arXiv:1308.5373v1 [cs.IT] 25 Aug 2013

1

Five Families of Three-Weight Ternary Cyclic
Codes and Their Duals

Cunsheng Ding, Ying Gao, and Zhengchun Zhou

Abstract

As a subclass of linear codes, cyclic codes have appliciiortonsumer electronics, data storage systems,
and communication systems as they have efficient encodidglacoding algorithms. In this paper, five families
of three-weight ternary cyclic codes whose duals have twoszare presented. The weight distributions of the five
families of cyclic codes are settled. The duals of two faesilof the cyclic codes are optimal.
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I. INTRODUCTION

Let p be a prime. Ann,k,d] linear code over Gfp) is ak-dimensional subspace of G&" with mini-
mum nonzero (Hamming) weight A linear [n,k| codeC over GK p) is calledcyclicif (co,C1,---,Cn-1) €
C implies (cp_1,Co,C1,- -+ ,Cn_2) € C. By identifying any vector(cy,c1,---,cqr-1) € GF(p)" with

Co+ CiX+ X2+ -+ X"t e GR(p)[X]/ (X" - 1),

any linear code” of lengthn over GK p) corresponds to a subset of the quotient ring @k /(X" —1).
A linear code( is cyclic if and only if the corresponding subset in @Fx]/(xX"—1) is an ideal of the
ring GRp)[¥/(x" - 1).

It is well known that every ideal of GIp)[x]/(X"— 1) is principal. LetC = (g(x)) be a cyclic code,
whereg(x) is monic and has the smallest degree among all the generdtorsTheng(x) is unique and
called thegenerator polynomialand h(x) = (X" —1)/g(x) is referred to as th@arity-checkpolynomial
of C. If the parity check polynomiah(x) of a codeC of lengthn over GK p) is the product ot distinct
irreducible polynomials over Gp), we say that the dual codé" hast zeros.

Let A; denote the number of codewords with Hamming weigiit a codeC of lengthn. The weight
enumeratorof C is defined by B A1y +Asy? + - -- +Any". The weight distribution{Ag,As,...,An} is an
important research topic in coding theory. First, it com¢acrucial information as to estimate the error
correcting capability and the probability of error detentand correction with respect to some algorithms
[14]. Second, due to rich algebraic structures of cyclicesydhe weight distribution is often related to
interesting and challenging problems in number theory.

As a subclass of linear codes, cyclic codes have been widedyg in consumer electronics, data
transmission technologies, broadcast systems, and cemapplications as they have efficient encoding
and decoding algorithms. Cyclic codes with a few weightsodirgpecial interest in authentication codes as
certain parameters of the authentication codes constrfician these cyclic codes are easy to complute [9],
and in secret sharing schemes as the access structureshadestret sharing schemes derived from such
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cyclic code are easy to determine [2], [8],[26]. Cyclic ceddgth a few weights are also of special interest
in designing frequency hopping sequendes [4], [7]. Threaht cyclic codes have also applications in
association schemes| [1]. These are some of the motivatfostsidying cyclic codes with a few weights.
In this paper, five families of three-weight ternary cyclaxes whose duals have two zeros are presented.
The weight distributions of the five families of cyclic codase settled. The duals of two families of the
cyclic codes proposed in this paper are optimal ternary £o8e a byproduct, three new decimation
values of maximum-length sequences giving only three Gairom values are also obtained in this paper.
This paper is organized as follows. Sectioh Il fixes sometimta for this paper. Sectidnlll defines
cyclic codes over Gfp) whose duals have two zeros. Section IV-A presents two leminas will
be needed in the sequel. Sectlon IV defines two families oficyodes and determines their weight
distributions. Sectioi MV describes three families cyclides and determines their weight distributions.
Section’Vl makes concluding remarks.

[I. SOME NOTATIONS FIXED THROUGHOUT THIS PAPER

Throughout this paper, we adopt the following notationsesslotherwise stated:

e pis a prime andy= p™, wherem is a positive integer.

« N=q—1, which is the length of a cyclic code over Gf.

. Tri(x) is the trace function from Gp) to GHp) for any positive integes.

. X is the canonical additive character on @F; i.e., X(X) = ™ ~1TT(X/P for any x € GF(q).

