθ) + log δ3. (30)

Proof: We first show weaker inequalities for ν(σ) in place of θ and then argue that the inequalities still hold if
we replace ν by 2dλ(σ)e. In particular, this implies that they also holds for the minimum of these two expression,
i.e. for θ.

Let ν = ν(σ), and δi > 0, i = 1 . . . 3, such that
∑

i δi = δ. (We will optimize over these partitions later.) We
find

Dε
h(ρ‖σ)≤ Dε+δ1

s (ρ‖σ)− log δ1 [cf., Eq. (14)]

≤ D
√
1−ε−δ1−δ2

max (ρ‖σ)− log δ1δ
2
2 + log

(
4(ε+ δ1 + δ2)

)
[cf., Eq. (17)]

≤ Dε+δ1+δ2
s (Eσ(ρ)‖σ)− log δ1δ

2
2 + log

(
4(ε+ δ1 + δ2)

)
− log(1− ε− δ1 − δ2) + log ν [cf., Eq. (18)]

≤ Dε+δ1+δ2+δ3
s (P‖Q)− log δ1δ

2
2δ3 + log

(
4(ε+ δ1 + δ2)

)
− log(1− ε− δ1 − δ2) + log ν. [cf., Eq. (19)]

Choosing δ1 = δ3 = δ
4 , δ2 = δ

2 yields (27). Next, we have

Dε
h(ρ‖σ) ≥ Dε

h(Eσ(ρ)‖σ) [cf., Eq. (11)]

≥ Dε
s(Eσ(ρ)‖σ) [cf., Eq. (14)]

≥ Dε−δ
s (P‖Q) + log δ − log ν, [cf., Eq. (20)]
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which constitutes (28). Then, Eq. (29) follows from

D
√
1−ε

max (ρ‖σ)

≤ Dε
s(Eσ(ρ)‖σ) + log ν − log(1− ε) [cf., Eq. (18)]

≤ Dε+δ
s (P‖Q)− log δ + log ν − log(1− ε). [cf., Eq. (19)]

Finally we show (30). For any δ1, δ2 > 0 such that δ1 + δ2 = δ,

D
√
1−ε

max (ρ‖σ)

≥ D
√
1−ε

max (Eσ(ρ)‖σ) [cf., Eq. (11)]

≥ Dε−δ1
s (Eσ(ρ)‖σ) + 2 log δ1 − log(4ε) [cf., Eq. (17)]

≥ Dε−δ1−δ2
s (P‖Q) + log δ21δ2 − log(4εν). [cf., Eq. (20)]

Choosing δ1 = 2δ
3 , δ2 = δ

3 , we obtain (30).
The above inequalities can now be adapted such that ν is replaced by 2dλ(σ)e. We exemplify this by proving

the inequality corresponding to (27). However, the argument is analogous for all inequalities in the theorem.
For a positive integer l to be determined later, we define σ′ by the following procedure. First, we diagonalize

σ =
∑

y sy|uy〉〈uy| with s1 ≥ s2 ≥ . . . ≥ sd and define λ = λ(σ) = log s1 − log sd. Moreover, we define
s′y = sd 2

λi

l when log sy ∈
(

log sd + λ
l i, log sd + λ

l (i + 1)
]

for i = 0 . . . l − 1 and s′y = sd if sy = sd. Hence,
σ′ ≤ σ and σ′′ := 2−

λ

l σ ≤ σ′. Since the number of eigenvectors of σ′ is at most l, (27) yields

Dε
h(ρ‖σ) ≤ Dε

h(ρ‖σ′) [cf., Eq. (12)]

≤ Dε+δ
s (Pρ,σ′‖Qρ,σ′) + log

28(ε+ δ)l

δ4(1−ε−δ)
[cf., Eq. (27)]

≤ Dε+δ
s (Pρ,σ′′‖Qρ,σ′′) + log

28(ε+ δ)l

δ4(1−ε−δ)
[cf., Eq. (12)]

= Dε+δ
s (Pρ,σ‖Qρ,σ) + log

28(ε+ δ)l

δ4(1−ε−δ)
+
λ

l
. [cf., Eq. (13)]

Finally, substituting dλ(σ)e into l, we find λ
l + log l ≤ log 2dλ(σ)e and, thus,

Dε
h(ρ‖σ) ≤ Dε+δ

s (Pρ,σ‖Qρ,σ) + log
28(ε+ δ) · 2dλe
δ4(1−ε−δ)

.

