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Achievable Error Exponents in the Gaussian
Channel with Rate-Limited Feedback

Reza Mirghaderi, Andrea Goldsmith, Tsachy Weissman

Abstract

We investigate the achievable error probability in communication over an AWGN discrete time memoryless
channel with noiseless delay-less rate-limited feedback.For the case where the feedback rateRFB is lower than
the data rateR transmitted over the forward channel, we show that the decayof the probability of error is at
most exponential in blocklength, and obtain an upper bound for increase in the error exponent due to feedback.
Furthermore, we show that the use of feedback in this case results in an error exponent that is at leastRFB higher
than the error exponent in the absence of feedback. For the case where the feedback rate exceeds the forward
rate (RFB ≥ R), we propose a simple iterative scheme that achieves a probability of error that decays doubly
exponentially with the codeword blocklengthn. More generally, for some positive integerL, we show that aLth

order exponential error decay is achievable ifRFB ≥ (L − 1)R. We prove that the above results hold whether
the feedback constraint is expressed in terms of the averagefeedback rate or per channel use feedback rate. Our
results show that the error exponent as a function ofRFB has a strong discontinuity atR, where it jumps from a
finite value to infinity.

I. INTRODUCTION

While feedback cannot increase the capacity of a point-to-point memoryless channel, it can decrease
the probability of error as well as the complexity of the encoder and decoder. For an AWGN channel
without feedback, it is known [1] that the decay in the probability of error as a function of the blocklength
n is at most exponential in the absence of feedback (i.e. the lowest achievable probability of error has
the general formPe = exp(−O(n))).1 However, when a noiseless delay-less infinite capacity feedback
link is available, a simple sequential linear scheme (the Schalkwijk-Kailath scheme [2]) can achieve the
capacity of this channel with a doubly exponential decay in the probability of error as a function of
the blocklength (i.e. it has the general formPe = exp(−exp(Ω(n)))). This shows the significant role of
feedback in reducing the probability of error.

The Schalkwijk-Kailath scheme requires a noiseless feedback link with infinite capacity. In fact, the
Schalkwijk-Kailath scheme does not provide the best possible error decay rate given such an ideal
feedback link. In particular, it is shown in [3] that in the presence of an ideal noise-free delay-less
feedback link, the capacity of the AWGN channel can be achieved with a probability of error that
decreases with an exponential order which is linearly increasing with blocklength (i.e. it has the general
form Pe = exp(− exp ◦ ... ◦ exp

︸ ︷︷ ︸

Ω(n) times

(Ω(n)))).2 However, once the feedback channel is corrupted with some

noise, the benefits of feedback in terms of the error probability decay rate can drop. In fact, when this
corruption corresponds to an additive white Gaussian noiseon the feedback channel, the Schalkwijk-
Kailath communication scheme (or any other linear scheme) fails to achieve any nonzero rate with
vanishing error probability [4]. Furthermore, in this case, the achievable error decay for any coding
scheme can be no better than exponential in blocklength [5],similar to the case without feedback [1].
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1Given a functionh(.), h(n) = O(n) is equivalent tolimn→∞

h(n)
n

< ∞, andh(n) = Ω(n) is equivalent tolimn→∞

h(n)
n

> 0.
2Operator◦ is used to denote function composition.
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In this work, we consider a case where the feedback link is noiseless and delay-less but rate-limited.
The advantages of rate-limited feedback in reducing the coding complexity are investigated in [6]. In this
paper, we study the benefits of rate limited feedback in termsof decreasing the error probability. Assuming
a positive and feasible (below capacity) rateR is to be transmitted on the forward channel, we characterize
the achievable error decay rates in two cases: the case wherethe feedback rate,RFB, is lower thanR,
and the case whereRFB ≥ R. For the first scenario, we show that the best achievable error probability
decreases exponentially in the code blocklengthn (i.e. Pe = exp(−O(n))) and provide an upper bound
for the error exponent. For the second scenario, we propose an iterative coding scheme which achieves a
doubly exponential error decay (i.e.Pe = exp(−exp(Ω(n)))). Since a feedback rate equal to the data rate
is sufficient for achieving a doubly exponential error decay, one might suspect that further increasing the
feedback rate may not lead to a significant gain. We dispel this suspicion by generalizing our proposed
iterative scheme to show that ifRFB ≥ (L−1)R, anLth order exponential decay is achievable. The latter
result is consistent with [7], in which the achievable errorprobabilities are characterized in terms of the
number of times the (infinite capacity) feedback link is used.

Interestingly, our results show that the error exponent as afunction of the feedback rate has a strong
discontinuity at the pointRFB = R; it is finite for RFB < R and infinite forRFB ≥ R (due to the
achievability of a doubly exponential error decay).

Although onlyRFB ≥ R can lead to a super-exponential error decay, even for smaller feedback rates,
we expect to have a strictly higher error decay rate as compared to the case with no feedback. In particular
we show that forRFB < R, the error exponent is at leastRFB higher than the error exponent in the absence
of feedback.

The problem of communication over the AWGN channel with limited feedback has been previously
considered assuming different types of corruption on the feedback channel. In particular, the corruption
on the feedback channel has been modeled as additive Gaussian noise in [4] and [5] and as quantization
noise in [8]. Another type of feedback corruption has been considered in [9] where only a subsequence
of the channel outputs can be sent back noiselessly to the transmitter. A fundamental distinction between
our model and the ones considered above is that in our model the receiver has “full control” over what is
transmitted and received on the feedback link. This is due tothe fact that under the rate-limited feedback
scenario, the feedback link is assumed to be both noiseless and active in the sense that at each time, the
feedback message is allowed to be an encoded function of all the information available at the receiver at
that time. Communication with imperfect feedback has also been investigated in [10], [11] and [12] for
variable-length coding strategies. Our model on the other hand captures a scenario where the blocklength
and therefore the decoding delay is fixed.

The rest of this paper is organized as follows: In Section II we present the system model and the problem
formulation. In Section III we consider the case where the feedback rate is higher than the forward rate.
Specifically, using a simple iterative coding scheme we showthe achievability of anLth order exponential
error decay whenRFB ≥ (L − 1)R. In Section IV we consider the case whereRFB < R and show that
in this case the decay in probability of error is at most exponential (finite first order error exponent).
Although a feedback rate less thanR cannot provide super-exponential error decay, we will showin
Section V that it increases the error exponent by at leastRFB. Section VI shows that the necessary and
sufficient conditions for super-exponential error decay remain the same even if we express the feedback
limitation as a constraint on the per channel use feedback rate instead of the average feedback rate. Finally,
Section VII concludes the paper.

