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Abstract

Let A(n,d) (respectivelyA(n,d,w)) be the maximum possible number of codewords in a binary coele
spectively binary constant-weight code) of lengthn and minimum Hamming distance at leastBy adding new
linear constraints to Schrijver's semidefinite programgnitound, which is obtained from block-diagonalising the
Terwilliger algebra of the Hamming cube, we obtain two newpempbounds oM (n, d), namely A(18,8) < 71 and
A(19,8) < 131. Twenty three new upper bounds et(n, d, w) for n < 28 are also obtained by a similar way.

Index Terms

Binary codes, binary constant-weight codes, linear prognang, semidefinite programming, upper bound.

I. INTRODUCTION

Let 7 = {0, 1} and letn be a positive integer. ThgHamming) distanceetween two vectors iF” is the number
of coordinates where they differ. TH{elamming) weighof a vector inF" is the distance between it and the zero
vector. Theminimum distancef a subset ofF™ is the smallest distance between any two different vectothat
subset. An(n, d) codeis a subset ofF™ having minimum distance d. If C is an(n,d) code, then an element of
C is called acodewordand the number of codewords ¢his called thesizeof C.

The largest possible size of dn, d) code is denoted byl(n, d). The problem of determining the exact values
of A(n,d) is one of the most fundamental problems in combinatorialirgpdheory. Among upper bounds on
A(n,d), Delsarte’s linear programming bound is quite powerfule(§€] and [2]). This bound is obtained from
block-diagonalising the Bose-Mesner algebrardf. In 2005, by block-diagonalising the Terwilliger algebvehich
contains the Bose-Mesner algebra)®f, Schrijver gave a semidefinite programming bound [3]. Thiard was
shown to be stronger than or as good as Delsarte’s lineargroging bound. In fact, eleven new upper bounds on
A(n,d) were obtained in the paper far< 28. In 2002, Mounits, Etzion, and Litsyn added more linear taists
to Delsarte’s linear programming bound and obtained neveuppunds oM (n, d) [4]. In this paper, we construct

new linear constraints and show that these linear consdramprove Schrijver's semidefinite programming bound.
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Among improved upper bounds ofi(n, d) for n < 28, there are two new upper bounds, namdifil8,8) < 71
and A(19,8) < 131.

An (n,d,w) constant-weight codé an (n,d) code such that every codeword has weightLet A(n,d, w)
be the largest possible size of am, d, w) constant-weight code. The problem of determining the exakttes of
A(n,d,w) has its own interest. Upper bounds d(n, d, w) can even help to improve upper boundsAm, d) (for
example, see [4],]2]). There are also Delsarte’s lineaggmming bound and Schrijver’s semidefinite programming
bound onA(n,d,w) [1], [3]. In 2000, Agrell, Vardy, and Zeger added new lineanstraints to Delsarte’s linear
programming bound and improved several upper boundsgl@n d, w) [5]. More linear constraints that improve
upper bounds owl(n, d, w) can be found in[[6]. In this paper, we add further new linearst@ints to Schrijver’s

semidefinite programming bound ef{n, d, w) and obtain twenty three new upper boundsim, d, w) for n < 28.

Il. UPPERBOUNDS ON A(n,d)

In this section, we improve upper bounds 4w, d) by adding more linear constraints to Schrijver’s semidedini
programming bound, which is obtained from block-diagasiag the Terwilliger algebra of the Hamming cué&.

For more details about Schrijver's semidefinite prograngnbound, see [3].

A. General Definition ofd(n,d) and A(n,d, w)

We first give a general definition. Let and d be positive integers. For a finite (possibly empty) det=

{(Xi,d;) }icr, where eachX; is a vector inF" and eachd; is a nonnegative integer, we define

A(n,A,d) = maximum possible number of
codewords in a binary code of
lengthn and minimum distance
> d such that each codeword is

at distanced; from X;,Vi € I. (1)

1) |A| =0: If Ais empty, then we get the usual definition &fn, d).
2) |A| = 1: If A contains only one element, say&, d; ), then A(n, A, d) is the maximum possible number of
codewords in a binary code of lengthand minimum distance d such that each codeword is at distadgefrom

X;. By translation, we may assume th#t is the zero vector so that each codeword has weighiTherefore,
A(n, A, d) = A(n, d, w), )

wherew = d;.
A (w1, ny,ws,ng,d) doubly-constant-weight code an (ny + na, d, w; + we) constant-weight code such that
every codeword has exactly; ones on the firsk; coordinates (and hence has exaatly ones on the lasty

coordinates). Lefl'(w1,n1,ws, ne, d) be the largest possible size of(a;,n1,ws, n2,d) doubly-constant-weight



code. Agrell, Vardy, and Zeger showed in [5] that upper bauod? (w;, n1, we, n2,d) can help improving upper
bounds onA(n,d,w). In our result, upper bounds dA(wy,n1, w2, na,d) will be used to improve upper bounds
on A(n,d). As A(n,d) and A(n,d,w), T (w1, n1,ws, ne,d) is also a special case of(n, A, d).

