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Tight exponential analysis of universally
composable privacy amplification and its

applications
Masahito HayashiSenior Member, IEEE

Abstract—Motivated by the desirability of universal compos-
ability, we analyze in terms of L1 distinguishability the task
of secret key generation from a joint random variable. Under
this secrecy criterion, using the Ŕenyi entropy of order 1+ s for
s ∈ [0, 1], we derive a new upper bound of Eve’s distinguishability
under the application of the universal2 hash functions. It is
also shown that this bound gives the tight exponential rate of
decrease in the case of independent and identical distributions.
The result is applied to the wire-tap channel model and to secret
key generation (distillation) by public discussion.

Index Terms—sacrifice bits,L1 norm distance, universal com-
posablity, secret key distillation, universal2 hash functions, wire-
tap channel

I. I NTRODUCTION

Random privacy amplification based on the universal2 con-
dition [1] has been studied by many authors [2], [3], [4], [5],
[30], [6]. This technique is originally developed for random
number extraction [2], [3]. It can also be applied to secret key
generation (distillation) with public communication [7],[8],
[9], [10], [11], [3], [4] and the wire-tap channel [12], [13],
[14], [15], [16], [17], which treats the secure communication
in the presence of an eavesdropper. (For details of its appli-
cation, see e.g. the previous paper [6].) When random privacy
amplification is implemented with universal2 hash functions, it
can yield protocols for the above tasks with a relatively small
amount of calculation.

Similar to the study [2], [30] for random privacy amplifica-
tion based on the universal2 condition, the previous paper [6]
focused only on the mutual information with the eavesdropper.
However, as the secrecy criterion, many papers in the cryp-
tography community [22], [3], [4], [5] adopt the half of the
L1 norm distance, so calledL1 distinguishability because this
criterion is closely related to universally composable security
[22]. In this paper, we adoptL1 distinguishability as the
secrecy criterion, and evaluate the secrecy for random privacy
amplification. In the independent and identically distributed
case, when the rate of generated random numbers is smaller
than the entropy of the original information source, it is possi-
ble to generate a random variable whoseL1 norm distance to
the uniform random number approaches zero asymptotically.
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In the realistic setting, we can manipulate only a finite size
of random variables. In order to treat the performance in the
finite length setting, we have two kinds of formalism for the
independent and identical distribution setting.

The first one is the second order formalism, in which, we
focus on the asymptotic expansion up to second order in

√
n of

the length of the generated keysln asln = Hn+C
√
n+o(

√
n)

with a constant constraint for the security parameter. The
second one is the exponent formalism, in which, we fix
the generation rateR := ln/n and evaluate the exponential
decreasing rate of convergence of the security parameter. In
the exponent formalism, it is not sufficient to show that the
security parameter goes zero exponentially, and it is required to
explicitly give lower and/or upper bounds for the exponential
decreasing rate. The exponent formalism has been studied by
various information theoretical settings, e.g., channel coding
[20], [35], source coding [19], [31], and mutual information
criterion in wire-tap channel [17], [6]. As for the second
order formalism, the optimal coding length with the fixed
error probability has been derived up to the second order√
n in various settings [36], [37], [38] in the case of channel

coding. In particular, the previous paper [37] treats it based
on the information spectrum approach [32], which is closely
related toǫ-smooth min-entropy. Note that, as is mentioned by
Han [32], the information spectrum approach cannot yield the
optimal exponent of error probability in the channel coding.

Concerning the second order formalism for uniform random
number generation, the previous paper [25] has solved the
optimal second order coefficient underL1 distinguishability
criterion and other criteria by employing the information
spectrum method when there is no side information. Even
when the side information exists, the same argument can
be shown for the second order formalism by replacing the
variance of the likelihood by the variance of the likelihoodfor
the conditional distribution due to the following reason. For
the converse part, the key lemma ([25, Lemma 4],[32, Lemma
2.1.2]) holds by replacing the distribution by the conditional
distribution. The direct part can be shown by replacing the key
lemma ([25, Lemma 3],[32, Lemma 2.1.1]) by the inequality
(32) in the present paper, which holds under the universal2

hash functions.
However, the exponent formalism forL1 distinguishability

with secure key generation has not been studied sufficiently.
Only the previous paper [6] treated it with mutual information
criterion. Therefore, the present paper focuses on the exponent
formalism forL1 distinguishability.
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In Section III, first, we focus on evaluation for random
privacy amplification by Bennett et al [2], which employs the
Rényi entropy of order 2. This evaluation was also obtained
by Håstad et al [30] and is often called leftover hash lemma.
Using a discussion similar to Renner [5], we derive an upper
bound for theL1 norm distance under the universal2 condition
for hash functions, which is the main theorem of this paper
(Theorem 1).

Next, we apply this theorem to the i.i.d. setting with a given
key generation rate and a given source distribution. Then, we
derive a lower bound of the exponent of the average of the
L1 norm distance between the generated random number and
the uniform random number when a family of universal2 hash
functions is applied. Next, we introduce a stronger condition
for hash functions, which is called strongly universal2. We
consider then-independent and identical extension, and show
that the exponential rate of decrease for this bound is tight
under a stronger condition by using the type method, which
was invented by Csiszár and Körner [19] and is one of
standard methods in information theory. Since our bound
realizes the optimal exponent, it gives a powerful bound even
for the finite length setting [39]. One might consider that
the smooth min entropy can derive the same lower bound
for the exponential decreasing rate of universal composability.
However, as shown in Subsection III-D, the bound derived
by the smooth min entropy is strictly smaller than that by
smoothing of Rényi entropy of order2. This disagreement
is not so unnatural because a similar disagreement appears
for the exponent of error probability in the channel coding
as a relation between Gallager exponent and the lower bound
derived by the information spectrum approach [32].

Further, if our protocol generating the random number is
allowed to depend on the original distribution, there is a
possibility to improve the exponent while it is known that
asymptotic generation cannot be improved [26]. In Section
IV, we derive the optimal exponent in this setting by using
Cramér’s Theorem [27] and the type method [19]. Based on
comparison between this exponent and the exponent given in
Section III, we can compare the performances between the
protocol taking into account the full probability distribution
of the source and the protocol based on the entropy of the
source, which is realized by universal2 hash functions.

In Section V, we consider the case when an eavesdropper
has a random variable correlated to the random variable of
the authorized user. In this case, applying universal2 hash
functions to his random variable, the authorized user obtain
a secure random variable. We apply our evaluation ofL1

norm distance obtained in Subsection III-A (Theorem 1) to
the distribution of the authorized user when the eavesdropper’s
random variable is fixed to a certain value. Then, we obtain
a tighter evaluation (67) than that directly obtained from the
previous paper [6].

In Section VI, we focus on wire-tap channel model, whose
capacity has been calculated by Wyner [12] and Csiszár and
Körner [13]. Csiszár [14] showed the strong security, andmany
papers [6], [33], [34] treat this model with mutual information
criterion. The previous paper [17] derived bounds for both
exponential rates of decrease for the security criterion based

on theL1 norm distance as well as the mutual information
between Alice and Eve. It obtained a bound for the exponential
rate of decrease concerning theL1 security criterion. In this
paper, we apply (67) to wire-tap channel model, and obtain
the evaluation of the exponent of theL1 security criterion.
In Section VII, it is shown that the evaluation obtained in
this paper is better than that by the previous paper [17]. In a
realistic setting, it is natural to restrict our codes to linear
codes. In Section VIII, using (75), we provide a security
analysis for a code constructed by the combination of an
arbitrary linear code and privacy amplification by universal2
hash functions. This analysis yields the exponential rate of
decrease for theL1 security criterion. Overall, since (67) and
(75) are derived from Theorem 1, all of the obtained results
concerning the wire-tap channel model can be regarded as
consequences of Theorem 1.

Further, in Section IX, we obtain the bound for theL1 secu-
rity criterion in one-way secret key generation. In Appendix
A, we prove Theorem 2 mentioned in Subsection III-A. In
Appendix B, we prove Lemma 6 given in Subsection IV. In
Appendix C, we show Equation (37), which is important for
comparison in Subsection III-D.

Relation with the previous paper [6]

The main difference from the previous paper [6] is that
the analysis on this paper is based onL1 distinguishability
while that on the previous paper [6] is based on the mutual
information criterion. In the first step, this paper derivesan
evaluation (Theorem 1) of the equality of the uniform random
number generation by universal2 hash functions based on the
L1 norm criterion. Applying Theorem 1, we treat several
security problems. Since this paper treats the same security
problems as the previous paper with the different criterion,
some of protocols used in this paper were used in the previous
paper [6]. That is, the coding protocols used in Sections
VI, VIII and IX are used in Sections III, V, and VI in [6],
respectively. While these protocols are described in [6], we
describe the whole protocols in this paper for the readers’
convenience.

For uniform random number generation, this paper gives the
tight exponential rate of decrease for theL1 norm distance,
while the previous paper [6] gives a lower bound on the expo-
nential rate of decrease based on Shannon entropy. Concerning
secret key generation without communication, this paper gives
a lower bound of the exponential rate of decrease based onL1

distinguishability, while the previous paper [6] gives a lower
bound of the exponential rate of decrease based on the mutual
information criterion. Applying Pinsker’s inequality (5), we
can derive a lower bound of the exponential rate of decrease
based onL1 distinguishability from the lower bound in [6].
As is shown in Lemma 8 in Subsection V-B, our lower bound
is (strictly) better than combination of Pinsker’s inequality and
the lower bound by [6] (except for special cases). Note that
application of Pinsker’s inequality (5) or (6) yields the half
of the lower bound of the exponent of the mutual information
as a lower bound of the exponent of universal composability.
Indeed, we give a numerical example in Fig. 3, in which our
bound is strictly better than that by [6].
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Concerning the wire-tap channel in a general framework,
the code given in this paper is quite similar to that in the
previous paper [6]. However, the evaluation method in this
paper is different from that of the previous paper [6] because
the analysis in this paper is based onL1 distinguishability
while that in the previous paper [6] is based on the mutual
information. In this model, we can derive a lower bound for
the exponential rate of decrease based onL1 distinguishability
by the combination of Pinsker’s inequality (5) and the result
in [6]. As is shown in Section VII, our lower bound is better
than this lower bound from [6]. Section VIII treats a more
realistic setting by using linear codes. Even in this setting, as is
explained in Remark 1, our lower bound is strictly better than
the lower bound by [6] (except for special cases mentioned
in Lemma 8). The same observation can be applied to secret
key generation by public communication, which is discussed
in Section IX.

II. PRELIMINARIES

First, we briefly explain some notation and basic knowledge
in information theory. In order to evaluate the difference be-
tween two distributionsPX andP̃X , we employ the following
quantities: theL1 distance (variational distance)

d1(P
X , P̃X) :=

∑

x

|PX(x) − P̃X(x)|, (1)

theL2 distance

d2(P
X , P̃X) :=

√

∑

x

(PX(x) − P̃X(x))2, (2)

and the KL-divergence

D(PX‖P̃X) :=
∑

x

PX(x)(log PX(x)− log P̃X(x)), (3)

where log expresses the natural logarithm. These definitions
can be extended when the total measure is less than1 i.e.,
∑

a P
A(a) ≤ 1. In the following, we call suchPA a sub-

distribution. This extension for sub-distributions is crucial for
the later discussion.

When a joint distributionPX,Y is given, we have the
following equation

d1(P
X,Y , P̃X × PY ) =

∑

x,y

|PX,Y (x, y)− P̃X(x)P Y (y)|

=
∑

y

P Y (y)
∑

x

|PX|Y (x|y) − P̃X(x)|

=
∑

y

P Y (y)d1(P
X|Y=y, P̃X). (4)

When PX , P̃X are normalized distributions, as a relation
between the KL-divergence and theL1 distance, the Pinsker’s
inequality

1

2
d1(P

X , P̃X)2 ≤ D(PX‖P̃X) (5)

is known [19]. That is,

− log d1(P
X , P̃X) ≥ −1

2
(logD(PX‖P̃X) + log 2). (6)

These relations will be helpful for later discussions.