VI. ASYMPTOTIC ANALYSIS

We first investigate the behavior of the classical information spectrum of the Nussbaum-Szkoła distributions in
the asymptotic limit. For this purpose, we consider the quantity

Dε
s(Pρ,σ‖Qρ,σ) = sup{R ∈ R |P{Z ≤ R} ≤ ε},

which is equivalent to F−1Z (ε), the inverse of the cumulative distribution function of Z = logPρ,σ(X)−logQρ,σ(X).
In particular, we are interested in i.i.d. states ρn = ρ⊗n and σn = σ⊗n. Then, the respective Nussbaum-Szkoła

distributions are also of the i.i.d. form Pnρ,σ(~x) =
∏
i Pρ,σ(xi) and, similarly, Qnρ,σ(~x) =

∏
iQρ,σ(xi). It is easy to

verify that the information spectrum evaluates to

Dε
s(P

n
ρ,σ‖Qnρ,σ) = n sup{R |Pn{Z̄ ≤ R} ≤ ε}, (31)

where Z̄ = 1
n

∑
i Zi is averaged over n i.i.d. random variables Zi = logPρ,σ − logQρ,σ. Now, due to the central

limit theorem, the distribution of

√
n
Z̄ − µ
s

, where µ = E[Z] and s =
√
E
[
(Z − µ)2

]
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converges to the normal distribution. More precisely, the Berry-Esseen theorem [10] states that∣∣∣∣Pn{√n Z̄ − µσ
≤ z
}
− Φ(z)

∣∣∣∣ ≤ Ct3

s3
√
n
,

as long as s > 0 and t = 3
√

EP [|Z − µ|3] is finite. Moreover, we have C < 1
2 [39], and the cumulative standard

Gaussian distribution is given by

Φ(x) :=

∫ x

−∞

1√
2π

ex
2/2 dx.

We now evaluate these terms, using the relation (16). We get

µ = D(Pρ,σ‖Qρ,σ) = D(ρ‖σ),

s2 = V (Pρ,σ‖Qρ,σ) = V (ρ‖σ) and

t = T (Pρ,σ‖Qρ,σ), where

T (P‖Q) := 3

√
EP
[∣∣ logP (x)− logQ(x)−D(P‖Q)

∣∣3].
Assume V (ρ‖σ) > 0. Combining the above with (31), we can write

Dε
s(P

n
ρ,σ‖Qnρ,σ) = nD(ρ‖σ) +

√
nV (ρ‖σ) · sup

{
x

∣∣∣∣Pn{√nZ̄ − µs ≤ x
}
≤ ε
}
,

and further use the Berry-Esseen theorem to bound

Dε
s(P

n
ρ,σ‖Qnρ,σ) ≤ nD(ρ‖σ) +

√
nV (ρ‖σ) Φ−1

(
ε+

Cr3

s3
√
n

)
Dε
s(P

n
ρ,σ‖Qnρ,σ) ≥ nD(ρ‖σ) +

√
nV (ρ‖σ) Φ−1

(
ε− Cr3

s3
√
n

)
. (32)

Note that if V (ρ‖σ) = 0, the equality Dε
s(P

n
ρ,σ‖Qnρ,σ) = nD(ρ‖σ) holds trivially since Z is in fact a constant. Since

Φ−1 is continuously differentiable, for any fixed ε ∈ (0, 1) and δ proportional to 1/
√
n, we have the following

asymptotic expansion for large n:6

Dε±δ
s (Pnρ,σ‖Qnρ,σ) = nD(ρ‖σ) +

√
nV (ρ‖σ)Φ−1(ε) +O(1). (33)

A. Asymptotic Behavior of Relative Entropies

We first investigate the asymptotic behavior of Dε
h(ρn‖σn) and Dε

max(ρn‖σn) for large n. A straight-forward
application of Theorem 14 yields, for 0 < δ < min{ε, 1− ε},

Dε−δ
s (Pnρ,σ‖Qnρ,σ)− log

θ(σn)

δ
≤ Dε

h(ρn‖σn)

≤ Dε+δ
s (Pnρ,σ‖Qnρ,σ) + log

28(ε+ δ)θ(σn)