3) |A] = 2: If A contains two elements, then the following proposition shdwat A(n, A, d) is exactly
T(wy,n1, w2, n2,d).

Proposition 1: If A = {(X1,d1), (X2,d2)}, then
A(n, A, d) = T(w1,n1, wa, n2, d), (3)

Wherem = d(Xl,Xg),ng =n-—ni,w; = %(dl —do + nl), andwg = %(dl +dy — nl).
Proof: Letny = d(X1, X2) andny = n—n4. By translation, we may assume thgf is the zero vector. Hence,
d(X1,X2) = wt(Xs). LetY be a vector at distancé, from X; and at distancé, from X,. By rearranging the

coordinates, we may assume that

ni n2
X, = 0---00---0 0---00---0
Xy = 1---11---1 0---00---0 .
Y = 0---01---1 1---10---0
—— ——
w1 w2
Since X is the zero vector, we have
w1 + w2 = ’LUt(Y) = d(Y, Xl) = dl. (4)
Also,
(n1 —wi) +we = d(Y, X3) = da. (5)
(@) and [(5) givew; = 3(d1 — d2 + n1) andwy = 1(dy + dz — n1). ]

4) |A| > 3: It becomes more complicated whéncontains more than two elements. We consider a very special
case whenA| = 4, which will be used in our improving upper bounds difn, d, w) in Section1ll. Suppose that
A ={(X1,d1),(X2,ds),(X35,d3),(X4,ds)} satisfies the following conditions.

o Xj is the zero vector (which can always be assumed).

o X5 and X3 have the same weiglal; .

o Xu=Xo0+ X5,

Then A(n, A,d) = T (w1, n1, wa, na, ws, n3, wa, ng, d), wherew; andn; (1 < i < 4) are determined in the next
proposition. The definition of (wy, n1, we, ne, w3, ns, ws, n4,d) is similar to that ofT'(ny, wi,ng, we, d) (it is
the largest possible size of(zg:le n;,d) code such that on each codeword there are exastlgnes on then;
coordinateq1 < i < 4)).

Proposition 2: Suppose that\ = {(X;,d;)}}_, satisfiesX; is the zero vectorwt(Xs2) = wt(X3) = dy, and
X4 = X5+ X3. Then

A(nvAad) = T(whn1,w2,n2,w3,n3,w4,n47d)7 (6)



d(XQ,Xg),TLQ = dl — Ny, Ng =N —N1 — N2 — N3,

wheren; = ng = 3

1 1
wp = Z(dl—d2+d3—d4)+§n1,
1 1
wo = Z(dl—dg—d3+d4)+§n2,
1 1
w3y = Z(d1+d2—d3—d4)+§n3,
1 1
wy = Z(d1+d2+d3+d4)+§(n4—n).

Proof: Suppose thaZ is a vector at distancé; from X, (1 < i < 4). By rearranging the coordinates, we

may assume the following.

7Z-=0---01---11---10---0 0---01---11---10---0
—— —— ————

w1 w2 w3 wq
Let nq,n2,n3,n4 be as in the above figure. Sinea + n3 = d(X»2, X3) and X2, X3 have the same weight,

ny =n3 = %d(XQ, Xg) Now ni +ng = ’LUt(XQ) =d;. TherEfore,ﬂ,Q =diy —m andn4 =n—"n] — Na —N3. We

have
wy + wa + w3 + wy = wt(Z) = d(Z,X1)=dy
(n1—wi)+ (ne —wo) tws+wy = d(Z,X2)=ds
w1+ (n2 —ws) + (N3 —ws) +wy = d(Z,X3) =ds
(n—w1) 4wy + (ng —ws) +wy = d(Z,X4) =dy
Solving these equations, we gef (1 < i < 4) as desired. [ ]

B. Schrijver's Semidefinite Programming Bound .4, d)

Let P be the collection of all subsets ¢1,2,...,n}. Each vector inF" can be identified with its support (the
support of a vector is the set of coordinates at which theordthas nonzero entries). With this identification, a
code is a subset d? and the (Hamming) distance between two subsétandY in P is d(X,Y) = | XAY|. Let

C be an(n,d) code. For each, j, andt, define

1
xh = —— )
el (i)
where (b17b2f1___7bm) denotes the number of pairwise disjoint subsets of sbzes;, ..., b,, respectively of a set

of sizea, and \! ; denotes the number of tripl€s,Y, Z) € C* with [XAY| = i, | XAZ| = j, and |[(XAY) N
(XAZ)| =t, or equivalently, with X AY'| = i, [XAZ| = j, and|Y AZ| = i+j—2t. Setx} ; = 0 if ( " ) =

i—tj—tt
0.



