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Spatial Throughput of Mobile Ad Hoc Networks
Powered by Energy Harvesting

Kaibin Huang

Abstract—Designing mobiles to harvest ambient energy such
as kinetic activities or electromagnetic radiation will enable
wireless networks to be self sustaining. In this paper, the spatial
throughput of a mobile ad hoc network powered by energy
harvesting is analyzed using a stochastic-geometry model.In
this model, transmitters are distributed as a Poisson point
process and energy arrives at each transmitter randomly with
a uniform average rate called the energy arrival rate. Upon
harvesting sufficient energy, each transmitter transmits with
fixed power to an intended receiver under an outage-probability
constraint for a target signal-to-interference-and-noise ratio. It is
assumed that transmitters store energy in batteries with infinite
capacity. By applying the random-walk theory, the probability
that a transmitter transmits, called the transmission probability,
is proved to be equal to the smaller of one and the ratio between
the energy-arrival rate and transmission power. This result and
tools from stochastic geometry are applied to maximize the
network throughput for a given energy-arrival rate by optim izing
transmission power. The maximum network throughput is shown
to be proportional to the optimal transmission probability, which
is equal to one if the transmitter density is below a derived
function of the energy-arrival rate or otherwise is smaller than
one and solves a given polynomial equation. Last, the limitsof
the maximum network throughput are obtained for the extreme
cases of high energy-arrival rates and sparse/dense networks.

Index Terms—Energy harvesting, mobile ad hoc networks,
throughput, power control, stochastic processes, mobile commu-
nication

I. I NTRODUCTION

Recent years have seen increasing popularity of mobile
devices such as sensors and smart phones, giving rise to two
design issues among others. First, the power consumption of
mobile-device networks makes an escalating contribution to
global warming. Second, conventional batteries that power
mobile devices periodically interrupt their operation dueto
finite battery lives; battery recharging or replacement is in-
convenient or even impossible in certain cases. These issues
provide strong motivation for powering mobile devices by har-
vesting ambient energy such as solar energy, vibration, kinetic
activities and electromagnetic radiation [1]. The capacity of
mobile-device networks powered by energy harvesting remains
largely unknown, which is addressed in this paper.

This paper considers a mobile ad hoc network (MANET)
where transmitters are modeled as a homogeneous Poisson
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point process (PPP). Energy arrives randomly at a transmitter
with a fixed average rate, called theenergy-arrival rate.
The energy-arrival process is modeled as an independent and
identically distributed (i.i.d.) sequence of random variables and
different processes are assumed independent. Each transmitter
deploys an energy harvester that stores arriving energy in
a rechargeable battery. Upon harvesting sufficient energy,a
transmitter transmits with fixed power to an intended receiver
under an outage-probability constraint for a target signal-
to-interference-and-noise ratio (SINR). Based on the above
model, the network spatial throughput is maximized by op-
timizing transmission power for a given energy-arrival rate.

A. Prior Work and Motivation

The fluctuation in harvested energy due to random en-
ergy arrivals requires redesigning existing transmissional-
gorithms for wireless communication systems. Assuming in-
finitely backlogged data, existing work focuses on adapting
transmission power to channel states and the temporal profile
of energy arrivals to maximize the system throughput [2]–[5].
For single-user systems, the optimal power-control policies are
shown to be variations of the classic water-filling policy such
that the causality of energy arrivals and finite battery capacity
are accounted for [2], [3]. Adaptive transmission for broadcast
channels with energy harvesting has been also investigated[4],
[5]. In [4], the optimal power-control for a two-user single-
antenna broadcast channel is shown to attempt to allocate a
fix amount of harvested energy to the user with the better
channel before giving the remaining energy to the other user.
A two-user multiple-input-multiple-output broadcast channel
is considered in [5] where one user receives data and the other
scavenges transmission energy, and the precoder at the base
station is designed to optimize the tradeoff between the data
rate and the rate of harvested energy.

In wireless communication systems with both bursty data-
and-energy arrivals, buffering energy and data creates two
corresponding queues at each transmitter. Jointly controlling
these two coupled queues is more challenging than controlling
only the data queue in traditional systems with reliable power
supplies [6]. The algorithms for optimally controlling the
energy-and-data queues have been proposed for single-user
systems [7] and downlink systems [8] to minimize the packet
transmission delay, for interference channels to minimize
queueing delay [9], and for downlink systems to maximize
the system throughput [10]. These algorithms share a common
objective of optimizing a particular performance metric for
given average harvested power. The objective is aligned with
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that for designing the traditional energy-efficient systems with
only data queues, namely minimizing the average transmission
power under a performance constraint such as fixed packet-
transmission delay for single-user systems [11], [12], allowed
queueing delay for downlink systems [13], and given traffic
in wireless networks [14].

Wireless networks with energy harvesting have been studied
[15]–[17]. For a wireless sensor network with energy harvest-
ing and based on a simple channel model that omits channel
noise and path loss, the probability that a sensor successfully
transmits a data packet to a fusion center is analyzed in [15]
for different multiple-access protocols including time-division
multiple access and Aloha like random access. Managing
traffic load in time and space is important for wireless sensor
networks to be self sustaining through energy harvesting.
Therefore, distributive strategies are proposed in [16] for
adapting traffic load to the spatial-and-temporal energy profile
and evaluated using a network prototype. For a two-user
interference network with energy harvesting, the data-and-
energy arrivals are modeled as Bernoulli processes and the
stability region is characterized such that it comprises all data-
rate pairs under the constraint of finite data-queue lengths
[17]. In view of prior work, there are few results that quantify
the tradeoff between the network throughput and the energy-
arrival rate though such results specify the fundamental limit
of the network performance. This tradeoff is investigated in
the sequel using a stochastic-geometry approach.

Stochastic geometry provides a set of powerful mathe-
matical tools for modeling and designing wireless networks
[18]. MANETs based on random access and carrier-sensing
multiple access have been modeled using the PPPs [19], [20]
and Matern hard-core processes [21], respectively. Cellular
networks have been shown to be suitably modeled using
the Poisson Voronoi tessellation [22]. Models of coexisting
networks can be constructed by superimposing multiple point
processes [23], [24]. Stochastic-geometry models of wire-
less networks have been employed to quantify the network-
performance gains due to physical-layer techniques such as
opportunistic transmission [25], bandwidth partitioning[26],
successive interference cancellation [27], and multi-antenna
techniques [28]–[32]. The performance metric typically con-
sidered in the literature is the network spatial throughput
under a constraint on the outage probability for a target
SINR, which is also adopted in this paper. Using this metric,
most prior work focuses on deriving the outage probability
using techniques such as the Laplace transform [19], [22] and
probabilistic inequalities [20], [25]. This paper considers a
MANET with Poisson distributed transmitters similar to the
existing literature (see e.g., [20]). However, the transmitters in
the current network model are powered by energy harvesting
instead of reliable power supplies as in prior work. The
consideration of energy harvesting introduces several newde-
sign issues including the aforementioned tradeoff betweenthe
network throughput and energy-arrival rate, the corresponding
optimization of transmission power, and the effect of finite
energy storage, which are investigated in the sequel.

B. Contributions and Organization

For exposition, a few definitions and notations are provided
as follows. Time is slotted. Define the transmission probability
ρ as the probability that a transmitter transmits and thenetwork
interference temperatureas the maximum active transmitter
density under the outage-probability constraint. Letλ0 denote
the transmitter density,λe the energy-arrival rate,P the
transmission power, andZ a nonnegative random variable
representing the amount of energy harvested by a typical
harvester in an arbitrary slot.1 Note thatE[Z] = λe and the
density of active transmitters is equal toρλ0.

The main contributions of this paper are summarized as
follows.

1) Assume infinite battery capacity. Using the law of large
numbers and random-walk theory, it is proved thatρ
is equal to the smaller ofλe/P and one. It is worth
mentioning that the tractable analysis relies on assuming
the sub-optimal fixed-power transmission. To the best
of the author’s knowledge, the aforementioned result
is unknown from existing work that mostly focuses on
designing the optimal adaptive-transmission algorithms
[2]–[5], [7]–[10].

2) Consider the case of finite battery capacity. Bounds on
ρ are derived, which converge to the results stated above
as the battery capacity increases. Moreover, two special
cases are considered. IfZ is bounded and no larger
than P , it is shown thatρ is equal toλe/P so long
as the battery capacity is larger than2P . If Z is a
discrete random variable,ρ is analyzed using Markov-
chain theory.

3) Assume infinite battery capacity. By applying derived re-
sults on transmission probability and tools from stochas-
tic geometry, the network throughput is maximized by
optimizingP for given λe. Consider the condition that
λ0 is smaller than the network interference temperature
evaluated for equalP and λe. If this condition holds,
the maximum throughputR∗ is shown to be

R∗ = λ0 log2(1 + θ)

where θ is the target SINR. If the aforementioned
condition is not satisfied,

R∗ =
λ0λe

P ∗
log2(1 + θ)

where the optimal transmission powerP ∗ is larger than
λe and solves a derived polynomial equation.