« Cy denotes thg-cyclotomic coset modula containinga, wherea is any integer with 6<a<r —2,
and/, := |Ca| denote the size of the cyclotomic cosit

« By the Database we mean the collection of the tables of besadicodes known maintained by
Markus Grassl at http://www.codetables.de/.

[1l. CycCLIC CODES WHOSE DUALS HAVE TWO ZEROS

Given a positive integem, recall thatg= p™ andn = q— 1 throughout this paper. Let be a generator
of the multiplicative group Gfg)*. For any 0< a < q— 2, denote bymy(x) the minimal polynomial of
a2 over GHp).

Let 0<u<qg—2and 0<v<q-2 be any two integers such thatNc, = 0. Let (y,pm) be the
cyclic code over GFp) with lengthn whose codewords are given by

c(a,b) = (Co,C1,...,Cn-1), V¥ (ab) € GF(p) x GF(p™), (1)

where . .
¢ =Tr (aa") +Try (ba), 0<i<n-1

By Delsarte’s Theorem, the cod®,,,, m has parity-check polynomiah,(x)my(x) and dimensior, + £y.
In terms of exponential sums, the Hamming weightofa, b)) of the codeword(a, b) of (T) in (v, pm)
is given by

1
wt(c(a b)) =(p-1)p"*-= 5 Tulyayb) (2)
yeGHp)*
where
T(u,v)<a7 b) = z X(a)éj"f’ bxv) (3)
xeGF(q)

for each(a,b) € GF(g)?. Throughout this section, the functidiy, ) (a,b) is always defined as if(3) for
any givenu andv.

The following lemma is an extension of Lemma 6.1[inl[27], and ke frequently used in the sequel
when we determine the weight distributions of the five fagsilof cyclic codes.
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Lemma 3.1:Let s be any integer with gdg,q— 1) = 2. Then

T(u,v)(a,b):%< GZF()x(axS“quxS")Jr Z x(a)\”x5“+b)\"xs")>
xeGF(q

xeGF(q)

whereA is any fixed nonsquare in G&)*.
Proof: Let Céz’q) denote the set of all nonzero squares in(GFThen

Tuw(ab) =1+ z x(@xX!'+bx’) + Z X(@A"x" +bAYX). (4)

xecéz’q) xecéz’q)

Note that gcdlg—1,s) = 2. Whenx runs through GFj), x° runs twice through the nonzero squares in
GF(q) and takes on the value 0 once. Similady® runs twice through all the nonsquares in (@Fand
takes on the value 0 once. The conclusion then follows dyréam (4) and the discussions abovem

There are a lot of references on the codgs,pm (see for example [6],[10])[16]/ [12][ [17][ [19],
[20], [21], [23], [24]). This family of cyclic codeg,,p,m) Mmay have many nonzero weights. It is obvious
that Ciy,v,p,m cannot be a constant-weight code as its parity-check pafjaidas two zeros. Wheq= 2,
the codesCyy,pm) cannot be a two-weight code @,NCy = 0 and/, > 1 and/, > 1. Whenq is odd,
Cluv,pm could be a two-weight code.

A number of three-weight nonbinary cyclic cod€g ,pm have been constructed (see for example [2],
[3], [20], [15], [22], [25]). In this paper, we present fivenfdies of three-weight ternary cyclic codes
Cluv,p,m)» determine their weight distributions and study their dual

IV. TWO FAMILIES OF THREEWEIGHT TERNARY CYCLIC CODES AND THEIR WEIGHT ENUMERATORS

In this section, we propose two families of three-weightlicycodes( 3 m) over GK3) whereu and
v are some integers witty, NCy = 0 and (¢, ¢y) = (m,m). It is obvious that the cod€(,3m has length
3M—1 and dimension @ under these assumptions.