The key part of Schrijver's semidefinite programming bousidhiat for eachk = 0,1, ..., [ %], the matrices
n n—k
<Z ﬁf]kxf]> 8)
t=0 i,j=k
and
n n—k
(Z Bf,j,k(x?ﬂ—%,o - xf;)) 9
t=0 i,j=k

are positive semidefinite, Wheﬁf,j’,C is given by

" wet (U (n=2k\ (n—k—u\ (n—k—u
e = e () () (55 o
Since
=3 (")t ()
=0

an upper bound oml(n, d) can be obtained by considering thlgj as variables and by

maximizing ; (7:) d (12)
subject to the matrice§](8) arid (9) are positive semideffoiteachk = 0,1,..., %] and subject to the following
conditions on ther} ; (see [3]).

(i) 20, =1.
(i) 0<af; <Py and zfy+af, <1+af; foralli,jte{0,1,...,n}.

(i) 2}, = :z:ﬁ,',j, if (¢/,5',¢' 4+ 5 —2t') is a permutation ofi, j,i + j — 2t).

(v) at; =0if {i,j,i+j—2t}n{1,2,....,d—1} #0.

C. Improved Schrijver's Semidefinite Programming BoundAdn, d)

1) New Constraints for} ;: Let C be an(n,d) code and let:} ; be defined by[(7).
Theorem 3:For all4,j,t € {0,1,...,n} with (i_t,?_m) #0,
ivfj < T(t,i,j — t,@— i,d) %Q,o-
() (=)
Proof: Recall that)! ; is the number of triple$X, Y, Z) € C* with [XAY| =4, [XAZ| = j, and|[Y AZ| =
i+ j — 2t. For any pair(X,Y) € C? with |[XAY| = i, the number ofZ € C such that|ZAX| = j and
|ZAY| =i+ j — 2t is upper bounded by (n, A,d), whereA = {(X, 5), (Y,i + 7 — 2¢)}. By Propositior 1L,

(13)

Aln,A,d) =T(t, 4,5 —t,n—1,d). (14)
Since the number of pairsX,Y) € C* such tha XAY | =i is \?,,



Therefore,
1
t t
i — g
(i)
T(t,i,j—t,n—i,d)

el (i)

T(t,i,j—t,n—1id) () ,

= Lo
n
(ift,jft,t)

T(tyi,j—t,n—1,d) 4
= Tig-

() (5=0)

IN

0
/\i,O

The following corollary was used in|[3].

Corollary 4: For eachj € {0,1,...,n},

Proof: By TheorenlB, we have

xy; < Lo,0 = . (17)

[ |
Remark 5: Theoreni B improve the conditiofgj < :cgo in Schrijver’'s semidefinite programming bound since
W <1 (in fact, W is much less than in general). Similarly, Corollaril4 in many cases
(of i and j) improve the condition:}, + 2%, < 1+ z! ; sincex) ; = x§, = % is much less thar in
general.
2) Delsarte’s Linear Programming Bound and Its Improversehet C be an(n, d) code, thelistance distribution

{B;}7-, of C is defined by

1
Bizm-l{(X,Y)eCZIIXAY|=i}|- (18)
By definition,
n 0o _ .
(i ) tio = Bi (19)
for eachi = 0,1,...,n. Hence,{(") 27 }1, is the distance distribution of. The following result can be found

for example in[[7] or[[6].
Theorem 6:(Delsarte’s linear programming bound and its improvemehtst C be an(n, d) code with distance

distribution{B;}7_ = {("}) ¥ }i—o. Fork =1,2,...,n,

ipk(mi)Bi > — (:) : (20)



where Py (n; x) is the Krawtchouk polynomial given by

Pk(n;x):i(—l)-j (j) (Z:j) (21)

If M =|C|is odd, then

;Pk(nﬂ)BiZ—(Z)"'%(Z)- (22)
If M =|C| =2 (mod4), then there exists € {0,1,...,n} such that
ZPk(n;i)BiZ—(Z) +% [(Z) +Pk(n;t)]. (23)
=1

3) Linear Constraints on Distance Distributioq$3;}},: If some linear constraints are used to improve Del-
sarte’s linear programming bound of(n, d), then these constraints can still be added to Schrijverisidefinite
programming bound to improve upper bounds 4, d). The following constraints are due to Mounits, Etzion,
and Litsyn (seel]4, Theorems 9 and 10]).

Theorem 7:Let C be an(n,d) code with distance distributiofiB;}?_,. Suppose that is even and) = d/2.
Then

Buos+ 5| Y Bui<|5] (24)
<8
and
Busi+[A(n,d,6 +i) — A(n = 6 +14,d,6 +0)|Bu_syi + A(n,d, 6 +14) ¥ Bu_s; < A(n,d, 6 +1) (25)
J>1
foralli=1,2,...,6 — 1.

Table[l shows improved upper bounds difn, d) when linear constraints in Theoreidd3, 6, &hd 7 are added to
Schrijver's semidefinite programming bourid](12). In thelgaby Schrijver bound we mean upper bound obtained
from Schrijver's semidefinite programming bound](12). Amamproved upper bounds a#A(n, d), there are two
new upper bounds, namely

A(18,8) <71 and A(19,8) < 131.