III. U NIFORM RANDOM NUMBER GENERATION

A. Protocol based on universal2 hash function: Direct part

Firstly, we consider the uniform random number generation
problem from a biased random numbera ∈ A, which obeys
a probability distributionPA for finite cardinality|A|. There
are two types of protocols for this problem. One is a protocol
specialized for the given distributionPA. The other is a uni-
versal protocol that does not depend on the given distribution
PA. The aim of this section is evaluate the performance of
the latter setting. In the latter setting, our protocol is given by
a functionf from A to M = {1, . . . ,M}.

The quality of the random number obeying the sub-
distributionPA is evaluated by

d1(P
A) := d1(P

A, PA(A)PAmix), (7)

wherePAmix is the uniform distribution onA. We also use the
Rényi entropy of order1 + s:

H1+s(A|PA) :=
−1

s
log
∑

a

PA(a)1+s.

TheL2 distance is written by using the Rényi entropy of order
2 as follows.

d2(P
A, PA(A)PAmix)

2 = e−H2(A|PA) − PA(A)2

|A| . (8)

Now, we focus on an ensemble of functionsfX from A
to M = {1, . . . ,M}, whereX denotes a random variable
describing the stochastic behavior of the functionfX. In this
case, we adopt on the following quantity as a criterion of the
secrecy:

EXd1(P
fX(A)) = EXd1(P

fX(A), PA(A)P
fX(A)
mix )

=d1(P
B,X, PA(A)PBmix × PX), (9)

whereB is the random variablefX(A) and the final equation
follows from (4). Hence, when the expectationEXd1(P

fX(A))
is sufficiently small, the random variablefX(A) is almost
independent of the side informationX. Then, the choice
fX can be communicated between Alice and Bob without
revealing anything aboutf(A).

An ensemble of hash functionsfX is called universal2 when
it satisfies the following condition [1]:

Condition 1 (Universal2): For any elementsa1 6= a2 ∈ A,
the collision probability thatfX(a1) = fX(a2) is at most 1

M .
We sometimes require the following additional condition:

Condition 2: For anyX, the cardinality off−1
X

{i} does not
depend oni.
This condition will be used in Section IV.

Indeed, when the cardinality|A| is a power of a prime
power q andM is another power of the same prime power
q, as is shown in Appendix II of the previous paper [6],
the ensemble{fX} can be chosen to be the concatenation
of a Toeplitz matrix and the identity(X, I) [18] only with
logq |A| − 1 random variables taking values in the finite field
Fq. That is, the function can be obtained by the multiplication
of the random matrix(X, I) taking values inFq. In this case,
Condition 2 can be confirmed because the rank of(X, I) is
constant.
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Bennett et al [2] essentially showed the following lemma.
Lemma 1:A family of universal2 hash functionsfX satis-

fies

EXe
−H2(fX(A)|P fX(A)) ≤ e−H2(A|PA) +

PA(A)2

M
. (10)

This was also shown by Håstad et al [30] and is often called
leftover hash lemma.

Now, we follow the derivation of Theorem 5.5.1 of Renner
[5] when one classical random variable is given. The Schwarz
inequality implies that

d1(P
fX(A), PA(A)P

fX(A)
mix )

≤
√
M

√

d2(P fX(A), PA(A)P
fX(A)
mix ).

Jensen’s inequality yields that

EXd1(P
fX(A), PA(A)P

fX(A)
mix )

≤
√
M

√

EXd2(P fX(A), PA(A)P
fX(A)
mix ).

Substituting (8) and (10) into the above inequality, we obtain

EXd1(P
fX(A)) ≤M

1
2 e−

H2(A|PA)

2 . (11)

Using (11), we can show the following theorem as a
generalization of (11).

Theorem 1:A family of universal2 hash functionsfX sat-
isfies

EXd1(P
fX(A)) ≤ 3M

s
1+s e−

sH1+s(A|PA)

1+s for 0 ≤ s ≤ 1.
(12)

Substitutings = 1, we obtain

EXd1(P
fX(A)) ≤ 3M

1
2 e−

H2(A|PA)
2 . (13)

Since the difference between (11) and (13) is only the coeffi-
cient, Theorem 1 can be regarded as a kind of generalization
of Bennett et al [2]’s result (10).

Proof: For anyR′ > 0, we choose the subsetΩR′ :=
{PA(a) > e−R

′}, and define the sub-distributionPAR′ by

PAR′ (a) :=

{

0 if a ∈ ΩR′

PA(a) otherwise.

Since

d1(P
A, PAR′) = PA(ΩR′)

and

d1(P
A
R′(A)P

fX(A)
mix , PA(A)P

fX(A)
mix )

=d1(0, (P
A(A)− PAR′(A))P

fX(A)
mix )

=(PA(A)− PAR′(A))d1(0, P
fX(A)
mix )

=PA(A) − PAR′(A) = PA(ΩR′ ),

the idea of “smoothing” by Renner [5] yields that

d1(P
fX(A)) = d1(P

fX(A), PA(A)P
fX(A)
mix )

≤d1(P fX(A), P
fX(A)
R′ ) + d1(P

fX(A)
R′ , PAR′(A)P

fX(A)
mix )

+ d1(P
A
R′(A)P

fX(A)
mix , PA(A)P

fX(A)
mix )

=2PA(ΩR′ ) + d1(P
fX(A)
R′ ). (14)

Taking the expectation overX, we obtain

EXd1(P
fX(A)) ≤ 2PA(ΩR′) + EXd1(P

fX(A)
R′ ). (15)

The inequality (11) yields

EXd1(P
fX(A)
R′ ) ≤M

1
2 e−

1
2H2(A|PA

R′ ).

For 0 ≤ s ≤ 1, we can evaluatee−H2(A|PA
R′) andPA(ΩR′) as

e−H2(A|PA
R′ ) =

∑

a∈Ωc
R′

PA(a)2 ≤
∑

a∈Ωc
R′

PA(a)1+se−(1−s)R′

≤
∑

a

PA(a)1+se−(1−s)R′

= e−sH1+s(A|PA)−(1−s)R′

(16)

PA(ΩR′) =
∑

a∈ΩR′

PA(a) ≤
∑

a∈ΩR′

(PA(a))1+sesR
′

≤
∑

a

(PA(a))1+sesR
′

= e−sH1+s(A|PA)+sR′

. (17)

Combining (15), (16), and (17), forR := logM , we obtain

EXd1(P
fX(A))

≤2e−sH1+s(A|PA)+sR′

+ eR+ 1
2 (−sH1+s(A|PA)−(1−s)R′)

=3e−
sH1+s(A|PA)+sR

1+s ,

where we substituteR+sH1+s(A|PA)
1+s into R′.

Next, we consider the case when our distributionPAn is
given by then-fold independent and identical distribution of
PA, i.e, (PA)n. When the random number generation rate
limn→∞

1
n logMn is R, we focus on theexponential rate of

decreaseof EXd1(P
fX,n(An)), and consider the supremum.

When an ensemble{fX,n} of hash functions is a family of
universal2 hash functions fromAn to {1, . . .Mn}, Theorem
1 yields that

lim inf
n→∞

−1

n
log EXd1(P

fX,n(An))

≥sH1+s(A|PA)− sR

1 + s

for s ∈ [0, 1]. Taking the maximum overs ∈ [0, 1], we obtain

lim inf
n→∞

−1

n
log EXd1(P

fX,n(An))

≥ max
0≤s≤1

sH1+s(A|PA)− sR

1 + s
. (18)

On the other hand, when we apply the Pinsker’s inequality
[19] to the upper bound for the mutual information ob-
tained by the previous paper [6], we obtain another bound
max0≤s≤1

sH1+s(A|PA)−sR
2 , which is smaller than (18).

B. Protocol based on universal2 hash functions: Converse
part

In order to show the tightness of the exponential rate of
decrease (18) under the universal2 condition, we consider the
following property.

Condition 3 (Strongly universal2): For any a ∈ A,
Pr{fX(a) = m} = 1

M . The random variablefX(a) is
independent of{fX(a′)}a′ 6=a∈A.
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Theorem 2:For any strongly universal2 ensemble, any sub-
setΩ ⊂ A with |Ω| < M satisfies

EXd1(P
fX(A)) ≥ (1− |Ω|

M
)2PA(Ω). (19)

The proof is given in Appendix A.
In order to derive the inequality opposite to (18) from

Theorem 2, we employ the type method [19]. In the type
method, when ann-trial data~an := (a1, . . . , an) ∈ An is
given, we focus on the distributionp(a) := #{i|ai=a}

n , which
is called the empirical distribution for the data~an. In the
type method, an empirical distribution is called a type. In
the following, we denote the set of empirical distributions
on A with n trials by Tn. The cardinality|Tn| is bounded
by (n+ 1)|A|−1 [19], which increases polynomially with the
numbern. That is,

lim
n→∞

1

n
log |Tn| = 0. (20)

This property is the key idea in the type method. WhenTn(Q)
represents the set ofn-trial data whose empirical distribution
is Q, the cardinality ofTn(Q) can be evaluated as [19]:

⌈e
nH(Q)

|Tn|
⌉ ≤ |Tn(Q)| ≤ ⌊enH(Q)⌋, (21)

where⌈x⌉ is the minimum integerm satisfyingm ≥ x, and
⌊x⌋ is the maximumm satisfyingm ≤ x. Since any element
~a ∈ Tn(Q) satisfies

PAn(~a) = e−n(D(Q‖PA)+H(Q)), (22)

we obtain an important formula

1

Tn
e−nD(Q‖PA) ≤ PAn(Tn(Q)) ≤ e−nD(Q‖PA). (23)

Using the above knowledge, we can show the following
proposition:

Proposition 1: When Mn = ⌊enR⌋, any sequence of
strongly universal2 ensembles{fX,n} from An to {1, . . .Mn}
satisfies the equation

lim sup
n→∞

−1

n
log EXd1(P

fX,n(An)) ≤ min
Q:H(Q)≤R

D(Q‖PA),
(24)

where D(Q‖PA) is the Kullback-Leibler divergence
∑

a∈AQ(a)(logQ(a)− logPA(a)).
Proof: Choose an arbitrary empirical distributionQ ∈ Tn

satisfying thatH(Q) ≤ R. Then, due to (21), the cardinality
|Tn(Q)| is less than⌊enR⌋. We choose the subsetΩn,Q with
the cardinality⌈ 1

2e
nR⌉ so that it contains at least⌈ |Tn(Q)|

2 ⌉
elements ofTn(Q). Using (21) and (22), we obtain

PAn(Ωn,Q) ≥
|Tn(Q)|

2
e−n(D(Q‖PA)+H(Q))

≥e
nH(Q)

2|Tn|
e−n(D(Q‖PA)+H(Q)).

Using Theorem 2 withΩn,Q, we obtain

EXd1(P
fX,n(An)) ≥ (1− ⌈ 1

2e
nR⌉

⌊enR⌋ )2
1

2|Tn|
e−nD(Q‖PA).

SinceQ is an arbitrary empirical distributionQ ∈ Tn satisfy-
ing thatH(Q) ≤ R,

EXd1(P
fX,n(An))

≥(1− ⌈ 1
2e
nR⌉

⌊enR⌋ )2
1

2|Tn|
max

Q∈Tn:H(Q)≤R
e−nD(Q‖PA).

That is,

−1

n
log EXd1(P

fX,n(An))

≤ min
Q∈Tn:H(Q)≤R

D(Q‖PA) + 1

n
log 2|Tn|

− 2

n
log(1− ⌈ 1

2e
nR⌉

⌊enR⌋ ).

