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Abstract—Perfect space-time block codes (STBCs) are basedcriterion that preserves energy-efficiency and enablestone
on four design criteria - full-rateness, non-vanishing deérminant,  obtain STBCs with larger normalized minimum determinants
cubic shaping and uniform average transmitted energy per han the perfect STBCs of[1] while meeting the other three
antenna per time slot. Cubic shaping and transmission at uriorm desi iteria. We th h th ist f h
average energy per antenna per time slot are importa.nt from he S(?I'Sé%n .Cr'l,er'a' ef Zn S OW. e exis enci.oh ﬁne Shuc
perspective of energy efficiency of STBCs. The shaping critien In literature for4 transmit antennas which has the
demands that thegenerator matrixof the lattice from which each best normalized minimum determinant. This STBC was first
layer of the perfect STBC is carved be unitary. In this paper, proposed in[[4] but its superior coding gain was not idertifie
it is shown that unitariness is not a necessary requirementof  \ye then present a new STBC fértransmit antennas which
energy efficiency in the context of space-time coding with fite to the best of our knowledge, has the largest normaliz’ed
input constellations, and an alternative criterion is provided that o s ge, ) g
enables one to obtain full-rate (rate of ne Comp|ex Symbo|s minimum determ|nant fOB transmit antennas. We Ca.” these

per channel use for ann; transmit antenna system) STBCs STBCs “improved perfect STBCs” (see Definitigh 5 in Section
with larger normalized minimum determinantian the perfect D).

STBCs. Further, two such STBCs, one each fod and 6 transmit

antennas, are presented and they are shown to have larger L R

normalized minimum determinants than the comparable perfet A- Contributions and paper organization

STBCs which hitherto had the best known normalized minimum The contributions of this paper may be summarized as
determinants. follows.

Index Terms—Cyclic division algebra, Galois group, MIMO 1) We propose a modified shaping criterion that enables one
systems, non-vanishing determinant, shaping criterion, gace- to obtain rates, STBCs with larger coding gains than
time block codes. the perfect STBCs while retaining all the other desirable

properties of the perfect STBCs.
I. INTRODUCTION AND BACKGROUND 2) For4 and6 transmit antennas, we present such STBCs

Perfect space-time block codes (STBCs) for multiple input, ~ Which have a larger normalized minimum determinant
multiple output antenna (MIMO) systems were introduced in  than the comparable perfect STBCs.
the landmark papei [1] fo2, 3, 4 and 6 transmit antennas. The paper is organized as follows. In Sectioh I, we give
These were designed to meet four important criteria, namellge system model, relevant definitions and a brief overview
1) full-rateness of STBCs. of perfect STBCs. Section ]Il presents the modified shaping

2) non-vanishing determinant (NVD) (see Definitign 3). cr@terion while the improved perfect STBCs férand6 trans-_
3) constellation cubic shaping (see subsedfionl II-C). mit antennas are presented in Sections IV[ahd V, respegtivel

4) uniform average transmitted energy per antenna per tiff@Pendix | provides some basic definitions and results in
slot. number theory which are used in this paper.

The first two criteria were shown to be sufficient for diversit )

multiplexing gain tradeoff (DMT)-optimality and approxate Notations

universality [2]. The last two criteria were framed from Throughout the paper, the following notations are used.
the perspective of energy efficiency and hence coding gain. Bold, lowercase letters denote vectors, and bold, upper-
Later, perfect STBCs were constructed for arbitrary nunaber case letters denote matrices.

transmit antennas i [3]. The perfect STBCs in general haves X, XT, det(X), tr(X) and ||X|| denote the conjugate
among the largest known normalized minimum determinants transpose, the transpose, the determinant, the trace and
(see Definitior 1l) among existing STBCs in their comparable the Frobenius norm oX, respectively.

class and in particular, the perfect STBCs [1] have the s |S| denotes the cardinality of the s&tand for the set
largest known normalized minimum determinants fr3, T C S, S\ T denotes the set of elements®fot in 7.

4 and 6 transmit antennas. However, we note that the cubice | andO denote the identity matrix and the null matrix of
shaping criterion, which demands that the generator matrix appropriate dimensions.

of each layerl[[] of the codeword matrices of perfect STBCs . E(X) denotes the expectation of the random variable

be unitary, is not a necessary criterion (although suffi¢ien « R, C andQ denote the field of real, complex and rational
for energy efficiency in the context of space-time coding numbers, respectivelyZ denotes the ring of rational
with finite input constellations. We propose an alternative integers.
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« Unless used as an index, a subscript or a superséripper channel use, the one with the larger normalized minimum
denotesy/—1 andw denotes the primitive third root of determinant is expected to have a better error performance.
unity. Definition 2: (STBC-schemf]) An STBC-schemeS,., is

« For fieldskK andF, K/F denotes thaK is an extension of defined as a family of STBCs indexed Iy each STBC of
F and[K : F] = m indicates thakK is a finite extension block length T so thaS,., = {S(p)}, where the STBGS(p)

of I of degreem. corresponds to an average signal-to-noise ratip @t each
o Gal(K/F) denotes the Galois group &/F, i.e., the receive antenna.
group ofF-linear automorphisms dk. Definition 3: (Non-vanishing determinanf8]) A linear
« For an element: of a ring R, aR denotes the ideal of STBC-schemeS,.;, = {S(p)}, all of whose STBCsS(p) are
‘R generated by:. defined by weight matrice$A;,i = 1,---,k} and employ
complex constellations (QAM or HEX) that are finite subsets
Il. SYSTEM MODEL AND DEFINITIONS of an infinite complex latticeA; (Z[i] or Z[w]), is said

We consider am; transmit antennag,. receive antenna o have tze non-vanishing determinant (NVD) property if
MIMO system (; x n,. System) with perfect channel-state inSsc = {Zizl siAils; € AL} is such that
formation available at the receiver (CSIR) alone. The clkann

is ajslu_med to be quasi-static with Rayleigh fading. Theegyst S&?oloig;éo {|d€t(s)|2} =c>0
model is . "
Y = /pHS + N ) for some strictly positive constaiat

Definition 4: (Generator matrix of an STBC-or a linear
whereY € C"*T is the received signal matris§ € C"**T  STBC that is given byS — {Zf—l SiAi}a the generator
is the codeword matrix that is transmitted over a block of % . Th. xk : ) .

