
1

A Deterministic Polynomial-Time Protocol for
Synchronizing from Deletions

S. M. Sadegh Tabatabaei Yazdi and Lara Dolecek, IEEE Senior Member

Abstract—In this paper, we consider a synchronization prob-
lem between nodes A and B that are connected through a two–
way communication channel. Node A contains a binary file X of
length n and node B contains a binary file Y that is generated
by randomly deleting bits from X , by a small deletion rate β.
The location of deleted bits is not known to either node A or
node B. We offer a deterministic synchronization scheme between
nodes A and B that needs a total of O(nβ log 1

β
) transmitted bits

and reconstructs X at node B with probability of error that is
exponentially low in the size of X . Orderwise, the rate of our
scheme matches the optimal rate for this channel.

Keywords: Two-way communication, deletion channel,
synchronization, edits, coding for synchronization.

I. INTRODUCTION

Consider two nodes A and B that respectively hold files
X and Y , where file Y can be derived from file X by some
deletions. For instance let

X = 001
D

011
D

000
D

1
D

01011
D

1, and

Y = 00010001011.

Here Y is derived from X by 5 deletions, where deleted bits
are denoted by D. We call Y a deleted version of X .

Suppose that the locations of deleted bits are unknown to
both nodes. In this paper we are interested in the following
question:
• What is the optimal transmission protocol for synchro-

nizing the content of node B with the content of node A,
i.e., how to reconstruct an estimate of file X at node B?

By way of optimality, we are mainly concerned with the
number of transmitted bits between the two nodes and the
complexity of implementing the protocol at nodes A and B.
Also, as usual, we desire the reconstructed estimate of X at
node B to have bit error probability that is exponentially small
in the size of X .

Synchronization from deletions is a special case of a more
general synchronization problem where file Y can be derived
from X by a sequence of edits. An edit can refer to either
deletion of a bit from file X or insertion of a new bit within
X . File synchronization from random edits is the subject of
many practical applications. Over the web, file updating is

The paper is presented in part at the IEEE 7th International Symposium
on Turbo Codes and Iterative Information Processing (ISTC), Aug. 2012.

S. M. S. Tabatabaei Yazdi is with the Research and Development Center
at Qualcomm Inc., San Diego, CA, 92121. This work was done when he was
a postdoc at the University of California, Los Angeles, CA, 90095. His email
address is stabatab@qti.qualcomm.comm. L. Dolecek is with the Department
of Electrical Engineering at the University of California, Los Angeles, CA,
90095. Her email address is dolecek@ee.ucla.edu.

an application where a user or a server needs to synchronize
its outdated version of a file with a newer version. The new
updates of a file can usually be modeled as random edits of
its content. As another example, consider a search engine that
constantly updates its database in order to reflect the latest
changes to the content of websites. Here, as well, changes
can be modeled by random edits to the content of websites.
Another area of application is in distributed storage networks
where several backup nodes store the same content and need
to be regularly synchronized together. Mis–synchronization in
storage devices can be due to mis-synchronized clock speeds
of read and write heads of hard drives or crashes in random
parts of the hard drive.

A. Previous Work

There has been a large body of research on synchronization
from edits. In [1], Varshamov and Tenengolts offered a coding
scheme for recovery from one asymmetric error. Soon there-
after, Levenshtein [2] showed that the scheme of Varshamov
and Tenengolts can be used for synchronization from one
deletion or one insertion. In [3], Orlitsky proved several
fundamental bounds on the minimum number of transmitted
bits under a restricted number of communication rounds for
a prescribed edit distance. While the results of [3] are non-
constructive, several researchers have provided explicit code
constructions. Let n denote the length of file X . For δ number
of edits, Cormode et al. [4] offered an ε-error protocol with
c(ε)δ log3 n total transmitted bits1, where c(ε) is a constant
that depends on the error ε. For the same setting, Evfimievski
[5] devised a protocol with the number of transmitted bits that
is a polynomial in log n, log 1

ε , and δ. For an unknown, fixed
number of edits δ, Orlitsky and Viswanathan [6] showed that
the ε-error optimal protocol needs at most δ log n+log 1

ε trans-
mitted bits. They also provided an explicit synchronization
protocol that needs 2δ log n(log n+ log log n+ log 1

ε + log δ)
transmitted bits. More recently, Venkataramanan et al. [7]
offered a synchronization scheme that can correct δ = o(n

logn)
edits with (4c+1)δ log n transmitted bits from node A to node
B and 10(δ − 1) transmitted bits from node B to node A for
any positive integer c. The error of reconstruction is at most
d logn
nc where d is the number of deleted bits in X , out of δ

total edits.
In practice, RSYNC [8] is a popular UNIX application for

synchronizing between edited files. The RSYNC method can
be in general very inefficient and the number of transmitted
bits can be exponentially larger than the optimal number. There

1All logarithms in this paper are in base 2.

ar
X

iv
:1

20
7.

02
90

v2
 [

cs
.I

T
]

 2
1

A
ug

 2
01

3

2

have been many improvements over the baseline approach. For
example Suel et al. [9] proposed a protocol that in certain cases
can save up to 50% of bandwidth over RSYNC. There are also
more specialized synchronization tools, such as VSYNC [10],
which synchronizes between video files.

B. Our Contribution

While most of the previous work has concentrated on
synchronizing from a fixed number of edits between two
files X and Y , in this paper we are interested in a more
practical scenario, which is synchronizing from a fixed rate of
edits between two files. We only study synchronization from
deletions, and will discuss possible extensions to the more
general case of deletions and insertions at the end of the paper.
More specifically, we consider synchronization between node
A and node B where node A has a binary string X that is
generated by an i.i.d. Bernoulli process of parameter 1

2 . Node
B has a binary string Y that is generated from X by randomly
and independently deleting bits of X with probability β that
is very small. We are interested in an optimal transmission
protocol for synchronizing between nodes A and B when n,
the length of X , is large.

We remark that, throughout the paper, by small β we
implicitly mean that there exists β0 > 0 such that our
discussion is valid for all β < β0. Furthermore, by large n we
implicitly mean that for every β < β0 there exists a positive
integer nβ such that our discussion is valid for all n > nβ .

In order to evaluate a lower bound on the optimal number
of transmitted bits between nodes A and B, suppose that
node A has access to string Y . Then, the optimal number
of transmitted bits to node B, needed for reconstructing X is
H(X|Y), which is the conditional entropy of string X given
string Y . Ma et al. [11] considered a more general set-up
where the deletion pattern follows a stationary Markov chain.
By applying the result of [11] to our model, for small values
of β, the entropy H(X|Y) can be estimated as follows

H(X|Y) = n(β log
1

β
+O(β)). (1)

Therefore, any synchronization protocol needs at least
n(β log 1

β + O(β)) transmitted bits. Paper [11] further uses
tools from the well studied problem of source coding with
side information [12], [13] to show that there exists a ran-
domized synchronization protocol on a one-way channel that
asymptotically needs H(X|Y) transmitted bits. However, [11]
does not offer any explicit, deterministic construction for the
synchronization protocol. We remark that the most efficient
previous constructions (e.g., [7]) are for a fixed number of edits
δ, and require O(δ log n) transmitted bits between A and B.
A naïve application of such results to our setup would require
O(nβ log n) transmitted bits between A and B for large n,
which is clearly far from being optimal.

In this paper, we offer the first explicit and deterministic
construction of a protocol for synchronizing from a small rate
of deletions on a two-way, error-free channel. The protocol
is optimal within a constant multiplicative factor and needs
O(nβ log 1

β) transmitted bits. Furthermore, we demonstrate
that the error probability of synchronization at node B is

exponentially small in n. Finally, we show that our scheme
needs a running time that is at most O(n4β6).

The rest of the paper is organized as follows. In Section
II, we present the problem setting and the main result along
with a sketch of our synchronization scheme. In Section III,
we present the mathematical details of our synchronization
protocol and the proof of the main result in the paper.
Section IV discusses practical implications of our protocol
for low–complexity synchronization algorithms, and Section
V includes concluding remarks and directions for possible
extensions. Preliminary results from this work were reported
in [14].

II. PROBLEM SETTING AND THE MAIN RESULT

A. Preliminaries

We represent a binary string Z of length ` by Z =
Z(1), Z(2), · · · , Z(`). For 1 ≤ i ≤ j ≤ `, Z(i, j) denotes
the substring Z(i), Z(i+ 1), · · · , Z(j) of Z. If Z1 is a string
of length `1 and Z2 is a string of length `2, we denote by
Z1, Z2 the string of length `1 + `2 obtained by concatenation
of Z1 and Z2. For a string Z, we let |Z| denote the length of
Z.

