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Spatial Throughput of Mobile Ad Hoc Networks
Powered by Energy Harvesting

Kaibin Huang

Abstract—Designing mobiles to harvest ambient energy such point process (PPP). Energy arrives randomly at a traresmitt
as kinetic activities or electromagnetic radiation will erable with a fixed average rate, called thenergy-arrival rate
wireless networks to be self sustaining. In this paper, thepatial The energy-arrival process is modeled as an independent and
throughput of a mobile ad hoc network powered by energy . - s . .
harvesting is analyzed using a stochastic-geometry modeln |o!ent|cally distributed (i.i.d.) sequence of random vhlés and .
this model, transmitters are distributed as a Poisson point different processes are assumed independent. Each tteersmi
process and energy arrives at each transmitter randomly wit  deploys an energy harvester that stores arriving energy in
a uniform average rate called the energy arrival rate. Upon g rechargeable battery. Upon harvesting sufficient enexgy,
harvesting sufficient energy, each transmitter transmits With  yangmitter transmits with fixed power to an intended remeiv
fixed power to an intended receiver under an outage-probabity - . .
constraint for a target signal-to-interference-and-noig ratio. It is U”‘?'ef an outage-propablllty. constraint for a target signal
assumed that transmitters store energy in batteries with ifinite  to-interference-and-noise ratio (SINR). Based on the abov
capacity. By applying the random-walk theory, the probabiity ~model, the network spatial throughput is maximized by op-

Fhat a transmitter transmits, called the transmission pr.obability, timizing transmission power for a given energy-arrivakrat
is proved to be equal to the smaller of one and the ratio betwee

the energy-arrival rate and transmission power. This resul and

tools from stochastic geometry are applied to maximize the A Prior Work and Motivation

network throughput for a given energy-arrival rate by optim izing

transmission power. The maximum network throughput is shown The fluctuation in harvested energy due to random en-

to be proportional to the optimal transmission probability, which  ergy arrivals requires redesigning existing transmissibn
is equal to one if the transmitter density is below a derived gorithms for wireless communication systems. Assuming in-

function of the energy-arrival rate or otherwise is smaller than finitelv backlogaed data. existin ork focuses on adantin
one and solves a given polynomial equation. Last, the limitsf initely 99 » EXiSting w u pting

the maximum network throughput are obtained for the extreme transmission_power to channel states and the temporal grofil
cases of high energy-arrival rates and sparse/dense netvks: of energy arrivals to maximize the system throughput [Z]-[5
Index Terms—Energy harvesting, mobile ad hoc networks, ForS|ngIe-user§y§tems, the optlmql power-cpntrol p@ﬂi(are
throughput, power control, stochastic processes, mobileommu- Shown to be variations of the classic water-filling policyisu
nication that the causality of energy arrivals and finite battery cépa

are accounted for [2], [3]. Adaptive transmission for broest
channels with energy harvesting has been also investiféted
[5]. In [4], the optimal power-control for a two-user single
Recent years have seen increasing popularity of mob#@tenna broadcast channel is shown to attempt to allocate a
devices such as sensors and smart phones, giving rise to ff%0amount of harvested energy to the user with the better
design issues among others. First, the power consumptioncAfinnel before giving the remaining energy to the other. user
mobile-device networks makes an escalating contributn A two-user multiple-input-multiple-output broadcast ohal
global warming. Second, conventional batteries that powgrconsidered in [5] where one user receives data and the othe
mobile devices periodically interrupt their operation dige scavenges transmission energy, and the precoder at the base
finite battery lives; battery recharging or replacementnis istation is designed to optimize the tradeoff between tha dat
convenient or even impossible in certain cases. Thesesissiie and the rate of harvested energy.
provide strong motivation for powering mobile devices by-ha  |n wireless communication systems with both bursty data-
vesting ambient energy such as solar energy, vibratiortiin and-energy arrivals, buffering energy and data creates two
activities and electromagnetic radiation [1]. The capaot corresponding queues at each transmitter. Jointly cdimgol
mobile-device networks powered by energy harvesting resnathese two coupled queues is more challenging than comtgolli
largely unknown, which is addressed in this paper. only the data queue in traditional systems with reliable @ow
This paper considers a mobile ad hoc network (MANETgupplies [6]. The algorithms for optimally controlling the
where transmitters are modeled as a homogeneous Poissférgy-and-data queues have been proposed for single-user
K. Huang is with the Hong Kong Polytechnic University, Hongrig SyStem.s [7] and down"nk. systems [8] to minimize the .p{_;lclfet
Emr—:lil: huangkb@ieee.org. This paper has been presentem”tilyamAsiloma.r transmission delay’ for interference channels to minimize
Conf. on Signals, Systems, and Computers 2011 and at IEEECIonf. on  queueing delay [9], and for downlink systems to maximize

Communications (ICC) 2013. Copyrigh®) 2012 IEEE. Personal use of this the system throughput [10]_ These algorithms share a common
material is permitted. However, permission to use this nwtéor any other

purposes must be obtained from the IEEE by sending a reqaeptilis- O_bjeCtive of optimizing a partiCUIar performange metriq fo_
permissions@ieee.org. given average harvested power. The objective is alignel wit

I. INTRODUCTION


http://arxiv.org/abs/1111.5799v5

that for designing the traditional energy-efficient systamith B. Contributions and Organization

only data queues, namely minimizing the average transomssi

For exposition, a few definitions and notations are provided

power under a performance constraint such as fixed packgl-o|io\ys. Time is slotted. Define the transmission prolitgbi

transmission delay for single-user systems [11], [12hvedld

p as the probability that a transmitter transmits andntésvork

queueing delay for downlink systems [13], and given traﬁ'f"f‘lterference temperaturas the maximum active transmitter

in wireless networks [14].

density under the outage-probability constraint. Agtdenote

. . ) the transmitter densityA. the energy-arrival rateP the
Wireless networks with energy harvesting have been StUd'ﬁgnsmission power, an@ a nonnegative random variable

[15]-[17]. For a wireless sensor network with energy haFve§

epresenting the amount of energy harvested by a typical

ing and based on a simple channel model that omits Chanﬂﬁtvester in an arbitrary slét. Note thatE[Z] = ). and the

noise and path loss, the probability that a sensor sucdlyssf

‘Yensity of active transmitters is equal 4.

transmits a data packet to a fusion center is analyzed in [15].|-he main contributions of this paper are summarized as

for different multiple-access protocols including timevigion
multiple access and Aloha like random access. Managing
traffic load in time and space is important for wireless senso
networks to be self sustaining through energy harvesting.
Therefore, distributive strategies are proposed in [16] fo
adapting traffic load to the spatial-and-temporal energyiler
and evaluated using a network prototype. For a two-user
interference network with energy harvesting, the data-and
energy arrivals are modeled as Bernoulli processes and the
stability region is characterized such that it comprisédatia-

rate pairs under the constraint of finite data-queue lengths
[17]. In view of prior work, there are few results that quénti

the tradeoff between the network throughput and the energy-
arrival rate though such results specify the fundamentait li

of the network performance. This tradeoff is investigated i
the sequel using a stochastic-geometry approach.