4) Furthermore, the limits of the maximum network
throughput are obtained for the extreme cases of high
energy-arrival rates (λe → ∞) and dense networks
(λ0 → ∞). Specifically.

lim
λe→∞

R∗(λe) = min

(

λ0,
µǫ

θ
2

α

)

log2(1 + θ)

lim
λ0→∞

R∗(λ0) =
µǫ

θ
2

α

log2(1 + θ)

1A typical point is selected from a spatial point process by uniform
sampling.
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Energy harvester

Transmitters

A single communication link

Fig. 1. Single-antenna transmitters in the MANET are modeled as a
homogeneous PPP in the horizontal plane. Each transmitter is powered by
an energy harvester and transmits to an intended receiver atan unit distance.

where µǫ is a positive constant determined by the
maximum outage probability.

The remainder of this paper is organized as follows. The
network model and performance metric are described in Sec-
tion II. The transmission probability is analyzed in Section III.
The results are applied to maximize the network throughput
in Section IV. Numerical results are presented in Section V
followed by concluding remarks in Section VI.

II. M ODEL AND METRIC

A. Network Model

As illustrated in Fig. 1, the transmitters{T } of the MANET
are distributed in the Euclidean planeR2 following a homo-
geneous PPPΦ with densityλ0, whereT denotes the coordi-
nates of a transmitter. Each transmitter is associated withan
intended receiver located at a unit distance, which is assumed
to simplify the expression for the received signal power by
omitting the data-link path loss. The signal transmitted byT
with power P is received by a receiver located atX with
power equal toP |X − T |−α with α > 2 being the path-loss
exponent. In other words, propagation is characterized by path
loss while fading is omitted to simplify notation.2

Time is partitioned into slots of unit duration witht denoting
the slot index. The amount of energy harvested by the typical
harvester in thet-th slot is represented by the nonnegative
random variableZt.

Assumption 1. The energy-arrival process{Zt} ⊂ R
+ is

an i.i.d. sequence and independent of other energy-arrival
processes. Moreover, thecumulant generating functionof the
random variable(Zt − β) with β being a given constant,
namelylnE

[

er(Zt−β)
]

, has a rootr∗(β) such thatr∗(β) > 0
if β > λe andr∗(β) < 0 if β < λe.

This assumption allows the use of results on the large
deviation of random walks in the subsequent analysis [33].

2The consideration of random transmission distances and fading has no
effect on the main results except that the parameterµǫ defined in (34) has to
be redefined by including additional random variables.

Let B denote the battery capacity identical for all harvesters.
Moreover, the typical transmitter and the battery level of the
corresponding (typical) harvester are represented byT0 andSt,
respectively. A transmitter transmits one data packet withfixed
powerP whenever the corresponding battery level exceedsP .
As a result,St evolves as

St = min(St−1+Zt−PI(St−1 ≥ P ), B), t = 1, 2, · · · (1)

whereS0 = 0 and the indicator functionI(A) for an eventA
is equal to one ifA occurs or else is zero. The battery-level
evolutions in prior work are similar to that in (1) but with
fixed powerP replaced with power adapted to factors such as
the channel state and battery level [2], [9], [10].

B. Performance Metric

Assume infinitely backlogged and packetized data. The
transmission probabilityρ can be written as

ρ = lim
n→∞

1

n

n
∑

t=1

E[I(St ≥ P )]. (2)

According to Coloring Theorem [34], the process of active
transmitters, denoted asΠ, is a PPP with densityλt = ρλ0.
Data is encoded at a fixed ratelog2(1 + θ) bit/s/Hz with θ >
0 being the target SINR. Correct decoding of a data packet
requires the received SINR to be no smaller thanθ or else
an outage event occurs. The outage probabilityPout is defined
asPout = Pr(SINR < θ) whereSINR represents the received
SINR at the receiver forT0. It is assumed that the receiver for
T0 is located at the origin, which does not compromise the
generality based on Slyvnyak’s Theorem [35], and that noise
has unit variance. Based on these assumptions,Pout can be
written as

Pout = Pr







P
∑

T∈Π\{T0}

P |T |−α + 1
< θ






(3)

= Pr





∑

T∈Π\{T0}

|T |−α >
1

θ
− 1

P



 (4)

= Pr

(

∑

T∈Π

|T |−α >
1

θ
− 1

P

)

(5)

where the summation in (3) represents the interference power
and (5) uses Slyvnyak’s Theorem. It is worth mentioning that
the probabilities in (3) and (4) arepalm measures[35] but
that in (5) is not. To ensure the quality-of-service, an outage-
probability constraint is applied such thatPout ≤ ǫ with
0 < ǫ ≪ 1. The performance metric is the spatial network-
throughput densityR (bit/s/Hz/unit-area) that is referred to
simply as the network throughput and defined as

R = λt log2(1 + θ) (6)

= λ0ρ log2(1 + θ) (7)

whereρ is controlled by adjustingP such that the outage-
probability constraint is satisfied. To be precise,R should be
scaled by the success probability(1− Pout) but this factor is
close to one givenǫ ≪ 1 and thus omitted for ease of notation.
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III. T RANSMISSION PROBABILITY

A. Infinite Battery Capacity

Deriving transmission probability requires analyzing thedis-
tribution of battery levels at energy harvesters. By substituting
B → ∞ into (1), the battery level at the typical energy
harvester with infinite battery capacity evolves as

St = St−1 + Zt − PI(St−1 ≥ P ). (8)

The distribution ofSt can be related to the threshold-crossing
probability for a random walk as follows. Denote the instants
when the battery level crosses the thresholdP from below as
t1, t2, · · · , namely thatStn−1 < P and Stn ≥ P for n =
1, 2, · · · . These time instants are grouped into the setT =
{t1, t2, · · · }. Moreover, define the random variablēZt = Zt−
P and two random processes{Gt} and{G′

t} as

Gt = max(Gt−1 + Z̄t, 0) (9)

G′
t =

{

St, t ∈ T
G′

t−1, t /∈ T (10)

with G0 = 0 andG′
0 = P . Based on (9), the probability that

{Gt} crosses a thresholdx > 0 in the t-th slot can be written
as

Pr(Gt > x) =

Pr

(

max

(

Z̄t, Z̄t + Z̄t−1, · · · ,
t
∑

n=1

Z̄n

)

> x

)

.
(11)

Consider the random walk{
∑m

n=1 Z̄t−m+1} starting in the
t-th slot and progressing backwards. The probability in (11)
can be interpreted as the probability that the said random walk
with a negative drift ever crosses the thresholdx by the t-
th step. Applying Kingman bound on the threshold-crossing
probability for a random walk [33, p234] gives that for all
t > 0,

Pr(Gt > x) ≤ e−r∗(P )x, λe < P (12)

wherer∗(P ) as defined in Assumption 1 withβ = P is the
positive root of the cumulant generating function ofZ̄t.

Lemma 1. Given infinite battery capacity, the battery levelSt

satisfies
St ≤ Gt +G′

t.

The proof of Lemma 1 is provided in Appendix A. Using
(12) and Lemma 1, the threshold-crossing probability for the
battery level can be shown to be bounded as follows.

Lemma 2. Given infinite battery capacity andλe < P , the
distribution of the battery levelSt satisfies

Pr(St > x) ≤ 2e−
1

2
r∗(P )(x−2P ) (13)

with r∗(P ) > 0.

The proof of Lemma 2 is given in Appendix B. Define the
energy-overshoot functionDt : R+ → R

+ as the expected
amount of energy stored in the typical harvester in excess of
a thresholdx > 0 in the t-th slot:

Dt(x) =

∫ ∞

x

(y − x)fs(y, t)dy (14)

wherefs(y, t) represents the probability density function of
St. The functionDt(x) can be bounded as shown in Lemma 3,
which is proved in Appendix C using Lemma 2.

Lemma 3. Given infinite battery capacity andλe < P , the
energy-overshoot functionDt(x) satisfies

Dt(x) ≤
4

r∗(P )
e−

1

2
r∗(P )(x−2P ), ∀ t ≥ 0

with r∗(P ) > 0.

Using Lemma 3, the main result of this section is readily
obtained as shown below.

Theorem 1. Given infinite battery capacity, the transmission
probability is

ρ = min

(

1,
λe

P

)

.

Proof: First, consider the case ofλe > P . Replacing the
indicator function in (8) with one yields a lower bound onSt,
namely thatSt ≥

∑t
m=1 Z̄m. As a result,ρ given in (2) can

be lower bounded as

ρ ≥ lim
n→∞

1

n

n
∑

t=1

E

[

I

(

t
∑

m=1

Z̄m ≥ P

)]

= lim
n→∞

1

n

n
∑

t=1

Pr

(

1

t

t
∑

m=1

(Zm−λe)≥P−λe+
P

t

)

. (15)

UsingE[Zn] = λe and applying the weak law of large numbers
[33], for given τ > 0 andδ > 0, there existsk > 0 such that
for all t ≥ k,

Pr

(

1

t

t
∑

m=1

(Zm − λe) ≥ −τ

)

≥ 1− δ. (16)

Sinceλe > P , it follows that givenδ > 0, there existτ > 0
andk′ > 0 such thatτ < (λe − P − P

t ) for all t ≥ k′. Using
this fact and substituting (16) into (15),

ρ ≥ lim
n→∞

1

n

n
∑

t=max(k,k′)

Pr

(

1

t

t
∑

m=1

(Zm − λe) ≥ −τ

)

≥ lim
n→∞

1

n

n
∑

t=max(k,k′)

(1 − δ)

= lim
n→∞

[n−max(k, k′)](1− δ)

n
= 1− δ. (17)

As δ is arbitrary andρ ≤ 1, the desired result for the case of
λe > P follows from (17) and lettingδ → 0.

