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Tight exponential analysis of universally
composable privacy amplification and its
applications
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Abstract—Motivated by the desirability of universal compos-
ability, we analyze in terms of L; distinguishability the task
of secret key generation from a joint random variable. Under
this secrecy criterion, using the Renyi entropy of order 1+ s for
s € [0, 1], we derive a new upper bound of Eve’s distinguishability
under the application of the universak hash functions. It is
also shown that this bound gives the tight exponential rate fo
decrease in the case of independent and identical distribigns.
The result is applied to the wire-tap channel model and to seet
key generation (distillation) by public discussion.

Index Terms—sacrifice bits, L1 norm distance, universal com-
posablity, secret key distillation, universay hash functions, wire-
tap channel

. INTRODUCTION
Random privacy amplification based on the universain-

In the realistic setting, we can manipulate only a finite size
of random variables. In order to treat the performance in the
finite length setting, we have two kinds of formalism for the
independent and identical distribution setting.

The first one is the second order formalism, in which, we
focus on the asymptotic expansion up to second ordefrirof
the length of the generated kéysasl,, = Hn+C+/n+o(y/n)
with a constant constraint for the security parameter. The
second one is the exponent formalism, in which, we fix
the generation rat&® := [,,/n and evaluate the exponential
decreasing rate of convergence of the security parameter. |
the exponent formalism, it is not sufficient to show that the
security parameter goes zero exponentially, and it is requo
explicitly give lower and/or upper bounds for the exponainti
decreasing rate. The exponent formalism has been studied by

dition [1] has been studied by many authars [2], [8], [4],,[Slvarious information theoretical settings, e.g., chanmalirtg
[30], [6]. This technique is originally developed for ramdo [20], [35], source coding [19],131], and mutual informatio
number extractior [2]/]3]. It can also be applied to secest k criterion in wire-tap channel [17],[6]. As for the second

generation (distillation) with public communication! [1BI,

order formalism, the optimal coding length with the fixed

[9], [10], [11], [3]. [4] and the wire-tap channel [12], [13] error probability has been derived up to the second order
[14], [15], [16], [17], which treats the secure communioati ,/n in various settings [36]/[37][38] in the case of channel
in the presence of an eavesdropper. (For details of its -ap@oding. In particular, the previous papér[37] treats itduhs
cation, see e.g. the previous paper [6].) When random privaen the information spectrum approac¢h][32], which is closely
amplification is implemented with universaiash functions, it related toc-smooth min-entropy. Note that, as is mentioned by
can yield protocols for the above tasks with a relatively kmaHan [32], the information spectrum approach cannot yiesd th

amount of calculation.

optimal exponent of error probability in the channel coding

Similar to the study([2],[[30] for random privacy amplifica- Concerning the second order formalism for uniform random
tion based on the universatondition, the previous paper [6] number generation, the previous paper! [25] has solved the
focused only on the mutual information with the eavesdropp@ptimal second order coefficient undér distinguishability
However, as the secrecy criterion, many papers in the crygiterion and other criteria by employing the information
tography community[[22],[13],[[4],[[5] adopt the half of thespectrum method when there is no side information. Even
L, norm distance, so callefl; distinguishability because thiswhen the side information exists, the same argument can
criterion is closely related to universally composableusitgz be shown for the second order formalism by replacing the
[22]. In this paper, we adopL; distinguishability as the variance of the likelihood by the variance of the likelihdiod
secrecy criterion, and evaluate the secrecy for randonagyiv the conditional distribution due to the following reasomr F
amplification. In the independent and identically disttdal the converse part, the key lemma{[25, Lemmd 4],[32, Lemma
case, when the rate of generated random numbers is smadl@r.2]) holds by replacing the distribution by the condiab
than the entropy of the original information source, it isgio distribution. The direct part can be shown by replacing tie k
ble to generate a random variable whdsenorm distance to lemma ([25, Lemma 3[,[32, Lemma 2.1.1]) by the inequality
the uniform random number approaches zero asymptotica(2) in the present paper, which holds under the universal
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In Section[Tll, first, we focus on evaluation for randonon the L; norm distance as well as the mutual information
privacy amplification by Bennett et all[2], which employs thdetween Alice and Eve. It obtained a bound for the exponlentia
Rényi entropy of order 2. This evaluation was also obtainedte of decrease concerning tlhe security criterion. In this
by Hastad et al [30] and is often called leftover hash lemmpaper, we apply[(67) to wire-tap channel model, and obtain
Using a discussion similar to Rennér [5], we derive an upptire evaluation of the exponent of the security criterion.
bound for theL; norm distance under the universabndition In Section[VIl, it is shown that the evaluation obtained in
for hash functions, which is the main theorem of this papémis paper is better than that by the previous paper [17]. In a
(Theorent1). realistic setting, it is natural to restrict our codes toeln

Next, we apply this theorem to the i.i.d. setting with a givenodes. In Sectioh_VII, using[{T5), we provide a security
key generation rate and a given source distribution. Then, @nalysis for a code constructed by the combination of an
derive a lower bound of the exponent of the average of tlebitrary linear code and privacy amplification by univéssa
L, norm distance between the generated random number &agh functions. This analysis yields the exponential rdte o
the uniform random number when a family of univessadsh decrease for thé,; security criterion. Overall, sincé (67) and
functions is applied. Next, we introduce a stronger conditi (75) are derived from Theoref 1, all of the obtained results
for hash functions, which is called strongly univessale concerning the wire-tap channel model can be regarded as
consider then-independent and identical extension, and shoeonsequences of Theoréd 1.
that the exponential rate of decrease for this bound is tightFurther, in SectiofIX, we obtain the bound for the secu-
under a stronger condition by using the type method, whichy criterion in one-way secret key generation. In Appendi
was invented by Csiszar and Kornér [19] and is one we prove Theoreni]2 mentioned in Subsection TII-A. In
standard methods in information theory. Since our bourgppendix[B, we prove Lemmi 6 given in Subsectiond IV. In
realizes the optimal exponent, it gives a powerful bounchevéppendix[C, we show Equatioh (37), which is important for
for the finite length setting[[39]. One might consider thatomparison in Subsectién13D.
the smooth min entropy can derive the same lower bound
for the exponential decreasing rate of universal comptisabi Relation with the previous paper![6]

However, as shown in Subsectibn 1II-D, the bound derived The main difference from the previous papkr [6] is that
by the smooth min entropy is strictly smaller than that bthe analysis on this paper is based bn distinguishability
smoothing of Rényi entropy of orde&x. This disagreement while that on the previous paper! [6] is based on the mutual
is not so unnatural because a similar disagreement appéafsrmation criterion. In the first step, this paper derias

for the exponent of error probability in the channel codingvaluation (Theoreml 1) of the equality of the uniform random
as a relation between Gallager exponent and the lower boundnber generation by univergdiash functions based on the
derived by the information spectrum approach| [32]. L; norm criterion. Applying Theoreni]1, we treat several

Further, if our protocol generating the random number &ecurity problems. Since this paper treats the same sgcurit
allowed to depend on the original distribution, there is problems as the previous paper with the different criterion
possibility to improve the exponent while it is known thasome of protocols used in this paper were used in the previous
asymptotic generation cannot be improved][26]. In Sectigraper [6]. That is, the coding protocols used in Sections
[Vl we derive the optimal exponent in this setting by usin@l] Mland [X]are used in Sections IIl, V, and VI in_[6],
Cramér’'s Theorem [27] and the type method|[19]. Based oespectively. While these protocols are described In [6, w
comparison between this exponent and the exponent giverdiescribe the whole protocols in this paper for the readers’
Section[1ll, we can compare the performances between ttanvenience.

protocol taking into account the full probability distrifian For uniform random number generation, this paper gives the
of the source and the protocol based on the entropy of ttight exponential rate of decrease for the norm distance,
source, which is realized by universalash functions. while the previous papelr|[6] gives a lower bound on the expo-

In Section[Y, we consider the case when an eavesdroppential rate of decrease based on Shannon entropy. Congerni
has a random variable correlated to the random variable s#cret key generation without communication, this papezi
the authorized user. In this case, applying univerdash a lower bound of the exponential rate of decrease basdd on
functions to his random variable, the authorized user abtalistinguishability, while the previous papér [6] gives avéy
a secure random variable. We apply our evaluationLef bound of the exponential rate of decrease based on the mutual
norm distance obtained in Subsection TlI-A (Theorgim 1) tmformation criterion. Applying Pinsker's inequality](5yve
the distribution of the authorized user when the eavesdndpp can derive a lower bound of the exponential rate of decrease
random variable is fixed to a certain value. Then, we obtalrased onl; distinguishability from the lower bound in|[6].

a tighter evaluation (67) than that directly obtained frdm t As is shown in Lemmal8 in Subsectibn V-B, our lower bound
previous paper[6]. is (strictly) better than combination of Pinsker’s ineqtyaand

In Sectior V], we focus on wire-tap channel model, whosthe lower bound by([6] (except for special cases). Note that
capacity has been calculated by Wyrer![12] and Csiszar amgblication of Pinsker’s inequalitf](5) of1(6) yields thelfha
Korner [13]. Csiszar [14] showed the strong security, avashy  of the lower bound of the exponent of the mutual information
papers([6],[[3B],[[34] treat this model with mutual inforritat  as a lower bound of the exponent of universal composability.
criterion. The previous paper [17] derived bounds for botimdeed, we give a numerical example in Hiy. 3, in which our
exponential rates of decrease for the security criterietda bound is strictly better than that byl [6].



