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Abstract

We consider the problem of identifying a linear deterministic operator from its response to
a given probing signal. For a large class of linear operators, we show that stable identifiability
is possible if the total support area of the operator’s spreading function satisfies ∆ ≤ 1/2. This
result holds for an arbitrary (possibly fragmented) support region of the spreading function,
does not impose limitations on the total extent of the support region, and, most importantly,
does not require the support region to be known prior to identification. Furthermore, we prove
that stable identifiability of almost all operators is possible if ∆ < 1. This result is surprising
as it says that there is no penalty for not knowing the support region of the spreading function
prior to identification. Algorithms that provably recover all operators with ∆ ≤ 1/2, and almost
all operators with ∆ < 1 are presented.

1 Introduction

The identification of a deterministic linear operator from the operator’s response to a probing signal
is an important problem in many fields of engineering. Concrete examples include system iden-
tification in control theory and practice, the measurement of dispersive communication channels,
and radar imaging. It is natural to ask under which conditions (on the operator) identification is
possible, in principle, and how one would go about choosing the probing signal and extracting the
operator from the corresponding output signal. This paper addresses these questions by considering
the (large) class of linear operators that can be represented as a continuous weighted superposition
of time-frequency shift operators, i.e., the operator’s response to the signal x(t) can be written as

y(t) =

∫
τ

∫
ν
sH(τ, ν)x(t− τ)ej2πνtdνdτ (1)

where sH(τ, ν) denotes the spreading function associated with the operator. The representation
theorem [2, Thm. 14.3.5] states that the action of a large class of continuous (and hence bounded)
linear operators can be represented as in (1). In the communications literature operators with
input-output relation as in (1) are referred to as linear time-varying (LTV) channels/systems and
sH(τ, ν) is the delay-Doppler spreading function [3, 4, 5].

For the special case of linear time-invariant (LTI) systems, we have sH(τ, ν) = h(τ)δ(ν), so that
(1) reduces to the standard convolution relation

y(t) =

∫
τ
h(τ)x(t− τ)dτ. (2)

Part of this paper was presented at the 2011 IEEE International Symposium on Information Theory (ISIT) [1].
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The question of identifiability of LTI systems is readily answered by noting that the system’s
response to the Dirac delta function is given by the impulse response h(t), which by (2) fully
characterizes the system’s input-output relation. LTI systems are therefore always identifiable,
provided that the probing signal can have infinite bandwidth and we can observe the output signal
over an infinite duration.

For LTV systems the situation is fundamentally different. Specifically, Kailath’s landmark paper
[3] shows that an LTV system with spreading function compactly supported on a rectangle of area
∆ is identifiable if and only if ∆ ≤ 1. This condition can be very restrictive. Measurements of
underwater acoustic communication channels, such as those reported in [6] for example, show that
the support area of the spreading function can be larger than 1. The measurements in [6] exhibit,
however, an interesting structural property: The nonzero components of the spreading function are
scattered across the (τ, ν)-plane and the sum of the corresponding support areas, henceforth called
“overall support area”, is smaller than 1. A similar situation arises in radar astronomy [7]. Bello
[4] shows that Kailath’s identifiability result continues to hold for arbitrarily fragmented spreading
function support regions as long as the corresponding overall support area is smaller than 1. Kozek
and Pfander [8] and Pfander and Walnut [9] found elegant functional-analytical identifiability proofs
for setups that are more general than those originally considered in [3] and [4]. However, the results
in [3, 4, 8, 9] require the support region of sH(τ, ν) to be known prior to identification, a condition
that is very restrictive and often impossible to realize in practice. In the case of underwater acoustic
communication channels, e.g., the support area of sH(τ, ν) depends critically on surface motion,
water depth, and motion of transmitter and receiver. For wireless channels, knowing the spreading
function’s support region would amount to knowing the delays and Doppler shifts induced by the
scatterers in the propagation medium.

Contributions We show that an operator with input-output relation (1) is identifiable, without
prior knowledge of the operator’s spreading function support region and without limitations on its
total extent, if and only if the spreading function’s total support area satisfies ∆ ≤ 1/2. What is
more, this factor-of-two penalty—relative to the case where the support region is known prior to
identification [3, 4, 8, 9]—can be eliminated if one asks for identifiability of almost all1 operators
only. This result is surprising as it says that (for almost all operators) there is no price to be
paid for not knowing the spreading function’s support region in advance. Our findings have strong
conceptual parallels to the theory of spectrum-blind sampling of sparse multi-band signals [10, 11,
12, 13, 14].

Furthermore, we present algorithms which, in the noiseless case, provably recover all operators
with ∆ ≤ 1/2, and almost all operators with ∆ < 1, without requiring prior knowledge of the
spreading function’s support region; not even its area ∆ has to be known. Specifically, we formulate
the recovery problem as a continuous multiple measurement vector (MMV) problem [15]. We then
show that this problem can be reduced to a finite MMV problem [16]. The reduction approach we
present is of independent interest as it unifies a number of reduction approaches available in the
literature and presents a simplified treatment.

In the case of wireless channels or radar systems, the spreading function’s support region is
sparse and typically contained in a rectangle of area 1. In the spirit of compressed sensing, where
sparse objects are reconstructed by taking fewer measurements than mandated by their “band-
width”, we show that in this case sparsity (in the spreading function’s support region) can be
exploited to identify the system while undersampling the response to the probing signal. In the

1Here, and in the remainder of the paper, “almost all” is to be understood in a measure-theoretic sense meaning
that the set of exceptions has measure zero.
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case of channel identification this allows for a reduction of the identification time, and in radar
systems it leads to increased resolution.

Relation to previous work Recently, Tauböck et al. [17] and Bajwa et al. [18, 19] considered
the identification of LTV systems with spreading function compactly supported in a rectangle
of area ∆ ≤ 1. While [18, 19] assume that the spreading function consists of a finite number
of Dirac components whose delays and Doppler shifts are unknown prior to identification, the
methods proposed in [17] do not need this assumption. In the present paper, we allow general
(i.e., continuous, discrete, or mixed continuous-discrete) spreading functions that can be supported
in the entire (τ, ν)-plane with possibly fragmented support region. Herman and Strohmer [20],
in the context of compressed sensing radar, and Pfander et al. [21] considered the problem of
identifying finite-dimensional matrices that are sparse in the basis of time-frequency shift matrices.
This setup can be obtained from ours by discretization of the input-output relation (1) through
band-limitation of the input signal and time-limitation and sampling of the output signal. The
signal recovery problem in [17, 18, 19, 20, 21] is a standard single measurement recovery problem
[22]. As we start from a continuous-time formulation we find that, depending on the resolution
induced by the discretization through time/band-limitation, the resulting recovery problem can be
an MMV problem. This is relevant as multiple measurements can improve the recovery performance
significantly. In fact, it is the MMV nature of the recovery problem that allows identification of
almost all operators with ∆ < 1.

Organization of the paper The remainder of the paper is organized as follows. In Section 2,
we formally state the problem considered. Section 3 contains our main identifiability results with
the corresponding proofs given in Sections 4 and 6. In Sections 5 and 6, we present identifiability
algorithms along with corresponding performance guarantees. In Section 7, we consider the identi-
fication of systems with sparse spreading function compactly supported within a rectangle of area
1. Section 8 contains numerical results.

Notation The superscripts ∗, H , and T stand for complex conjugation, Hermitian transposition,
and transposition, respectively. We use lowercase boldface letters to denote (column) vectors, e.g.,
x, and uppercase boldface letters to designate matrices, e.g., X. The entry in the kth row and lth
column of X is [X]k,l and the kth entry of x is [x]k. The Euclidean norm of x is denoted by ‖x‖2,
and ‖x‖0 stands for the number of non-zero entries in x. The space spanned by the columns of X
is R(X), and the nullspace of X is denoted by ker(X). spark(X) designates the cardinality of the
smallest set of linearly dependent columns of X.
|Ω| stands for the cardinality of the set Ω. For sets Ω1 and Ω2, we define set addition as

Ω1 + Ω2 = {ω : ω = ω1 + ω2, ω1 ∈ Ω1, ω2 ∈ Ω2}. For a (multi-variate) function f(x), supp(f)
denotes its support set. For (multi-variate) functions f(x) and g(x), both with domain Ω, we write
〈f, g〉 :=

∫
Ω f(x)g∗(x)dx for their inner product and ‖f‖ :=

√
〈f, f〉 for the norm of f . We say

that a set of functions {g1(x), ..., gn(x)} with domain Ω is linearly independent if there is no vector
a ∈ Cn,a 6= 0, such that aHg(x) = 0, ∀x ∈ Ω, where g(x) = [g1(x), ..., gn(x)]T . We denote the
dimension of the span of {g1(x), ..., gn(x)} as dim span{g1(x), ..., gn(x)}.

The Fourier transform of a function x(t) is defined as X(f) =
∫
t x(t)e−j2πftdt. The Dirac delta

function is denoted by δ(t) and sinc(t) := sin(πt)/(πt). L2(R) stands for the space of complex-valued
square-integrable functions.

