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Improved Semidefinite Programming Bound on
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Abstract

Let A(n, d) (respectivelyA(n, d, w)) be the maximum possible number of codewords in a binary code(re-

spectively binary constant-weightw code) of lengthn and minimum Hamming distance at leastd. By adding new

linear constraints to Schrijver’s semidefinite programming bound, which is obtained from block-diagonalising the

Terwilliger algebra of the Hamming cube, we obtain two new upper bounds onA(n, d), namelyA(18, 8) ≤ 71 and

A(19, 8) ≤ 131. Twenty three new upper bounds onA(n, d, w) for n ≤ 28 are also obtained by a similar way.

Index Terms

Binary codes, binary constant-weight codes, linear programming, semidefinite programming, upper bound.

I. I NTRODUCTION

Let F = {0, 1} and letn be a positive integer. The(Hamming) distancebetween two vectors inFn is the number

of coordinates where they differ. The(Hamming) weightof a vector inFn is the distance between it and the zero

vector. Theminimum distanceof a subset ofFn is the smallest distance between any two different vectors in that

subset. An(n, d) codeis a subset ofFn having minimum distance≥ d. If C is an(n, d) code, then an element of

C is called acodewordand the number of codewords inC is called thesizeof C.

The largest possible size of an(n, d) code is denoted byA(n, d). The problem of determining the exact values

of A(n, d) is one of the most fundamental problems in combinatorial coding theory. Among upper bounds on

A(n, d), Delsarte’s linear programming bound is quite powerful (see [1] and [2]). This bound is obtained from

block-diagonalising the Bose-Mesner algebra ofFn. In 2005, by block-diagonalising the Terwilliger algebra (which

contains the Bose-Mesner algebra) ofFn, Schrijver gave a semidefinite programming bound [3]. This bound was

shown to be stronger than or as good as Delsarte’s linear programming bound. In fact, eleven new upper bounds on

A(n, d) were obtained in the paper forn ≤ 28. In 2002, Mounits, Etzion, and Litsyn added more linear constraints

to Delsarte’s linear programming bound and obtained new upper bounds onA(n, d) [4]. In this paper, we construct

new linear constraints and show that these linear constraints improve Schrijver’s semidefinite programming bound.

The authors are with the Department of Mathematics, Pohang University of Science and Technology, Pohang 790-784, Korea(e-mail:

hkkim@postech.ac.kr; pttoan@postech.ac.kr).
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Among improved upper bounds onA(n, d) for n ≤ 28, there are two new upper bounds, namelyA(18, 8) ≤ 71

andA(19, 8) ≤ 131.

An (n, d, w) constant-weight codeis an (n, d) code such that every codeword has weightw. Let A(n, d, w)

be the largest possible size of an(n, d, w) constant-weight code. The problem of determining the exactvalues of

A(n, d, w) has its own interest. Upper bounds onA(n, d, w) can even help to improve upper bounds onA(n, d) (for

example, see [4], [2]). There are also Delsarte’s linear programming bound and Schrijver’s semidefinite programming

bound onA(n, d, w) [1], [3]. In 2000, Agrell, Vardy, and Zeger added new linear constraints to Delsarte’s linear

programming bound and improved several upper bounds onA(n, d, w) [5]. More linear constraints that improve

upper bounds onA(n, d, w) can be found in [6]. In this paper, we add further new linear constraints to Schrijver’s

semidefinite programming bound onA(n, d, w) and obtain twenty three new upper bounds onA(n, d, w) for n ≤ 28.

II. U PPERBOUNDS ONA(n, d)

In this section, we improve upper bounds onA(n, d) by adding more linear constraints to Schrijver’s semidefinite

programming bound, which is obtained from block-diagonalising the Terwilliger algebra of the Hamming cubeFn.

For more details about Schrijver’s semidefinite programming bound, see [3].

A. General Definition ofA(n, d) andA(n, d, w)

We first give a general definition. Letn and d be positive integers. For a finite (possibly empty) setΛ =

{(Xi, di)}i∈I , where eachXi is a vector inFn and eachdi is a nonnegative integer, we define

A(n,Λ, d) = maximum possible number of

codewords in a binary code of

lengthn and minimum distance

≥ d such that each codeword is

at distancedi from Xi, ∀i ∈ I. (1)

1) |Λ| = 0: If Λ is empty, then we get the usual definition ofA(n, d).

2) |Λ| = 1: If Λ contains only one element, says(X1, d1), thenA(n,Λ, d) is the maximum possible number of

codewords in a binary code of lengthn and minimum distance≥ d such that each codeword is at distanced1 from

X1. By translation, we may assume thatX1 is the zero vector so that each codeword has weightd1. Therefore,

A(n,Λ, d) = A(n, d, w), (2)

wherew = d1.

A (w1, n1, w2, n2, d) doubly-constant-weight codeis an (n1 + n2, d, w1 + w2) constant-weight code such that

every codeword has exactlyw1 ones on the firstn1 coordinates (and hence has exactlyw2 ones on the lastn2

coordinates). LetT (w1, n1, w2, n2, d) be the largest possible size of a(w1, n1, w2, n2, d) doubly-constant-weight
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code. Agrell, Vardy, and Zeger showed in [5] that upper bounds onT (w1, n1, w2, n2, d) can help improving upper

bounds onA(n, d, w). In our result, upper bounds onT (w1, n1, w2, n2, d) will be used to improve upper bounds

on A(n, d). As A(n, d) andA(n, d, w), T (w1, n1, w2, n2, d) is also a special case ofA(n,Λ, d).

3) |Λ| = 2: If Λ contains two elements, then the following proposition shows that A(n,Λ, d) is exactly

T (w1, n1, w2, n2, d).

Proposition 1: If Λ = {(X1, d1), (X2, d2)}, then

A(n,Λ, d) = T (w1, n1, w2, n2, d), (3)

wheren1 = d(X1, X2), n2 = n− n1, w1 = 1
2 (d1 − d2 + n1), andw2 = 1

2 (d1 + d2 − n1).