Concerning the wire-tap channel in a general framework, I11. UNIFORM RANDOM NUMBER GENERATION
the code given in this paper is quite similar to that in thg = protocol based on universahash function: Direct part
previous paperl [6]. However, the evaluation method in this Firstl ider th i q b i
paper is different from that of the previous pager [6] beeausroglzn{’ f\;\:)emcznsliagg q faﬁgg?;n;lsﬁhgg;u?vhﬁ;rhgggsri lon
the analysis in this paper is based éa distinguishability P ' y

while that in the previous papeFl[6] is based on the mutuglpmbab“ity distributionP for fi.nite cardinality|A|. There
information. In this model, we can derive a lower bound fof © two types of protocols for this problem. One is a protocol

. e .. specialized for the given distributioR“. The other is a uni-
the exponential rate of decrease based.pulistinguishability ersal protocol that does not depend on the given distbut
by the combination of Pinsker's inequalify (5) and the I’ESU})A. The aim of this section is evaluate the performance of

in [6]. As is shown in Sectiof VI, our lower bound is bette ! : o
. . he latter setting. In the latter setting, our protocol igegi by
m Y, m
than this lower bound from_[6]. Sectidn VIl treats a or% function f fro o M= {1, .. M}

realistic setting by using linear codes. Even in this sgttas is Th litv of th d b beving th b

explained in Remark]1, our lower bound is strictly bettemtha,,. e qua|x 0 € rangom humber obeying the sub-
: : SI(letrlbunonP is evaluated by

the lower bound by[[6] (except for special cases mention

in Lemma[8). The same observation can be applied to secret dy (pA) = d; (pA, PA(A)P,;?iX), 7
key generation by public communication, which is discussed A ] o
in Section IX. where P/, is the uniform distribution ond. We also use the

Rényi entropy of ordet + s:
Il. PRELIMINARIES

First, we briefly explain some notation and basic knowledge
in information theory. In order to evaluate the differenee b
tween two distributiong®* and P, we employ the following

-1
Hyps(A|P?) = ?1OgZPA(a)1+S-

The L, distance is written by using the Rényi entropy of order

guantities: thel.; distance (variational distance) 2 as follows. o
. . _ PA(A
b(PX, PX):= Y [PX (@) - PX (). () do(PA, PAA)PY)? = e AP |f4|) . ®
the L, distance Now, we focus on an ensemble of functiofig from A
to M = {1,..., M}, whereX denotes a random variable
dz(pX’pX) — Z(pX(x) _ pX(x)){ 2) describing the stochastic behavior of the functibn In this
- case, we adopt on the following quantity as a criterion of the
and the KL-divergence secrecy:
- - x(A)y — fx(A) pA fx(4)
D(PY|[PY) = 3 P (2)(log PX (2) = log P¥ (). (3) Excdy (PR ) = Excda (P, PRA P ™)
T :dl(PB7XaPA('A)PIEiX X PX)7 (9)

wherelog expresses the natural logarithm. These definitioggere 5 is the random variablgx (4) and the final equation
can be extended when the total measure is less thae., fgj1ows from {@). Hence, when the expectatiBig d; (P/x(4))

> PA(Q) < 1. In the following, we call S.UChP_A a sub- s syfficiently small, the random variablgx (A) is almost
distribution. This extension for sub-distributions is cial for independent of the side informatiaK. Then, the choice

the later discussion. o fx can be communicated between Alice and Bob without
When a joint distributionP*-¥" is given, we have the revealing anything about(A)

following equation An ensemble of hash functiorf is called universalwhen

dy (PXY, PX « PY) = Z 1PXY (2,y) — PX(Q:)PY(y)| it satisfies the following condition [1]:
> ' ' Condition 1 (Universal): For any elements; # ay € A,
. . . 1
B v Xy _ BX the collision probability thatfx (a1) = fx(a2) is at mosty;.
_Z P (y) Z [P (aly) — P (2)] We sometimes require the following additional condition:

x

Y v Ny Ex Condition 2: For anyX, the cardinality offx ' {i} does not
= PY(y)dy(PXV=v, PX), (4)  depend on.

Y This condition will be used in Sectidn JV.
When PX, PX are normalized distributions, as a relation Indeed, when the cardinalitgd| is a power of a prime

between the KL-divergence and tiig distance, the Pinsker's Powerg and M is another power of the same prime power
inequality q, as is shown in Appendix Il of the previous papér [6],

1 5 R the ensemble{ fx} can be chosen to be the concatenation
—d,(PX, PX)? < D(PX||PX (5) of a Toeplitz matrix and the identityX, I) [18] only with
2
_ . _ log, |A| — 1 random variables taking values in the finite field
is known [19]. That is, F,. That is, the function can be obtained by the multiplication

“logd, (PX, PY) > __1(10gD(PXH15X) tlog2). (6) of the_ _random matri>(X,I_) taking values infy. In this case,

2 Condition[2 can be confirmed because the ranKXf7) is

These relations will be helpful for later discussions. constant.



Bennett et all[2] essentially showed the following lemmaTaking the expectation oveX, we obtain
Lemma 1:A family of universa} hash functionsfx satis-
fies
Ee Bl IPXD)  —mapty  PAA? o o The inequality (L) yields
M Exd1(P1§<(A)) < M%e—%Hz(A|P§/)'

Exdy (PxW) < 2P4(Qp/) + Exdy (P, (15)

This was also shown by Hastad et [al][30] and is often called

leftover hash lemma. For0 < s < 1, we can evaluate~#2(AIPp) andPA(QR/) as
Now, we follow the derivation of Theorem 5.5.1 of Renner Ha (AP Alq A .
[5] when one classical random variable is given. The Schwarze ™ 2(4l Z P Z PA(a)t e (179
inequality implies that a€Ng, a€Qy,
dl(PfX(A),PA(A)PfX(A)) <ZPA I+s,~(1-s)R _ —sHHS(A\PA)—(l—s)R’ (16)
A .
<V dy (P50, PA(A D), P @)= 3 PAa)y < 3 (PAa)) et
Jensen’s inequality yields that a€Qp a€Qp )
Exdl(ij(A)7PA(A)PT{;(X(A)) < Z(PA(Q))lJrsesR _ 675H1+5(A‘P )+sR ) (17)
gx/M\/Ede(Pfx(A), A(A) P Ay, Combining [I5), [[16), and (17), fak := log M, we obtain
Substituting [[B) and{10) into the above inequality, we obta  Exd; (P*(4))
A ’ A ’
Exd; (P*W) < M%efin(Az‘PA). (11) <2~ sHits(AIPD+sR' | B3 (—sHipe (AIPT)-(1=5)F)
_sH1+S(A\PA)+sR
Using [11), we can show the following theorem as a =3¢ T+s ,
generalization of[(11). ©sHip (AP
Theorem 1:A family of universaj hash functionsfx sat- Wwhere we SUbSt'tUtéu into R’ u
isfies Next, we consider the case when our distributBi~ is
ety (AlPA) given by then-fold independent and identical distribution of
Exdi (P*W) < gMTie™ 14 for0 <s <1. P4, i.e, (P*)". When the random number generation rate
(12) lim,—e0 = log M, is R, we focus on theexponential rate of
Substitutings = 1, we obtain decreaseof Exd; (P#*.»(4n)) and consider the supremum.
r A When an ensembléfx ..} of hash functions is a family of
Exd; (P*W) < 3M3e "7 . (13) universa} hash functions from4™ to {1,...M,}, Theorem
ields that
Since the difference between {11) afd](13) is only the coe@ y
cient, Theorenill can be regarded as a kind of generalization liminf — log Exd, (P™ n(An))
of Bennett et al[[2]'s resul{{20). n—00 N
Proof: For any R’ > 0, we choose the subs€lp := >SH1+5(A|P ) — sk
{PA(a) > e~ %'}, and define the sub-distributiaRy, by - 1+s
" 0 if acQp for s € [0,1]. Taking the maximum oves € [0, 1], we obtain
Pi(a) := { PA(a) otherwise. A
. lim inf — log Exdy (Pfxn(An))y
Since n—00 M
H (A|P?) — sR
A pAY _ pAQ.L, > SH1+s
d, (P2, Pf) = PA(Qg) 2 max T+ - (18)
and On the other hand, when we apply the Pinsker’s inequality
dy (PL (A)PfX(A) PA(A)Pfx(A>) [19] to the upper bound for the mutual information ob-

" Fx(A) tained by the previous paper][6], we obtain another bound
=d1(0, (P*(A) = Pir(A) P ™) maxg<s<i w, which is smaller thar{{18).

=(PA(A) — P (A))dy (0, BEY)

mix

=P4(A) — Phi(A) = PH(Qp), B. Protocol based on universalhash functions: Converse
the idea of “smoothing” by Rennerl[5] yields that part

dl(PfX(A>) _ 4 (PfX(A>,PA(A)Pf"(A)) In order to show the tightness of the exponential rate of

mix decreasd (18) under the univessaebndition, we consider the
<dy (P, Py g, (P pa (A PIXAY) following property.
+d1(Pj§,(A)PIf1’fX(A) PA(A)PT{::X(A)) Condition 3 (Stronglylunlversgj: For any a € A,

K ) Pr{fx(a) = m} = The random variablefx (a) is
=2P*(Qp/) + di (PpS). (14) independent of fx(a')}a/aca-



Theorem 2:For any strongly universaensemble, any sub- Since@ is an arbitrary empirical distributio € 7,, satisfy-

setQ C A with |Q| < M satisfies ing that H(Q) < R,
fX,n(An)
Exdy (P*#) > (1 - |]\S}[| 2pA(Q). (19) EXdl(f) )
o . o 2, 1 —nD(@QIP*)
The proof is given in AppendikJA. >(1- W) AT QGT@P?()Z?KRe .

In order to derive the inequality opposite to (18) from
Theorem®2, we employ the type methdd][19]. In the typ&hatis,

method, when am-trial datad, := (a1,...,a,) € A" is -1 Fxon (An)
given, we focus on the distribution(a) := W which n log Exdy(P )
is called the empirical_ _distrioution for t_he datg,. In the < min D(Q| P + llog2|7;|
type method, an empirical distribution is called a type. In QET:H(Q)<R n
the following, we denote the set of empirical distributions 2 (%enfﬂ
on A with n trials by 7,. The cardinality|7,| is bounded - EIOg(l T enE] )-
by (n + 1)~ [19], which increases polynomially with the o
numbern. That is, Due to the continuity of) — H(Q), D(Q|P*) and [20), the
1 limit n — oo yields [24).
lim - log |T,.| = 0. (20)  WhenR < H(A|P4), the equation
This property is the key idea in the type method. WH&I(Q) max s(His(AIPY) — R) _ min D(Q|P4) (25)
represents the set ef-trial data whose empirical distribution ~ 9<s L+s  QH(Q<R
is @, the cardinality ofZ’,(Q) can be evaluated as [19]: is known as the strong converse exponent in fixed
e H(Q) source coding [19] [31].[124, (A21)]. The maximum
[ T 1 <ITW(Q)] < [, (21)  maxo< w is realized ats = s, when R =
. n. . . L Ry, = (1 + SO)dS(SHl+S(A|PA) |s s0 30H1+80(A|PA)-
where[z] is the minimum integern satisfyingm > z, and ;.o iR, = (1+ S)ds (sHirs(A[PAY) < 0, Ry is

|| is the maximumm satisfyingm < z. Since any element

. monotone decreasing with
a € T,(Q) satisfies v

Thus, whenH (A|P4) > R > R,y (R, is called the critical

PAn () = e MPQRIPHTHQ), (22) rate.),
A A
we obtain an important formula max s(Hi4s(A|P7) — B) = max s(H1+s(AIP7) — R).
1 0<s 1+s 0<s<1 1+ s
?ean(QIIP“) < PA(T,(Q)) < e mP@IPY — (23) (26)
" Hence, in this case, due {0 {1§),(24).1(25), dnd (26), weinbta
Using the above knowledge, we can show the following
proposmoo lim _logExdl(Pfx,n(An))
Proposition 1: When M,, = [e"f], any sequence of noee n "
strongly universalensembleg fx ,} from A" to {1,... M, } — max s(H14s(AIP7) — R) _ min  D(Q||P™).
satisfies the equation 0<s<1 I+s Q:H(Q<R e
f n A’Vl A
h}gb;p—lOgEdeP xonldn)) < QI}T%I)1<R D(QIP?),  However, whenR < R;,
(24) . s(His(A|P?) — R) _ Hy(A|P*) — R
where D(Q|P#) is the Kullback-Leibler divergence 0<s<1 L+s 2
Y aes Qa)(log Q(a) — log PA(a)). - oy S5 (AIPY) — R)
Proof: Choose an arbitrary empirical distributioghe 7., 0<s 1+s '

satisfying thatH (@) < R. Then, due to[(21), the cardinality sy the lower bound if{18) does not coincide with the upper
IT.(Q)| is less thane"f]. We choose the subsét, o with  Lound in ).

the cardinality[1e"/*] so that it contains at Iea:{t'T” Dl

elements off;, (Q) Using [21) and({22), we obtain C. Comparison with evaluation by Holenstein-Renner [29]

PA(Q, Q) > |T (@) o~ n(D(QIIPH+H(Q)) In the above derivation, the key point is evaluating the prob
’ 2 ability P4(Qr:), which equals the probabilityP4)*{a €
enH(Q)e—n(D(Q||PA)+H(Q))_ A (P (a) > e "'} in the n-ii.d. setting. In the com-
— 2|T,| munity of cryptography, then-i.i.d. setting is not regarded
Using Theoreni2 with2,, o, we obtain as an important set_ting because they are more interest_ed in
. the single-shot setting. In such a setting, they sometimes
Exd; (P (An)) > (1 - [3¢" 1)2 1 o—nD(QIIP*) use Holenstein-Renner's [29] evaluation Bf (Qx/). They

len®] 7 2|T,| proved the following theorem.