Due to the continuity ofQ 7→ H(Q), D(Q‖PA) and (20), the
limit n→ ∞ yields (24).

WhenR ≤ H(A|PA), the equation

max
0≤s

s(H1+s(A|PA)−R)

1 + s
= min
Q:H(Q)≤R

D(Q‖PA) (25)

is known as the strong converse exponent in fixed
source coding [19], [31],[24, (A21)]. The maximum
max0≤s

s(H1+s(A|PA)−R)
1+s is realized ats = s0 when R =

Rs0 := (1 + s0)
d
ds (sH1+s(A|PA))|s=s0 − s0H1+s0(A|PA).

Since d
dsRs = (1 + s) d

2

ds2 (sH1+s(A|PA)) ≤ 0, Rs is
monotone decreasing withs.

Thus, whenH(A|PA) ≥ R ≥ R1 (R1 is called the critical
rate.),

max
0≤s

s(H1+s(A|PA)−R)

1 + s
= max

0≤s≤1

s(H1+s(A|PA)−R)

1 + s
.

(26)

Hence, in this case, due to (18), (24), (25), and (26), we obtain

lim
n→∞

−1

n
log EXd1(P

fX,n(An))

= max
0≤s≤1

s(H1+s(A|PA)−R)

1 + s
= min

Q:H(Q)≤R
D(Q‖PA).

(27)

However, whenR < R1,

max
0≤s≤1

s(H1+s(A|PA)−R)

1 + s
=
H2(A|PA)−R

2

<max
0≤s

s(H1+s(A|PA)−R)

1 + s
.

So, the lower bound in (18) does not coincide with the upper
bound in (24).

C. Comparison with evaluation by Holenstein-Renner [29]

In the above derivation, the key point is evaluating the prob-
ability PA(ΩR′), which equals the probability(PA)n{a ∈
An|(PA)n(a) > e−nR

′} in the n-i.i.d. setting. In the com-
munity of cryptography, then-i.i.d. setting is not regarded
as an important setting because they are more interested in
the single-shot setting. In such a setting, they sometimes
use Holenstein-Renner’s [29] evaluation ofPX(ΩR′). They
proved the following theorem.
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Theorem 3:When0 ≤ H(A)−R′ ≤ log |A|,

(PA)n{a ∈ An|(PA)n(a) > e−nR
′} ≤ 2

− n(H(A)−R′)2

2(log(|A|+3))2 .
(28)

Further, when|A| ≥ 3 and0 ≤ H(A)−R′ ≤ log(|A|−1)
12 ,

(PA)n{a ∈ An|(PA)n(a) > e−nR
′} > 1

110
2
− 12n(H(A)−R′)2

(log(|A|−1))2 .

When |A| = 2, the inequality yields the following evaluation.
When0 ≤ H(A)−R′ ≤ log 3

24 ,

(PA)n{a ∈ An|(PA)n(a) > e−nR
′} > 1

110
2
− 24n(H(A)−R′)2

(log 3)2

for evenn.
Our evaluation (17) of(PA)n{a ∈ An|(PA)n(a) > e−nR

′}
contains the parameter0 ≤ s ≤ 1. Since this parame-
ter is arbitrary, it is natural to compare the upper bound
min0≤s≤1 e

−n(sH1+s(X|PX)−sR′) given by (17) with that by
Theorem 3. That is, using (17), we obtain the exponential
evaluation

lim
n→∞

−1

n
log(PA)n{a ∈ An|(PA)n(a) > e−nR

′}
≥max

0≤s
sH1+s(A|PA)− sR′,

while Theorem 3 yields that

lim
n→∞

−1

n
log(PA)n{a ∈ An|(PA)n(a) > e−nR

′}

≥ (H(A)−R′)2

2(log(|A|+ 3))2
log 2.

In this case, the upper bound is12 log 2(H(A)−R′)2

(log(|A|−1))2 for |A| ≥ 3

and 24 log 2(H(A)−R′)2

(log 3)2 for |A| = 2.
In fact, the probabilityPA(ΩR′) is the key quantity in the

method of information spectrum, which is a unified method
in information theory [32]. When the method of informa-
tion spectrum is applied to an i.i.d. source, the probability
PA(ΩR′) is evaluated by applying Cramér’s Theorem (see
[27]) to the random variablelogPA(a). Then we obtain

lim
n→∞

−1

n
log(PA)n{a ∈ An|(PA)n(a) > e−nR

′}
=max

0≤s
sH1+s(A|PA)− sR′ (29)

for R ≤ H(A). Sinces 7→ sH1+s(X |PX) is concave, when
H(A) ≥ R ≥ H ′

2(A|PA), the maximization (29) can be
attained withs ∈ [0, 1], i.e.,

lim
n→∞

−1

n
log(PA)n{a ∈ An|(PA)n(a) > e−nR

′}
= max

0≤s≤1
sH1+s(A|PA)− sR′.

which implies that our evaluation (17) gives the tight bound
for exponential rate of decrease for the probability(PA)n{a ∈
An|(PA)n(a) > e−nR

′}. In fact, the difference among these
bounds is numerically given in Fig. 1. Therefore, we can
conclude that our evaluation (17) is much better than that by
Holenstein-Renner [29]. That is, the combination of Lemma 1
and (17) is essential for deriving the tight exponential bound.

0.305 0.455 0.5 R
¢0.00

0.02

0.04

0.06

0.08

0.10

Exponent

Fig. 1. Evaluation oflimn→∞
−1
n

log(PA)n{a ∈ An|(PA)n(a) >

e−nR
′
}. Thick line: max0≤s≤1 sH1+s(A|PA)− sR′ (The present paper),

Normal line: (H(A)−R′)2

2(log(|A|+3))2
log 2 (Lower bound by [29]), Dashed line:

24 log 2(H(A)−R′)2

(log 3)2
(Upper bound by [29]). Here,PA is chosen to be the

binary distributionPA(0) = α, PA(1) = 1 − α with α = 0.200. Then,
h(α) = H(A) = 0.500,

d(sH1+s(A))

ds
|s=1 = 0.305, andH(A) − log 3

24
=

0.455.

D. Comparison with smooth min-entropy

In subsection III-A, we treated smoothing of Rényi entropy
of order 2. In this subsection, we compare this method
with smooth min-entropy, which is more familiar in the
community of cryptography [5]. When we employ the min-
entropy Hmin(A|PA) := − logmaxa∈A P

A(a) instead of
Rényi entropy of order2 in (11), we obtain the following
inequality:

EXd1(P
fX(A)) ≤M

1
2 e−

Hmin(A|PA)

2 . (30)

Now, we choose another distributionP̃A satisfying
d1(P̃

A, PA) ≤ ǫ. Using (9), (30), andǫ-smooth min-
entropyHmin,ǫ(A|PA) := maxP :d1(P̃A,PA)≤ǫHmin(A|P̃A),
we can show the following inequality [5]

EXd1(P
fX(A)) = EXd1(P

fX(A), PA(A)P
fX(A)
mix )

≤EXd1(P̃
fX(A), P̃A(A)P

fX(A)
mix ) + d1(P̃

fX(A), P fX(A))

+ d1(P̃
A(A)P

fX(A)
mix , PA(A)P

fX(A)
mix )

≤M 1
2 e−

Hmin(A|P̃A)

2 + d1(P̃
A(A), PA(A))

+ |P̃A(A)P
fX(A)
mix , PA(A)|

≤M 1
2 e−

Hmin,ǫ(A|PA)

2 + 2ǫ. (31)

Next, using the subdistributionPAR′ defined in proof of The-
orem 1, we chooseǫ to be d1(PA, PAR′) = PA(ΩR′) for a
givenR′ ≥ logM . Then,

EXd1(P
fX(A)) ≤M

1
2 e−

Hmin,ǫ(A|PA)

2 + 2ǫ

≤M 1
2 e−

Hmin(A|PA
R′ )

2 + 2ǫ

≤
√

M

eR′ + 2PA{a ∈ A|PA(a) > e−R
′}. (32)

Applying the inequality (17), we obtain

EXd1(P
fX(A)) ≤M

1
2 e−R

′/2 + 2e−sH1+s(A|PA)+sR′
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for s ≥ 0. WhenR = logM ,

EXd1(P
fX(A)) ≤ e(R−R′)/2 + 2e−(sH1+s(A|PA)−sR′). (33)

Now, we chooseR′ = R′
0 such that (R′

0 − R)/2 =

sH1+s(A|PA)− sR′
0, which impliesR′

0 = R+2sH1+s(A|PA)
1+2s .

Hence,(R′
0 −R)/2 = sH1+s(A|PA)−sR

1+2s . Thus, we obtain

EXd1(P
fX(A)) ≤ 3e−

sH1+s(A|PA)−sR

1+2s . (34)

Taking the minimum overs > 0, we have

EXd1(P
fX(A)) ≤ 3e−maxs≥0

sH1+s(A|PA)−sR

1+2s . (35)

Next, we consider the case when our distributionPAn is
given by then-fold independent and identical distribution of
PA, i.e, (PA)n. Similar to (18), (35) yields

lim inf
n→∞

−1

n
log EXd1(P

fX,n(An))

≥max
0≤s

sH1+s(A|PA)− sR

1 + 2s

= max
0≤t≤1

tH1/(1−t)(A|PA)− tR

1 + t
, (36)

where t = s
1+s . In fact, as shown in Appendix C, the

exponential decreasing rate of the right hand side of (31) is
calculated as

lim
n→∞

−1

n
logmin

ǫ
(e

nR
2 e−

Hmin,ǫ(A
n|(PA)n)

2 + 2ǫ)

= max
0≤t≤1

tH1/(1−t)(A|PA)− tR

1 + t
. (37)

Hence, we can consider thatmax0≤t≤1
tH1/(1−t)(A|PA)−tR

1+t
expresses the optimal exponential decreasing rate for the
method of smooth min-entropy. For0 ≤ t ≤ 1, the relationt ≤
t

1−t implies the inequalityH1/(1−t)(A|PA) ≤ H1+t(A|PA).
Hence, the boundmax0≤s

sH1+s(A|PA)−sR
1+2s is smaller than the

presented boundmax0≤s≤1
sH1+s(A|PA)−sR

1+s , whose numeri-
cal comparison is illustrated in Fig. 2.

0.3 0.4 0.5 R0.00

0.02

0.04

0.06

0.08

0.10

Exponent

Fig. 2. Comparison betweenmax0≤s
sH1+s(A|PA)−sR

1+s
and

max0≤s
sH1+s(A|PA)−sR

1+2s
. Thick line: max0≤s

sH1+s(A|PA)−sR

1+s
(Smoothing of Rényi entropy of order2. The present paper), Normal line:

max0≤s
sH1+s(A|PA)−sR

1+2s
. (Smoothing of min entropy. [5]). Here,PA

is chosen to be the binary distributionPA(0) = α, PA(1) = 1 − α with
α = 0.200. Then,h(α) = H(A) = 0.500.

IV. SPECIALIZED PROTOCOL FOR UNIFORM RANDOM

NUMBER GENERATION

A. Main result of this section

Next, we consider a functionf from A to {1, . . . ,M} spe-
cialized to a given probability distributionPA. This problem is
called intrinsic randomness, which was studied with general
source by Vembu and Verdú [26]. The previous paper [25]
discussed the relation between the second order asymptotic
rate and the central limit theorem. In the following, for the
comparison with the exponential rate of decrease for (25),
we prove the following theorem, which gives the optimal
exponential rate of decrease for a given rate of uniform random
number generation.

Theorem 4:When d(sH1+s(A|P ))
ds |s=1 ≤ R, we obtain

lim
n→∞

−1

n
log min

fn∈Fn(R)
d1(P

fn(An))

= max
0≤s≤1

s(H1+s(A|PA)−R), (38)

where Fn(R) is the set of functionsfn from An to
{1, . . . , ⌊enR⌋}.