Deletion channel is a channel that may delete any subset of
the bits of the input string. Let X be the input to the deletion
channel and Y be the output of the channel. We represent the
set of deleted bits from X by a binary vector D of length |X|
which is called the deletion pattern. If the deletion channel
has deleted bit X(i) from X , then D(i) = 1 and otherwise
D(i) = 0. For example, the output of a deletion channel with
input X = 101 and deletion pattern D = 010, is Y = 11.

Corresponding to the deletion pattern D, we define a
function fD which maps the indices of bits in the input
string, to their corresponding indices in the output string. If
for index i, D(i) = 0, then fD(i) = i −

∑
j<iD(i), and if

D(i) = 1, then fD(i) = fD(i′) where i′ is the largest index,
smaller than i, for which D(i′) = 0. In the example above
fD(1) = 1, fD(2) = 1, and fD(3) = 2.

B. The Main Result

Suppose that node A contains a file that is represented by
a binary string X of length n. Let node B contain file Y of
length m that is the output of a deletion channel with input X
and deletion pattern D. We assume that the deletion pattern is
unknown to nodes A and B. Suppose that the source file X is
generated by an i.i.d. Bernoulli source of parameter 1

2 and that
the deletion channel has deleted bits of X independently and
with probability β � 1. We are interested in a synchronization
protocol on a two-way, error-free channel between nodes A
and B so that node B can recover string X from string Y with
a small probability of error at the end of the communication
session. Our main contribution in this paper is proving the
following theorem.

Theorem 1. There exists a deterministic synchronization
protocol between nodes A and B on a two-way, error-free
channel, that on average transmits O(nβ log 1

β) bits and

3

generates an estimate X̂ = X̂(1), · · · , X̂(n) of X at node B,
such that Pr

{
X̂(i) 6= X(i)

}
≤ 2−Ω(n) for every 1 ≤ i ≤ n.

We prove the theorem by explicitly constructing a syn-
chronization protocol. Next, we provide an overview of our
synchronization protocol and prove its optimality.

C. Synchronization Protocol
Recall that node B has string Y which is a deleted version

of string X . We next explain a synchronization protocol that
enables node B to reconstruct an estimate of string X with
a small probability of error. The synchronization protocol
has three main steps, as illustrated in Figure 1. Each step
is performed by a module at node B that has a two-way
communication link to node A. The three modules work in
series, such that the input to the first module is string Y and
the output of the last module is the estimate X̂ of string X .
Suppose that X is partitioned into substrings as follows

X = S1, P1, S2, P2, · · · , Sk−1, Pk−1, Sk,

where |Pi| = LP and |Si| = LS . Substrings P1, · · · , Pk−1

are called pivot strings and substrings S1, · · · , Sk are called
segment strings. We choose LS = 1

β and LP = O(log 1
β) and

both node A and node B know the exact values of LS and
LP . Note that the length of a pivot string is much smaller than
the length of a segment string. We will determine the exact
value of LP later during our analysis.

1) The first step of the synchronization protocol is per-
formed by the matching module at node B. In this
step, node A sends pivot strings Pi, 1 ≤ i ≤ k − 1,
in sequential order to node B. Upon receiving all the
pivots, the matching module attempts to figure out the
positions of pivots in Y by finding the exact copies of
Pi’s within Y . The matching module is responsible for
resolving ambiguities when there are multiple copies of
a pivot in Y . The structure of the matching module and
the graph-based algorithm for resolving the ambiguities
are discussed in Section III. Due to possible deletions
within Pi’s, the matching module is able to find the
exact matches for only a subset of Pi’s. We will explain
later the other possible cases when there are multiple
matches for a pivot but an error is made by detecting a
match that is not due to the original pivot. Suppose that
the matching module finds matches for Pi1 , · · · , Pik′−1

where k′ ≤ k. Based on the position of matched Pi’s,
the matching module partitions Y into substrings as

Y = F̄1, Pi1 , F̄2, Pi2 , · · · , F̄k′−1, Pik′−1
, F̄k′ ,

and sends this partitioned string to the next module,
where F̄j denotes the substring between matched pivots
Pij−1 and Pij in Y .

2) The next step is performed by the deletion recovery
module at node B. After receiving the partitioned Y
from the matching module, the deletion recovery module
sends the indices {i1, · · · , ik′−1} of the matched pivots
in Y to node A. Upon receiving the indices, node A
partitions X into substrings as follows:

X = F1, Pi1 , F2, Pi2 , · · · , Fk′−1, Pik′−1
, Fk′ , (2)

where Fj denotes the substring between pivots Pij−1

and Pij in X . Substring Fj can be written as follows:

Fj = Sij−1+1, Pij−1+1, · · · , Pij−1, Sij .

Notice that if Pij−1
and Pij are matched correctly in

Y , then F̄j can be derived from Fj by some sequence
of deletions. In this step, nodes A and B use the
synchronization protocol of Venkataramanan et al., [7]
with parameter c = 3 (c is a parameter that defines
the tradeoff between complexity of the protocol and
the error in the output of the decoder) to recover from
deleted bits of F̄j and to form an estimate of Fj for each
1 ≤ j ≤ k. Let us denote by F̃j the estimate of Fj at
the output of the deletion recovery module. Notice that
F̃j has the same length as Fj . At the end of this step,
the deletion recovery module forwards the string

X̃ = F̃1, Pi1 , F̃2, Pi2 , · · · , F̃k′−1, Pik′−1
, F̃k′ (3)

as an estimate of X to the last module.
3) At the last step, the LDPC decoder module at node B,

recovers from the errors made by the first two steps.
Due to a potential existence of multiple copies of each
Pi within Y , the matching module (first step) may
erroneously match Pi at a wrong place. Suppose Pij is a
pivot that the matching module has matched at a wrong
place. Then, F̄j and F̄j+1 may not be realizable by
deleting subsets of bits from Fj and Fj+1 respectively.
As a result, after the deletion recovery module (second
step), F̃j and F̃j+1 may be different from Fj and
Fj+1, respectively. Furthermore, even if the matching
module has matched pivots Pij−1

and Pij correctly in
Y and F̄j is a deleted version of Fj , the protocol of
Venkataramanan et al. [7], used in deletion recovery
module, could introduce additional errors.
Suppose that the total error of the first two synchroniza-
tion modules is bounded by ζ,

Pr
{
F̃j 6= Fj

}
≤ ζ.

We notice that the output of the deletion recovery
module, X̃ , is in synchronization with X , in the sense
that |F̃j | = |Fj | for each 1 ≤ j ≤ k′ and hence X̃(i) is
the estimate of X(i) for each index 1 ≤ i ≤ n. Since
the error rate over substrings F̃j , 1 ≤ j ≤ k′, is an upper
bound for the bit error rate over X , we find that

Pr
{
X̃(i) 6= X(i)

}
≤ ζ. (4)

To recover from errors of X̃ we use a powerful additive-
error correction code. Our choice is an LDPC decoder
which receives parity check bits of a systematic LDPC
code [15]. By applying a random permutation π at the
input of the LDPC decoder and its inverse permutation
π−1 at the output of the decoder, we can eliminate a
potential non-uniformity of errors over different bits of
X̃ . Therefore, by using the error bound given in (4), the
input sequence to the LDPC decoder can be modeled as
an output of a Binary Symmetric Channel (BSC) with a
Bernoulli i.i.d. input sequence of parameter 1

2 and with

4

Node A

Matching
Module

….

…
.

…
.

Deletion Recovery
Module

LDPC Decoder
….

Deletion Recovery
Module

Deletion Recovery
Module

1P 2P 1kP X 

1i
P

1i
P

2i
P

' 2ki
P



' 1ki
P



1P
2P

kP

1i
P

1i
P

2i
P

Y

1i
P

2i
PX̂

X

1S 2S kS

' 1ki
P


' 2ki

P
 ' 1ki

P


' 1ki
P



' 1ki
P



1F

2F

' 1kF 

'kF
…

.

…
.

1F

2F

' 1kF 


'kF

1F 2F 'kFπ π-1

Deletion Recovery
Module

Figure 1. Illustration of the synchronization protocol.

the crossover probability of at most ζ. We assume that
node A has access to the permutation π.
If node A sends a sufficient number of parity check bits
to the LDPC decoder module, as shown in [16], the
output of the decoder will be a string X̂ with

Pr
{
X̂(i) 6= X(i)

}
≤ 2−Ω(n),

as previously stated in Theorem 1.

Next, we wish to estimate the total number of transmitted
bits used by our synchronization protocol. We first establish
a measure of the performance of the matching module of the
decoder.