Theorem 3:When0 < H(A) — R’ <log|A|,
, _ n(H@A)-R)?
(PYY{a € A"|(PM)"(a) > e "} < 27 200s(4145)7
(28)

Further, when A| > 3 and0 < H(A) - R’ < log(lg\—l)'

' 1 1zediea)-r)?
(PY)"{a € A"|(PY)"(a) > e "} > g2 AT

When|A| = 2, the inequality yields the following evaluation.

log 3
When0 < H(A) - R' < 35,

_ 24n(H(A)—R')?
(log 3)2

/ 1
(PH)"{a € A|(PA)"(a) > e} > 52
for evenn.

Our evaluation[(1I7) of P4)"{a € A"|(P4)"(a) > e "'}
contains the parametei < s < 1. Since this parame-

Exponen
0.10p

0.08
0.06-
0.04-

0.02

0.00 L
0.305 0.45¢

Fig. 1.  Evaluation oflim, oo =t log(P4)"{a € A™|(P4)"(a) >
e~ R’} Thick line: maxo< o<1 sHi1+s(A|PA) — sR’ (The present paper),

.. (H(A)-R)HZ .
Normal line: Wlog2 (Lower bound by [[2B]), Dashed line:
24log 2(H(A)—R')?

(log 3)2 (Upper bound by[[29]). HereP4 is chosen to be the

ter is arbitrary, it is natural to compare the upper bourfipary distributionP4(0) = a, P4(1) =1 — & with o = 0.200. Then,

ming< <y e "1 (XIPY)=sR) given by [IT) with that by
Theorem[B. That is, using (1L7), we obtain the exponent
evaluation

nh_)rrgo _71 log(P4)"{a € A™|(P*)"(a) > ¢ "'}
ngggcsHHs(AlPA) —sR/,
while Theoreni B yields that
lim — log(P4)"{a € A|(PA)"(a) > e~}
() - R

= 3(log([Al 1 3))2

log 2.

12log 2(H(A)—R')?
(

In this case, the upper bound Tog([AI=D)Z

ang 2SR or 4] =2

for |A| >3

In fact, the probabilityP“ (Qg/) is the key quantity in the entropy Hin (A|PA)
method of information spectrum, which is a unified methoge can show the following inequ

h(a) = H(A) = 0.500, 2He=()) - — 0,305, and H(A) — 1983 =
0.455.

ia

D. Comparison with smooth min-entropy

In subsectiof TII=A, we treated smoothing of Rényi entropy
of order 2. In this subsection, we compare this method
with smooth min-entropy, which is more familiar in the
community of cryptography [5]. When we employ the min-
entropy Hi, (A|P4) —log max,e 4 P4(a) instead of
Rényi entropy of order in (11), we obtain the following
inequality:

Hmin(A‘PA)
2

Exdi (P*)) < Mze~ (30)

Now, we choose another distributionP4  satisfying
di(P4,P*) < e Using [9), [B0), ande-smooth min-
ﬁA,PA)geHmin(A|PA),

= maXP:dli.
ality|[5]

in information theory [[32]. When the method of informa-

tion spectrum is applied to an i.i.d. source, the probahilit
PA(Qg:) is evaluated by applying Cramér's Theorem (see

[27]) to the random variablég P4 (a). Then we obtain

lim — log(PA)" {a € A"|(PA)"(a) > e "'}

n—oo N

=max sHyy,(A|P?) — sR' (29)

for R < H(A). Sinces — sHy.(X|PX) is concave, when
H(A) > R > Hy(A|P#), the maximization[{29) can be
attained withs € [0, 1], i.e.,

lim — log(PA) {a € A"|(PA)"(a) > e "'}

n—oo N

_ Ay /
—0?3§13H1+5(A|P) sR'.

which implies that our evaluatiol (IL7) gives the tight boun
for exponential rate of decrease for the probabili*)" {a €
A"

(PA)"(a) > e~ R}, In fact, the difference among these
bounds is numerically given in Fig.] 1. Therefore, we can

Exdl(PfX(A)) = Exd; (Pfx(A)a PA(A)PI{:;X(A))
<Exdy (P PAA)PEY) + dy (P, pix()y
+di (PAAPEN, PAPEY)
. pA ~
<ME T 4y (PA(A), PA(A))

+[PAA) PN pAA)

2 + 2e.

Pfx(

mix

§M%e_

(31)

Next, using the subdistributiof?s, defined in proof of The-
orem[l, we choose to be d; (P4, P4) = PA(Qg/) for a
given R’ > log M. Then,

Hmin,e(A‘PA)

Exd; (Pfx(A)) < Mze™ + 2¢
Hyin (AIPS)
d §M%67fk2 + 2¢
M A A R
< o +2P*a € AP (a) >e™ " }. (32)

conclude that our evaluatioh {17) is much better than that Byplying the inequality[(1]7), we obtain

Holenstein-Rennef [29]. That is, the combination of Lemma
and [I7) is essential for deriving the tight exponentialrghu

! EXdI(Pfx(A)) SM%G_R//z+2@_5H1+5(A\PA)+5R'



for s > 0. WhenR = log M, IV. SPECIALIZED PROTOCOL FOR UNIFORM RANDOM

Exdy (PXA)) < (-2 | g~ (oM (AP —s)  (33) NUMBER GENERATION

A. Main result of this section
Now, we chooseR’ = Rj such that(R{ — R)/2 =

Ay L - R+25H1+S(A|PA) Next, we consider a functiofi from A to {1,..., M} spe-
st (A|P7) — shy, W}E"Ch x;n;phesgo = [ESE cialized to a given probability distributioR*. This problem is
Hence,(R, — R)/2 = % Thus, we obtain called intrinsic randomness, which was studied with gdnera

Hypo(AIPA)—sR source by Vembu and Verdil_[26]. The previous paper [25]

Exdi (P < 3¢~ T+25 . (34) discussed the relation between the second order asymptotic
rate and the central limit theorem. In the following, for the
- comparison with the exponential rate of decrease [fal (25),
Excdy (PXN)) < 3¢~ max, s E IS (35) We prove the following theorem, which gives the optimal
exponential rate of decrease for a given rate of uniformeand
Next, we consider the case when our distributBri» is number generation.

given by then-fold independent and identical distribution of Theorem 4:When 2:f1e=(AIP)| < R we obtain

Taking the minimum oves > 0, we have

P4, i.e, (P1)™. Similar to [18), [(3b) yields . @
lim —lo min  dy (P/(An)
hmlnf—logExdl(Pfx“(A ) n—o0 gfnefn(R) il )
n—o00 . A B
_— $H1+S(A|PA) — SR —Orgggls(HHs(AlP )—R), (38)
0ss 0 1+(2/81|PA) iR where F,,(R) is the set of functionsf, from A" to
= max — /070 , (36) {1, [e"f]}.
0<t<1 1+t Combmmg [2Y) and Theorerm] 4, we can compare the
where ¢t = 2. In fact, as shown in AppendiklC, theperformances between a random universal protocol and the
exponential decreasing rate of the right hand side_of (31) best specialized protocol. So, our exponential rate ofeess
calculated as for the protocol based on universdlash functions is slightly
-1 ni Hmin, (A" 1(PA™) smaller than the optimal exponential rate of decrease for
Jim —logmin(e 2 e 2 + 2€) specialized protocols.
tHy - (A|PA) — tR In order to prove Theoremml 4, we will show the following
/A=t (37) two inequalities:
0<t<1 1+t
. -1 .
Hence, we can consider thataxg<,<; -0 “(A‘P )—tR 117?180%]9710%]‘,"?1;&1%) dy (P (An))
expresses the optimal exponential decreasmg rate for the A
< —
method of smooth min-entropy. For< ¢ < 1, the relationt < - 0133?1 s(Hips(A1P7) - R) (39)

-t implies the inequalityH; ;;_ (A|P?4) < Hi_,(A|P4). -1
— MP q yHl/(zAfl)D( )|_ R)_ < Hi(AlP7) liminf — log min d; (Pf“(A”))
Hence, the boundhaxg< % is smaller than the n—oo m fn€Fn(R)

sHipo(AIPY) =R - \hose numeri- Zorgggls(HlH(AIP ) — R). (40)

Inequality [39) is called the converse part and Inequaif) {s

Exponen called the direct part in the information theory communiity.

0.10¢ order to show the respective inequalities, we prepare otispe
lemmas (Lemmak]2 arld 4) in the non-asymptotic setting in
Subsectio_IV-B. In Subsection TV}C, using Lemih 4 and
the concavity property, we show the converse (39). Also
using Lemmd2, we show the direct pdrt](39). In the latter
derivation, we employ again the method of types [19].

presented bounehaxo<s<i
cal comparison is illustrated in F|E] 2.

0.08
0.06
0.04

0.02 B. Non-asymptotic evaluation

0.00 ‘ ‘ 'R In order to treat the non-asymptotic case, we introduce the
° o o8 notation:
a :
Fig. 2. Comparison  betweenmaxg< —SH”S(ﬁ“: =R and (7] = { r !f €20
s (AIPA) =R Hi s AIPY)=sR 0 if z<0.

maxo<s Thick line: maxg<s

(Smoothing of Renyl entropy of orde. The present paper), "Normal line: Then, theL; norm for two normalized distribution® and @
maxg<s W. (Smoothing of min entropy[[5]). HereP4  can be simplified to

is chosen to be the binary distributidd (0) = o, P4(1) = 1 — a with
o = 0.200. Then,h(a) = H(A) = 0.500. Z |P(a) — Q(a)] =2 Z[P(a) - Qa)ly,  (41)



which is a useful formula for the following discussion. a functionf,, from A" to {1,..., M,,} such that

Hence, we obtain the following lemma, which is useful for dy (P (An))
our proof of the direct parf(40). !