Combining (27) and Theorem 4, we can compare the
performances between a random universal protocol and the
best specialized protocol. So, our exponential rate of decrease
for the protocol based on universal2 hash functions is slightly
smaller than the optimal exponential rate of decrease for
specialized protocols.

In order to prove Theorem 4, we will show the following
two inequalities:

lim sup
n→∞

−1

n
log min

fn∈Fn(R)
d1(P

fn(An))

≤ max
0≤s≤1

s(H1+s(A|PA)−R) (39)

lim inf
n→∞

−1

n
log min

fn∈Fn(R)
d1(P

fn(An))

≥ max
0≤s≤1

s(H1+s(A|PA)−R). (40)

Inequality (39) is called the converse part and Inequality (40) is
called the direct part in the information theory community.In
order to show the respective inequalities, we prepare respective
lemmas (Lemmas 2 and 4) in the non-asymptotic setting in
Subsection IV-B. In Subsection IV-C, using Lemma 4 and
the concavity property, we show the converse part (39). Also,
using Lemma 2, we show the direct part (39). In the latter
derivation, we employ again the method of types [19].

B. Non-asymptotic evaluation

In order to treat the non-asymptotic case, we introduce the
notation:

[x]+ :=

{

x if x ≥ 0
0 if x < 0.

Then, theL1 norm for two normalized distributionsP andQ
can be simplified to

∑

a

|P (a)−Q(a)| = 2
∑

a

[P (a)−Q(a)]+, (41)
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which is a useful formula for the following discussion.
Hence, we obtain the following lemma, which is useful for

our proof of the direct part (40).
Lemma 2:Any probability distributionPA and any func-

tion f from A to {1, . . . ,M} satisfy that

d1(P
f(A)) ≥ PA{a ∈ A|PA(a) ≥ 2

M
}. (42)

Proof:
Any positive numbersα1, . . . , αk satisfies

[

k
∑

i=1

αi −
1

M
]+ ≥

k
∑

i=1

[αi −
1

M
]+. (43)

WhenPA(a) ≥ 2
M , PA(a)− 1

M ≥ 1
M , which implies that

2[PA(a)− 1

M
]+ = 2(PA(a)− 1

M
)

≥PA(a)− 1

M
+

1

M
= PA(a). (44)

Thus, we obtain

∑

b

|PA(f−1(b))− 1

M
| = 2

∑

b

[PA(f−1(b))− 1

M
]+

≥2
∑

a∈A

[PA(a)− 1

M
]+ (45)

≥2
∑

a∈A:PA(a)≥ 2
M

[PA(a)− 1

M
]+

≥
∑

a∈A:PA(a)≥ 2
M

PA(a), (46)

where (45) and (46) follows from (43) and (44). Therefore,
we obtain (42).

In order to show the converse part, we prepare the following
lemma.

Lemma 3:Assume that for two integersM ≥ N , two
positive number sequencesα1, . . . , αN andβ1, . . . , βM satisfy
that

∑N
i=1 αi ≥ ∑M

i=1 βi. Then, there exists a mapf from
{1, . . . ,M} to {1, . . . , N} such that

N
∑

i=1

[
∑

j∈f−1(i)

βj − αi]+ ≤ N max
j
βj . (47)

Proof: First, we definef(1) := 1. For j > 1, we define
f(j) inductively. When

∑

j′∈f−1(f(j−1)) βj′ < αf(j−1), we
definef(j) := f(j − 1). Otherwise, we definef(j) := f(j −
1) + 1. Then the function satisfies the condition (47).

Now we consider the case when our distributionPAn is
given by then-fold independent and identical distribution
of PA, i.e, (PA)n. Using Lemma 3, we have the following
lemma, which is useful for our proof of the converse part (39).

Lemma 4:For any probability distributionPA, there exists

a functionfn from An to {1, . . . ,Mn} such that

d1(P
fn(An))

≤2(PA)n{a ∈ An|(PA)n(a) ≥ 1

Mn
}

+ 2
∑

Q∈T 1
n [Mn]

Mne
−n(D(Q‖PA)+H(Q)) · (PA)n(Tn(Q))

+ 2|Tn| max
Q∈T 2

n [Mn]
e−n(D(Q‖PA)+H(Q)) (48)

where

T 1
n [Mn] := {Q ∈ Tn|D(Q‖PA) +H(Q) ≥ 1

n
logMn}

T 2
n [Mn] := {Q ∈ Tn|(PA)n(Tn(Q)) <

1

Mn
}.

Proof: In the first step, we define the functionfn. In the
second step, we show that the function satisfies (48).

We divideTn into three parts:

T̃ 0
n [Mn] := {Q ∈ Tn|en(D(Q‖PA)+H(Q)) ≤Mn}

T̃ 1
n [Mn] := {Q ∈ (T̃ 0

n [Mn])
c ∩ Tn|(PA)n(Tn(Q)) ≥ 1

Mn
}

T̃ 2
n [Mn] := {Q ∈ (T̃ 0

n [Mn])
c ∩ Tn|(PA)n(Tn(Q)) <

1

Mn
},

where(T̃ 0
n [Mn])

c is the complement of̃T 0
n [Mn]. These three

parts have the following relation with the above two parts:

T̃ 1
n [Mn] ⊂ T 1

n [Mn], T̃ 2
n [Mn] ⊂ T 2

n [Mn].

By using the integer nQ := ⌊ (PA)n(Tn(Q))
1/Mn

⌋ =

⌊Mn(P
A)n(Tn(Q))⌋, the conditions for̃T 1

n [Mn] andT̃ 2
n [Mn]

are written asnQ ≥ 1 andnQ < 1, respectively. Note that,
sincenQ is a non-negative integer,nQ < 1 is equivalent to
nQ = 0.

Due to (22), the condition thaten(D(Q‖PA)+H(Q)) ≤ Mn

is equivalent with the condition thatPAn(a) ≥ 1
Mn

for a ∈
Tn(Q). Hence,

(PA)n{a ∈ An|(PA)n(a) ≥ 1

Mn
} =

∑

Q∈T 0
n

(PA)n(Tn(Q)).

(49)

So,

(PA)n{a ∈ An|(PA)n(a) ≥ 1

Mn
}+

∑

Q∈T̃ 1
n [Mn]

nQ
Mn

≤
∑

Q∈T̃ 0
n [Mn]

(PA)n(Tn(Q)) +
∑

Q∈T̃ 1
n [Mn]

(PA)n(Tn(Q)) ≤ 1.

Since
1

Mn

∑

Q∈T̃ 0
n [Mn]

|Tn(Q)| = 1

Mn
|{a ∈ An|(PA)n(a) ≥ 1

Mn
}|

≤(PA)n{a ∈ An|(PA)n(a) ≥ 1

Mn
},

we have
∑

Q∈T̃ 0
n [Mn]

|Tn(Q)|+
∑

Q∈T̃ 1
n [Mn]

nQ ≤Mn.
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Therefore, we can choose f ′
n on Ω′ :=

∪Q∈T̃ 0
n [Mn]∪T̃ 1

n [Mn]
Tn(Q) satisfying the following conditions.

1) For Q,Q′ ∈ T̃ 0
n [Mn] ∪ T̃ 1

n [Mn], f ′
n(Tn(Q)) ∩

f ′
n(T (Q

′)) = ∅.
2) f ′

n|Tn(Q) is injective forQ ∈ T̃ 0
n [Mn].

3) |f ′
n(Tn(Q))| = nQ for Q ∈ T̃ 1

n [Mn].
4) Any typeQ ∈ T̃ 1

n [Mn] satisfies that|f ′
n
−1

(b)| ≤ |Tn(Q)|
nQ

for b ∈ f ′
n(Tn(Q)).

Then, forQ ∈ T̃ 1
n [Mn], we obtain

P f
′
n(An)(b) ≤ 1

Mn
+ e−n(D(Q‖PA)+H(Q)), ∀b ∈ f ′

n(Tn(Q)).

(50)

From the construction,

∑

b∈f ′
n(Ω

′)

P f
′
n(An)(b) ≥ 1

Mn
|f ′
n(Ω

′)|.

That is,

∑

a∈(Ω′)c

PAn(a) ≤ 1

Mn
|(f ′

n(Ω
′))c|. (51)

Next, we definefn on the whole set by modifyingf ′
n as

follows.

5) fn is the same asf ′
n on Ω′.

6) Due to (51), we can apply Lemma 3 to the case when
{1, . . . , N} = (f ′

n(Ω
′))c, {1, . . . ,M} = (Ω′)c, αb =

1
Mn

for b ∈ (f ′
n(Ω

′))c andβa = PAn(a) for a ∈ (Ω′)c.
Following Lemma 3, we define the mapfn|(Ω′)c from
(Ω′)c to (f ′

n(Ω
′))c.

Our remaining task is to evaluate the value
∑

b[P
fn(An)(b)− 1

Mn
]+. Now, we define

C(Q) :=
∑

b∈fn(Tn(Q))

[P fn(An)(b)− 1

Mn
]+.

Then, (49) implies that

∑

Q∈T̃ 0
n [Mn]

C(Q) ≤ (PA)n{a ∈ An|(PA)n(a) ≥ 1

Mn
}. (52)

ForQ ∈ T̃ 1
n [Mn], (50) implies

C(Q) ≤nQe−nD(Q‖PA)−nH(Q)

≤Mne
−nD(Q‖PA)−nH(Q) · (PA)n(Tn(Q)). (53)

Thus, (52) and (53) imply

∑

b∈f ′
n(Ω

′)

[P fn(An)(b)− 1

Mn
]+

≤(PA)n{a ∈ An|(PA)n(a) ≥ 1

Mn
}

+
∑

Q∈T 1
n [Mn]

Mne
−nD(Q‖PA)−nH(Q) · (PA)n(Tn(Q)).

(54)

Recall the condition 6). Lemma 3 guarantees that

∑

b∈(f ′
n(Ω

′))c

[P fn(An)(b)− 1

Mn
]+

≤|(f ′
n(Ω

′))c| max
Q∈T̃ 2

n [Mn]
e−n(D(Q‖PA)+H(Q))

≤|Tn| max
Q∈T 2

n [Mn]
e−n(D(Q‖PA)+H(Q)). (55)

Combining (54) and (55), we obtain (48).

C. Asymptotic evaluation

Next, we proceed to the asymptotic evaluation. First, using
Cramér’s Theorem [27], we obtain

max
0≤s

sH1+s(A|PA)− sR

= lim
n→∞

−1

n
log(PA)n{a ∈ An|(PA)n(a) ≥ 1

enR
} (56)

Hence, Equality (56) and Lemma 2 imply

lim sup
n→∞

−1

n
log min

fn∈Fn(R)
d1(P

fn(An))

≤max
0≤s

s(H1+s(A|PA)−R). (57)

Since s 7→ sH1+s(A|PA) is concave,
when d(sH1+s(A|P ))

ds |s=1 ≤ R, the maximum
max0≤s s(H1+s(A|PA) − R) is realized ats ∈ [0, 1], i.e.,
max0≤s≤1 s(H1+s(A|PA)−R) = max0≤s s(H1+s(A|PA)−
R). Therefore, we obtain the converse part (39).

In order to show the direct part (40), we will show the
following lemma by employing Lemma 2.

Lemma 5:

lim inf
n→∞

−1

n
log min

fn∈Fn(R)
d1(P

fn(An))

≥ max
0≤s≤1

s(H1+s(A|PA)−R). (58)

In order to show Lemma 5, we prepare the following lemma,
whose proof is given in Appendix B.