Theorem 2. Let k′ = (1 − LPβ + 2β + o(β))k. For
LP ≥ 11 + 2 log 1

β , there exists a matching module that with
probability 1−2−Ω(n), matches a subset {Pi1 , · · · , Pik′−1

} of
pivots {P1, · · · , Pk−1} such that the probability of error in
matching Pij is at most β + o(β).

We devote Section III to proving this theorem. For the rest
of our argument we set LP = 11 + 2 log 1

β , which is the
minimum value of LP required by Theorem 2.

Next, we use Theorem 2 to estimate the total number of
transmitted bits needed by the synchronization protocol.

Lemma 1. On average, the total number of transmitted bits
of the synchronization protocol is no more than 109nβ log 1

β .

Proof: First notice that k = n+LP
LS+LP

= nβ + 11β +

2β log 1
β = nβ + o(1). The number of transmitted bits in the

first step is

(k − 1)LP = 2nβ log
1

β
+ o(nβ log

1

β
).

At the second step, node B needs no more than k = nβ bits to
transmit the indices {i1, · · · , ik′−1} to node A. Furthermore,
the protocol of Venkataramanan et al. [7] for the recovery
from deletions within each Fj , 1 ≤ j ≤ k′, with parameter
c = 3 needs 13δj log |Fj |+ 10(δj − 1) transmitted bits, where

5

δj := |Fj |−|F̃j | is the number of deleted bits in Fj . Therefore,
the average number of transmitted bits in the second step is
no more than

nβ + E

 k′∑
j=1

(13δj log |Fj |+ 10δj)

 .
Notice that

∑k′

j=1 δj is the total number of deleted bits from X
and is on average nβ (recall that we assumed that no deletions
occurred in the matched pivots).

In Appendix I we show that E [δj log |Fj |] ≤ 16 + 8 log 1
β .

Therefore, the average number of transmitted bits in the
deletion recovery module is upper bounded by

nβ + k′ · 13(16 + 8 log
1

β
) + 10nβ

≤nβ · 13(16 + 8 log
1

β
) + 11nβ

=104nβ log
1

β
+ o(nβ log

1

β
),

where we used the inequality k′ ≤ k = nβ + o(1).
For the last step, we would like to estimate the error ζ in

F̃j . By Theorem 2, the error probability in matching Pij−1

and Pij is at most β + o(β) each. Since F̄j is the common
neighbor of Pij−1

and Pij , with probability at most 2β+o(β),
the string F̄j is not a deleted version of Fj . Furthermore, the
error in the protocol of Venkataramanan et al. [7] for c =
3, is upper bounded by δj log |Fj |

|Fj |3 . Since E [δj] = βLS = 1

and also |Fj | = LS = 1
β , the average probability of error

by the protocol of Venkataramanan et al., is upperbounded
by β3 log 1

β = o(β). Counting the error from the matching

module, we have Pr
{
F̃j 6= Fj

}
≤ 2β + o(β), and therefore

Pr
{
X̃(i) 6= X(i)

}
≤ 2β + o(β).

In order to recover from errors induced by a BSC with
crossover probability of at most 2β + o(β), node A needs to
send

nH(2β + o(β)) = 2nβ log
1

β
+ o(nβ log

1

β
),

parity check bits to node B, where we use H(·) to refer to
the binary entropy function defined as H(t) = t log 1

t + (1−
t) log 1

1−t for 0 < t < 1.
The average number of transmitted bits in all three

steps of the protocol is upper bounded by 108nβ log 1
β +

o(nβ log 1
β) < 109nβ log 1

β . Therefore, the average number of
transmitted bits by the algorithm is no more than 109nβ log 1

β .

In the next section we prove Theorem 2.

III. PROOF OF THEOREM 2
In this section, we propose a construction of a matching

module such that for LP ≥ 11 + 2 log 1
β , with probability

1 − 2−Ω(n), the module matches k′ pivots, out of which at
most βk pivots are matched erroneously. Since βk = (β +
o(β))k′, our construction implies an error of at most β +
o(β) in matching the pivots. This claim is equivalent to the
statement of Theorem 2.

We will frequently use the following concentration theorem
in our argument:

Theorem 3 (Hoeffding [17]). Let p0 be the probability that a
biased coin shows heads. Then for every ε > 0, the probability
that N tosses of the coin yield a number of heads between
(p0 − ε)N and (p0 + ε)N is at least 1− 2e−2ε2N .

We will occasionally need a stronger version of the previous
theorem:

Theorem 4 (Hoeffding [17]). Let z1, · · · , zN be i.i.d. random
variables with expected value M that take values in an interval
of length I. Then, for every ε > 0, the following holds

Pr

{∣∣∣∣∣
N∑
i=1

zi −NM

∣∣∣∣∣ ≥ εN
}
≤ 2 exp

(
−2ε2N

I2

)
.

Recall that string X is partitioned into substrings as X =
S1, P1, · · · , Sk−1, Pk−1, Sk, where |Si| = LS and |Pi| = LP .
In our set-up, LS = 1

β , LP = O(log 1
β), and k = nβ + o(1).

Let us denote the index of the first bit of Pi in X by p̌i and
the index of the last bit of Pi in X by p̂i. Similarly, the first
and last indices of Si are denoted by ši and ŝi. Therefore,
X(p̌i, p̂i) = Pi and X(ši, ŝi) = Si.

The task of the matching module is to find “correct matches”
of Pi’s within string Y . Next, we formalize the notion of
correct and incorrect matches for a pivot Pi.

A. Correct and Incorrect Matches

Consider the substring D(p̌i, p̂i) which is the part of the
deletion pattern D that acts on the pivot Pi. We consider the
following cases:
• D(p̌i, p̂i) is the all zeros vector: There is no deletion

within Pi. In this case we call the copy of Pi between
indices fD(p̌i) and fD(p̌i) of Y the correct match of
Pi. All other copies of Pi in Y are considered incorrect
matches of Pi.

• D(p̌i, p̂i) has one nonzero element: There is one deletion
within Pi. In this case, if there is a copy of Pi in Y
that begins at fD(p̌i) or ends at fD(p̂i) then we call
it a correct match of Pi and all other copies of Pi are
called incorrect matches of Pi. If there is no such copy
of Pi within Y , then all copies of Pi within Y are
called incorrect matches. Notice that in this case there
are possibly two correct matches for Pi. For instance, let
Pi = 000 and let the immediate undeleted bits before
and after Pi be zero. Then it is easy to verify that after
one deletion within Pi, there is a copy of Pi starting at
fD(p̌i) in Y and there is another copy of Pi ending at
fD(p̂i) in Y .

• D(p̌i, p̂i) has more than one nonzero element: There is
more than one deletion within Pi. In this case all copies
of Pi within Y are considered incorrect matches.

While the definition of correct and incorrect matches is natural
for the case of no deletion within Pi, we next explain the
reason behind the definition for the case with deletions within
Pi. Consider the illustration in Figure 2 where Pi = 01101000.
Assume the penultimate bit is deleted from Pi. Suppose that

6

i i

i i 1i

D i D i

Figure 2. Illustration of a correct match of Pi with one deletion.

the bit right after Pi is 0. Notice that even with the deleted bit,
a copy of Pi appears in Y , starting at fD(p̌i). This copy of Pi
is called a correct match. The reason is that the resulting string
Y is the same as in the case where there is no deletion within
Pi and instead the 0 after Pi is deleted in X . In other words,
here we can “move” the deletion from Pi to the substring Si+1

without changing Y .
Although a similar scenario may happen when there are

more than one deletions within Pi, i.e., we might be able to
move the deleted bits from Pi to the neighboring segment
strings without changing the resulting Y , since the probability
of these cases is very small (the exact statement will follow),
our analysis conservatively counts those matches as incorrect
matches.

Next, we analyze the probability of occurrence of correct
matches for Pi:

Lemma 2. With probability 1 − βLP + o(β), Pi has no
deletions and there is at least one correct match for Pi within
Y .

Proof: With probability (1−β)LP no bit is deleted from
Pi. For LP = O(log 1

β) we have

(1− β)LP = 1− LPβ + o(β).

Lemma 3. With probability 2β + o(β) there is one deletion
within Pi and there is a correct match for Pi within Y .