δ4(1−ε−δ)
,

Now, we observe that θ(σn) ≤ 2dλ(σn)e = 2dnλ(σ)e scales at most linearly in n if λ(σ) is finite. Furthermore,
choosing δ = 1/

√
n, we can apply (33) to get

Dε
h(ρn‖σn) = nD(ρ‖σ) +

√
nV (ρ‖σ)Φ−1(ε) +O(log n). (34)

An analogous relation is derived for Dε
max(ρn‖σn), where we use Theorem 14 and the relation Φ−1(1− ε2) =

−Φ−1(ε2):

Dε
max(ρn‖σn)= nD(ρ‖σ)−

√
nV (ρ‖σ)Φ−1(ε2) +O(log n). (35)

6If f is continuously differentiable, c a constant and n ≥ n0, we may write
√
nf(x+ c√

n
) =
√
nf(x)+cf ′(a) for some a ∈ [x, x+ c√

n0
].
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B. Asymptotic Behavior of Operational Quantities

We first treat source compression with quantum side information. Recall Theorem 9, which provides the following
bounds on mε.

For any CQ state ρXB and 0 < ν ≤ ε < 1, we have

−Dε
h(ρXB‖1X ⊗ ρB) ≤ max

σB
−Dε

h(ρXB‖1X ⊗ σB) ≤ mε(X|B)ρ ≤ −Dε−η
h (ρXB‖1X ⊗ ρB) + log

23ε

η2
. (36)

We now consider the i.i.d. asymptotic setting with ρnXB and its marginal ρnB . First, note that, λ(ρnB) = nλ(ρB)
is linear in n, and, thus, log θ(ρnB) is of the order O(log n). Furthermore, the choice η = 1/

√
n ensures that the

additive terms in (36) are of the order O(log n).
Combined with (34), this yields the following result.
Corollary 15: For any CQ state ρXB and any 0 < ε < 1, we find the following i.i.d. asymptotic expansion:

mε(Xn|Bn) = nH(X|B)−
√
nV (X|B) Φ−1(ε) +O(log n).

To analyze randomness extraction with quantum side information, we start with the one-shot characterization of
`ε given in Theorem 8. For any CQ state ρXB and 0 < ε < 1, we have

−Dε−η
max(ρXB‖1X ⊗ ρB)− log

23

η4
≤ `ε(X|B)ρ ≤ max

σB
−Dε

max(ρXB‖1X ⊗ σB).

Note that a simple application of Theorem 14 is not sufficient for deriving the i.i.d. asymptotic expansion of
`ε(X|B)ρ because of the optimization concerning σB and the fact that we cannot bound θ(σB) for the optimal σB .

Instead, we use the following relation (cf., Proposition 13),

Dε
max(ρXB‖1X⊗σB) ≥ D1−ε2−µ

h (ρXB‖1X⊗σB)−log
33(1− ε2)

µ3
,

and Theorem 9, which yields

max
σB

D1−ε2−µ
h (ρXB‖1X ⊗ σB) ≥ D1−ε2−µ−δ

h (ρXB‖1X ⊗ ρB)− log
23(1− ε2 − µ)

δ2
.

Combining the above relations, we obtain

−Dε−η
max(ρXB‖1X ⊗ ρB)− log

23

η4
≤ `ε(X|B)ρ

≤ max
σB
−Dε

max(ρXB‖1X ⊗ σB)

≤ max
σB
−D1−ε2−µ

h (ρXB‖1X ⊗ σB) + log
33

µ3

≤ −D1−ε2−µ−δ
h (ρXB‖1X ⊗ ρB) + log

2333

δ2µ3
. (37)

We now consider the i.i.d. asymptotic setting with ρnXB and its marginal ρnB . Again, note that, λ(ρnB) = nλ(ρB)
is linear concerning n, and, thus, log θ(ρnB) is of the order O(log n). Furthermore, the choice η = µ = δ = 1/

√
n

ensures that the additive terms are of the order O(log n).
This yields the following expansion due to (34) and (35).
Corollary 16: For any CQ state ρXB and any 0 < ε < 1, we have the following asymptotic characterization for

large n:

`ε(Xn|Bn) = nH(X|B) +
√
nV (X|B)Φ−1(ε2) +O(log n).