Lemma 6:When d(sH1+s(A|P ))
ds |s=1 ≤ R,

min
Q:H(Q)+D(Q‖P )≥R

H(Q) + 2D(Q‖P )−R

=max
0≤s

sH1+s(A|P )− sR

= max
0≤s≤1

sH1+s(A|P )− sR. (59)

When d(sH1+s(A|P ))
ds |s=1 > R,

min
Q:H(Q)+D(Q‖P )≥R

H(Q) + 2D(Q‖P )−R

=H2(A|P ) −R (60)

= max
0≤s≤1

sH1+s(A|P )− sR. (61)
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Proof of Lemma 5:Due to (20), (21), and the continuity
of Q 7→ H(Q) andD(Q‖PA), we obtain

lim
n→∞

−1

n
log 2|Tn| max

Q∈T 2
n [⌊enR⌋]

e−n(D(Q‖PA)+H(Q))

= lim
n→∞

min
Q∈T 2

n [⌊enR⌋]
D(Q‖PA) +H(Q)

= min
Q:D(Q‖PA)≥R

D(Q‖PA) +H(Q)

≥ min
Q:D(Q‖PA)≥R

H(Q) + 2D(Q‖PA)−R

≥ min
Q:H(Q)+D(Q‖PA)≥R

H(Q) + 2D(Q‖PA)−R. (62)

From (23),

Kn :=
∑

Q∈T 1
n [⌊enR⌋]

⌊enR⌋(PA)n(Tn(Q))e−n(D(Q‖PA)+H(Q))

satisfies that

max
Q∈T 1

n [⌊enR⌋]

1

Tn
e−n(2D(Q‖PA)+H(Q)−R)

≤Kn ≤ Tn max
Q∈T 1

n [⌊enR⌋]
e−n(2D(Q‖PA)+H(Q)−R).

Due to (20) and the continuity ofQ 7→ H(Q) andD(Q‖PA),

lim
n→∞

−1

n
logKn

= min
Q:H(Q)+D(Q‖PA)≥R

H(Q) + 2D(Q‖PA)−R. (63)

As is shown in Lemma 6, RHSs of (62) and
(63) equal max0≤s≤1 sH1+s(A|PA) − sR. Since
max0≤s sH1+s(A|PA) − sR ≥ max0≤s≤1 sH1+s(A|PA) −
sR, (56) implies that

lim
n→∞

−1

n
log(PA)n{a ∈ An|(PA)n(a) ≥ 2

enR
}

≥ max
0≤s≤1

s(H1+s(A|PA)−R). (64)

Thus, applying (62), (63), and (64) to the RHS of (48), and
using Lemma 6, we can choose a sequence{fn} such that

lim inf
n→∞

−1

n
logmin

fn
d1(P

fn(An))

≥ max
0≤s≤1

s(H1+s(A|PA)−R), (65)

which implies (58).

V. SECRET KEY GENERATION WITHOUT COMMUNICATION

A. Application of Theorem 1

Next, we consider the secure key generation problem from
a common random numberA ∈ A which has been partially
eavesdropped on by Eve. For this problem, it is assumed that
Alice and Bob share a common random numberA ∈ A, and
Eve has another random numberE ∈ E , which is correlated
to the random numberA. The task is to extract a common
random numberf(A) from the random numberA ∈ A, which
is almost independent of Eve’s random numberE ∈ E . Here,
Alice and Bob are only allowed to apply the same functionf
to the common random numberA ∈ A.

Then, when the initial random variablesA andE obey the
distributionPA,E , Eve’s distinguishability can be represented
by the following value:

d1(P
f(A),E |E) := d1(P

f(A),E, P
f(A)
mix × PE),

whereP f(A)
mix ×PE is the product distribution of both marginal

distributionsP f(A)
mix andPE , andP f(A)

mix is the uniform distribu-
tion on{1, . . . ,M}. While the half of this value directly gives
the probability that Eve can distinguish Alice’s information,
we calld1(P f(A),E|E) Eve’s distinguishability in the follow-
ing. This criterion was proposed by [22] and was used by [5].
Since the half of this quantityd1(P f(A),E |E) is closely related
to universally composable security, we adopt it as the secrecy
criterion in this paper. As another criterion, we sometimestreat

d′1(P
f(A),E |E) := d1(P

f(A),E, P f(A) × PE).

Since d1(P f(A) × PE , PMmix × PE) = d1(P
f(A), PMmix) ≤

d1(P
f(A),E , PMmix × PE), we have

d′1(P
f(A),E |E) ≤ 2d1(P

f(A),E |E).

Further, whenP f(A) is the uniform distribution, the above
criteria coincide with each other.

Next, we consider an ensemble of universal2 hash functions
{fX}. Similar to (9), the equation

EXd1(P
fX(A),E |E) = d1(P

B,E,X, PBmix × PE × PX) (66)

holds, whereB is the random variablefX(A). Hence, when
the expectationEXd1(P

fX(A),E |E) is sufficiently small, the
random variablefX(A) is almost independent of the random
variablesX andE. So, the above value is suitable even when
we randomly choose a hash function.

In order to evaluate the average performance, we define the
quantity

φ(t|A|E|PA,E) := log
∑

e

PE(e)(
∑

a

PA|E(a|e) 1
1−t )1−t

= log
∑

e

(
∑

a

PA,E(a, e)
1

1−t )1−t.

Note that when Eve’s random variableE takes a continu-
ous value in the setE , the relation (67) holds by defining
φ(t|A|E|PA,E) in the following way.

φ(t|A|E|PA,E) := log

∫

E

PE(e)de(
∑

a

PA|E(a|e) 1
1−t )1−t.

This definition does not depend on the choice of the measure
on E .

By using Theorem 1 and puttingt = s
1+s , any universal2

hash functions{fX} satisfies the inequality:

EXd1(P
fX(A),E|E) ≤ 3M

s
1+sEe(

∑

a

PA|E(a|e)1+s) 1
1+s

= 3M teφ(t|A|E|PA,E) (67)

for 0 ≤ t ≤ 1
2 . Therefore, there exists a functionf such that

d1(P
f(A),E |E) ≤ 3M

s
1+sEe(

∑

a

PA|E(a|e)1+s) 1
1+s

= 3M teφ(t|P
A,E). (68)
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Next, we consider the case when our distributionPAnEn

is given by then-fold independent and identical distribution
of PAE , i.e, (PA,E)n. Ahlswede and Csiszár [7] showed that
the optimal generation rate

G(PA,E)

:= sup
{(fn,Mn)}

{

lim
n→∞

logMn

n

∣

∣

∣
lim
n→∞

d1(P
fn(An),En |En) = 0

}

equals the conditional entropyH(A|E). That is, any achiev-
able generation rateR = limn→∞

logMn

n is no more than
H(A|E). The quantityd1(P fn(An),En |En) goes to zero. In
order to treat the speed of this convergence, we focus on the
supremum of theexponential rate of decrease (exponent)for
d1(P

fn(An),En |En) for a givenR

e1(P
A,E |R)

:= sup
{(fn,Mn)}

{

lim
n→∞

−1

n
log d1(P

fn(An),En |En)
∣

∣

∣

lim
n→∞

−1

n
logMn ≤ R

}

.

Since the relationφ(t|An|En|(PA,E)n) = nφ(t|A|E|PA,E)
holds, the inequality (68) implies that

e1(P
A,E |R) ≥ −φ(t|A|E|PA,E)− tR. (69)

for t ∈ [0, 1/2]. That is, taking the maximum concerningt ∈
[0, 1/2], we obtain

e1(P
A,E |R) ≥ eφ(A|E|PA,E |R), (70)

where

eφ(A|E|PA,E |R) := max
0≤t≤ 1

2

−φ(t|A|E|PA,E)− tR

= max
0≤s≤1

−φ( s

1 + s
|A|E|PA,E)− s

1 + s
R.

Since d
dtφ(t|PA,E)

∣

∣

t=0
= d(sH1+s(A|E|PA,E)

ds

∣

∣

∣

s=0
=

−H(A|E), the right hand sides of (70) and (71) are strictly
greater than1 for R < H(A|E).

B. Comparison with the previous paper [6]

Next, we show how better our bound is than that by the
previous paper [6]. The previous paper [6] shows the following
in Section IIA: there exists a sequence of functionsfn : An →
{1, . . . , ⌊enR⌋} such that

lim
n→∞

−1

n
logD(P fn(An),En‖P fn(An)

mix × PEn)

≥ max
0≤s≤1

sH1+s(A|E|PA,E)− sR,

where we define the function

sH1+s(A|E|PA,E) := − log
∑

a,e

PE(e)PA|E(a|e)1+s

= − log
∑

a,e

PA,E(a, e)1+sPE(e)−s

for s ∈ [0, 1]. Hence, applying Pinsker’s inequality (6), we
obtain

e1(P
A,E |R) ≥ lim

n→∞

−1

n
log d1(P

fn(An),En |En)
≥ẽH(A|E|PA,E |R) (71)

where

ẽH(A|E|PA,E |R) := max
0≤s≤1

sH1+s(A|E|PA,E)− sR

2

= max
0≤t≤ 1

2

tH 1
1−t

(A|E|PA,E)− tR

2− 2t

with s = t
1−t . Concerning the comparison of both bounds, we

prepare the following lemma.
Lemma 7:The inequality

− s

1 + s
H1+s(A|E|PA,E) ≥ φ(

s

1 + s
|A|E|PA,E) (72)

holds fors ∈ (0,∞). Equality holds if and only if the Rényi
entropyH1+s(A|PA|E=e) does not depend on the choicee at
the support ofPE .

Proof: Applying Jensen’s inequality to the concave func-
tion x 7→ x

1
1+s , we have

e−
sH1+s(A|E|PA,E)

1+s = (
∑

e

PE(e)
∑

a

PA|E(a|e)1+s) 1
1+s

≥
∑

e

PE(e)(
∑

a

PA|E(a|e)1+s) 1
1+s = eφ(

s
1+s |A|E|PA,E).

Thus, the equality condition is that the value
∑

a P
A|E(a|e)1+s does not depend on the choicee at

the support ofPE . Hence, we obtain the desired argument.

In order to compare the two boundseφ(A|E|PA,E |R) and
ẽH(A|E|PA,E |R), we introduce the following value:

eH(A|E|PA,E |R) := max
0≤s≤1

sH1+s(A|E|PA,E)− sR

1 + s

= max
0≤t≤ 1

2

tH 1
1−t

(A|E|PA,E)− tR

Then, we obtain the following lemma.
Lemma 8:

eφ(A|E|PA,E |R) ≥ eH(A|E|PA,E |R) ≥ ẽH(A|E|PA,E |R)
(73)

for R < H(A|E). Equality in the first inequality holds if
and only if the Rényi entropyH1+s0(A|PA|E=e) does not
depend on the choicee at the support ofPE for s0 :=
argmax0≤s≤1 −φ( s

1+s |A|E|PA,E) − s
1+sR. Equality in the

second inequality holds if and only ifsH2(A|E|PA,E)−R
2 =

max0≤s≤1
sH1+s(A|E|PA,E)−sR

1+s .
Therefore, our exponenteφ(A|E|PA,E |R) is strictly better
than the exponent̃eH(A|E|PA,E |R) by [6, Section IIA]
except for the case satisfying the following two conditions: (i)
−φ(12 |A|E|PA,E)− 1

2R = max0≤s≤1 −φ( s
1+s |A|E|PA,E)−

s
1+sR. (ii) H2(A|PA|E=e) does not depend on the choicee
at the support ofPE .