1)

Stochastic geometry provides a set of powerful mathe-
matical tools for modeling and designing wireless networks
[18]. MANETs based on random access and carrier—sensingg)
multiple access have been modeled using the PPPs [19], [20]
and Matern hard-core processes [21], respectively. Gellul
networks have been shown to be suitably modeled using
the Poisson Voronoi tessellation [22]. Models of coexigtin
networks can be constructed by superimposing multipletpoin
processes [23], [24]. Stochastic-geometry models of wire-
less networks have been employed to quantify the network-
performance gains due to physical-layer techniques such as
opportunistic transmission [25], bandwidth partitionif&§],
successive interference cancellation [27], and multeana
techniques [28]-[32]. The performance metric typicallynco
sidered in the literature is the network spatial throughput
under a constraint on the outage probability for a target
SINR, which is also adopted in this paper. Using this metric,
most prior work focuses on deriving the outage probability
using techniques such as the Laplace transform [19], [28] an 4)
probabilistic inequalities [20], [25]. This paper congislea
MANET with Poisson distributed transmitters similar to the
existing literature (see e.g., [20]). However, the traritars in
the current network model are powered by energy harvesting
instead of reliable power supplies as in prior work. The
consideration of energy harvesting introduces several aew
sign issues including the aforementioned tradeoff betwken
network throughput and energy-arrival rate, the corredpan

follows.

Assume infinite battery capacity. Using the law of large
numbers and random-walk theory, it is proved that

is equal to the smaller ok./P and one. It is worth
mentioning that the tractable analysis relies on assuming
the sub-optimal fixed-power transmission. To the best
of the author's knowledge, the aforementioned result
is unknown from existing work that mostly focuses on
designing the optimal adaptive-transmission algorithms
[2]-{5], [7]-[10].

) Consider the case of finite battery capacity. Bounds on

p are derived, which converge to the results stated above
as the battery capacity increases. Moreover, two special
cases are considered. X is bounded and no larger
than P, it is shown thatp is equal to\./P so long

as the battery capacity is larger thaw. If Z is a
discrete random variable, is analyzed using Markov-
chain theory.

Assume infinite battery capacity. By applying derived re-
sults on transmission probability and tools from stochas-
tic geometry, the network throughput is maximized by
optimizing P for given \.. Consider the condition that

Ao is smaller than the network interference temperature
evaluated for equaP and ).. If this condition holds,

the maximum throughpuk* is shown to be

R* = Xplogy(1+6)

where 0 is the target SINR. If the aforementioned
condition is not satisfied,

o A0)\6
=5
where the optimal transmission powgft is larger than

A and solves a derived polynomial equation.
Furthermore, the limits of the maximum network
throughput are obtained for the extreme cases of high
energy-arrival rates X, — oo) and dense networks
(Ao — o0). Specifically.

R*

logy (1 + 6)

lim R*()\.) = min (/\0, :—;) log,(1+6)

e—>00 a
lim R*(\o) = L= log,(1 +6)
Ao—00 0=

optimization of transmission power, and the effect of finite 1o ypical point is selected from a spatial point process byfamm

energy storage, which are investigated in the sequel.

sampling.



Transmitters . Let B denote the battery capacity identical for all harvesters.
R . Moreover, the typical transmitter and the battery levelh# t
corresponding (typical) harvester are representetygnd.s;,
. respectively. A transmitter transmits one data packet fistd
power P whenever the corresponding battery level exceeds
. As a result,S; evolves as

. S; = min(S;_1+Z,—PI(S;_1 > P),B), t=1,2,--- (1)

3 )

where Sy = 0 and the indicator functiodi(A) for an eventA
is equal to one ifA occurs or else is zero. The battery-level
g evolutions in prior work are similar to that in (1) but with
fixed powerP replaced with power adapted to factors such as
the channel state and battery level [2], [9], [10].

A single communication link

. Energy harvester

B. Performance Metric
Fig. 1. Single-antenna transmitters in the MANET are matledes a s .
homogeneous PPP in the horizontal plane. Each transmsttpowered by Assume infinitely backlogged and packetized data. The

an energy harvester and transmits to an intended receiver anit distance. transmission probability can be written as

p= lim ~ > EI(S, > P),. 2)
where p. is a positive constant determined by the (=i

maximum outage probability. According to Coloring Theorem [34], the process of active

The remainder of this paper is organized as follows. THEansmitters, denoted ds, is a PPP with density\, = pAo.

network model and performance metric are described in Séata is encoded at a fixed raligg, (1 + ¢) bit/s/Hz with 6 >
tion 1. The transmission probability is analyzed in Seotiti. 0 being the target SINR. Correct decoding of a data packet

The results are applied to maximize the network throughpi@guires the received SINR to be no smaller tifaor else

in Section IV. Numerical results are presented in Section &0 outage event occurs. The outage probabitify is defined

followed by concluding remarks in Section VI. as Pt = Pr(SINR < 6) whereSINR represents the received
SINR at the receiver fofy. It is assumed that the receiver for
Il. MODEL AND METRIC T, is located at the origin, which does not compromise the
A. Network Model generality based on Slyvnyak’s Theorem [35], and that noise
As illustrated in Fig. 1, the transmittef§’} of the MANET \r/]v?;teu:lzt;\svanance. Based on these assumptidhs, can be

are distributed in the Euclidean plaifi following a homo-
geneous PPR with density \g, whereT' denotes the coordi-

nates of a transmitter. Each transmitter is associated avith Pt = Pr P — <0 3)
intended receiver located at a unit distance, which is asdum TGHE\:{TD} PIT|=>+1

to simplify the expression for the received signal power by

omitting the data-link path loss. The signal transmittedZby P S|

with power P is received by a receiver located at with =Pr Z 717> 0 P )
power equal taP|X — 7|~ with o > 2 being the path-loss Tem\{To}

exponent. In other words, propagation is characterizedably p a1 1

loss while fading is omitted to simplify notaticn. =Pr <T§1 7= > 0 ﬁ) ®)

Time is partitioned into slots of unit duration witldenoting T .
the slot index. The amount of energy harvested by the typiddhere the summation in (3) represents the interference powe

harvester in the-th slot is represented by the nonnegativand (5) uses Slyvnyak’s Theorem. It is worth mentioning that
random variableZ;. the probabilities in (3) and (4) arpalm measure$35] but

) ) L that in (5) is not. To ensure the quality-of-service, an gata
Assumption 1. The energy-arrival procesgZ;} C R™ is probability constraint is applied such th@, < ¢ with

an iid. sequence and independent of other energy-arriyal . < 1. The performance metric is the spatial network-

processes. Moreover, tliamulant generating functioaf the i roughput densityR (bit/s/Hz/unit-area) that is referred to
random variable(Z; — ) with 5 being a given constant, gimply as the network throughput and defined as
namelyln E [e"(?¢=)], has a root*(3) such that*(8) > 0

if 3> A andr*(8) <0 if 3 < Ae. R = Ailogy(1+0) (6)

This assumption allows the use of results on the large = Aoplogy(1+6) @
deviation of random walks in the subsequent analysis [33}here p is controlled by adjusting® such that the outage-
) N o _ probability constraint is satisfied. To be precigeshould be

The consideration of random transmission distances anddddas no

effect on the main results except that the parametedefined in (34) has to scaled by the success probabilf _.Pout) but this factor i.S
be redefined by including additional random variables. close to one givea < 1 and thus omitted for ease of notation.