Notation. Throughout this paper we represent theL2 norm operator by||.|| and the expectation operator by
E[.]. The notation “log” is used for the natural logarithm, and rates are expressed in nats. The complement
of a setA is denoted byAc. We denote the indicator function of the eventA by 1A. Given a function
h(.), h(n) = o(1) is equivalent tolimn→∞ |h(n)| = 0. Given a functionh(.) and a positive integerk, the
kth iterate of the function, i.e.h ◦ ... ◦ h

︸ ︷︷ ︸

k times

(.), is denoted byhk(.).
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Fig. 1. AWGN channel with rate-limited feedback

II. SYSTEM MODEL

We consider communication over a block of lengthn through an AWGN channel with rate-limited
noiseless feedback. The channel outputYi at time i is given by

Yi = Xi +Ni,

where{Ni}ni=1 is a white Gaussian noise process withNi ∼ N (0, 1) andXi is the channel input at time
i. The finite-alphabet feedback signal at timei is denoted byUi ∈ Ui and is assumed to be decoded at
the transmitter (of the forward channel) without any error or delay. We will denote the feedback sequence
alphabetU1 × ... × Un by U . The messagem to be transmitted (on the forward link) is assumed to be
drawn uniformly from the setM = {1, ..., |M|}.

An encoding strategy is comprised of a sequence of functions{f (n)
i }ni=1 wheref (n)

i : M×U1 × ...×
Ui−1 7→ R determines the inputXi as a function of the message and the feedback signals received before
time i,

Xi = f
(n)
i (m,U1, ..., Ui−1).

The feedback strategy consists of a sequence of functions{g(n)i }ni=1 whereg(n)i : Ri 7→ Ui determines the
feedback signal as a function of the channel outputs up to time i,

Ui = g
(n)
i (Y1, ..., Yi).

The decoding functionφ : Ri 7→ M gives the reconstruction of the message after receiving allthe channel
outputs

m̂ = φ(n)(Y n).

The probability of error for messagem is denoted byPe(m), where

Pe(m) = Pr{m̂ 6= m|m is transmitted}.
The average probability of error is defined as

Pe =
1

|M|

|M|
∑

m=1

Pe(m).

Given the above setup, a communication scheme with forward rate R, feedback rateRFB and power
level P is comprised of a selection for the feedback sequence alphabet U , the encoding strategy{fn

i }ni=1,
the feedback strategy{gni }ni=1 and the decoding functionφ(n)(.), such that

|M| ≥ enR,

|U| ≤ enRFB ,

E[
n∑

i=1

(

f
(n)
i (m,U i−1)

)2

] ≤ nP,
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where the expectation is with respect to the messages and thenoise. Over all such communication schemes,
we represent the one with minimum average probability of error with the tuple(n,R,RFB, P ) and denote
the corresponding minimum error probability byPe(n,R,RFB, P ). In the case where the feedback rate is
zero, we simply drop the feedback rate term and use(n,R, P ) andPe(n,R, P ) to represent the optimal
non-feedback code and the corresponding error probability, respectively. The capacity of the AWGN
channel is denoted byC, where

C =
1

2
log(1 + P ).

For the communication system described above, the first order error exponent or simply the error
exponent is defined as

E1(R,RFB, P ) = limn→∞
− logPe(n,R,RFB, P )

n
, (1)

where a positive value of the error exponent implies that theerror decay rate is at least exponential. We
also define higher order error exponents. In particular, givenL ≥ 2, theLth order error exponent is defined
as

EL(R,RFB, P ) = limn→∞
logL−1 (− logPe(n,R,RFB, P ))

n
. (2)

Given the above definitions, a communication system with strictly positiveLth order error exponent has
anLth order exponential error decay (i.e.Pe(n,R,RFB, P ) = exp(−expL−1(Ω(n)))).

III. RFB ≥ R: SUPER-EXPONENTIAL ERROR DECAY

When the feedback rate is higher than the forward rateR, we can achieve a super-exponential (in
blocklength) error decay. This result is presented in the following theorem.

Theorem 1 For any R > 0 which satisfiesR ≤ RFB and R < C, a strictly positive second order error
exponent is achievable:

E2(R,RFB, P ) > 0.

Proof: See Appendix.
The above result can be further generalized as follows.

Theorem 2 Given an integerL ≥ 2, for anyR > 0 which satisfiesR ≤ 1
L−1

RFB andR < C, a strictly
positiveLth order error exponent is achievable:

EL(R,RFB, P ) > 0.

Proof: See Appendix.
We use a class of simple iterative coding schemes to prove theabove achievability results. In particular,
to achieve a doubly exponential error decay we propose a multi-phase coding scheme as follows: in the
first phase, called the initial transmission, the message issent using a non-feedback code that occupies
a big portion of the transmission block (n1 out of n). In the second phase, called the intermediate
decoding/feedback phase, the receiver decodes the messagebased on the received signals and feeds back
the decoded message to the transmitter, usingnR nats of the available feedback. Depending on the validity
of the decoded message the transmitter decides to stay silent or perform boosted retransmission. In the
case the message is decoded correctly, the transmitter stays silent during the rest of the transmission time.
Otherwise, it sends a sign of failure in the next (n1 + 1st) transmission and uses the remaining portion
of the transmission block (n2 = n− n1 − 1) to send the message with an exponentially (in block length)
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high power. While retransmission with such a large power guarantees a doubly exponential error decay,
it does not violate the power constraint since the probability of incorrect decoding in the second phase is
exponentially (in block length) low.

To guarantee anL−fold exponential decay when the available feedback rate is(L−1)R, for some integer
L > 2, the above scheme can be modified to includeL−1 rounds of intermediate decoding/feedback and
boosted retransmission, where retransmission at each round, if needed, is done with exponentially higher
power than the previous retransmission.

Note that in comparison with the Schalkwijk-Kailath (SK) scheme presented in [2], the above iterative
technique needs less feedback (LR nats instead of the infinite rate required by the SK scheme) and
provides better error decay rate.