For example, we consider the following case:A equals
E , the setA has a module structure, (i.e.,A is an Abelian
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group) and the conditional distributionPA|E(a|e) has the form
PA(a−e). Then, the equality condition for the first inequality
holds. Since

eφ(
s

1+s |A|E|PA,E) =
∑

e

PE(e)(
∑

a

PA|E(a|e)1+s) 1
1+s

=
∑

e

PE(e)e−
sH1+s(A|PA)

1+s = e−
sH1+s(A|PA)

1+s .

and

e−sH1+s(A|E|PA,E) =
∑

e

PE(e)
∑

a

PA|E(a|e)1+s

=
∑

e

PE(e)
∑

a

PA(a− e)1+s

=
∑

e

PE(e)e−
sH1+s(A|PA)

1+s = e−
sH1+s(A|PA)

1+s ,

boundseφ(A|E|PA,E |R) and ẽH(A|E|PA,E |R) can be sim-
plified to

eφ(A|E|PA,E |R) = eH(A|E|PA,E |R) = eH(A|PA|R)
ẽH(A|E|PA,E |R) = ẽH(A|PA|R),

where

eH(A|PA|R) := max
0≤s≤1

sH1+s(A|PA)− sR

1 + s

= max
0≤t≤1/2

tH 1
1−t

(A|PA)− tR

ẽH(A|PA|R) := max
0≤s≤1

sH1+s(A|PA)− sR

2

= max
0≤t≤1/2

tH 1
1−t

(A|PA)− tR

2− 2t
.

In particular, both exponents are numerically plotted in Fig. 3
whenA = {0, 1}, andPA(0) = a, PA(1) = 1− a.

Proof: The first inequality and its equality condition
follow from Lemma 7 and the definitions ofeφ(PA,E |R)
and eH(PA,E |R). The second inequality follows from the
inequality 1

2 ≤ 1
1+s for s ∈ [0, 1]. Since the equality holds

only when s = 1, we obtain the equality condition for the
second inequality.

VI. T HE WIRE-TAP CHANNEL IN A GENERAL FRAMEWORK

Next, we consider the wire-tap channel model, in which
the eavesdropper (wire-tapper) Eve and the authorized receiver
Bob receive the information from the authorized sender Alice.
In this case, in order for Eve to have less information, Alice
chooses a suitable encoding. This problem is formulated as
follows. LetX , Y andZ be the alphabets of Alice, Bob, and
Eve. Then, the main channel from Alice to Bob is described
by WB : x 7→ WB

x , and the wire-tapper channel from Alice
to Eve is described byWE : x 7→ WE

x . That is, WB
x

is the output distribution on Bob’s side with Alice’s input
x, and WE

x is the output distribution on Eve’s side with
Alice’s input x. In this setting, in order to send a secret
message in{1, . . . ,M} subject to the uniform distribution,
Alice choosesM distributionsQ1, . . . , QM on X , and she
generatesx ∈ X subject toQi when she wants to send the

0.224 0.5R0.00

0.02

0.04

0.06

0.08

0.10

Exponent

Fig. 3. Lower bounds ofe1(PAE |R). Thick line: eH (A|PA|R)
(The present paper), Normal line:̃eH(A|PA|R) by [6]), Dashed line:
H2(A|PA)−sR

2
(direct application of (11) without smoothing). Here,PA

is chosen to be the binary distributionPA(0) = α, PA(1) = 1 − α with

α = 0.200. Then h(α) = H(A) = 0.500, and 2
d(sH1+s(A))

ds
|s=1 −

H2(A) = 0.224.

messagei ∈ {1, . . . ,M}. Bob preparesM disjoint subsets
D1, . . . ,DM of Y and judges that a message isi if y belongs to
Di. Therefore, the triplet(M, {Q1, . . . , QM}, {D1, . . . ,DM})
is called a code, and is described byΦ. Its performance is
given by the following three quantities. The first is the size
M , which is denoted by|Φ|. The second is the average error
probability ǫB(Φ):

ǫB(Φ)
def
=

1

M

M
∑

i=1

WB
Qi

(Dc
i ),

and the third is Eve’s distinguishabilityd1(Φ|E):

d1(Φ|E) :=d1(W
E
Φ × PMmix,W

E [Φ])

WE
Φ (e) :=

∑

i

1

M
WE
Qi
(e), WE [Φ](i, e) :=

1

M
WE
Qi
(e).

The quantityd1(Φ|E) gives an upper bound for the proba-
bility that Eve can succeed in distinguishing whether Alice’s
information belongs to a given subset. So, the value can be
regarded as Eve’s distinguishability. In order to calculate these
values, we introduce the following quantity.

φ(t|W, p) := log
∑

y

(

∑

x

p(x)(Wx(y))
1/(1−t)

)1−t

.

When the random variableY takes a continuous value in the
setY while X takes discrete value, the above definition can
be changed to

φ(t|W, p) := log

∫

Y

(

∑

x

p(x)(Wx(y))
1/(1−t)

)1−t

dy.

This definition does not depend on the choice of the measure
on Y. That is, whenW̃x(y)f(y) = Wx(y) for a positive
function f ,

φ(t|W, p) = log

∫

Y

(

∑

x

p(x)(W̃x(y))
1/(1−t)

)1−t

f(y)dy.
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As is shown as Lemma 1 of [6],φ(t|W, p) satisfies the
following lemma.

Lemma 9:The functionp 7→ eφ(t|W,p) is convex fort ∈
[−1, 0], and is concave fort ∈ [0, 1].

Now, using the functionφ(t), we make a code for the
wire-tap channel based on the random coding method. For
this purpose, we make a protocol to share a random number.
First, we generate the random codeΦ(Y) with size LM ,
which is described asΦ(Y)(a) = Ya for a = 1, . . . , LM
by using theLM independent and identical random variables
Y = (Y1, . . . , YML) subject to the distributionp on X . Gal-
lager [20] showed that the ensemble expectation of the average
error probability concerning decoding the input messageA
is less than(ML)teφ(−t|W

B,p) for 0 ≤ t ≤ 1 when Bob
applies the maximum likelihood decoderD′(Y) of the code
Φ(Y). After sending the random variableA taking values in
the set with the cardinalityML, Alice and Bob apply the
above universal2 hash functionsfX to the random variable
A and generate another piece of data of sizeM . Here, we
assume that the ensemble{fX} satisfies Condition 2. Then,
Alice and Bob share the random variablefX(A) with sizeM .
This protocol is denoted byΦ(X,Y)′.

Let E be the random variable of the output of Eve’s
channelWE . When p is the uniform distribution on the set
C := {1, . . . ,ML} and the joint distributionPC,E is given by
PC,E(c, e) := p(c)WE

c (e), the equations

eφ(t|P
C,E) =

1

M tLt

∑

e

(

∑

a

p(c)(WE
c (e))

1
1−t

)1−t

=
eφ(t|W

E ,p)

M tLt
. (74)

hold.
For a given codeΦ(Y), we apply the inequality (67) to

Eve’s distinguishability. Then,

EX|Yd1(Φ(X,Y)′|E) ≤ 3
eφ(t|W

E,pmix,Φ(Y))

Lt
(75)

for 0 ≤ t ≤ 1
2 . The concavity ofeφ(t|W

E,p) (Lemma 9)
guarantees that

EX,Yd1(Φ(X,Y)′|E) ≤3EY

eφ(t|W
E ,pmix,Φ(Y))

Lt

≤3
eφ(t|W

E,p)

Lt

for 0 ≤ t ≤ 1
2 .

Now, we make a code for the wire-tap channel by modifying
the above protocolΦ(X,Y)′. First, we choose the distribution
Qi to be the uniform distribution onf−1

X
{i}. When Alice

wants to send the secret messagei, before sending the random
variableA, Alice generates the random numberA subject
to the distributionQi. Alice sends the random variableA.
Bob recovers the random variableA by using the maximum
likelihood decoderD′(Y), and applies the functionfX. Then,
Bob decodes Alice’s messagei, and this code for wire-tap
channelWB,WE is denoted byΦ(X,Y). Since the ensemble
{fX} satisfies Condition 2 and the secret messagei obeys the

uniform distribution on{1, . . . ,M}, this protocolΦ(X,Y)
has the same performance as the above protocolΦ(X,Y)′.

Finally, we consider what code is derived from the above
random coding discussion. Using the Markov inequality, we
obtain

PX,Y{ǫB(Φ(X,Y)) ≤ 3EX,YǫB(Φ(X,Y))} ≥ 2

3

PX,Y{d1(Φ(X,Y)|E) ≤ 3EX,Yd1(Φ(X,Y)|E)} ≥ 2

3
.

Therefore, the existence of a good code is guaranteed in the
following way. That is, we give the concrete performance of
a code whose existence is shown in the above random coding
method.

Theorem 5:There exists a codeΦ for any integersL,M ,
and any probability distributionp on X such that|Φ| = M
and

ǫB(Φ) ≤3 min
0≤t≤1

(ML)teφ(−t|W
B ,p),

d1(Φ|E) ≤9 min
0≤t≤ 1

2

eφ(t|W
E ,p)

Lt
.

In the n-fold discrete memoryless channelsWBn and
WEn of the channelsWB and WE , the additive equation
φ(t|WBn , p) = nφ(t|WB , p) holds. Thus, there exists a code
Φn for any integersLn,Mn, and any probability distribution
p on X such that|Φn| =Mn and

ǫB(Φ) ≤3 min
0≤t≤1

(MnLn)
tenφ(−t|W

B ,p),

d1(Φn|E) ≤9 min
0≤t≤ 1

2

enφ(t|W
E ,p)

Ltn
.

Since limt→0
φ(t|WE ,p)

t = I(p : WE), the ratemaxp I(p :
WB)− I(p :WE) can be asymptotically attained. Therefore,
when the sacrifice information rate isR, i.e., Ln ∼= enR,
the exponential rate of decrease for Eve’s distinguishability
is greater than

eφ(R|WE , p) := max
0≤t≤1/2

tR− φ(t|WE , p).

VII. C OMPARISON WITH EXISTING BOUNDS

In Subsection VII-A, we compare our exponent
eφ(R|WE , p) with those derived by [17], [6] in the
general setting. In Subsections VII-B and VII-C, using
discussion in Subsection V-B, we treat this comparison in
special cases more deeply.

A. General case

Now, we compare the lower obtained boundeφ(R|WE , p)
for the exponential rate of decrease for Eve’s distinguishability
with existing lower bounds [17], [6]. Using the quantity

ψ(t|W, p) := log
∑

y

(

∑

x

p(x)(Wx(y))
1+t

)

Wp(y)
−t (76)

Wp(y) :=
∑

x

p(x)Wx(y),
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the previous paper [17] derived the following lower bound of
this exponential rate of decrease:

eψ(R|WE , p) := max
0≤s≤1

sR− ψ(s|WE , p)

1 + s

= max
0≤t≤1/2

tR− (1− t)ψ(
t

1 − t
|WE , p).

(77)

The other previous paper [6] also derived the following lower
bound:

max
0≤s≤1

sR − ψ(s|WE , p) (78)

for the exponential rate of decrease for the mutual information.
By applying a discussion similar to Subsection V-B and
Pinsker’s inequality (9), the bound (78) yields the bound

ẽψ(R|WE , p) := max
0≤s≤1

sR− ψ(s|WE , p)

2
, (79)

which is smaller than the lower boundeψ(R|WE , p) because
1
2 ≤ 1

1+s for 0 ≤ s ≤ 1. Hence, in order to show the
superiority of our boundeφ(R|WE , p), it is sufficient to show
the superiority over the boundeψ(R|WE , p).

In the following, we compare the two boundseφ(R|WE , p)

and eψ(R|WE , p). For this purpose, we treateφ(t|W
E ,p) and

e(1−t)ψ(
t

1−t |W
E ,p) for 0 ≤ t ≤ 1

2 . The reverse Hölder
inequality [28] for the measurable space(X , p) is

∑

x∈X

p(x)|X(x)Y (x)|

≥(
∑

x∈X

p(x)|X(x)| 1
1+s )1+s(

∑

x∈X

p(x)|Y (x)|− 1
s )−s

for s ≥ 0. Using this inequality, we obtain

∑

y

[

∑

x

p(x)(Wx(y))
1+s

]

Wp(y)
−s

≥





∑

y

[

∑

x

p(x)(Wx(y))
1+s

]
1

1+s





1+s

·
(

∑

y

Wp(y)
−s·− 1

s

)−s

=





∑

y

[

∑

x

p(x)(Wx(y))
1+s

]
1

1+s





1+s

.