) trix G e X defined 5
channel usesHd € C™*" andN € C™*T are respectively atrix G € € 's defined asl]5]
the channel matrix and the noise matrix with entries indepen G = [vec(A1) vec(As) - -+ vec(Ar))

dently and identically distributed (i.i.d.) circularly synetric . .
complex Gaussian random variables with zero mean and uwneL(.e th?h operlatlome(c)g\A) degoltes me vtehctor obtained by
variance. The average signal-to-noise ratio (SNR) at eatReiing the columns oA one below the other.

receive antenna is denoted pylt follows that
A. Cyclic Division Algebras

E(|s|*) =T. @ ) evelic divis
cyclic division algebra (CDA)A of degreen over a

A space-time block code (STBC§ of block-length T number fieldF is a vector space ovef of dimensionn?.
for an n, transmit antenna MIMO system is a finite set offhe center of4 is F and there exists a maximal subfiekd
complex matrices of size,; x T. An STBC transmittingk  of A such thatK is a Galois extension of degreeover F
independent complex information symbols in T channel usesth a cyclic Galois group generated by A is a right vector
is said to have a rate @&f/ T complex symbols per channel usespace ovelk and can be expressed as
Throughout the paper, we consider linear STBCs [5] whose _ 5 S
codeword matrices are of the for® = Y7 s;A; where A=K KoI'Ke - oi" K
the & independent information symbols take values from \whereqi — i7(a), Ya € K, i" = ~ for somey € F* = F\ {0}
a complex constellatiotd, which is QAM or HEX, andA;, sych that the normVy /() = anlTi(a) of any element

i=1,---,k, are the complex weight matrices of the STBC, ¢ K satisfies =0
An M-PAM, M-QAM and M-HEX with M = 2%, a even
and positive, are respectively given as Ngge(a) A4 t=1,--- ,n—1. (5)
M-PAM = {-M+1,—-M +3,—M +5,--- , M —1}, The CDA A is denoted by(K/F,7,v). A has a matrix
. representation and in particular, an elementt ia; + --- +
M-QAM = {a +1b,a,b € \/M'PAM} ; i""la,_, of A, wherea; € K, has the representation shown in

M-HEX — {a +wbabe \/M—PAM} _ (]H) at the top of the ne>_<t page. _In ad(_jition, every nonzero ma-
trix of the form shown in[(B) is invertible and its determinan

Among STBCs transmitting at the same rate in bits pdées inF* [10], i.e.,

channel use, the metric for comparison that decides thesr er %

performance is the normalized minimum determinant which is det(F) € F*, F#O. ()

defined as follows. For more on CDAs, one can refer to [10],_[11], and
Definition 1: (Normalized minimum determingnfor an references therein.

STBC S whose codeword matrices satisfy (2), the normalized

minimum determinand,,;,,(S) is defined as B. STBCs from CDA
Omin(S) = _ min {|det (Si — Sj)|2}. 4) For the purpose of space-time coding, the signal constel-
Si,S;E€S,i#]

lation is generally M-QAM or M-HEX which are finite
For full-diversity STBCsg,,.:»(S) defines the coding gainl[6]. subsets ofZ[i| and Z[w], respectively. SoJF is naturally
Between two competing STBCs with the same rate in bithosen to beQ(i) or Q(w) for which the ring of integers
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are respectivelyZ[i] and Z[w], and a CDAA of degreen; layers [1], with the(i 4+ 1) layer transmitting the vector
over [ is constructed. We denote the ring of integersFof D;[a;, 7(a;), - , 7™ (a;)]*,i=0,--- ,ny— 1, whereD; is
and K by Or and O, respectively. The codeword matricesa diagonal matrix given by

of the STBC obtained from the CDAd have the structure

A
shown in [3) witha;, i = 0,1,--- ,n; — 1, expressed as linear Di = d'aqu’u] )
combinations of elements of some chodéibasis overQOp, ny—itimes i times

and hence STBCs from CDAs encoezcomplex information 5,4 lai, 7(ar), - 7 Ya)]T = Rsi,i = 0, ,ny — 1,
symbols inn; channel uses. An STBG that is obtained \yheres;, = [s;1, 550, ,5in,]7 € Amx1 andR € Crexn

from CDA is expressible (prior to SNR normalization) ags the generator matrixof each layer of the STBC (not to be
S = {Z?;l siA, 8; € Aq} where A, is either QAM or confused with the generator mati& of the STBC which is
HEX, and A;, 1,---,n;, are the complex weight matrices.given by Definition#) and is given as