The other best known upper bounds are from [8]. Aslin [3], alinputations here were done by the algorithm
SDPT3 available online on the NEOS Server for Optimizattaitp(//www.neos-server.org/neos/solvers/index.html)
Remark 8:Since A(n,d) = A(n + 1,d+ 1) if d is odd, we can always assume théts even. Ifd is even,
then A(n,d) is attained by a code with all codewords having even weigHence, in Schrijver's semidefinite

programming bound, one can y:n;ﬁt7 =0 if 4 or 5 is odd.

Remark 9:1n Theorem§&13 and 7, the valuesAfn, d, w) andT (w, n1, wa, na, d) may have not yet been known.
However, we can replace them by any of their upper boundstfeeproof of [4, Theorem 10] for the validity of
this replacement in Theorefm 7). While best known upper bswrA(n, d, w) (which are mostly from[[9],[[5],
[3], [10]) are used in our computations, all upper bounds/@m,, 1, wa, ne, d) that we used are from the tables

on Erik Agrell's website http://webfiles.portal.chalmeess2/research/kit/bounds/dcw.html.
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TABLE |
IMPROVED UPPER BOUNDS FORA(n, d)

best | best upper

lower bound new | improved
bound | previously | upper | Schijver | Schrijver
n d | known known | bound bound bound
18 8 64 72 71 71 80
19 8 128 135 131 131 142
20 8 256 256 262 274
25 8 4096 5421 5465 5477
26| 8 4104 9275 9649 9697
26 | 10 384 836 885 886
25 | 12 52 55 57 58
26 | 12 64 96 97 98

[1l. UPPER BOUNDS ONA(n, d, w)
A. Some Properties ol (n, d, w)

We begin with some elementary propertiesA{fn, d, w) which can be found in_[2].
Theorem 10:

A(n,d,w) = A(n,d + 1,w), if dis odd, (26)
A(n,d,w) = A(n,d,n — w), (27)
An2,w) = ('), (28)

A(n, 2w, w) = LgJ , (29)
Aln,d,w) =1,  if 2w < d. (30)

Remark 11:By (26) and [[Z2B), we can always assume tlids even andi > 4. Also, by [2T), [29), and(30),

we can assume that< 2w < n.

B. Schrijver's Semidefinite Programming Bound .4, d, w)

Let C be an(n,d,w) constant-weight code and let=n — w. For each, s, i, andj, define

1

vij = - ——H (31)
|C| (ift,jft,t) (ifs,jfs,s)




Whereuf.:j is the number of triplegX,Y, Z) € C3 with [X \ Y| =4, |X \ Z| = 4,|(X\Y)N (X \ 2)| = ¢,

and (Y \ X)N (Z\ X)| = s, or equivalently, with XAY'| = 2i, | XAZ| =24, |[YAZ| =2(i+j—t—s), and
t,s : H w _ v _

I XAYAZ| = w+ 2t — 2s. Sety;”; = 0 if either (i_m_t,t) =0or (i_s,j_w) =0.

In the previous section?; ; , depends om. Hence,f3; ; , should be denoted bﬁf";lk. We will use the later

notation in this section. As ir [3], for eadh=0,1,...,[%] and each = 0,1,..., |5, the matrices

(Z By By ;) (32)
1,]EWLNV;

and

<Zﬂt,;}kﬂ,y, yH—] t—s,0 yff)) (33)

1, EWLNV;
are positive semidefinite, whei®;, = {k,k+1,...,w—k} andV; ={l,i+1,...,v —1}. Since

min{w,v}

=" () (e o0

an upper bound ol (n, d, w) can be obtained by considering tb?j as variables and by

min{w,v}
T w v 0,0
maximizing ; (z ) (2) Yio (35)
subject to the matriceg (B2) arid (33) are positive semidefiai eacht: = 0,1,...,[¥] andeaci =0,1,...,[5],

and subject to the following conditions.

(i) yoo = 1.
(i) O<yt5<y andylo—i-yjoSl—l—yzsforallzj,tsE{O,l,...,min{w,v}}.

(iii) y”-—ym/ if t/ —s'=t—sand(i,j,i+j —t' — ') is a permutation ofi, j,i + j —t — s).
(iv) y S=00f {26,25,2(i+j—t—s)}N{1,2,...,d—1} #0.

C. Improved Schrijver's Semidefinite Programming BoundAdn, d, w)

. t,s.
1) New Constraints foy,”;: Let C be an(n,d,w) constant-weight code and I@ﬁ be defined by[(31). The
following theorem corresponds to Theoréin 3 in the previagtisen.
Theorem 12:For all i, j,s,t € {0,1,..., min{w,v}} with (i_tj?_tt) #0 and(, v ) #0,

i—s,j—5,5
yf; < T(t,i,j - t,w —}z’, s,‘i,j - é,v —i,d) y?,’oo-
() (4=) () (5)
Proof: Suppose thatX,Y) € C? such that XAY| = 2i. We claim that the number of codewords € C
such that|XAZ| = 24, |[YAZ| = 2(i +j —t —s), and | XAYAZ| = w + 2t — 2s is upper bounded by

(36)