The random variable X ∼ CN (m,σ2) is proper complex Gaussian with mean m and variance
σ2. Finally, for x ∈ R, we let bxc be the largest integer not greater than x.
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2 Problem statement

Given the normed linear spaces X and Y , we consider linear operators H : X → Y that can be
represented as a weighted superposition of translation operators Tτ , with (Tτx)(t) := x(t−τ), x ∈ X,
and modulation operators Mν , with (Mνx)(t) := ej2πνtx(t), x ∈ X, according to

(Hx)(t) :=

∫
τ

∫
ν
sH(τ, ν)(MνTτx)(t)dνdτ (3)

with sH ∈ S, where S is a normed linear space. This is a rather general setup, since according to [2,
Thm. 14.3.5], a large class of continuous (and hence bounded) linear operators can be represented
as in (3). For the theory to be mathematically precise, we need to consider suitable triplets of spaces
(X,Y, S) inducing a space of operators H = H(X,Y, S). The triplets (X,Y, S) have to be chosen to
“match”; specifically, S may have to satisfy certain regularity conditions, depending on the choice
of X, for (3) to be well-defined. For example, if X = Y is a Hilbert space and S = L2(R2), then H is
the set of Hilbert-Schmidt operators [2, p. 331, A.8]. Since our identifiability proof relies on the use
of Dirac delta functions as probing signals, we need to choose X such that it contains generalized
functions. A corresponding valid choice is the following [9]: Let S and X be Feichtinger’s Banach
algebra S0(R2) [23] and its dual S′0(R), respectively, and Y = L2(R). The corresponding space H
is equipped with the Hilbert-Schmidt norm

‖H‖H = ‖sH‖L2 =

(∫
τ

∫
ν
|sH(τ, ν)|2

)1/2

. (4)

Another valid triplet is obtained by setting X = S′0(R), Y = S′0(R), and S = S′0(R2), see [24, 25]. In
this case both X and S contain generalized functions, in particular Dirac delta functions; however,
the norm of the corresponding space H takes on a more complicated form than (4). The norm the
space H is equipped with determines the definition of identifiability. While our results, including
the identification algorithms, hold true for the setup (X = S′0(R), Y = S′0(R), S = S′0(R2)), to keep
the exposition simple, we will work with the triplet (X = S′0(R), Y = L2(R), S = S0(R2)) and the
corresponding norm (4). We refer the interested reader to [8, 9, 24, 25] for a detailed description
of the rigorous mathematical setup required for the choice (X = S′0(R), Y = S′0(R), S = S′0(R2)).

Restrictions on the spreading function Following [3, 4, 8, 9] we consider spreading functions
with compact support. This assumption is not critical and can be justified, e.g., in wireless and
in underwater acoustic communication channels as follows. The extent of the spreading function
in τ (ν)-direction is determined by the maximum delay (Doppler shift) induced by the channel.
The maximum Doppler shift will be limited as the velocity of objects in the propagation channel
and/or the velocity of transmitter and receiver is limited. While the maximum delay induced by
scattering objects in the channel can, in principle, be arbitrarily large, contributions corresponding
to large enough delay will be sufficiently small to be treated as additive noise, thanks to path loss
[26]. While we do not present analytical results for the noisy case, the impact of noise on the
performance of our identification algorithms is assessed numerically in Section 8.

Following [8, 9] we, moreover, restrict ourselves to spreading functions with support regions of
the form

MΓ :=
⋃

(k,m)∈Γ

(
U +

(
kT,

m

TL

))
⊆ [0, τmax)× [0, νmax) (5)

where U := [0, T ) × [0, 1/(TL)) is a “cell” in the (τ, ν)-plane and L ∈ N+ and T ∈ R+ are
parameters whose role will become clear shortly. The set of “active cells” is specified by Γ ⊆ Σ :=
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{(0, 0), (0, 1), ..., (L − 1, L − 1)}. Since τmax = TL and νmax = 1/T , it follows that, choosing L
and T accordingly, τmax and νmax can be arbitrarily large; the spreading function can hence be
supported on an arbitrarily large, but finite, region. We denote the area of MΓ as A(MΓ) and note
that A(MΓ) = |Γ|A(U) = |Γ|/L.

A general, possibly fragmented, support region of the spreading function can be approximated
arbitrarily well by covering it with rectangles U (see Figure 1), as in (5), with T and L chosen
suitably. Note that L determines how fine this approximation is, since A(U) = 1/L, while T
controls the ratio of width to height of U . Characterizing the identifiability of operators whose
spreading function support region is not compact, but has finite area, e.g., supp(sH) ⊆ {(τ, ν) : 0 ≤
ν ≤ ∞, 0 ≤ τ ≤ e−ν}, is an open problem [27].

T

1
TL

TL

1
T

τ

ν

Figure 1: Approximation of a general spreading function support region.

2.1 Identifiability

Let us next define the notion of identifiability of a set of operators Q ⊆ H. The set Q is said to be
identifiable, if there exists a probing signal x ∈ X such that for each operator H ∈ Q, the action
of the operator on the probing signal, Hx, uniquely determines H. More formally, we say that Q
is identifiable if there exists an x ∈ X such that

H1x = H2x =⇒ H1 = H2, ∀ H1, H2 ∈ Q. (6)

Identifiability is hence equivalent to invertibility of the mapping

Tx : Q → Y : H 7→ Hx (7)

induced by the probing signal x. In practice, invertibility alone is not sufficient as we want to
recover H from Hx in a numerically stable fashion, i.e., we want small errors in Hx to result in
small errors in the identified operator. This requirement implies that the inverse of the mapping
(7) must be continuous (and hence bounded), which finally motivates the following definition of
(stable) identifiability, used in the remainder of the paper.

Definition 1. We say that x identifies Q if there exist constants 0 < α ≤ β <∞ such that for all
pairs H1, H2 ∈ Q,

α‖H1 −H2‖H ≤ ‖H1x−H2x‖ ≤ β‖H1 −H2‖H. (8)

Furthermore, we say that Q is identifiable, if there exists an x ∈ X such that x identifies Q.
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In [8] the identification of operators of the form (3) under the assumption of the spreading
function support region being known prior to identification is considered. The set Q in [8] therefore
consists of operators with spreading function supported on a given region MΓ, (i.e., supp(sH) ⊆
MΓ for all H ∈ Q), which renders Q a linear subspace of H so that (H1 − H2) ∈ Q, for all
H1, H2 ∈ Q. Hence Definition 1 above is equivalent to the following: x identifies Q if there exist
constants 0 < α ≤ β < ∞ such that for all H ∈ Q, α‖H‖H ≤ ‖Hx‖ ≤ β‖H‖H, which is the
identifiability condition put forward in [8]. Not knowing the spreading function’s support region
prior to identification will require consideration of sets Q that are not linear subspaces of H, which
makes the slightly more general Definition 1 necessary. As detailed in Appendix A, the lower
bound in (8) guarantees that the inverse of Tx in (7) exists and is bounded and hence continuous,
as desired. The ratio β/α quantifies the noise sensitivity of the identification process. Specifically,
suppose that x identifies Q, but the measurement H1x, H1 ∈ Q, is corrupted by additive noise.
Concretely, assume that instead of H1x, we observe H1x + w, where w ∈ Y is bounded, i.e.,
‖w‖ < ∞. Now assume that H2 ∈ Q is consistent with the noisy observation H1x + w, i.e.,
H1x + w = H2x. We would like the error in the identified operator, i.e., ‖H1 −H2‖H, to be
proportional to ‖w‖. The lower bound in (8) guarantees that this is, indeed, the case as

‖H1 −H2‖H ≤
1

α
‖H1x−H2x‖ =

1

α
‖w‖. (9)

Since α ≤ β, it follows from (9) that β/α = 1 is optimal in terms of noise sensitivity. We can also
conclude from (9) that larger α leads to smaller noise sensitivity. Increased α, however, simply
amounts to increased power of the probing signal. This can be seen as follows. Suppose we found
an x1 that identifies Q with constants α, β in (8). Then, c x1 with c ∈ R identifies Q with constants
|c|α, |c|β. Choosing |c| large will therefore lead to small noise sensitivity.

3 Main results

Before stating our main results, we define the set of operators with spreading function supported
on a given region MΓ (with MΓ as defined in (5)):

HMΓ
:= {H ∈ H : supp(sH) ⊆MΓ}. (10)

Kailath [3] and Kozek and Pfander [8] considered the case where MΓ is a (single) rectangle, and
Bello [4] and Pfander and Walnut [9] analyzed the case where MΓ is allowed to be fragmented and
spread over the (τ, ν)-plane. In both cases the support region MΓ is assumed to be known prior to
identification. We start by recalling the key result in [9], which subsumes the results in [3, 4], and
[8].

Theorem 1 ([9]). Let MΓ be given. The set of operators HMΓ
is identifiable if and only if A(MΓ) ≤

1.

As mentioned earlier, knowing the support region MΓ prior to identification is very restrictive
and often impossible to realize in practice. It is therefore natural to ask what kind of identifiability
results one can get when this assumption is dropped. Concretely, this question can be addressed
by considering the set of operators

X (∆) :=
⋃

MΓ : A(MΓ)≤∆

HMΓ

which consists of all sets HMΓ
such that A(MΓ) ≤ ∆.

Our main identifiability results are stated in the two theorems below.

6



Theorem 2. The set of operators X (∆) is identifiable if and only if ∆ ≤ 1/2.

Proof. See Section 4.

The main implication of Theorem 2 is that the penalty for not knowing the spreading function’s
support region prior to identification is a factor-of-two in the area of the spreading function. The
origin of this factor-of-two penalty can be elucidated as follows. For operatorsH1, H2 with spreading
function supported on MΓ, i.e., H1, H2 ∈ HMΓ

, we have (H1 −H2) ∈ HMΓ
, i.e.,2 HMΓ

is a linear
subspace of H. In the case of unknown spreading function support region we have to deal with the
(much larger) set X (∆), consisting of all sets HMΓ

with A(MΓ) ≤ ∆. It is readily seen that X (∆)
is not a linear subspace of H. Simply take H1, H2 ∈ X (∆) such that the support regions of sH1

and sH2 both have area ∆ and are disjoint. While (H1 −H2) /∈ X (∆), we do, however, have that
H1−H2 ∈ X (2∆). This observation lies at the heart of the factor-of-two penalty in ∆ as quantified
by Theorem 2.