The following proposition relates the choice Bfbasis to the

NVD property of STBC-schemes that are based on STBCs 7(991 ) 7(99"“ )
from CDA. R— L . _ " 8)
Proposition 1: An STBC-scheme that is based on STBCs VA : :
from CDA has a non-vanishing determinant if all the elements T 0) o TN 6,,)
of the F-basis be!ong @k where, as mentioned earli€f);,i = 1,2,--- ,n; | 6; € Ok} is
Proof: Consider the STBC-schem&,., = {S(p)}, anF-basis ofK and.\ is a suitable real-valued scalar designed

where all theS(p) are obtained from the same CDA and giveRg hat the STBC meets the energy constrainbin (2).
by S(p) = {BY 1, siAi.si € Ay(p)}, where A, (p) is the
regular QAM or HEX constellation whose size is dependent
p so that the required multiplexing gain is achieved (5¢eq2] foé" Perfect Codes _ _ _
details), and3 is the normalizing scalar that ensures that the The perfect STBCs are designed to be equipped with the
average SNR at each receive antenna. iSrom Definitior(B, following two desirable properties|[1].][3].
Ssen has the NVD property ifS,, = {Z;L siA\;, s; € OF} . Apprqximate—unive.rsality. Th_is is achieved if the STBC
(O is eitherZ[i] or Z[w]) is such that satisfies the following criteria.
) ) C1 Full-ratd] : The STBC transmits:? indepen-

sessz0 {ldet(S)*} =c>0 dent complex information symbols iy, channel
uses.
Non-vanishing determinantThe STBC-scheme
has the NVD property.

« Energy-efficiency/coding gainTo achieve this, the STBC
should satisfy the following criteria.

for some constant. Let the F-basis{f;,s = 1,--- ,n:} be c2
such that all thed; belong toOk. Since~ € F and satisfies
(@), we can express asy = ¢ with a,b € O \ {0}. Now,
multiplying all the matrices of. by b results in all the entries
of all the matrices ofS., belonging toOx and from [6),

any nonzero matrix oS, has a determinant that belongs to C3  Constellation shaping criterion The matrixR
(FNOx)\ {0} = Ox \ {0}. Since Ok is eitherZ[i] or Z[w], given by [8) is unitary [[1] so that on each
we have layer, the energy required to transmit the linear
, 1 combination of information symbols is equal to
segniré;éo {|det(S)| } > |b|T"' >0 the energy required to transmit the information
= symbols themselves, i.€|Rs;||? = ||si||?, i =
which proves the proposition. u 0,---,n¢ — 1, with the notations as used in the
So, for the purpose of space-time codingFabasis{0;,i = previous subsection.
1,2,---,ns | 0; € Ok} is chosen (this can also be @- C4  Uniform average transmitted energyrhe aver-
basis of Ox) and thea; € K in (3) are expressed as linear age transmitted energy for all the antennas in all
combinations of elements of this basis ov@f. The STBC time slots is the same.

which encodes symbols from a complex constellation(M- 1o satisfy C1F is chosen to bé)(i) or Q(w) and a CDA
QAM or M-HEX) has its codewords of the form shown inyf degreen, overF is constructed. C2 is satisfied by choosing
@) with a; = Z;Ll Sijoj, Sij € Aq C Or with O = Z[’L]

or Z[w]. A codeword matrix of STBCs from CDA has; 1in this paper, a ratex STBC is referred to as a full-rate STBC.



anF-basis{0;,i =1,2,--- ,n; | 6; € Og} which guarantees wherel~ is the identity matrix of size X T, G is the generator

a non-vanishing determinant from Propositidn 1. matrix defined in Definitiofl4 anslis the vector of information
C3 is satisfied by choosing thé-basis {#;,i = symbols belonging toA’;Xl. For this model, the maximum

1,2,---,nt | 6; € Og} such thatR is unitary. C4 is satisfied mutual information for a given channel mattik is

by choosingy such that/y|? = 1. In [I], v is chosen to be 1

in Or while in [3], v is chosen to be the ratio of a suitable C'(H) = max (— log, det (I + HGQ’GHHH)>

elementz € Op\ {0} and its complex conjugate. In the former tr(eQ )<, \ T

case, the minimum determinant, prior to normalizaton, iswhereQ’ is non-negative definite and = I+ ® H. WhenG

nonzero positive integer while in the latter case, %ﬂg(lt—,]) is unitary (possible only whek = n,T) andQ’ = (p/n)l,

[3]. Choosingy to be in Or restricts the construction of theC’(H) is equal toC'(H) (assumingC(H) is equal to the right

perfect STBCs to onlg, 3,4 and6 transmit antennas][1] but hand side of[{9)) and hence the STBC is information-lossless

these STBCs have the largest known coding gains in th§h, [9]. For STBCs from CDA, ifR given by [8) is unitary,

clasB. S0 isG.
However, it is important to note that the expressions fohbot
I1l. M ODIFIED SHAPING CRITERION C(H) andC’(H) are obtained foGaussian inputgsince the

For an STBC that is obtained from CDA to be energgntropy of the output is maximized if and only if the input
efficient, C3, which asks foR to be unitary, is a sufficient is Gaussian). In the case of STBCs, the inputs information
but not a necessary criterion - it is not necessary that on thymbols take values fromd, which is M-QAM or M-HEX,
it" layer, the energy required to transmit_, 7(a;_1), ---, and all the signal points are equally likely to be chosen st th
and7"~!(a;_1) be equal to the energy used for sending thiae PMF ofs; is ps,(s) = 1/M, Vs € A,. So, for the signal
information symbolss;; themselves. It is sufficient that themodely = \/BHs+n wheres € A7*! andE (||\/BHs|?) =
averageenergy required to send the linear combination of then,., the constellation constrained mutual informatiGp(H)
information symbols on each layer is equal to neerage is not given by[(P) but by the following expression [14], [15]
energy used for sending the information symbols themsglves
ie, E(|Rs|?) = E(|si]|?), ¢ = 0,--+,ny — 1 (with the
notations as in Subsectién1l-B), where the expectatiové o
the distribution ofs; which by assumption has probability mass
function (PMF) given byps,(s) = (1/M)"™, ¥s € Am*L. —nylogy(me) (10)

Hence, unitariness dR is not necessary. However, in Iltera-Where the expectation is over the distribution yuf With

ture, a unitaryR is seen as desirable as it makes the STBgpace time coding, the corresponding constellation caingtd
information-lossless. We elaborate on this in the follcgvinmutua| information is

subsection.