I1l. TRANSMISSION PROBABILITY where f;(y, t) represents the probability density function of
A. Infinite Battery Capacity S¢. The functionD; (x) can be bounded as shown in Lemma 3,

Deriving transmission probability requires analyzing tle which is proved in Appendix C using Lemma 2.

tribution of battery levels at energy harvesters. By stiltitig Lemma 3. Given infinite battery capacity and. < P, the
B — oo into (1), the battery level at the typical energyenergy-overshoot functiom,(x) satisfies

harvester with infinite battery capacity evolves as Di(x) < 4 efér*(P)(kQP)’ V>0
Sy = Si_1+ Z — PI(S;_1 > P). (8) r(P)
o _ with 7*(P) > 0.
The distribution ofS; can be related to the threshold-crossing
probability for a random walk as follows. Denote the instant Using Lemma 3, the main result of this section is readily

when the battery level crosses the threshBlfom below as Obtained as shown below.

tr,t2, -, namely tha_tStn_l < P and S, > P for n = Theorem 1. Given infinite battery capacity, the transmission
1,2,---. These time instants are grouped into the Fet= probability is
{t1,ta,---}. Moreover, define the random varialife = 7, — ) e
P and two random processéé:; } and {G}} as p=min {1l — .
Gt = max(G;_1 + Z;,0) (9) Proof: First, consider the case of > P. Replacing the
g teT indicator function in (8) with one yields a lower bound 6p,
Gl = t/’ € (10) namely thatS; > anzl Zm. As a result,p given in (2) can
t-1, t¢T be lower bounded as

with Gy = 0 and G|, = P. Based on (9), the probability that Ll L
{G:} crosses a threshold > 0 in the t-th slot can be written p Znh—{r;o n ; Bl 2—:1 Zm 2 P

as

1 & 1o P
r(Gy > x) t nll_}n;o - ;Pr (t E(Zm Ae)>P—A+ t) (15)
- _ _ 11 - m=
Pr <max (Zt, Zy+ Zpq, - ,Z Zn> > x) (1) UsingE[Z,] = ). and applying the weak law of large numbers
n=1 [33], for givenT > 0 and ¢ > 0, there existsk > 0 such that

Consider the random walk}"" | Z;_,,.1} starting in the for all ¢t > £,
t-th slot and progressing backwards. The probability in (11) 1 ¢
can be interpreted as the probability that the said randotk wa Pris > (Zm=Ae)=-7|>1-3. (16)
with a negative drift ever crosses the thresholdy the t- _ _ _ _
th step. Applying Kingman bound on the threshold-crossirgnce. > P, it follows that glVeWISD> 0, there existr > 0
probability for a random walk [33, p234] gives that for algndk’ > 0 such thatr < (A — P — %) for all ¢t > k'. Using

m=1

t>0, this fact and substituting (16) into (15),
Pr(Gy>z)<e " P N\ <P (12) 1 n 1<
. . . . p>lim — > Pr(=> (Zn—A)>-7
wherer*(P) as defined in Assumption 1 with = P is the NN k) t =

positive root of the cumulant generating function 4f.

1 n
Lemma 1. Given infinite battery capacity, the battery levl 2 lim — >, (1-9)
satisfies t=max(k,k’)
S, <G+ Gl oy In—max(k K))(1-9)
The proof of Lemma 1 is provided in Appendix A. Using _ 71H_°2 " (17)
(12) and Lemma 1, the threshold-crossing probability fa th
battery level can be shown to be bounded as follows. As ¢ is arbitrary andp < 1, the desired result for the case of

) o ) Ae > P follows from (17) and lettingy — 0.
Lemma 2. Given infinite battery capacity and. < P, the Next, consider the case of, < P. The expected total

distribution of the battery levet, satisfies amounts of harvested and transmitted energy bytitieslot
Pr(S, > z) < 9e— 37" (P)(z—2P) (13) differ by the battery level in the-th slot, namely
t t
with 7*(P) > 0. > EZn]=P > E[I(Sm-1>P)+ES].  (18)
m=1

The proof of Lemma 2 is given in Appendix B. Define the m=1
energy-overshoot functio®, : R — R+ as the expected SINcCeE[S;] > 0,
amount of energy stored in the typical harvester in excess of 1<
a thresholdz > 0 in the ¢-th slot: Ae > P lim = " E[I(Sp—1 > P)]
t—oo —

i) = [ =)Ly, )y (14) _ Py (19)



where (19) is obtained using the definition pfin (2). It Lemma 5. Given finite battery capacity and. > P, the
follows that distribution of the battery leve$; satisfies

p < ﬁ, Ae < P. (20) 1 .
P lim — ZPr(St <z)<e (P)(B—z)
Note thatE[S;] < = + D;(z) with z > 0. Using Lemma 3, noee i
for givend > 0, there existsr > 0 such thatE[S;] <z +d.  \ith *(P) < 0 andz € [0, B].
Combining this fact and (18) yields
Using Lemma 4 and 5, bounds on the transmission proba-

t . .
o1 . E[SY] bility are obtained as follows.
Ao =Pl 3 D El(Sia > P+ i =

m=1 Proposition 1. Given finite battery capacity, the transmission
. . - i
1 40 probability p satisfies the following.
<Pl g > BU(Si1> P+ iy 1) If A< P
= Pp. Aely 4 ae2ep)| o, e (oo
Pl @ srsp (22
As a result, .
e with 7*(P) > 0.
p = B Ae < P. (22) 2) If Ao > P
_ o (P)(B-P)
The desired result for the case of < P is proved by 1-e spsl (23)
combining (20) and (21). with r*(P) < 0.
Last, the desired result for the boundary case\of= P 3) IfA=P
is proved by using the results proved above fgr# P and .
letting P — . from either the right or the left, completing | A _ demz7 (Aetm)(B-2A.—2e)
the proof. | >0 | Ao + @ Aem*(Ae + 2) (24)

Remark 1. According to Theorem 1, if” < )., each trans- <p<l
mitter transmits continuously in the steady state and is fife
interruption caused by energy shortage. However, contisuo
transmissions are at the cost that the fraction of harvested Proof: Consider the case of. < P. By accounting for
energy at the rate of\. — P) is never used for transmissionthe discarded energy due to battery overflow, the expectad to
and hence wasted. Next, i# > )., there exists nonzero amounts of transmitted and harvested energy bytitieslot
probability that the battery level of a transmitter is beldw is related by modifying (18) as

and hence transmission can be interrupted. Nevertheléss, g

t t
harvested energy will be eventually used for transmission. Z E[Zn] =P Z E[I(Sp_1 > P)] + E[S,] + Z D,.(B)
m=1

m=1

with (A + ) > 0 givenz > 0.

m=1

B. Finite Battery Capacity where the last term gives the expected amount of discarded

The dynamics of the battery levé; at the typical har- energy. Applying Lemma 4 an; < I3 yields

vester are characterized in (1). Létt(x) denote the energy- 1 B
overshoot function for the case of finite-battery capaeityich Ae < P lim - > E[(Sm-1> P+ Jim =+
is defined similarly asD;(z) in the preceding section. Given m=1

finite battery capacity, battery overflow can occur such that 4 o377 (P)(B-2P)

the battery saturates and arriving energy has to be disgarde *(P)

where the expected amount of discarded energy is measured < Pp+ o~ 377 (P)(B—2P)

by D:(B). For the case o, < P, D:(B) can be bounded - r*(P)

by the same upper bound dm;(z) (see Lemma 3) as shown

below. and the first inequality in (22) follows. The second inedtyali

is proved using Theorem 1 and the fact that limiting the loptte
Lemma 4. Given finite battery capacity and. < P, the capacity reduces.