We can eliminate this penalty by relaxing the identification requirement to apply to “almost
all” H ∈ X (∆) instead of “all” H ∈ X (∆). To be specific, we consider identifiability of a subset
Y(∆) ⊂ X (∆), containing “almost all” H ∈ X (∆). The set Y(∆) is obtained as follows. First, set

sk,m(t, f) := sH

(
t+ kT, f +

m

TL

)
ej2π(f+ m

TL)t (11)

for (k,m) ∈ Γ, (t, f) ∈ U , and then define

Y(∆) := {H ∈ X (∆): {sk,m(t, f), (k,m) ∈ Γ} are linearly independent on U}.

The motivation for this specific definition of the set Y(∆) will become clear in Section 6. At this
point, it is only important to note that the condition on the sk,m(t, f) in the definition of Y(∆)
allows to eliminate the factor-of-two penalty in ∆.

Theorem 3. The set of operators Y(∆) is identifiable if ∆ < 1.

Proof. See Section 6.

In order to demonstrate that “almost all” H ∈ X (∆) are in Y(∆), suppose that3 sk,m(t, f) =∑P
p=1 c

(k,m)
p gp(t, f), where {gp(t, f), p = 1, ..., P} is a set of functions orthogonal on U and the

c
(k,m)
p are drawn independently from a continuous distribution. Then, the sk,m(t, f) will be linearly

independent on U with probability one [28], if P ≥ L. Finally, note that the operator H with
spreading function

sH

(
t+ kT, f +

m

TL

)
= e−j2π

m
TL

t, (k,m) ∈ Γ

where Γ satisfies |Γ|/L ≤ ∆, is an example of an operator that is in X (∆) but not in Y(∆).
Putting things together, we have shown that “almost all” operators H ∈ X (∆) can be identified

if ∆ < 1. This result is surprising as it says that there is no penalty for not knowing the spread-
ing function’s support region prior to identification, provided that one is content with a recovery
guarantee for “almost all” operators.

The factor-of-two penalty in Theorem 2 has the same roots as the factor-of-two penalty in sparse
signal recovery [29], in the recovery of sparsely corrupted signals [30], in the recovery of signals that

2Homogeneity is trivially satisfied.
3Note that every H ∈ X (∆) can be represented by an expansion of the corresponding sk,m(t, f) into a set of

orthonormal functions.
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lie in a union of subspaces [12], and, most pertinently, in spectrum-blind sampling as put forward
by Feng and Bresler [10, 11, 31] and Mishali and Eldar [13]. We hasten to add that Theorem 3 is
inspired by the insight that—in the context of spectrum-blind sampling—the factor-of-two penalty
in sampling rate can be eliminated by relaxing the recovery requirement to “almost all” signals
[10, 31]. Despite the conceptual similarity of the statement in Theorem 3 above and the result in
[10, 31], the technical specifics are vastly different, as we shall see later.

Generalizations Theorems 2 and 3 can easily be extended to operators with multiple inputs (and
single output), i.e., operators whose response to the vector-valued signal x(t) = [x0(t), ..., xM−1(t)]T

is given by

(Hx)(t) =

M−1∑
i=0

∫
τ

∫
ν
sHi(τ, ν)xi(t− τ)ej2πνtdνdτ (12)

where sHi(τ, ν) is the spreading function corresponding to the (single-input) operator between
input i and the output. For the case where the support regions of all spreading functions sHi
are known prior to identification, Pfander showed in [32] that the operator H is identifiable if
and only if

∑M−1
i=0 A(supp(sHi)) < 1. When the support regions are unknown, an extension of

Theorem 2 shows that H is identifiable if and only if
∑M−1

i=0 A(supp(sHi)) ≤ 1/2. If one asks for

identifiability of “almost all” operators only, the condition
∑M−1

i=0 A(supp(sHi)) ≤ 1/2 is replaced

by
∑M−1

i=0 A(supp(sHi)) < 1. Finally, we note that these results carry over to the case of operators
with multiple inputs and multiple outputs (MIMO). Specifically, a MIMO channel is identifiable if
each of its MISO subchannels is identifiable, see [32] for the case of known support regions.

4 Proof of Theorem 2

4.1 Necessity

To prove necessity in Theorem 2, we start by stating an equivalence condition on the identifiability
of X (∆). This condition is often easier to verify than the condition in Definition 1, and is inspired
by a related result on sampling of signals in unions of subspaces [12, Prop. 2].

Lemma 1. x identifies X (∆) if and only if it identifies all sets

HMΦ∪MΘ
:= {H : H = H1 −H2, H1 ∈ HMΦ

, H2 ∈ HMΘ
}

with A(MΦ) ≤ ∆ and A(MΘ) ≤ ∆, where Φ,Θ ⊆ Σ.

Proof. First, note that the set of differences of operators in X (∆) can equivalently be expressed as

{H : H = H1 −H2, H1, H2 ∈ X (∆)} =
⋃

MΦ,MΘ : A(MΦ),A(MΘ)≤∆

HMΦ∪MΘ
. (13)

From Definition 1 it now follows that x identifies X (∆) if there exist constants 0 < α ≤ β < ∞
such that for all H ∈

⋃
MΦ,MΘ : A(MΦ),A(MΘ)≤∆HMΦ∪MΘ

we have

α‖H‖H ≤ ‖Hx‖ ≤ β‖H‖H. (14)

Next, note that for H1, H2 ∈ HMΦ∪MΘ
, we have that H1 − H2 ∈ HMΦ∪MΘ

. We can therefore
conclude that (14) is equivalent to

α‖H1 −H2‖H ≤ ‖H1x−H2x‖ ≤ β‖H1 −H2‖H (15)

8



for all H1, H2 ∈ HMΦ∪MΘ
, and for all MΦ and MΘ with A(MΦ),A(MΘ) ≤ ∆. Recognizing that

(15) is nothing but saying that x identifies HMΦ∪MΘ
for all MΦ and MΘ with A(MΦ),A(MΘ) ≤ ∆,

the proof is concluded.

Necessity in Theorem 2 now follows by choosing MΦ,MΘ such that MΦ∩MΘ = ∅ and A(MΦ) =
A(MΘ) = ∆ > 1/2. This implies A(MΦ ∪MΘ) > 1 and hence application of Theorem 1 to the
corresponding set HMΦ∪MΘ

establishes that HMΦ∪MΘ
is not identifiable. By Lemma 1 this then

implies that X (∆) is not identifiable.

4.2 Sufficiency

We provide a constructive proof of sufficiency by finding a probing signal x that identifies X (∆),
and showing how sH can be obtained from Hx. Concretely, we take x to be a weighted TL-periodic
train of Dirac impulses

x(t) =
∑
k∈Z

ckδ(t+ kT ), ck = ck+L, ∀k ∈ Z. (16)

The specific choice of the coefficients c = [c0, ..., cL−1]T will be discussed later.
Kailath [3] and Kozek and Pfander [8] used an unweighted train of Dirac impulses as probing

signal to prove that LTV systems with spreading function compactly supported on a rectangle
(known prior to identification) of area ∆ ≤ 1 are identifiable. Pfander and Walnut [9] used the
probing signal (16) to prove the result reviewed as Theorem 1 in this paper. Using a weighted train
of Dirac impulses will turn out crucial in the case of unknown spreading function support region,
as considered here. It was shown recently [33, Thm. 2.5] that identification in the case of known
support region, i.e., for HMΓ

, is possible only with probing signals that decay neither in time nor
in frequency, making Dirac trains a natural choice.

The main idea of our proof is to i) reduce the identification problem to that of solving a
continuously indexed linear system (of L equations in L2 unknowns), and ii) based on Lemma 1
to show that the solution of this underdetermined linear system of equations is unique whenever
∆ ≤ 1/2, provided that c is chosen appropriately.

We start by computing the response of H to x(t) in (16). From (3) we get

y(t) = (Hx)(t) =
∑
k∈Z

ck

∫
ν
sH(t+ kT, ν)ej2πνtdν. (17)

Next, we use the Zak transform [34] to turn (17) into a continuously indexed linear system of
equations as described in Step i) above. The Zak transform (with parameter TL) of the signal y(t)
is defined as

Zy(t, f) :=
∑
m∈Z

y(t−mTL)ej2πmTLf

for (t, f) ∈ [0, TL)× [0, 1/(TL)), and satisfies the following (quasi-)periodicity properties

Zy(t+ TL, f) = ej2πTLfZy(t, f),

Zy(t, f + 1/(TL)) = Zy(t, f).

It is therefore sufficient to consider Zy(t, f) on the fundamental rectangle [0, TL) × [0, 1/(TL)).
The Zak transform is an isometry, i.e., it satisfies

TL

∫ TL

0

∫ 1/(TL)

0
|Zy(t, f)|2 = ‖y‖2. (18)
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The Zak transform of y(t) in (17) is given by

Zy(t, f) =
∑
k,m∈Z

ck

∫
ν
sH(t−mTL+ kT, ν)ej2πν(t−mTL)dν ej2πmTLf

=
∑
k′∈Z

ck′

∫
ν
sH(t+ k′T, ν)ej2πνt

∑
m∈Z

e−j2π(ν−f)mTLdν (19)

=
∑
k∈Z

ck

∫
ν
sH(t+ kT, ν)ej2πνt

1

TL

∑
m∈Z

δ
(
ν−
(
f+

m

TL

))
dν (20)

=
∑
k∈Z

ck
TL

∑
m∈Z

sH

(
t+ kT, f +

m

TL

)
ej2πt(f+ m

TL) (21)

where we used the substitution k′ = k −mL in (19) and (20) follows from
∑

m∈Z e
−j2π(ν−f)mTL =

1
TL

∑
m∈Z δ

(
ν −

(
f + m

TL

))
. Next, we split the fundamental rectangle [0, TL) × [0, 1/(TL)) into

L cells U , where U = [0, T ) × [0, 1/(TL)) was defined in Section 2 in the context of structural
assumptions imposed on the spreading function. Concretely, we substitute t = t′+pT in (21), with
p ∈ {0, ..., L− 1} and t′ ∈ [0, T ). This yields, for (t′, f) ∈ U and p = 0, ..., L− 1,

zp(t
′, f) := Zy(t′ + pT, f) (22)