1 2
- _ - —lly—v/BHs||
C.(H) Elog, VOE E e

1
seAgt™

1 1 / a2
. . . . / - __ - —lly’=/PHGs||
A. Unitary generator matrbG and information-losslessness Ce(H) = —FElog, (M)t > e v
ntTX1
An STBC is said to beinformation-losslesd9] if the seAq

maximum instantaneous mutual information of the equivalen —nilogy (me) (11)

MIMO channel after space-time processing is the same @ferey’ — vec(Y) and the expectation is over the distribution
the maximum instantaneous mutual information of the MIM@; y', andE (”GSH2) = T. Itis clear from [ID) and{d1) that

channel without space-time processing. The maximum instaRe significance of unitariness (or scaled unitariness)hef t
taneous mutual information (in bits per channel use) SUBHOT generator matrixG is questionable when finite constellations
by the MIMO channel without an STBC encoderlis|[13]  are ysed. In particular, the notion of information-lossles

C(H) = %%i log, det (| + HOQH H) STBCs is itself questionable.
tr <p

whereQ is a non-negative definite matrix. A good approxi: e . o
mation forQ is takefi to be (p/ne)l so that B. Modified Shaping criterion
Having noted that unitariness & and hence oR is not a
C(H) =~ log, det (I + ﬁHHH) ) (9) necessary criterion, we propose a change in C3 as follows.
" The modified shaping criterion can be separated into two

Now, for linear STBCs of the forn§ = {Zle siA;}, the subcriteria which are
signal model given in[{1) can be rewritten as C3.1 the average energy required to transmit the lin-
ear combination of the information symbols on
vec(Y) = /p(It @ H)Gs + vec(N) each layer is equal to thaverageenergy used for

2There are certain non-linear STBCs, for example [inl [12], cithbeat sending the information symbols themselves, i.e.,
the Golden code. These STBCs employ spherical shapingvenaaiditional E (HRSIHQ) =E (||SZ||2), i1=20,---,n; — 1, where
complexity in encoding and are not sphere-decodable. Weallaonsider the expectation is over the distribution®fwhich by

this class of non-linear STBCs in this paper. . .
SFor calculating the ergodic capacity which is the expeotatdf C'(H) assumption has a PMF given M(S) = (1/M)nt*
over the distribution oH, (p/n:)! is the optimalQ. Vs e A;”Xl.



C3.2 All the n? symbols are transmitted at the same IV. IMPROVED PERFECTSTBCFOR4 TX

average energy. The improved perfect STBC far transmit antennas, which

we call C4, was first reported in[[4] but its superior coding

The rationale behind C3.1 is obvious - we do not wish tGain went unnoticedC, is obtained from the CDAA =
Iglow up the average energy requi_red to trgnsmit th_e inform@(i’ C5)/Q(i), 7 : G5 — (2,4) [@], with (5 being the primitive
tion symbols. The reason for coming up with C3.2 is that n9h oot of unity. Its codeword matrix, prior to normalization,
symbol should be favoured over other symbols with respectiigs the structure

energy required for transmission. We assume that the agerag

energy ofAg is E so thatE(||s;||?) = n: F, and because of the y 4

symmetry of M-QAM and M-HEX, we haveE(s;s”) = El. s— | @ 7(ao) 7 (as) ’,73(&2)

It is also assumed that|?> = 1 so thatD; given by [T) is az  7(a) 72((10) . (as)

unitary, since it is a necessary condition for C4 to be satisfi a3 7(az) 7(a1) 7(ao)

With these assumptions, we have the following propositionwhere a; = s;1 + si2Cs + si2C2 + si2¢8, i = 0,1,2,3, and
Proposition 2: C3.1, C3.2 and C4 are together satisfied ifii < 1\24-Q3AM. Clearly, C4 satisfies C1. The(i)-basis is

and only if R given by [8) is such that all of its rows andil: (s, (5} which is also aZli]-basis [16, p. 158] for

columns have a Euclidean norm equal to unity. Zi, G| andR, as defined in[{8), is

aq iT(ag) 2'7'2((12) z'7'3(a1)

Proof: We prove that if C3.1, C3.2 and C4 are together 1 ¢ ¢ ¢
satisfied, therR shall be such that all of its rows and columns l 1 & G G
have a Euclidean norm equal to unity. The converse is then 2|1 ¢ & &
easy to see. If C3.1 is satisfied, then, widhunitary, we have L ¢ ¢ 31

It is clear that C3.1 and C3.2 are satisfied. Noting that ¢
12Y) — ) N\H

E (HRS‘” ) =E [ir (Rsi(Rs)")] has unit modulusC, satisfies C4 as well. It only remains to

E [tr (RslsZHRH)} =tr [E (RslstRH)} be seen whether C2 is satisfied. Although this is shown in

E(llsi[*)

— 4 [RE (ss?)RH] = tr [R(EIRE [4], we provide our version of the proof here for the sake
" [m (SZ ' ) ] T[ (E) ] of completeness and the steps of this proof will be used in
_ EZ 312 (12 the next section where the STBC f6rtransmit antennas is
= ’ discussed. We first show the® (i, ¢5)/Q(i), 7 : (5 — (2,4) is

h a division algebra and subsequently, application of Pritipos
wherer; denotes the®” row of R. It follows that for C4 to [ establishes that the NVD criterion is satisfied.

be satisfied, Proposition 3: A = (Q(i,¢;)/Q(i),7 : ¢ +— (2,i) is a

E(|ris:|?) = E(|r2si]?) = - - - = E(|rn,s:|?), (13) division algebra.
. Proof: To prove that4 is a CDA, it is sufficient to
Vi = 0,---,n; — 1. So, from [I2), [(IB) and the fact thatgngw that N ¢, /o0 (@) = H?ZO rila) # it, t = 1,2,3,