Substitutings = t
1−t , we obtain

∑

y

[

∑

x

p(x)(Wx(y))
1

1−t

]

Wp(y)
−t
1−t

≥





∑

y

[

∑

x

p(x)(Wx(y))
1

1−t

]1−t




1
1−t

,

which implies

e(1−t)ψ(
t

1−t |W
E ,p)

=

(

∑

y

[

∑

x

p(x)(Wx(y))
1

1−t

]

Wp(y)
−t
1−t

)1−t

≥
∑

y

[

∑

x

p(x)(Wx(y))
1

1−t

]1−t

= eφ(t|W
E ,p).

Thus, our boundeφ(R|WE , p) for the exponential rate of
decrease is better than the existing boundeψ(R|WE , p) [17].

Example 1:Assume thatX = E = {0, 1}. We consider the
following channel.

W0(0) = α, W0(1) = 1− α, W1(0) = 1− 9α, W1(1) = 9α.

Whenp(0) = 1/2, p(1) = 1/2,

I(p,W ) =h(1/2− 5α)− (h(α) + h(9α)

2

ψ(t|p,W ) = log

(

(
α1+t + (1− 9α)1+t

2
(
1

2
− 5α)−t

+ (
(9α)1+t + (1− α)1+t

2
(1/2 + 5α)−t)

)

φ(t|p,W ) = log

(

(
α1/(1−t) + (1− 9α)1/(1−t)

2
)1−t

+ (
(9α)1/(1−t) + (1− α)1/(1−t)

2
)1−t

)

.

Then, the three boundseφ(R|W, p), eψ(R|W, p), and
ẽψ(R|W, p) with α = 0.05 are numerically compared as in
Fig. 4.

0.119 0.2 0.3 0.4 0.5 R

0.02

0.04

0.06

0.08

0.10

Exponent

Fig. 4. Lower bounds of exponent. Thick line:eφ(R|W,p) (The present
paper), Normal line:eψ(R|W,p) [17], Dashed line:̃eψ(R|W, p) [6]. Here,
α is chosen to be0.0500. Then,I(p,W ) = 0.119.

B. Additive case

Next, we consider a more specific case. WhenX = Z and
X is a module andWx(z) = W0(z − x) = PX(z − x), the
channelW is calledadditive.
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Since

e(1−t)ψ(
t

1−t |W
E ,pmix) = eφ(t|W

E ,pmix)

=|X |te−tH 1
1−t

(X|PX)
, (80)

any additive channelWE satisfies

eψ(R|WE , pmix) = eφ(R|WE , pmix)

= max
0≤t≤ 1

2

t(R− log |X |) + tH 1
1−t

(X |PX))

=eH(X |PX | log |X | −R) (81)

and

ẽψ(R|WE , pmix) = max
0≤t≤ 1

2

t(R − log |X |) + tH 1
1−t

(X |PX)
2− 2t

=ẽH(X |PX | log |X | −R)

for the uniform distributionpmix on X .
Hence, our boundeφ(R|WE , pmix) is the same as the

previous boundeψ(R|WE , pmix). However, since 1
2−2t < 1

for t ∈ [0, 1/2), our boundeφ(R|WE , pmix) is strictly better
than the bound̃eψ(R|WE , pmix) by the other previous paper
[6] when the maximum is attained byt ∈ [0, 1/2).

C. General additive case

We consider a more general case. Eve is assumed to have
two random variablesZ ∈ X andZ ′ ∈ Z ′. The first random
variableZ is the output of an additive channel depending on
the second variableZ ′. That is, the channelWE

x (z, z′) can
be written asWE

x (z, z′) = PX,Z
′

(z − x, z′), wherePX,Z
′

is
a joint distribution. Hereafter, this channel model is called a
general additive channel. This channel is also called a regular
channel [21]. For this channel model, we obtain

eφ(s|W
E ,Pmix,X ) =

∑

z,z′

(
∑

x

1

|X |W
E
x (z, z′)

1
1−s )1−s

=
∑

z,z′

(
∑

x

1

|X |P
X,Z′

(z − x, z′)
1

1−s )1−s

=
1

|X |1−s
∑

z,z′

(
∑

x

PX,Z
′

(−x, z′) 1
1−s )1−s

=
|X |

|X |1−s
∑

z′

(
∑

x

PX,Z
′

(x, z′)
1

1−s )1−s

=|X |seφ(s|X|Z′|PX,Z′
), (82)

and

eψ(s|W
E ,pmix)

=
∑

z,z′

(
∑

x

1

|X |W
E
x (z, z′)1+s)(

∑

x

1

|X |W
E
x (z, z′))−s

=|X |s−1
∑

z,z′

(
∑

x

PX,Z
′

(z − x, z′)1+s)(
∑

x

PX,Z
′

(z − x, z′))−s

=|X |s−1
∑

z,z′

(
∑

x

PX,Z
′

(−x, z′)1+s)PZ′

(z′)−s

=|X |s−1|X |
∑

z′

∑

x

PX,Z
′

(x, z′)1+sPZ
′

(z′)−s

=|X |se−sH1+s(X|Z′|PX,Z′
). (83)

Then, the equalities

eφ(R|WE , pmix)

= max
0≤t≤ 1

2

t(R − log |X |)− φ(t|X |Z ′|PX,Z′

)

=eφ(X |Z ′|PX,Z′ | log |X | −R), (84)

eψ(R|WE , pmix)

= max
0≤t≤ 1

2

t(R − log |X |) + tH 1
1−t

(X |Z ′|PX,Z′

)

=eH(X |Z ′|PX,Z′ | log |X | −R), (85)

ẽψ(R|WE , pmix)

= max
0≤t≤ 1

2

t(R − log |X |) + tH 1
1−t

(X |Z ′|PX,Z′

)

2− 2t

=ẽH(X |Z ′|PX,Z′ | log |X | −R) (86)

hold.
Hence, the observation in Section V-B can be applied to

the comparison amongeφ(R|WE , pmix), eψ(R|WE , pmix),
and ẽψ(R|WE , pmix). Due to Lemma 8,eφ(R|WE , pmix)
is strictly better thaneψ(R|WE , pmix) and ẽψ(R|WE , pmix)
except for the special case mentioned in Lemma 8.

VIII. W IRE-TAP CHANNEL WITH LINEAR CODING

In a practical sense, we need to take into account the
decoding time. For this purpose, we often restrict our codes
to linear codes. In the following, we consider the case
where the sender’s spaceX has the structure of a module.
When an error correcting code is given as a submodule
C1 ⊂ X and the decoder by the authorized receiver is given
as {Dx}x∈C1, our code for a wire-tap channel is given as
ΦC1,C2 = (|C1/C2|, {Q[x]}[x]∈C1/C2

, {D[x]}[x]∈C1/C2
) based

on a submoduleC2 of C1 as follows. The encodingQ[x] is
given as the uniform distribution on the coset[x] := x + C2,
and the decodingD[x] is given as the subset∪x′∈x+C2Dx′ .
Next, we consider a submoduleC2(X) of C1 with cardinality
|C2(X)| = L that is labeled by a random variableX. Then,
the moduleC2(X) can be regarded as a random variable. Now,
we impose the moduleC2(X) the following condition.

Condition 4: Any elementx 6= 0 ∈ C1 is included in
C2(X) with probability at most L|C1|

.
Then, using (75), we can evaluate the performance of the

constructed code in the following way.
Theorem 6:Choose the subcodeC2(X) according to Con-

dition 4. We construct the codeΦC1,C2(X) by choosing the
distribution Q[x] to be the uniform distribution on[x] for
[x] ∈ C1/C2(X). Then, we obtain

EXd1(ΦC1,C2(X)|E) ≤3
eφ(t|W

E ,Pmix,C1)

Lt
0 ≤ ∀t ≤ 1

2
,

(87)

wherePmix,S is the uniform distribution on the subsetS.
When the channelWE is additive, i.e.,WE

x (z) = PX(z −
x), the equationφ(t|WE , Pmix,C1+x) = φ(t|WE , Pmix,C1)

holds for anyx. Thus, the concavity ofeφ(t|W
E ,p) (Lemma 9)

implies that

φ(t|WE , Pmix,C1) ≤ φ(t|WE , Pmix,X ). (88)
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Thus, combining (87), (88), and (80), we obtain

EXd1(ΦC1,C2(X)|E) ≤3
|X |te−tH 1

1−t
(X|P )

Lt
(89)

for 0 < t < 1
2 . That is, whenL = eR, taking the minimum

concerning0 < t < 1
2 , we obtain

EXd1(ΦC1,C2(X)|E) ≤3e−eH(X|PX | log |X |−R). (90)

When the additive noise obeys then-fold i.i.d. of P on Xn

andL = enR, we obtain

EXd1(ΦC1,C2(X)|E) ≤3e−neH(X|PX | log |X |−R). (91)

Similarly, when the channelWE is general additive, i.e.,
WE
x (z, z′) = PX,Z

′

(z−x, z′), combining (87), (88), and (82),
we obtain

EXd1(ΦC1,C2(X)|E) ≤3
|X |teφ(t|X|Z′|PX,Z′

)

Lt
(92)

for 0 < t < 1
2 . That is, whenL = eR, taking the minimum

concerning0 < t < 1
2 , we obtain

EXd1(ΦC1,C2(X)|E) ≤3e−eφ(X|Z′|PX,Z′
| log |X |−R). (93)

In the n-fold i.i.d. case, whenL = enR, we obtain

EXd1(ΦC1,C2(X)|E) ≤3e−neφ(X|Z′|PX,Z′
| log |X |−R). (94)

WhenX is ann-dimensional vector spaceFnq over the finite
field Fq, the bound can be attained by the combination of
linear code and the concatenation of a Toeplitz matrix and the
identity (X, I) of the sizem×(m−k) [6]. Hence, if the error
correcting codeC1 can be realizable, the whole process in the
above code can be realizable.

Remark 1: In the additive case, due to (81), the exponent
of the upper bound given in (91) is the same as that given by
the previous paper [17]. However, the code given in [17] is
constructed by completely random coding. However, the code
given in this section is based on the ordinary linear code.
For security, it requires only the universal hash condition. So,
our construction requires smaller complexity than that given
in [17]. In the general additive case, our exponents (94) is
strictly better than that given in [17], which is calculatedin
(85).

Next, we consider the relation with the other previous paper
[6] in the general additive case. The protocol given in [6] isis
quite similar to ours. However, as is shown in Lemma 8, except
for the very special case, our exponent (94) is strictly better
than that given in [6], which is calculated in (86). Remember
that the exponent given in [6] is̃eψ(R|WE , pmix), which is
mentioned around (79).

IX. SECRET KEY GENERATION WITH PUBLIC

COMMUNICATION

Furthermore, the above result can be applied to secret key
generation (distillation) with one-way public communication,
in which, Alice, Bob, and Eve are assumed to have initial
random variablesA ∈ A, B ∈ B, andE ∈ E , respectively.
The task for Alice and Bob is to share a common random

variable almost independent of Eve’s random variableE by
using a public communication. For this purpose, we assume
that Alice and Bob can perform local data processing in the
both sides and Alice can send messages to Bob via public
channel. That is, only one-way communication is allowed. We
call such a combination of these operations a code and denote
it by Φ.

The quality is evaluated by three quantities: the size of the
final common random variable, the probability that their final
variables coincide, and Eve’s distinguishabilityd1(Φ|E) of the
final joint distribution between Alice and Eve.

In order to construct a protocol for this task, we assume
that the setA has a module structure (any finite set can be
regarded as a cyclic group). Then, the objective of secret
key distillation can be realized by applying the code of a
wire-tap channel as follows. First, Alice generates another
uniform random variableX and sends the random variable
X ′ := X +A. Then, the distribution of the random variables
B,X ′ (E,X ′) accessible to Bob (Eve) can be regarded as the
output distribution of the channelx 7→ WB

x (x 7→ WE
x ). The

channelsWB andWE are given as follows.