A. Some auxuliary results

In this subsection, we introduce a lemma on exponential smrasfinite fields and a lemma regarding

the dual codeCLl.v.S.m) of the code(i1y3m). Recall thaty is the canonical additive character of (&

defined in Sectiofll.
The following lemma will be employed in the sequel, and wasvpd in [27] with the help of some

results from [[25], [[15].
Lemma 4.1:Let m be odd anch be an integer with gddn,h) = 1. Define

Rab= Y x@°+bd).
xeGF(q)

Then, as(a,b) runs through GFg)?, the values of the sum
> (Ryayb)+R(-yayb))

yeGHp)*
have the following distribution
Value Frequency
2(p—1)p" 1
(p—1)pmb/z2 (p™ty p(m=D/2)(pm— 1)
0 (pPM—-2p™*+1)(p" - 1)

—(p—1pmy2 - (pt - pM D) (pT 1),
The following lemma is proved iri_[5] and will be employed iretsequel.



TABLE |
WEIGHT DISTRIBUTION

Welghtw No of codewordsAy

( 1)pmi_ B Apm-1)2 (pm 1(p™ 1+ pm-U/2)
(p— 1)pm ! (P"-1)(pP"-2p" " +1)
(p—1)p™ 1P 1p(m 1)/2 (p"—1)(p™ 17p(m—1)/2)

Lemma 4.2:Let v¢ C1 and ¥, = |Cy| = m. Then the duaKLlM&m) of the ternary cyclic cod& 13 m)

has parameter@™— 1,3™—1—2m, 4] if and only if the following conditions are satisfied:
Cl: vis even;

C2: the equatiorf—x— 1) +x"+1=0 has the only solutiom=1 in GKq)*; and

C3: the equatiorix+1)"—x"—1=0 has the only solutiox =0 in GHQ).

B. The first family of three-weight cyclic codes

In this subsection, we study the cyclic codgs,pm), wheremis odd, p= 3, andv = (3mt—1)/4.
The parameters of the codes are described in the followiegrém.
Theorem 4.3:Let m be odd,p = 3, andv= (3™ —1)/4. Then(1pm) is a[p™— 1,2m] cyclic code
over GH p) with the weight distribution in Tablg I.
Proof: Let h=1 ands= 3"+ 1. Then gcds, 3™ — 1) = 2 sincem is odd. It is easy to check that
sv=2 (mod 3"—1). Noticing thatv is even and-1 is a nonsquare in GF). By Lemma[3.1, we have

Tuw(@b) = (Ruy(@b)+Ruy(-ab)
where
Ruy(@b) = % (@ 14 ).
xeGHq)
It then follows from [2) that
wt(c(a,b)) = 2x 3™t — é GZF@) (Riww (Y2 yb) + Ry (=ya yb)) . (5)
yeGH3)*

Note that gcdm, h) = gcdm, 1) = 1, the weight distribution of the cod€(y,3m then follows from
Equation [(5) and Lemmia4.1. |
Example 4.4:Let p=3 andm= 3. Leta be the generator of GE™)* with a®+2a+41=0. Then
v=20 and(1ypm) is a[26,6,15 code over GE3) with parity-check polynomiak® + 2x3 + 2x% 4 x+2
and weight enumerator-2312/1°+ 260y'8 +156yL. It has the same parameters as the best known cyclic
codes in the Database, and is optimal.
Example 4.5:Let p=3 andm=>5. Leta be the generator of GE™)* with a®+2a+1=0. Then
V=182 and(1ypm is a[242 10,153 code over GF3) with parity-check polynomiak!®+ 2x° + 2x8 +
2x" 4 23 + x4 4+ 2x3 4+ x? +x+ 2 and weight enumerator

1+ 21780123+ 19844/162 1 17424171,

It has the same parameters as the best known cyclic codes Database. It is optimal or almost optimal
since the upper bound on the minimal distance of any ternaeat code with length 242 and dimension
6 is 154.

The following theorem describes the parameters of the dodé «:‘(1\/3

TheorenT4.B.

m) of the code(y3m) In



Theorem 4.6:Let m be odd,p=3, andv = (3™*—-1)/4. Then(y,, ,y is a[3"—1,3"—1-2m 4]
cyclic code over GR). il

Proof: The dimension ofC(lepm) follows from that of (1 pm. SO we need to prove that the
minimum distancel- of C(lepm) is 4. To this end, we prove that the three conditions in LerhBeade
met. o

Obviously,v is even. So Condition C1 in Lemnia #.2 is satisfied.
We now consider Condition C2 in Lemnhla 1.2 and study the smistk € GF(q) of the following
equation