Proof: Fix h as the place of the deleted bit out of LP bits
of Pi. Suppose Pi(h) = b ∈ {0, 1}. It is simple to observe
that there is a copy of Pi starting at fD(p̌i) in Y if and only
if Pi(h, LP) = b, b, · · · , b and furthermore, the first undeleted
bit after Pi in X is also b. In other words, the hth bit of Pi
should belong to the final “run” of zeros or ones of Pi and the
first undeleted bit after Pi should also be of the same value.
With probability β(1 − β)LP−1, exactly the hth bit of Pi is
deleted and with probability 2−(LP−h+1) the bits after hth bit
in Pi and the first undeleted bit after Pi have the same value

as the hth bit of Pi. The overall probability of this case is
β(1 − β)LP−12−(LP−h+1). Similarly, there is a copy of Pi
finishing at fD(p̂i) in Y if and only if all bits before the hth
bit in Pi and the first undeleted bit before Pi are equal to
the hth bit of Pi. This case happens with probability β(1 −
β)LP−12−h. The intersection of the two events happens when
Pi is all-zeros or all-ones string and the immediate undeleted
bits before and after Pi have the same value as the bits in Pi.
This case happens with probability β(1 − β)LP−12−(LP+1).
By using the inclusion-exclusion principle and by varying h
from 1 to LP , we find the total probability of having one
deletion within Pi, and as a result at least one correct match
for Pi to be:

β(1− β)LP−1
LP∑
h=1

(
2−(LP−h+1) + 2−h − 2−(LP+1)

)
=

β(1− β)LP−1(2− 21−LP − LP 2−(LP+1)) =

2β + o(β),

where in the last step we assumed LP = O(log 1
β).

Lemma 4. With probability o(β), Pi has more than one
deletion.

Proof: Since the probability of no deletion within Pi
is (1 − β)LP and the probability of one deletion within Pi
is LPβ(1 − β)LP−1, then the probability of more than one
deletion within Pi is

1− (1− β)LP − LPβ(1− β)LP−1 = o(β),

where we assumed LP = O(log 1
β) in the final estimate.

Let us define

R := 1− LPβ + 2β. (5)

From the preceding lemmas we conclude that:

Lemma 5. For a random string X and a random deletion
pattern D, on average, the number of pivots with at least one
correct match in Y is (R+ o(β))k.

By applying Theorem 3 we conclude that:

Lemma 6. For a random string X and a random deletion
pattern D, with probability 1−2−Ω(n), there are (R+o(β))k
pivots with at least one correct match in Y .

Proof: The probability that a pivot has a correct match in
Y is R+o(β) and it is independent of other pivots. Therefore,
if in Theorem 3 we set p0 to R + o(β), N to k, and ε to
o(β), we conclude that the probability that for a random string
X and a random string D there are between (p0 − o(β))k
and (p+ o(β))k pivots with correct matches in Y , is at least
1− 2e−2o(β)2k = 1− 2−o(β)n = 1− 2−Ω(n). The fact that the
set of integers between (p0 − o(β))k and (p+ o(β))k can be
represented by the set of integers of the form (R + o(β))k,
yields the result.

Lemma 7. For a random string X and a random deletion
pattern D, with probability 1−2−Ω(n), there are o(β)k pivots
with two correct matches in Y .

7

Proof: As we showed in the proof of Lemma 3, the
probability that a pivot has a deletion and two correct matches
in Y is given by the following expression

LPβ(1− β)LP−12−(LP+1) = o(β),

where we assumed LP = O(log 1
β). Therefore, the average

number of pivots with two correct matches in Y is o(β)k.
Now, if in Theorem 3 we set p0 to o(β), N to k, and ε to
o(β), we conclude that the probability that for a random string
X and a random string D there are between (p0 − o(β))k
and (p + o(β))k pivots with two correct matches in Y , is at
least 1 − 2e−2o(β)2k = 1 − 2−o(β)n = 1 − 2−Ω(n). Since the
set of integers between (p0 − o(β))k and (p+ o(β))k can be
represented by the set of integers of the form o(β)k, the result
follows.

B. The Matching Graph

The task of the matching module is to detect correct matches
of Pi’s within Y . For this purpose we use a graph theoretic
method. We define a graph G(V,E) with the vertex set as
follows. Graph G has k+1 layers of vertices which are denoted
by Λ0,Λ1, · · · ,Λk. Each vertex in layer Λi, 1 ≤ i ≤ k −
1, represents a match of pivot Pi in string Y . We refer to
the vertices of Λi and matches of Pi in Y interchangeably.
For vertex v ∈ Λi, let v̌ and v̂ denote, respectively, the first
and the last indices of the match of Pi corresponding to v in
Y. We introduce two auxiliary vertices s and t where Λ0 =
{s} with ŝ = 0 and Λk = {t} with ť = |Y | + 1. Vertices
s and t represent the beginning and the ending of string Y
respectively.

We say a vertex in Λi is a good vertex if it corresponds
to a correct match of Pi within Y . We call a vertex in Λi a
bad vertex if it corresponds to an incorrect match of Pi. By
definition of correct and incorrect matches, in each layer of
graph G, there are possibly zero, one, or two good vertices.
In order to detect the correct matches of Pi’s within Y , we
need to find good vertices in graph G. For that, we define the
edge set of G such that the good vertices are distinguished by
their connectivity in the graph.

Let us define the distance between two vertices u and v in
G as follows:

Dis(u, v) := v̌ − û− 1.

Notice that Dis(u, v) is nonnegative only when the first bit of
v appears after the last bit of u. In that case, Dis(u, v) is the
number of bits between u and v in Y .

For two pivots Pi and Pj with i < j in X , the number of
bits between them in X is given by

(j − i− 1)LP + (j − i)LS .

If both Pi and Pj have correct matches in Y , the number of
bits between the correct match for Pi and the correct match
for Pj is at most (j − i− 1)LP + (j − i)LS .

Furthermore, in most cases, for i < j, the first bit of the
correct match for Pj appears after the last bit of the correct
match for Pi. To see this, first notice that, since the first bit
of Pj appears after the last bit of Pi in X , if there are no
deletions within Pi and Pj , their order is preserved in Y .

10 2 76543

s

t

(,)u vDis

u

v

Figure 3. Figure illustrates a graph G with 8 layers of vertices. The horizontal
axis indicates different layers and the vertical axis indicates the position of
each vertex in string Y that can take values from 1 to |Y |. The good and bad
vertices are distinguished by black and white colors, respectively. The first
layer has only one vertex s and the last layer has only one vertex t. As it is
seen, all good vertices in the graph are connected together and they form an
s− t path which is represented by the dashed edges in the graph.

Now consider the following example: let Pi = 0000 and
Pj = 0000. Also assume that all bits between Pi and Pj are
deleted except for a single 0 bit, and assume that exactly one
bit is deleted from Pi and exactly one bit is deleted from Pj .
In this case, the compound substring of Y corresponding to Pi
and Pj and the bits in between them in X is 0000000, where
the first four bits constitute the correct match for Pi and the
last four bits constitute the correct match for Pj . As we can
observe, the first bit for the correct match of Pj is the last bit
for the correct match of Pi. The distance between the correct
match for Pi and the correct match for Pj is −1. It is easy to
verify that in general for j > i, the least value of the distance
between the correct match of Pi and the correct match of Pj
is −1.

Based on the two preceding observations, we connect a
vertex u ∈ Λi to a vertex v ∈ Λj if and only if

− 1 ≤ Dis(u, v) ≤ (j − i− 1)LP + (j − i)LS . (6)

Therefore, all pairs of good vertices from different layers are
connected together. By definition, s and t, which indicate the
beginning and the ending of string X , respectively, are treated
as “auxiliary” good vertices. Therefore, good vertices across
different layers form an s− t path in graph G. However, there
are potentially many other pairs of vertices that satisfy the
condition of (6) and are connected together. Figure 3 illustrates
an instance of graph G with 8 layers and the connections
between vertices.

The following theorem shows that, with very high proba-
bility, bad vertices do not contribute to an s− t path. That is,
any s− t path of the appropriate length in graph G is formed
mostly of good vertices. Recall the definition of R from (5).
We then have the following result.

8

Theorem 5. Let X be a random input string to a deletion
channel and D be a random deletion pattern. Let Y be the
string obtained from X and D. Let G denote the matching
graph corresponding to Y . Then, for LP ≥ 11 + 2 log 1

β , with
probability at least 1 − 2−Ω(n), all paths from s to t with
Rk + o(β)k vertices, have at least Rk − βk + o(β)k good
vertices.

Theorem 5 is not only an existence statement, but also has
an algorithmic implication. The implication is that if we pick
any path from s to t with Rk + o(β)k vertices, the path
has many good vertices. Since finding an s − t path of an
appropriate length in G is a computationally tractable task (we
will discuss the computational complexity in the next section),
finding a large fraction of good vertices is also a tractable task.