Proof: Let n1 = d(X1, X2) andn2 = n−n1. By translation, we may assume thatX1 is the zero vector. Hence,

d(X1, X2) = wt(X2). Let Y be a vector at distanced1 from X1 and at distanced2 from X2. By rearranging the

coordinates, we may assume that

X1 =

n1

︷ ︸︸ ︷

0 · · · 00 · · · 0

n2

︷ ︸︸ ︷

0 · · · 00 · · · 0

X2 = 1 · · · 11 · · · 1 0 · · · 00 · · · 0

Y = 0 · · · 0 1 · · · 1
︸ ︷︷ ︸

w1

1 · · · 1
︸ ︷︷ ︸

w2

0 · · · 0

.

SinceX1 is the zero vector, we have

w1 + w2 = wt(Y ) = d(Y,X1) = d1. (4)

Also,

(n1 − w1) + w2 = d(Y,X2) = d2. (5)

(4) and (5) givew1 = 1
2 (d1 − d2 + n1) andw2 = 1

2 (d1 + d2 − n1).

4) |Λ| ≥ 3: It becomes more complicated whenΛ contains more than two elements. We consider a very special

case when|Λ| = 4, which will be used in our improving upper bounds onA(n, d, w) in Section III. Suppose that

Λ = {(X1, d1), (X2, d2), (X3, d3), (X4, d4)} satisfies the following conditions.

• X1 is the zero vector (which can always be assumed).

• X2 andX3 have the same weightd1.

• X4 = X2 +X3.

ThenA(n,Λ, d) = T (w1, n1, w2, n2, w3, n3, w4, n4, d), wherewi andni (1 ≤ i ≤ 4) are determined in the next

proposition. The definition ofT (w1, n1, w2, n2, w3, n3, w4, n4, d) is similar to that ofT (n1, w1, n2, w2, d) (it is

the largest possible size of a(
∑4

i=1 ni, d) code such that on each codeword there are exactlywi ones on theni

coordinates(1 ≤ i ≤ 4)).

Proposition 2: Suppose thatΛ = {(Xi, di)}4i=1 satisfiesX1 is the zero vector,wt(X2) = wt(X3) = d1, and

X4 = X2 +X3. Then

A(n,Λ, d) = T (w1, n1, w2, n2, w3, n3, w4, n4, d), (6)
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wheren1 = n3 = 1
2d(X2, X3), n2 = d1 − n1, n4 = n− n1 − n2 − n3,

w1 =
1

4
(d1 − d2 + d3 − d4) +

1

2
n1,

w2 =
1

4
(d1 − d2 − d3 + d4) +

1

2
n2,

w3 =
1

4
(d1 + d2 − d3 − d4) +

1

2
n3,

w4 =
1

4
(d1 + d2 + d3 + d4) +

1

2
(n4 − n).

Proof: Suppose thatZ is a vector at distancedi from Xi (1 ≤ i ≤ 4). By rearranging the coordinates, we

may assume the following.

X2 =

n1

︷ ︸︸ ︷

1 · · · · · · · · · 1

n2

︷ ︸︸ ︷

1 · · · · · · · · · 1

n3

︷ ︸︸ ︷

0 · · · · · · · · · 0

n4

︷ ︸︸ ︷

0 · · · · · · · · · 0

X3 = 0 · · · · · · · · · 0 1 · · · · · · · · · 1 1 · · · · · · · · · 1 0 · · · · · · · · · 0

Z = 0 · · · 0 1 · · · 1
︸ ︷︷ ︸

w1

1 · · · 1
︸ ︷︷ ︸

w2

0 · · · 0 0 · · · 0 1 · · ·1
︸ ︷︷ ︸

w3

1 · · · 1
︸ ︷︷ ︸

w4

0 · · · 0

Let n1, n2, n3, n4 be as in the above figure. Sincen1 + n3 = d(X2, X3) and X2, X3 have the same weight,

n1 = n3 = 1
2d(X2, X3). Now n1 + n2 = wt(X2) = d1. Therefore,n2 = d1 − n1 andn4 = n− n1 − n2 − n3. We

have






w1 + w2 + w3 + w4 = wt(Z) = d(Z,X1) = d1

(n1 − w1) + (n2 − w2) + w3 + w4 = d(Z,X2) = d2

w1 + (n2 − w2) + (n3 − w3) + w4 = d(Z,X3) = d3

(n1 − w1) + w2 + (n3 − w3) + w4 = d(Z,X4) = d4

.

Solving these equations, we getwi (1 ≤ i ≤ 4) as desired.

B. Schrijver’s Semidefinite Programming Bound onA(n, d)

Let P be the collection of all subsets of{1, 2, . . . , n}. Each vector inFn can be identified with its support (the

support of a vector is the set of coordinates at which the vector has nonzero entries). With this identification, a

code is a subset ofP and the (Hamming) distance between two subsetsX andY in P is d(X,Y ) = |X∆Y |. Let

C be an(n, d) code. For eachi, j, and t, define

xt
i,j =

1

|C|
(

n
i−t,j−t,t

)λt
i,j , (7)

where
(

a
b1,b2,...,bm

)

denotes the number of pairwise disjoint subsets of sizesb1, b2, . . . , bm respectively of a set

of size a, andλt
i,j denotes the number of triples(X,Y, Z) ∈ C3 with |X∆Y | = i, |X∆Z| = j, and |(X∆Y ) ∩

(X∆Z)| = t, or equivalently, with|X∆Y | = i, |X∆Z| = j, and|Y∆Z| = i+j−2t. Setxt
i,j = 0 if

(
n

i−t,j−t,t

)

=

0.
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The key part of Schrijver’s semidefinite programming bound is that for eachk = 0, 1, . . . , ⌊n
2 ⌋, the matrices

(
n∑

t=0

βt
i,j,kx

t
i,j

)n−k

i,j=k

(8)

and
(

n∑

t=0

βt
i,j,k(x

0
i+j−2t,0 − xt

i,j)

)n−k

i,j=k

(9)

are positive semidefinite, whereβt
i,j,k is given by

βt
i,j,k =

n∑

u=0

(−1)u−t
(u

t

)(n− 2k

u− k

)(
n− k − u

i− u

)(
n− k − u

j − u

)

. (10)

Since

|C| =
n∑

i=0

(n

i

)

x0
i,0, (11)

an upper bound onA(n, d) can be obtained by considering thext
i,j as variables and by

maximizing
n∑

i=0

(n

i

)

x0
i,0 (12)

subject to the matrices (8) and (9) are positive semidefinitefor eachk = 0, 1, . . . , ⌊n
2 ⌋ and subject to the following

conditions on thext
i,j (see [3]).