energy-overshoot functio, (B) satisfies Next, consider the case of. > P. The definition ofp in
(2) can be rewritten as

Du(B) < —— b (PIB-2P) .
S 5P .1
p=1- lgm — ZPr(St < P). (25)
with 7*(P) > 0. "=
Lemma 4 is proved in Appendix D. Next, the tailThe last term can be upper bounded using Lemma 5, yielding

probability of S; can be bounded for the case kf > P as the first inequality in (23). The second inequality is trlvia

shown in the following lemma, which is proved in Appendix E. Last, consider the case of. = P. Let p/(z) denote the
transmission probability for the virtual scenario wher¢ al



transmissions use the powéP + z) with = > 0. It can be Proof: By expanding (1),

proved similarly as the first inequality in (22) that )
{ min(S;_1 + Z, — P,B), Sy, > P (28)
—L1r*(Ae4z)(B—2X.—22) t = .
px) > )\/\—i - Oet 1) ] (26) min(Se-1+ 2, B),  Sii <P
e ¥ el Ae T Given B > 2P and Z; < P, it follows from (28) that

with = > 0. Note thatp'(z) also gives the transmissiond:-1 < 2P ensuresS; < 2P. Since S, = 0, this result
probability for a virtual transmission strategy that rerasv implies zero battery-overflow probability. Consequenthe
 unit of energy from the battery of a harvester followingransmission probability is identical to that for the cade o
every instance of transmission. Since removing energy frdRfinite battery capacity in Theorem 1, proving the desired

the battery reduces the transmission probabifityz p/(z) resultin (27). _ _ u
holds. Combining this inequality and (26) yields 2) Special case: discrete energy arrivalsAssume that
Z, is a discrete random variable and takes on values from
0> Ae _ 4 o~ 37" o) (B—21.—22) {0,1,2,---}, and thatP and B are positive integers with
T At A (Ae + @) B > P. Under these assumptions, the distribution of battery

for all x > 0. The first inequality in (23) follows. The secondlev(:fIS can be analyzed lflgng _Markov-chaln theor_y._ Since
inequality is trivial, completing the proof Si is independent of{Sn},—; given Sp_1, {S:} satisfies

' ' the Markov property and is hence a Markov chain. Given
Remark 2. For a sanity check, it can be observed frorbattery capacityB, the Markov chain{S,;} has the state
Proposition 1 that a3 — oo, p converges to its counterpartspace{0, 1, -- - , B}. Define the transition probability,,,, as
for the case of infinite battery capacity as stated in Thedtemp,,,, = Pr(S; = n | S;—1 = m). If n < B, the battery level

: . . ... is below its limit and the transition probability is given as
Remark 3. By comparing Propostion 1 with Theorem 1, it is

observed that the degradationgodiue to finite battery capacity p,,, = Pr(Z; = n —m + PI(m > P)), n<B (29)
decreases exponentially with increasiBg Hence the effect o ) o .
of finite battery capacity op is expected to diminish rapidly Where the indicator functior specifies if energy o units

as B increases, which is confirmed by simulation results iff COnsumed for transmission in the current slot depending o
the sequel. if m reachesP. If n = B, the transmission from state to

n includes all events that the energy arrival in the curreott sl
Remark 4. The battery-level process for the case Qf = causes battery saturation, namely = {B—m,B—m+
P is related to a random walk with a zero drift for whichl,...} if m<PandZ, = {B-—m+P,B—m+P+1,---}
r*(Xe) is not defined and the threshold-crossing probabilify y, > P. It follows that
does not have an exponential upper bound [33]. This causes

Fhe difficulty in deriving a Ipwer pound op simpler than _that Dinn = Z Pr(Z; =k+ PI(m>P)), n=B. (30)
in (24). Moreover, the maximization of the lower bound in)24 kB

cannot be solved analytically. One should not expect that th . )
bound is maximized ag — 0 because the functiort (\, +z) COMPINing (29) and (30) yields that

can be a monotone increasing function «af For instance, Pr(Z; =n—m), m< P,n<B
given thatZ; follows the exponential distribution with unit Pr(Z, =n—m+ P) m>Pon<B
mean, it is obtained that N ! ' -
) Wo (—(1+ z)e=(1+2)) Prn = Z Pr(Z: =k), m < Pn=B (31)
r(l+z) = +1 k=B—m
1+ o

whereWW, denotes th®-th branch of the Lambert W function. Z Pr(Zy=k+P), m>Pn=B.
The function can be plotted and observed to be monotone k=B-m
increasing forz > 0. Let ,, denote the steady-state probability of stateof the

In general, exact analysis pffor the case of finite battery Markov chain{s;}. Moreover, letP represent the transition-
capacity is challenging except for some special cases, fwoRsobability matrix with the(m,n)-th element given by,

which are discussed as follows. and 7 the steady-state-probability row vector with the-
1) Special case: bounded energy arrival€onsider the th €lement given byr,,. Applying Perron-Frobenius theorem
case thatZ; has bounded support arffl € [0, zax)- [33],
P =m. (32)

Proposition 2. Consider bounded energy arrivalszif., < P

and the battery capacitip > 2P, the probability for battery- The stationary probabilitiegr,, } can be computed by solving

overflow is zero and the transmission probability is (32) under the constrainy.”_ 7, = 1. Given =, the

transmission probability is obtained as= Zﬁ:P T

p== (27) The stationary probabilitie§r,,} can be derived in closed
P form for the simple case of binary energy arrivals, namely

where ), < P. that Z; € {0,1}. Then energy-arrival rate i3, = E[Z;] =



A. Maximum Network Throughput

To characterize the network throughput, transmission powe
P is related to the active transmitter density under the
outage-probability constraint. To this end, we define apara

eter u., called thenominal node densifyas the density of a
homogeneous PPR(..) such that

Fig. 2. A Markov chain modeling the battery level at the tgbiransmitter
for the special case of binary energy arrivals dnd= 3. Pr Z |T|fa >1| =€ (34)

TeA(pe)

where the summation can be interpreted as the interference
Pr(Z, = 1). The corresponding transition probabilities ar@ower measured at a receiver located at the origin from unit-

modified from (31) as power interferers distributed as(u.). Note thatu. depends
only one, « and the distribution of a PPP and is independent
1=2Xe, (m=Pn=0)or(m<Pn=m) of other network parameters. Moreover, is a strictly-
Dmn = § Aes (m=Pmn=1)or(m<Pn=m+1) monotone-increasing function efdue to the fact that denser
0, otherwise interferers result in larger outage probability for a linkhe

expression ofu. has no closed form and its value can be
Based on above transition probabilities, the Markov chaffomputed by simulation (see e.g., [36]). The relation betwe
{S,;} is illustrated in Fig. 2. The stationary distributigm,,,} 11 ande is shown in Fig. 3. The following lemma results from
satisfies the following equations obtained from (32) and tidapping Theorem [34, p18].

above expression Q. Lemma 6. Consider the homogeneous PRFPu.) = {X}.