=
∑
k∈Z

ck
TL

∑
m∈Z

sH

(
t′ + pT + kT, f +

m

TL

)
ej2π(t′+pT )(f+ m

TL)

=
∑
k′∈Z

ck′−p
TL

∑
m∈Z

sH

(
t′ + k′T, f +

m

TL

)
ej2π(t′+pT )(f+ m

TL)

=
L−1∑
k=0

ck−p
TL

L−1∑
m=0

sH

(
t′ + kT, f +

m

TL

)
ej2π(t′+pT )(f+ m

TL) (23)

where (23) is a consequence of sH(τ, ν) = 0 for (τ, ν) /∈ [0, TL)× [0, 1/T ), by assumption. We next
rewrite (23) in vector-matrix form. To this end, we define the column vectors z(t, f) and s(t, f)
according to

[z(t, f)]p := TL zp(t, f)e−j2πpTf , p = 0, ..., L− 1 (24)

and s(t, f) := [s0,0(t, f), s0,1(t, f), ..., s0,L−1(t, f), s1,0(t, f), ..., sL−1,L−1(t, f)]T with sk,m(t, f) as de-
fined in (11). Since sH(τ, ν) = 0 for (τ, ν) /∈ [0, TL) × [0, 1/T ), the vector s(t, f), (t, f) ∈ U , fully
characterizes the spreading function sH(τ, ν). With these definitions (23) can now be written as

z(t, f) = Acs(t, f), (t, f) ∈ U (25)

with the L× L2 matrix

Ac := [Ac,0| ... |Ac,L−1], Ac,k := Cc,kF
H (26)

where [F]p,m = e−j2π
pm
L , p,m = 0, ..., L − 1, and Cc,k is the L × L diagonal matrix with diagonal

entries {ck, ck−1, ..., ck−L+1} (recall that the coefficient sequence ck is L-periodic).
Since z(t, f) is obtained from the operator’s response to the probing signal and s(t, f) fully

determines the spreading function sH , we can conclude that the identification of H has been reduced
to the solution of a continuously indexed linear system of equations. Conceptually, for each pair
(t, f) ∈ U , we need to solve a linear system of L equations in L2 unknowns. The proof is then
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completed by showing that this continuously indexed linear system of equations has a unique
solution if ∆ ≤ 1/2. More formally, we need to relate identifiability according to Definition 1
to solvability of the continuously indexed linear system of equations (25). To this end, we first
note that thanks to Lemma 1, it suffices to prove identifiability of HMΦ∪MΘ

for all pairs MΦ,MΘ

with A(MΦ) ≤ 1/2 and A(MΘ) ≤ 1/2. By setting MΓ = MΦ ∪MΘ this is equivalent to proving
identifiability of HMΓ

for all MΓ with A(MΓ) ≤ 1. For H ∈ HMΓ
, by definition, sk,m(t, f) =

0, ∀(k,m) /∈ Γ. Denote the restriction of the vector s(t, f) to the entries corresponding to the active
cells, i.e., the cells indexed by Γ, by sΓ(t, f) and let AΓ be the matrix containing the columns of
Ac that correspond to the index set Γ. The linear system of equations (25) then reduces to

z(t, f) = AΓsΓ(t, f), (t, f) ∈ U. (27)

Solvability of (27) can now formally be related to identifiability through the following lemma,
proven in Appendix B.

Lemma 2. Let x be given by (16). Then, the (tightest) bounds α, β in (8) for the set of operators
HMΓ

are given by

αΓ =
1√
TL

inf
‖v‖2=1

‖AΓv‖2 and βΓ =
1√
TL

sup
‖v‖2=1

‖AΓv‖2. (28)

The proof of sufficiency in Theorem 2 is now completed by showing that for all MΓ with
A(MΓ) ≤ 1, HMΓ

is identifiable, i.e., 0 < αΓ ≤ βΓ < ∞. By Lemma 2, βΓ < ∞ trivially, and
showing that αΓ > 0 amounts to proving that AΓ has full rank for all Γ ⊆ Σ with |Γ| ≤ L, i.e.,
for all MΓ such that A(MΓ) ≤ 1. What comes to our rescue is [35, Thm. 4] which states that for
almost all c, each4 L×L submatrix of Ac has full rank. In the remainder of the paper c is chosen
such that each L×L submatrix of Ac, indeed, has full rank. In other words, c is chosen such that
spark(Ac) = L+ 1.

4.3 Relation to spectrum-blind sampling

The philosophy of operator identification without prior knowledge of the spreading function’s sup-
port region is related to the idea of spectrum-blind sampling of multi-band signals [10, 11, 12, 13].
In spectrum-blind sampling the central problem is to recover a signal, sparsely supported on a
priori unknown frequency bands, from its samples taken at a rate that is (much) smaller than the
Shannon-Nyquist rate of the signal. The conceptual relation between operator identification and
spectrum-blind sampling is brought out by comparing (25) to the recovery equation in spectrum-
blind sampling, given by [10, 11, 12, 13]

y(f) = Ax(f), f ∈ F . (29)

Here A ∈ Cm×n, with m < n, depends on the sampling pattern, x(f), f ∈ F , fully specifies the
signal to be reconstructed, and y(f), f ∈ F , is obtained from the samples of the signal. Further, F
is a spectral “cell”, playing a role similar to the cell U in our setup. It is shown in [10, 11, 12, 13]
that the penalty for not knowing the spectral support set is a factor-of-two in sampling rate. The

4 Pfander and Walnut [9] used the probing signal (16) to prove that, for known spreading function support region,
∆ ≤ 1 is sufficient for identifiability. The crucial difference between [9] and our setup is that we need each submatrix
of L columns of Ac to have full rank, as we do not assume prior knowledge of the support region.
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corresponding result in the present paper is Theorem 2. It is furthermore shown in [10, 31] that there
is no penalty for not knowing the spectral support set if one requires recovery of almost all signals
only. The corresponding result in this paper is Theorem 3. Despite this strong structural similarity,
there is a fundamental difference between spectrum blind sampling and the system identification
problem considered here. In operator identification a function of two variables, sH(τ, ν), has to be
extracted from the univariate measurement (Hx)(t). Moreover, in spectrum-blind sampling there
is no limit on the cardinality of the spectral support set that would parallel the ∆ ≤ 1/2 or ∆ < 1
thresholds.

5 Recovering the spreading function

We next present an algorithm that provably recovers all H ∈ X (∆) for ∆ ≤ 1/2 from the operator’s
response Hx to the probing signal x(t) in (16). The algorithm first identifies the support set of
sH(τ, ν), i.e., the index set Γ, and then solves the corresponding linear system of equations (27),
which, based on (11), yields sH(τ, ν). Starting from (27), an explicit reconstruction formula for
sH(τ, ν) is straightforward to derive and is given by

sH

(
t+ kT, f +

m

TL

)
= TL

L−1∑
p=0

[A†Γ]l,p zp(t, f)e−j2π(pTf+(f+ m
TL)t) (30)

for (k,m) ∈ Γ, (t, f) ∈ U , where A†Γ is the pseudoinverse of AΓ and the index l refers to the row

of A†Γ corresponding to the (k,m)th cell.
We now turn our attention to the main challenge, namely support set recovery. Formally, (25)

is a continuously indexed linear system of equations, whose solutions (across indices (t, f) ∈ U)
share the support set Γ. This problem was studied before under the name of “infinite measurement
vector problem” in [15] as a generalization of the multiple measurement vector (MMV) problem
[16], where the reconstruction of a finite number of vectors sharing a sparsity pattern, from a finite
number of linear measurements, is considered. Starting from the observation that the cardinality
of the index set Γ is finite, and the matrix Ac is finite-dimensional, it is perhaps not surprising to
see that the infinite measurement vector problem at hand can be reduced to an MMV problem.
Based on the recovery equation (29), this was recognized before in the context of spectrum-blind
sampling in [10, 13, 31] and, in a more general context, in [15]. We next present a general reduction
method, which unifies the approaches in [10, 13, 15, 31] and is based on a simplified, and, as we
believe, more accessible treatment. The discussion in Section 5.1 below is therefore of interest in
its own right.

We assume throughout that |Γ| ≤ L; this is w.l.o.g. as |Γ| ≤ L corresponds to ∆ ≤ 1 and we
only consider the identification of operators satisfying ∆ ≤ 1/2 or ∆ < 1. The index set Γ can be
recovered as follows:

(P0)

{
minimize |Γ|
subject to z(t, f) = AΓsΓ(t, f), (t, f) ∈ U,

where the minimization is performed over all Γ ⊆ Σ and all corresponding sΓ(t, f) : U |Γ| → C.

5.1 Reduction to an MMV problem

The proof of (P0) delivering the correct solution is deferred to Section 5.2. We first develop a unified
approach to the reduction of the infinite measurement vector problem (P0) to an MMV problem.