IV. RFB < R: FIRST ORDER EXPONENTIAL ERROR DECAY

In the previous section we have shown that by utilizing a feedback link with a rate higher than the
forward rate, we can reduce the error probability significantly as compared to the case with no feedback.
The high reliability of the iterative scheme presented in the last section is due to the fact that the initial
decoding error at the receiver (which is a rare event) is perfectly detectable at the transmitter. Therefore
it can be corrected by retransmitting the message with high power without violating the average power
constraint. The perfect error detection at the transmitteris obtained from the feedback of the initial decoded
message at the receiver. However, when the feedback rate is lower than the forward rate, the receiver has
to use a source code to compress its decoded message before feeding it back. The transmitter must then
reconstruct the uncompressed decoded message to detect anyerror. Since this reconstruction involves some
first order exponential (in blocklength) error decay (corresponding to the source coding error exponent),
the error detection is erroneous with the same decay rate. Therefore, the mis-detection of the receiver
error due to the compression on the feedback link dominates the error probability.

While the above intuitive explanation justifies the failureof the block retransmission schemes in
achieving a super-exponential error decay, one might stillhope that such a decay rate can be achieved
using other schemes. For example one alternative is to look at the problem from a stochastic control point
of view and use a rate-limited variant of the recursive feedback schemes presented in [13] and [14]. In
this section, we show that no matter what communication scheme is used, one cannot achieve infinite first
order error exponent.

Theorem 3 GivenR > RFB, the first order error exponent is upper bounded by

E1(R,RFB, P ) ≤ Eup(RFB),

whereEup(RFB) = 4P + τ0/2 +RFB and τ0 is the solution to1
2
(τ0 − 1− log(τ0)) = RFB.

Proof: See Appendix.
The proof, which is rather lengthy, can be explained using the following observation. It is shown in

[15] that given a peak power constraint, the best achievableerror decay is exponential. Therefore, in
order to achieve a super-exponential error decay, the transmitter should be able to boost the power under
certain circumstances. However, given the expected power constraint, the power can be boosted only under
rare occasions where the receiver would decode wrongly otherwise. Therefore, there should be enough
feedback bits to communicate the occurrence of those rare occasions to the sender. It turns out that this
requirement is met only if the number of possible feedback messages (enRFB ) is at least as large as the
number of forward messages (enR).

Note that the error exponent upper bound provided in the above theorem stays bounded asRFB

approachesR from below. On the other hand, we showed in the previous section that for any feedback
rate higher thanR, the error exponent is infinite (doubly exponential decay).These two facts lead to an
interesting conclusion: the error exponent as a function ofthe feedback rate has a sharp discontinuity at
the pointRFB = R.
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The above theorem provides an upper bound on the first order error exponent for feedback rates below
R. We conjecture that a similar result may be obtained on the boundedness of theLth order error exponent
for feedback rates belowLR.

V. RFB < R: LOWER BOUND ON ERROR EXPONENT

We have shown in the previous section that the probability oferror whenRFB < R cannot decay faster
than exponential as a function of the blocklengthn. Although the feedback in this case does not provide
an infinite error exponent, we still expect that the error exponent should be improved in the presence of
feedback as compared to the non-feedback scenario. In this section we will show that the error exponent
with feedback is at leastRFB above the non-feedback error exponent. The main result of this section is
the following theorem.

Theorem 4 For all ratesR < C, such thatR > RFB, the error exponent is lower bounded as follows

E1(R,RFB, P ) ≥ ENoFB(R) +RFB, (3)

whereENoFB(R) is the error exponent for the AWGN channel in the absence of feedback.

Proof: See Appendix.
The achievability scheme for the above result is constructed using the multi-phase scheme proposed

in the proof of Theorem 1, in conjunction with a compression technique to reduce the rate of feedback
in the intermediate decoding/feedback phase fromR to RFB. Using such a scheme, the error probability
is dominated by the probability of error mis-detection. This error term is the product of the probability
of error in the initial transmission phase (exp(−nENoFB(R))) and the probability (exp(−nRFB)) that the
compression loss hides this event from the transmitter.

VI. PER CHANNEL USE FEEDBACK CONSTRAINT

In the previous sections we focused on a scenario where theaveragerate over the whole transmission
block was constrained to be lower thanRFB. Under that constraint, the receiver can use the available
feedback (nRFB nats) any time during the transmission. In particular, using the coding scheme proposed
in Section III, the receiver collects all the feedback bits and uses them in one feedback transmission at
the end of the first phase. In this section we consider aper channel usefeedback rate constraint. Under
this constraint, the receiver cannot feed back more thanRFB nats after each channel use. This translates
to the following constraint on the size of the feedback signal alphabet at each timei ∈ {1, ..., n}:

|Ui| ≤ eRFB . (4)

Given that the above constraint is more restrictive than theaverage feedback rate constraint considered
previously, we can conclude that the upper bound on the errorexponent obtained in Section IV holds
in the above scenario as well. Interestingly, we show that similar achievability results as those stated in
Section III for the average feedback rate constraint are also true for the per channel use feedback scenario.

Theorem 5 Given the per channel use feedback constraint, ifRFB ≥ (L − 1)R and R < C, a strictly
positiveLth order error exponent is achievable:

EL(R,RFB, P ) > 0.

Proof: See Appendix.
The above result is proved using a combination of the scheme presented in Section III and a block Markov
coding scheme which is described in the Appendix. Figure 2 illustrates an example of this iterative coding
scheme for the case whereL = 2.
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Fig. 2. Iterative feedback scheme for per channel use feedback constraint: An example

VII. SUMMARY AND DISCUSSION

We considered the impact of rate-limited noiseless feedback on the error probability in AWGN channels.
We first showed that if the feedback rateRFB that exceeds the rateR of the data transmitted on the forward
channel, one can achieve a super-exponential decay in probability of error as a function of the code
blocklength. Our achievability result is based on a multi-phase scheme in which an initial transmission
of the message, if decoded incorrectly, is followed by the retransmission of the message with boosted
power. A key requirement in this scheme is for the transmitter to perfectly detect the error in the initial
transmission every time it happens. The minimum feedback rate required to perfectly communicate the
initial decoded message isR and therefore our scheme fails to achieve a super-exponential error decay
for RFB < R. We showed that this is true for any scheme. That is,RFB ≥ R is also a necessary condition
for achieving a super-exponential error decay. While we provided an upper bound for the error exponent
whenRFB < R, we also showed that even in this case, the use of feedback increases the error exponent
by at leastRFB. For the case in whichRFB ≥ (L− 1)R, for some positive integerL, we generalized our
multi-phase iterative scheme to prove the achievability ofan L− fold exponential (in blocklength) error
decay. The above results are illustrated in Figure 3. It can be seen that the error exponent as a function
of the feedback rate has a sharp discontinuity atRFB = R.