We employed the conditional entropy H(X|B)ρ := −D(ρXB‖1X ⊗ρB) as well as V (A|B)ρ := V (ρAB‖1A⊗ρB).
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VII. FINITE BLOCK LENGTH ANALYSIS

Our results of the previous section also directly imply bounds for finite block lengths, i.e. computable bounds on
the operational quantities for fixed, large n. To get such bounds, we simply carefully combine the results presented
above, which yields the following.

Theorem 17: Let ρXB be a CQ state and 0 < ε < 1 be fixed. We use s =
√
V (X|B)ρ, t = T (PρXB ,ρB‖QρXB ,ρB)

and λ = λ(ρB). Moreover, let 0 < ξ0 < min{ε, 1− ε}. Then, for any n > C2r6

ξ20s
6 , we have

sup
ξ0≤ξ<1−ε

{
−
√
n sΦ−1(ε+ξ)− log

29dnλe
(ξ− Cr3√

ns3
)4(1−ε−ξ)

}
≤ mε(Xn|Bn)ρn − nH(X|B)ρ

≤ inf
ξ0≤ξ<ε

{
−
√
n sΦ−1(ε−ξ) + log

2233dnλe
(ξ− Cr3√

ns3
)3

}
.

Furthermore, let 0 < ξ1 < min{ε2, 1−ε2}. Then, for any n > C2r6

ξ21s
6 , we have

sup
ξ1≤ξ<ε2

{
+
√
n sΦ−1(ε2−ξ)− log

55dnλe
(ξ− Cr3√

ns3
)5(1−ε)

}
≤ `ε(Xn|Bn)ρn − nH(X|B)ρ

≤ inf
ξ1≤ξ<1−ε2

{
+
√
n sΦ−1(ε2+ξ) + log

2836dnλe
(ξ− Cr3√

ns3
)6

}
.

The remaining optimization over ξ is can be performed numerically. Note that any ξ in the required range gives
valid lower and upper bounds on the operational quantities. Moreover, the asymptotic statement can be recovered
when choosing ξ, ξ0 and ξ1 proportional to 1/

√
n.

Proof: To get the first statement, we bound (36) using Theorem 14. This yields

−Dε+δ
s (PρXB ,ρB‖QρXB ,ρB)− log

28θ(ρnB)

δ4(1− ε− δ)
≤ mε(Xn|Bn)ρn

≤ −Dε−δ−η
s (PρXB ,ρB‖QρXB ,ρB) + log

23θ(ρnB)

η2δ
.

We further bound θ(ρnB) ≤ 2dnλe and choose η = 2δ. The Berry-Esseen Theorem (32) then gives us the expected
bounds when we substitute ξ in the argument of Φ−1. Note also that the parameter ξ can still be optimized over.

Similarly, bounding (37) using Theorem 14 yields

−D1−(ε−η)2+δ
s (PρXB ,ρB‖QρXB ,ρB)− log

23θ(ρnB)

η4δ(1− ε)
≤ `ε(Xn|Bn)ρn

≤ −D1−ε2−µ−η−δ
s (PρXB ,ρB‖QρXB ,ρB) + log

2333θ(ρnB)

µ3η2δ
. (38)

The expression can be simplified using θ(ρnB) ≤ 2dnλe. Then, the upper bound follows by choosing µ = 3δ and
η = 2δ and substituting ξ as above after applying (32).

The optimization leading to the lower bound is a bit more involved. However, it is easy to verify that the choices
η = 2ζ

5ε and δ = ζ
5 + 4ζ2

25ε2 lead to (ε − η)2 − δ = ε2 − ζ. Then, further bounding δ ≥ ηε
2 , and substituting ξ as

above, we arrive at the desired bound.

VIII. RELATION TO QUANTUM INFORMATION SPECTRUM

In the framework of the quantum information spectrum method, one treats general sequences of quantities
~α = {αn}∞n=1 and investigates their asymptotic behavior. Given a sequence of Hilbert spaces, ~H, and two sequences
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of states, ~ρ and ~σ, such that ρn, σn ∈ S(Hn) for all n, the quantum information spectrum is defined as [24]

D(ε|~ρ‖~σ) := sup
{
R ∈ R

∣∣ lim sup
n→∞

tr ρn{ρn ≤ 2nRσn} ≤ ε
}
,

D(ε|~ρ‖~σ) := inf
{
R ∈ R

∣∣ lim inf
n→∞

tr ρn{ρn ≤ 2nRσn} ≥ ε
}

= sup
{
R ∈ R

∣∣ lim inf
n→∞

tr ρn{ρn ≤ 2nRσn} < ε
}
.