(i) x0
0,0 = 1.

(ii) 0 ≤ xt
i,j ≤ x0

i,0 and x0
i,0 + x0

j,0 ≤ 1 + xt
i,j for all i, j, t ∈ {0, 1, . . . , n}.

(iii) xt
i,j = xt′

i′,j′ if (i′, j′, i′ + j′ − 2t′) is a permutation of(i, j, i+ j − 2t).

(iv) xt
i,j = 0 if {i, j, i+ j − 2t} ∩ {1, 2, . . . , d− 1} 6= ∅.

C. Improved Schrijver’s Semidefinite Programming Bound onA(n, d)

1) New Constraints forxt
i,j : Let C be an(n, d) code and letxt

i,j be defined by (7).

Theorem 3:For all i, j, t ∈ {0, 1, . . . , n} with
(

n
i−t,j−t,t

)

6= 0,

xt
i,j ≤

T (t, i, j − t, n− i, d)
(
i
t

) (
n−i
j−t

) x0
i,0. (13)

Proof: Recall thatλt
i,j is the number of triples(X,Y, Z) ∈ C3 with |X∆Y | = i, |X∆Z| = j, and |Y∆Z| =

i + j − 2t. For any pair(X,Y ) ∈ C2 with |X∆Y | = i, the number ofZ ∈ C such that|Z∆X | = j and

|Z∆Y | = i+ j − 2t is upper bounded byA(n,Λ, d), whereΛ = {(X, j), (Y, i+ j − 2t)}. By Proposition 1,

A(n,Λ, d) = T (t, i, j − t, n− i, d). (14)

Since the number of pairs(X,Y ) ∈ C2 such that|X∆Y | = i is λ0
i,0,

λt
i,j ≤ T (t, i, j − t, n− i, d)λ0

i,0. (15)
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Therefore,

xt
i,j =

1

|C|
(

n
i−t,j−t,t

)λt
i,j

≤
T (t, i, j − t, n− i, d)

|C|
(

n
i−t,j−t,t

) λ0
i,0

=
T (t, i, j − t, n− i, d)

(
n
i

)

(
n

i−t,j−t,t

) x0
i,0

=
T (t, i, j − t, n− i, d)

(
i
t

)(
n−i
j−t

) x0
i,0.

The following corollary was used in [3].

Corollary 4: For eachj ∈ {0, 1, . . . , n},
(
n

j

)

x0
0,j ≤ A(n, d, j). (16)

Proof: By Theorem 3, we have

x0
0,j ≤

T (0, 0, j, n, d)
(
0
0

)(
n
j

) x0
0,0 =

A(n, d, j)
(

n
j

) . (17)

Remark 5:Theorem 3 improve the conditionxt
i,j ≤ x0

i,0 in Schrijver’s semidefinite programming bound since
T (t,i,j−t,n−i,d)

( i

t )(
n−i

j−t )
≤ 1 (in fact, T (t,i,j−t,n−i,d)

( i

t )(
n−i

j−t )
is much less than1 in general). Similarly, Corollary 4 in many cases

(of i and j) improve the conditionx0
i,0 + x0

j,0 ≤ 1 + xt
i,j sincex0

u,0 = x0
0,u = A(n,d,u)

(n

u )
is much less than12 in

general.

2) Delsarte’s Linear Programming Bound and Its Improvements: Let C be an(n, d) code, thedistance distribution

{Bi}
n
i=0 of C is defined by

Bi =
1

|C|
· |{(X,Y ) ∈ C2 | |X∆Y | = i}|. (18)

By definition,
(n

i

)

x0
i,0 = Bi (19)

for eachi = 0, 1, . . . , n. Hence,{
(
n
i

)
x0
i,0}

n
i=0 is the distance distribution onC. The following result can be found

for example in [7] or [6].

Theorem 6:(Delsarte’s linear programming bound and its improvements). Let C be an(n, d) code with distance

distribution{Bi}ni=0 = {
(
n
i

)
x0
i,0}

n
i=0. For k = 1, 2, . . . , n,

n∑

i=1

Pk(n; i)Bi ≥ −
(n

k

)

, (20)
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wherePk(n;x) is the Krawtchouk polynomial given by

Pk(n;x) =
k∑

j=0

(−1)j
(
x

j

)(
n− x

k − j

)

. (21)

If M = |C| is odd, then
n∑

i=1

Pk(n; i)Bi ≥ −
(n

k

)

+
1

M

(n

k

)

. (22)

If M = |C| ≡ 2 (mod 4), then there existst ∈ {0, 1, . . . , n} such that
n∑

i=1

Pk(n; i)Bi ≥ −
(n

k

)

+
2

M

[(n

k

)

+ Pk(n; t)
]

. (23)

3) Linear Constraints on Distance Distributions{Bi}ni=0: If some linear constraints are used to improve Del-

sarte’s linear programming bound onA(n, d), then these constraints can still be added to Schrijver’s semidefinite

programming bound to improve upper bounds onA(n, d). The following constraints are due to Mounits, Etzion,

and Litsyn (see [4, Theorems 9 and 10]).

Theorem 7:Let C be an(n, d) code with distance distribution{Bi}ni=0. Suppose thatd is even andδ = d/2.

Then

Bn−δ +
⌊n

δ

⌋∑

i<δ

Bn−i ≤
⌊n

δ

⌋

(24)

and

Bn−δ−i + [A(n, d, δ + i)−A(n− δ + i, d, δ + i)]Bn−δ+i +A(n, d, δ + i)
∑

j>i

Bn−δ+j ≤ A(n, d, δ + i) (25)

for all i = 1, 2, . . . , δ − 1.