We showed that the above necessary and sufficient condition for achieving a super-exponential error
decay holds whether the feedback limitation is expressed asa constraint on theaveragefeedback rate
or on theper channel usefeedback rate. Note that our results address the asymptoticbehavior of the
probability of error in terms of the blocklengthn and therefore may provide limited insight for codes
with small blocklength. In particular, for small values ofn, one might expect the per channel feedback
rate constraint to lead to a higher error probability than a scenario with average feedback rate constraint.
On the other hand, the former is a more practical scenario as it implicitly captures the delay associated
with sending data on the feedback link.

In this paper we showed the advantages of feedback in terms ofimproving the decay rate of the error
probability. A subject for future research is to explore theother advantages of interactive communication
in terms of reducing the coding complexity and energy consumption. One interesting problem to be
addressed is how to use rate-limited feedback to construct SK like schemes which do not need complex
block encoding decoding.

VIII. A PPENDIX

Proof of Theorem 1: Fix δ > 0 such thatR < C(1 − δ). Definen2 = ǫn and n1 = n − n2 − 1,
whereǫ > 0 is chosen such that

n

n1

< 1 + δ (5)
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Fig. 3. An illustration of the bounds on error exponents in terms of the feedback rateRFB

.

holds for large enoughn. Choose the feedback signal domains as follows

Ui = {1}, for i 6= n1

Un1 = {1, ..., enR}
We construct two non-feedback codesC1 = (n1,

nR
n1
, P ) andC2 = (n2,

nR
n2
, P/γ), where

γ = Pe

(

n1,
nR

n1

, P

)

. (6)

Form ∈ {1, ..., enR}, pick the corresponding codewordXn1(m) from C1 and send it in the firstn1 channel
uses. Based on the received signalsY n1 and using the optimal non-feedback decoding function for code
C1, the transmitter decodes the message and sends back its decision m̂1 to the transmitter

Un1 = m̂1.

If m̂1 = m, then
Xi = 0, i = n1 + 1, ..., n,

otherwise, the next input will be
Xn1+1 =

√

P/γ

and then the codeword corresponding tom is picked from the codebookC2 and is transmitted in the

remainingn2 transmissions. On the other side, the receiver comparesYn1+1 with the thresholdΓ =

√
P/γ

2
.
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If Yn1+1 < Γ, then the remaining received signals are ignored and the decoded message in the first try is
announced as the final decision

m̂ = m̂1.

If Yn1+1 ≥ Γ, the receiver decodes the message based on the lastn2 received signals and using the optimal
non-feedback decoding function for codeC2. The resulting messagêm2 is then announced as the final
decision

m̂ = m̂2.

Using the above scheme, the average power used in the forwardlink will be

1

n
(n1P + γ(n2)(P/γ)) < P.

Therefore our scheme satisfies the power constraint. Also the average feedback rate isR which meets
the constraint on the feedback link. There are three cases inwhich an error can happen. The first case is
when the first decoding is correct but the receiver receives afailure signal from the transmitter due to the
noise on then1 + 1st transmission. The probability of this event is upper bounded by

Pe{false negative} ≤ Q(Γ), (7)

whereQ(.) is the tail probability of the standard normal distribution. The second case is when the first
decoding is wrong but the failure signal is not decoded correctly at the receiver. The probability of this
event is upper bounded by

Pe{false positive} ≤ Q(Γ). (8)

The third case is when the first decoding fails and the failuresignal is decoded correctly, but the second
decoding also fails. The probability of this event satisfies

Pe{wrong decoding} ≤ Pe(n2,
nR

n2
, P/γ) (9)

= Pe(n2,
R

ǫ
, P/γ). (10)

Using the exponential upper bound for theQ−function, we have

Pe{false negative}+ Pe{false positive} ≤ αexp(− P

8γ
), (11)

whereα > 0 is some constant. By positivity of the error exponent for rates less than the capacity [1] and
since nR

n1
≤ C(1− δ2), we know that for anyδ > 0, there exists a fixedζ > 0 such that

γ = Pe

(

n1,
nR

n1

, P

)

≤ e−nζ . (12)

for large enough values ofn. Combining (11) and (12), we obtain

Pe{false negative}+ Pe{false positive} ≤ exp(−en(ζ+o(1))), (13)

which shows the probability of the first two types of errors decays doubly exponentially in the blocklength.
It remains to show that the third type of error is also upper bounded by a doubly exponential term. To
show that, note that on the right hand side of (10), the rate isat most1/ǫ times the capacity achieved by
SNR P . However, the SNRP/γ is exponentially (inn) higher thanP

P/γ ≥ Penζ,
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for large values ofn and therefore

Pe{wrong decoding} ≤ Pe(ǫn,
R

ǫ
, Penζ). (14)

Given (13) and the above inequality, the proof will be complete if we show thatPe(ǫn,
R
ǫ
, P enζ) decays

doubly exponentially as a function ofn. To show this, we can use the fact that for communication rates
(in nats/channel use) less than

1

2
ln

2 +
√
P 2 + 4

4
,

the following upper bound on error probability holds in the absence of feedback [1]:

Pe(n,R, P ) ≤ e−n(E(R,P )−ǫ′),

for any ǫ′ > 0 and for large enough values ofn, where

E(R,P ) =
P

4
(1−

√

(1− e−2R)). (15)

Taken sufficiently large such that

R

ǫ
<

1

2
ln

2 +
√
P 2e2nζ + 4

4
,

i.e.

n ≥ 1

ζ
ln

(4e2
R
ǫ − 2)2 − 4

P 2
.