(X+1)V+x'=-1. (6)
It is clear that Equatior{{6) is equivalent to the following
y—x=1, y+x'=-1 (7)

Note that—1 is a nonsquare in GF) and gcd4,g— 1) =2 asm is odd. We now consider the solutions
(x,y) € GF(q)? of (7) by distinguishing among the following four cases.
Case 1, x=x§ and y= Y} for some(xy,y1) € GF(g)2 In this case,xy,y1) is a solution of

Vi-xi=1 yi+xi=-1 (8)
It then follows that
V4xe=—1 y—xo=-1

Hencey? = —1, which is impossible as-1 is not a square in GB™).
Case 2, x= —x{ and y= —y} for some(xq,y1) € GF(q)?: In this case x1,y1) is a solution of

Xi—yi=1 yi+xi=-1 ©)
It then follows that
V+x=-1 yi-x¢=1
Hencey; =0 and—lzxf, which is impossible as-1 is not a square in GH).
Case 3, x=x{ and y= —y{ for some(xy,y1) € GF(q)% In this case(xy,y1) is a solution of
Viexi=—-1 y¥+x2=-1 (10)
It then follows that
1= (Y +x8)% = —142(xqy1)?

and 1= (x1y1)2. Hencex? andy? are the solutions a? —2z+1=0. Thusx? =y2 = 1. Whencex=x{ = 1.

Case 4, x= —x{ and y=yj for some(x1,y1) € GF(q)% In this case(x1,y1) is a solution of

Viixd =1, =1 (12)

It then follows that
1= (i +x))° = 1+20xay1)*.

Hence 0= (x1y1)2. Thereforex; =0 ory; = 0. Hence—1=y2 or —1 = x2, which are impossible.
Summarizing the four cases above, we proved that Condit®m@emma4.R is satisfied.
One can similarly prove that Condition C3 of Lemial4.2 is atset.

The desired conclusion of the parameters of the code théawlfrom Lemmd 4]2. [ |
Note that the codesf(leIOrn of Theoreni 4.6 are optimal in the sense that the minimummiistaf any

ternary linear code of length™- 1 and dimension 38— 1—2m is at most 4 due to the sphere-packing
bound.
Example 4.7:Let p=3 andm= 3. Let a be the generator of GB™* with a®+2a+1=0. Then

v=20 andCy,,,m i @[26,20,4] code over GE3) with generator polynomiat® + 2x® + 2x* + X+ 2.



C. The second family of three-weight cyclic codes
In this subsection, we analyze the cyclic cod€g,pm), Wherem=7 (mod 8, p= 3, andv =

3(m+1)/8 _ 1) (3(m+1)/4+ 1) (3(m+1)/2+ 1). The parameters of the codes are described in the following
theorem.
Theorem 4.8:Let m=7 (mod 8, p=3 andv = (3(M/8 _ 1)(3(MD/4 1 1)(3M1/2 4 1), Then
Civam) is a[3M—1,2m| cyclic code over GE3) with the weight distribution in Tablg I.
Proof: Let h= (m+1)/8 ands= 3"+ 1. Sincem=7 (mod 8, gcd’s,3™— 1) =2 andv is even. It
is easy to check thatv=2 (mod 3"—1). SelectA = —1 as a nonsquare in Gp™). Applying Lemma
3.1, we have

1
T(l,V) <a7 b) = é (R(l,v) <a7 b) + R(l,v)(_a7 b)) (12)
where )
Ruy@b) = S x@*t+bx).
xeGHQq)
It then follows from [2) and[(12) that
41
wi(c(a,b)) =2x3™ -2 5 (Rayy(yayb)+Ray(-yayb). (13)
yeGH(3)*
The weight distribution of the cod€{13m) then follows from [1B) and Lemnia 4.1. [

Example 4.9:Let p=3 andm="7. Let a be a generator of GE)* with a’+2a?+1=0. Then
v=1640 and(1ypm) is a[2186 14,1431 code over GE3) with parity-check polynomial

XM 2xBB x24T x84+ 28 X X+ 2
and weight enumerator
1+165261¢'3!+ 15957894°8+ 1534573148°

Now we determine the parameters of the dual cdﬁg’&m) of Ci1y3m in TheorenT4.B. To this end,
we need the following lemmas whose proofs are omitted.