Table I shows improved upper bounds onA(n, d) when linear constraints in Theorems 3, 6, and 7 are added to

Schrijver’s semidefinite programming bound (12). In the table, by Schrijver bound we mean upper bound obtained

from Schrijver’s semidefinite programming bound (12). Among improved upper bounds onA(n, d), there are two

new upper bounds, namely

A(18, 8) ≤ 71 and A(19, 8) ≤ 131.

The other best known upper bounds are from [8]. As in [3], all computations here were done by the algorithm

SDPT3 available online on the NEOS Server for Optimization (http://www.neos-server.org/neos/solvers/index.html).

Remark 8:SinceA(n, d) = A(n + 1, d + 1) if d is odd, we can always assume thatd is even. If d is even,

then A(n, d) is attained by a code with all codewords having even weights.Hence, in Schrijver’s semidefinite

programming bound, one can putxt
i,j = 0 if i or j is odd.

Remark 9: In Theorems 3 and 7, the values ofA(n, d, w) andT (w1, n1, w2, n2, d) may have not yet been known.

However, we can replace them by any of their upper bounds (seethe proof of [4, Theorem 10] for the validity of

this replacement in Theorem 7). While best known upper bounds onA(n, d, w) (which are mostly from [9], [5],

[3], [10]) are used in our computations, all upper bounds onT (w1, n1, w2, n2, d) that we used are from the tables

on Erik Agrell’s website http://webfiles.portal.chalmers.se/s2/research/kit/bounds/dcw.html.

http://www.neos-server.org/neos/solvers/index.html
http://webfiles.portal.chalmers.se/s2/research/kit/bounds/dcw.html
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TABLE I

IMPROVED UPPER BOUNDS FORA(n, d)

best best upper

lower bound new improved

bound previously upper Schijver Schrijver

n d known known bound bound bound

18 8 64 72 71 71 80

19 8 128 135 131 131 142

20 8 256 256 262 274

25 8 4096 5421 5465 5477

26 8 4104 9275 9649 9697

26 10 384 836 885 886

25 12 52 55 57 58

26 12 64 96 97 98

III. U PPER BOUNDS ONA(n, d, w)

A. Some Properties ofA(n, d, w)

We begin with some elementary properties ofA(n, d, w) which can be found in [2].

Theorem 10:

A(n, d, w) = A(n, d+ 1, w), if d is odd, (26)

A(n, d, w) = A(n, d, n− w), (27)

A(n, 2, w) =
( n

w

)

, (28)

A(n, 2w,w) =
⌊ n

w

⌋

, (29)

A(n, d, w) = 1, if 2w < d. (30)

Remark 11:By (26) and (28), we can always assume thatd is even andd ≥ 4. Also, by (27), (29), and (30),

we can assume thatd < 2w ≤ n.

B. Schrijver’s Semidefinite Programming Bound onA(n, d, w)

Let C be an(n, d, w) constant-weight code and letv = n− w. For eacht, s, i, andj, define

yt,si,j =
1

|C|
(

w
i−t,j−t,t

)(
v

i−s,j−s,s

)µt,s
i,j , (31)
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whereµt,s
i,j is the number of triples(X,Y, Z) ∈ C3 with |X \ Y | = i, |X \ Z| = j, |(X \ Y ) ∩ (X \ Z)| = t,

and |(Y \X) ∩ (Z \X)| = s, or equivalently, with|X∆Y | = 2i, |X∆Z| = 2j, |Y∆Z| = 2(i + j − t − s), and

|X∆Y∆Z| = w + 2t− 2s. Setyt,si,j = 0 if either
(

w
i−t,j−t,t

)

= 0 or
(

v
i−s,j−s,s

)

= 0.

In the previous section,βt
i,j,k depends onn. Hence,βt

i,j,k should be denoted byβt,n
i,j,k. We will use the later

notation in this section. As in [3], for eachk = 0, 1, . . . , ⌊w
2 ⌋ and eachl = 0, 1, . . . , ⌊ v

2⌋, the matrices
(
∑

t,s

βt,w
i,j,kβ

s,v
i,j,ly

t,s
i,j

)

i,j∈Wk∩Vl

(32)

and
(
∑

t,s

βt,w
i,j,kβ

s,v
i,j,l(y

0,0
i+j−t−s,0 − yt,si,j )

)

i,j∈Wk∩Vl

(33)

are positive semidefinite, whereWk = {k, k + 1, . . . , w − k} andVl = {l, l+ 1, . . . , v − l}. Since

|C| =

min{w,v}
∑

i=0

(w

i

)(v

i

)

y0,0i,0 , (34)

an upper bound onA(n, d, w) can be obtained by considering theyt,si,j as variables and by

maximizing
min{w,v}
∑

i=0

(w

i

)(v

i

)

y0,0i,0 (35)

subject to the matrices (32) and (33) are positive semidefinite for eachk = 0, 1, . . . , ⌊w
2 ⌋ and eachl = 0, 1, . . . , ⌊ v

2⌋,

and subject to the following conditions.

(i) y0,00,0 = 1.

(ii) 0 ≤ yt,si,j ≤ y0,0i,0 andy0,0i,0 + y0,0j,0 ≤ 1 + yt,si,j for all i, j, t, s ∈ {0, 1, . . . ,min{w, v}}.

(iii) yt,si,j = yt
′,s′

i′,j′ if t′ − s′ = t− s and (i′, j′, i′ + j′ − t′ − s′) is a permutation of(i, j, i+ j − t− s).

(iv) yt,si,j = 0 if {2i, 2j, 2(i+ j − t− s)} ∩ {1, 2, . . . , d− 1} 6= ∅.

C. Improved Schrijver’s Semidefinite Programming Bound onA(n, d, w)

1) New Constraints foryt,si,j : Let C be an(n, d, w) constant-weight code and letyt,si,j be defined by (31). The

following theorem corresponds to Theorem 3 in the previous section.