T(t,i,j —t,w—1,8,4,j —s,v —1i,d). It is easy to see that this number is upper boundediby, A, d), where
A={(0,w),(X,25),(Y,2(i +j—t —s)),(XAY,w + 2¢t — 2s)}. By Propositior 2,

A(TL,A,d) :T(wlanlaw21n21w31n31w47n47d)7 (37)



10

wheren; = n3 = 2| XAY| =i, ng =di —nmy =w—i,ng =n—i— (w—1i)—i=v—i and similarly,
wy =i —twy=(w—1)—(j —t),ws = s,ws = j — s. Hence,
An,A,d) = T(i—t i, (w—1i)—(—t),w—138,4]—8v—1d)
= T(t,z',j—t,w—i,s,i,j—s,v—i,d), (38)
where the later equality comes from Proposifioh 22 (i) ve appendix. Since the number of pairs,Y) € C2
such thal XAY| = 2i is 17y,

,U::j S T(tv Zv.] - tv w — 7;5 S, 7’5.] -5V = 7;5 d)ﬂ?,g (39)
Therefore,
yts = 1 Nt,s
%] - ©,J
e (i) (aias)

T(t,i,j—t,w—i,s,i,j—s,v—i,d) 0,0

i o
O (i) (iates)

T(t,i,j—t,w—i,s,i,j—s,v—i,d) 0,0
4,0

= (i—t:;')—t,t) (i_s,;_&s) (7;))—1 (3)_1?;7

T(t,i,j—t,w—i,s,i,j—s,v—i,d) 0,0

)

RIS

2) Delsarte’s Linear Programming Bound:et C be an(n, d, w) constant-weight code with distance distribution

IN

t,s
i

{B;}™,. By definition of y
(w) (Q.J)y%J:Bzi (40)

2 (2
for every: (note thatBy, = 1 and B; = 0 whenever; is odd or0 < ¢ < d or i > 2w).
Theorem 13:(Delsarte’s linear programming bound). {B;}_, is the distance distribution of afw,d,w)

constant-weight code, then fér=1,2,..., w,

w

Z q(k,i,n,w)Ba; > —1, (41)
i=d/2
where
i = S0 () () (547 .

Specifying Delsarte’s linear programming bound A, d) gives the following linear constraints aB;, which
sometimes help reducing upper boundsAm, d, w) by 1 (see [6, Proposition 11]).

Theorem 14:Let C be an(n,d,w) constant-weight code with distance distributi¢®;}” ,. For eachk =
1,2,...,n,

. _ . 2 n
Z/P (m:20)Boi < = [ (1) =) a6 (M = q0) +rean + DM — a1 = 1)), (43)
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whereg; andr; are the quotient and the remainder, respectively, whenlidiyi) P, (n;w) by (Z) ie.

n

MP, (n;w) = g (k:

)+ (44)

with 0 <, < (), and whereP,” (n; z) is defined by

Py (niz) = Zn: (x) (Z:x) (45)
=0 N J
j odd
3) New Linear Constraints on Distance Distributiofi8;}7_,: Linear constraints which correspond to those in
Theoren ¥ have not been studied for constant-weight codas wugh similar constraints have been studied by
Argrell, Vardy, and Zeger in|5] (see Theorém 21 below). Wevmresent these constraints. Several new notations
are needed. For convenience, we fix the following settings the end of this section.
« Cis an(n,d,w) constant-weight code with distance distributioh; }} , such that is even and! < 2w < n.
o Letv=n—w. Since2w < n, w < v.
o Let H={d/2,d/2+1,...,w}, which is the set of all positive integérsuch thatB,; can be nonzero.
o For eachi € H, let V; be the set of all vector& in 7" such thatX has exactlyi ones on the firstv

coordinates and exactlyones on the last = n — w coordinates.

o Fori # j both in H, define
m;; = max{d(X,Y)| X € Vi,Y € V;}. (46)
» For each codeword in C, let
S9i(X) ={Y e C | d(X,Y) = 2i}, (47)
which is the set of all codewords in C at distance2i from X. By definition of { B;}7_,

Bsi = L D 19a(X))] (48)
cl =

for each: € H.

« For eachi € H, let Q; denote an integer such that
T(i,w,i,v,d) < Q. (49)
o Fori# j both in H with ¢ + j > v andm, ; = d, let Q);; denote an integer such that
T(w—j,i,v = j,i,d) < Qji, (50)
Proposition 15: For i # j both in H,
m;; =a+Db, (51)

where
147 ifi+j<w
i+7j—20+j—w) ifi+j>w
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and
) 147 ifi+j<w
i+j—20+j—v) ifi+j5>v
In particular, ifi +j > v > w, then

Proof: The proof is straightforward. [ ]
Lemma 16:For eachi € H and each codeword € C,
1S2:(X)] < Q. (53)
Proof: Let X be a codeword irC. It is easy to see thatSy;(X)| is upper bounded by (n, A, d), where
A = {(0,w), (X,24)}. By Proposition§11 and 22 (iii),
A(n,A,d) < T(w—i,w,i,v,d) =T(i,w,i,v,d). (54)
Hence,|S2;(X)| < T(i,w,i,v,d) < Q. [ |