12



We emphasize, as mentioned before, that this reduction approach encompasses the settings in
[10, 13, 15, 31] and hence applies to spectrum-blind sampling, inter alia. Our approach is based on
a basis expansion of the elements of z(t, f) and sΓ(t, f). We start with some definitions. Consider
the linear space of functions G = {g(t, f) : U → C} equipped with the inner product 〈g1, g2〉 =∫
U g1(t, f)g∗2(t, f)d(t, f), g1, g2 ∈ G, and induced norm ‖g‖ =

√
〈g, g〉. Let {b0(t, f), ..., bK−1(t, f) ∈

G} be a basis (not necessarily orthogonal) for the space spanned by the functions {[z(t, f)]p, p =
0, ..., L− 1} and set K = dim span{[z(t, f)]p, p = 0, ..., L− 1}. We can represent z(t, f) in terms of
the basis elements bi(t, f) according to

z(t, f) = Bzb(t, f) (31)

where b(t, f) := [b0(t, f), ..., bK−1(t, f)]T and Bz ∈ CL×K contains the expansion coefficients of
z(t, f) in the basis {b0(t, f), ..., bK−1(t, f)}. It follows from K = dim span{[z(t, f)]p, p = 0, ..., L−1}
that Bz has full rank K ≤ L. To see this, suppose that rank(Bz) < K. Then, each set of K rows
of Bz is linearly dependent, i.e., for each set of rows of Bz, indexed by say Φ, with cardinality
|Φ| = K, there exists an a ∈ CK , a 6= 0, such that

aHBΦ
z = 0 (32)

where BΦ
z is the matrix obtained by retaining the rows of Bz in Φ. Then, for each Φ with |Φ| = K,

according to (32), there exists an a 6= 0 such that

aHBΦ
z b(t, f) = aHzΦ(t, f) = 0

where zΦ(t, f) contains the entries of z(t, f) corresponding to the index set Φ. This would, how-
ever, imply dim span{[z(t, f)]p, p = 0, ..., L − 1} < K, which stands in contradiction to dim span{
[z(t, f)]p, p = 0, ..., L− 1} = K.

Expanding sΓ(t, f) in (27) in the basis5 {b0(t, f), ..., bK−1(t, f)}, we can rewrite the constraint
in (P0) as

Bzb(t, f) = AΓBΓb(t, f), (t, f) ∈ U (33)

where BΓ ∈ C|Γ|×K contains the expansion coefficients of sΓ(t, f) in the basis {b0(t, f), ..., bK−1(t, f)}.
Since the elements of b(t, f) form a basis, (33) is equivalent to

Bz = AΓBΓ. (34)

We have therefore shown that (P0) is equivalent to

(P̃0)

{
minimize |Γ|
subject to Bz = AΓBΓ

where the minimization is performed over all Γ ⊆ Σ and all corresponding BΓ ∈ C|Γ|×K . We have
thus reduced (P0), which involves a continuum of constraints, to (P̃0), which involves only finitely

many constraints. (P̃0) is known in the literature as the MMV problem [16], which is usually
formulated equivalently as: minimize ‖Bs‖row-0 subject to Bz = AcBs, where the constraint is

over all Bs ∈ CL2×K and ‖Bs‖row-0 is the number of non-zero rows of Bs.
We are now ready to explain the reduction approaches in [10, 11, 13, 15, 31] in the general

reduction framework just introduced. We start with the method described in [10, 11, 13, 31] in the

5Thanks to AΓ having full column rank, span{sk,m(t, f) : (k,m) ∈ Γ} ⊆ span{bk(t, f), k = 0, ...,K − 1} (cf. (27)
and (31)).
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context of spectrum-blind sampling. This approach starts from a correlation matrix, which in our
setup becomes

Cz :=

∫
U

z(t, f)zH(t, f)d(t, f). (35)

With (27) we can express Cz as
Cz = AΓCsΓAH

Γ (36)

where CsΓ =
∫
U sΓ(t, f)sHΓ (t, f)d(t, f). Analogously to the results in [11, Sec. 3, Lem. 1] for signal

recovery in spectrum-blind sampling, it can be shown that (P0) is equivalent to

(P0)

{
minimize |Γ|
subject to Cz = AΓCsΓAH

Γ

where the minimization is performed over all Γ ⊆ Σ and all corresponding Hermitian CsΓ ∈ C|Γ|×|Γ|.
We next show that (P0) is equivalent to an MMV problem, and then explain this equivalence

result in our basis expansion approach. Cz is a Hermitian matrix and can hence be decomposed
as Cz = QQH [36, Thm. 4.1.5], where the K = rank(Cz) columns of Q ∈ CL×K are orthogonal.
Analogously to [11, Sec. 3, Lem. 1], [13, Sec. V-C], it can now be shown that (P0) (and by
induction (P0)) is equivalent to the MMV problem

(P0′)

{
minimize |Γ|
subject to Q = AΓGΓ

where the minimization is performed over all Γ ⊆ Σ and all corresponding GΓ ∈ C|Γ|×K .
To see how the reduction to (P0′) just described can be cast into the basis expansion approach

described above, let z(t, f) = Bzb(t, f), where b(t, f) is an orthonormal basis for span{[z(t, f)]p, p =
0, ..., L− 1}. By (35), we then have

Cz = Bz

[∫
U

b(t, f)bH(t, f)d(t, f)

]
BH
z = BzB

H
z .

From Cz = BzB
H
z = QQH it follows that there exists a unitary matrix U such that Bz = QU,

which is seen as follows. We first show that any solution B to Cz = BBH can be written as

B = C
1/2
z V, where V is unitary [36, Exercise on p. 406]. Indeed, we have

I = C−1/2
z C1/2

z C1/2
z C−1/2

z

= C−1/2
z BBHC−1/2

z

= (C−1/2
z B)(C−1/2

z B)
H

(37)

where the last equality follows since C
−1/2
z is self adjoint, according to [36, Thm. 7.2.6]. From

(37) it is seen that V := C
−1/2
z B is unitary, and hence B = C

1/2
z V, with V unitary. Therefore,

we have Bz = C
1/2
z V1 and Q = C

1/2
z V2, where V1 and V2 are unitary, and hence Bz = QVH

2 V1.
As VH

2 V1 is unitary, we proved that there exists a unitary matrix U such that Bz = QU. With

Bz = QU, the minimization variable of (P̃0) is given by BΓ = GΓU, where GΓ is the minimization

variable of (P0′), hence (P̃0) and (P0′) are equivalent.
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Another approach to reducing (P0) to an MMV problem was put forward in [15, Thm. 2]. In
our setting and notation the resulting MMV problem is given by

(P0′′)

{
minimize |Γ|
subject to W = AΓGΓ

where the minimization is performed over all Γ ⊆ Σ and all corresponding GΓ ∈ C|Γ|×K . Here, the
matrix W ∈ CL×K can be taken to be any matrix whose column span is equal to span{z(t, f) : (t, f) ∈
U}. To explain this approach in our basis expansion framework, we start by noting that (31) implies
that span{z(t, f) : (t, f) ∈ U} = span(Bz). We can therefore take W to equal Bz. On the other
hand, for every W with span(W) = span{z(t, f) : (t, f) ∈ U}, we can find a basis b(t, f) such that
Wb(t, f) = z(t, f). Choosing different matrices W in (P0′′) therefore simply amounts to choosing
different bases b(t, f).

5.2 Uniqueness conditions for (P0)

We are now ready to study uniqueness conditions for (P0). Specifically, we will find a necessary
and sufficient condition for (P0) to deliver the correct solution to the continuously indexed linear
system of equations in (25). This condition comes in the form of a threshold on |Γ| that depends
on the “richness” of the spreading function, specifically, on dim span{sk,m(t, f), (k,m) ∈ Γ}.

Theorem 4. Let z(t, f) = AΓsΓ(t, f), (t, f) ∈ U , with dim span{sk,m(t, f), (k,m) ∈ Γ} = K. Then
(P0) applied to z(t, f) recovers (Γ, sΓ(t, f)) if and only if

|Γ| < L+K

2
. (38)

Since K ≥ 1, Theorem 4 guarantees exact recovery if |Γ| ≤ L/2, and hence by A(MΓ) = |Γ|/L
(see Section 2), if ∆ ≤ 1/2, which is the recovery threshold in Theorem 2. Recovery for ∆ < 1
will be discussed later. Sufficiency in Theorem 4 was shown in [15, Prop. 1] and in the context of
spectrum-blind sampling in [11, Sec. 3, Thm. 3]. Necessity has not been proven formally before,
but follows directly from known results, as shown in the proof of the theorem below.

Proof of Theorem 4. The proof is based on the equivalence of (P0) and (P̃0), established in the

previous section, and on the following uniqueness condition for the MMV problem (P̃0).

Proposition 1 ([16, 37, 38, 39]). Let Bz = AΓBΓ with rank(BΓ) = K. Then (P̃0) applied to Bz

recovers (Γ,BΓ) if and only if

|Γ| < L+K

2
. (39)

Proof of Proposition 1. Sufficiency was proven in [38, Thm. 1], [37, Lem. 1], [16, Thm. 2.4],
necessity in [39, Thm. 2]. We present a different, slightly simpler, argument for necessity in
Appendix C.

In Section 5.1, we showed that dim span{[z(t, f)]p, p = 0, ..., L− 1} = K implies rank(Bz) = K.
The converse is obtained by essentially reversing the line of arguments used to prove this fact in Sec-
tion 5.1. We have therefore established that dim span{[z(t, f)]p, p = 0, ..., L−1} = rank(Bz). Analo-
gously, by using the fact that BΓ contains the expansion coefficients of
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{sk,m(t, f), (k,m) ∈ Γ} in the basis {b0(t, f), ..., bK−1(t, f)}, it can be shown that rank(BΓ) =

dim span{sk,m(t, f), (k,m) ∈ Γ}. It now follows, by application of Proposition 1, that (P̃0) cor-

rectly recovers the support set Γ if and only if (38) is satisfied. By equivalence of (P̃0) and (P0),
(P0) recovers the correct support set, provided that (38) is satisfied. Once Γ is known, sΓ(t, f) is
obtained by solving (27).