Next, consider the case ofλe < P . The expected total
amounts of harvested and transmitted energy by thet-th slot
differ by the battery level in thet-th slot, namely

t
∑

m=1

E[Zm] = P

t
∑

m=1

E[I(Sm−1 > P )] + E[St]. (18)

SinceE[St] ≥ 0,

λe ≥ P lim
t→∞

1

t

t
∑

m=1

E[I(Sm−1 > P )]

= Pρ (19)
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where (19) is obtained using the definition ofρ in (2). It
follows that

ρ ≤ λe

P
, λe < P. (20)

Note thatE[St] ≤ x + Dt(x) with x > 0. Using Lemma 3,
for given δ > 0, there existsx > 0 such thatE[St] ≤ x + δ.
Combining this fact and (18) yields

λe = P lim
t→∞

1

t

t
∑

m=1

E[I(St−1 > P )] + lim
t→∞

E[St]

t

≤ P lim
t→∞

1

t

t
∑

m=1

E[I(St−1 > P )] + lim
t→∞

x+ δ

t

= Pρ.

As a result,

ρ ≥ λe

P
, λe < P. (21)

The desired result for the case ofλe < P is proved by
combining (20) and (21).

Last, the desired result for the boundary case ofλe = P
is proved by using the results proved above forλe 6= P and
letting P → λe from either the right or the left, completing
the proof.

Remark 1. According to Theorem 1, ifP < λe, each trans-
mitter transmits continuously in the steady state and is free of
interruption caused by energy shortage. However, continuous
transmissions are at the cost that the fraction of harvested
energy at the rate of(λe − P ) is never used for transmission
and hence wasted. Next, ifP > λe, there exists nonzero
probability that the battery level of a transmitter is belowP
and hence transmission can be interrupted. Nevertheless, all
harvested energy will be eventually used for transmission.

B. Finite Battery Capacity

The dynamics of the battery levelSt at the typical har-
vester are characterized in (1). LetD̃t(x) denote the energy-
overshoot function for the case of finite-battery capacity,which
is defined similarly asDt(x) in the preceding section. Given
finite battery capacity, battery overflow can occur such that
the battery saturates and arriving energy has to be discarded,
where the expected amount of discarded energy is measured
by D̃t(B). For the case ofλe < P , D̃t(B) can be bounded
by the same upper bound onDt(x) (see Lemma 3) as shown
below.

Lemma 4. Given finite battery capacity andλe < P , the
energy-overshoot functioñDt(B) satisfies

D̃t(B) ≤ 4

r∗(P )
e−

1

2
r∗(P )(B−2P )

with r∗(P ) > 0.

Lemma 4 is proved in Appendix D. Next, the tail
probability of St can be bounded for the case ofλe > P as
shown in the following lemma, which is proved in Appendix E.

Lemma 5. Given finite battery capacity andλe > P , the
distribution of the battery levelSt satisfies

lim
n→∞

1

n

n
∑

t=1

Pr(St < x) ≤ er
∗(P )(B−x)

with r∗(P ) < 0 andx ∈ [0, B].

Using Lemma 4 and 5, bounds on the transmission proba-
bility are obtained as follows.

Proposition 1. Given finite battery capacity, the transmission
probabilityρ satisfies the following.

1) If λe < P

λe

P

[

1− 4

λer∗(P )
e−

1

2
r∗(P )(B−2P )

]

≤ ρ ≤ λe

P
(22)

with r∗(P ) > 0.
2) If λe > P

1− er
∗(P )(B−P ) ≤ ρ ≤ 1 (23)

with r∗(P ) < 0.
3) If λe = P

max
x>0

{

λe

λe + x

[

1− 4e−
1

2
r∗(λe+x)(B−2λe−2x)

λer∗(λe + x)

]}

≤ ρ ≤ 1

(24)

with r∗(λe + x) > 0 givenx > 0.

Proof: Consider the case ofλe < P . By accounting for
the discarded energy due to battery overflow, the expected total
amounts of transmitted and harvested energy by thet-th slot
is related by modifying (18) as

t
∑

m=1

E[Zm] = P

t
∑

m=1

E[I(Sm−1 > P )] + E[St] +

t
∑

m=1

D̃m(B)

where the last term gives the expected amount of discarded
energy. Applying Lemma 4 andSt ≤ B yields

λe ≤ P lim
t→∞

1

t

t
∑

m=1

E[I(Sm−1 > P )] + lim
t→∞

B

t
+

4

r∗(P )
e−

1

2
r∗(P )(B−2P )

≤ Pρ+
4

r∗(P )
e−

1

2
r∗(P )(B−2P )

and the first inequality in (22) follows. The second inequality
is proved using Theorem 1 and the fact that limiting the battery
capacity reducesρ.

Next, consider the case ofλe > P . The definition ofρ in
(2) can be rewritten as

ρ = 1− lim
n→∞

1

n

n
∑

t=1

Pr(St < P ). (25)

The last term can be upper bounded using Lemma 5, yielding
the first inequality in (23). The second inequality is trivial.

Last, consider the case ofλe = P . Let ρ′(x) denote the
transmission probability for the virtual scenario where all
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transmissions use the power(P + x) with x > 0. It can be
proved similarly as the first inequality in (22) that

ρ′(x) ≥ λe

λe + x

[

1− 4e−
1

2
r∗(λe+x)(B−2λe−2x)

λer∗(λe + x)

]

(26)

with x > 0. Note that ρ′(x) also gives the transmission
probability for a virtual transmission strategy that removes
x unit of energy from the battery of a harvester following
every instance of transmission. Since removing energy from
the battery reduces the transmission probability,ρ ≥ ρ′(x)
holds. Combining this inequality and (26) yields

ρ ≥ λe

λe + x

[

1− 4

λer∗(λe + x)
e−

1

2
r∗(λe+x)(B−2λe−2x)

]

for all x > 0. The first inequality in (23) follows. The second
inequality is trivial, completing the proof.

Remark 2. For a sanity check, it can be observed from
Proposition 1 that asB → ∞, ρ converges to its counterpart
for the case of infinite battery capacity as stated in Theorem1.

Remark 3. By comparing Propostion 1 with Theorem 1, it is
observed that the degradation ofρ due to finite battery capacity
decreases exponentially with increasingB. Hence the effect
of finite battery capacity onρ is expected to diminish rapidly
as B increases, which is confirmed by simulation results in
the sequel.

Remark 4. The battery-level process for the case ofλe =
P is related to a random walk with a zero drift for which
r∗(λe) is not defined and the threshold-crossing probability
does not have an exponential upper bound [33]. This causes
the difficulty in deriving a lower bound onρ simpler than that
in (24). Moreover, the maximization of the lower bound in (24)
cannot be solved analytically. One should not expect that the
bound is maximized asx → 0 because the functionr∗(λe+x)
can be a monotone increasing function ofx. For instance,
given thatZt follows the exponential distribution with unit
mean, it is obtained that

r∗(1 + x) =
W0

(

−(1 + x)e−(1+x)
)

1 + x
+ 1

whereW0 denotes the0-th branch of the Lambert W function.
The function can be plotted and observed to be monotone
increasing forx ≥ 0.

In general, exact analysis ofρ for the case of finite battery
capacity is challenging except for some special cases, two of
which are discussed as follows.

1) Special case: bounded energy arrivals:Consider the
case thatZt has bounded support andZt ∈ [0, zmax].

Proposition 2. Consider bounded energy arrivals. Ifzmax ≤ P
and the battery capacityB > 2P , the probability for battery-
overflow is zero and the transmission probability is

ρ =
λe

P
(27)

whereλe ≤ P .

Proof: By expanding (1),

St =

{

min(St−1 + Zt − P,B), St−1 ≥ P

min(St−1 + Zt, B), St−1 < P.
(28)

Given B > 2P and Zt ≤ P , it follows from (28) that
St−1 ≤ 2P ensuresSt ≤ 2P . Since S0 = 0, this result
implies zero battery-overflow probability. Consequently,the
transmission probability is identical to that for the case of
infinite battery capacity in Theorem 1, proving the desired
result in (27).

2) Special case: discrete energy arrivals:Assume that
Zt is a discrete random variable and takes on values from
{0, 1, 2, · · · }, and thatP and B are positive integers with
B ≥ P . Under these assumptions, the distribution of battery
levels can be analyzed using Markov-chain theory. Since
St is independent of{Sn}t−2

n=1 given St−1, {St} satisfies
the Markov property and is hence a Markov chain. Given
battery capacityB, the Markov chain{St} has the state
space{0, 1, · · · , B}. Define the transition probabilitypmn as
pmn = Pr(St = n | St−1 = m). If n < B, the battery level
is below its limit and the transition probability is given as

pmn = Pr (Zt = n−m+ PI(m ≥ P )) , n < B (29)

where the indicator functionI specifies if energy ofP units
is consumed for transmission in the current slot depending on
if m reachesP . If n = B, the transmission from statem to
n includes all events that the energy arrival in the current slot
causes battery saturation, namelyZt = {B − m,B − m +
1, · · · } if m < P andZt = {B−m+P,B−m+P +1, · · · }
if m ≥ P . It follows that

pmn =

∞
∑

k=B−m

Pr (Zt = k + PI(m ≥ P )) , n = B. (30)

Combining (29) and (30) yields that

pmn =











































Pr (Zt = n−m) , m < P, n < B

Pr (Zt = n−m+ P ) , m ≥ P, n < B
∞
∑

k=B−m

Pr (Zt = k) , m < P, n = B

∞
∑

k=B−m

Pr (Zt = k + P ) , m ≥ P, n = B.