Our goal is to show that this can be expressed in terms of the entropic quantity Dε
s that was used in the previous

sections. For this purpose, we need the following lemma.
Lemma 18: Let ~g be a sequence of monotonically increasing functions and define fn(ε) := sup{R | gn(R) ≤ ε}.

Then,

sup
~ε

{
lim inf
n→∞

fn(εn)
∣∣ lim sup

n→∞
εn ≤ ε

}
= sup

{
R ∈ R

∣∣ lim sup
n→∞

gn(R) ≤ ε
}
, and (39)

sup
~ε

{
lim inf
n→∞

fn(εn)
∣∣ lim inf
n→∞

εn < ε
}

= sup
{
R ∈ R

∣∣ lim inf
n→∞

gn(R) < ε
}
. (40)

Proof: We prove Eq. (39) and simply note that Eq. (40) can be shown analogously.
By definition of the supremum, for any δ > 0, there exists a real R′ satisfying lim supn→∞ gn(R′) ≤ ε and

sup
{
R ∈ R

∣∣ lim sup
n→∞

gn(R) ≤ ε
}
< R′ + δ.

We now define a sequence ~ε = {εn}∞n=1 using εn = gn(R′). Then, we have lim supn→∞ εn ≤ ε and, since
R′ ≤ fn(gn(R′)) = fn(εn) for all n by definition of fn, we find R′ ≤ lim infn→∞ fn(εn). Hence,

R′ ≤ sup
~ε

{
lim inf
n→∞

fn(εn)
∣∣ lim sup

n→∞
εn ≤ ε

}
.

Conversely, there exists a sequence ~ε ′ satisfying satisfying lim supn→∞ ε
′
n ≤ ε and

sup
~ε

{
lim inf
n→∞

fn(εn)
∣∣ lim sup

n→∞
εn ≤ ε

}
< lim inf

n→∞
fn(ε′n) + δ.

We now define R = lim infn→∞ fn(ε′n). Then, by definition of the limit inferior, there exists an integer n0 such
that R − δ < fn(ε′n) for n ≥ n0. Hence, gn(R − δ) ≤ ε′n for n ≥ n0 and, thus, lim supn→∞ gn(R − δ) ≤
lim supn→∞ ε

′
n ≤ ε. Thus,

lim inf
n→∞

fn(ε′n) ≤ sup
{
R
∣∣ lim sup

n→∞
gn(R− δ) ≤ ε

}
= sup

{
R
∣∣ lim sup

n→∞
gn(R) ≤ ε

}
+ δ.

Since we may choose δ arbitrarily small, the above inequalities establish equality in (39).
We now employ Lemma 18 using the sequence of functions gn(R) = tr ρn{ρn ≤ enRσn}, and, hence, fn(ε) =

Dε
s(ρn‖σn) by definition. This yields the following equalities.

D(ε|~ρ‖~σ) = sup
~ε

{
lim inf
n→∞

1

n
Dεn
s (ρn‖σn)

∣∣∣ lim sup
n→∞

εn ≤ ε
}
,

D(ε|~ρ‖~σ) = sup
~ε

{
lim inf
n→∞

1

n
Dεn
s (ρn‖σn)

∣∣∣ lim inf
n→∞

εn < ε
}
.

This shows that relative entropy Ds constitutes an entropic version of the information spectrum D and D.
Together with the hierarchy derived in the previous section, this allows us to relate various information quantities

to the quantum information spectrum. As an example, the following operational quantities are used to analyze
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quantum hypothesis testing [24]. The asymptotic achievability is given by

B(ε|~ρ‖~σ) := sup
~Q

{
lim inf
n→∞

−1

n
log 〈σn, Qn〉

∣∣∣ ε( ~Q) ≤ ε
}

=

sup
{
R ∈ R

∣∣∣ ∃ ~Q : lim inf
n→∞

−1

n
log〈σn, Qn〉 ≥ R ∧ ε( ~Q) ≤ ε

}
= sup

~ε

{
lim inf
n→∞

1

n
Dεn
h (ρn‖σn)

∣∣∣ lim sup
n→∞

εn ≤ ε
}
,

where we used ε( ~Q) = lim supn→∞〈ρn, 1−Qn〉. On the other hand, the asymptotic converse is described by