_ The processiA(pe) = {aX} with a > 0 is a homogeneous
= 1— X 1— A ) .
mo = 7p( ) + ol ) PPP with density:. /a?.
T =7pAe + (1 — Ae) + ToAe (33) _ o o
o = Ton1 e + T (1 = Ao), m=2-. P—1 Define the admissible set as all combinations of):, P)

that satisfy the outage-probability constraint:
F={(\,P) e Rt x R" | Pout(\t, P) < €}. (35)

. . . P .

Solving the equations in (33) ani,,_o s = 1 gives the  p compination (), P) is admissibleif it belongs to F. To
following proposition. derive F, sincell follows the same distribution as()\;), Pout
Proposition 3. Consider the case that energy arrivals a8 (5) can be rewritten as
binary (Z: € {0,1}) and the transmission poweP is a

TP = 7Tp,1/\e.

positive integer no larger than the battery capadity The P =Pr Z T~ > 11
distribution of the battery leve$; is TEA() o P
1— A e According to Lemma 6A()\;) has the same distribution as
o= "Tp "=p al(pe) with a = \/p./\:. Consequently
1
Ty = — m=1,--- ,P—1.
m ) ’ ) 1 1
P Pout:Pr Z |T|7a>§_ﬁ
The probability for battery overflow is zero and the transmis Tea(pe)
sion probability isp = mp = A,/ P. 11
:PI‘ Z |CLT|7O‘> g—ﬁ
TEA(MS)
IV. NETWORK THROUGHPUT .
—a pe\? (1 1
In this section, using results on transmission probability =Pr Z T > (A_t) (5 - ﬁ) - (36)
as derived in the preceding section, the network throughput TeEA(pe)

is maximized by optimizing transmission power under th€ombining (34), (35) and (36) leads to the following lemma.
outage-probability constraint and assuming infinite gtte

capacity. It is straightforward though tedious to extend tH_em
network-throughput analysis to the case of finite battery ca F {(,\t,p) eRTxRT |\ < g(P)} (37)

pacity using related results from the last secfioBuch an )
extension provides few new insights and thus is omitted. where ((P) represents the network interference temperature
and is given as

ma 7. The admissible seF is given as

SEssentially, the network throughput for the case of finitdeng capacity 1 1\«
can be bounded by modifying the current analysis such tfeatrémsmission C(Py=pc|-—= , P>0. (38)
probability p is replaced with its bounds as specified in Proposition 1.
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Remark 5. The network interference temperatuyrg’) spec- The derivation ofR* can be intuitively explained using Fig. 4.
ifies the maximum density of interferers a link can toleratik can be observed form the curve depicting the function
without violating the outage-probability constraint. $ljuan- f(P) that f(P) is fixed at Ao for all P < ). and a
tity is analogous to thénterference temperature cognitive- strictly-monotone-decreasing function fét > \.. Let P*
radio systems that measures the maximum amount of adeirrespond to the intersection between the cuiief(P))
tional interference for a certain frequency band withogt siand the admissible sek. Then under the outage-probability
nificantly degrading the reliability of communications teim constraint,f(P) is maximized atP = P*, which corresponds
[37]. On one hand, the network for large is interference- to R* based on the definition in (6) since it is proportional to
limited and further increasing® does not contribute any )\;. Note that the claim is based on the assumptior 1
network-throughput gain. Correspondingly, it can be obsgr or else need not hold (see Remark 10). Depending on if

from (38) that((P) saturates a® — oc: P* is larger or smaller thar\., P* and R* have different
expressions as shown in Theorem 2 that states the main result
Plim ¢(P)= :—5 (39) of this section.
—00 o

Theorem 2. Given infinite battery capacity, the maximum

On the other hand, the network for sméllis noise-limited. e york throughputR* and the optimal transmission power
The value of¢(P) is not well defined ifP is below the target p« 4.0 specified as follows.

SINR 6, for which the outage constraint cannot be satisfied 1) 1 A < ¢\
even in the absence of interference. ) 0 < ((Ae),

Remark 6. The admissible seF is illustrated as the shaded R = ology(1+6) (40)
region in Fig. 4. Increasing. (relaxing the outage-probability and P* is an arbittary value in the range
constraint) enlargess and vice versa. Let\* denote the [ oy
maximum of the admissible values fo; under the outage 1-0(Xo/pe)2 " 71"
constraint. Then the boundary #fcorresponds ta* = ((P). 2) If Ao >¢(Ae) >0,
Remark 7. The condition\; < ¢((P) for the admissible set R* = AoAe log, (1 + ) (41)
in (37) guarantees tha? (equal to the received SNR) is no pr
smaller thand that is the minimum received SINR required where P* > ). and v/P* solves the following polyno-
for correct decoding. mial equation:

We are ready to derive the maximum network throughput B Ao\ 2
R* and the optimal transmission powg¥. Let f denote the z® — 0z — 0 ( ) =0. (42)
function that mapsP to \; for fixed Ay and )., which is fe
obtained from Theorem 1 as Proof: First, consider the case ofy < ((A.). The

) throughput expression in (7) implies that
1) = ramin (1.5 ). R < \olog(1+6). 43)
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Fig. 4. The admissible sef is sketched as the shaded region that contains all comtmsatf active transmitter density; and transmission powep
that satisfy the outage-probability constraint. Givenniitéi battery capacity and fixed transmitter density, f(P) is a monotone-decreasing function Bf
as plotted with the thick lines based on Theorem 1 for theca$eo > ((Ac) > 0 and g < ((Ae), where the intersections are indicated By and Py,
respectively. Note thaP* and an arbitrary value ifPy, \¢] give the optimal transmission power that maximizes the ag¢whroughput for the corresponding
cases.

Define Py such that\, = ((P) (see Fig. 4). Using the must satisfy\op(P*) = ¢(P*) or equivalentlyy/ P* solves the

definition of ¢ in (38), polynomial equation in (42), completing the proof. [ |
P 0 Remark 8. For the case ofy\y < ((A.), the network is
077 O(No/pe)® relatively sparse and. is sufficiently large such that it is

optimal as well as feasible for all transmitters to transmith
probability one, resulting in the network throughput in 40
For the case of\, > (()\¢), the network is relatively dense
and high transmission power is required for satisfying the
%rutage-probability constraint. Consequently, not alhs$rait-

It can be observed from (38) thatis a strictly-monotone-
increasing function. As a result, sineg < ((\.) and Ay =
C(Py), Po < A and thus the setP, \.] (the range ofP*
in the theorem statement) is nonempty. Consider an anpitr

valuep € [Py, Ac]. Since Ao < ¢(p) from the monotonicity . ¢ con transmit simultaneously, corresponding to thinapt

'(zf g’h(/\t’P) :/\()\]g,pl is)\admissifble z_'::)clcording tg IIetr)“rn"’ld7“cransmissi0n probability smaller than one and the network
urthermore(\;, P) = (Ao, p) is feasible ap(p) = 1 base throughput in (41).

on Theorem 1 angh < \.. It follows that P = p maximizes

R by achieving the equality in (43). This proves the desirddemark 9. With o > 2 and the last coefficient at the right-

result for the case oy < ((\e). hand side being negative, the polynomial equation in (48) ha
Next, consider the other case af > ¢((\.) > 0. Using at least one strictly positive solution that gives for the case

the throughput expression in (7) and Lemma 7, the proble®h Ao > (()¢). For the special case of = 4, the polynomial

of maximizing the network throughput is equivalent to equation in (42) is quadratic and solving it gives in closed
o form as shown below.