Then using (15) leads to

Pe(ǫn, R/ǫ, Penζ) ≤ e−nǫ(Penζ

4
(1−

√
1−e−

2R
ǫ )+ǫ′)

= exp(−exp(n(ζ + o(1))))

Proof of Theorem 2: Let’s partition the whole transmission block intoL + 1 sub-blocks, the first
of which has length(1 − ǫ)n. We choose the remaining sub-blocks to have equal lengths. In the first
sub-block, the transmitter sends the message using the non-feedback Gaussian codebookC1 with rateR
and powerP . After transmission in theith sub-block, the receiver feeds back the message it has decoded
within that sub-block. If the decoded message matches the transmitted one, the transmitter stays silent
for the rest of the time. Otherwise, it sends a failure alarm and retransmits the message in thei + 1st

sub-block using a non-feedback Gaussian codebookCi with rateR. The power of the alarm signal and
the powerPi of codebookCi are chosen to be inversely proportional to the probability of decoding error
in the first i sub-blocks. That is,

Pi+1 = P/γi,

whereγi is the total probability of error in the firsti sub-blocks. TheL-fold exponential error decay can
be shown inductively. Given that the probabilityγi is (i− 1)-fold exponential in terms of the blocklength
(the case ofi = 2 was shown in the previous Theorem), the power at theith sub-block (if transmission is
needed) is(i− 1)-fold exponential in blocklength. This in turn leads to ani-fold exponential error decay
at the end of theith sub-block. Note that both the transmission power and the feedback rate in the above
scheme satisfy the problem constraints.
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Proof of Theorem 3: Let us first introduce some key definitions which will be used in our proof.
We define the decoding region for messagem as

D(m) = {Y n : φ(n)(Y n) = m}
Also for each feedback signal sequenceun = (u1, ..., un) ∈ U , let’s define the feedback decision region

B(un) = {Y n : g
(n)
i (Y i) = ui, i = 1, ..., n}.

A key quantity in our proof is the joint distribution of the feedback signal sequence and the output
sequence given the transmitted messagePY n,Un|M(., .|.). For simplicity, we drop the subscript and use
P (yn, un|m) to denote the density of the output sequenceyn and the feedback sequenceun = (u1, ..., un)
conditional on the transmission of the messagem. Definingu0 = 0, we can write

P (yn, un|m) = Πn
i=1P

(
yi
∣
∣m, ui−1, yi−1

)
P
(
ui

∣
∣m, ui−1, yi

)
(16)

= Πn
i=1P

(

yi
∣
∣m, ui−1, f

(n)
i (m, ui−1), yi−1

)

P
(

ui

∣
∣m, ui−1, yi, g

(n)
i (yi)

)

(17)

= Πn
i=1P

(

yi
∣
∣f

(n)
i (m, ui−1)

)

1
{ui=g

(n)
i (yi)}

(18)

= 1{yn∈B(un)}Π
n
i=1

1
√

(2π)
exp

(

−(yi − f
(n)
i (m, ui−1))2

2

)

(19)

= 1{yn∈B(un)}(2π)
−n/2exp

(

−||yn − f (n)(m, un)||2
2

)

, (20)

where f (n)(m, un) = (f
(n)
1 (m, u0), ..., f

(n)
n (m, un−1)). In this derivation, (16) is a consequence of the

probability chain rule. Equation (17) is derived using the fact that for any two random variables(W,S)
and any deterministic mappingT (.), W ↔ S ↔ T (S) is a Markov chain. Finally, (18) is a direct result of
the Markov chain relationship(M,U i−1, Y i−1) ↔ Xi ↔ Yi and also the equationUi = g

(n)
i (Y i). Another

quantity of interest will be the probability of using a feedback signal sequenceun ∈ U conditional on the
transmission of a messagem ∈ M,

P (un|m) =

∫

P (yn, un|m)dyn. (21)

With the above definitions we can now proceed with the proof. Suppose the theorem does not hold.
That is, let’s assume there existsγ > 0 such that the following inequality can hold for arbitrarilylargen:

Pe(n,R,RFB, P ) < e−n(Eup(RFB)+γ). (22)

Given suchn’s, the above inequality implies that for at least half of themessagesm ∈ M, we have

Pe(m) < 2e−n(Eup(RFB)+γ) = e−n(Eup(RFB)+γ+o(1)). (23)

Removing the messages which do not satisfy the above, we obtain a codebook with the rate of at least
1
n
log( e

nR

2
) which, for arbitrarily largen, is arbitrarily close toR. Therefore, (22) implies the existence of

a code with rateR for which theper message error probabilitycan be less than its right hand side for
arbitrarily largen and for someγ > 0. Let us defines(n) = n(Eup(RFB) + γ). To prove the theorem, we
will show that there existsn0 such that for anyn > n0, the inequality

Pe(m) < e−s(n) (24)

cannot hold for all messagesm ∈ M. Let us fix n0, to be determined later, and assume that for some
n > n0, there exists a communication scheme for which(24) holds for allm. Given such a communication
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scheme, for eachm, we construct an initial binF0(m) including a subset of feedback signal sequences
as follows

F0(m) = {un : P (un|m) > δe−nRFB},
whereδ > 0 is a fixed constant, to be determined later. DefiningPr{F0(m)|m} as

∑

un∈F0(m) P (un|m),
we can write

Pr{F0(m)|m} = 1−
∑

un 6∈F0(m)

P (un|m)

≥ 1− δ|U|e−nRFB

≥ 1− δ (25)

In the following algorithm we update the content of each bin sequentially.
1) Start withi = 0.
2) Pick two distinct messagesm,m′ ∈ M, such that there exists a feedback sequenceun where both

Fi(m) andFi(m
′) includeun.

3) Assuming||f (n)(m, un)||2 > ||f (n)(m′, un)||2 (without loss of generality), removeun from Fi(m).
4) Increasei by 1 and setFi(k) = Fi−1(k), for all k ∈ M.
5) SetJ = {k ∈ M : Fi(k) 6= ∅}. If |J | > enRFB , go to step2, otherwise stop.