Theorem 17:Suppose thaH; is a nonempty subset & such thatn, ; < d for all ¢ # j both in H;. Then for

each codewordX € C, S3;(X) is nonempty for at most onein H;. Furthermore,

Z Bai (55)

1€Hy Z

Proof: Let X be a codeword it€. Suppose on the contrary that there exigt j both in H; such thatSy;(X)
and S,;(X) are nonempty. Then choose aliye S»;(X) and Z € S»;(X). By rearranging the coordinates, we

may assume that

—~ = =
X = 1---1 0---0. (56)
Sinced(X,Y) = 2¢ and X andY have the same weight, ¥ + X must have exactly ones on the firsto

coordinates and exactly ones on the last coordinates. This means + X < V;. Similarly, Z + X € V;. By
definition of m; ;, d(Y + X, Z 4+ X)) < m; ;. Thus,

AY,Z)=dY + X, Z+ X) <mi; < d, (57)

which is a contradiction sinc¥ and Z are two different codewords ii. Hence,S5;(X) is nonempty for at most
one: in Hy. It follows by LemmdIb that

i€ Hy
Taking sum of[(GB) over alK € C, we get

Z BQz (59)

i€H, l
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We now consider the case; ; = d for some: # j both in H. The following Lemma says that the existence of
a codeword at distancZ from X may reduce the total number of codewords at distaéjcrom X.

Lemma 18:Supposei # j both in H such thati + j > v andm,; ; = d. If X is a codeword inC such that
|S2:(X)| > 1, then

[S2;(X)| < Qji- (60)

Proof: Fix a codewordY” € S5;(X). If S3;(X) is empty, then there is nothing to prove. Hence, we assume

|S2;(X)| > 1. Let Z € Sy;(X). By rearranging the coordinates, we may assume that

X = 7.1 6.0 (61)
As in the proof of Theorermn 17, we can show that- X € V; andZ + X € V;. By definition ofm; ;,
d<dY,Z)=dY +X,Z+X) <m;; =d. (62)
Thus,
dY,Z2)=dY + X, Z + X) =m,; = d. (63)

Sincei + j > v > w, by rearranging the firsty coordinates, we may assume that on the firstoordinates:

—~N=
Y4+X = 1---1 1---1 0---0]---
. (64)
Z+X = 0---0 1---1 1---1]--

H./—’ ——

w—j i+j—w
On the firstw coordinatesZ + X must have exactly+ j —w ones on the first coordinates (the other — i ones
of Z+ X must be fixed sincé(Y + X, Z + X) = m, ;).

Similarly, sincei + j > v, by rearranging the last coordinates, we may assume that on the {asbordinates:

v—1
Y+X = | 1---1 1 1 0---0
. (65)
Z74+X = | 0---0 1---1 1---1
—— ——
v—j i+j—v

On the lastv coordinatesZ + X must have exactly + j — v ones on the first coordinates (the othar— i ones
of Z+ X must be fixed since(Y + X, Z + X) = m, ;).
From [&1), [64), and(85), we get

dZ,X+Y) = wi(X+Y +2)
= wi(X+ (Y +X)+ (Z+ X))
= (i+j—w+w—j+v—1)

= 2v-—w. (66)
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Now the number ofZ € Sy;(X) is upper bounded by (n, A,d), whereA = {(0,w), (X, 25), (Y,d), (X +
Y, 2v — w)}. By Propositior 1b,
d=m;;=2(n—1i-j). (67)
Applying Propositioi 2, we get (by replacinb= 2(n —i — j) andn = w + v)
An,Ayd) = T(w—75,4,0,w—1i,i4j—v,i,0—1i,0—i,d)
= T(w-—ji,v—j1i,d), (68)
where the last equality comes from Proposifioh 22 in the agixe Therefore,
192;(X)| < A(n, A, d)
= T(w-—j,i,v—7j,i,d)

Qji- (69)

IN

Theorem 19:Suppose thatl; is a subset off satisfying the following properties.

o |Hi|>2.

« There existi # j both in H; such that + j > v andm; ; = d.

« For all & # [ both in H; such that eithek ¢ {4, j} or I & {i, j}, we always haven;; < d.
Let H, = Hy \ {¢,5}. Then

Qg ng 1 ng jS
Xl 2B+ —Byi + Ly <1, if >1, 70
Ga, Dt Bt 2 g o (79
Lp, 1@ Quip o S Lp,cn it %y %y (72)
Qi i\ ji kEH> k Q’L Qj
Z—B%<1 it Qi @it (72)
kEHl Ql Qj
Proof: We first prove [(7D). It suffices to show that for every codewdrdn C,
i 1 1
9= Qi 5, ()] 4+ (S, (X) + 3 [ (X)) < 1. 73)
QJQZ] 7 kEHs Qk
if %J + %—f;‘ > 1. Let X be any codeword i€. By Lemma[18,
1S2;(X)| <@ and  [S2;(X)] < Q. (74)
By Lemmal1s,
192 (X)| < Qi if |59;(X) = 1, (75)
|S2;(X)| < Qyi if |S2:(X)] > 1. (76)