Theorem 12:For all i, j, s, t ∈ {0, 1, . . . ,min{w, v}} with
(

w
i−t,j−t,t

)

6= 0 and
(

v
i−s,j−s,s

)

6= 0,

yt,si,j ≤
T (t, i, j − t, w − i, s, i, j − s, v − i, d)

(
i
t

) (
w−i
j−t

) (
i
s

) (
v−i
j−s

) y0,0i,0 . (36)

Proof: Suppose that(X,Y ) ∈ C2 such that|X∆Y | = 2i. We claim that the number of codewordsZ ∈ C

such that|X∆Z| = 2j, |Y∆Z| = 2(i + j − t − s), and |X∆Y∆Z| = w + 2t − 2s is upper bounded by

T (t, i, j − t, w − i, s, i, j − s, v − i, d). It is easy to see that this number is upper bounded byA(n,Λ, d), where

Λ = {(0, w), (X, 2j), (Y, 2(i+ j − t− s)), (X∆Y,w + 2t− 2s)}. By Proposition 2,

A(n,Λ, d) = T (w1, n1, w2, n2, w3, n3, w4, n4, d), (37)
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wheren1 = n3 = 1
2 |X∆Y | = i, n2 = d1 − n1 = w − i, n4 = n − i − (w − i) − i = v − i, and similarly,

w1 = i− t, w2 = (w − i)− (j − t), w3 = s, w4 = j − s. Hence,

A(n,Λ, d) = T (i− t, i, (w − i)− (j − t), w − i, s, i, j − s, v − i, d)

= T (t, i, j − t, w − i, s, i, j − s, v − i, d), (38)

where the later equality comes from Proposition 22 (iii) in the appendix. Since the number of pairs(X,Y ) ∈ C2

such that|X∆Y | = 2i is µ0,0
i,0 ,

µt,s
i,j ≤ T (t, i, j − t, w − i, s, i, j − s, v − i, d)µ0,0

i,0 . (39)

Therefore,

yt,si,j =
1

|C|
(

w
i−t,j−t,t

)(
v

i−s,j−s,s

)µt,s
i,j

≤
T (t, i, j − t, w − i, s, i, j − s, v − i, d)

|C|
(

w
i−t,j−t,t

)(
v

i−s,j−s,s

) µ0,0
i,0

=
T (t, i, j − t, w − i, s, i, j − s, v − i, d)
(

w
i−t,j−t,t

)(
v

i−s,j−s,s

) (
w
i

)−1 ( v
i

)−1
y0,0i,0

=
T (t, i, j − t, w − i, s, i, j − s, v − i, d)

(
i
t

) (
w−i
j−t

) (
i
s

) (
v−i
j−s

) y0,0i,0 .

2) Delsarte’s Linear Programming Bound:Let C be an(n, d, w) constant-weight code with distance distribution

{Bi}ni=0. By definition of yt,si,j ,
(w

i

)(v

i

)

y0,0i,0 = B2i (40)

for every i (note thatB0 = 1 andBi = 0 wheneveri is odd or0 < i < d or i > 2w).

Theorem 13:(Delsarte’s linear programming bound). If{Bi}ni=0 is the distance distribution of an(n, d, w)

constant-weight code, then fork = 1, 2, . . . , w,
w∑

i=d/2

q(k, i, n, w)B2i ≥ −1, (41)

where

q(k, i, n, w) =

∑i
j=0(−1)j

(
k
j

)(
w−k
i−j

)(
n−w−k

i−j

)

(
w
i

) (
n−w

i

) . (42)

Specifying Delsarte’s linear programming bound onA(n, d) gives the following linear constraints onBi, which

sometimes help reducing upper bounds onA(n, d, w) by 1 (see [6, Proposition 11]).

Theorem 14:Let C be an (n, d, w) constant-weight code with distance distribution{Bi}ni=0. For eachk =

1, 2, . . . , n,
w∑

i=d/2

P−
k (n; 2i)B2i ≤

2

M

[((n

k

)

− rk

)

qk(M − qk) + rk(qk + 1)(M − qk − 1)
]

, (43)
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whereqk andrk are the quotient and the remainder, respectively, when dividing MP−
k (n;w) by

(
n
k

)
, i.e.

MP−
k (n;w) = qk

(n

k

)

+ rk (44)

with 0 ≤ rk <
(
n
k

)
, and whereP−

k (n;x) is defined by

P−
k (n;x) =

n∑

j=0
j odd

(
x

j

)(
n− x

k − j

)

. (45)

3) New Linear Constraints on Distance Distributions{Bi}ni=0: Linear constraints which correspond to those in

Theorem 7 have not been studied for constant-weight codes even though similar constraints have been studied by

Argrell, Vardy, and Zeger in [5] (see Theorem 21 below). We now present these constraints. Several new notations

are needed. For convenience, we fix the following settings until the end of this section.

• C is an(n, d, w) constant-weight code with distance distribution{Bi}ni=0 such thatd is even andd < 2w ≤ n.

• Let v = n− w. Since2w ≤ n, w ≤ v.

• Let H = {d/2, d/2 + 1, . . . , w}, which is the set of all positive integeri such thatB2i can be nonzero.

• For eachi ∈ H , let Vi be the set of all vectorsX in Fn such thatX has exactlyi ones on the firstw

coordinates and exactlyi ones on the lastv = n− w coordinates.

• For i 6= j both inH , define

mi,j = max{d(X,Y ) | X ∈ Vi, Y ∈ Vj}. (46)

• For each codewordX in C, let

S2i(X) = {Y ∈ C | d(X,Y ) = 2i}, (47)

which is the set of all codewordsY in C at distance2i from X . By definition of{Bi}ni=0,

B2i =
1

|C|

∑

X∈C

|S2i(X)| (48)

for eachi ∈ H .

• For eachi ∈ H , let Qi denote an integer such that

T (i, w, i, v, d) ≤ Qi. (49)

• For i 6= j both inH with i+ j ≥ v andmi,j = d, let Qji denote an integer such that

T (w − j, i, v − j, i, d) ≤ Qji, (50)

Proposition 15: For i 6= j both inH ,

mi,j = a+ b, (51)

where

a =







i+ j if i+ j < w

i+ j − 2(i+ j − w) if i+ j ≥ w
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and

b =







i+ j if i+ j < v

i+ j − 2(i+ j − v) if i+ j ≥ v
.