maximize p(P) (44) Corollary 1. Given infinite battery capacity\o > ¢(\.) and
H . 0 e
subject o Aop(P) < ¢(P). a = 4, the optimal transmission powé?* is
The inequality P* > ). in the theorem statement can be =
proved by contradiction as follows. Assume that < .. 6 + \/92 + 46 (%) ’
This assumption results g P*) = 1 by applying Theorem 1. P = 5

Moreover, ((P*) < ((\.) is obtained using the aforemen- o .
tioned monotonicity of¢, and hence\, > C(P*) given that Remark 10. Recall that the throughput maximized in Theo-

Ao > C(A). Combining Ao > ¢(P*) and p(P*) = 1 shows rem 2 i§ defined in (6) based on the assur_nptiga:] 1, \{vhere
that the assumption oP* < \. violates the constraint in the sga.hng_facto_(l.—Pout) (success probability) is om|tte_d f‘?r
(44), proving thatP* > \.. Then applying Theorem 1 yie|d53|mpI|C|_ty smce_lt is cIosc_—:‘ to one under the ou_tage-prollﬁybl
the desired result in (41). Last, singgP) and ¢(P) are constraint. If this factor is considered, changing the gabd
strictly-monotone-decreasing and strictly-monotoneréasing £ over the rang{m, )‘e} [see Theorem 2 for the
functions, respectively, the solutidA* for the problem in (44) case of Ay < ((A.)] can lead to a throughput variation no
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larger thaneR*, which is negligible givere < 1. However, and hence

if € is comparable with one or there is no outage constraint At = “—g — 0. (51)

(e = 1), the success probability should be accounted for and , 0 )

the throughput redefined as As P — oo along with A\, — oo, it follows from (39) and
(51) that there existd > 0 such that\; < {(P). As a result,

R = (1 = Pout)pAo logy (1 + 0) by applying Lemma 7, the combination oX,, P) as specified

where P,,; < e. The results in Theorem 2 can be extended (50) and(51) is admissible. This leads to

using the redefined metric by analyziy,; as a function of lim R*(\) = <H_§ -~ 5) log, (1 + 6).

P, which has no closed-form but can be approximated by its Ae—00 o

bounds [27]. Letting § — 0 proves the equality in (48) for the current case,
completing the proof. [ |

B. Maximum Network Throughput: Extreme Cases Remark 11. Given a high energy arrival rate and infinite

Consider a network with a high energy-arrival rate (~ battery capacity, in the steady state, transmitters albhays
00). The maximum network throughpuR* can be upper sufficient energy for transmission. Therefore, the expoess
bounded as in (48) also specifies the maximum network throughput of

R* < M—;logQ(l +0) (45) a MANET with reliable power supplies instead of energy
0 harvesting.

since the outage-probability constraint requires thate (se 2 . .
Lemma 7) Remark.12.. For the case ok, < ;_%9 a, the active transmit-
ter density is below the network-interference temperatwen

At < ((P) though all transmitters transmit with probability one. Tée

< He (46) fore, there is margin for further increasing active trartgmi

~9a density without violating the outage-probability consgttaFor

where (46) follows from (39) and thaf is a monotone- this reason, the network-throughputlimitin (48) for theremt
increasing function. Combining the two upper boundsion Case is proportional to the transmitter density. However, f

in (43) and (45) gives the case ofp, > p1c/0%, active transmitter density reaches
the network-interference temperature and cannot be fuirthe
R* < min <)\0’ N_2e> log, (1 + ). (47) creased. Consequently, the corresponding network-tiwmutg
0= limit in (48) is independent of the transmitter density.

For a high energy-arrival rate, equality is achieved in (d3)

Consider a sparse networko( — 0). It is optimal for
shown below.

each transmitter to transmit with probability one by seftin

Proposition 4. Given infinite battery capacity, as the energythe transmission powef* € (0, \.] if A\ > ¢ or other-

arrival rate . — oo, the maximum network throughputWise with probability \./¢ by setting P* to be equal tod

converges as (see Theorem 1). The corresponding network throughputs are
R* = X\glog,(1+6) and R* = 222« 1og, (1 + 6), respectively,
lim R*()\.) = min ()\07 “_26) log,(1+6). (48) which both diminish as\; — 0. Next, for a dense network
PE

Ae—r00 (Ao — o0), the maximum network throughput is specified as
Proof: First, consider the case ofy, < .0 4. Set follow.

P = A. — ¢ with 6 > 0. This results inp = 1 according proposition 5. Given infinite battery capacity, as the trans-

_2
to Theorem 1. Consequentlyy = A; and hence\; < p0™=  mitter density\y — oo, the maximum network throughput
from the assumption about,. Combining this inequality converges as

and (39) yields that\; < ((P) as P — oo along with ) . fhe

Ae — oo. It follows that asA. — oo, the combination A}}ElooR (Ao) = 9—%log2(1+9). (52)
(A, P) = (Ao, Ae — 0) is admissible according to Lemma 7.

This proves the equality in (47) for the current case.

a

Proof: Set P as the following function of\:

_2
Next, consider the case of, > .0~ 4. Given this strict P(h) = AoAe (11 o (53)
inequality, there exists > 0 such that o) Lhe 0 log X\
A > He (49) that is shown shortly to achieve the limit &* in (52). Given
0 9= ' (53), there exists; > 0 such thatP(\g) > A, forall Ay > 7.
Set P as Therefore, it follows from (7) and Theorem 1 that
Ae)\o )\ )\
P = . (50) . _ 1 0N\e
fhe —% -9 kggnoo R(A07 P(AO)) )\gﬂnoo P(A()) 10g2(1 + 9)
Combining (49) and (50) gives\. < P. Consequently, . 1 1 2
applying Theorem 1 gives = Ailgloo Lhe (5 — log—/\o) log, (1 + 0)
_2 €
o= ped "= —0 = :—%logQ(l—l-@). (54)

Ao
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Fig. 5. Maximum network throughput versus energy-arrivalerfor optimal transmission power, infinite battery capacand the transmitter density
Ao = {0.02,0.05,0.5}.

Combining (45) and (54) shows that the maximum netwoiky the signal power measured at the origin due to unit-power
throughput has the limit in (52) a¥, increases. transmissions by transmitters uniformly distributed iniskd
The remaining proof verifies th@(\y) and the correspond- The number of transmitters follows the Poisson distributio
ing \; are admissible agy — oo. It follows from (53) and with mean200 and the disk radius is adjusted such that the
Theorem 1 that for allg > 7, A; is a function of \g and expected transmitter density is equal gQ. Based on this

given as , setup, the values ofe, pi.) are computed using the Monte
1 1 o Carlo method that yields the plot in Fig. 3. In addition, all
M(Ao) = He 0 logho) (55)  numerical results are based on the SINR thresHold3 and