(31)

Let πm denote the steady-state probability of statem of the
Markov chain{St}. Moreover, letP represent the transition-
probability matrix with the(m,n)-th element given bypmn

and π the steady-state-probability row vector with them-
th element given byπm. Applying Perron-Frobenius theorem
[33],

πP = π. (32)

The stationary probabilities{πm} can be computed by solving
(32) under the constraint

∑B
m=0 πm = 1. Given π, the

transmission probability is obtained asρ =
∑B

m=P πm.
The stationary probabilities{πm} can be derived in closed

form for the simple case of binary energy arrivals, namely
that Zt ∈ {0, 1}. Then energy-arrival rate isλe = E[Zt] =
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1 2 30

Fig. 2. A Markov chain modeling the battery level at the typical transmitter
for the special case of binary energy arrivals andP = 3.

Pr(Zt = 1). The corresponding transition probabilities are
modified from (31) as

pmn =











1− λe, (m = P, n = 0) or (m < P, n = m)

λe, (m = P, n = 1) or (m < P, n = m+ 1)

0, otherwise.

Based on above transition probabilities, the Markov chain
{St} is illustrated in Fig. 2. The stationary distribution{πm}
satisfies the following equations obtained from (32) and the
above expression forpmn:

π0 = πP (1 − λe) + π0(1− λe)

π1 = πPλe + π1(1− λe) + π0λe

πm = πm−1λe + πm(1− λe), m = 2, · · · , P − 1

πP = πP−1λe.

(33)

Solving the equations in (33) and
∑P

m=0 πm = 1 gives the
following proposition.

Proposition 3. Consider the case that energy arrivals are
binary (Zt ∈ {0, 1}) and the transmission powerP is a
positive integer no larger than the battery capacityB. The
distribution of the battery levelSt is

π0 =
1− λe

P
, πP =

λe

P

πm =
1

P
, m = 1, · · · , P − 1.

The probability for battery overflow is zero and the transmis-
sion probability isρ = πP = λe/P .

IV. N ETWORK THROUGHPUT

In this section, using results on transmission probability
as derived in the preceding section, the network throughput
is maximized by optimizing transmission power under the
outage-probability constraint and assuming infinite battery
capacity. It is straightforward though tedious to extend the
network-throughput analysis to the case of finite battery ca-
pacity using related results from the last section.3 Such an
extension provides few new insights and thus is omitted.

3Essentially, the network throughput for the case of finite battery capacity
can be bounded by modifying the current analysis such that the transmission
probability ρ is replaced with its bounds as specified in Proposition 1.

A. Maximum Network Throughput

To characterize the network throughput, transmission power
P is related to the active transmitter densityλt under the
outage-probability constraint. To this end, we define a param-
eterµǫ, called thenominal node density, as the density of a
homogeneous PPPΛ(µǫ) such that

Pr





∑

T∈Λ(µǫ)

|T |−α > 1



 = ǫ (34)

where the summation can be interpreted as the interference
power measured at a receiver located at the origin from unit-
power interferers distributed asΛ(µǫ). Note thatµǫ depends
only on ǫ, α and the distribution of a PPP and is independent
of other network parameters. Moreover,µǫ is a strictly-
monotone-increasing function ofǫ due to the fact that denser
interferers result in larger outage probability for a link.The
expression ofµǫ has no closed form and its value can be
computed by simulation (see e.g., [36]). The relation between
µǫ andǫ is shown in Fig. 3. The following lemma results from
Mapping Theorem [34, p18].

Lemma 6. Consider the homogeneous PPPΛ(µǫ) = {X}.
The processaΛ(µǫ) = {aX} with a > 0 is a homogeneous
PPP with densityµǫ/a

2.

Define the admissible setF as all combinations of(λt, P )
that satisfy the outage-probability constraint:

F = {(λt, P ) ∈ R+ ×R+ | Pout(λt, P ) ≤ ǫ}. (35)

A combination(λt, P ) is admissibleif it belongs toF . To
deriveF , sinceΠ follows the same distribution asΛ(λt), Pout

in (5) can be rewritten as

Pout = Pr





∑

T∈Λ(λt)

|T |−α >
1

θ
− 1

P



 .

According to Lemma 6,Λ(λt) has the same distribution as
aΛ(µǫ) with a =

√

µǫ/λt. Consequently

Pout = Pr





∑

T∈aΛ(µǫ)

|T |−α >
1

θ
− 1

P





= Pr





∑

T∈Λ(µǫ)

|aT |−α >
1

θ
− 1

P





= Pr





∑

T∈Λ(µǫ)

|T |−α >

(

µǫ

λt

)
α

2

(

1

θ
− 1

P

)



 . (36)

Combining (34), (35) and (36) leads to the following lemma.

Lemma 7. The admissible setF is given as

F →
{

(λt, P ) ∈ R+ ×R+ | λt ≤ ζ(P )
}

(37)

whereζ(P ) represents the network interference temperature
and is given as

ζ(P ) = µǫ

(

1

θ
− 1

P

)
2

α

, P ≥ θ. (38)
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Fig. 3. The relation between the nominal node densityµǫ and the maximum outage probabilityǫ

Remark 5. The network interference temperatureζ(P ) spec-
ifies the maximum density of interferers a link can tolerate
without violating the outage-probability constraint. This quan-
tity is analogous to theinterference temperaturein cognitive-
radio systems that measures the maximum amount of addi-
tional interference for a certain frequency band without sig-
nificantly degrading the reliability of communications therein
[37]. On one hand, the network for largeP is interference-
limited and further increasingP does not contribute any
network-throughput gain. Correspondingly, it can be observed
from (38) thatζ(P ) saturates asP → ∞:

lim
P→∞

ζ(P ) =
µǫ

θ
2

α

. (39)

On the other hand, the network for smallP is noise-limited.
The value ofζ(P ) is not well defined ifP is below the target
SINR θ, for which the outage constraint cannot be satisfied
even in the absence of interference.

Remark 6. The admissible setF is illustrated as the shaded
region in Fig. 4. Increasingµǫ (relaxing the outage-probability
constraint) enlargesF and vice versa. Letλ∗ denote the
maximum of the admissible values forλt under the outage
constraint. Then the boundary ofF corresponds toλ∗ = ζ(P ).

Remark 7. The conditionλt ≤ ζ(P ) for the admissible set
in (37) guarantees thatP (equal to the received SNR) is no
smaller thanθ that is the minimum received SINR required
for correct decoding.

We are ready to derive the maximum network throughput
R∗ and the optimal transmission powerP ∗. Let f denote the
function that mapsP to λt for fixed λ0 and λe, which is
obtained from Theorem 1 as

f(P ) = λ0 min

(

1,
λe

P

)

.

The derivation ofR∗ can be intuitively explained using Fig. 4.
It can be observed form the curve depicting the function
f(P ) that f(P ) is fixed at λ0 for all P ≤ λe and a
strictly-monotone-decreasing function forP > λe. Let P ∗

correspond to the intersection between the curve(P, f(P ))
and the admissible setF . Then under the outage-probability
constraint,f(P ) is maximized atP = P ∗, which corresponds
to R∗ based on the definition in (6) since it is proportional to
λt. Note that the claim is based on the assumptionǫ ≪ 1
or else need not hold (see Remark 10). Depending on if
P ∗ is larger or smaller thanλe, P ∗ and R∗ have different
expressions as shown in Theorem 2 that states the main result
of this section.

Theorem 2. Given infinite battery capacity, the maximum
network throughputR∗ and the optimal transmission power
P ∗ are specified as follows.

1) If λ0 ≤ ζ(λe),

R∗ = λ0 log2(1 + θ) (40)

and P ∗ is an arbitrary value in the range
[

θ

1−θ(λ0/µǫ)
α

2

, λe

]

.

2) If λ0 > ζ(λe) > 0,

R∗ =
λ0λe

P ∗
log2(1 + θ) (41)

whereP ∗ ≥ λe and
√
P ∗ solves the following polyno-

mial equation:

xα − θxα−2 − θ

(

λ0λe

µǫ

)
α

2

= 0. (42)

Proof: First, consider the case ofλ0 ≤ ζ(λe). The
throughput expression in (7) implies that

R∗ ≤ λ0 log(1 + θ). (43)
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Case 1: λ0 > ζ(λe) > 0

Case 2: λ0 ≤ ζ(λe)

P0

Fig. 4. The admissible setF is sketched as the shaded region that contains all combinations of active transmitter densityλt and transmission powerP
that satisfy the outage-probability constraint. Given infinite battery capacity and fixed transmitter densityλ0, f(P ) is a monotone-decreasing function ofP
as plotted with the thick lines based on Theorem 1 for the cases of λ0 > ζ(λe) > 0 andλ0 ≤ ζ(λe), where the intersections are indicated byP ∗ andP0,
respectively. Note thatP ∗ and an arbitrary value in[P0, λe] give the optimal transmission power that maximizes the network throughput for the corresponding
cases.