Note that step2 is feasible since whenever this step is executed the number of non-empty bins are greater
than the cardinality of|U| which is enRFB . Therefore, there should exist at least one feedback sequence
which appears in two bins. Also note that for anyk ∈ M and any integeri

Fi(k) ⊆ Fi−1(k)... ⊆ F0(k). (26)

Assumem,m′ are the messages picked in step 2 andun is the sequence removed from the binFi(m)
in step3 and at iterationi of the above algorithm. Given such a3-tuple (un, m,m′), a major part of the
rest of the proof is devoted to obtaining a lower bound for||f (n)(m, un)||2. First for anyyn, let’s use the
triangle inequality to write

||yn − f (n)(m, un)||2 ≤ (||yn − f (n)(m′, un)||+ ||f (n)(m, un)− f (n)(m′, un)||)2
= ||yn − f (n)(m′, un)||2 + ||f (n)(m, un)− f (n)(m′, un)||2

+2||yn − f (n)(m′, un)||.||f (n)(m, un)− f (n)(m′, un)||
≤ 2(||yn − f (n)(m′, un)||2 + ||f (n)(m, un)− f (n)(m′, un)||2). (27)

Similarly, we have

||f (n)(m, un)− f (n)(m′, un)||2 ≤ 2(||f (n)(m, un)||2 + ||f (n)(m′, un)||2).
Combining (27), (28) and the assumption in step 3 of our algorithm that||f (n)(m, un)||2 ≥ ||f (n)(m′, un)||2,
we have

||yn − f (n)(m, un)||2 ≤ 2(||yn − f (n)(m′, un)||2 + 4||f (n)(m, un)||2).
Using this inequality and the derivation in (20), we have

P (yn, un|m) > 1{yn∈B(un)}exp
(
−4||f (n)(m, un)||2

)
(2π)−

n
2 exp

(
−||yn − f (n)(m′, un)||2

)
. (28)
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Denoting the complement of a setA by Ac, we can write

Pe(m) =

∫

D(m)c

(
∑

u′n∈U

P (yn, u′n|m)

)

dyn (29)

≥
∫

D(m)c∩B(un)

P (yn, un|m)dyn (30)

≥
∫

D(m′)∩B(un)

P (yn, un|m)dyn (31)

≥ exp (−4||f(n)(m,un)||
2)
∫

D(m′)∩B(un)
(2π)−

n
2 exp (−||yn−f(n)(m′,un)||

2) dyn, (32)

where (31) is due to the fact thatD(m) andD(m′) are disjoint sets and the last inequality is a consequence
of (28). Using the assumption(24) and rearranging the above inequality, we can write

||f (n)(m, un)||2 ≥ 1

4

(

s(n) + log
∫

D(m′)∩B(un)
(2π)−

n
2 exp (−||yn−f(n)(m′,un)||

2) dyn
)

. (33)

To complete our lower bound for||f (n)(m, un)||2, in the following, we find a lower bound for the integral
in (33). First note that sinceun ∈ Fi(m), we can write

∫

D(m′)∩B(un)

P (yn, un|m′)dyn

=P (un|m′)−
∫

D(m′)c∩B(un)

P (yn, un|m′)dyn

≥P (un|m′)− Pe(m
′)

≥ δe−nRFB − e−s(n) (34)

≥ δe−nRFB(1− 1

δ
e−(s(n)−nRFB))

≥ δ

2
e−nRFB , (35)

where (34) follows from the assumption that (24) holds for all the messages and the fact thatun picked in
step3 and at theith iteration of the algorithm is in binFi(m

′) and therefore is a member ofF0(m
′). Also

inequality (35) is secured by the appropriate choice ofn0. Now let’s define the sphereSp(f (n)(m′, un))
as

Sp(m′, un) = {yn : ||yn − f (n)(m′, un)||2 ≤ nτ}, (36)

whereτ will be determined later. Partitioning the setD(m′) ∩ B(un) into D(m′) ∩ B(un) ∩ Sp(m′, un)
andD(m′) ∩ B(un) ∩ Sp(m′, un)c and using(35), we can write

∫

D(m′)∩B(un)∩Sp(m′,un)

P (yn, un|m′)dyn ≥ δ

2
e−nRFB −

∫

D(m′)∩B(un)∩Sp(m′,un)c
P (yn, un|m′)dyn. (37)

The second term in the right hand side of (37) can be bounded as follows

∫

D(m′)∩B(un)∩Sp(m′,un)c
P (yn, un|m′)dyn

≤
∫

Sp(m′,un)c
P (yn, un|m′)dyn

≤Pr
{

n∑

i=1

(yi − f
(n)
i (m′, ui−1))2 ≥ nτ

}

≤ exp (−nEc(τ)) , (38)
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where we have used the Chernoff bound in the last step. In thatinequalityEc(τ) is defined as

Ec(τ) = max
s≥0

sτ − µ(s), (39)

whereµ(s) is the semi-invariant moment-generating function of the Chi-square distribution corresponding
to κ = (yi − f

(n)
i (m′, ui−1))2:

µ(s) = logEκ[e
sκ] =

1

2
log(

1

1− 2s
). (40)

Replacingµ(s) in (39) and optimizing that equation we obtain

Ec(τ) =
1

2
(τ − 1− log(τ)) (41)

which is positive and increasing for allτ > 1 and tends to infinity asτ → ∞. Chooseτ such that

Ec(τ) > RFB + ǫ, (42)

for someǫ > 0, to be determined later. Using(37) and (38) we can write
∫

D(m′)∩B(un)∩Sp(m′,un)

P (yn, un|m′)dyn

≥ δ

2
e−nRFB − e−n(RFB+ǫ) (43)

≥ δ

2
e−nRFB(1− 2

δ
e−nǫ)

≥ δ

4
e−nRFB , (44)

where we guarantee the validity of the last step by the appropriate choice ofn0. Now let’s derive the
lower bound for the integral in(33) as follows

∫

D(m′)∩B(un)

(2π)−n/2exp
(
−||yn − f (n)(m′, un)||2

)
dyn (45)

≥
∫

D(m′)∩B(un)∩Sp(m′,un)

(2π)−n/2exp
(
−||yn − f (n)(m′, un)||2

)
dyn (46)

≥ e−nτ/2

∫

D(m′)∩B(un)∩Sp(m′,un)

(2π)−n/2exp

(

−||yn − f (n)(m′, un)||2
2

)

dyn (47)

= e−nτ/2

∫

D(m′)∩B(un)∩Sp(m′,un)

P (yn, un|m′)dyn (48)

≥ δ

4
e−n(τ/2+RFB). (49)

The inequality (49) along with (33) lead to

||f (n)(m, un)||2
n

≥ 1

4
(
s(n)

n
− log(4

δ
)

n
− τ

2
− RFB). (50)

Substitutings(n) = n(Eup(RFB) + γ) in the above inequality, we obtain

||f (n)(m, un)||2
n

≥ P +
1

4
(γ − τ − τ0

2
− log(4

δ
)

n
). (51)

By choosingǫ in (42) small enough such thatτ−τ0
2

+
log( 4

δ
)

n
< γ/2, we conclude that for any feedback

sequenceun which is dropped in any iteration of our algorithm:

||f (n)(m, un)||2 > n(P +
γ

8
). (52)
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The above inequality is sufficient for us to prove the theorem. Noting that the cardinality of the setJ at
the end of our algorithm isenRFB , we can write