B†(ε|~ρ‖~σ) := sup
~Q

{
lim inf
n→∞

−1

n
log 〈σn, Qn〉

∣∣∣ ε( ~Q) < ε
}

=

inf
{
R ∈ R

∣∣∣∀ ~Q : lim inf
n→∞

−1

n
log〈σn, Qn〉 ≥ R=⇒ ε( ~Q) ≥ ε

}
= sup

~ε

{
lim inf
n→∞

1

n
Dεn
h (ρn‖σn)

∣∣∣ lim inf
n→∞

εn < ε
}
,

where we used ε( ~Q) = lim infn→∞〈ρn, 1−Qn〉. The equalities with the expressions involving the one-shot entropy
can be verified by choosing εn = 〈ρn, 1−Qn〉 for any sequence ~Q. Conversely, for any sequence ~ε satisfying the
constraint, we choose Qn as the primal optimal solution for Dεn

h (ρ‖σ).
Using Lemma 12, we can confirm the following result [24]:

B(ε|~ρ‖~σ) = D(ε|~ρ‖~σ) and B†(ε|~ρ‖~σ) = D(ε|~ρ‖~σ).

Furthermore, Theorem 14 and Lemma 12 together imply that as long as the number of distinct eigenvalues in σn
or the logarithm of the minimum eigenvalue in σn grows at most polynomially in n, we get the following, novel,
relations:

B(ε|~ρ‖~σ) = B(ε|~P0‖~P1) and B†(ε|~ρ‖~σ) = B†(ε|~P0‖~P1),

where ~Pi is the sequence of classical distributions {Pi,ρn,σn}n as defined in Section VI. The latter quantities can
be bounded further using results from classical hypothesis testing.

Furthermore, we want to point out that our analysis can be used to extend results by Datta and Renner [8]
relating the information spectrum for ε ∈ {0, 1} and smooth min- and max-entropies to arbitrary 0 < ε < 1. If the
eigenvalues of σn satisfy the condition of the previous paragraph, then (21) and (22) imply the following results:

D(ε|~ρ‖~σ) = sup
~ε

{
lim inf
n→∞

1

n
D
√
1−εn

max (ρn‖σn)
∣∣ lim sup

n→∞
εn ≤ ε

}
,

D(ε|~ρ‖~σ) = sup
~ε

{
lim inf
n→∞

1

n
D
√
1−εn

max (ρn‖σn)
∣∣ lim inf
n→∞

εn < ε
}
,

which can be readily specialized to conditional entropies.
Finally, we want to point out that the sequences of rates, { 1nm

εn(X|B)ρn}n and { 1n`
εn(X|B)ρn}n, can be

expressed asymptotically using the information spectrum method analogously to the case of hypothesis testing. Our
results then show that their asymptotics are equal to the asymptotics of { 1nH

εn
h (X|B)ρn}n and { 1nH

εn
min(X|B)ρn}n,

respectively. Furthermore, if the abovementioned conditions on the eigenvalues are satisfied, these expressions
correspond to the information spectrum, D and D. This is discussed in detail in Appendix B.

IX. CONCLUSION AND DISCUSSION

We characterize both source compression and randomness extraction with quantum side information using one-
shot entropies in such a way that the second order asymptotics of these tasks can be recovered. This result improves
on previous characterizations of these quantities that were only shown to converge in the first order.

We want to point out the relation of our result to the smooth entropy framework that has recently been employed
to characterize various quantum information theoretic tasks in the one-shot setting. Such characterizations allow to
recover the correct asymptotic behavior in the first order, and that is often taken as a sufficient reason to call them
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“tight”. However, we stress that a first order analysis is independent of the required security or error parameter, ε.7

Hence, a characterization with Hε
min is equivalent to a characterization with H2ε

min, H
√
ε

min or even H1−ε
min in the first

order — a freedom that is often used extensively to prove these results. In the second order, however, the above
quantities behave very differently. Hence, tightness in the second order requires a more precise analysis of the
one-shot problem, resulting in a characterization of the operational quantities in terms of Hε±η

min plus terms that
grow at most proportional to log 1

η when η → 0.
It appears that such a characterization is only possible in terms of a carefully chosen one-shot entropy, depending

on the task at hand. We show that the hypothesis testing entropy, Hε±η
h , allows a tight one-shot characterization

of source compression, while the smooth min-entropy, Hε±η
min takes the respective role for randomness extraction

when the secrecy criterion is given in terms of the purified distance. In conclusion, we do not expect that a single
one-shot entropy is sufficient to characterize all relevant tasks such that the correct second order asymptotics can
be recovered.