Lemma 4.10:Let m=7 (mod 8§ andq= 3™. Defineh = (m+1)/8 ands= 3"+ 1. Then all solutions
(x1,y1) € GF(q) x GF(q) of the equationy? —x2 = 1 can be expressed as

xx=0-0"1 y1=—-06-06"1 (14)
whereB € GF(q)*. In addition, we have

X?. — eS+ e—s_(93(m+1)/8,1+91,3(m+1)/8>
y?- — eS+ efs_l_(93(m+1)/8,1+9173(m+1)/8>'

Lemma 4.11:Letm=7 (mod 8. Defineh= (m+1)/8 ands= 3"+ 1. If m=7 (mod 16, then

(15)

s=4 (mod 8§
geds,of —1) =4
ged3"—-1,¢°—1) =2

If m=—-1 (mod 16, then

geds, o —1) =2

s=2 (mod 8§
ged3"—1,g°—1) =8.
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Lemma 4.12:Let m be odd andj= 3™. Lety be a generator of GB2) and lete = y(@~1/4, Then All
solutions of(xy,y1) € GF(q?) x GF(¢?) of the equationk? +y2 = —1 can be expressed as

x1=¢€0+671), yy=0-06"1 (16)

for some@ € GF(g?)*, whereg? = —1.
Furthermore,

X?_ _ (es_f_efs_f_eShfl_i_elfSh)ss
yi _ es+ efs_(GShfl_i_elfSh)‘

The following theorem describes the parameters of the dude ¢ of C(1y3m) in Theoren{4.B.

(1,v.3,m)
Theorem 4.131et m=7 (mod 8, p=3, andv = (3(M1)/8 _1)(3M+1)/4 4 1)(3(Mi1)/2 1 1) Then
Cliupm 15 @[3"—1,3"—1—2m 4] cyclic code over GF3).

Proof: The dimension ofC(llvpm) follows from that of ((1ypm. SO we need to prove that the

minimum distanced of C(JJ_..me) is 4. To this end, we prove that the three conditions in LerhiZzade
met. o

Defineh= (m+1)/8 ands=3"+1. It is easily seen that g¢slq—1) =2 andsv=2 (modq—1).
Note that—1 is a nonsquare in GF) asm is odd.

Obviously,v is even. So Condition C1 in Lemnla 4.2 is satisfied. We now c@nsCondition C3, and
study the solutions € GF(q) of the following equation

(x+1)V—x'=1. (17)
It is clear that Equatiorf (17) is equivalent to the followisygstem of equations
y—x=1 y-x'=1 (18)

We now consider the solution&,y) € GF(q)? of (I8) by distinguishing among the following four
cases.

Case 1, x=x§ and y= ;5 for some(xy,y1) € GF(q)% In this case(xi,y1) is a solution of

B-E=1 yi-%=1 (19)

Let © = y1 —x3. Clearly, 8 # 0. Then plugging the expressions ©f;,y1) in Lemmal4.ID into the first
equation of [(IP) yields

63<m+1>/871 + 6173(m+1)/8 _ _1 (20)

Obviously, the equatioz+z 1 = —1 has the unique solution= 1. In this case, it follows from{20)
that 63™""*~1 = 1. Note that gc@B(™1/8 —1 3M_ 1) = 2. Henced = £1. It then follows from the first
equation in[(I4) thak; =6 —6-1 = 0. Hencex=x§ = 0.

Case 2, x= —x§ and y= —y; for some(xy,y1) € GF(q)%: In this case(x;,y1) is a solution of

Vi =-1 yp—x=1 (21)
Let © =y; —x3. Clearly, 8 # 0. Then plugging the expressions ©f,y1) in Lemmal4.1D into the first
equation of [(2I1) yields
93(m+1)/8_1 + el_3(m+l)/8 _ 1 (22)

m+l)/8_1_

The equatiorz+z 1 = 1 has the unique solutian= —1. It then follows from[(2R) thaé® -1

This is impossible as-1 is not a square in Gf).