1
Lemma 2:Any probability distributionP# and any func-  <2(P*)"{a € A"|(P*)"(a) > M}
ti f to{l,.... M ti that n
1on f rom A to { ! ’ } sa ISfy a +2 Z Mnefn(D(Q”PA)JrH(Q)) . (PA)n(Tn(Q))

A A A 2 QET[Mn]
i (PIY) 2 PHa € AP a) > 37} (42) FOUT) max e n(DQIPHHHQ) (48)
QETZ[Mn]
Proof: where
Any positive numbersyy, .. ., oy satisfies 1
Ta M) = {Q € Ta|D(Q|| P*) + H(Q) > — log My}
: 1 . 1 20/ Ayn
[;ai—ﬁhzg[ai—ﬁh- (43) T, [M,] :=={Q € T, |(P*)"(T, (Q))<V

Proof: In the first step, we define the functigh. In the
When PA(a) > 2, PA(a) — A_14 > % which implies that ~ second step, we show that the function satisfie$ (48).
We divide 7, into three parts:
1

Q[PA((I)—M] (PA( )= ) TOAM,] = {Q € T |e"P@QIPDHHQ) < pp, )
- 1
>PA(a) ~ 2+ 22 = PA(a) (ag) TIIMa] = {Q € (T N Tal(PA)(Ta(@) = 37
- 1
Thus, we obtain T [ ] - {Q € ( [ ]) ﬂT |(PA) (T (Q)) < E}a
N A 1 where(7,°[M,,])¢ is the complement of °[M,,]. These three
-l = + arts have the following relation with the above two parts:
ZIP( |2ZP i parts have the following rel h the ab D
THM,) € THM, T2 M) C T2 [M,).
223" [P(a) 45) [My] (M), [My] A[ ]
acA By using the integerng := LWJ =
>9 Z [PA(a) — i]+ | M,,(P)™(T,,(Q))], the conditions fof,}[M,,] and7,2[M,,]
WA PA(a)> 2 M are written asng > 1 andng < 1, respectively. Note that,
M sinceng is a non-negative integeng < 1 is equivalent to
> Y PYa), (46) 1, — 0.
a€A:P4(a)> 7 Due to [22), the condition thad"(D(QHPA)JFH(Q)) < M,

is equivalent with the condition tha®4~(a) > 5 for a €
where [45) and[(46) follows froni_(#3) and_{44). ThereforeF (Q). Hence, Mn

we obtain [(4R). )
In order to show the converse part, we prepare the foIIOWIngPA)"{a € A"|(PHY(a) > —} = Z (PH™(Tn(Q))
lemma. M, QeTY
Lemma 3:Assume that for two integerd/ > N, two (49)
positive number sequencas, ..., ay andps, ..., By satisfy  gq
that Y a; > oM 8. Then, there exists a map from ) .
{1,...,M} to {1,..., N} such that (P {a € A™|(PY)"(a) > MH— MQ
N toQeTima "
SIY ol <Nmag @ S 3 (PUTQ)F 3 (PYTG@)<L
i=1 jef-1(:) QETY[M,] QETM,]
Since
Proof: First, we definef(1) := 1. Forj > 1, we define 1 1 1
. - _ = n A\n -
f(j) inductively. When> 1y 1)) By < @fi-1), We  Jf Y. (@)= Mn|{a€A [(P7)"(a) = Mn}|

definef(j) := f(j — 1). OtherW|se we defing(j) := f(j — " QeTIIM,]

1)+ 1. Then the_functlon satisfies the condﬂ@@@?). I <(PAY"{a € A"|(PA)(a) >
Now we consider the case when our distributiBr» is

given by then-fold independent and identical distributionye have

of P4, i.e, (P4)". Using Lemmd1, we have the following

lemma, which is useful for our proof of the converse part (39) Z ITn(Q)] + Z nQ < My.
Lemma 4:For any probability distributior?4, there exists QETR[My] QET}[Mn]



Therefore, we can choose f/ on =

UQefg[Mn]u’rT}[Mn}Tn(Q) satisfying the following conditions.

1) For Q.Q" € TPM] U T} [M, f(Tn(@)) N
(@) = 0. ~
2) frlr.(q is injective forQ € T.7[M,].
3) £ (Tn(@)] = nq for Q € T,}[M,].
4) AnytypeQ € T,}[M,] satisfies thatf,, " (b)| <
for b e f (T.(Q)).
Then, forQ € 7,}[M,], we obtain

[T (@)1
nQ

Pf'r/z(An)(b) < Min + e—n(D(QIIPA)JrH(Q))7 Vb e f1(Tn(Q)).
(50)
From the construction,
o 1
> PRAIG) > — £ ().
bef! () M,
That is,
1
Y. PA(a) < 5 @)). (51)

ac(Q)e

Next, we definef,, on the whole set by modifying; as
follows.

5) fn is the same ag/ on (.

Recall the condition 6). Lemnid 3 guarantees that

1
be(f1 ()¢ My,
(L)) max e P@IPHTHQ)
o QET2[M,]
<|Tnl  max e mPEIPHTHQ), (55)
T QeT2 (M)
Combining [54) and{35), we obtaif {48). -

C. Asymptotic evaluation

Next, we proceed to the asymptotic evaluation. First, using
Cramér’s Theoremni [27], we obtain

max sHyy,(AlP?) — sR

T —1 A\n n Ayn i
= lim —log(P")"{a € A"|(P)"(a) =2 —75}  (56)
Hence, Equality[(36) and Lemnia 2 imply
-1
li —1 in_dy (P4
171;,Il—>solip n Og fn gl]}ifl(R) 1( )
< max s(Hiys(AIPY) = R). (57)

6) Due to [51), we can apply Lemnba 3 to the case when

{L... N} = (f@)) L., M} = (@)% ap =
- forb e (£,(2'))° and B, = P~ (a) for a € (')°.
Following LemmalB, we define the mafy| o). from

(€)° to (f,,(¥))".

Our remaining task is to evaluate the
S2p[PI (A (b) — -]+ Now, we define
3 1
CQ:= >  [P"Ip)- V]"'
b€ (Tn(Q)) "
Then, [49) implies that
A\n n A\n 1
>, C@Q < (PYae AM(PY (@) > 51} (52)
QeTO[M,] "
For Q € 7,'[M,], B0) implies
C(Q) <nge "P@IPH-nH(@)
<M, e "P@QIPH-nHQ) . (PYMT.(Q)).  (53)

Thus, [52) and[{33) imply
S P p) — ML]JF
be f1,(Q) !
<(PM){a € A"(PY)"(a) > Min}
. Z Mne_nD(QHPA)—nH(Q) (PHY™(T(Q)).

QET[M,]
(54)

valué

Since s > sHy,,(A|P%) is  concave,
when ACH (AP < R, the maximum
maxo<s s(Hi4s(A|P4) — R) is realized ats € [0,1], i.e.,
maxp<s<i S(H1+5(A|PA) — R) = IMaXxp<s S(HH_S(AlPA) —
R). Therefore, we obtain the converse pari (39).

In order to show the direct parf_(#0), we will show the
following lemma by employing Lemmd 2.

Lemma 5:
dy (PI(An))

| .
liminf — log min
n—oo n fn 6]:71(R)

A —
Zorgggls(HHs(mP )—R). (58)

In order to show Lemmid 5, we prepare the following lemma,
whose proof is given in Append[x]B.
Lemma 6:When 4 (AP | < R

min H + 2D P)—R
Q:H(Q)+D(Q|IP)>R (@) (@IP)

=nmax sHis(A|P) — sR

= mnax sHi1s(A|P) — sR. (59)
When Wh:l > R,
min H(Q)+2D(Q|P)—-R
Q:H(Q)+D(Q|P)=R @ @IP)
=Hy(A|P) — R (60)
= mnax sHi1s(A|P) — sR. (61)
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Proof of Lemm&l5:Due to [20), [(2lL), and the continuity Then, when the initial random variablesand E' obey the
of Q — H(Q) and D(Q||P*4), we obtain distribution P4 ¥, Eve’s distinguishability can be represented

1 by the following value:
lim —log2|7,| max e~ (DQIPH+H(Q)

n—oo m QeT2(len?)] dy (PN B |E) = dy (PFE pIA) o pEy,
— 1 : A
N 7111—{20 QeTgl[lfelnR“ D(@IIPT) + H(Q) WherePI{lgf) x P is the product distribution of both marginal
- min D(Q||PY) + H(Q) distributionsPr{éf) andP¥, andPrflgf) is the uniform distribu-
Q:D(Q|PY)>R tionon{1,..., M}. While the half of this value directly gives
> min H(Q) +2D(Q||PY - R the probability that Eve can distinguish Alice’s infornati
Q:D@QIPHZER . we calld, (P/(1)-F|E) Eve’s distinguishability in the follow-
> min H(Q) +2D(Q||P?) — R.  (62) ing. This criterion was proposed by [22] and was used by [5].
Q:H(Q)+D(QPH)=R Si i i f(A),E i
ince the half of this quantity, (P7()-*|E) is closely related
From [(23), to universally composable security, we adopt it as the sgcre
K, — Z (e 7| (PA)"(Tn(Q))e*”(D(Q”PAHH(Q)) criterion in this paper. As another criterion, we sometirtneat
QeTHen "] dy (PTF|E) = dy (PTAE PI 5 PP,
satisfies that Since d; (P x PP PM x PE) = d;(P/A), pM ) <
f(A),E pM E
max  ke—neD@IPY+H(Q-R) BPEE, Py PT), we have
QeTlen®)] Tn & (PTWE|E) < 2dy (PP E).
—n(2D(@Q|PH)+H(Q)—R) : : o
SKn < %Qeﬁﬁﬁfm“e ' Further, whenP/() is the uniform distribution, the above

o A criteria coincide with each other.
Due to [20) and the continuity @ — H(Q) and D(Q||P*), Next, we consider an ensemble of univesdesh functions

1 {fx}. Similar to [9), the equation
lim —log K, )
nreo m Exd; (P*W-E|E) = d (PPEX PE x PF x PX) (66)
= min H(Q)+2D(Q||P*) — R.  (63) _ _
Q:H(Q)+D(Q|P*)>R holds, whereB is the random variablgx (4). Hence, when
As is shown in Lemma[l6, RHSs of[62) andhe expectatiorEx d, (P/x(4):E|E) is sufficiently small, the
®3) equal maxoes<isHiis(A/PY) — sR.  Since random variablefx (A) is almost independent of the random
maxo<s sHiys(A|PA) — SR > maxoes<i sHyps(A[PA) — variablesX and E. So, the above value is suitable even when
SR @) implies that - - we randomly choose a hash function.
) ) In order to evaluate the average performance, we define the
lim —log(P*)"{a € A"|(P*)"(a) > — 7} quantity
n oo n (& 1 _
> max s(Hi1s(A[P4) - R). ©4)  OABIPYE) i=log Y PF(e)(d_ PP (ale) )"
Thus, applying[(62),[183), and (64) to the RHS [bf](48), and =log» > PAE (g, e) T )t
using Lemmadl6, we can choose a sequepfg such that e a

o ) A Note that when Eve’s random variable takes a continu-
1171H3)I£f710gn}1nd1(13f"( ") ous value in the sef, the relation [(6l7) holds by defining
" H(t|A|E|PAF) in the following way.