E(”SL’!2) = mE, R must satisf¥}1|r1|\2 = [r2|* = = Va € Q(i,¢5). Thus, we have to establish that —1 and
[[rn, [ = 1. Now, denoting thei" column of R by r, we _; are not norms irQ(i, (s)/Q(i). Noting that¢s + ¢; ' =
have (=1 ++/5)/2, it is clear thatQ(i,v/5) C Q(i,(s). Since
E(lsI”) = E(IRs|”) =E[s'R"Rs] [Q(i,G5) : ()] = 4 and[Q(i, V/5) : Q(i)] =2, by the multi-
plicative formula for tower of fields|Q(4, ¢5) : Q(i, v/5)] = 2
_ EiHr,HQ and Q(i,¢5)/Q(i,v/5) is a Galois extension of degrez
- Pt il Further, since¢? = ¢;' m2(G+ ¢ = ¢+ ¢ and
d d hdti’l\Q Ak RE 2 fixes Q(i,v/5). So, Gal(Q(i,¢5)/Q(i,v5)) = {1,7°}

But C3.2 demands thafr | = [r5)|* = --- = [[r, " and Gal(O(i. V5 m = {1 . where 7.
Hence, the Euclidean norm of each row and columnRof al(Q(, v5)/Q() { ’T‘@(“/g)}' 71aGi.v5)

denotes # restricted toQ(i,+/5)”. If i were a norm in

Q(i,¢5)/Q(4), then for somer in Q(i, (),
An STBC with a unitaryR obviously satisfies C3.1 and C3.2

but unitariness is not a necessary condition. In the folawi i = ar(a)r*(a)7*(a)

two sections, we highlight the significance of the modified = (am®(a)) 7 (a7*(a)) . (15)
shaping criterion by showing the existence of STBCs whic 5 L . 5
do not have a unitariR but have a higher coding gain than théUt @7 (@) is_invariant under* and hence belongs to
perfect STBCs forl and 6 transmit antenna$[1] which WereQ(Z_’ ‘/,5)‘ So, [I3) |mpI|es th’at IS a norm inQ(i, \/5)/@(2,)
so far unbeaten in this regard. We call these STBCs “improvl@’@'Ch is not truel[B] sinceQ(i, v/5)/Q(i), 7 : V5 = —/5,i)

fect STBCs” and th f Ilv defined as follows. 'S @ division algebra. Therefore,is not a norm inQ(%, ¢5).
s S andhey are formatly defined as foflows Likewise, —i is also not a norm inQ(i,/5)/Q(i) (for if

Definition 5: (Improved perfect STBC) An STBC that at(a) = —i, then(ia)7(ia) = i for somea € Q(i,/5) which
satisfies C1, C2, C3.1, C3.2 and C4, and has a larger normala contradiction) and hence not a normQiti, ¢s)/Q(7).
ized minimum determinant than the existing best comparablenow, it only remains to be seen thatl is not a norm in

perfect STBC is called an improved perfect STBC. Q(i,¢5)/Q(i). This is proved using class field theory whose

should be equal to unity. This concludes the proof. =
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a4 7(as) 72(az) (ay) (ag) —wt®(as)

as T(a4) 72(a3) 73 (az) (ay) 7 (ap)

usage in proving that a unit is not a norm in the extension
field is provided in[[1, Appendix I1]. In[[1, Appendix 1V], it

is shown that-1 is not a norm inQ (i,2cos (32)) /Q(i). The
discriminant (see Appendix | of this paper) Qf(i, ¢5)/Q(4)

is 53Z[i]. The only prime ideals irZ[i] that are ramified in
Q(i,¢5) are the ones that dividé25Z[:] and hence divide
5Z[i]. These are precisely the prime ideds+ i)Z[:] and

(2 — i)Z[i]. With these facts, the same proof given [d [1,
Appendix V], with 2 minor changes, establishes that is

not a norm inQ(4, (5)/Q(4). The first minor change is that
we need to establish that the prime idéaRk5 + 124)Z[:] does
not completely split inZ[4, (5] whereas in[[lL, Appendix 1V],
(=25 + 12¢)Z[i] was required not to be completely split in . :
the ring of integers of) (4,2 cos 22 ). That (—25 + 124)Z[i] TRV v
does not completely split ii[i, (5] is shown in Appendix II.
The second change from the proofiin [1, Appendix 1V] is that,
324 is not ramified inQ(i, ¢s)/Q(7) and need not be taken\'/:vli?ﬁ %LLQEIEIR performance of the Perfect STBC ahdfor the 4 x 4 system
into consideration for evaluating the Hasse norm symbol at

-6 Perfect code - 4 X 4

+C,

Codeword Error Rate

16 18 20 2

14
SNRindb

ramified places. |
o _ codeword matrix has the structure shown[inl (14) at the top of
A. Minimum determinant the page withu; = s;1 + si2C7 + 5i3C2 + s4(2 + 51.5@1 + 5i6C2,
The entries of all the codewords 6f prior to normalization ¢ = 0,1,2,---,5, ands;; € M-HEX. Clearly,Cs is full-rate

of R by 1/2 belong toZ[i, ¢s], the ring of integers of(i,¢s), since{l, ¢z, 67,67, ¢7, (2} is aZw]-basis forZfw, (7. R (as
and hence the determinant of any codeword difference matéigfined in [(B)) is
belongs tdZ[i, ¢5]. From [8), the determinant of any codeword