Finally, we established in Section VIII that the behavior of the asymptotic information spectrum of a task — both
its direct and converse part — can be expressed as an appropriate limit of the respective one-shot quantity. Hence,
a thorough analysis of the one-shot quantity leads also to the understanding of the behavior of the asymptotic
information spectrum.
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APPENDIX A
EXAMPLE OF FINITE BLOCK LENGTH ANALYSIS: EAVESDROPPING ON PAULI CHANNEL

We consider the state that results when transmitting either |0〉 or |1〉 through the complementary channel to a
Pauli channel with a phase error p < 1

2 that is independent of the bit flip error. The resulting state is

ρXB =
1

2

1∑
x=0

|x〉〈x| ⊗ |φx〉〈φx|, where

|φx〉 =
√
p |0〉+ (−1)x

√
1− p |1〉 .

Morever, we note that the non-trivial part of the Nussbaum-Szkoła distribution for this state reads

P = PρXB ,1X⊗ρB =
{p

2
,
p

2
,
1− p

2
,
1− p

2

}
and

Q = QρXB ,1X⊗ρB =
{
p2, p2, (1− p)2, (1− p)2

}
.

We are interested in how much randomness can be extracted from n i.i.d. copies of this source for finite n, i.e.
we want to find bounds on `ε(Xn|Bn). We first bound this in terms of the classical information spectrum. For any
choices of ξ1, ξ2 ∈ (0, 1), we write using (38),

−D1−ε2(1−ξ1)
s (Pn‖Qn)− log

55dnλe
ξ51ε

6(1− ε)
≤ `ε(Xn|Bn)

≤ −D1−ε2(1+ξ2)
s (Pn‖Qn) + log

2836dnλe
ξ62ε

10
(41)

Then, we note that Dε
s(P

⊗n‖Q⊗n) can be evaluated precisely as follows. First, we recall (31) and write

Dε
s(P

n‖Qn) = sup
{
R
∣∣∣Pn{∑

i

Zi ≤ R
}
≤ ε
}
,

7In the contrary, such an analysis is expected to yield the same first order asymptotic expansion for all 0 < ε < 1.
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where Zi = logP − logQ is a random variable that takes value log 1
2p with probability p and value log 1

2(1−p) with

probability 1− p. We rescale this into a Bernoulli trial Bi =
(
Zi − log 1

2(1−p)
)(

log 1−p
p

)−1 and find

Pn
{∑

i

Zi ≤ R
}

= Pn
{∑

i

Bi ≤
(
R− n log

1

2(1−p)

)(
log

1−p
p

)−1
︸ ︷︷ ︸

R̃

}
,

where we used that log 1−p
p is positive for p < 1

2 . Hence,

Dε
s(P

n‖Qn)

= sup
{
R̃
∣∣∣Pn{∑

i

Bi ≤ R̃
}
≤ ε
}

log
1−p
p

+ n log
1

2(1−p)

= max
{
k ∈ N

∣∣F (k−1;n, p) ≤ ε
}

log
1−p
p

+ n log
1

2(1−p)
,

where F ( · ;n, p) is the cumulative distribution function for the binomial distribution and the remaining optimization
can be evaluated numerically. Combining this with (41), we can thus evaluate direct and converse bounds on the
extractable randomness in Fig. 1.

APPENDIX B
THE INFORMATION SPECTRUM OF SOURCE COMPRESSION AND RANDOMNESS EXTRACTION

Here, we treat source compression and randomness extraction using the information spectrum method. That is,
we focus on the asymptotic operational quantities for general sequence of information sources ~ρXB := {ρXB,n}n.