2 max s(Hiys(AlPY) = R), (65)
o o(t|A|E|PAF) = 1og/PE(e)de(Z PAIE (g|e) T )1,
£

a

which implies [58).

This definition does not depend on the choice of the measure
V. SECRET KEY GENERATION WITHOUT COMMUNICATION  gn £.
A. Application of Theorer] 1 By using Theoreni]l and putting= -, any universal

Next, we consider the secure key generation problem fror}ﬁ‘Sh functiond fx } satisfies the inequality:
1

a common random numbet € A which has been partially Exdl(pfx(A)vE|E) < 3MﬁsEe(Z pA\E(a|e)1+S)1+s
eavesdropped on by Eve. For this problem, it is assumed that a

Alice and Bob share a common random numHee A4, and — 30 [te?(HAIEIPYE) (67)
Eve has another random numhgre &, which is correlated

to the random number. The task is to extract a commonfor 0 <t < 3. Therefore, there exists a functighsuch that
random numbey (A) from the random numbet € .4, which
is almost independent of Eve’s random numbiee £. Here,
Alice and Bob are only allowed to apply the same functfon AE
to the common random numbelr € A. = 3M'e?UPT. (68)

1

dl(Pf(A),E|E) < 3Mﬁque(Z PAIE(ale)1+s)1+s
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Next, we consider the case when our distributBri-“~  for s € [0,1]. Hence, applying Pinsker's inequality] (6), we
is given by then-fold independent and identical distributionobtain
of PAE je, (PAF)". Ahlswede and Csiszarl[7] showed that

—1
. . AE ; fn(An),En
the optimal generation rate er(PHFIR) 2 lim —logdy (P |Ey)

S5 AE
(AP e (A|E|PAP|R) (71)
log M, where
= sup lim lim dy(P/rAn)En B, O} A,
0< <1
equals the conditional entropy/ (A|E). That is, any achiev- tH 1 (A|E|PAF) —tR
able generation rat® = lim, . 2= is no more than — max ——
H(A|E). The quantityd, (P/»(4»).Ex|E, ) goes to zero. In 0<t<i 2—2t
order to treat the speed of this convergence, we focus on {hgn s — L. Concerning the comparison of both bounds, we
supremum of theexponential rate of decrease (exponefat) prepare the f0||0W|ng lemma.
dy (P1»(An)-Fn|E,,) for a givenR Lemma 7: The inequality
e1(PAPIR) 1+ T Hies (AIB[PAP) > 6= PAEY (72)
.o —1
= {(fSUAI; )}{nlgrgo ry log dy (Pf"(A")"E"|En)‘ holds fors € (0, o). Equality holds if and only if the Rényi

1 entropy H ., s (A| PAI¥=¢) does not depend on the choicat
lim — log M,, < R}, the support ofP¥.
noee n Proof: Applylng Jensen’s inequality to the concave func-
Since the relationy(t|A™|E™|(PAF)") = né(t|A|E|PAF)  tion z 2T+, we have
holds, the inequality[(88) implies that SH1, o (A|E|PAE)

e TFs = ZPE ZPA‘E a|

_ A lA1EPAE)

e1(PYF|R) > —¢(t|A|E|P*F) —tR. (69)

. : : : >y PEe PAIE(
for ¢ € [0,1/2]. That is, taking the maximum concerninge - 26: Z (ale)

[0,1/2], we obtain Thus, the equahty condition is that the value

e1(PAP|R) > e4(A|E|PYE|R), (70) >, P4 (ale)'** does not depend on the choice at
the support ofP¥. Hence, we obtain the desired argument.
where |
A B B In order to compare the two bounds(A|E| P4 F|R) and
eo(A|E|PT7|R) = o —O(t[A|EIPTT) — tR éu(A|E|PAF|R), we introduce the following value:
=r>2
B s AE s sHiys(A|E|PYF) — sR
= - ) pp—— AB L+s
o?f%ﬂ (b(l—i—s ) 1+s en(A|E|P |1R) = 0<s 2(1 1+ s
AE
Since dt¢(t|PA B ’ = d(sHHs(:i‘\S\E\PA i) _ —OIilta<X1 tH 1 (A|E|P ) —tR

—H(A|E), the right hand sides of (¥0) anE[?l) are strlctly Then, we obtain the following lemma.
greater tharl for R < H(A|E). Lemma 8:

es(A|E|PYF|R) > en (A|E|PF|R) > ey (A|E|PYF|R)
B. Comparison with the previous papér [6] (73)

Next, we show how better our bound is than that by ther R < H(A|E). Equality in the first inequality holds if

previous papet [6]. The previous pagier [6] shows the foll@vi and only if the Rényi entropyH,  , (A|PA1F=¢) does not
in Section I1A: there exists a sequence of functigns A" —  depend on the choice at the support ofP? for sy :=

{1,...,[e"®]} such that argmaxgc,<; —¢(%5|A|E|PAF) — =R, EquaAhEEy in the
Hy(A|E|P™7)—R
hﬁm —logD(Pf" 2 "||P£”(A”) « PE) second |n§glljilz'%EiwlgEj§)lfsgnd only #===2r =2 —
n—oo N maxp<s<i
20@3?1 sHy,,(A|E|PAYF) — sR, Therefore, our exponem¢(A|E|PAE|R) is strictly better
- than the exponenty(A|E|PAF|R) by [6, Section IIA]
where we define the function except for the case satisfying the following two conditiofis

—$(3|A|BIPAF) — 3 R = maxocsct —d( 735 | A|E|PAP) —
R. (i) HQ(A|PA‘E ¢) does not depend on the choiee

sH11s(A|E|PAF) = —log > PP(e) PP (ale)'+

ae 1+s
B . at the support ofP”.
= —1ogZP Fla,e) TP (e)™* For example, we consider the following casd: equals

£, the setA has a module structure, (i.e4 is an Abelian
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group) and the conditional distributid®*” (a|e) has the form E;‘f’(f”e”
P4(a—e). Then, the equality condition for the first inequality '
holds. Since

e THIAEIPEE = 57 PP(e) (3 P (ale) o)

0.08

0.06

sHyys(A|PA) sHyyo(A|PA)
= ZPE(e)e_lﬂ# = e_prlﬁ_ 0.04
e
and oo ;
_ ) AE ‘
e s (AIBIPTT) - ZPE(S)ZPAIE(Q|8)1+S %22 o.sR
e a
E A 1 ) o
:ZP (e)ZP (a—e)'ts Fig. 3. Lower bounds ofe;(PAF|R). Thick line: er(A|PA4|R)
° o (The present paper), Normal lingg (A|P4|R) by [6]), Dashed line:

Ay,
B _ sHiys(AIPA) _ sHiys(A|IPA) W (direct application of [(T11) without smoothing). Her&4
= Z P=(e)e e =e e 5 is chosen to be the binary distributidi (0) = a, PA(1) = 1 — « with

e a = 0.200. Thenh(a) = H(A) = 0500, and 24HLta(A))

boundses(A|E|PAF|R) andéy (A|E|PAE|R) can be sim- H2(4) = 0-224.

plified to
es(A|E|PYF|R) = ey (A|E|PAF|R) = ey (A|PAR) message € {1,...,M}. Bob preparesV/ disjoint subsets
u(A|E|PAYE|R) = ey (A|PAIR), Di,..., Dy of Y anq1udges that a message iy belongs to
D;. Therefore, the tripletM, {Q1,...,Qn},{D1,...,Dm})
where is called a code, and is described by Its performance is
" sHyi s (A|/PA) - sR given by the following three quantities. The first is the size
en(A|P7IR) = pRax 1+ M, which is denoted by®|. The second is the average error
— max tH.. (A|PY)—tR probability e g (P):
o<t<1/2  1-% . M
Ay def B c
éH(A|PA|R) — max SH1+5(A|P ) sR GB((I)) = M X:VVQ1 (Dl),
0<s<1 2 i=1
. tH 1 (A|P") —tR and the third is Eve’s distinguishabiligj (| E):
C0<t<1/2 2—2t '

di(P|E) :=di (Wg x Py, WE[®])
In particular, both exponents are numerically plotted ig. B 1 1
when A = {0,1}, and PA(0) = a, PA(1) =1 —a. Wi(e) =) ;W& (e), WEBI(ie) := W, (e).

Proof: The first inequality and its equality condition i
follow from LemmalY and the definitions of,(P*”|R) The quantityd, (®|E) gives an upper bound for the proba-
and e (P*F|R). The second inequality follows from thepijity that Eve can succeed in distinguishing whether Atice
inequality 5 < - for s € [0,1]. Since the equality holds jnformation belongs to a given subset. So, the value can be

only whens = 1, we obtain the equality condition for theregarded as Eve’s distinguishability. In order to calaulhese

second inequality. B yalues, we introduce the following quantity.
1—t
VI. THE WIRE-TAP CHANNEL IN A GENERAL FRAMEWORK
tW, p) :=lo z) (W, (y))/ =0 .
Next, we consider the wire-tap channel model, in which W) g; <;p( J(W=(v))

the eavesdropper (wire-tapper) Eve and the authorizei/ezce _ ) _
Bob receive the information from the authorized senderelicVhen the random variablg takes a continuous value in the
In this case, in order for Eve to have less information, AliceetY while X takes discrete value, the above definition can

chooses a suitable encoding. This problem is formulated % changed to
follows. Let X, Y and Z be the alphabets of Alice, Bob, and

1-t
Eve. Then, the main channel from Alice to Bob is described 4(¢|w, p) .= 1Og/ ZP(I)(WI(y))l/(I—t) dy.
by W& : 2 — W2E, and the wire-tapper channel from Alice Yy \3

to Eve is described by ¥ : z — WZE. That is, W2 : - :
is the output distribution on Bob's side with Alice’s inputTh|s definition does not depend on the choice of the measure

z, and WF is the output distribution on Eve’s side witho" Y. That is, wheniV.(y)f(y) = Wa(y) for a positive

Alice’s input z. In this setting, in order to send a secreftuncuonf’

message in{1,..., M} subject to the uniform distribution, ~ 1=t
Alice choosesM distributionsQ1,...,Qu on X, and she ¢(t|W,p) = 1og/ <Zp(x)(Ww(y))l/(l_t)> f(y)dy.
generatess € X subject toQ; when she wants to send the Y\«
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As is shown as Lemma 1 of|[6)(¢|WV,p) satisfies the uniform distribution on{1,..., M}, this protocol®(X,Y)

following lemma. has the same performance as the above prot¢Xl, Y)'.
Lemma 9:The functionp — ¢?tW:») is convex fort Finally, we consider what code is derived from the above
[-1,0], and is concave fof € [0, 1]. random coding discussion. Using the Markov inequality, we

Now, using the functiong(t), we make a code for the obtain
wire-tap channel based on the random coding method. For
this purpose, we make a protocol to share a random number. Px yv{ep(®(X,Y)) < 3Ex vep(®(X,Y))} >

First, we generate the random cod€Y) with size LM, P 4 (DX YE) < 3Ex vds (B(X.YNE) >
which is described a®(Y)(a) = Y, for a = 1,...,LM x,y{d1(®(X,Y)|E) < 3Ex vy (®(X,Y)|E)} >

by using theLM independent and identical random variablegpgrefore, the existence of a good code is guaranteed in the
Y = (Y1,...,Yur) subject to the distributiop on X. Gal-  510wing way. That is, we give the concrete performance of
lager [20] showed that the ensemble expectation of the geera, e whose existence is shown in the above random coding
error probability concerning decoding the input message \athod.