In particular, if i+ j ≥ v ≥ w, then

mi,j = 2(n− i− j). (52)

Proof: The proof is straightforward.

Lemma 16:For eachi ∈ H and each codewordX ∈ C,

|S2i(X)| ≤ Qi. (53)

Proof: Let X be a codeword inC. It is easy to see that|S2i(X)| is upper bounded byA(n,Λ, d), where

Λ = {(0, w), (X, 2i)}. By Propositions 1 and 22 (iii),

A(n,Λ, d) ≤ T (w − i, w, i, v, d) = T (i, w, i, v, d). (54)

Hence,|S2i(X)| ≤ T (i, w, i, v, d) ≤ Qi.

Theorem 17:Suppose thatH1 is a nonempty subset ofH such thatmi,j < d for all i 6= j both inH1. Then for

each codewordX ∈ C, S2i(X) is nonempty for at most onei in H1. Furthermore,

∑

i∈H1

B2i

Qi
≤ 1. (55)

Proof: Let X be a codeword inC. Suppose on the contrary that there existi 6= j both inH1 such thatS2i(X)

andS2j(X) are nonempty. Then choose anyY ∈ S2i(X) andZ ∈ S2j(X). By rearranging the coordinates, we

may assume that

X =

w
︷ ︸︸ ︷

1 · · · 1

v
︷ ︸︸ ︷

0 · · · 0 . (56)

Since d(X,Y ) = 2i and X and Y have the same weightw, Y + X must have exactlyi ones on the firstw

coordinates and exactlyi ones on the lastv coordinates. This meansY + X ∈ Vi. Similarly, Z + X ∈ Vj. By

definition ofmi,j , d(Y +X,Z +X) ≤ mi,j . Thus,

d(Y, Z) = d(Y +X,Z +X) ≤ mi,j < d, (57)

which is a contradiction sinceY andZ are two different codewords inC. Hence,S2i(X) is nonempty for at most

one i in H1. It follows by Lemma 16 that

∑

i∈H1

|S2i(X)|

Qi
≤ 1. (58)

Taking sum of (58) over allX ∈ C, we get

∑

i∈H1

B2i

Qi
≤ 1. (59)
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We now consider the casemi,j = d for somei 6= j both inH . The following Lemma says that the existence of

a codeword at distance2i from X may reduce the total number of codewords at distance2j from X .

Lemma 18:Supposei 6= j both in H such thati + j ≥ v andmi,j = d. If X is a codeword inC such that

|S2i(X)| ≥ 1, then

|S2j(X)| ≤ Qji. (60)

Proof: Fix a codewordY ∈ S2i(X). If S2j(X) is empty, then there is nothing to prove. Hence, we assume

|S2j(X)| ≥ 1. Let Z ∈ S2j(X). By rearranging the coordinates, we may assume that

X =

w
︷ ︸︸ ︷

1 · · · 1

v
︷ ︸︸ ︷

0 · · · 0 (61)

As in the proof of Theorem 17, we can show thatY +X ∈ Vi andZ +X ∈ Vj . By definition ofmi,j ,

d ≤ d(Y, Z) = d(Y +X,Z +X) ≤ mi,j = d. (62)

Thus,

d(Y, Z) = d(Y +X,Z +X) = mi,j = d. (63)

Sincei+ j ≥ v ≥ w, by rearranging the firstw coordinates, we may assume that on the firstw coordinates:

Y +X = 1 · · · 1 1 · · · 1

w−i
︷ ︸︸ ︷

0 · · · 0 | · · ·

Z +X = 0 · · · 0
︸ ︷︷ ︸

w−j

1 · · · 1
︸ ︷︷ ︸

i+j−w

1 · · · 1 | · · ·
. (64)

On the firstw coordinates,Z +X must have exactlyi+ j−w ones on the firsti coordinates (the otherw− i ones

of Z +X must be fixed sinced(Y +X,Z +X) = mi,j).

Similarly, sincei+ j ≥ v, by rearranging the lastv coordinates, we may assume that on the lastv coordinates:

Y +X = · · · | 1 · · · 1 1 · · · 1

v−i
︷ ︸︸ ︷

0 · · · 0

Z +X = · · · | 0 · · · 0
︸ ︷︷ ︸

v−j

1 · · · 1
︸ ︷︷ ︸

i+j−v

1 · · · 1
. (65)

On the lastv coordinates,Z +X must have exactlyi+ j − v ones on the firsti coordinates (the otherv − i ones

of Z +X must be fixed sinced(Y +X,Z +X) = mi,j).

From (61), (64), and (65), we get

d(Z,X + Y ) = wt(X + Y + Z)

= wt(X + (Y +X) + (Z +X))

= (i+ j − w) + (v − j + v − i)

= 2v − w. (66)
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Now the number ofZ ∈ S2j(X) is upper bounded byA(n,Λ, d), whereΛ = {(0, w), (X, 2j), (Y, d), (X +

Y, 2v − w)}. By Proposition 15,

d = mi,j = 2(n− i− j). (67)

Applying Proposition 2, we get (by replacingd = 2(n− i− j) andn = w + v)

A(n,Λ, d) = T (w − j, i, 0, w − i, i+ j − v, i, v − i, v − i, d)

= T (w − j, i, v − j, i, d), (68)

where the last equality comes from Proposition 22 in the appendix. Therefore,

|S2j(X)| ≤ A(n,Λ, d)

= T (w − j, i, v − j, i, d)

≤ Qji. (69)

Theorem 19:Suppose thatH1 is a subset ofH satisfying the following properties.

• |H1| ≥ 2.

• There existi 6= j both inH1 such thati+ j ≥ v andmi,j = d.

• For all k 6= l both inH1 such that eitherk 6∈ {i, j} or l 6∈ {i, j}, we always havemk,l < d.