. . , , : CENCANC N aNe
difference matrix belongs tdQ(i) N Z[i,{5] = Z[i] and

7@ G @G

— = e
;S|
N

so, the minimum determinant is at leakt But when the 1 e NS GG
symbols take values from/-QAM with an average energy % eI NG e
of E units, the nonzero difference between any two symbols e I
is a multiple of 2. Taking into account a scaling factor of 1 & @& ¢ ¢ &

ﬁ so that the expectation of the square of the Euclidean ]
norm of each column of the codeword matrices is %itfnd tis clear_that the norm of each_row and cqumr_qufs
qual tol. Noting thaty = —w has unit modulusCs satisfies

see Definitio , the normalized minimum determinant g A
( 2' itiorL L) 'z inimu ! 23.1, C3.2 and C4. To show that the NVD criterion is also

Calis Qm) = 555+ Which is significantly larger than the gagisfied, it is sufficient to show théB(w, ¢7)/Q(w), T : 7 —
normalized minimum determinant of the perfect STBC 4or (3, —w) is a division algebra following which the application
ltransmit _antenna; that _’standg% [@]. A result 0]1: this  of Propositior 1L establishes that the NVD criterion is $itik
arger minimum determinant is a superior error performance . . ) 3 N
compared to the perfect STBC and this is evident in Elg. &(I:i\r/?sgingl)getrﬁ Q. )/Qw), 7 : & = &7, —w) s
which gives a comparison of the error performance of the two Proof: To prove thatA is a CDA, it is sufficient to

STBCs for4-QAM. show that N, ¢, /00w (@) = H?:o ri(a) # (—w), t =
1,2,---,5, Va € Q(w,({7). Hence, it is to be established

V. Cs - IMPROVED PERFECTSTBCFORG6 TX that +w, +w?, —1 are not norms iNQ(w, r)/Q(w). We

Cs is obtained from the algebrd = (Q(w,(7)/Q(w),7 : note thatQ(w,¢r + 1) € Q(w,¢r). Since [Q(w,¢r) :

7+ (3, —w) with ¢; being the primitiver*” root of unity. Its Q(w)] = 6 and [Q(w,¢ + 1) @ Qw)] = 3, by

the multiplicative formula for tower of fields|Q(w,(7) :

4 ) . h R
For STBCs like the perfect STBCs, the average energy fosinésion of Q(w, G+ <7 1)] — 92 and Q(w, C7)/Q(w, G+ <7 1) is a

symbols in each time slot is the same and the energy corts@itranslates . . 3 el
to the requirement that the expectation of the square of ti@idgan norm Galois extension of degree. Further, 7°((7 + ¢; ) =

of each column of codeword matrices be unity. G+ ¢ (sincels !t = ¢f) and 72 fixes Q(w, ¢r + ¢ ). So,



# Tx antennag STBC S (avgrc;\ngsetee"r?g?gr;}f) Omin(S) Approximately Universal?
\ Perfect Code[]1] QAM T Yes
C, 4] QAM 55T Yes
Perfect STBCI[1] HEX 557555 < Omin < 55 Yes
' Co HEX — Yes

TABLE |
COMPARISON BETWEEN THE IMPROVED PERFEC8TBCS AND THE PERFECTSTBCs.

Gal( (w, Q)/Q(w G+eGh) = {1 73} and Gal(Q(w, ¢+ symbolsis a multiple o2. Taking into account a normalizing

1 /Q(w) L Tigcrtc )y T I@( . So, if +w factor of [ the normalized minimum determinant 6§
w,( 1
were a norm inQ(w, ¢7)/Q(w), then for some in Qw,¢r), s ~2=) = 55 which is significantly larger than the
tw = ar(a)r(a)r(a)m*(a)™(a) normalized minimum determinant of the perfect STBC or

3 3 9 3 transmit antennas that is upper bounded—@;}—4 s []. The
(ar(@) 7 (ar*(@)) 7° (ar(a)) . (16) normalized minimum determinants of the3 im%roved perfect
But a73(a) is invariant underr® and hence belongs to STBCs and the perfect STBCs are tabulated in Table I.
Q(w,¢r + ¢1). So, [@6) implies thatw is a norm in  Remarks We have restricted our construction of the im-
Q(w, 7 + ¢ 1)/Q(w) which is not true[[8] sincéQ(w, (7 + proved perfect STBCs to justand6 transmit antennas. The
“1/Qw), 72 Gr+G e (2+( %, w) is a division algebra usage of cyclotomic extensions @f(i) and Q(w) was the
(—w not being a norm naturally follows). Therefor&w is reason we were able to obtain STBCs with larger normalized
not a norm inQ(w, ¢;). Likewise, +-w? is also not a norm in minimum determinants than that of perfect STBCs4@nd6
Q(w, ¢7+¢ 1) /Q(w) and hence nota norm i(w, ¢7)/Q(w).  transmit antennas. However, fog = 2,3, one cannot obtain
Now, it only remains to be seen thatl is not a norm CDAs of degreen; over Q(i) or Q(w) using cyclotomic
n Q(w,¢r)/Q(w). This is again proved using class fielextensions (with(s = w, (Q(i,w)/Q(i),7 : w — w?9) is
theory. In [1, Appendix V], it is shown that-1 is not not a division algebra). So, f&rand3 transmit antennas, the
a norm in Q ((w 2c05( 7)) /Q(w)). The discriminant of existing perfect STBCs_[1] remain the best with respect to
Q(w, ¢7)/Q(w) is T°Z[w]. The only prime ideals inZ(w) coding gain. For other values af, v cannot be a unit irZ]i]
that are ramified ifQ(w, ¢;) are the ones that divide’Z[w] or Z[w] for the algebra to be a division algebra. However, the
and hence dividgZ[w]. These are precisely the prime ideal@pproach taken iri_[3], wherg is not restricted to be ifZ[:]
(3+w)Z[w] and(2—w)Z[w]. Using these facts, the same proobr Z[w], can still be taken to investigate if new STBCs with
given in [1, Appendix V], with2 minor changes, establishedarger coding gains can be obtained for arbitrary number of
that —1 is not a norm inQ(w, ¢7)/Q(w). The first change is transmit antennas.
that we are required to show that the prime idgat 8w)Z|w]
is not completely split ir¥[w, (7] whereas in[[, Appendix V], VI. CONCLUDING REMARKS
(3 — 8w)Z[w] was required to be not completely split in the |n this paper, we presented a modified shaping criterion in
ring of integers ofQ (w, 2 cos 3% ). It is shown in Appendix the design of STBCs that enabled us to propose two STBCs,
1l of this paper that(3 — 8w)Z[w] is not completely split in one each for4 and 6 transmit antennas, that have the best
Z|w, (7). The second change from the proof in [1, Appendiknown normalized minimum determinants in their comparable
V] is that 2Z[w] is not ramified inQ(w, ¢7)/Q(w) and need class. This shaping criterion can be employed to see if bette
not be taken into consideration for evaluating the HassennoBTBCs, in terms of coding gain, can be obtained for arbitrary
symbol at ramified places. B  number of transmit antennas.