5.3 Efficient algorithms for solving (P̃0)

Solving the MMV problem (P̃0) is NP-hard [40]. Various alternative approaches with different
performance-complexity tradeoffs are available in the literature. MMV-variants of standard algo-
rithms used in single measurement sparse signal recovery, such as orthogonal matching pursuit
(OMP) and `1-minimization (basis-pursuit) can be found in [16, 37, 41]. However, the performance
guarantees available in the literature for these algorithms fall short of allowing to choose |Γ| to
be linear in L as is the case in the threshold (38). A low-complexity algorithm that provably
yields exact recovery under the threshold in (38) is based on ideas developed in the context of
subspace-based direction-of-arrival estimation, specifically on the MUSIC-algorithm [42]. It was
first recognized in the context of spectrum-blind sampling [11, 31] that a MUSIC-like algorithm
can be used to solve a problem of the form (P0). The algorithm described in [11, 31] implicitly first
reduces the underlying infinite measurement vector problem to a (finite) MMV problem. Recently,

a MUSIC-like algorithm and variants thereof were proposed [43] to solve the MMV problem (P̃0)
directly. As we will see below, this class of algorithms imposes conditions on (Γ,BΓ) and will hence
not guarantee recovery for all (Γ,BΓ). We will present a (minor) variation of the MUSIC algorithm
as put forward in [42], and used in the context of spectrum blind sampling [31, Alg. 1], in Section
6 below.

6 Identification for almost all H ∈ X (∆)

For K > 1, Theorem 4 hints at a potentially significant improvement over the worst-case threshold
underlying Theorem 3 whose proof will be presented next. The basic idea of the proof is to show
that (P0) applied to z(t, f) = AΓsΓ(t, f), (t, f) ∈ U , recovers the correct solution if the set

{sk,m(t, f), (k,m) ∈ Γ} is linearly independent on U. (40)

Proof of Theorem 3. Condition (40) implies that dim span{sk,m(t, f), (k,m) ∈ Γ} = |Γ|. Therefore,
with K = |Γ| in Theorem 4, we get that (P0) delivers the correct solution if |Γ| < L, i.e., if
|Γ|/L = A(MΓ) < 1, which is guaranteed by A(MΓ) ≤ ∆ < 1.

We next present an algorithm that provably recovers H ∈ Y(∆) with ∆ < 1, i.e., almost all

H ∈ X (∆) with ∆ < 1. Specifically, this low-complexity MUSIC-like algorithm solves6 (P̃0) (which
is equivalent to (P0)) and can be shown to identify the support set Γ correctly for ∆ < 1 provided
that Condition (40) is satisfied. The algorithm is a minor variation of the MUSIC algorithm as put
forward in [42], and used in the context of spectrum blind sampling [31, Alg. 1].

Theorem 5. The following algorithm recovers all H ∈ Y(∆), provided that ∆ < 1.

6Note that this does not contradict the fact that (P0) is NP-hard (as noted before), since it “only” solves (P0) for
almost all s(t, f).
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Step 1) Given the measurement z(t, f), find a basis (not necessarily orthogonal) {b0(t, f), ...,
bK−1(t, f)}, for the space spanned by {[z(t, f)]p, p = 0, ..., L−1}, where K := dim span{[z(t, f)]p, p =
0, ..., L− 1}, and determine the coefficient matrix Bz in the expansion z(t, f) = Bzb(t, f).

Step 2) Compute the matrix Un of eigenvectors of Z := BzB
H
z corresponding to the zero eigen-

values of Z.

Step 3) Identify Γ with the indices corresponding to the columns of UH
n Ac that are equal to 0.

Remark. In the remainder of the paper, we will refer to Steps 2) and 3) above as the MMV-
MUSIC algorithm. As shown next, the MMV-MUSIC algorithm provably solves the MMV problem
(P̃0) given that BΓ has full rank |Γ|.

Proof of Theorem 5. The proof is effected by establishing that for ∆ < 1 under Condition (40) the
support set Γ is uniquely specified through the indices of the columns of UH

n Ac that are equal to
0. To see this, we first obtain from (34) (where AΓ and BΓ are as defined in Section 5)

Z = BzB
H
z = AΓ BΓBH

Γ︸ ︷︷ ︸
SΓ

AH
Γ . (41)

Next, we perform an eigenvalue decomposition of Z in (41) to get

Z =
[
Uz Un

] [Λz 0
0 0

] [
UH
z

UH
n

]
= UzΛzU

H
z = AΓSΓAH

Γ (42)

where Uz contains the eigenvectors of Z corresponding to the non-zero eigenvalues of Z. As
mentiond in Section 4.2, each set of L or fewer columns of Ac is necessarily linearly independent, if
c is chosen judiciously. Hence AΓ has full rank if |Γ| ≤ L, which is guaranteed by ∆ = |Γ|/L < 1.
Thanks to Condition (40), dim span{sk,m(t, f), (k,m) ∈ Γ} = |Γ| and hence rank(BΓ) = |Γ| (this
was shown in the proof of Theorem 4), which due to SΓ = BΓBH

Γ implies that rank(SΓ) = |Γ|.
Consequently, we have

R(AΓ) = R(AΓSΓAH
Γ ) = R(UzΛzU

H
z ) = R(Uz) (43)

where the second equality follows from (42). R(Un) is the orthogonal complement of R(Uz) in
CL. It therefore follows from (43) that UH

n AΓ = 0. Hence, the columns of UH
n Ac that correspond

to indices (k,m) ∈ Γ are equal to 0.
It remains to show that no other column of UH

n Ac is equal to 0. This will be accomplished
through proof by contradiction. Suppose that UH

n a = 0 where a is any column of Ac corresponding
to an index pair (k′,m′) /∈ Γ. Since R(Un) is the orthogonal complement of R(Uz) in CL, a ∈
R(Uz) = R(AΓ). This would, however, mean that the L or fewer columns of Ac corresponding to
the indices (k,m) ∈ {Γ ∪ (k′,m′)} would be linearly dependent, which stands in contradiction to
the fact that each set of L or fewer columns of Ac must be linearly independent.

7 Compressive system identification and discretization

The results presented thus far rely on probing signals of infinite bandwidth and infinite duration.
It is therefore sensible to ask whether identification under a bandwidth-constraint on the probing
signal and under limited observation time of the operator’s corresponding response is possible. We
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shall see that the answer is in the affirmative with the important qualifier of identification being
possible up to a certain resolution limit (dictated by the time- and bandwidth constraints). The
discretization through time- and band-limitation underlying the results in this section will involve
approximations that are, however, not conceptual.

The discussion in this section serves further purposes. First, it will show how the setups in
[18, 19, 20, 21] can be obtained from ours through discretization induced by band-limiting the
input and time-limiting and sampling the output signal. More importantly, we find that, depending
on the resolution induced by the discretization, the resulting recovery problem can be an MMV
problem. The recovery problem in [18, 19, 20, 21] is a standard (i.e., single measurement) recovery
problem, but multiple measurements improve the recovery performance significantly, according to
the recovery threshold in Theorem 4, and are crucial to realize recovery beyond ∆ = 1/2. Second,
we consider the case where the support area of the spreading function is (possibly significantly)
below the identification threshold ∆ ≤ 1/2, and we show that this property can be exploited to
identify the system while undersampling the response to the probing signal. In the case of channel
identification, this allows to reduce identification time, and in radar systems it leads to increased
resolution.

7.1 Discretization through time- and band-limitation

Consider an operator H ∈ X (∆) and an input signal x(t) that is band-limited to [0, B), and
perform a time-limitation of the corresponding output signal y(t) = (Hx)(t) to [0, V ). Then, the
input-output relation (3) becomes (for details, see, e.g. [44])

y(t) :=(Hx)(t)=
1

BV

∑
r∈Z

∑
l∈Z

sH

(
r

B
,
l

V

)
x
(
t− r

B

)
ej2π

l
V
t (44)

for 0 ≤ t ≤ V , where

sH(τ, ν) = BV

∫
ν′

∫
τ ′
sH(τ ′, ν ′) sinc((τ−τ ′)B) sinc((ν−ν ′)V )dτ ′dν ′.

Band-limiting the input and time-limiting the corresponding output hence leads to a discretization
of the input-output relation, with “resolution” 1/B in τ -direction and 1/V in ν-direction. It
follows from (??) that for a compactly supported sH(τ, ν) the corresponding quantity sH(τ, ν)
will not be compactly supported. Most of the volume of sH(τ, ν) will, however, be supported on
MΓ + (−1/B, 1/B) × (−1/V, 1/V ), so that we can approximate (44) by restricting summation to
the indices (r, l) satisfying (r/B, l/V ) ∈MΓ. Note that the quality of this approximation depends
on the spreading function as well as on the parameters B, V, T , and L. Here, we assume that
1/(TL) ≤ 1/V and T ≤ 1/B. These constraints are not restrictive as they simply mean that we
have at least one sample per cell. We will henceforth say that H is identifiable with resolution
(1/B, 1/V ), if it is possible to recover sH (r/B, l/V ), for (r/B, l/V ) ∈ MΓ, from y(t). We will
simply say “H is identifiable” whenever the resolution is clear from the context. In the ensuing
discussion sH (r/B, l/V ) , r, l ∈ Z, is referred to as the discrete spreading function. The maximum
number of non-zero coefficients of the discrete spreading function to be identified is A(MΓ)BV .

Next, assuming that νmax, as defined in (5), satisfies νmax � B, it follows that y(t) is ap-
proximately band-limited to [0, B). From [45] we can therefore conclude that y(t) lives in a
BV -dimensional signal space (here, and in the following, we assume, for simplicity, that BV is
integer-valued), and can hence be represented through BV coefficients in the expansion in an
orthonormal basis for this signal space. The corresponding basis functions can be taken to be
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the prolate spheroidal wave functions [45]. Denoting the vector containing the corresponding
expansion coefficients by y, the input-output relation (44) becomes

y = As (45)

where the columns of A ∈ CBV×BV τmaxνmax contain the expansion coefficients of the time-frequency

translates x(t− r/B) ej2π
l
V
t in the prolate spheroidal wave function set, and s ∈ CBV τmaxνmax

contains the samples sH (r/B, l/V ) for (r/B, l/V ) ∈ [0, τmax)×[0, νmax), of which at mostA(MΓ)BV
are non-zero, with, however, unknown locations in the (τ, ν)-plane. We next show that the recovery
threshold ∆ ≤ 1/2 continues to hold, independently of the choice of B and V .