Let H2 = H1 \ {i, j}. Then

Qj −Qji

QjQij
B2i +

1

Qj
B2j +

∑

k∈H2

1

Qk
B2k ≤ 1, if

Qij

Qi
+

Qji

Qj
≥ 1, (70)

1

Qi
B2i +

Qi −Qij

QiQji
B2j +

∑

k∈H2

1

Qk
B2k ≤ 1, if

Qij

Qi
+

Qji

Qj
≥ 1, (71)

∑

k∈H1

1

Qk
B2k ≤ 1, if

Qij

Qi
+

Qji

Qj
≤ 1. (72)

Proof: We first prove (70). It suffices to show that for every codewordX in C,

Qj −Qji

QjQij
|S2i(X)|+

1

Qj
|S2j(X)|+

∑

k∈H2

1

Qk
|S2k(X)| ≤ 1, (73)

if Qij

Qi
+

Qji

Qj
≥ 1. Let X be any codeword inC. By Lemma 16,

|S2i(X)| ≤ Qi and |S2j(X)| ≤ Qj. (74)

By Lemma 18,

|S2i(X)| ≤ Qij if |S2j(X)| ≥ 1, (75)

|S2j(X)| ≤ Qji if |S2i(X)| ≥ 1. (76)

We prove (73) by considering the following three cases.
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Case1: |S2i(X)| = 0. Proving (73) is exactly the same as proving (58). So we are done.

Case2: |S2i(X)| ≥ 1 and |S2j(X)| = 0. Since|S2i(X)| ≥ 1, |S2k(X)| = 0 for everyk ∈ H2 by Theorem 17.

Hence, to prove (73), we only need to prove that

(Qj −Qji)|S2i(X)| ≤ QjQij . (77)

By hypothesis,Qij

Qi
+

Qji

Qj
≥ 1. Thus,(Qj −Qji)Qi ≤ QjQij and hence

(Qj −Qji)|S2i(X)| ≤ (Qj −Qji)Qi ≤ QjQij . (78)

Case3: |S2i(c)| ≥ 1 and |S2j(c)| ≥ 1. As in Case2, |S2k(X)| = 0 for everyk ∈ H2. We have

Qj −Qji

QjQij
|S2i(X)|+

1

Qj
|S2j(X)| ≤

Qj −Qji

QjQij
Qij +

1

Qj
Qji

= 1−
Qji

Qj
+

Qji

Qj

= 1. (79)

Therefore, (73) is proved and so is (70).

By symmetry, (71) follows.

We now prove (72). It suffices to show that for every codewordX in C,

∑

k∈H1

1

Qk
|S2k(X)| ≤ 1, (80)

if Qij

Qi
+

Qji

Qj
≤ 1. If either |S2i(X)| = 0 or |S2j(X)| = 0, then proving (80) is exactly the same as proving (58).

Hence, suppose that|S2i(X)| ≥ 1 and |S2j(X)| ≥ 1. As in Case2, |S2k(X)| = 0 for everyk ∈ H2. We have

1

Qi
|S2i(X)|+

1

Qj
|S2j(X)| ≤

1

Qi
Qij +

1

Qj
Qji ≤ 1. (81)

We now specify whichH1 are used in Theorems 17 and 19. Let

α = d/2− (n− 2w) (82)

and let

α1 =

⌊
α+ 1

2

⌋

andα2 =
⌊α

2

⌋

(83)

so thatα1 + α2 = α. Also, let

i0 = w − α1 andj0 = w − α2. (84)

• Case1: α is even.In this case,i0 = j0. We apply Theorem 17 for

H1 = {j0, j0 + 1, . . . , w} (85)

and apply Theorem 19 for

H1 = {i0 − ǫ, j0 + ǫ, j0 + ǫ+ 1, . . . , w} (86)
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(with i = i0 − ǫ andj = j0 + ǫ) for eachǫ = 1, 2, · · · , w − j0 .

• Case2: α is odd.In this case,i0 < j0. We apply Theorem 19 for

H1 = {i0 − ǫ, j0 + ǫ, j0 + ǫ+ 1, . . . , w} (87)

(with i = i0 − ǫ andj = j0 + ǫ) for eachǫ = 0, 1, · · · , w − j0.

Example 20:Consider(n, d, w) = (27, 8, 13). We haveα = d/2 − (n − 2w) = 3 is odd. Hence,α1 = 2 and

α2 = 1. So, i0 = 11 and j0 = 12. We can apply Theorem 19 forH1 = {i = i0, j = j0, w} = {11, 12, 13} (with

ǫ = 0). We have

Qi = 26 ≥ T (2, 13, 3, 14, 8) = T (11, 13, 11, 14, 8),

Qj = 1 = T (1, 13, 2, 14, 8) = T (12, 13, 12, 14, 8),

Qij = 20 ≥ T (2, 12, 3, 12, 8),

Qji = 1 = T (1, 11, 2, 11, 8),

and

Qk = 1 = T (0, 13, 1, 14, 8) = T (13, 13, 13, 14, 8)

for k = 13. Since Qij

Qi
+

Qji

Qj
= 20

26 + 1
1 ≥ 1, Theorem 19 gives

B24 +B26 ≤ 1 (88)

and

1

26
B22 +

26− 20

26
B24 +B26 ≤ 1. (89)

The later constraint is equivalent to

B22 + 6B24 + 26B26 ≤ 26. (90)

For H1 = {10, 13} (with ǫ = 1), Theorem 19 gives less effective linear constraints.

When α ≤ 0, there is no setH1 satisfying Theorem 19. In this case, the following type of linear con-

straints which comes from [5, Proposition 17] is very useful. As in [5], let T ′(w1, n1, w2, n2, d) be the largest

possible size of a(w1, n1, w2, n2, d) doubly-bounded-weight code (a(w1, n1, w2, n2, d) doubly-bounded-weight

code is an (n1 + n2, d, w1 + w2) constant-weight code such that every codeword has at mostw1 ones on the

first n1 coordinates). Tables for upper bounds onT ′(w1, n1, w2, n2, d) can be found on Erik Agrell’s website

http://webfiles.portal.chalmers.se/s2/research/kit/bounds/dbw.html.