APPENDIX |
NUMBER THEORY BASICS AND DEFINITIONS

A. Minimum Determinant

The entries of all the codewords 6§, prior to normaliza-
tion of R by 1/v/6, belong toZ[w, ¢;], the ring of integers ~ We consider a number fielfl that is a finite extension of
of Q(w,(r), and hence the determinant of any codewor@. Its ring of integer<y is given byOr = {a € F | f(a) =
difference matrix belongs t®(w) N Z[w, (7] = Z[w]. SO, 0,f € Zmonic|X]|} where Z,onic[X] is the set ofmonic
the minimum determinant is guaranteed to be at I@éag8ut polynomials in the variableX with coefficients inZ. Let
since the symbols take values frahi-HEX with an average the Galois extension of of degreen be denoted byK
energy of E units, the nonzero difference between any twahose ring of integers is denoted I and Gal(K/F) =



,on}. It is well-known that for anya in K, if
: aen}

{01,090,
oi(a) =a,Vi=1,--- ,n, thena € F. Let {0,04,--
be theOp-basis ofOk.

Trace of an elemenfThe trace of an element in K/F,
denoted byl r(a), is Y_;_; 0s(a) and belongs td¥.

Norm of an elementThe norm of an element in K/F,
denoted byNy r(a), is [} oi(a) and belongs td.

It follows that [16, p. 144]
g9

[K:F) =" e(Bi/p)f(Bi/p).
i=1
Corollary 1: [17, p. 191] Consider a tower of field exten-
sionsF C K C L with the ring of integersOr C Oxg C OL.
Letp be a prime ideal oDp, Bx a prime ideal ofOx lying

Discriminant of a basis [16, p. 25]: For a cho- apovep and®B; a prime ideal of®;, lying above®Bx. Then,

sen F-basis {b1, b, - -
A(by1,ba, - ,by), is the determinant of the x n matrix M
whose(i, j)™ entry is Tk /r(bib;).

Discriminant of K /F [16, p. 148]: The discriminant dK/F
is the idealA(6y,602,- - ,6,)OF.

Prime ideal An ideal p of a ring R is a prime ideal if it
has the following properties.

e If a,b € R such thatab € p, then eithera € p or b € p.
e pis notR itself.

A nonzero principal ideal is prime if and only if it is genezdt
by a prime element.

Prime elements di[i]: A Gaussian integes + ib, a,b € Z
is a Gaussian prime if and only if either

+, by}, its discriminant, denoted by the ramification index and inertia degree are multiplicaiiv

the tower, i.e.,
e(BL/p) e(BL/Bk )e(Bk /p)
f(BL/p) = f(BL/Bk)f(Bk/p).

For Galois extensionK/F, e(B1/p) = e(Ba/p) = -+ =
e(By/p) and f(B1/p) = f(Ba2/p) = -+ = f(B,y/p) [A6, p.
152]. In such a case, we simply denote the ramification index

and the inertia degree hyand f, respectively, and
[K:F]=n=efg. a7)

Definition Let p be a prime ideal inDp that factors into
prime ideals ofOx in the Galois extension fiel& aspOx =

_ _ _ 9 . T
« one ofa, b is zero and the other is a prime number of[i—, B7 with an inertia degreg. Then,

the form+(4n + 3), with n a nonnegative integer, or

« botha andb are nonzero and? + b2 is a prime number

(which will not be of the formdn + 3).

Prime elements of[w]: An Eisenstein integet = a + wb,
a,b € Z is an Eisenstein prime if and only if either

o one ofq, b is zero and: is equal to the product of a unit

and a natural prime of the for@n — 1, or

« botha andb are nonzero and:|? = a? — ab + b? is a
natural prime (which is necessarily congruenttor 1
mod 3).

Relative prime idealsldeals A and B of a ringR are said
to be relatively prime (coprime) il + B = R. It follows that
coprime idealsA and B of R satisfy AB = AN B.

Dedekind domainAn integral domainR which is not a

field is called a Dedekind domain if every nonzero properlideaomial p( X

o pis ramifiedin K if e > 1.

o pis totally ramifiedin Kif e=n,g=1, f = 1.

e p splitsin Ok if g > 1.

o p splits completelyn O if e=1,9g=n, f = 1.

e pisinertin O ife=1,¢g=1.

Corollary [16], P. 148]: A prime ideap of O is ramified
in K if and only if it divides the discriminant oK /F.

Let § € Ox such thatK = F(¢) (not necessarily a Galois
extension) with the minimal polynomial af being p(X) €
Or[X]. The conductorof the ring Or[6] is the largest ideaf
of Ok that is contained irOy[6].