Define P0 such thatλ0 = ζ(P0) (see Fig. 4). Using the
definition of ζ in (38),

P0 =
θ

1− θ(λ0/µǫ)
α

2

.

It can be observed from (38) thatζ is a strictly-monotone-
increasing function. As a result, sinceλ0 ≤ ζ(λe) andλ0 =
ζ(P0), P0 ≤ λe and thus the set[P0, λe] (the range ofP ∗

in the theorem statement) is nonempty. Consider an arbitrary
value p ∈ [P0, λe]. Sinceλ0 ≤ ζ(p) from the monotonicity
of ξ, (λt, P ) = (λ0, p) is admissible according to Lemma 7.
Furthermore,(λt, P ) = (λ0, p) is feasible asρ(p) = 1 based
on Theorem 1 andp ≤ λe. It follows thatP = p maximizes
R by achieving the equality in (43). This proves the desired
result for the case ofλ0 ≤ ζ(λe).

Next, consider the other case ofλ0 > ζ(λe) > 0. Using
the throughput expression in (7) and Lemma 7, the problem
of maximizing the network throughput is equivalent to

maximize ρ(P )

subject to λ0ρ(P ) ≤ ζ(P ).
(44)

The inequalityP ∗ ≥ λe in the theorem statement can be
proved by contradiction as follows. Assume thatP ∗ < λe.
This assumption results inρ(P ∗) = 1 by applying Theorem 1.
Moreover,ζ(P ∗) < ζ(λe) is obtained using the aforemen-
tioned monotonicity ofζ, and henceλ0 > ζ(P ∗) given that
λ0 > ζ(λe). Combiningλ0 > ζ(P ∗) and ρ(P ∗) = 1 shows
that the assumption ofP ∗ < λe violates the constraint in
(44), proving thatP ∗ ≥ λe. Then applying Theorem 1 yields
the desired result in (41). Last, sinceρ(P ) and ζ(P ) are
strictly-monotone-decreasing and strictly-monotone-increasing
functions, respectively, the solutionP ∗ for the problem in (44)

must satisfyλ0ρ(P
∗) = ζ(P ∗) or equivalently

√
P ∗ solves the

polynomial equation in (42), completing the proof.

Remark 8. For the case ofλ0 ≤ ζ(λe), the network is
relatively sparse andλe is sufficiently large such that it is
optimal as well as feasible for all transmitters to transmitwith
probability one, resulting in the network throughput in (40).
For the case ofλ0 > ζ(λe), the network is relatively dense
and high transmission power is required for satisfying the
outage-probability constraint. Consequently, not all transmit-
ters can transmit simultaneously, corresponding to the optimal
transmission probability smaller than one and the network
throughput in (41).

Remark 9. With α > 2 and the last coefficient at the right-
hand side being negative, the polynomial equation in (42) has
at least one strictly positive solution that givesP ∗ for the case
of λ0 > ζ(λe). For the special case ofα = 4, the polynomial
equation in (42) is quadratic and solving it givesP ∗ in closed
form as shown below.

Corollary 1. Given infinite battery capacity,λ0 > ζ(λe) and
α = 4, the optimal transmission powerP ∗ is

P ∗ =
θ +

√

θ2 + 4θ
(

λ0λe

µǫ

)
α

2

2
.

Remark 10. Recall that the throughput maximized in Theo-
rem 2 is defined in (6) based on the assumptionǫ ≪ 1, where
the scaling factor(1−Pout) (success probability) is omitted for
simplicity since it is close to one under the outage-probability
constraint. If this factor is considered, changing the value of
P ∗ over the range

[

θ

1−θ(λ0/µǫ)
α

2

, λe

]

[see Theorem 2 for the

case ofλ0 ≤ ζ(λe)] can lead to a throughput variation no
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larger thanǫR∗, which is negligible givenǫ ≪ 1. However,
if ǫ is comparable with one or there is no outage constraint
(ǫ = 1), the success probability should be accounted for and
the throughput redefined as

R = (1 − Pout)ρλ0 log2(1 + θ)

wherePout ≤ ǫ. The results in Theorem 2 can be extended
using the redefined metric by analyzingPout as a function of
P , which has no closed-form but can be approximated by its
bounds [27].

B. Maximum Network Throughput: Extreme Cases

Consider a network with a high energy-arrival rate (λe →
∞). The maximum network throughputR∗ can be upper
bounded as

R∗ ≤ µǫ

θ
2

α

log2(1 + θ) (45)

since the outage-probability constraint requires that (see
Lemma 7)

λt ≤ ζ(P )

≤ µǫ

θ
2

α

(46)

where (46) follows from (39) and thatζ is a monotone-
increasing function. Combining the two upper bounds onR∗

in (43) and (45) gives

R∗ ≤ min

(

λ0,
µǫ

θ
2

α

)

log2(1 + θ). (47)

For a high energy-arrival rate, equality is achieved in (47)as
shown below.

Proposition 4. Given infinite battery capacity, as the energy-
arrival rate λe → ∞, the maximum network throughput
converges as

lim
λe→∞

R∗(λe) = min

(

λ0,
µǫ

θ
2

α

)

log2(1 + θ). (48)

Proof: First, consider the case ofλ0 ≤ µǫθ
− 2

α . Set
P = λe − δ with δ > 0. This results inρ = 1 according
to Theorem 1. Consequently,λ0 = λt and henceλt ≤ µǫθ

− 2

α

from the assumption aboutλ0. Combining this inequality
and (39) yields thatλt ≤ ζ(P ) as P → ∞ along with
λe → ∞. It follows that asλe → ∞, the combination
(λt, P ) = (λ0, λe − δ) is admissible according to Lemma 7.
This proves the equality in (47) for the current case.

Next, consider the case ofλ0 > µǫθ
− 2

α . Given this strict
inequality, there existsδ > 0 such that

λ0 >
µǫ

θ
2

α

− δ. (49)

SetP as
P =

λeλ0

µǫθ−
2

α − δ
. (50)

Combining (49) and (50) givesλe < P . Consequently,
applying Theorem 1 gives

ρ =
µǫθ

− 2

α − δ

λ0

and hence
λt =

µǫ

θ
2

α

− δ. (51)

As P → ∞ along with λe → ∞, it follows from (39) and
(51) that there existsδ > 0 such thatλt ≤ ζ(P ). As a result,
by applying Lemma 7, the combination of(λt, P ) as specified
in (50) and(51) is admissible. This leads to

lim
λe→∞

R∗(λe) =

(

µǫ

θ
2

α

− δ

)

log2(1 + θ).

Letting δ → 0 proves the equality in (48) for the current case,
completing the proof.

Remark 11. Given a high energy arrival rate and infinite
battery capacity, in the steady state, transmitters alwayshave
sufficient energy for transmission. Therefore, the expression
in (48) also specifies the maximum network throughput of
a MANET with reliable power supplies instead of energy
harvesting.

Remark 12. For the case ofλ0 < µǫθ
− 2

α , the active transmit-
ter density is below the network-interference temperatureeven
though all transmitters transmit with probability one. There-
fore, there is margin for further increasing active transmitter
density without violating the outage-probability constraint. For
this reason, the network-throughput limit in (48) for the current
case is proportional to the transmitter density. However, for
the case ofλ0 ≥ µǫ/θ

2

α , active transmitter density reaches
the network-interference temperature and cannot be further in-
creased. Consequently, the corresponding network-throughput
limit in (48) is independent of the transmitter density.

Consider a sparse network (λ0 → 0). It is optimal for
each transmitter to transmit with probability one by setting
the transmission powerP ∗ ∈ (θ, λe] if λe > θ or other-
wise with probabilityλe/θ by settingP ∗ to be equal toθ
(see Theorem 1). The corresponding network throughputs are
R∗ = λ0 log2(1+ θ) andR∗ = λ0λe

θ log2(1+ θ), respectively,
which both diminish asλ0 → 0. Next, for a dense network
(λ0 → ∞), the maximum network throughput is specified as
follow.

Proposition 5. Given infinite battery capacity, as the trans-
mitter densityλ0 → ∞, the maximum network throughput
converges as

lim
λ0→∞

R∗(λ0) =
µǫ

θ
2

α

log2(1 + θ). (52)

Proof: SetP as the following function ofλ0:

P (λ0) =
λ0λe

µǫ

(

1

θ
− 1

logλ0

)− 2

α

(53)

that is shown shortly to achieve the limit ofR∗ in (52). Given
(53), there existsτ1 > 0 such thatP (λ0) ≥ λe for all λ0 > τ1.
Therefore, it follows from (7) and Theorem 1 that

lim
λ0→∞

R(λ0, P (λ0)) = lim
λ0→∞

λ0λe

P (λ0)
log2(1 + θ)

= lim
λ0→∞

µǫ

(

1

θ
− 1

log λ0

)
2

α

log2(1 + θ)

=
µǫ

θ
2

α

log2(1 + θ). (54)
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Fig. 5. Maximum network throughput versus energy-arrival rate for optimal transmission power, infinite battery capacity, and the transmitter density
λ0 = {0.02, 0.05, 0.5}.