We prove [[7B) by considering the following three cases.
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Casel: |S2;(X)| = 0. Proving [Z3) is exactly the same as provifigl(58). So we aredon
Case2: |S2;(X)| > 1 and |Ss;(X)| = 0. Since|S2;(X)| > 1, |S2x(X)| = 0 for everyk € H, by Theoreni1l7.
Hence, to prove (13), we only need to prove that
(Qj — Qji)[S2:(X)] < Q;Qi5- (77)
By hypothesis,% + %—f;‘ > 1. Thus,(Q; — Q,:)Q; < Q;Q;; and hence
(Qj — Qji)|92i(X)] < (@5 — Q;i)Qi < Q;Qij- (78)
Case3: [S2i(c)] > 1 and|S2;(c)| > 1. As in Case2, | Sz, (X)| = 0 for everyk € Hy. We have
Qj ng QJ QJZ

1
Si X + = Soj (X S 3 [
Q_]Qz] | 2 ( )| Q_]| 2]( )| Q Q” Q] QJQJ
- 1— Qﬂ Qﬂ
Qj Qg
= 1 (79)
Therefore, [(7B) is proved and so is170).
By symmetry, [711) follows.
We now prove[(7R). It suffices to show that for every codewdrdn C,
1
ST sw(X) <1, (80)
Qk

ke H,
if % + %—j;‘ < 1. If either |S2;(X)| = 0 or |S2;(X)| = 0, then proving[(8D) is exactly the same as proving (58).
Hence, suppose thafy;(X)| > 1 and|S2;(X)| > 1. As in Case2, |S2x(X)| = 0 for everyk € H,. We have

1 1
—S2:(X)| + —|S < i i < L. 81
Qz| 2( )| le 27( )l Q'LQJ QJQ7 ( )
[ |
We now specify whichH; are used in Theoremis]17 and 19. Let
a=d/2—(n—2w) (82)
and let
a—+1 o
a1 = { , J and oy = bJ (83)
so thata; + as = «. Also, let
0 =W — o andj():’w—ag. (84)

« Casel: « is even.n this casejo = jo. We apply Theorerh 17 for
Hl:{j07j0+1a"'7w} (85)
and apply Theorerm 19 for

Hy ={ip—€,jo+e€jo+e+1,...,w} (86)
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(with i =49 — e andj = jo + ¢) for eache =1,2,--- Jw — jo .

« Case2: a is odd.In this casejy < jo. We apply Theorerh 19 for
Hl:{i0_61j0+€7j0+6+1a"'7w} (87)

(with ¢ = ip — e andj = jo + ¢€) for eache = 0,1, --- ,w — jo.

Example 20:Consider(n,d,w) = (27,8,13). We havea = d/2 — (n — 2w) = 3 is odd. Hencep; = 2 and
as = 1. S0,ip = 11 and j, = 12. We can apply Theorefn 19 fdii; = {i = 9,7 = jo,w} = {11,12,13} (with
e = 0). We have

Qi =26>1T(2,13,3,14,8) = T(11,13,11, 14, 8),
Q; =1="T(1,13,2,14,8) = T(12,13,12, 14, 8),
Qij = 20 > T(2,12,3,12,8),
Qji=1="T(1,11,2,11,8),

and

Qr=1=T(0,13,1,14,8) = T(13,13,13, 14, 8)

for k = 13. Since% + % =23 + 1 > 1, Theoreni 1D gives

Boy+ By <1 (88)
and
1 26 — 20
—B ——B By < 1. 89
2% 22 + 2% 24 + D2 < (89)
The later constraint is equivalent to
Bayo 4+ 6Bay + 26 Bog < 26. (90)

For H; = {10, 13} (with € = 1), Theoreni IO gives less effective linear constraints.

When o < 0, there is no setH; satisfying Theoreni_19. In this case, the following type afelr con-
straints which comes froni[[5, Proposition 17] is very usefs in [5], let T/(wq, n1, w2, na,d) be the largest
possible size of gw,n1,ws,ne,d) doubly-bounded-weight code (@v,n1, w2, ns2,d) doubly-bounded-weight
codeis an (ny + no,d, w1 + ws) constant-weight code such that every codeword has at mpsines on the
first ny coordinates). Tables for upper bounds (w1, n1,ws, na,d) can be found on Erik Agrell's website
http://webfiles.portal.chalmers.se/s2/researchikitfials/dbw.html.