WB
x (x′, b) = PA,B(x′ − x, b), WE

x (x′, e) = PA,E(x′ − x, e),
(95)

wherePAB(a, b) (PAE(a, e)) is the joint probability between
Alice’s initial random variableA and Bob’s (Eve’s) initial
random variableB (E). Hence, the channelWE is general
additive.

Applying Theorem 5 to the uniform distributionPAmix, for
any numbersM andL, due to (82), there exists a codeΦ such
that |Φ| =M and 1

ǫB(Φ) ≤ 3 min
0≤s≤1

(ML)s|A|−seφ(−s|A|B|PA,B) (96)

d1(Φ|E) ≤ 9 min
0≤t≤ 1

2

|A|teφ(t|A|E|PA,E)

Lt
. (97)

In particular, when the joint distribution betweenA
and B(E) is the n-fold independent and identical distri-
bution (i.i.d.) of PA,B (PA,E), respectively, the relation
φ(t|An|En|(PA,E)n) = nφ(t|A|E|PA,E) hold. Thus, there
exists a codeΦn for any integersLn,Mn, and any probability
distributionp on X such that|Φn| =Mn and

ǫB(Φ) ≤ 3 min
0≤s≤1

(MnLn)
s|A|−nsenφ(−s|A|B|PA,B) (98)

d1(Φn|E) ≤ 9 min
0≤t≤ 1

2

|A|ntenφ(t|A|E|PA,E)

Ltn
. (99)

Finally, we mention the relation with the previous paper
[17]. Since the above discussion is an application of section
VIII, the same comparison as Remark 1 is valid. Hence, our
evaluation (99) is strictly better than that given in [17] except
for the special case.

1 The previous paper [17, Section VI] derived upper bounds differ-
ent from (96) and (98) while it treat the same protocol. The previ-
ous paper [17, Section VI] erroneously calculatedeφ(−s|W

B ,Pmix,A)

to |A|−se
−sH 1

1+s
(A|B|PA,B)

. However, the correct calculation is
|A|−seφ(−s|A|B|PA,B) as is shown in (82).
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X. D ISCUSSION

We have derived a tight evaluation of the exponent for
the average of theL1 norm distance between the gener-
ated random number and the uniform random number when
universal2 hash functions are applied and the key generation
rate is less than the critical rateR1. Using this evaluation, we
have obtained an upper bound for Eve’s distinguishability in
secret key generation from a common random number without
communication when universal2 hash functions are applied.
Since our bound is based on the Rényi entropy of order1+ s
for s ∈ [0, 1], it can be regarded as an extension of Bennett et
al [2]’s result with the Rényi entropy of order 2.

Applying this bound to the wire-tap channel, we obtain
an upper bound for Eve’s distinguishability, which yields
an exponential upper bound. This exponent improves on the
existing exponent [17]. Further, when the error correctioncode
is given by a linear code and when the channel is additive
or general additive, the privacy amplification is given by a
concatenation of a Toeplitz matrix and the identity matrix.This
method can be applied to secret key distillation with public
communication.
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APPENDIX A
PROOF OFTHEOREM 2

First, for a fixed elementa ∈ Ω, we introduce the condition
for a hash functionfX:

Condition 5 (Condition[a,Ω]):

fX(a) 6= fX(a′) for ∀a′(6= a) ∈ Ω.

Let P [a,Ω] be the probability that Condition[a,Ω] holds. Due
to the strongly universal2 condition, it is evaluated as

1− P [a,Ω] =Pr∪a′( 6=a)∈Ω{fX(a) = fX(a′)}
≤

∑

a′( 6=a)∈Ω

Pr{fX(a) = fX(a′)}

=
∑

a′( 6=a)∈Ω

1

M
=

|Ω|
M
,

which implies thatP [a,Ω] ≥ 1 − |Ω|
M . When we denote the

expectation concerning the hash funcations under Condition

[a,Ω] by EX|[a,Ω], the strongly universal2 condition yields that

EX|[a,Ω]

(

PA(a) +
∑

a′( 6=a)∈f−1
X

(a)

PA(a′)− 1

M

)

=PA(a) + EX|[a,Ω]

∑

a′( 6=a)∈f−1
X

(a)

PA(a′)− 1

M

=PA(a) +
1

M

∑

a′( 6=a)∈A\Ω

PA(a′)− 1

M

=PA(a) +
1

M
(1− PA(Ω))− 1

M

=PA(a)− 1

M
PA(Ω).

When Conditions [a1,Ω], [a2,Ω], . . . , [ak,Ω] hold for
a1, a2, . . . , ak ∈ Ω, fX(a1), fX(a2), . . . , fX(ak) are different.
Then,

d1(P
fX(A)) ≥

k
∑

j=1

∣

∣

∣PA(aj) +
∑

a′( 6=aj)∈f
−1
X

(aj)

PA(a′)− 1

M

∣

∣

∣.

Now, we define the random variableY (a) to be 1 when
Condition [a,Ω] holds. We define it to be 0 otherwise. Then,

d1(P
fX(A))

≥
∑

a∈Ω

Y (a)
∣

∣

∣PA(a) +
∑

a′( 6=a)∈f−1
X

(a)

PA(a′)− 1

M

∣

∣

∣.

Therefore, taking the expectation, we can evaluate
EXd1(P

fX(A)) as follows.

EXd1(P
fX(A))

≥
∑

a∈Ω

P [a,Ω]EX|[a,Ω]

∣

∣

∣PA(a) +
∑

a′( 6=a)∈f−1
X

(a)

PA(a′)− 1

M

∣

∣

∣

≥
∑

a∈Ω

P [a,Ω]EX|[a,Ω]

(

PA(a) +
∑

a′( 6=a)∈f−1
X

(a)

PA(a′)− 1

M

)

=
∑

a∈Ω

(1 − |Ω|
M

)
(

PA(a)− 1

M
PA(Ω)

)

=(1 − |Ω|
M

)(PA(Ω)− |Ω|
M
PA(Ω)) = (1− |Ω|

M
)2PA(Ω).

APPENDIX B
PROOF OFLEMMA 6

We choose s(R) such that d(sH1+s(A|P ))
ds |s=s(R) =

H(P1+s(R)) + D(P1+s(R)‖P ) = R, where P1+s(a) :=
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P (a)1+s
∑

a′ P (a′)1+s . WhenQ satisfiesH(Q) +D(Q‖P ) = R,

D(Q‖P )−D(P1+s‖P )
=
∑

a

Q(a)(logQ(a)− logP (a))

−
∑

a

P (a)1+s
∑

a′ P (a
′)1+s

(log
P (a)1+s

∑

a′ P (a
′)1+s

− logP (a))

=
∑

a

Q(a)(logQ(a)− log
P (a)1+s

∑

a′ P (a
′)1+s

)

+
∑

a

(Q(a)− P (a)1+s
∑

a′ P (a
′)1+s

)

· (log P (a)1+s
∑

a′ P (a
′)1+s

− logP (a))

=D(Q‖P1+s) + s
∑

a

(Q(a)− P (a)1+s
∑

a′ P (a
′)1+s

) logP (a)

=D(Q‖P1+s)

+ s(H(P1+s) +D(P1+s‖P )−H(Q) +D(Q‖P ))
=D(Q‖P1+s) ≥ 0.

Hence,

min
Q:H(Q)+D(Q‖P )=R

H(Q) + 2D(Q‖P )−R

= min
Q:H(Q)+D(Q‖P )=R

D(Q‖P ) = D(P1+s(R)‖P )

=sH1+s(A|P ) − s(R)
d(sH1+s(A|P ))

ds
|s=s(R)

=sH1+s(A|P ) − s(R)R = max
0≤s

sH1+s(A|P )− sR.

The last equation follows from the concavity ofsH1+s(A|P )
concernings.

Assume thatd(sH1+s(A|P ))
ds |s=1 ≤ R. Then, s(R) ≤ 1.

WhenR′ ≥ R,

min
Q:H(Q)+D(Q‖P )=R′

H(Q) + 2D(Q‖P )−R

=max
0≤s

sH1+s(A|P )− sR+R′ −R

≥sH1+s(R)(A|P )− s(R)R′ +R′ −R

≥sH1+s(R)(A|P )− s(R)R

=max
0≤s

sH1+s(A|P )− sR

= max
0≤s≤1

sH1+s(A|P )− sR,

which implies (59).
Assume thatd(sH1+s(A|P ))

ds |s=1 > R. WhenR′ ≥ R,

min
Q:H(Q)+D(Q‖P )=R′

H(Q) + 2D(Q‖P )−R

=max
0≤s

sH1+s(A|P )− sR+R′ −R

≥1H1+1(A|P )−R′ +R′ −R = H2(A|P )−R.

Further, whenR′ = d(sH1+s(A|P ))
ds |s=1,

min
Q:H(Q)+D(Q‖P )=R′

H(Q) + 2D(Q‖P )−R

=H1+1(A|P )−R′ +R′ −R = H2(A|P )−R,

which implies (60).

Further, the concavity ofs 7→ sH1+s(A|P ) and
the condition d(sH1+s(A|P ))

ds |s=1 > R imply that
max0≤s≤1 sH1+s(A|P ) − sR = H2(A|P ) − R. Thus,
we obtain (61).

APPENDIX C
PROOF OF(37)

First, we consider the the minimum
minP̃A:Hmin(A|P̃A)≥R′ d1(P

A, P̃A), where P̃A is chosen

to be a subdistribution satisfyingHmin(A|P̃A) ≥ R′.

min
P̃A:Hmin(A|P̃A)≥R′

d1(P
A, P̃A)

= min
P̃A:Hmin(A|P̃A)≥R′

∑

a∈A

|PA(a)− P̃A(a)|

=
∑

a∈A:PA(a)>e−R′

(PA(a)− e−R)

≥1

2

∑

a∈A:PA(a)>2e−R′

PA(a) =
1

2
PA{PA(a) > 2e−R

′}.

Using this relation, we have

min
ǫ
(M

1
2 e−

Hmin,ǫ(A|(PA)

2 + 2ǫ)

=min
R′

min
P̃A:Hmin(A|P̃A)≥R′

(M
1
2 e−R

′/2 + 2d1(P
A, P̃A))

=min
R′

(M
1
2 e−R

′/2 + PA{PA(a) > 2e−R
′}). (100)

Using (29), we obtain

lim
n→∞

−1

n
logmin

R′
(e

nR−nR′

2 + (PA)2{(PA)n(a) > 2e−nR
′})

=max
R′

lim
n→∞

−1

n
log(e

nR−nR′

2 + (PA)2{(PA)n(a) > 2e−nR
′})

=max
R′

min(R′ −R,max
0≤s

sH1+s(A|PA)− sR′)

=max
R′

max
0≤s

min(R′ −R, sH1+s(A|PA)− sR′)

=max
0≤s

max
R′

min(R′ −R, sH1+s(A|PA)− sR′). (101)

SincesH1+s(A|PA)− sR′ is monotonically decreasing with
R′ andR′−R is monotonically increasing withR′, the max-
imum maxR′ min(R′ − R, sH1+s(A|PA) − sR′) is realized
when R′ − R = sH1+s(A|PA) − sR′, which implies that
R′ = R+2sH1+s(A|PA)

1+2s . Hence,

max
0≤s

max
R′

min(R′ −R, sH1+s(A|PA)− sR′)

=max
0≤s

sH1+s(A|PA)− sR

1 + 2s
. (102)

Therefore, combining (100), (101), and (102), we
obtain (37) because max0≤s

sH1+s(A|PA)−sR
1+2s =

max0≤t≤1
tH1/(1−t)(A|PA)−tR

1+t .
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