Necessity It follows from [29, Cor. 1] that ‖s‖0 ≤ (spark(A) − 1)/2 is necessary to recover s
from y given A. With ‖s‖0 = A(MΓ)BV and spark(A) ≤ min(BV,BV τmaxνmax) + 1 ≤ BV + 1,
which follows trivially7 since A is of dimension BV ×BV τmaxνmax, we get A(MΓ)BV ≤ BV/2 and
hence A(MΓ) ≤ 1/2. Since, by definition, A(MΓ) ≤ ∆ we have shown that ∆ ≤ 1/2 is necessary
for identifiability.

Sufficiency Sufficiency will be established through explicit construction of a probing signal x(t)
and by sampling the corresponding output signal y(t). Since y(t) is (approximately) band-limited
to [0, B), we can sample y(t) at rate B, which results in

y
( n
B

)
=

1

BV

Bτmax−1∑
r=0

V νmax−1∑
l=0

sH

(
r

B
,
l

V

)
x

(
n− r
B

)
ej2π

ln
BV (46)

for n = 0, ..., BV − 1. In the following, denote the number of samples of sH(τ, ν) per cell
U + (kT,m/(TL)) , (k,m) ∈ Σ, in τ -direction as E and in ν-direction as D; see Figure 2 for
an illustration. Note that, since U = [0, T ) × [0, 1/(TL)), and sH(τ, ν) is sampled at integer mul-
tiples of 1/B in τ -direction and of 1/V in ν-direction, we have E = BT and D = V/(TL). The
number of samples per cell ED = BV/L will turn out later to equal the number of measurement
vectors in the corresponding MMV problem. To have multiple measurements, and hence make
identification beyond ∆ = 1/2 possible, it is therefore necessary that BV is large relative to L. As
mentioned previously, the samples sH (r/B, l/V ), for (r/B, l/V ) ∈ MΓ, fully specify the discrete
spreading function. We can group these samples into the active cells, indexed by Γ, by assigning
sH ((r + Ek)/B, (l +Dm)/V ), for (r, l) ∈ Ud, to the cell with index (k, l), where (k, l) ∈ Γ, and
Ud := {0, ..., E − 1} × {0, ..., D − 1}.

The probing signal x(t) is taken to be such that

x(m/B) =

{
c−k, for m = Ek, ∀k ∈ Z
0, otherwise

where the coefficients ck = ck+L,∀k ∈ Z, are chosen as discussed in Section 4.2. Note that the
sequence x(m/B) is EL-periodic. Algebraic manipulations yield the discrete equivalent of (25) as

z[n, r] = Acs[n, r], (n, r) ∈ Ud. (47)

Here, Ac was defined in (26), and

[z[n, r]]p := zp[n, r]e
−j2π rp

DL , p = 0, ..., L− 1

7Note that for A ∈ Cm×n, we trivially have spark(A) ≤ min(m,n) + 1.
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Figure 2: Discretization of the (τ, ν)-plane, with E = D = 2.

with zp[n, r] := Z
(EL,D)
y [n+ Ep, r], where

Z(EL,D)
y [n, r] :=

1

D

D−1∑
q=0

y[n+ ELq]e−j2π
qr
D ,

for 0 ≤ n ≤ EL − 1, 0 ≤ r ≤ D − 1, is the discrete Zak transform (with parameter EL) [46] of
the sequence y[n]. For general properties of the discrete Zak transform we refer to [46]. Further,
s[n, r] := [s0,0[n, r], s0,1[n, r], ..., s0,L−1[n, r], s1,0[n, r], ..., sL−1,L−1[n, r]]T with

sk,m[n, r] := sH

(
n+ Ek

B
,
r +Dm

V

)
ej2π

n(r+Dm)
EDL (48)

for (n, r) ∈ Ud, (k,m) ∈ Σ. Note that sk,m[n, r], (n, r) ∈ Ud, (k,m) ∈ Γ, fully specifies the
discrete spreading function.

The identification equation (47) can be rewritten as

Z = AcS (49)

where the columns of Z ∈ CL×ED and S ∈ CL2×ED are given by the vectors z[n, r] and s[n, r],
respectively, (n, r) ∈ Ud. Hence, each row of S corresponds to the samples of sH in one of the
L2 cells. Since the number of samples per cell, ED, is equal to the number of columns of S, we
see that the number of samples per cell corresponds to the number of measurements in the MMV
formulation (49). Denote the matrix obtained from S by retaining the rows corresponding to the
active cells, indexed by Γ, by SΓ and let AΓ be the matrix containing the corresponding columns
of Ac. Then (49) becomes

Z = AΓSΓ. (50)

Once Γ is known, (50) can be solved for SΓ. Hence, recovery of the discrete spreading function
amounts to identifying Γ from the measurements Z, which can be accomplished by solving the
following MMV problem:

(P0∗)

{
minimize |Γ|
subject to Z = AΓSΓ

where the minimization is performed over all Γ ⊆ Σ and all corresponding SΓ ∈ C|Γ|×ED. It follows
from Proposition 1 that Γ is recovered exactly from Z by solving (P0∗), whenever |Γ| < (L+K)/2,
where K = rank(SΓ). Correct recovery is hence guaranteed whenever |Γ| ≤ L/2. Since |Γ|/L =
A(MΓ) and A(MΓ) ≤ ∆, this shows that ∆ ≤ 1/2 is sufficient for identifiability.
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As noted before, (P0∗) is NP-hard. However, if SΓ has full rank |Γ| then MMV-MUSIC provably
recovers Γ with |Γ| < L, i.e., when ∆ < 1 (this was shown in the proof of Theorem 5). For
SΓ ∈ C|Γ|×ED to have full rank |Γ|, it is necessary that the number of samples satisfy ED ≥ |Γ|.
For ED ≥ |Γ| almost all SΓ have full rank |Γ|. The development above shows that the MMV aspect
of the recovery problem is essential to get recovery for values of ∆ beyond 1/2.

We conclude this discussion by noting that the setups in [18, 21] in the context of channel
estimation and in [20] in the context of compressed sensing radar are structurally equivalent to the
discretized operator identification problem considered here, with the important difference of the
MMV aspect of the problem not being brought out in [18, 20, 21].

7.2 Compressive identification

In the preceding sections, we showed under which conditions identification of an operator is possible
if the operator’s spreading function support region is not known prior to identification. We now
turn to a related problem statement that is closer to the philosophy of sparse signal recovery, where
the goal is to reconstruct sparse objects, such as signals or images, by taking fewer measurements
than mandated by the object’s “bandwidth”. We consider the discrete setup (46) and assume
that ∆ is (possibly significantly) smaller than the identifiability threshold 1/2. Concretely, set
∆ = P/(2L) for an integer P ≤ L. We ask whether this property can be exploited to recover the
discrete spreading function from a subset of the samples {y(n/B), n = 0, ..., BV − 1} only. We
will see that the answer is in the affirmative, and that the corresponding practical implications are
significant, as detailed below.

For concreteness, we assume that supp(sH) = MΓ ⊆ MΦ, with Φ = {0, ..., b
√
Lc − 1} ×

{0, ..., b
√
Lc − 1}. To keep the exposition simple, we take ED = 1, in which case SΦ becomes

a vector. Note that, since A(MΦ) ≤ 1 (this follows from A(U)b
√
Lc2 = (1/L)b

√
Lc2 ≤ 1), the

operator can be identified by simply solving Z = AΦSΦ for SΦ, which we will refer to as “recon-
structing conventionally”. Here AΦ and SΦ contain the columns of Ac and rows of S, respectively,
corresponding to the indices in Φ.

Since ∆ = P/(2L), the area A(MΓ) of the (unknown) support region MΓ of the spreading
function satisfies A(MΓ) ≤ P/(2L). We next show that the discrete spreading function can be
reconstructed from only P of the L rows of Z. The index set corresponding to these P rows is
denoted as Ω, and is an (arbitrary) subset of {0, ..., L − 1} (of cardinality P ). Let ZΩ and AΩ

c be
the matrices corresponding to the rows of Z and Ac, respectively, indexed by Ω. The matrix ZΩ

is a function of the samples {y (n/B) : n ∈ Ω} only; hence, reconstruction from ZΩ amounts to
reconstruction from an undersampled version of y(t). Note that we cannot reconstruct the discrete

spreading function by simply inverting AΩ
Φ ∈ CP×b

√
Lc2 since AΩ

Φ is a wide matrix8. Next, (49)
implies (see also (50)) that

ZΩ = AΩ
c S = AΩ

ΓSΓ.

Theorem 4 in [35] establishes that for almost all c, spark(AΩ
c ) = P . Hence, according to Proposition

1, SΓ can be recovered uniquely from ZΩ provided that |Γ| ≤ P/2 and hence ∆ ≤ P/(2L), by solving

(P0?)

{
minimize |Γ|
subject to ZΩ = AΩ

ΓSΓ

where the minimization is performed over all Γ ⊆ Σ and all corresponding SΓ ∈ C|Γ|.
8The special case L ≥ P ≥ b

√
Lc2 is of limited interest and will not be considered.
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We have shown that identification from an undersampled observation y(t) is possible, and the
undersampling factor can be as large as P/L. A similar observation has been made in the context
of radar imaging [47]. Recovery of SΓ from ZΩ has applications in at least two different areas,
namely in radar imaging and in channel identification.

Increasing the resolution in radar imaging In radar imaging, targets correspond to point
scatterers with small dispersion in the delay-Doppler plane. Since the number of targets is typ-
ically small, the corresponding spreading function is sparsely supported [20]. In our model, this
corresponds to a small number of the sH

(
r
B ,

l
V

)
in (46) being non-zero. Take Ω = {0, ..., P − 1}.