E[

n∑

i=1

(

f
(n)
i (m,U i−1)

)2

] (53)

=
∑

m∈M

1

|M|
∑

un∈U

P (un|m)||f (n)(m, un)||2 (54)

≥
∑

m∈M\J

1

|M|
∑

un∈F0(m)

P (un|m)||f (n)(m, un)||2 (55)

≥ 1

|M|
∑

m∈M\J

∑

un∈F0(m)

P (un|m)n(P +
γ

8
) (56)

=
n(P + γ

8
)

|M|
∑

m∈M\J

Pr{F0(m)|m}. (57)

≥ n(P + γ
8
)

|M|
∑

m∈M\J

(1− δ) (58)

≥n(P +
γ

16
)(1− e−n(R−RFB)) (59)

>nP. (60)

In the above derivation, (56) is obtained using (52) and the fact that for allm ∈ M\J , all the un’s in
F0(m) are removed at the end of the algorithm. Also,(58) is a consequence of(25) and(59) is satisfied by
choosingδ < γ

16P+2γ
. The last inequality is secured by the appropriate choice ofn0. The above inequality

shows the conflict of the power constraint and the assumptionthat (24) can hold for somen > n0, where
n0 is chosen such that for anyn > n0

1

δ
e−(s(n)−nRFB) <

1

2
(61)

2

δ
e−nǫ <

1

2
, (62)

e−n(R−RFB) <
γ

16P + γ
. (63)

Given the assumption ofRFB < R, it is clear that there existsn0 such that all the above three inequalities
hold and this completes the proof.

Proof of Theorem 4:We prove the achievability of the above error exponent usingan iterative scheme
similar to the one used in the proof of Theorem 1. We use the exact same structure and notation as in
the previous iterative scheme and just express the distinctions of this scheme. The main distinction is that
here, instead of feeding back the decoded message (i.e.Un1 = m̂1), the receiver sends back a function of
its decoded message

Un1 = g(n)(m̂1), (64)

whereg(n) : M 7→ {1, ..., enRFB} is the feedback decision function. After receivingUn1 , the transmitter
compares the received feedback with the feedback corresponding to the original message and stays silent
if

g(n)(m) = Un1 .

Otherwise, it sends the failure alarm and retransmits the message with high power exactly similar to what
was described in the proof of Theorem 1. Considering the range of the feedback functiong(n)(.), it is
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clear that this scheme meets the feedback constraint. Also it is easy to show that the power constraint is
also met. In particular, note that the probability of retransmission in our scenario is

Pr{g(n)(m) 6= g(n)(m̂1)}
which is less than or equal toγ = Pr{m 6= m̂1} and therefore the expected power used here is less than
the case considered in Theorem 1. Also note that the types of errors seen here include the three types of
errors in the earlier case (false negative, false positive and wrong decoding at the receiver) plus the error
due to the fact that a subset of the decoding errors in the firstblock are not recognized by the transmitter.
That is, the error corresponding to the event

{m 6= m̂1, g
(n)(m) = g(n)(m̂1)},

which we call anerror mis-detection event, must also be considered as a possible error event. We showed
earlier that the algorithm in Theorem 1 achieves a doubly exponential error decay, where the error is
associated with the first three types of errors. Therefore, the probability of error for the current scenario
can be upper bounded by the sum of two terms: the probability associated with an error mis-detection
event and the probability associated with the other three types of errors:

Pe(n,R,RFB, P ) ≤ Pr{m 6= m̂1, g
(n)(m) = g(n)(m̂1)}+ exp(−exp(n(ζ + o(1)))), (65)

for someζ > 0. Given that the feedback rate is less than the feedforward rate, we expect the error mis-
detection event to dominate the total error probability. Hence, the proof will be complete if we show that
there exists a sequence of feedback encoding functions{g(n)(.)}∞n=1 such that

Pr{m 6= m̂1, g
(n)(m) = g(n)(m̂1)} ≤ exp

(
− n(ENoFB(R) +RNoFB + o(1))

)
. (66)

We show the existence of such a feedback encoder sequence using a random coding argument. Givenn
and a feedback functiong(n) : M 7→ {1, ..., enRFB} , let’s define the setV(n)(j) for eachj ∈ {1, ..., enRFB}
as

V(n)(j) = {m ∈ M : g(n)(m) = j}.
We can observe that, in fact, determining the functiong(n)(.) is equivalent to partitioning{1, ..., enR} into
the sets{V(n)(j)}enRFB

j=1 . Now let’s consider all the possible feedback functions forwhich

|V(n)(j)| = en(R−RFB),

for all j ∈ {1, ..., enRFB}. That is, let’s consider all the equal partitionings of the set {1, ..., enRFB}. From
this set of functions, let’s pick the functiong∗(.) uniformly randomly and use it as the feedback encoder
function. We denote the partitioning associated withg∗(.) by {V∗(j)}enRFB

j=1 . Now let’s compute

E[Pr{m 6= m̂1, g
(n)(m) = g(n)(m̂1)}],

where the expectation is with respect to the randomness in picking the feedback function. We have

E[Pr{m 6= m̂1, g
∗(m) = g∗(m̂1)}] =

E[
∑enR

m=1 Pr{m is sent}∑i∈M,i 6=mPr{m̂1 = i|m is sent}1{g∗(i)=g∗(m)}] =
∑enR

m=1 Pr{m is sent}∑i∈M,i 6=m Pr{m̂1 = i|m is sent}E[1{g∗(i)=g∗(m)}] . (67)

For each pair(i,m), we can write

E[1{g∗(i)=g∗(m)}] = Pr{g∗(i) = g∗(m)}

=

enRFB
∑

k=1

Pr{g∗(i) = k|g∗(m) = k}Pr{g∗(m) = k}

=

enRFB
∑

k=1

Pr{i ∈ V∗(k)|m ∈ V∗(k)}Pr{m ∈ V∗(k)}. (68)
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Since{V∗(j)}enRFB

j=1 is uniformly randomly chosen from all equal partitionings of {1, ..., enR}, we can
write for i 6= m and for anyk ∈ {1, ..., enRFB}

Pr{i ∈ V∗(k)|m ∈ V∗(k)} =
|V∗(k)| − 1

∑enRFB

k′=1 |V∗(k′)| − 1

=
en(R−RFB) − 1

enR − 1

Substituting the above equality in (68) we get

E[1{g∗(i)=g∗(m)}] =
en(R−RFB) − 1

enR − 1
. (69)

We can now combine (69) and (67) and conclude

E[Pr{m 6= m̂1, g
∗(m) = g∗(m̂1)}] =

en(R−RFB) − 1

enR − 1

enR
∑

m=1

Pr{m is sent}
∑

i∈M,i 6=m

Pr{m̂1 = i|m is sent}

= e−n(RFB+o(1))Pr{Decoding error in first block}
≤ e−n(RFB+o(1))Pe(n,R, P )

≤ e−n(RFB+ENoFB(R)+o(1)).