Overview: Before presenting the detailed proof of the theo-
rem we first sketch the overall idea of the proof. To prove the
theorem, we show that for a random string X and a random
deletion pattern D, the probability of the existence of an s− t
path Q in G with Rk + o(β)k vertices, such that the number
of good vertices on Q is less than Rk− βk+ o(β)k is upper
bounded by 2−Ω(n). Equivalently, we show that the probability
of the existence of an s− t path Q with Rk+ o(β)k vertices
such that number of bad vertices on Q is more than βk+o(β)k
is upper bounded by 2−Ω(n). To find an upper bound on the
latter probability we use the union bound: for every α with
β ≤ α ≤ R+o(β), we find an upper bound on the probability
that there exists an s − t path Q with Rk + o(β)k vertices
such that the number of bad vertices on Q is αk. Then, by
integrating the upper bound over all values of α and showing
that it is less than 2−Ω(n), we conclude the result.

For a fixed value of α we evaluate an upper bound on
the probability of the existence of an s − t path Q with
Rk + o(β)k vertices and αk bad vertices in the following
way. Let us denote all good vertices of G by U , where
|U | = Rk+o(β)k with probability at least 1−2−Ω(n). We fix
the realizations of all ǔ for which u ∈ U . In other words, we
fix the positions of good vertices of graph G. For Q to have
exactly αk bad vertices and Rk − αk + o(β)k good vertices,
we first choose Rk − αk + o(β)k good vertices of Q from
the set U (and account for the cases with possibly two correct
matches). Graph G has k + 1 layers and Rk − αk + o(β)k
have been chosen to include the good vertices of Q. The
remaining αk vertices of Q are chosen from the remaining
k + 1 − (Rk − αk + o(β)k) layers. Since the vertices in
set U have fixed positions in Y , all good vertices of Q have
fixed positions in Y . However, we have only fixed the layers
which include the bad vertices of Q and not the positions
of bad vertices in Y . Next, to find an upper bound on the
number of possible positions of the bad vertices of Q, we use
a combinatorial argument based on the constraints imposed
by the connectivity of consecutive vertices on Q via the edges
of graph G. We notice that the positions of all vertices on
Q are uniquely determined based on the distances between
consecutive vertices on Q. Since the good vertices on Q have
fixed positions, the distance between two consecutive vertices
on Q, where both of them are good vertices, is fixed. However,
the distance of two consecutive vertices on Q, where one of

the vertices is a bad vertex, is a variable. We need to find all
solutions to these variables such that constraints defined by (6)
are satisfied. We show how to consolidate all resultant edge
constraints over all edges of Q into a single linear constraint,
and then by counting the number of solutions to that constraint
we find an upper bound on the number of possible positions
of the bad vertices of Q.

Finally, we notice that the probability that a substring Pi
has an incorrect match in Y at some specific position is
2−LP . Therefore, if we are given the positions of all bad
vertices on Q, the probability that there are incorrect matches
of the corresponding pivots at those positions is 2−αkLP each.
By multiplying 2−αkLP by the upper bound on the possible
number of positions for bad vertices of Q, we find an upper
bound on the probability of the existence of Q with Rk+o(β)k
vertices and αk bad vertices. Next we present the details of
our argument.

Proof: We begin by finding an upper bound on the
probability of the existence of a path Q from s to t with
Rk + o(β)k vertices out of which αk are bad vertices, for
some β ≤ α ≤ 1. There are k + 1 layers in graph G and by
Lemma 6 with probability 1 − 2−Ω(n) there are Rk + o(β)k
layers with good vertices in graph G. Let us fix the realization
of the deletion pattern D, the realization of the pivots Pi in X
with exactly one deletion, and the realization of the immediate
undeleted bits before and after pivots Pi in X with exactly one
deletion. In this way, good vertices of graph G are fixed. We
consider two cases:

Case 1: β ≤ α < 1
2

For β ≤ α < 1
2 , first we fix the layers which have a vertex

on the path Q of length Rk + o(β)k. Since by assumption,
there are Rk − αk + o(β) good vertices on the path Q, the
selection of good and bad vertices on the path can be done in
at most the following number of ways(

Rk + o(β)k

Rk − αk + o(β)k

)
· 2o(β)k ·

(
(1−R)k + αk + o(β)k

αk

)
<

2k((R+o(β))H(α
R+o(β)

)+o(β)+(1−R+α+o(β))H(α
1−R+α+o(β)

)) =

2k(RH(αR)+(1−R+α)H(α
1−R+α)+o(β)).

(7)

In the multiplication above, the first term stands for the number
of ways we can choose the layers with good vertices on the
path Q. By Lemma 7, with probability 1 − 2−Ω(n), there
are o(β)k pivots with two correct matches in Y . Thus, with
probability 1 − 2−Ω(n), there are at most o(β)k layers with
two good vertices among the layers with good vertices on Q.
Therefore, the second term in the multiplication above, is an
upper bound on the number of combinations we can pick one
good vertex from each of those layers. The last term stands
for the number of ways we can choose the layers with bad
vertices from the remaining available layers. Notice that the
layers with bad vertices can be chosen from all k + 1 layers
except the Rk−αk+ o(β)k layers which are chosen to have
good vertices. Also, the inequality holds by application of the
inequality

(
N
εN

)
< 2H(ε)N for 0 < ε < 1

2 and positive integer
N , where H(·) is the binary entropy function.

9

Suppose that path Q has vertices from layers
Λi1 ,Λi2 , · · · ,ΛiRk+o(β)k . Let I := {1, · · · , Rk + o(β)k}
be the set of indices of the layers with a vertex on the path
Q. Let I = Ig ∪ Ib where Ig is the set of indices of layers
with good vertices on Q and Ib is the set of indices of layers
with bad vertices on Q (The sets Ig and Ib are disjoint.).
That is, layer Λij with j ∈ Ig is a layer with a good vertex
on Q and layer Λij with j ∈ Ib is a layer with a bad vertex
on Q.

Let us express the path Q as s−vi1−vi2−· · ·−viRk+o(β)k−t
where vij ∈ Λij . Path Q is uniquely identified by the posi-
tion of the first bit of its vertices,

(
v̌i1 , v̌i2 , · · · , v̌iRk+o(β)k

)
.

Equivalently, if we know the distance between consecutive
vertices

(
Dis(vij , vij+1

) : j ∈ I
)
, we can uniquely identify

the position of each vertex on the path. Therefore, next we
count the number of possible values of the distances between
consecutive vertices

(
Dis(vij , vij+1) : j ∈ I

)
.

Since good vertices are pinned down on the path, the value
of Dis(vij , vij+1

) is determined if both vij and vij+1
are good

vertices. Let us define set H ⊂ I as follows

H = {j : j ∈ Ib ∨ (j + 1) ∈ Ib}.

Therefore
(
Dis(vij , vij+1

) : j ∈ H
)

is the set of distances
between consecutive vertices of Q that are undetermined. The
number of bad vertices on Q is αk. Therefore |H| ≤ 2αk.
Let j1 and j2 with j1 < j2 be two consecutive elements in
the ordered version of Ig. Then by additivity of distances,
bad vertices vij1+1

, · · · , vij2−1
need to satisfy the following

constraint:
j2−1∑
t=j1

Dis(vit , vit+1) = Dis(vij1 , vij2)− (j2 − j1 − 1)LP , (8)

where (j2 − j1 − 1)LP is the total length of the substrings
vij1+1

, · · · , vij2−1
in Y . Furthermore, bad vertices should be

placed on Q such that they satisfy the constraint given in (6).
For every j ∈ H, we need to have

−1 ≤ Dis(vij , vij+1
) ≤ (ij+1−ij)LS+(ij+1−ij−1)LP . (9)

Next we find an upper bound on the number of integer vectors(
Dis(vij , vij+1) : j ∈ H

)
that satisfy (8) and (9).

For j ∈ I, we use the following change of variables

δj := (ij+1 − ij)LS + (ij+1 − ij − 1)LP − Dis(vij , vij+1).

Equation (8) in terms of the variables δj’s is written as follows.
For j1 < j2, as any two consecutive elements in the ordered
version of Ig , we have

j2−1∑
j=j1

δj = (ij2 − ij1)LS + (ij2 − ij1 − 1)LP −Dis(vij1 , vij2).

(10)
Observe that in (10), (ij2 − ij1)LS + (ij2 − ij1 − 1)LP is the
number of bits between Pij1 and Pij2 in X and Dis(vij1 , vij2)
is the number of bits between the correct match of Pij1 and
the correct match of Pij2 in Y . Therefore, the right hand side
of Equation (10) is the number of deleted bits in the substring
between Pij1 and Pij2 in X . To find an upper bound on the
number of solutions for (δj : j ∈ H), we relax constraints

in (10) over all j’s into a single constraint by adding them
together: ∑

j∈H
δj = δ −

∑
j′∈Hc

δj′ . (11)

Here δ is the total number of deleted bits from X and set
Hc = I\H is the set of indices j′ for which hj′ is determined;
i.e., vij′ and vij′+1

are both good vertices. Furthermore, δj′
is the number of deleted bits from the substring between Pij′
and Pij′+1

in X .
Next, we use the following result on the concentration of∑
j∈H δj around its expected value.