the path-loss exponent = 3.
The distribution of the energy arrival process,} is
1 u 1 1 2\ & specified as follows. LefV;} denote an i.i.d. sequence of
C(P(No)) = pte | = — ~— (— - ) ) (56) random variables following the chi-squared distributioithw
<9 Aode \0 log Ao d € {1,2,---} degrees of freedom (DoF) and mean equal
By comparing (55) and (56), there exists > 0 such 10 dXc. Let {Z,} = {3Vi} and henceZ, has mean).
that A\;(Ao) < C(P(Xo)) for all A\g > 7. This proves the and variance\?/d. The chosen distribution of; allows its
admissibility of P()\o) in (53) andA;()\o) in (55) as)o — oo, Variance (randomness) to be controlled by varyinghile the
completing the proof. m Mmean ofZ; is fixed. Note thatZ; converges to a constant
] in probability asd — oo by the law of large numbers.
Remark 13. The rate of total energy harvested per unit area |nfinite battery capacity is assumed for the numerical tesul
is A P* = Ao @S A9 — oo. The linear growth of the presented in Fig. 5 and Fig. 6. In Fig. 5, the maximum network
rate with increasing\q is due to that_the harvester dens't)fhroughputR* computed using Theorem 2 is plotted against
is equal to\o. However, more aggressive energy harvesting e increasing energy-arrival rake for the transmitter density
a dense network does not cont_lnuously increase the netw%k: {0.02,0.05,0.5}. It can be observed from Fig. 5 th&t
throughput that saturates at high transmitter power as Higyws as), increases and saturates for latge The limits
ne'ch_)rk becomes interference I|m|ted (see Prqposmon_ gree with those computed using Proposition 4, narfely
This issue may be resolved by using an alternative multiplgi/s/Hz/unit-area for\, = 0.02 and 0.048 bit/s/Hz/unit-area

access protocol such as frequency-hopping multiple a¢hass o \, = {0.05,0.5}. In addition, Fig. 5 shows that in a denser
reduces the density of simultaneous co-channel transmiitte patwork (i.e.,\. = 0.5), R* reaches its limit more rapidly as

Substituting (53) into (38) yields

Ae INcreases.
V. NUMERICAL RESULTS Fig. 6 shows the curves oR* versus \y, for A\, =
The nominal node density, is fixed as0.05 for all numer- {0.5,1,5}, which are obtained using Theorem 2. Ag
ical results, corresponding to the maximum outage proitabilincreases and regardless of the value\pf R* is observed
e ~ 0.015. The relation betweem. and ¢ is obtained by to converge to the limiD.048 bit/s/Hz/unit-area predicted by
simulation based on the following procedure (see e.qg.,)[36Proposition 5. Moreover, it is observed from Fig. 6 that &arg
The summation over the PPR(u.) in (34) is approximated A. results in faster convergence d@t* to its limit as Ay
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Fig. 6. Maximum network throughput versus transmitter dgnfor optimal transmission power, infinite battery capgciand the energy-arrival rate
Ae = {0.5,1,5}.

0.8

Simulation

CCDF of Battery Level

0.2 -

Fig. 7. A comparison between the average tail probabilityhef battery levellim,,— ~ % >, Pr(Sy > x), evaluated by simulation and its upper bound
computed based on Lemma 2 for infinite battery capacity, tbE bf the energy-arrival process= 4, the energy-arrival rate. = 2 and the transmission
power P = 4.

increases. against increasing transmission power for finite battery
The average tail probability of the battery Ievelg\apf%tgf It:' ];[1'513’ t2hP ’épp ’_1%2’@ :ff'4', /\tel |: 2, andh
lim,, oo % >, Pr(S; > x), is evaluated by simulation and o = 0.U2. 1tIs foun atb = IS suliciently large suc

= " . ~that the values op closely match those for the case of infinite
compared in Fig. 7 with its upper bound from Lemma 2 givep i ted using Th 1. As ob d
infinite battery capacityd = 4, \c = 2 and P = 4. The atiery capactty as computed using fneorem 2. /1S 0bserve

bound is observed to be loose but sufficient for the analysflg(.)m Fig. 8, finite battery capacity degradgssignificantly

The similar observation and remark also hold for the upp%@?’eg::ng agld gen(r:ggcﬁrees rt?:t:;vflﬁtzrrjh z)ftﬁgdcfse of
bound on the energy-overshoot functidh (z) as given in ! # rapidly app unterp

Lemma 3 and the numerical results are omitted for brevity.Inflnlte battery capacity (or that foB = 10P°).

Next, consider the case of finite battery capacity. In Fig. 8, Fig. 9 displays the curves ¢f versusP obtained by simu-
the transmission probabilifyobtained by simulation is plotted lation for B = 1.5P, d = {2,4, 8,16}, A\ = 2 and\, = 0.02.
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Fig. 8. Transmission probability versus transmission pofee finite battery capacityB = {1.5P,2P,4P,10P}, the DoF of the energy-arrival process
d = 4, the energy-arrival ratd. = 2, and the transmitter density, = 0.02.
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Fig. 9. Transmission probability versus transmission pdaeboth the cases of finite] = 1.5P) and infinite battery capacity. The DoF of the energy-atriva
process isl = {2, 4, 8, 16}, the energy-arrival ratd. = 2, and the transmitter densityo = 0.02.

For comparison, the curve for the case of infinite battefgr comparison. It can be observed from Fig. 10 that finite
capacity is also plotted. As observed from Fig. 9, reducirgattery capacity causes significant throughput loss ealbeci
the randomness of the energy arrival process by increasindor large A.. Such loss is smaller for largerbecause of less
leads to smaller battery-overflow probability and hencénbig randomness in harvested energy and hence smaller battery-
p. The effect ofd on p diminishes asP (and hence battery overflow probability.

capacity) increases angconverges to its counterpart for the

case of infinite battery capacity. VI]. CONCLUSION

Last, we investigate the effect of the DoF of the energy The energy dynamics in a mobile ad hoc network have been
arrival process on the network throughput. To this end, Hig. characterized in terms of transmission probability. Assigm
shows the curves oRR* versus)\. obtained by simulation infinite battery capacity, it has been found that the trassmi
for B = 1.5P, d = {2,4,8,16}, and Ao = 0.02. The sion probability is equal to one when the energy-arrivat rat
curve for the case of infinite battery capacity is also ptbtteexceeds transmission power or otherwise is equal to their
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Fig. 10. Maximum network throughput versus energy-arriea for optimal transmission power and both the cases a@éf{ii = 1.5P) and infinite battery
capacity. The DoF of the energy-arrival processlis- {2, 4, 8,16} and the transmitter density, = 0.02.

ratio. Moreover, for the case of finite battery capacity, fasi Next, consider the case d@f ¢ 7 and lett, € T denote
on the transmission probability have been obtained andtextw time instant closest to but smaller than It follows that
expressions have been derived for the special cases of bdurttie random walk{S;} does not cross the threshoRl from
or discrete energy arrivals. The results on transmissiob-pr below in the time slot§¢y+1, - - - ,¢}. Therefore, ifS; > S,
ability have been applied to derive the maximum network, = Sy, + an:toﬂ Zm. ThenS; can be upper bounded as
spatial throughput for a given energy-arrival rate androjatéd

transmission power. It has been shown that it is optimal and S < Sy + max (0, Zi,Zi+ Zy 1y
feasible for all transmitters to transmit with probabilibype t _ (57)
if the transmitter density is below a threshold that depends Zm:t0+1

on the _engrgy—arriva! _rate; otherwise, each transmittetuh |+ -an be obtained from (9) that
transmit with probability smaller than one. - . B
There are several potential directions for extending this G; = max (07Zt,Zt+Zt_1,--- ,Z Zm,
work. Coexisting wireless networks may harvest electromag ' - m=tot2 (58)
netic (EMR) energy from each others’ transmissions. Mod- Gy, + Zm_t o Zm)-
eling and designing coexisting networks with EMR energy. , o .
harvesting give rise to many new research issues ranging fré’nce@f0 =0 and Gy » S?O from (10), combining (57) and
algorithm design to throughput analysis. The current wo 8) proves the m_equahty in the lemma statement for the cas
focuses on ad hoc networks with random access and canot.f)é # T, completing the proof. u
extended to other types of networks such as cellular nevork
or other medium-access-control protocols such as carrier-
sensing multiple access. Last, it is interesting to ingesé the
effects of bursty data arrivals and more sophisticated powe Using Lemma 1 and fo < a < z,

control on the throughput of wireless networks powered kiyr(S > ) < Pr(Gy + G > )
energy harvesting. K - K !