We define the following asymptotic operational quantities:

m(ε|X|B|~ρ) := inf
~P
{lim sup

n→∞

1

n
logM(Pn)| lim sup

n→∞
perr(Pn, ρXB,n) ≤ ε}

= inf
~ε
{lim sup

n→∞

1

n
mεn(X|B)ρn | lim sup

n→∞
εn ≤ ε}

m†(ε|X|B|~ρ) := inf
~P
{lim sup

n→∞

1

n
logM(Pn)| lim inf

n→∞
perr(Pn, ρXB,n) < ε}

= inf
~ε
{lim sup

n→∞

1

n
mεn(X|B)ρn | lim inf

n→∞
εn < ε}

`(ε|X|B|~ρ) := inf
~P
{lim inf
n→∞

1

n
logZ(Pn)| lim sup

n→∞
dsec(Pn, ρXB,n) ≤ ε}

= inf
~ε
{lim inf
n→∞

1

n
`εn(X|B)ρn | lim sup

n→∞
εn ≤ ε}

`†(ε|X|B|~ρ) := inf
~P
{lim inf
n→∞

1

n
logZ(Pn)| lim inf

n→∞
dsec(Pn, ρXB,n) < ε}

= inf
~ε
{lim inf
n→∞

1

n
`εn(X|B)ρn | lim inf

n→∞
εn ≤ ε}

In order to characterize these quantities, we define the asymptotic quantum conditional entropies:

H(ε|X|B|~ρ) := sup{R ∈ R| lim inf
n→∞

tr ρXB,n{ρXB,n > 2−nRρB,n} < ε}

H(ε|X|B|~ρ) := sup{R ∈ R| lim inf
n→∞

tr ρXB,n{ρXB,n > 2−nRρB,n} ≤ ε}.

Using the respective Nussbaum-Szkoła distributions Pn := PρXB,n,ρB,n and Qn := QρXB,n,ρB,n , we can further
define

Hc(ε|X|B|~ρ) := sup{R ∈ R| lim inf
n→∞

Pn{Pn > 2−nRQn} < ε}

Hc(ε|X|B|~ρ) := sup{R ∈ R| lim inf
n→∞

Pn{Pn > 2−nRQn} ≤ ε}.
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Similarly, we can define the asymptotic smooth conditional min-entropy

Hmin(ε|X|B|~ρ) := sup
~ε
{lim inf
n→∞

1

n
Hεn

min(X|B)ρn | lim inf
n→∞

εn < ε}

Hmin(ε|X|B|~ρ) := sup
~ε
{lim inf
n→∞

1

n
Hεn

min(X|B)ρn | lim sup
n→∞

εn ≤ ε}.

Applying Lemma 18 to the case when fn(ε) = − 1
nD

1−ε
s (ρXB,n‖ρB,n) and gn(R) = tr ρXB,n{ρXB,n >

2−nRρB,n}, we obtain

H(ε|X|B|~ρ) = sup
~ε
{lim inf
n→∞

− 1

n
D1−εn
s (ρXB,n‖ρB,n)| lim inf

n→∞
εn < ε} (42)

H(ε|X|B|~ρ) = sup
~ε
{lim inf
n→∞

− 1

n
D1−εn
s (ρXB,n‖ρB,n)| lim sup

n→∞
εn ≤ ε}. (43)

The same type of equality holds for Hc(ε|X|B|~ρ) and Hc(ε|X|B|~ρ).
Now, we substitute εn and 1

n into ε and η in Theorem 9, and substitute εn and 1
n into ε and δ in Lemma 12.

Due to relations (42) and (43),

m(ε|X|B|~ρ) = H(1− ε|X|B|~ρ)

holds for 0 < ε ≤ 1 and

m†(ε|X|B|~ρ) = H(1− ε|X|B|~ρ)

holds for 0 ≤ ε < 1.
Similarly, we substitute εn and 1

n into ε and η in Theorem 8. Then,

`(ε|X|B|~ρ) = Hmin(ε|X|B|~ρ)

holds for 0 < ε ≤ 1 and

`†(ε|X|B|~ρ) = Hmin(ε|X|B|~ρ)

holds for 0 ≤ ε < 1.
In the following, we assume the above mentioned conditions on the eigenvalues. That is, the number of distinct

eigenvalues in σn or the logarithm of the minimum eigenvalue in σn is assumed to grow at most polynomially in
n. Then, combining relations (42) and (43), Lemma 12, and Theorem 14, we obtain

H(ε2|X|B|~ρ) = Hc(ε
2|X|B|~ρ) = Hmin(ε|X|B|~ρ)

H(ε2|X|B|~ρ) = Hc(ε
2|X|B|~ρ) = Hmin(ε|X|B|~ρ).

Note that these equations hold without the above mentioned conditions on the eigenvalues in the commutative case.
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