Lemma 8. For a random string X , random deletion pattern
D, and the resultant string Y , the following bound holds:

Pr


∣∣∣∣∣∣
∑
j∈H

δj − E

∑
j∈H

δj

∣∣∣∣∣∣ = o(β)k

 ≥ 1− 2−Ω(n).

Proof: See Appendix II.
To estimate E

[∑
j∈H δj

]
, first notice that the average

number of deleted bits from X is E [δ] = nβ = (1 + o(β))k.
Next we find E [δj′] for j′ ∈ Hc. Since Q has Rk + o(β)k

vertices, the average size of the substring between Pij′ and
Pij′+1

in X is n
Rk+o(β)k . Therefore, E [δj′], the average

number of deleted bits from the substring between Pij′ and
Pij′+1

in X is

E [δj′] =
nβ

Rk + o(β)k
=

1

R+ o(β)
= 1 + βLP − 2β + o(β).

Since |H| ≤ 2αk and |I| = |H| + |Hc| = (R + o(β))k, we
find that

|Hc| ≥ (R− 2α+ o(β))k = (1− βLP + 2β − 2α+ o(β))k.

We conclude that

E[
∑
j∈H

δj] = E[δ]− E[
∑
j′∈Hc

δj′]

= k − |Hc|E [δj′] + o(β)k

≤ k·
(1− (1− βLP + 2β − 2α)(1 + βLP − 2β) + o(β))

= 2αk(1 + βLP − 2β) + o(β)k,

and therefore by Lemma 8, with probability at least 1−2−Ω(n)∑
j∈H

δj = 2αk(1 + βLP − 2β) + o(β)k. (12)

Therefore, we showed that (8) yields the weaker constraint in
(12) on the vector (δj : j ∈ H).

Now consider the inequality in (9). We can rewrite it in
terms of δj as follows

0 ≤ δj ≤ (ij+1 − ij)LS + (ij+1 − ij − 1)LP + 1.

To find an upper bound on the number of solutions for (δj :
j ∈ H), we relax the preceding constraint to δj ≥ 0.

10

Under the constraint that δj ≥ 0, the number of integer
solutions for (δj : j ∈ H) under the condition (12), is given
by(

2αk(1 + βLP − 2β) + o(β)k + |H| − 1

|H| − 1

)
≤(

2αk(2 + βLP − 2β + o(β)
α)

2αk

)
≤

22αk(2+βLP−2β+
o(β)
α) ≤ 25αk, (13)

where the last estimate holds for sufficiently small β.
Given the number of possibilities for path Q, we next

compute the probability of occurrence of each realization of
path Q. Since X is generated by an i.i.d. Bernoulli source
of parameter 1

2 and deletions occur independently, Y is also
generated by an i.i.d. Bernoulli source of parameter 1

2 and
different substrings of Y are independent. Therefore, the
probability of any given realization of bad vertices as specified
by the choice of δj’s is 2−LPαk. By applying the union bound
on the probability of existence of individual paths, and using
inequalities (7) and (13), we conclude that the probability of
the existence of a path Q with Rk + o(β)k total vertices and
αk bad vertices is upper bounded by 2∆αk where

∆α = RH
(α
R

)
+ (1−R+ α)H

(
α

1−R+ α

)
+ 5α− LPα+ o(β)

= −α logα+ α logR−R log(1− α

R
)

+ α log(1− α

R
)− α logα+ α log(1−R+ α)

− (1−R) log(1− α

1−R+ α
) + 5α− LPα+ o(β).

Next we find an upper bound for ∆α. Since for sufficiently
small β, R < 1, then α logR < 0. Since α < 1

2 , for small
enough β, R > α. Therefore α log(1− α

R) < 0 and α log(1−
R+α) < 0. Using the inequality log(1+x) ≤ x

ln 2 for x > −1
we find that

−R log(1− α

R
) = R log(1 +

α

R− α
) ≤ Rα

(R− α) ln 2

=
α

(1− α
R) ln 2

.

Notice that for small values of β, R is close to 1. Let us
assume that β is sufficiently small such that R > 0.9. Since
α < 1

2 , we can write

−R log(1− α

R
) ≤ α

(1− α
R) ln 2

<
α

(1− 1
1.8) ln 2

=
2.25α

ln 2
.

Also we have

−(1−R) log

(
1− α

1−R+ α

)
= (1−R) log

(
1 +

α

1−R

)
≤ (1−R)α

(1−R) ln 2
=

α

ln 2
.

Therefore

∆α ≤ o(β)− 2α logα+
2.25α

ln 2
+

α

ln 2
+ 5α− LPα

= α(
o(β)

α
− 2 logα+

3.25

ln 2
+ 5− LP)

< α(
o(β)

α
− 2 logα+ 9.7− LP).

Notice that o(β)
α ≤ o(β)

β is arbitrarily small for sufficiently
small β. If we choose β such that o(β)

α < 0.3, then we have

∆α < α(−2 logα+ 10− LP).

Case 2: 1
2 ≤ α ≤ R+ o(β)

We again seek to bound the probability of the existence of
a path Q from s to t with Rk + o(β)k total vertices and αk
bad vertices. Let the path Q be denoted by s − vi1 − vi2 −
· · · − viRk+o(β)k − t and let δj denote the number of deleted
bits between vertices vij and vij+1

. Clearly, the sum of δj
is the total number of deletions in string Y . By Theorem 3,
with probability at least 1− 2−Ω(n) we have

∑Rk+o(β)k
j=0 δj =

nβ+nβo(β) = k(1 + o(β)). The number of integer solutions
for δj ≥ 0 under this constraint is(

k +Rk + o(β)k − 1

Rk + o(β)k − 1

)
≤
(

2k

k

)
≤ 22k.

The probability for each solution of δj’s to represent a valid
s−t path is at most 2−LPαk. Therefore, an upper bound on the
probability of existence of a path Q in this case is 2(2−LPα)k.

Finally, putting both cases for the range of α together, the
probability of the existence of a path Q with Rk + o(β)k
vertices between s and t with at least βk bad vertices can be
upper bounded by the sum of two integrals:
ˆ 1

2

α=β

2∆αkdαk +

ˆ R+o(β)

α= 1
2

2(2−LPα)kdαk ≤

ˆ 1
2

α=β

2(−2 logα+10−LP)αkdαk +

ˆ R+o(β)

α= 1
2

2(2−LPα)kdαk.

If we pick LP ≥ 11 + 2 log 1
β then we find

(−2 logα+ 10− LP)αk ≤ −αk ≤ −βk

for β ≤ α ≤ 1
2 . Also,

2− LPα ≤ 2− 1

2
· 11 = −3.5.

Therefore, we can upper bound the sum of the two integrals
by
ˆ 1

2

β

k2−βkdα+

ˆ R+o(β)

1
2

k2−3.5kdα ≤ k

2
(2−βk + 2−3.5k)

= 2−Ω(n).

This completes the proof of Theorem 5.
In order to verify the result of Theorem 5 in a practical

setting, we have plotted graph G for a randomly generated
string X and a randomly generated deletion pattern D with
parameter β = 0.01, for three values of LP in Figure 4. To

11

Graph Layers

N
od

es
 in

 e
ac

h
La

ye
r

Graph Layers

N
od

es
 in

 e
ac

h
La

ye
r

Graph Layers

N
od

es
 in

 e
ac

h
La

ye
r

Figure 4. Graph G for k = 100, β = 0.01, LS = 100, and LP = 6, 7, and 8, where only the edges between consecutive layers are depicted.

avoid visual complications, we have only plotted edges that
connect vertices on two consecutive layers. As it is clear from
the figure, for small values of LP , there are many edges in
the graph and there are potentially many paths that connect
s to t which do not share many vertices with the correct
path. However, for larger values of LP , the irrelevant edges
disappear from the graph and the only path that remains is
the one formed by good vertices of the graph. For β = 0.01,
Theorem 5 states that LP ≥ 11 + 2 log 1

β ≈ 17 is sufficient
for our purpose. In practice, we observe values of LP around
8 are sufficient for distinguishing good vertices on graph G.

IV. PRACTICAL IMPLEMENTATION

In this section we discuss practical implementation of our
synchronization protocol, consisting of a matching module, a
deletion recovery module, and an LDPC decoder module (see
Figure 1). For the deletion recovery module, we can implement
the synchronization protocol of Venkataramanan et al. [7]
which runs in linear time in |Fj | for deletion recovery of each
substring Fj , 1 ≤ j ≤ k′. Therefore the overall complexity
of the deletion recovery module is linear in n. For the LDPC
decoder module there are many sophisticated encoding and
decoding schemes (see [15], [16]) that need running time
linear in n.