. _ WB, ) )

is less than(ML)'e?!I""#) for 0 < ¢ < 1 when Bob  Theorem 5:There exists a cod@ for any integersL, M,
applies the maximum likelihood decod®x(Y) of the code 4 any probability distributiop on X such that|®| = M
®(Y). After sending the random variablé taking values in

Wl w o

the set with the cardinality\/ L, Alice and Bob apply the and

above universal hash functionsfx to the random variable ep(®) <3 min (ML)le?HW"2),
A and generate another piece of data of side Here, we ost=t 5

assume that the ensembl¢x} satisfies Condition]2. Then, iy (B|E) <9 min St WP p)

Alice and Bob share the random varialjlg(A) with size M. T oo<i<y Lt

This protocol is denoted b$(X,Y)'.

Let £ be the random variable of the output of Eve’
channelW®. Whenp is the uniform distribution on the set
C:={1,..., ML} and the joint distributionrP"¥ is given by
PYE(c,e) := p(c)WF(e), the equations

In the n-fold discrete memoryless channel¥?» and
En of the channeld¥® and W, the additive equation
d(t|WB p) = ng(t{WE,p) holds. Thus, there exists a code
®,, for any integersl.,,, M,,, and any probability distribution

p on X such that®,,| = M,, and

1-t
B
A e Y (Zp@(wf(e))ﬁ) n(®) <3 min (M, Ly )'e" W),
s en (W7 .p)
e®UW™.p) dy(®p|E) <9 min ————
= (74) 0<t<3 Lt
hold. Since lim;_, w = I(p : WE), the ratemax, I(p :
For a given code?(Y), we apply the inequality({(67) to W5) — I(p: WF) can be asymptotically attained. Therefore,

Eve’s distinguishability. Then, when the sacrifice information rate &, i.e., L, = "%,

the exponential rate of decrease for Eve’'s distinguishgbil

SEIWE prmix i
W™ i 2(v)) (75) s greater than

Lt
es(RIWFE p):= max tR— ¢(t|WF p).
. The concavity ofe¢®W":») (Lemmal®) o(Rl P) 0<t<1/2 o P)

Exjydi(®(X,Y)|E) <3

for0 <t <
guarantees tha

— N

= VII. COMPARISON WITH EXISTING BOUNDS
e tW™ prix, 2 (v))

Ex vdi (®(X,Y)'|E) <3Ey = In  Subsection [VII-A, we compare our exponent
(W p) es(RIWE p) with those derived by [T17], [I6] in the
<3¢ ? general setting. In Subsections_VI-B add_VII-C, using
o Lt discussion in Subsectidn VB, we treat this comparison in
for0 <t < 1. special cases more deeply.

Now, we make a code for the wire-tap channel by modifying
the above protocab (X, Y)'. First, we choose the distributionA. General case
Qi to be the uniform distribution oryx'{i}. When Alice
wants to send the secret messadgaefore sending the random
variable A, Alice generates the random numbér subject
to the distribution@;. Alice sends the random variablé.
Bob recovers the random variahle by using the maximum Lt .
likelihood decode’ (Y), and applies the functiofix. Then, ~ ¢({IW:p) := 1ng ZP(I)(WI(y)) Wp(y)™" (76)
Bob decodes Alice’s message and this code for wire-tap Y *
channeW 2 W is denoted byp(X,Y). Since the ensemble ~ W,(y) := Zp(x)Ww (),
{fx} satisfies Conditiohl2 and the secret messagieeys the x

Now, we compare the lower obtained boungd R|W ¥, p)
for the exponential rate of decrease for Eve’s distinguigita
with existing lower bounds [17][]6]. Using the quantity
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the previous papef [17] derived the following lower bound ofhich implies

this exponential rate of decrease:
P (A= (r [WE )

sR—(s|W¥E p) 1 A\
e(RIWF.p) := max =0 = (Z [pr(wy))u] Wp<y>ﬁ)
_ 1 E v
—Og?gi‘/ﬁ (1—t) (1—t|W D) 1 -
(77) >3 Do p@Waly) | =D
Yy T
The other previous papér|[6] also derived the following low

Thus, our boundeys(R|WE p) for the exponential rate of
decrease is better than the existing boupdR|W ¥ p) [17].

Example 1:Assume thatt = £ = {0, 1}. We consider the
following channel.

bound:

for the exponential rate of decrease for the mutual infoiwnat Wo(0) = a, Wo(1) =1 —a, Wi(0) =1~ 9a, Wi(1) = 9a.

By applying a discussion similar to Subsectibn _V-B a”Whenp (0) = 1/2,p(1) = 1/2
Pinsker’s inequality({9), the bound (78) yields the bound ’ '

h h
- I(p,W) =h(1/2 — 5a) — (h(a) + h(9a)
~ E SR - 1/](8|W 7p) 2
ey(RIW* p) = Jmax 5 ) (79) al*t 4 (1 - 9a)l+t 1
o W (tlp, W) =log| ( 5 (5 —50)7"
which is smaller than the lower boung,(R|WZ, p) because
L < for 0 < s < 1. H d how th (904)1“ + (1 )ttt
3 < 15 s ence, in order to show the (1/2 + 5a)")
superiority of our bound,(R|W ¥, p), it is sufficient to show
the superiority over the bound,(R|WE, p). J(1—t) 1/(1—1)
, . + (1 —9) 1-t
In the following, we compare the two bounes(R|W ¥, p) o(tlp, W) =log
ande,, (R|WZ, p). For this purpose, we treaf*/""-») and
t E —
eI=0v=IWEP) for 0 < ¢+ < L. The reverse Holder (904 1/a- t)-i-( )t/ t))l_t
inequality [28] for the measurable spac¥, p) is '
Then, the three bounds:y(R|W,p), eyu(R|W,p), and
X(z)Y " ¢ P)y ) ]
;p(x)l @)Y (@)l éy(R|W,p) with o = 0.05 are numerically compared as in
. i, Fig.[4.
>3 p(@)|X (@) %) (Y p@)|Y (@) 7)
TEX TEX Exponen

for s > 0. Using this inequality, we obtain o0

> [me(wz (y))”sl Wy (y)~*
Y @ EERRER . |
(Z [Zp(w)(wm(y))1+s‘| ) . <Z Wp(y)s%) 0.04;

1 1+s L
= (Z [Zp(x)(wm (y))1+5‘| ) ’ : 0,:‘119 0.2 0.3 0.4 0.5 R

Fig. 4.  Lower bounds of exponent. Thick liney(R|W,p) (The present

0.08-

Y

Substitutings = , we obtain paper), Normal linee,, (R|W,p) [17], Dashed linez,, (R|W, p) [6]. Here,
= a is chosen to b@.0500. Then, I(p, W) = 0.119.
1 =
3 S te w7 w0
v oL ) B. Additive case
e SR Next, we consider a more specific case. Whér= Z and
Z Z Zp e ’ X is a module andV,.(z) = Wy(z — ) = PX(z — ), the
channellV is calledadditive
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Since Then, the equalities

e(l_t)w(ﬁ‘WEapmix) — e¢(t‘WE7pmix) e¢(R|WE7pm1X)
p— X 4
_fte M I (80) = puax, #(R —log|¥]) — ¢(tX|Z'|P%7)
any additive channdlV ¥ satisfies —ey(X |2’ |PXZ |log |X| — R), (84)
ew(R|WEapmix) = etb(R'WEapmix) ew(R|WEapmix)
= max (R —log |X|) + tH_1_(X|PY)) = max t(R —log|X|) + tH_1_(X|Z'|PX7")
0<t<3 ¢ 0<t<i =t
=en (X|P¥[log|X| - R) (81) —en(X|2'|PX% |log |X| - R), (85)
and éw (R|WE,pmix)
t(R —log |X]) + tH 1 (X|P¥) t(R —log |X|) + tH 1 (X|2'|PX-Z
G (RIWE . pu) = mae R log |+ tH L (X|ZPY)
0<t<y 2—2t o<t<l 2 _ 9t
~ X ’
=éy(X|P7"|log|X| - R) —ég(X|Z'|PX% | log|X| — R) (86)
for the uniform distributionp,,;x on X. hold.

Hence, our bOU”0b¢(R|WEaPm1x) is the same as the ence, the observation in Sectibm V-B can be applied to
previous bouncky, (R[W*, puix). However, since;t5; < 1 the comparison among, (RIWE, pmix), ew(RIWE, pmix),
for t € [0,1/2), our bounde¢(R|W , Pmix) 1S Strictly better gnd Ep(RIWE pix). Due to Lemmald8,es(R|WE, pmix)
than the bound, (R|WE, pmix) by the other previous paperig strictly better thare,, (R|WE, pmix) and é,(R|W | pmix)
[6] when the maximum is attained bye [0,1/2). except for the special case mentioned in Leniha 8.

C. General additive case VIII. W IRE-TAP CHANNEL WITH LINEAR CODING

We consider a more general case. Eve is assumed to haveh a practical sense, we need to take into account the
two random variablesy € X and Z’ € Z’. The first random decoding time. For this purpose, we often restrict our codes
variable Z is the output of an additive channel depending o linear codes. In the following, we consider the case
the second variableZ’. That is, the channeWE(z z') can where the sender’s spack has the structure of a module.
be written asiW? (z,2) = PXZ'(z — x,2), wherePX?" is  When an error correcting code is given as a submodule
a joint distribution. Hereafter, this channel model is edlla C; c X and the decoder by the authorized receiver is given
general additive channel. This channel is also called alaeguas {D,}.cc,, our code for a wire-tap channel is given as

channel[[21]. For this channel model, we obtain ®c, .00 :b (|C(}/|CQ|7 {?[w]}[mle?ll/lcz, {D[ﬂ}[w]ecl/dc_z) based
S(s|WE Poen) _ LB s on a submodule; of C; as follows. The encodin@,) is
¢ Y= Z ) |X|W 2,2)7) given as the uniform distribution on the coset := = + Cs,
and the decodin@),, is given as the subset, ¢, c,D. .
= Z Z pX Z (z —z, Z’)ﬁ)l—s Next, we consider a submodul& (X) of C; with cardinality
! X |Co(X)| = L that is labeled by a random variab¥. Then,
Z Z PYE () = Lyis the _moduIeCQ(X) can be regarded as a.random ygriable. Now,
|X|1 s we impose the modul€’; (X) the following condition.
x| 2! Condition 4: Any elementz # 0 € (4 is included in
X : . : . A
_ PXZ (g, )T )L C2(X) with probability at mostrz-
| X1 g:(zz: (z,2)77%) Then, using[(75), we can e\I/a]Iuate the performance of the

constructed code in the following way.
Theorem 6:Choose the subcodeg:(X) according to Con-
and dition [4. We construct the cod@c, c,(x) by choosing the

:|X|Se¢(s\x|z'\PX’Z’)’ 82)