Combining (45) and (54) shows that the maximum network
throughput has the limit in (52) asλ0 increases.

The remaining proof verifies thatP (λ0) and the correspond-
ing λt are admissible asλ0 → ∞. It follows from (53) and
Theorem 1 that for allλ0 > τ1, λt is a function ofλ0 and
given as

λt(λ0) = µǫ

(

1

θ
− 1

logλ0

)
2

α

. (55)

Substituting (53) into (38) yields

ζ(P (λ0)) = µǫ

(

1

θ
− µǫ

λ0λe

(

1

θ
− 1

logλ0

)
2

α

)
2

α

. (56)

By comparing (55) and (56), there existsτ2 > 0 such
that λt(λ0) ≤ ζ(P (λ0)) for all λ0 ≥ τ2. This proves the
admissibility ofP (λ0) in (53) andλt(λ0) in (55) asλ0 → ∞,
completing the proof.

Remark 13. The rate of total energy harvested per unit area
is λtP

∗ = λ0λe as λ0 → ∞. The linear growth of the
rate with increasingλ0 is due to that the harvester density
is equal toλ0. However, more aggressive energy harvesting in
a dense network does not continuously increase the network
throughput that saturates at high transmitter power as the
network becomes interference limited (see Proposition 5).
This issue may be resolved by using an alternative multiple-
access protocol such as frequency-hopping multiple accessthat
reduces the density of simultaneous co-channel transmitters.

V. NUMERICAL RESULTS

The nominal node densityµǫ is fixed as0.05 for all numer-
ical results, corresponding to the maximum outage probability
ǫ ≈ 0.015. The relation betweenµǫ and ǫ is obtained by
simulation based on the following procedure (see e.g., [36]).
The summation over the PPPΛ(µǫ) in (34) is approximated

by the signal power measured at the origin due to unit-power
transmissions by transmitters uniformly distributed in a disk.
The number of transmitters follows the Poisson distribution
with mean200 and the disk radius is adjusted such that the
expected transmitter density is equal toµǫ. Based on this
setup, the values of(ǫ, µǫ) are computed using the Monte
Carlo method that yields the plot in Fig. 3. In addition, all
numerical results are based on the SINR thresholdθ = 3 and
the path-loss exponentα = 3.

The distribution of the energy arrival process{Zt} is
specified as follows. Let{Vt} denote an i.i.d. sequence of
random variables following the chi-squared distribution with
d ∈ {1, 2, · · · } degrees of freedom (DoF) and mean equal
to dλe. Let {Zt} = { 1

dVt} and henceZt has meanλe

and variance2λ2
e/d. The chosen distribution ofZt allows its

variance (randomness) to be controlled by varyingd while the
mean ofZt is fixed. Note thatZt converges to a constantλe

in probability asd → ∞ by the law of large numbers.
Infinite battery capacity is assumed for the numerical results

presented in Fig. 5 and Fig. 6. In Fig. 5, the maximum network
throughputR∗ computed using Theorem 2 is plotted against
the increasing energy-arrival rateλe for the transmitter density
λ0 = {0.02, 0.05, 0.5}. It can be observed from Fig. 5 thatR∗

grows asλe increases and saturates for largeλe. The limits
agree with those computed using Proposition 4, namely0.04
bit/s/Hz/unit-area forλ0 = 0.02 and 0.048 bit/s/Hz/unit-area
for λ0 = {0.05, 0.5}. In addition, Fig. 5 shows that in a denser
network (i.e.,λe = 0.5), R∗ reaches its limit more rapidly as
λe increases.

Fig. 6 shows the curves ofR∗ versus λ0 for λe =
{0.5, 1, 5}, which are obtained using Theorem 2. Asλ0

increases and regardless of the value ofλe, R∗ is observed
to converge to the limit0.048 bit/s/Hz/unit-area predicted by
Proposition 5. Moreover, it is observed from Fig. 6 that larger
λe results in faster convergence ofR∗ to its limit as λ0
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Fig. 6. Maximum network throughput versus transmitter density for optimal transmission power, infinite battery capacity, and the energy-arrival rate
λe = {0.5, 1, 5}.
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Fig. 7. A comparison between the average tail probability ofthe battery level,limn→∞

1

n

∑
n

t=1
Pr(St > x), evaluated by simulation and its upper bound

computed based on Lemma 2 for infinite battery capacity, the DoF of the energy-arrival processd = 4, the energy-arrival rateλe = 2 and the transmission
powerP = 4.

increases.

The average tail probability of the battery level,
limn→∞

1
n

∑n
t=1 Pr(St > x), is evaluated by simulation and

compared in Fig. 7 with its upper bound from Lemma 2 given
infinite battery capacity,d = 4, λe = 2 and P = 4. The
bound is observed to be loose but sufficient for the analysis.
The similar observation and remark also hold for the upper
bound on the energy-overshoot functionDt(x) as given in
Lemma 3 and the numerical results are omitted for brevity.

Next, consider the case of finite battery capacity. In Fig. 8,
the transmission probabilityρ obtained by simulation is plotted

against increasing transmission powerP for finite battery
capacityB = {1.5P, 2P, 4P, 10P}, d = 4, λe = 2, and
λ0 = 0.02. It is found thatB = 10P is sufficiently large such
that the values ofρ closely match those for the case of infinite
battery capacity as computed using Theorem 1. As observed
from Fig. 8, finite battery capacity degradesρ significantly
only whenP and henceB are relatively small; asP andB
increase,ρ rapidly approaches the counterpart for the case of
infinite battery capacity (or that forB = 10P ).

Fig. 9 displays the curves ofρ versusP obtained by simu-
lation forB = 1.5P , d = {2, 4, 8, 16}, λe = 2 andλ0 = 0.02.
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Fig. 9. Transmission probability versus transmission power for both the cases of finite (B = 1.5P ) and infinite battery capacity. The DoF of the energy-arrival
process isd = {2, 4, 8, 16}, the energy-arrival rateλe = 2, and the transmitter densityλ0 = 0.02.

For comparison, the curve for the case of infinite battery
capacity is also plotted. As observed from Fig. 9, reducing
the randomness of the energy arrival process by increasingd
leads to smaller battery-overflow probability and hence higher
ρ. The effect ofd on ρ diminishes asP (and hence battery
capacity) increases andρ converges to its counterpart for the
case of infinite battery capacity.

Last, we investigate the effect of the DoF of the energy
arrival process on the network throughput. To this end, Fig.10
shows the curves ofR∗ versusλe obtained by simulation
for B = 1.5P , d = {2, 4, 8, 16}, and λ0 = 0.02. The
curve for the case of infinite battery capacity is also plotted

for comparison. It can be observed from Fig. 10 that finite
battery capacity causes significant throughput loss especially
for largeλe. Such loss is smaller for largerd because of less
randomness in harvested energy and hence smaller battery-
overflow probability.

VI. CONCLUSION

The energy dynamics in a mobile ad hoc network have been
characterized in terms of transmission probability. Assuming
infinite battery capacity, it has been found that the transmis-
sion probability is equal to one when the energy-arrival rate
exceeds transmission power or otherwise is equal to their



14

0 2 4 6 8 10

Enrgy arrival rate (unit/slot)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t 
(b

it
/s

/H
z
/u

n
it
 a

re
a
)

 !"!#$%&'($$%)*&+(,(+#$*

-#!#$%&'($$%)*&+(,(+#$*

- DoF = 16

- DoF = 8

- DoF = 4

- DoF = 2

Fig. 10. Maximum network throughput versus energy-arrivalrate for optimal transmission power and both the cases of finite (B = 1.5P ) and infinite battery
capacity. The DoF of the energy-arrival process isd = {2, 4, 8, 16} and the transmitter densityλ0 = 0.02.

ratio. Moreover, for the case of finite battery capacity, bounds
on the transmission probability have been obtained and exact
expressions have been derived for the special cases of bounded
or discrete energy arrivals. The results on transmission prob-
ability have been applied to derive the maximum network
spatial throughput for a given energy-arrival rate and optimized
transmission power. It has been shown that it is optimal and
feasible for all transmitters to transmit with probabilityone
if the transmitter density is below a threshold that depends
on the energy-arrival rate; otherwise, each transmitter should
transmit with probability smaller than one.

There are several potential directions for extending this
work. Coexisting wireless networks may harvest electromag-
netic (EMR) energy from each others’ transmissions. Mod-
eling and designing coexisting networks with EMR energy
harvesting give rise to many new research issues ranging from
algorithm design to throughput analysis. The current work
focuses on ad hoc networks with random access and can be
extended to other types of networks such as cellular networks
or other medium-access-control protocols such as carrier-
sensing multiple access. Last, it is interesting to investigate the
effects of bursty data arrivals and more sophisticated power
control on the throughput of wireless networks powered by
energy harvesting.
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APPENDIX A
PROOF OFLEMMA 1

If t ∈ T , it follows from (10) thatSt = G′
t and hence

the inequality in the lemma statement holds sinceGt ≥ 0.