=Pr(Gt >2— G| G, >a)Pr (G, >a)+
ACKNOWLEDGEMENT Pr(G, >z — G| G} < a)Pr (G, < a)
The author thanks Rui Zhang for helpful discussion that < Pr(G) >a)+Pr(Gy >z —a). (59)

motivated this research, and the anonymous reviewers whose

comments have significantly improved the quality of thiketto € T specify th_e_s_lot such tha; = Sy, . SinceS_tO,l <
paper. P based on the definition of, S;, = Si,—1 + Zt, using (8).

It follows from this equality and (59) that
< > —
PROOE OFL EMMA 1 Pr(Sy > x) < Pr(Sy,—1+ Zt, > a) + Pr(Gy >z —a)

< >a— _
If ¢ € T, it follows from (10) thatS; = G} and hence - Pr(Z_t“ za=P)+Pr(G >z —a)
the inequality in the lemma statement holds siri¢e > 0. =Pr(Z, 2 a —2P) + Pr(G; >z —a). (60)

APPENDIXB
PROOF OFLEMMA 2

APPENDIXA
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By bounding the first term in (60) using Chernoff bound [33F; < G} + G, for all t > 0. Furthermore, it can be shown
and the second using (12), by expanding (64) thaPr(G; > x) is no larger than that for
- . the case of infinite battery capacity. Using these results an
: rZ —r(a—2P —r*(P)(x—a

Pr(S; > z) < gﬂzlgE {e 1} e ) e (M) following the same procedures as for proving Lemma 2 and
< ¢~ (P)(@=2P) | ,—r*(P)(z—a) 61) 3, it can be s_hown that (13) also holds for the case of finite
- battery capacity and
where (61) results from setting = »*(P). By choosinga

such that the exponents of the two terms in (61) are equal, the Dy (z) < *4 em 2 (P)@=2P) gy
desired result follows. [ | r(P)
The desired result follows by setting= B. |
APPENDIXC
PROOF OFLEMMA 3
o APPENDIX E
From the definition in (14), PROOF OFLEMMA 5
Dy(x) = / yfs(y,t)dy — x Pr(S; > x) Define the random procegs);} such that
_ / PI‘(St > y)dy (62) Qt = mln(Qt—l + Zt7 B)7 t= 17 21 e (69)
oo . with Qo = 0. Comparing (69) and the evolution 6§ in (1)
< / 2e~ 2" (P)W=2P) gy (63) shows thatS; > Q,. Therefore, giver: € [0, B)
where (62) and (63) are obtained using integration by parts Pr(S; < z) < Pr(Q: < ). (70)
and Lemma 2, respectively. The desired result follows from ,
(63). m BY expanding (69)
APPENDIXD Q; = min (B,B+Zt,B+Zt+Zt_1,--- ,
PROOF OFLEMMA 4 (71)
The definitions of the random proces<gs;} and{G}} in B+ zt: 7 zt: 7
(9) and (10) are modified for the case of finite-battery caygaci — m — m
Specifically,{G;} is redefined as a a
_ For ease of notation, define
Gt = min(max(Gy—1 + Z,0), B — P) (64)
t
and{G'} is as given in (10) but with the battery-level evolution (), = B + min (07 T Zo+ Zpq, -, Z Zm> _
following (1). Given finite battery capacitys, the inequality m=2
Sy < G, + G, can be proved using induction as follows. This o . _
inequality holds fort = 0 since Sy = Go = 0 and G} = p.  Then@y = min(Qs, 3-,,; Zm). It follows that
Assume thafS; < G, +G;. Consider the case ¢f+1) € T. It + "
follows from the definition o G} in (10) thatS; 1, = G7 ;. Pr(Q; < z) = Pr Z Im <x| Q= Z Zo | x
Therefore,S; 11 < G}y + Giq1 sinceGyyy > 0 from (64). 1 me1
Next, consider the case ¢f+1) ¢ 7. Based on the evolution t
of {S;} in (1), Pr (Qt => Zm> +
m=1
min(St + Zt+1, B), Sy < P ~ ~ ~
Sty1 = _ 65 P < = P =
t+1 { win(Ss + Zos1, B), Sy > P (65) r (Qt T | Qy Qt) r (Qt Qt)
t
Given that(t+1) ¢ T andS; < P, S; + Z;11 < P based on <Pr <Qt = Z Zm> 4
the definition of 7. As a result, m=1
min(S; + Zi41, B) < Giyq + Giga (66) Pr (Qt <z | Q= Qt) . (72)

sinceG/tH > 0andGy,, > P from (10). If 5, > P, since By inspecting (71), the ever®, = >' _, Z,, is equivalent
St < Gy + G, to the onemax(Z, Z1 + Zo, - - - ,an:l Zm) < B. Then the

min(S; + Ziy1, B) < min(G) + Gy + Zis1, B) inequality in (72) can be rewritten as
< G; +min(Gy + Zi41, B— P) (67) - L
<Gy + Gia (68) FPr(Q:<z)<Pr (max (Zlv ity sz> SB>+
m=1

where (67) applie&; > P, and (68) uses (64) ar@; , , = G B o to
given that(¢ + 1) ¢ 7. Combining (65), (66) and (68) proves  Pr (Qt < x| max <Z1,Zl+ZQ, I ZZm> >B>.
that Sy < G + Gigr if S; < G} + Gy It follows that m=1



Note that removing the conditioning of the last term incesas [7]
the probability. Therefore
t (8]
Pr(Q: < z) < Pr{max Zl,Zl—l—Zg,---,ZZm <B| +
m=1 &l
Pr (Qt < a:)
t [10]
<Pr(> Z.<B +Pr(@t<x). (73)
m=1 [11]
Applying a similar technique as for proving the result in
Theorem 1 for the case of. > P shows that given\. > P [17]

(74) [13]

Using the definition ofQ;, the last term in (73) can bell4]
rewritten as
t [15]
Pr(@t<x)=Pr min O,Zt,Zt—i—Zt_l,---,ZZm <
m=2 [16]

r— B
[17]

t
= Pr | min Zt,Zt—l-ZtA,"'vZZm < [18]
m=2

r— B (19]

since(x — B) < 0. Applying Kingman bound in a similar way [20]
as for obtaining (11) yields

Pr (Qt < :C) < e (PB) (75) 121
wherer*(P) < 0 according to Assumption 1 givek, > P.

By combining (73), (74) and (75)

[22]

: 1 S r*(P)(B—x (23]
nhﬂngo - ;Pr(Qt <z) <e (PIB-T) (76)
The desired result follows from (70) and (76). H [24]
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