The discussion above then shows that, since only the samples {y(n/B), n ∈ Ω}, which in turn only
depend on y(t) for t ∈ [0, V P/L], are needed for identification, it is possible to identify the discrete
spreading function from the “effective” observation interval [0, V P/L), while keeping the resolution
in ν-direction at 1/V . If we were to reconstruct conventionally, given only the observation of y(t)
over the interval [0, V P/L), the induced resolution in ν-direction (see Figure 2) would only be
L/(PV ).

Saving degrees of freedom in channel identification Next, consider the problem of channel
identification, and take again Ω = {0, ..., P − 1}. As discussed before, ZΩ is a function of the
samples {y (n/B) : n ∈ Ω} only, which, by careful inspection of (46), are seen to depend only on
{x(n/B), n = −(b

√
Lc − 1), ..., P − 1}. We can therefore conclude that it suffices to observe y(t)

over the interval [0, V P/L). Conceptually, this means that the time needed to identify (learn) the
channel is reduced, which leaves, e.g., more degrees of freedom to communicate over the channel.

8 Numerical results

We present numerical results quantifying the impact of additive noise and of the choice of c on the
performance of different identification algorithms. Specifically, we consider the discrete setting9

(46) and evaluate two probing sequences. The first one is obtained by sampling i.i.d. uniformly
from the complex unit disc, the resulting sequence is denoted by cr. Since for almost all cr, each
L×L submatrix of Ac has full rank for L prime [35, Thm. 4], cr will allow recovery for all operators
with ∆ ≤ 1/2 and for almost all operators with ∆ < 1, in both cases, with probability one, with
respect to the choice of cr. The second probing sequence is the Alltop sequence10 [48], denoted by
ca, and defined as

[ca]i =
1√
L
e
j2π
L
i3 , i = 0, ..., L− 1.

We compare two different algorithms for solving the MMV problem (P0∗), namely the MMV-
orthogonal matching pursuit (MMV-OMP) algorithm as proposed in [16], and MMV-MUSIC11 as
introduced in Section 6. We generate the samples sH

(
r
B ,

l
V

)
at random, as follows. We choose12

L = 19, and vary the support set size ∆ = |Γ|/L and the number of samples per cell, ED. For fixed
∆ = |Γ|/L, and hence fixed |Γ|, we draw Γ ⊆ Σ uniformly at random from the set of all support

9We consider the discrete setting as any numerical simulation of the continuous setting will involve a discretization.
10 The Alltop sequence was also used in [20] as probing sequence, motivated by the fact that its mutual coherence

attains the Welch lower bound (for L prime).
11 In the noisy case, MMV-MUSIC identifies the columns with `2-norm smaller than a certain threshold, which in

turn depends on the noise level.
12 The reason for choosing L = 19 is that we want L to be prime, as by [35] this guarantees that for almost all c,

each L× L submatrix of Ac has full rank.
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Figure 3: Recovery probabilities for the Alltop sequence and for a randomly generated sequence,
for the MMV-MUSIC algorithm in Section 6 and the MMV-OMP [16] algorithm.

sets with cardinality |Γ|, and assign i.i.d. CN (0, 1) values to each of the ED samples in each of the
corresponding cells.

To analyze the impact of noise, we contaminate the measurement (i.e., y(n/B) in (46)) by
i.i.d. Gaussian noise. Recovery performance in the noisy case is quantified through the empirical
relative squared error in the discrete spreading function, abbreviated as ERE, which is the empirical
expectation of the relative squared error. In the noiseless setting, recovery success is declared if the
relative squared error in the spreading function is less than or equal to 10−5. Recovery probabilities
and the ERE were obtained from 1000 realizations of Γ.

Impact of probing sequence The results for the noiseless case, depicted in Figure 3, show that
the probing sequences ca and cr perform almost equally well. We can see, as predicted by Theorem
5, that MMV-MUSIC succeeds for ∆ < 1, provided that ED/L ≥ |Γ|/L = ∆. Specifically, as
shown in the proof of Theorem 5, MMV-MUSIC succeeds if SΓ has full rank, which is the case
with probability one if ED/L ≥ |Γ|/L = ∆, as the entries of SΓ are i.i.d. CN (0, 1). For ED < |Γ|,
MMV-MUSIC fails. The performance of MMV-OMP improves in ED; however, the improvement
stagnates at about ∆ ≈ 1/2. For ED = 1, MMV-OMP outperforms MMV-MUSIC, for all other
values of ED considered MMV-MUSIC outperforms MMV-OMP.

Impact of noise The results depicted in Figure 4 show that the identification process exhibits
noise robustness up to ∆ ≈ 1. When ED/L ≥ |Γ|/L = ∆, the error in recovering the spreading
function is small for both identification algorithms, but MMV-MUSIC outperforms MMV-OMP
significantly. The results in Figure 5 quantify the noise sensitivity of MMV-MUSIC and MMV-
OMP.
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Figure 4: ERE for the Alltop sequence and for a randomly chosen sequence, obtained by MMV-
MUSIC and MMV-OMP [16] at SNR = 20dB.
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Figure 5: ERE for a randomly chosen sequence, and ED = 19, obtained by MMV-MUSIC and
MMV-OMP [16] for different SNR values.
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A Bounded inverse of T

Theorem 6. The inverse

T−1 : RT → Q (51)

of the linear operator
T : Q → Y

where RT is the range of T , exists and is bounded if and only if T is bounded below, in the following
sense: There exists an α > 0 such that for all H1, H2 ∈ Q,

α‖H1 −H2‖H ≤ ‖TH1 − TH2‖. (52)

Proof. The proof corresponding to the case where Q satisfies (H1 − H2) ∈ Q for all H1, H2 ∈ Q
is standard, see e.g. [49]. For (H1 − H2) /∈ Q, the proof follows the same steps with minor
modifications. We first show that (52) implies bounded invertibility of T . If TH1 = TH2, then
from (52)

α‖H1 −H2‖H ≤ ‖0‖

and hence necessarily H1 = H2, which shows that T is injective. Since according to (51), the
domain of the inverse is RT , T is also surjective, and hence T is invertible. To show boundedness
of T−1, set H1 = T−1y1 and H2 = T−1y2 for y1, y2 ∈ RT . Using (52), we get

‖y1 − y2‖ =
∥∥TT−1y1 − TT−1y2

∥∥ = ‖TH1 − TH2‖ ≥ α‖H1 −H2‖H = α
∥∥T−1y1 − T−1y2

∥∥
H

which is ∥∥T−1y1 − T−1y2

∥∥
H ≤

1

α
‖y1 − y2‖

and hence shows that T−1 is bounded.
We next show that bounded invertibility of T implies (52). Since T−1 exists and is bounded,

we have, for α > 0,

‖H1 −H2‖H =
∥∥T−1y1 − T−1y2

∥∥
H ≤

1

α
‖y1 − y2‖ =

1

α
‖TH1 − TH2‖.

B Proof of Lemma 2

Starting from (27), we get, for fixed (t, f) ∈ U ,

inf
‖v‖2=1

‖AΓv‖2 ‖sΓ(t, f)‖2 ≤ ‖z(t, f)‖2 ≤ sup
‖v‖2=1

‖AΓv‖2 ‖sΓ(t, f)‖2. (53)
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Squaring ‖z(t, f)‖2 and integrating over U yields∫
U
‖z(t, f)‖22d(t, f) =

L−1∑
p=0

∫
U
|[z(t, f)]p|2 d(t, f)

=
L−1∑
p=0

∫
U

(TL)2 |zp(t, f)|2 d(t, f) (54)

= (TL)2

∫ TL

0

∫ 1/(TL)

0
|Zy(t, f)|2d(t, f) (55)

= TL ‖Hx‖2 (56)

where we used (24) and (22) for (54) and (55), respectively, and (56) follows since the Zak transform
is an isometry (see (18)). Similarly, based on (11) we get∫

U
‖sΓ(t, f)‖22 d(t, f) = ‖sH‖2 = ‖H‖2H (57)

where the last equality follows from (4). Combining (57) and (56) with (53) yields

αΓ‖H‖H ≤ ‖Hx‖ ≤ βΓ‖H‖H

with

αΓ =
1√
TL

inf
‖v‖2=1

‖AΓv‖2, βΓ =
1√
TL

sup
‖v‖2=1

‖AΓv‖2

which concludes the proof.

C Proof of Proposition 1

To prove necessity of (39), we show that one can construct a solution (Γ′,BΓ′) 6= (Γ,BΓ) to (P̃0)
applied to Bz = AΓBΓ with |Γ′| = |Γ| ≥ (L+K)/2. For any set Φ of column indices of Ac, with
cardinality |Φ| = L+K, we have that AΦ has full rank L, as each set of L columns of Ac ∈ CL×L2

is linearly independent (as discussed previously, according to [35, Thm. 4] this holds for almost all
c, and we assume that c is chosen accordingly), and hence dim ker(AΦ) = K. We can therefore
conclude that there exists a matrix BΦ ∈ C(L+K)×K with rank(BΦ) = K such that

AΦBΦ = 0. (58)

We next construct index sets Γ,Γ′ with Γ∪Γ′ = Φ and |Γ| = |Γ′| = (K+L)/2. Since rank(BΦ) = K,
there exists a set of K linearly independent rows of BΦ. Let Γ′ be the index set corresponding
to these rows augmented by the indices corresponding to (K + L)/2 − K arbitrary rows of BΦ,
and set Γ = Φ \ Γ′. By construction, the matrix formed by the rows indexed by Γ′, BΓ′ , satisfies

rank(BΓ′) = K. From (58), with BΓ defined through BΦ = [BT
Γ′ ,−BT

Γ ]
T

, we have

[
AΓ′ AΓ

] [ BΓ′

−BΓ

]
= 0 ⇐⇒ AΓ′BΓ′ = AΓBΓ. (59)

It therefore follows from (59) that (Γ′,BΓ′) is consistent with Bz = AΓBΓ = AΓ′BΓ′ , which
concludes the proof.
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