In this section we therefore focus on the implementation of
the graph-based algorithm for the matching module explained
in the previous section. The result of Theorem 5 indicates
that to find a large number of correct matches for pivots in
the received string Y , it suffices to find an s − t path with
Rk+ o(β)k vertices in the matching graph G. We now argue
that this problem can be cast as the well known “shortest path
problem” in a directed graph, so it can be efficiently solved
in polynomial time.

As the first step, we only keep the vertices in graph G which
have an edge to vertex t and remove all other vertices. Since
all good vertices are connected to vertex t, this step does not
eliminate any good vertex from graph G. Let G̃ denote the
resulting graph. As the second step, we find the longest s− t
path in G̃. Since all good vertices are connected together and
form an s− t path of length Rk + o(β)k, the longest path in
G̃ has at least Rk + o(β)k vertices. Finally, we modify the
discovered path into a path with only Rk+ o(β)k vertices by

keeping only the first Rk+ o(β)k vertices on the path. Since
each vertex in graph G̃ has an edge to vertex t, the resulting
vertices from this step form a path with Rk + o(β)k vertices
from s to t.

The only step of the above procedure which is computa-
tionally demanding is the second step for finding the longest
s− t path in G̃. Notice that since G and hence G̃ are acyclic
graphs, the longest s− t path problem in G̃, can be reduced to
the shortest s−t path problem in G̃ by assigning weight −1 to
each edge. The latter problem is solvable in time O(|G̃|2), for
instance by Dijkstra’s algorithm [18], where |G̃| is the number
of vertices in G̃. We upper bound |G̃| by |G|. To approximate
|G|, we notice that there are nβ+ o(1) layers in graph G and
the number of vertices in layer Λi is the number of copies
of pivot Pi in Y , which is on average 2−LP |Y | = O(β2n).
Therefore, |G| = O((β2n) · (nβ) + o(1)) = O(n2β3). We
conclude that the complexity of matching pivots in graph G
is upper bounded by O(|G|2) = O(n4β6).

V. CONCLUSIONS

In this paper we offered the first synchronization protocol
for recovering from a small rate of deletions with an optimal
order of transmitted bits and with exponentially small recon-
struction error. The main idea was to divide the synchroniza-
tion problem into synchronization between shorter substrings
of the source file and the destination file. For that, our protocol
sends equally spaced small substrings of the source file to
the destination, and destination then uses a graph theoretic
algorithm to locate the short substrings within its file with high
accuracy. For synchronization between the shorter substrings
we used existing protocols that recover from a small number
of edits. We observed that the compound output of the first
two steps can be modeled as an output of a BSC with a small
error probability. This error can be recovered with a low bit
error rate by using an LDPC coding scheme.

While in this work we only considered recovering from i.i.d.
patterns of deleted bits, there are many other interesting edit
models that the ideas of this paper can be applied to. An
immediate extension of our work is to the synchronization
from i.i.d. insertions. To explain an i.i.d. insertion process,
let us consider an equivalent description of the i.i.d. deletion
process considered in this paper. In the new description, the

12

deletion pattern D is described as an independent sequence
of positive integers, where the integers alternatively represent
the length of zero and one runs in the deletion pattern D. It is
easy to verify that if the integers are generated independently
according to an appropriate geometric distribution, the result
is an i.i.d. 0-1 deletion pattern. We can describe the insertion
pattern in the same way by generating the run length sequence
of the pattern. For the insertion pattern, each run of ones cor-
responds to an inserted substring of equal length generated by
an i.i.d. Bernoulli process. Also, each run of zeros corresponds
to a substring of the input string of equal length in the output.
It is not hard to see that the solution presented in this paper for
synchronization from deletions is directly applicable to solving
the synchronization problem from random insertions. One can
also consider more general patterns of deletions or insertions,
e.g., the 0-1 deletion (insertion) patterns that follow a Markov
chain random process (see [11]).

Another interesting direction for the extension of this work
is the design of synchronization protocols that are capable of
recovering from a small rate of both deletions and insertions.
While the deletion recovery module in our work, based on the
algorithm by Venkataramanan et al. [7], is directly applicable
to recovery from deletions and insertions, the main challenge
is to extend the graph theoretic algorithm for matching the
pivot substrings in the received string Y when there are both
deletions and insertions. Again, many parts of our argument
still hold for the new setting as long as the edits happen
with small rates while some technical parts may need to be
modified. This extension is the focus of our current research.
Our recent progress is reported in [19].

There are some other aspects of our current research that
can be modified into more efficient synchronization protocols.
For example, our algorithm needs a small backward bandwidth
from node B to node A in the deletion recovery module. This
bandwidth is an inherent component of the synchronization
protocol of Venkataramanan et al., [7]. It is of great interest
to design protocols that can operate on forward links only. As
proved by Orlitsky [3], design of optimal protocols for recov-
ery from deletions on forward links implies optimal protocols
for recovery from deletions and insertions. Furthermore, such
protocols can be implemented as efficient channel codes for
communicating over edit channels (see [11], [20], [21], [22]).

Finally, from a practical perspective, it is interesting to
design a more efficient implementation of the graph theoretic
matching algorithm which is at the heart of our matching mod-
ule. While our algorithm runs in O(n4β6) time, we believe
that by exploiting the specific structure of the matching graph,
and applying additional restrictions on the connectivity of the
vertices of the graph together, it is possible to considerably
reduce the running time of the matching module and hence
reduce the overall complexity of the synchronization protocol.

ACKNOWLEDGEMENT

The work is supported in part by NSF CAREER grant no.
CCF-1150212, gift from Intel Corporation, Okawa Research
Grant and Intel Early Career Award. L. Dolecek acknowledges
helpful discussions with Nicolas Bitouze.

REFERENCES

[1] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors (in Russian),” Avtomatika i Telemekhanika, vol. 26,
pp. 288–292, 1965.

[2] V. I. Levenshtein, “Binary codes capable of correcting deletions, in-
sertions and reversals (in Russian),” Soviet Physics Doklady, vol. 163,
no. 4, pp. 845–848, 1965.

[3] A. Orlitsky, “Interactive communication of balanced distributions and of
correlated files,” SIAM Journal on Discrete Mathematics, vol. 6, no. 4,
pp. 548–564, 1993.

[4] G. Cormode, M. Paterson, S. C. Sahinalp, and U. Vishkin, “Communi-
cation complexity of document exchange,” in Proc. of the 11th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), San Francisco,
CA, USA, Jan. 2000, pp. 197–206.

[5] A. V. Evfimievski, “A probabilistic algorithm for updating files over a
communication link,” in Proc. of the 9th annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), San Francisco, CA, USA, Jan. 1998,
pp. 300–305.

[6] A. Orlitsky and K. Viswanathan, “Practical protocols for interactive com-
munication,” in Proc. of IEEE International Symposium on Information
Theory (ISIT), Washington, DC, USA, Jun. 2001, p. 115.

[7] R. Venkataramanan, H. Zhang, and K. Ramchandran, “Interactive low-
complexity codes for synchronization from deletions and insertions,”
in Proc. of the 48th Annual Allerton Conference on Communication,
Control, and Computing, Monticello, IL, USA, Sep.-Oct. 2010, pp.
1412–1419.

[8] A. Tridgell, “Efficient algorithms for sorting and synchronization,” Ph.D.
dissertation, Australian National University, 2000.

[9] T. Suel, P. Noel, and D. Trendafilov, “Improved file synchronization tech-
niques for maintaining large replicated collections over slow networks,”
in Proc. of the 20th International Conference on Data Engineering
(ICDE), Boston, MA, USA, Mar. -Apr. 2004, pp. 153–164.

[10] H. Zhang, C. Yeo, and K. Ramchandran, “VSYNC: a novel video
file synchronization protocol,” in Proc. of the 16th ACM International
Conference on Multimedia, Vancouver, BC, Canada, Oct. 2008, pp. 757–
760.

[11] N. Ma, K. Ramchandran, and D. Tse, “Efficient file synchronization: a
distributed source coding approach,” in Proc. of the IEEE International
Symposium on Information Theory (ISIT), St. Petersburg, Russia, Jul.-
Aug. 2011, pp. 583–587.

[12] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Transactions on Information Theory, vol. 19, no. 4, pp.
471–480, Jul. 1973.

[13] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Transactions on Information
Theory, vol. 22, no. 1, pp. 1–10, Jan. 1976.