Next, consider the case oft /∈ T and let t0 ∈ T denote
the time instant closest to but smaller thant. It follows that
the random walk{St} does not cross the thresholdP from
below in the time slots{t0+1, · · · , t}. Therefore, ifSt ≥ St0 ,
St = St0 +

∑t
m=t0+1 Z̄m. ThenSt can be upper bounded as

St ≤ St0 +max
(

0, Z̄t, Z̄t + Z̄t−1, · · · ,
∑t

m=t0+1
Z̄m

)

.
(57)

It can be obtained from (9) that

Gt = max
(

0,Z̄t, Z̄t + Z̄t−1, · · · ,
∑t

m=t0+2
Z̄m,

Gt0 +
∑t

m=t0+1
Z̄m

)

.
(58)

SinceGt0 ≥ 0 andG′
t0 = St0 from (10), combining (57) and

(58) proves the inequality in the lemma statement for the case
of t /∈ T , completing the proof. �

APPENDIX B
PROOF OFLEMMA 2

Using Lemma 1 and for0 ≤ a ≤ x,

Pr(St > x) ≤ Pr(Gt +G′
t > x)

= Pr(Gt > x−G′
t | G′

t ≥ a) Pr (G′
t ≥ a)+

Pr(Gt > x−G′
t | G′

t < a) Pr (G′
t < a)

≤ Pr (G′
t ≥ a) + Pr(Gt > x− a). (59)

Let t0 ∈ T specify the slot such thatG′
t = St0 . SinceSt0−1 <

P based on the definition ofT , St0 = St0−1 +Zt0 using (8).
It follows from this equality and (59) that

Pr(St > x) ≤ Pr (St0−1 + Zt0 ≥ a) + Pr(Gt > x− a)

≤ Pr (Zt0 ≥ a− P ) + Pr(Gt > x− a)

= Pr
(

Z̄t0 ≥ a− 2P
)

+ Pr(Gt > x− a). (60)
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By bounding the first term in (60) using Chernoff bound [33]
and the second using (12),

Pr(St > x) ≤ min
r≥0

E

[

erZ̄1

]

e−r(a−2P ) + e−r∗(P )(x−a)

≤ e−r∗(P )(a−2P ) + e−r∗(P )(x−a) (61)

where (61) results from settingr = r∗(P ). By choosinga
such that the exponents of the two terms in (61) are equal, the
desired result follows. �

APPENDIX C
PROOF OFLEMMA 3

From the definition in (14),

Dt(x) =

∫ ∞

x

yfs(y, t)dy − xPr(St > x)

=

∫ ∞

x

Pr(St > y)dy (62)

≤
∫ ∞

x

2e−
1

2
r∗(P )(y−2P )dy (63)

where (62) and (63) are obtained using integration by parts
and Lemma 2, respectively. The desired result follows from
(63). �

APPENDIX D
PROOF OFLEMMA 4

The definitions of the random processes{Gt} and{G′
t} in

(9) and (10) are modified for the case of finite-battery capacity.
Specifically,{Gt} is redefined as

Gt = min(max(Gt−1 + Z̄t, 0), B − P ) (64)

and{G′} is as given in (10) but with the battery-level evolution
following (1). Given finite battery capacityB, the inequality
St ≤ G′

t +Gt can be proved using induction as follows. This
inequality holds fort = 0 sinceS0 = G0 = 0 andG′

0 = P .
Assume thatSt ≤ G′

t+Gt. Consider the case of(t+1) ∈ T . It
follows from the definition of{G′

t} in (10) thatSt+1 = G′
t+1.

Therefore,St+1 ≤ G′
t+1 + Gt+1 sinceGt+1 ≥ 0 from (64).

Next, consider the case of(t+1) /∈ T . Based on the evolution
of {St} in (1),

St+1 =

{

min(St + Zt+1, B), St < P

min(St + Z̄t+1, B), St ≥ P.
(65)

Given that(t+1) /∈ T andSt < P , St +Zt+1 ≤ P based on
the definition ofT . As a result,

min(St + Zt+1, B) ≤ G′
t+1 +Gt+1 (66)

sinceGt+1 ≥ 0 andG′
t+1 ≥ P from (10). If St ≥ P , since

St ≤ G′
t +Gt,

min(St + Z̄t+1, B) ≤ min(G′
t +Gt + Z̄t+1, B)

≤ G′
t +min(Gt + Z̄t+1, B − P ) (67)

≤ G′
t+1 +Gt+1 (68)

where (67) appliesG′
t ≥ P , and (68) uses (64) andG′

t+1 = G′
t

given that(t+1) /∈ T . Combining (65), (66) and (68) proves
that St+1 ≤ G′

t+1 + Gt+1 if St ≤ G′
t + Gt. It follows that

St ≤ G′
t + Gt for all t ≥ 0. Furthermore, it can be shown

by expanding (64) thatPr(Gt > x) is no larger than that for
the case of infinite battery capacity. Using these results and
following the same procedures as for proving Lemma 2 and
3, it can be shown that (13) also holds for the case of finite
battery capacity and

D̃t(x) ≤
4

r∗(P )
e−

1

2
r∗(P )(x−2P ), ∀ t ≥ 1.

The desired result follows by settingx = B. �

APPENDIX E
PROOF OFLEMMA 5

Define the random process{Qt} such that

Qt = min(Qt−1 + Z̄t, B), t = 1, 2, · · · (69)

with Q0 = 0. Comparing (69) and the evolution ofSt in (1)
shows thatSt ≥ Qt. Therefore, givenx ∈ [0, B)

Pr(St < x) ≤ Pr(Qt < x). (70)

By expanding (69)

Qt = min

(

B,B + Z̄t, B + Z̄t + Z̄t−1, · · · ,

B +

t
∑

m=2

Z̄m,

t
∑

m=1

Z̄m

)

.

(71)

For ease of notation, define

Q̃t = B +min

(

0, Z̄t, Z̄t + Z̄t−1, · · · ,
t
∑

m=2

Z̄m

)

.

ThenQt = min(Q̃t,
∑t

m=1 Z̄m). It follows that

Pr(Qt < x) = Pr

(

t
∑

m=1

Z̄m < x | Qt =

t
∑

m=1

Z̄m

)

×

Pr

(

Qt =

t
∑

m=1

Z̄m

)

+

Pr
(

Q̃t < x | Qt = Q̃t

)

Pr
(

Qt = Q̃t

)

≤ Pr

(

Qt =

t
∑

m=1

Z̄m

)

+

Pr
(

Q̃t < x | Qt = Q̃t

)

. (72)

By inspecting (71), the eventQt =
∑t

m=1 Z̄m is equivalent
to the onemax(Z̄1, Z̄1 + Z̄2, · · · ,

∑t
m=1 Z̄m) ≤ B. Then the

inequality in (72) can be rewritten as

Pr(Qt < x) ≤ Pr

(

max

(

Z̄1, Z̄1+Z2, · · · ,
t
∑

m=1

Z̄m

)

≤B

)

+

Pr

(

Q̃t < x | max

(

Z̄1, Z̄1+Z2, · · · ,
t
∑

m=1

Z̄m

)

>B

)

.
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Note that removing the conditioning of the last term increases
the probability. Therefore

Pr(Qt < x) ≤ Pr

(

max

(

Z̄1, Z̄1+Z2, · · · ,
t
∑

m=1

Z̄m

)

≤B

)

+

Pr
(

Q̃t < x
)

≤ Pr

(

t
∑

m=1

Z̄m ≤ B

)

+ Pr
(

Q̃t < x
)

. (73)

Applying a similar technique as for proving the result in
Theorem 1 for the case ofλe > P shows that givenλe > P

lim
n→∞

1

n

n
∑

t=1

Pr

(

t
∑

m=1

Z̄m ≤ B

)

= 0. (74)

Using the definition ofQ̃t, the last term in (73) can be
rewritten as

Pr
(

Q̃t < x
)

= Pr

(

min

(

0, Z̄t, Z̄t + Z̄t−1, · · · ,
t
∑

m=2

Z̄m

)

≤

x−B

)

= Pr

(

min

(

Z̄t, Z̄t + Z̄t−1, · · · ,
t
∑

m=2

Z̄m

)

≤

x−B

)

since(x−B) ≤ 0. Applying Kingman bound in a similar way
as for obtaining (11) yields

Pr
(

Q̃t < x
)

≤ er
∗(P )(B−x) (75)

wherer∗(P ) < 0 according to Assumption 1 givenλe > P .
By combining (73), (74) and (75)

lim
n→∞

1

n

n
∑

t=1

Pr(Qt < x) ≤ er
∗(P )(B−x). (76)

The desired result follows from (70) and (76). �

REFERENCES

[1] J. A. Paradiso and T. Starner, “Energy scavenging for mobile and
wireless electronics,”IEEE Pervasive Computing, vol. 4, pp. 1536–1268,
Jan.-Mar. 2005.

[2] C. Ho and R. Zhang, “Optimal energy allocation for wireless commu-
nications with energy harvesting constraints,”IEEE Trans. on Signal
Processing, vol. 60, pp. 4808–4818, Sep. 2012.

[3] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener,“Transmis-
sion with energy harvesting nodes in fading wireless channels: Optimal
policies,” IEEE Journal on Selected Areas in Comm., vol. 29, pp. 1732–
1743, Sep. 2011.