Theorem 21:Let § = d/2. Fori,j € {§,6 +1,...,w} with i # j. If i +j <n — 4, defineP,;; and P;; as any
nonnegative integers such that

Py > min{P;, T (A, j,i — Ayn —w — j,2i — 2A}, (91)

Pj; > min{P;, T"(A,i,j — A,n —w —i,2j — 2A}, (92)


http://webfiles.portal.chalmers.se/s2/research/kit/bounds/dbw.html

17

TABLE Il

NEW UPPER BOUNDS FORA(n, d, w)

best | best upper
lower bound new

bound | previously | upper | Schrijver

n d | w | known known | bound bound
20| 6| 8 588 1107 | 1106 1136
22 8 | 10 616 634 630 634
23| 8 9 400 707 703 707
26 8 9 887 2108 2104 2108
26 8|11 1988 5225 5208 5225
27| 8 9 1023 2914 | 2882 2918
27 8| 11 2404 7833 7754 7833
27 8 | 12 3335 10547 | 10460 10697
27 8 | 13 4094 11981 | 11897 11981
28| 8 9 1333 3895 | 3886 3900
28| 8|11 3773 11939 | 11896 12025
28 8 | 12 4927 17011 | 17008 17011
28 8 | 13 6848 21152 | 21148 21152
23| 10 9 45 81 79 82
25|10 | 11 125 380 379 380
251 10 | 12 137 434 433 434
26| 10 | 11 168 566 565 566
26 | 10 | 12 208 702 691 702
27110 | 11 243 882 871 882
27 | 10 | 12 351 1201 1190 1201
27 | 10 | 13 405 1419 1406 1419
28| 10 | 11 308 1356 | 1351 1356
25| 12 | 10 28 37 36 37

where A := w — §. Also, defineP;, := Qy for eachk € H. Then

2o

PjiBa; + (P; — Pij)Baj < PPy, if =2+ == > 1, (93)
LN
o By Py

(Pj — Pji)BQi + P;;Boj < PPy, if ==+ —=>1, (94)
Py Py

PjBQi + PZ'BQJ' < Pl'Pj, if J + J <1 (95)

oy
.
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By adding the linear constraints in Theorems [12, [14,[17, h8,[Z] to Schrijver's semidefinite programming
bound [35), we obtained new upper boundsAm, d, w) shown on Tabl€]l. As before, all computations were

done by the same algorithm SDPT3 at the same server.

APPENDIX

UPPERBOUNDS ONT (w1, ny, wa, Na, w3, N3, Wa, N4, d)

To apply Theorerh 12, we need tables of upper boundB@m , n;, ws, n2, w3, n3, wa, ny, d). However, there are
no such tables available since this is the first time the fand (w1, n1, wa, na, w3, N3, w4, 4, d) is introduced. We
show here some elementary properties that are used to algper bounds off’ (w1, n1, we, na, ws, ng, wa, N4, d).

In general, let us defin® ({(w;, n;)}i_,, d) as follows. Fort > 1, a ({(w;,n;)}!_,,d) multiply constant-weight
codeis a(z _, n;,d) code such that there are exactly ones on the:; coordinates. When = 1 this is definition
of an(n1, d, w;) constant-weight code, when= 2 this is definition of aw;, n1, we, ns, d) doubly-constant-weight
code, etc.. LeT'({(w;, n;)}_;, d) be the largest possible size of f{w;,n;)}!_;, d) multiply constant-weight code.

We present here elementary properties that are used to get bpunds o7’ ({(w;,n;)}!_,,d). The proofs of
these properties are similar to those fbfn, d, w) or T (w1, n1,ws2,n2,d), and hence are omitted. Upper bounds
on T'(wq, ny, we, na, w3, N3, we, N4, d) that we used in Theorem2 are the best upper bounds obtaredliese
properties.

Proposition 22: (i) If d is odd then,

T({(wi,ni)}iz1, d) = T({(wi, ni) ey, d + 1), (96)
(i) If w; =0 for somej € {1,2,...,t}, then

T({(wi, ni)Yicy, d) = T({(wi, n4) iz, ). (97)

(i) T({(ws,n;)}_,,d) does not change if we replace any by n; — w;.
V) T((wina) b 2) =TT, (3):
(V) T({(wi i)Yoy, 2300 we) = mimcicy | 2.

Vi) T({(wi,ni) Yoy, d)=1if 230 w; < d.

Remark 23:By (i) and (iv), we can always assume thats even andi > 4. By (ii) and (iii)), we may assume
that 0 < 2w, < n; for eachi. Also, by (v) and (vi), we can assume thak 2 Zf. 1 Wi

The next proposition can be used to reduce the sizg(®f, n;)}!_, from ¢ to ¢t — 1. When the size of the set
is 2, we use known upper bounds @hw, n1,ws,na,d).

Proposition 24:If ¢ > 2, then

T({(wivni)}gzlad)gT({( Wi, z)}i }7d) (98)

wherew! = w;,n, =n; fori=1,2,...,t — 2, andw}_; = wi_1 + we,n}_q = ng—1 + ny.
Proposition 25: If w; > 0, then
n; ’

Tl d) < | BT )Y (99)

3
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where{(w},n})}!_, is obtained from{(w;,n;)}!_, by replacing the paitw;,n;) by (w; — 1,n; — 1).
Proposition 26: If w; < n;, then

Uz

T({(wi,ni)Yo_q,d) < {

where {(w},n})}!_, is obtained from{(w;,n;)}!_, by replacing the paifw;,n;) by (w;,n; —1).

T({(wz,nw}f-_l,d)J , (100)

n; — w;
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