Theorem 21:Let δ = d/2. For i, j ∈ {δ, δ + 1, . . . , w} with i 6= j. If i+ j ≤ n− δ, definePij andPji as any

nonnegative integers such that

Pij ≥ min{Pi, T
′(∆, j, i −∆, n− w − j, 2i− 2∆}, (91)

Pji ≥ min{Pj, T
′(∆, i, j −∆, n− w − i, 2j − 2∆}, (92)

http://webfiles.portal.chalmers.se/s2/research/kit/bounds/dbw.html
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TABLE II

NEW UPPER BOUNDS FORA(n, d, w)

best best upper

lower bound new

bound previously upper Schrijver

n d w known known bound bound

20 6 8 588 1107 1106 1136

22 8 10 616 634 630 634

23 8 9 400 707 703 707

26 8 9 887 2108 2104 2108

26 8 11 1988 5225 5208 5225

27 8 9 1023 2914 2882 2918

27 8 11 2404 7833 7754 7833

27 8 12 3335 10547 10460 10697

27 8 13 4094 11981 11897 11981

28 8 9 1333 3895 3886 3900

28 8 11 3773 11939 11896 12025

28 8 12 4927 17011 17008 17011

28 8 13 6848 21152 21148 21152

23 10 9 45 81 79 82

25 10 11 125 380 379 380

25 10 12 137 434 433 434

26 10 11 168 566 565 566

26 10 12 208 702 691 702

27 10 11 243 882 871 882

27 10 12 351 1201 1190 1201

27 10 13 405 1419 1406 1419

28 10 11 308 1356 1351 1356

25 12 10 28 37 36 37

where∆ := w − δ. Also, definePk := Qk for eachk ∈ H . Then

PjiB2i + (Pi − Pij)B2j ≤ PiPji, if
Pij

Pi
+

Pji

Pj
> 1, (93)

(Pj − Pji)B2i + PijB2j ≤ PjPij , if
Pij

Pi
+

Pji

Pj
> 1, (94)

PjB2i + PiB2j ≤ PiPj , if
Pij

Pi
+

Pji

Pj
≤ 1. (95)
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By adding the linear constraints in Theorems 12, 14, 17, 19, and 21 to Schrijver’s semidefinite programming

bound (35), we obtained new upper bounds onA(n, d, w) shown on Table II. As before, all computations were

done by the same algorithm SDPT3 at the same server.

APPENDIX

UPPERBOUNDS ONT (w1, n1, w2, n2, w3, n3, w4, n4, d)

To apply Theorem 12, we need tables of upper bounds onT (w1, n1, w2, n2, w3, n3, w4, n4, d). However, there are

no such tables available since this is the first time the function T (w1, n1, w2, n2, w3, n3, w4, n4, d) is introduced. We

show here some elementary properties that are used to obtainupper bounds onT (w1, n1, w2, n2, w3, n3, w4, n4, d).

In general, let us defineT ({(wi, ni)}
t
i=1, d) as follows. Fort ≥ 1, a ({(wi, ni)}

t
i=1, d) multiply constant-weight

codeis a (
∑t

i=1 ni, d) code such that there are exactlywi ones on theni coordinates. Whent = 1 this is definition

of an(n1, d, w1) constant-weight code, whent = 2 this is definition of a(w1, n1, w2, n2, d) doubly-constant-weight

code, etc.. LetT ({(wi, ni)}ti=1, d) be the largest possible size of a({(wi, ni)}ti=1, d) multiply constant-weight code.

We present here elementary properties that are used to get upper bounds onT ({(wi, ni)}ti=1, d). The proofs of

these properties are similar to those forA(n, d, w) or T (w1, n1, w2, n2, d), and hence are omitted. Upper bounds

on T (w1, n1, w2, n2, w3, n3, w4, n4, d) that we used in Theorem 12 are the best upper bounds obtained from these

properties.

Proposition 22: (i) If d is odd then,

T ({(wi, ni)}
t
i=1, d) = T ({(wi, ni)}

t
i=1, d+ 1). (96)

(ii) If wj = 0 for somej ∈ {1, 2, . . . , t}, then

T ({(wi, ni)}
t
i=1, d) = T ({(wi, ni)}i6=j , d). (97)

(iii) T ({(wi, ni)}ti=1, d) does not change if we replace anywi by ni − wi.

(iv) T ({(wi, ni)}
t
i=1, 2) =

∏t
i=1

(
ni

wi

)

.

(v) T ({(wi, ni)}ti=1, 2
∑t

i=1 wi) = min1≤i≤t

⌊
ni

wi

⌋

.

(vi) T ({(wi, ni)}ti=1, d) = 1 if 2
∑t

i=1 wi < d.

Remark 23:By (i) and (iv), we can always assume thatd is even andd ≥ 4. By (ii) and (iii), we may assume

that 0 < 2wi ≤ ni for eachi. Also, by (v) and (vi), we can assume thatd < 2
∑t

i=1 wi.

The next proposition can be used to reduce the size of{(wi, ni)}ti=1 from t to t− 1. When the size of the set

is 2, we use known upper bounds onT (w1, n1, w2, n2, d).

Proposition 24: If t ≥ 2, then

T ({(wi, ni)}
t
i=1, d) ≤ T ({(w′

i, n
′
i)}

t−1
i=1 , d), (98)

wherew′
i = wi, n

′
i = ni for i = 1, 2, . . . , t− 2, andw′

t−1 = wt−1 + wt, n
′
t−1 = nt−1 + nt.

Proposition 25: If wi > 0, then

T ({(wi, ni)}
t
i=1, d) ≤

⌊
ni

wi
T ({(w′

i, n
′
i)}

t
i=1, d)

⌋

, (99)
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where{(w′
i, n

′
i)}

t
i=1 is obtained from{(wi, ni)}

t
i=1 by replacing the pair(wi, ni) by (wi − 1, ni − 1).

Proposition 26: If wi < ni, then

T ({(wi, ni)}
t
i=1, d) ≤

⌊
ni

ni − wi
T ({(w′

i, n
′
i)}

t
i=1, d)

⌋

, (100)

where{(w′
i, n

′
i)}

t
i=1 is obtained from{(wi, ni)}ti=1 by replacing the pair(wi, ni) by (wi, ni − 1).
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