W prns) distribution Q,) to be the uniform distribution orjz] for
[z] € C1/C2(X). Then, we obtain
= WE (z,2")179) WE (z,2')"° SWE, Prix, 0y ) 1
Z Z x| Z X Exdi (®c, cyx)|E) §3% 0<vE< 3,
_|X|5 12 ZPXZ — 2,2 PYE (z -, 2)) (87)
© where Ppix s is the uniform distribution on the subsét
—|xfst Z Z PXZ (g Y+ pZ () When the channéWV £ is additive, i.e., WE (2) = PX(z —
o r), the equationg(t|W ¥, Puix.ci+2) = o(t{WE, Puix.cy)
, ity of(tIW " .p)
x| 1|X| Z ZPX Z 1+SPZ () holds for anyz. Thus, the concavity of P) (Lemma®)

implies that
:|X|se—sH1+s(X|Z P2y (83) SHWE Puix.cy) < ¢(tWE, Prixc x). (88)
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Thus, combining[(87)[(88), and (80), we obtain variable almost independent of Eve's random variaBldy

pot —tH_, (X|P) using a public communication. For this purpose, we assume
Xl'e T that Alice and Bob can perform local data processing in the
Exdi (® E) <3 89 X s , -
xdi(®eycox) | E) < Lt (89) both sides and Alice can send messages to Bob via public
for 0 < ¢t < L. That is, whenL = e%, taking the minimum channel. That is, only one-way communication is allowed. We
concerning) 2< t < % we obtain call such a combination of these operations a code and denote
it by ®.
Exdi(®o, oyx)|E) <3e e (XIPXIgl¥I=F) (90)  The quality is evaluated by three quantities: the size of the

final common random variable, the probability that their lfina
variables coincide, and Eve’s distinguishabilit( ®| E') of the
final joint distribution between Alice and Eve.
Exdi(®c, c0y(x)|E) S3e*"eH(X|PX|lOg‘X|*R)_ (91) In order to construct a protocol for this tgs.k, we assume
o . __ that the set4 has a module structure (any finite set can be
Similarly, when the channelV” is general additive, i.e., regarded as a cyclic group). Then, the objective of secret
W (2,2") = PX% (z—x,2'), combining [87),[(88), and(82), key distillation can be realized by applying the code of a

When the additive noise obeys thefold i.i.d. of P on X"
and L = "%, we obtain

we obtain wire-tap channel as follows. First, Alice generates anothe
|X|te¢(t|X\Z/|PX’Z,) uniform random variableX and sends the random variable
Exdi(®c,,0px)|E) <3 (92) X’ := X + A. Then, the distribution of the random variables

Lt .
) ) " . o B, X' (E, X') accessible to Bob (Eve) can be regarded as the
for 0 << 3. Thatis, whenL = ¢¥, taking the minimum  oytput distribution of the channel — W7 (z — WF). The
concerning) < ¢ < 3, we obtain channelsg?V? andW¥ are given as follows.

Exdi(®c,,cx)|E) <geeo(XIZ/IPX sl XI=R) (93) WE(a/,b) = PAB(af — w,b), WE@,e) = PAE(2! — w,e),

95
In the n-fold i.i.d. case, wher, = ¢"f, we obtain (95)

. P | log 1] where PAB (a,b) (PA¥(a, ¢)) is the joint probability between
Exdi(®c,,cox)|E) <3e s XIZPT los | ¥I=R) - (94) Alice’s initial random variableA and Bob’s (Eve’s) initial
: o
When2 is ann-dimensional vector spad&' over the finite random variableB (E). Hence, the channdl’™ is general
field F,, the bound can be attained by the combination Gdditive. _ o
linear code and the concatenation of a Toeplitz matrix ard th APPIYing Theorenib to the uniform distributioR7;,, for
identity (X, 1) of the sizem x (m — k) [6]. Hence, if the error &Y numbers\/ and L, due to [BR), there exists a codesuch

correcting code’; can be realizable, the whole process in thiat[®| = M andl]

above code can be real_igable. e5(®) < 3 min (ML)S|A|7se¢(75\A\B|PA'B) (96)
Remark 1:In the additive case, due tb_(81), the exponent 0<s<1
of the upper bound given if_(P1) is the same as that given by . |A|te¢>(t|A|EIPA’E)

the previous paper [17]. However, the code givenlinl [17] is di(®|E) < 902121 It (97)
constructed by completely random coding. However, the code -

given in this section is based on the ordinary linear code.In particular, when the joint distribution betweed
For security, it requires only the universal hash conditida, and B(E) is the n-fold independent and identical distri-
our construction requires smaller complexity than thaegiv bution (i.i.d.) of P4 (P4F), respectively, the relation
in [L7]. In the general additive case, our exponefild (94) @t|A"[E™|(P4F)") = ng(t|A|E|P*F) hold. Thus, there
strictly better than that given in [17], which is calculated €Xists a cod@,, for any integers.,,, M,,, and any probability

3g). distributionp on X’ such that|®,,| = M,, and
(89)
Next, we consider the relation with the other previous paper . s| Al—ns nd(—s|A|B|PAB)
. " . . . <
[6] in the general additive case. The protocol giver_in [6is c5(®) < 30?5,121(M”L”) AT (%8)
quite similar to ours. However, as is shown in Lenirha 8, except |A|nt6n¢(t\A\E\PA’E)

for the very special case, our expondntl(94) is strictlydsett di(®,|E) <9 min, Ti (99)
than that given in[[6], which is calculated in_{86). Remember 0=t=3 "

that the exponent given inl[6] &, (R|W %, pmix), Which is Finally, we mention the relation with the previous paper

mentioned around(T9). [17]. Since the above discussion is an application of sactio
[VIIT] the same comparison as Remdrk 1 is valid. Hence, our
IX. SECRET KEY GENERATION WITH PUBLIC evaluation[(9D) is strictly better than that given [inl[17Ekept
COMMUNICATION for the special case.

Furthgrmorg, _the_ abov? result can be a_pplied to S_ecret K&Y The previous paper T17, Section VI] derived upper boundserif
generation (distillation) with one-way public communicat ent from [36) and [[98) while it treat the same protocol. Thevir
in which, Alice, Bob, and Eve are assumed to have initighs paper [[I7, Section VI] erroneously calculated(~*I""Fmix.4)

: : —sH_; (A|B|PMP)
random variablesA € A, B € B, and E € &, respectively. to |4|=s¢ T . However, the correct calculation is

The task for Alice and Bob is to share a common randofa|—se#(—sI41B1P"") as is shown in[{82).
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X. DISCUSSION [a, Q2] by Ex|ja,0), the strongly universalcondition yields that

We have derived a tight evaluation of the exponent for
the average of thel; norm distance between the gener- EX|[a.0] (PA(OL)Jr Z PA) - i)
ated random number and the uniform random number when "

M
"(#a < (a
universaj hash functions are applied and the key generation (Fe)e/x (@)

rate is less than the critical rafé,. Using this evaluation, we =PA(a) + Ex|a,2 Z PA(d)) — %
have obtained an upper bound for Eve’s distinguishabifity i o' (#a)efz (a)
secret key generation from a common random number without 1 1
communication when universahash functions are applied. =P%(a) + i Z PAd’) - i
Since our bound is based on the Rényi entropy of otders a’ (F#a)e A\Q
for s € [0, 1], it can be regarded as an extension of Bennettet _ 4 1 A 1
al [2]'s [resjlt with the Rényi entropy of order 2. =Pia)+ 0= PA) = 57
Applying this bound to the wire-tap channel, we obtain =P%(a) — ipA(Q)
an upper bound for Eve’s distinguishability, which yields M
an exponential upper bound. This exponent improves on the
existing exponent[17]. Further, when the error correctiode When Conditions [a1,9, a2, 9, ..., [ax, Q] hold for
is given by a linear code and when the channel is additivg, a,, ..., a; € Q, fx(a1), fx(az),..., fx(ax) are different.

or general additive, the privacy amplification is given by &hen,
concatenation of a Toeplitz matrix and the identity maffilis
method can be applied to secret key distillation with public

k
communication. 1
(PP 2 Y|P Py~ L]
)23 > P g
i=1 a’(#a;)€fx (aj)
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APPENDIXA
PROOF OFTHEOREM[Z Exd; (PTx()
1
First, for a fixed elemeni € 2, we introduce the condition > Z Pla, QEx|[q, Q]‘P Z PA(d') — i
for a hash functionfx: a€f /(;ea)ef;(a)

Condition 5 (Conditiona, 2]): A A 1
> ) [
> Z Pla, QEx|[a,0] (P (a) + Z P (a’) M)

fx(a) # fx(a’) for Va'(# a) € Q. a€f a’(#a)€ fx ' (a)

_ _ RN (pa L pa
Let Pla, Q2] be the probability that Conditiofa, (2] holds. Due XE:Q( M )(P (a) MP (Q))
to the strongly universalcondition, it is evaluated as ¢ 2],
/ =(1 - SH(PAQ) - TPAQ) = (1 - TP
1 — Pla, Q] =PrUy (zq)co{fx(a) = fx(da')}

< Y Prifx(a) = fx(a)}

a’(#a)eQ
1 1] APPENDIXB
Z MM PROOF OFLEMMA[G
a’ (#a)eQ

which implies thatP[a,] > 1 — EMI When we denote the We choose s(R) such that Mk:s(m =
expectation concerning the hash funcations under Conditiél (P, () + D(Piysr)||P) = R, where Py (a)



P(a)'**
/)1+s

s oy WhenQ satisfiest (Q) + D(Q||P) =

D(Q|IP) - (P1+5HP)
—ZQ (log Q(a) — log P(a))

)1+s P(a)lJrs
Y5 >1+s<°gza/P<a'>l+s

Pla 1+s
_ZQ (logQ(a logz EDE TS

Y (@) - P

~ log P(a))

- Za’ P(a’)”s)

a 1+s
- (log % — log P(a))
P(a)lJrs

=D(Q| Pr+s) + SZ(Q(G) TS Pyt

=D(Q[|Pr+s)
+ s(H(Pris) + D(Prys||P)
=D(Q|[Pr1s) = 0.

Hence,

)log P(a)

- H(Q) + D(Q|P))

min H +2D P)—
Q:H(Q)+D(Q|IP)=R @) (@IP)

= Hlin D P = D P s P
Q:H(Q)+D(Q| P)=R (QIIP) (Prys(r)l1P)
d(sHyso(A|P
=sH1,(A|P) — S(R)(ltz—MISng

=sH14s(A|P) — s(R)R = max sHi1s(A|P) — sR.