[14] S. M. S. Tabatabaei Yazdi and L. Dolecek, “Synchronization from
deletions through interactive communication,” in Proc. of IEEE 7th
International Symposium on Turbo Codes and Iterative Information
Processing (ISTC), Gothenburg, Sweden, Aug. 2012, pp. 66–70.

[15] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-
check codes,” IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 638–656, Feb. 2001.

[16] ——, “The capacity of low-density parity-check codes under message-
passing decoding,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 599–618, Feb. 2001.

[17] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58, no.
301, pp. 13–30, Mar. 1963.

[18] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, Jan. 1959.

[19] N. Bitouze and L. Dolecek, “Synchronization from insertions and
deletions under a non-binary, non-uniform source,” in Proc. of IEEE
International Symposium on Information Theory (ISIT), Istanbul, Turkey,
Jul. 2013, pp. 2920–2924.

[20] Y. Kanoria and A. Montanari, “On the deletion channel with small
deletion probability,” in Proc. of IEEE International Symposium on
Information Theory (ISIT), Austin, TX, USA, Jun. 2010, pp. 1002–1006.

[21] A. Kalai, M. Mitzenmacher, and M. Sudan, “Tight asymptotic bounds
for the deletion channel with small deletion probabilities,” in Proc. of
IEEE International Symposium on Information Theory (ISIT), Austin,
TX, USA, Jun. 2010, pp. 997–1001.

[22] M. Mitzenmacher, “A survey of results for deletion channels and related
synchronization channels,” Probability Surveys, vol. 6, pp. 1–33, 2009.

13

APPENDIX I

Here we evaluate E [δj log |Fj |].

E [δj log |Fj |] =
∑
l

Pr {|Fj | = l}E
[
δj log |Fj |

∣∣|Fj | = l
]

=
∑
l

βl log lPr {|Fj | = l}

= E [β|Fj | log |Fj |] .

Next we estimate E [β|Fj | log |Fj |] . Recall that Fj is the
substring of X between Pij−1

and Pij . There are (ij − ij−1)
segment strings and (ij−ij−1−1) pivot strings between Pij−1

and Pij . Therefore

|Fj | = (ij − ij−1)LS + (ij − ij−1 − 1)LP .

There is a total of k pivots, and k′ of them are matched by
the matching module. Therefore, with probability p := k′

k =
(1 − LPβ + 2β + o(β)) pivot Pi is matched. Furthermore,
the probability that a pivot is matched is independent of
other pivots. Thus, (ij − ij−1) has the following geometric
distribution

Pr {ij − ij−1 = `} = p(1− p)`−1.

Suppose r ∈ {1, 2, · · · } is a random variable distributed as
above. If we upper bound |Fj | ≤ (ij − ij−1)(LS +LP), then

E [β|Fj | log |Fj |] ≤ E [βr(LS + LP) log r(LS + LP)]

= β(LS + LP)E [r log r + r log(LS + LP)]

≤ 2E
[
r2
]

+ 2 log(LS + LP)E [r] ,

where we used the fact that β(LS+LP) ≤ 2 and r log r ≤ r2.
We can write

E [r] =
1

p
,E
[
r2
]

= Var(r) + E [r]
2

=
2− p
p2

.

Also, we use log(LS+LP) ≤ log 2LS ≤ 2 log 1
β and find that

E [β|Fj | log |Fj |] ≤
4− 2p

p2
+

4

p
log

1

β
≤ 16 + 8 log

1

β
,

where we used the fact that 4−2p
p2 ≤ 16 and 4

p ≤ 8 for p ≥ 1
2

(Notice that p→ 1, as β → 0.).

APPENDIX II

Recall that δj is the number of deleted bits from the
substring of X between pivots Pij and Pij+1

. Let us denote
by LP the set of indices l for which Pl appears between Pij
and Pij+1

for some j ∈ H. Similarly, let LS denote the set
of indices l for which Sl appears between Pij and Pij+1 for
some j ∈ H. Let δPl denote the number of deleted bits from
Pl and δSl denote the number of deleted bits from Sl. We can
write ∑

j∈H
δj =

∑
l∈LP

δPl +
∑
l∈LS

δSl .

Notice that the length of the interval that δPl takes values from
is LP = O(log 1

β) and the length of the interval that δSl takes

values from is LS = 1
β . Next, by application of Theorem 4

we can write

Pr


∣∣∣∣∣∣
∑
j∈H

δj − E

∑
j∈H

δj

∣∣∣∣∣∣ = o(β)k

 ≥
Pr

{∣∣∣∣∣∑
l∈LP

δPl − E

[∑
l∈LP

δPl

]∣∣∣∣∣ +∣∣∣∣∣∑
l∈LS

δSl − E

[∑
l∈LS

δSl

]∣∣∣∣∣ = o(β)k

}
=

Pr

{∣∣∣∣∣∑
l∈LP

δPl − E

[∑
l∈LP

δPl

]∣∣∣∣∣ = o(β)k

}
·

Pr

{∣∣∣∣∣∑
l∈LS

δSl − E

[∑
l∈LS

δSl

]∣∣∣∣∣ = o(β)k

}
=

Pr

{∣∣∣∣∣∑
l∈LP

δPl − E

[∑
l∈LP

δPl

]∣∣∣∣∣ =
o(β)k

|LP |
|LP |

}
·

Pr

{∣∣∣∣∣∑
l∈LS

δSl − E

[∑
l∈LS

δSl

]∣∣∣∣∣ =
o(β)k

|LS |
|LS |

}
≥

(
1− 2 exp(−2o(β2)k2|LP |

|LP |2L2
P

)

)
·(

1− 2 exp(−2o(β2)k2|LS |
|LS |2L2

S

)

)
=(

1− 2 exp(−2o(β2)k2

|LP |L2
P

)

)
·(

1− 2 exp(−2o(β2)k2

|LS |L2
S

)

)
≥(

1− 2 exp(−2o(β2)k

L2
P

)

)
·
(

1− 2 exp(−2o(β2)k

L2
S

)

)
≥(

1− 2 exp(− 2o(β2)β

O(log2 1
β)
n)

)
·
(
1− 2 exp(−2β3o(β2)n)

)
=

(1− 2−Ω(n)) · (1− 2−Ω(n)) = 1− 2−Ω(n),

where in our derivation we used the fact that |LP | ≤ k and
|LS | ≤ k, since LP and LS are subsets of {1, · · · , k − 1}.

S. M. Sadegh Tabatabaei Yazdi is a senior engineer at Qualcomm Research
and Development center in San Diego, CA. Prior to joining Qualcomm, from
August 2011 to July 2012, he was a Postdoctoral Scholar at the Electrical
Engineering department at UCLA where he was working on the design of
optimal LDPC decoders for erroneous hardware and on the design of optimal
coding schemes for synchronization channels. Dr. Tabatabaei Yazdi received
his PhD degree from Texas A&M University in August 2011 and his Masters
degree from University of Michigan, Ann Arbor in December 2007. The focus
of his PhD and Masters research was on the design of low complexity and
optimal network codes for different topologies of wired and wireless networks.
He also received his Bachelors degree in Electrical Engineering from Sharif
University of Technology, Tehran, Iran, in June 2006.

14

Lara Dolecek (S’05– M’10–SM’13) is an Assistant Professor with the Elec-
trical Engineering Department at the University of California, Los Angeles
(UCLA) where she is the director of the Laboratory for Robust Information
Systems. She holds a B.S. (with honors), M.S. and Ph.D. degrees in Electrical
Engineering and Computer Sciences, as well as an M.A. degree in Statistics,
all from the University of California, Berkeley. She received the 2007 David
J. Sakrison Memorial Prize for the most outstanding doctoral research in the
Department of Electrical Engineering and Computer Sciences at UC Berkeley.
Prior to joining UCLA, she was a postdoctoral researcher with the Laboratory
for Information and Decision Systems at the Massachusetts Institute of

Technology. She received Intel Early Career Faculty Award, University of
California Faculty Development Award, and Okawa Research Grant all in
2013, NSF CAREER Award in 2012, and Hellman Fellowship Award in
2011. She is an Associate Editor for IEEE Transactions on Communications
and for IEEE Communication Letters and is the lead guest editor for JSAC
special issue on emerging data storage. Her research interests span coding and
information theory, graphical models, statistical algorithms, and computational
methods, with applications to emerging systems for data storage, processing,
and communication.

	I Introduction
	I-A Previous Work
	I-B Our Contribution

	II Problem Setting and the Main Result
	II-A Preliminaries
	II-B The Main Result
	II-C Synchronization Protocol

	III Proof of Theorem 2
	III-A Correct and Incorrect Matches
	III-B The Matching Graph

	IV Practical Implementation
	V Conclusions
	References
	Biographies
	S. M. Sadegh Tabatabaei Yazdi
	Lara Dolecek