The above inequality implies that the expected (with respect to encoder selection) probability of error
mis-detection event is less than the right hand side of (66). Therefore, we can conclude that there exists
at least one feedback encoding function among the ones from which we randomly selected that satisfies
(66). This completes the proof.

Proof of Theorem 5:Here, we only present the proof for the case whereL = 2. Following a similar
approach as in Theorem 2, the proof can be extended toL > 2.

For eachR < C, there existsδ′ > 0 such thatR < C(1 − δ′). Let’s fix δ′ and consider the integerk
which satisfies

δ′

2
≤ 1

k
< δ′. (70)

We divide the whole transmission block intok sub-blocks each with lengthl = n/k. We then partition each
sub-block into three parts of lengthsl1, 1 andl2 exactly the same as the partitioning in the3−phase scheme
proposed in Section III. In the first portion of sub-blockj ∈ {1, ..., k − 1}, messagemj which contains
nR/(k−1) nats of new information is transmitted on the forward channel using a non-feedback Gaussian
codebook similar to the first phase of the algorithm described in Section III. After the transmission, this
message is decoded and the decoded messagem̂j is transmitted back on the feedback channel during the
first portion of thej+1st sub-block and with the rateR nats per channel use. By the end of the feedback
transmission (end of the first portion of sub-blockj +1), the transmitter can detect the decoding error. If
m̂j 6= mj , the failure alarm is sent in the second portion of thej + 1st sub-block and the messagemj is
retransmitted with high power in the third portion of thej+1st block. In fact, for each sub-block we apply
the 3-phase iterative scheme of Section III with the distinction that the error detection and retransmission
for each sub-block occurs one sub-block after the original transmission. The forward rate per channel use
in each sub-block is

kR

k − 1
< C(1− δ′)(1− 1

k
) < C(1− δ′)2.

Defining δ = 2δ′, the rate per channel use will be less thanC(1 − δ). Using the results of Section III,
we can conclude that there existsζ > 0 such that the error probabilityP j

e for the messagemj is upper
bounded by
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P j
e < exp(−exp(

n

k
ζ)) ≤ exp(−exp(n

δ′ζ

2
)),

where the last inequality is a consequence of (70). Using the union bound, the total error probability will
be bounded as follows

Pe ≤
k−1∑

j=1

P j
e

≤ (k − 1)exp(−exp(n
δ′ζ

2
))

≤ 2

δ′
exp(−exp(n

δ′ζ

2
)),

where the last inequality is again a consequence of (70). Taking θ = δ′ζ
2

, the above inequality completes
the proof.
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[3] R. G. Gallager and B. Nakiboğlu, “Variations on a theme by Schalkwijk and Kailath,” arXiv:0812.2709v2, 16 August 2009.
[4] Y.-H. Kim, A. Lapidoth, and T. Weissman, “The Gaussian channel with noisy feedback” inProc. of the International Symposium on

Information Theory (ISIT-07), (Nice, France), pp. 1416-1420, June 2007.
[5] Young-Han Kim, Amos Lapidoth and Tsachy Weissman, “Error Exponents for the Gaussian Channel with Active Noisy Feedback,”

IEEE Transactions on Information Theory, vol. 57, no. 3, pp. 1223-1236, March 2011.
[6] James M. Ooi, “A framework for low-complexity communication over channels with feedback,” Ph.D. dissertation, MIT, 1997.
[7] A. J. Kramer, “Improving communication reliability by use of an intermittent feedback link,”IEEE Transactions on Information Theory,

vol. IT-15, pp. 52-60, January 1969.
[8] Nuno C. Martins and Tsachy Weissman, “Coding for Additive White Noise Channels With Feedback Corrupted by Quantization or

Bounded Noise,”IEEE Transactions on Information Theory, Volume 54, Issue 9, Sept. 2008 Page(s): 4274-4282
[9] M. Agarwal, D. Guo and M. Honig, “Error Exponent for Gaussian Channels with Partial Sequential Feedback”,IEEE International

Symposium on Information Theory (ISIT), Nice, France, June 2007.
[10] S. C. Draper, K. Ramchadran, B. Rimoldi, A. Sahai, and D.N. C. Tse, “Attaining maximal reliability with minimal feedback via joint

channel-code and hash-function design,” inProc. Allerton Conf. Communication, Control and Computing, Monticello, IL, Sep. 2005.
[11] S. C. Draper and A. Sahai, “Noisy feedback improves communication reliability,” inProc. IEEE International Symposium on Information

Theory, Seattle, WA, July 2006, pp. 69-73.
[12] K. Eswaran, A. Sarwate, A. Sahai, and M. Gastpar, “Zero-rate feedback can achieve the empirical capacity,” November 2007, submitted

to IEEE Transactions of Information Theory.
[13] O. Shayevitz and M. Feder, “Optimal Feedback Communication via Posterior Matching,”IEEE Transactions on Information Theory,

Vol. 57, No. 3, pp. 1186-1222, March 2011.
[14] T. P. Coleman, “A Stochastic Control Viewpoint on ‘Posterior Matching-Style Communication Schemes”,IEEE International Symposium

on Information Theory (ISIT), Seoul, Korea, June 2009.
[15] M. S. Pinsker, “The probability of error in block transmission in a memoryless Gaussian channel with feedback,”Probl. Inf. Transm.,

vol. 4, no. 4, pp. 319, 1968.

http://arxiv.org/abs/0812.2709

	I Introduction
	II System Model
	III RFB R: Super-Exponential Error Decay
	IV RFB < R: First Order Exponential Error Decay
	V RFB < R: Lower bound on error exponent
	VI Per channel use feedback constraint
	VII Summary and Discussion
	VIII Appendix
	References