The last equation follows from the concavity ©f;(A|P)

concernings.
Assume that%bd < R. Then,s(R) < 1.
WhenR' > R,

min H +2D P) —
Q:H(Q)+D(Q||P)=R’ (Q) (Q” )
:%13XSH1+S(A|P) —sR+R —R
>sHyyo(r)(AIP) = s(R)R'+ R — R
>sHys(r)(AIP) — s(R)R
—max sHy 1, (A|P) - sR

= Jmax, sHi1s(A|P) — sR,

which implies [59).
Assume tha (SHlf;SwP)) |s=1 > R. WhenR' > R,
min H + 2D P) —
Q:H(Q)+D(Q|P)=R @ @liP)
zrggstl+s(A|P) -sR+R —R
21H1+1(A|P) —R+R -R= HQ(AlP) -

d(5H1+s(A\P))|S:1'

Further, whenR’ = -

H(Q)+2D(Q[|P) -
R = Hy(A|P) -

min
Q:H(Q)+D(Q||P)=FR'
—Hi 1 (AlP) - R + R —

which implies [6D).
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Further, the concavity ofs — sHiys(AlP) and
the condition Wgﬂ > R imply that

maxp<s<1 SH1+5(A|P) — sR = Hg(AlP) — R. Thus,

we obtain [(61L).
APPENDIXC
PrRoOF OF(37)
First, we consider the the minimum

minga,py oapaysp d(PA PY), where P4 is chosen
to be a subdistribution satisfying i, (A|P4) > R'.

d, (P4, PY)
= min PA
PA:Huin (A|PA)>R! 22 Z

= > (PA(G) —e™ )

a€A:PA(a)>e R

: min
PA:Hpnin(A|PA) >R/

P4(a)|

PA(a) = lpA{PA(a) > 271,

>
2
a€A:PA(a)>2e— R

N =

Using this relation, we have
a1 Mmin(AIPH)
min(Mze 2
€

+ 2¢)
=min _ min_ (M%ele/2 + 2d, (P4, PY))
R" PA:H,i,(A|PAY>R!

~R/2 L pALPA(g) > 2e '), (100)

: 1
=min(Mze
R/

Using [29), we obtain

1 nR—nR’
lim —logmln(e 2
n—o0o N R’

+ (PY2{(PY)"(a) > 27" Y)

nR— nR

=max lim —110g( + (PH{(PY)"(a) > 2€_nR/})

R’ n—oo N

(P
—n}gxmln(R R, In<ax sHyy4(A|P4) — sR)
_ /
—n}%alx%lgaxmln(R R,sHy,,(A|P*) — sR')
:rggxn}%xmln(R R,sHy ,(A|P*) = sR). (101)

SincesH; . s(A|P#) — sR' is monotonically decreasing with
R’ and R’ — R is monotonically increasing wittk’, the max-
imum maxgz min(R’ — R, sHy,(A|P4) — sR') is realized
when R — R = sH1+S(A|PA) — sR', which implies that

/ R+25H1+S(A|P )
R = B B Pa— Hence,

max max min(R' — R, sHyy(A|P*) — sR')

0<s R’
Ay _
— max sHyys(A|P?) sk 102)

0<s 1+2s
Therefore, combining [(100), [(ID1), and[:(loz) we
obtain [37) because maxo< Sm“(ﬁ#

tHl/(lft)(A‘PA)ftR
maXOStSI T .

REFERENCES

[1] L. Carter and M. Wegman, “Universal classes of hash fionst” J.
Comput. Sys. Scil8(2), 143-154, 1979.

[2] C. H. Bennett, G. Brassard, C. Crepeau, and U.M. Maur@eriferalized
privacy amplification,”lEEE Trans. Inform. Theory1, 1915-1923, 1995.



[3] U. Maurer and S. Wolf, “Infromation-theoretic key agneent: From weak
to strong secrecy for freeAdvances in Cryptology-EUROCRYPT 2000
Lecture Notes in Computer Science, vol.1807, pp.351-3G8jnger-
Verlag (2000).

R. Renner and S. Wolf, “Simple and Tight Bounds for Infaton

Reconciliation and Privacy Amplification, ASIACRYPT 20Q5Lecture

Notes in Computer Science, Springer-Verlag, vol. 3788, 1§9-216,

2005.

R. Renner, “Security of Quantum Key Distribution,” PhBbestis, Dipl.

Phys. ETH, Switzerland, 2005. arXiv:quantph/0512258.

M. Hayashi, “Exponential decreasing rate of leaked infation in

universal random privacy amplificationfEEE Trans. Inform. Theory

57(6), 3989-4001, 2011.

R. Ahlswede and I. Csiszar, “Common randomness in mfation theory

and cryptography part 1: Secret sharinZEE Trans. Inform. Theory

394), 1121-1132, 1993.

[8] U. Maurer, “Secret key agreement by public discussiamfrcommon
information,” IEEE Trans. Inform. Theory39, 733-742, 1993.

[9] J. Muramatsu, “Secret key agreement from correlatedcgooutputs using
low density parity check matrices/JEICE Trans. Fundamentals£89-
A(7): 2036-2046, 2006.

[10] J. Muramatsu, S. Miyake, “Construction of Codes for &tép Channel
and Secret Key Agreement from Correlated Source Outputs sipgu
Sparse Matrices,JEEE Trans. Inform. Theorb8(2), 671 — 692, 2012.

[11] S. Watanabe, T. Saitou, R. Matsumoto, T. Uyematsu f&fiso Secure
Privacy Amplification Cannot Be Obtained by Encoder of Slepi

[4]

(5]
(6]

(7]

19

[32] T. S. Han: Information-Spectrum Methods in Information Theory
(Springer-Verlag, New York, 2002) (Originally written inaganese in
1998).

[33] M. R. Bloch, and J. N. Laneman, “Secrecy from Resolghilsubmit-
ted to|IEEE Trans. Inform. TheoryarXiv:1105.5419 (2011).

[34] T.-H. Chou, V. Y. F. Tan, and S. C. Draper, “The Sendecifed Secret
Key Agreement Model: Capacity and Error Exponents,” sutaditto
IEEE Trans. Inform. TheopyarXiv:1107.4143 (2011).

[35] C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “lrob@unds
to error probability for coding in discrete memoryless amels. |1,
Information and Control, vol. 10, pp. 65-103, 1967.

[36] V. Strassen, “Asymptotische Abschatzugen in Shatsnbrformations-
theorie,” In Transactions of the Third Prague Conferencénéormation
Theory etc, Czechoslovak Academy of Sciences, Prague, §$.783,
1962.

[37] M. Hayashi, “Information Spectrum Approach to Secddrier Coding
Rate in Channel Coding/EEE Trans. Inform. Theory55(11), 4947 —
4966, 2009.

[38] Y. Polyanskiy, H.V. Poor, and S. Verd(, “Channel caglirate in the
finite blocklength regime,1EEE Trans. Inform. Theory56(5), 2307 —
2359, 2010.

[39] S. Watanabe and M. Hayashi, “Non-asymptotic analydisprivacy
amplification via Rényi entropy and inf-spectral entrdpy, Proceedings
of the 2013 IEEE International Symposium on Information ofire
Istanbul, Turkey, 2013, pp. 2715-2719.

Wolf Code,” Proceedings of the 2009 IEEE International Symposium
on Information TheoryVolume 2, Seoul, Korea, pp. 1298-1302 (2009)

(arXiv:0906.2582)

[12] A. D. Wyner, “The wire-tap channelBell. Sys. Tech. Jouyrs4, 1355—
1387, 1975.

[13] I. Csiszar and J. Korner, “Broadcast channels witficential mes-
sages,’|IEEE Trans. Inform. Theory24(3) 339-348, 1979.

[14] 1. Csiszar, “Almost Independence and Secrecy Capadiroblems of
Information Transmissigrvol.32(1), pp.40-47, 1996.

[15] I. Devetak, “The private classical information caggcand quantum
information capacity of a quantum channdEEE Trans. Inform. Theory
51(1), 44-55, 2005.

[16] A. Winter, A. C. A. Nascimento, and H. Imai, “Commitme@apacity of
Discrete Memoryless Channel$troc. 9th Cirencester Crypto and Cod-

ing Conf, LNCS 2989, pp 35-51, Springer, Berlin 2003;_cs.CR/0304014

(2003)

[17] M. Hayashi, “General non-asymptotic and asymptotierfolas in chan-
nel resolvability and identification capacity and its apalion to wire-tap
channel,”IEEE Trans. Inform. Theory52(4), 1562-1575, 2006.

[18] H. Krawczyk, “LFSR-based hashing and authenticatiohgvances in
Cryptology — CRYPTO '94Lecture Notes in Computer Science, vol.
839, Springer-Verlag, pp 129-139, 1994.

[19] I. Csiszar and J. Kornerinformation theory: Coding Theorem for
Discrete Memoryless systenscademic Press, New York, (1981)

[20] R. G. Gallager/nformation Theory and Reliable Communicatialfohn
Wiley & Sons, 1968.

[21] P. Delsarte and P. Piret, “Algebraic constructions b&shon codes for
regular channels,TEEE Trans. Inform. Theory28(4), 593-599, 1982.

[22] R. Cannetti, “Universal composable security: a newagdagm for cryp-
tographic protocols,Proc. 42nd IEEE FOCSpp. 136-145, Oct. 2001.

[23] S. Watanabe, private communication, 2007. (This comioaiion is
written in [6, Appendix I11])

[24] M. Hayashi, “Exponents of quantum fixed-length puretestaource
coding,” Physical Review AVol.66, 032321 (2002).

[25] M. Hayashi, “Second-Order Asymptotics in Fixed-Lem@ource Cod-
ing and Intrinsic RandomnesdEEE Trans. Inform. Theory54, 4619 —
4637, 2008.

[26] S. Vembu and S. Verd(, “Generating random bits from aitrary
source: fundamental limitsfEEE Trans. Inform. Theory1, 1322-1332
(1995).

[27] A. Dembo and O. Zeitounil.arge Deviations Techniques and Applica-
tions (Springer, 1997).

[28] L.P. Kuptsov, “Holder inequality”, in Hazewinkel, Migel, Encyclopae-
dia of Mathematics, Springer, (2001).

[29] T. Holenstein and R. Renner, “On the randomness of ieddent
experiments,"lEEE Trans. Inform. Theory57(4), 1865 - 1871, 2011.

[30] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby, “S&udorandom
Generator from any One-way Function,” SIAM J. Comput. 28643
(1999)

[31] T.S. Han, “The reliability functions of the general soa with fixed-
length coding,”IEEE Trans. Inform. Theory6, 2117-2132, (2000).


http://arxiv.org/abs/0906.2582
http://arxiv.org/abs/cs/0304014
http://arxiv.org/abs/1105.5419
http://arxiv.org/abs/1107.4148

	I Introduction
	II Preliminaries
	III Uniform random number generation
	III-A Protocol based on universal2 hash function: Direct part
	III-B Protocol based on universal2 hash functions: Converse part
	III-C Comparison with evaluation by Holenstein-Renner Holenstein
	III-D Comparison with smooth min-entropy

	IV Specialized protocol for uniform random number generation
	IV-A Main result of this section
	IV-B Non-asymptotic evaluation
	IV-C Asymptotic evaluation

	V Secret key generation without communication
	V-A Application of Theorem ??
	V-B Comparison with the previous paper Hayashi2

	VI The wire-tap channel in a general framework
	VII Comparison with existing bounds
	VII-A General case
	VII-B Additive case
	VII-C General additive case

	VIII Wire-tap channel with linear coding
	IX Secret key generation with public communication
	X Discussion
	Appendix A: Proof of Theorem ??
	Appendix B: Proof of Lemma ??
	Appendix C: Proof of (??)
	References