[4] J. Yang, O. Ozel, and S. Ulukus, “Broadcasting with an energy harvest-
ing rechargeable transmitter,”IEEE Trans. on Wireless Comm., vol. 11,
pp. 571–583, Feb. 2012.

[5] R. Zhang and C. Ho, “MIMO broadcasting for simultaneous wireless
information and power transfer,”submitted to IEEE Tarns. on Comm.
(Avaiable: http://arxiv.org/abs/1105.4999).

[6] L. Georgiadis, M. Neely, and L. Tassiulas,Resource Allocation and
Cross Layer Control in Wireless Networks. Now Publishers Inc, 1 ed.,
2006.

[7] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy
harvesting communication system,”IEEE Trans. on Comm., vol. 60,
pp. 220–230, Jan. 2012.

[8] M. A. Antepli, E. Uysal-Biyikoglu, and H. Erkal, “Optimal packet
scheduling on an energy harvesting broadcast link,”IEEE Journal on
Sel. Areas in Comm., vol. 29, pp. 1721–1731, Aug. 2011.

[9] H. Huang and V. K. N. Lau, “Decentralized delay optimal control for
interference networks with limited renewable energy storage,” IEEE
Trans. on Signal Processing, vol. 60, pp. 2552–2561, May 2012.

[10] M. Gatzianas, L. Georgiadis, and L. Tassiulas, “Control of wireless
networks with rechargeable batteries,”IEEE Trans. on Wireless Comm.,
vol. 9, pp. 581–593, Feb. 2010.

[11] E. Uysal-Biyikoglu, B. Prabhakar, and A. El Gamal, “Energy-efficient
packet transmission over a wireless link,”IEEE/ACM Trans. on Net-
working, vol. 10, pp. 487–499, Apr. 2002.

[12] W. Chen, M. J. Neely, and U. Mitra, “Energy-efficient transmissions
with individual packet delay constraints,”IEEE Trans. on Information
Theory, vol. 54, pp. 2090–2109, May 2008.

[13] M. J. Neely, “Optimal energy and delay tradeoffs for multiuser wireless
downlinks,” IEEE Trans. on Information Theory, vol. 53, pp. 3095–3113,
Sep. 2007.

[14] M. J. Neely, “Energy optimal control for time-varying wireless net-
works,” IEEE Trans. on Information Theory, vol. 52, pp. 2915–2934,
Jul. 2006.

[15] F. Iannello, O. Simeone, and U. Spagnolini, “Medium access control
protocols for wireless sensor networks with energy harvesting,” IEEE
Trans. on Comm., vol. 60, pp. 1381–1389, May 2012.

[16] A. Kansal, J. Hsu, M. Srivastava, and V. Raghunathan, “Harvesting
aware power management for sensor networks,”ACM Trans. on Em-
bedded Computing Sys., vol. 6 (Article 32), Sep. 2007.

[17] J. Jeon and A. Ephremides, “On the stability of random multiple access
with stochastic energy harvesting,” inProc., IEEE Intl. Symposium on
Information Theory, Jul. 31 - Aug. 5 2011.

[18] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and
M. Franceschetti, “Stochastic geometry and random graphs for
the analysis and design of wireless networks,”IEEE Journal on
Selected Areas in Comm., vol. 27, pp. 1029–1046, Jul. 2009.

[19] F. Baccelli, B. Blaszczyszyn, and P. Muhlethaler, “An ALOHA protocol
for multihop mobile wireless networks,”IEEE Trans. on Information
Theory, vol. 52, pp. 421–36, Feb. 2006.

[20] S. P. Weber, X. Yang, J. G. Andrews, and G. de Veciana, “Transmission
capacity of wireless ad hoc networks with outage constraints,” IEEE
Trans. on Information Theory, vol. 51, pp. 4091–4102, Dec. 2005.

[21] H. Nguyen, F. Baccelli, and D. Kofman, “A stochastic geometry analysis
of dense IEEE 802.11 networks,” inProc., IEEE Infocom, pp. 1199–
1207, May 2007.

[22] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractableapproach to
coverage and rate in cellular networks,”IEEE Trans. on Comm., vol. 59,
pp. 3122–3134, Nov. 2011.

[23] H. Dhillon, R. Ganti, F. Baccelli, and J. Andrews, “Modeling
and analysis of K-tier downlink heterogeneous cellular networks,”
to appear in IEEE Journal on Sel. Areas in Comm. (Available:
http://arxiv.org/abs/1103.2177).

[24] K. Huang, V. K. N. Lau, and Y. Chen, “Spectrum sharing between
cellular and mobile ad hoc networks: Transmission-capacity trade-off,”
IEEE Journal on Selected Areas in Comm., vol. 27, pp. 1256–1267, Sep.
2009.

[25] S. P. Weber, J. G. Andrews, and N. Jindal, “The effect of fading, channel
inversion, and threshold scheduling on ad hoc networks,”IEEE Trans.
on Information Theory, vol. 53, pp. 4127–4149, Nov. 2007.

[26] N. Jindal, J. G. Andrews, and S. P. Weber, “Bandwidth partitioning
in decentralized wireless networks,”IEEE Trans. on Wireless Comm.,
vol. 7, pp. 5408–5419, Jul. 2008.

[27] S. P. Weber, J. G. Andrews, X. Yang, and G. de Veciana, “Transmission
capacity of wireless ad hoc networks with successive interference
cancelation,”IEEE Trans. on Information Theory, vol. 53, pp. 2799–
2814, Aug. 2007.

[28] A. M. Hunter, J. G. Andrews, and S. P. Weber, “Transmission capacity of
ad hoc networks with spatial diversity,”IEEE Trans. on Wireless Comm.,
vol. 7, pp. 5058–5071, Dec. 2008.

[29] R. Vaze and R. W. Heath Jr., “Transmission capacity of ad-hoc networks
with multiple antennas using transmit stream adaptation and interference
cancellation,”IEEE Trans. on Information Theory, vol. 58, pp. 780–792,
Feb. 2012.

[30] N. Jindal, J. G. Andrews, and S. Weber, “Multi-antenna communication
in ad hoc networks: Achieving MIMO gains with SIMO transmission,”
IEEE Trans. on Comm., vol. 59, pp. 529–540, Feb. 2011.



17

[31] R. H. Y. Louie, M. R. McKay, and I. B. Collings, “Open-loop spatial
multiplexing and diversity communications in ad hoc networks,” IEEE
Trans. on Information Theory, vol. 57, pp. 317–344, Jan. 2010.

[32] K. Huang, J. G. Andrews, R. W. Heath, Jr., D. Guo, and R. A.Berry,
“Spatial interference cancelation for mobile ad hoc networks,” IEEE
Trans. on Information Theory, vol. 58, pp. 1660–1676, Mar. 2012.

[33] R. Gallager,Discrete Stochastic Processes. Springer, 1st ed., 1995.
[34] J. F. C. Kingman,Poisson processes. Oxford University Press, 1993.
[35] D. Stoyan, W. S. Kendall, and J. Mecke,Stochastic Gemoetry and its

Applications. Wiley, 2nd ed., 1995.
[36] S. P. Weber and M. Kam, “Computational complexity of outage prob-

ability simulations in mobile ad-hoc networks,” inProc., Conf. on
Information Sciences and Systems, Mar. 2005.

[37] S. Haykin, “Cognitive radio: Brain-empowered wireless communica-
tions,” IEEE Journal on Selected Areas in Comm., vol. 23, pp. 201–220,
Feb. 2005.

Kaibin Huang (S’05, M’08) received the B.Eng. (first-class hons.) and
the M.Eng. from the National University of Singapore in 1998and 2000,
respectively, and the Ph.D. degree from The University of Texas at Austin
(UT Austin) in 2008, all in electrical engineering.

Since Jul. 2012, he has been an assistant professor in the Dept. of Applied
Mathematics at The Hong Kong Polytechnic University (PolyU), Hong Kong.
He had held the same position in the School of Electrical and Electronic
Engineering at Yonsei University, S. Korea from Mar. 2009 toJun. 2012
and presently is affiliated with the school as an adjunct professor. From Jun.
2008 to Feb. 2009, he was a Postdoctoral Research Fellow in the Department
of Electrical and Computer Engineering at the Hong Kong University of
Science and Technology. From Nov. 1999 to Jul. 2004, he was anAssociate
Scientist at the Institute for Infocomm Research in Singapore. He frequently
serves on the technical program committees of major IEEE conferences in
wireless communications. He will chair the Comm. Theory Symp. of IEEE
GLOBECOM 2014 and has been the technical co-chair for IEEE CTW 2013,
the track chair for IEEE Asilomar 2011, and the track co-chair for IEE
VTC Spring 2013 and IEEE WCNC 2011. He is an editor for the IEEE
Wireless Communications Letters and also the Journal of Communication
and Networks. He is an elected member of the SPCOM Technical Committee
of the IEEE Signal Processing Society. Dr. Huang received the Outstanding
Teaching Award from Yonsei, Motorola Partnerships in Research Grant, the
University Continuing Fellowship at UT Austin, and a Best Paper Award
from IEEE GLOBECOM 2006. His research interests focus on theanalysis
and design of wireless networks using stochastic geometry and multi-antenna
limited feedback techniques.