Proposition 5: [18, p. 47] Letp be a prime integer oOp
such thatp = pOyp is a prime ideal ofOr and pOk is
relatively prime to the conductor aPp[f], and letp(X) =
P1(X) pa(X) - - - pg(X)% be the factorization of the poly-
) = p(X) mod p into monic irreducibley;(X) =

factors into prime ideals. The ring of integers of a numbédfiep;(X) mod p over the residue class fiel@/p, with all the

is a Dedekind domain.

Ideal factorization in extensionfd6, p. 144]: Letp be a
nonzero prime ideal iy. Then, in the extension fiel&
(not necessarily a Galois extension),

g
pOk = H %f(%i/P)
i=1

whereB; Cc Ok are prime ideals (finite in number) i@k,
e(B;/p) is a non-negative integer called tramification index
of B, overp and is the exact power @6; that dividespOx.
9B, is said to lie abovep in Ok. This factorization isunique
up to order of the factors sind®x is a Dedekind domain.
Inertia degree or residue class degrfEd, p. 105]: Letp
be a prime ideal irOr that factors into prime ideals i@k as
pOx = [T, %f(%i/p). Then, the inertia degreg(B;/p) of

B, overyp is a non-negative integer given by
f(Bi/p) = [Ox/B; : Or/p].

pi(X) € Op[X] and monic. Then®B; = pOx + p;(0) Ok,
i =1,..., g, are the different prime ideals d?x abovep. The
inertia degreef (B, /p) of B, overyp is the degree of;(X),
and one has

pOx = BB -+ Bis.

Theorem 1:[19, Theorem 2.47] Lef, be a finite field with
¢ elements and characterisfic n a natural number such that
p does not dividen. The nt" cyclotomic polynomial®,, (X)
factorizes ovelf, as a product of irreducible factors all of
the same degreé whered is the order ofg modn (d is the
smallest positive integer such thgt = 1 mod n).

APPENDIXII
PROOF THAT (—25 + 12¢)Z[i] DOES NOT SPLIT
COMPLETELY IN Z[i, (5]
Let preg = (—25+ 12¢)Z[i] which is a prime ideal of][i].
The discriminant ofQ (4, ¢5)/Q(¢) is 125Z[i] and clearlypreg



does not dividel 25Z[i]. So, p7e9 is not ramified inQ(4, (5).
We have the following tower of Galois field extensions.

Q C Q(i)CQ(i7<5),
Q < Q&) c Qi ¢s)

where[Q(i,¢5) - Q] = 8, [Q(¢5) : Q] = 4. The prime ideal
769Z splits into two prime idealgz9 = (—25 + 12¢)Z][i]
and qzg9 = (—25 — 124)Z[i] in Z[i]. From Corollary1l and
(I7) in Appendix 1,769Z splits completely inZ[i, (5] if and
only if prg¢9 andqreg split completely inZ[i, ¢5]. Also, 769Z
splits completely inZ[i, (5] if and only if it splits completely
in Z[Cs).

So, it is sufficient to prove that the ideg9Z does not split

completely inZ[(5]. For this purpose, we consider the minimal

polynomial of (s overQ which is X4+ X3+ X2+ X +1 and
is also the5'" cyclotomic polynomiakbs(X). From Theorem

[3] P. Elia, B. A. Sethuraman, and P. V. Kumar, “Perfect Spaicee Codes
for Any Number of Antennas,JEEE Trans. Inf. Theoryvol. 53, no. 11,
pp. 3853-3868, Nov. 2007.
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APPENDIXIII

PROOF THAT (3 — 8w)Z|w] DOES NOT SPLIT COMPLETELY
IN Z[w7<7]

Let pg7 = (3 — 8w)Z[w] which is a prime ideal ofZ[w].
The discriminant ofQ(w, ¢5)/Q(w) is 7°Z[w] and clearlypg;
does not divide7T>Z[w]. So, po7 is not ramified inQ(w, (7).
We have the following Galois field extensions.

Q Q(CU) - Q(w7 <7)7
Q Q(¢7) € Q(w, ¢7)

where[Q(w, ¢7) : Q] = 12, [Q(¢7) : Q] = 6. The prime ideal
97Z splits into two prime idealgg; = (3 — 8w)Z|w] and
qo7 = (3 — 8w?)Z[w] in Z[w]. It is clear from the Corollarf]1
and [I7) in Appendix | tha@77Z splits completely irfZ|w, ¢7] if
and only ifpg7 andqgz7 split completely inZ[w, ¢7]. Also, 97Z
splits completely irZ[w, ¢;] if and only if it splits completely
in Z[<7]

So, it suffices to prove that the ide@VZ does not split

-
C
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[13] I. E. Telatar, “Capacity of multi-antenna Gaussianrofels,” Eur. Trans.
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[14] B.M. Hochwald and S. ten Brink, “Achieving Near-Capgcion a
Multiple-Antenna Channel,IEEE Trans. Communwvol. 51, no. 3, pp.
389-399, March 2003.

[15] E. Baccarelli, “Evaluation of the Reliable Data Ratespforted by
Multiple-Antenna Coded Wireless Links for QAM Transmissg IEEE
J. Sel. Areas Communvol. 19, no. 2, pp. 295-304, Feb. 2001.
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completely inZ[¢;]. For this purpose, we consider the minimal

polynomial of ¢; over Q which is X6 + X° + X* + X3 4+

X2 4+ X + 1 and is also the7*" cyclotomic polynomial
®,(X). From Theoreni]l in Appendix I, (X) splits into
only 3 irreducible monic factors, each of degrzever For.

Hence, from Propositiofl 5, it is clear th@fZ does not split
completely inZ[¢7]. This establishes thdB — 8w)Z[w] does
not split completely inZw, ¢7].
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