Case 3, x= —x§ and y= Y5 for some(x1,y1) € GF(q)% In this case(x1,y1) is a solution of

B+ =1 yi-x=1 (23)

Let © = y1 —x1. Clearly, 8 # 0. Then plugging the expressions ©f;,y1) in Lemmal4.ID into the first
equation of[(2B) gives®3+6-3) = 1. Note that gcds,3™— 1) = 2. We obtain thab = +1. It then follows
thatx; = 0 andx=x; = 0.

Case 4, x=x§ and y= —y; for some(xq,y1) € GF(q)% In this case(xs,y1) is a solution of

iHx=-1 yi—§=1 (24)

Let © =y; —x3. Clearly, 8 # 0. Then plugging the expressions ©f,y1) in Lemmal4.1D into the first
equation of [(2K) gives

°+0°=1,

which is impposible, ag+z ! = 1 has no solutiorx € GF(q).

Summarizing the conclusions in the four cases above, weedrtivat Condition C3 in Lemma4.2 is
satisfied.

One can similarly prove that Condition C2 in Lemmal4.2 issegd.

Finally, the desired conclusions on the parameters of thie dollow from Lemmad_4]2. [ |
Note that the codes‘le m Of Theoreni4.13 are optimal in the sense that the minimunaiist of
any ternary linear code of lengtf3-1 and dimension™3—1— 2mis at most 4 due to the sphere-packing

bound.

V. THREE FAMILIES OF THREEWEIGHT TERNARY CYCLIC CODES AND THEIR WEIGHT ENUMERATORS

In this section, we present three families of three-weigittes whose weight distributions are given in
Table[dl and are different from the one in Taljle I. To this ew&, need the following lemma proved by
Feng and Luol[11].

Lemma 5.1:Let m> 3 be odd,p be an odd prime and lét be a positive integer with géth, h) = 1.
Then the cod& 15 ,m has dimension @ and the weight distribution in Tablel 1.

TABLE Il
WEIGHT DISTRIBUTION |

Weightw No. of codewordsAy

1
(p—1)(p™ 1= p(M-1) 2) %(pm_ 1)(p™ 1+ p(m-1) 2)
(p—)p™? (P"—1)(pM™— p™L1+1)

(p-DE™ 1+ p™ ) [ 30" -1 p™ D)

Theorem 5.2:Let m> 3 be odd andp = 3. Then (i1 pm) is a[p™—1,2m| ternary cyclic code with
the weight distribution in TablE]Il if

e v=(3™1_1)/(3"+1)+(3™—1)/2, where(m+1)/h is even; or
o v=(3(MD/8 _1)(3(m+1)/4 4 1)(3(MD/2 1 1) (3M—1)/2, wherem= 7 (mod 8); or
o v=(3MD/4_1)3M1D/2 1) (3M—1)/2, wherem= 3 (mod 4).
Proof: We now prove the conclusion of this theorem for the firstet p=3 andq = p™— 1. Define

A =al@D/(P-1) wherea is a generator of G§)*. Clearly A is a generator of Gfp)*. Sincem is odd,
A is a nonsquare in GRH). It is easy to verify thahY = A.
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Let s= p"+1. Then gcds, p™— 1) = 2 sincem is odd. It is easy to verify that is odd andsv=
2 (mod q—1). Applying Lemma 3.1, we have

Tw(ab) =

NI =

X@C+bxXY) + % x(ae+ b)\"xsv)>

xeGH(q) xeGHq)

X@C+bxX) + % x(aC+ b}\XSV)>

xeGF(q) xeGHq)

NI =

NI =

> x(ax® 4 bx) + > X(@x?" 1+ b)\x2)> .
xeGHF(q) xeGF(q)

Hence,

h
S Tav@by = Y 3 x(@y® T +byxX).
yeGHp)* yeGH(p)* xeGHq)

It then follows from [2) that the Hamming weight of the codeda(a,b) in (1, ,m is equal to that of
the codewordt(a,b) in G 12 pm)- Hence the two codes have the same weight distribution. Ebeet]
conclusion on the weight distribution of the codg ,pm) follows from Lemm& 5.l as g¢h, m) = 1.
The proof of the conclusion fov = (3(™1/8 _ 1)(3(M+D/4 1 1)(3(MD/2 L 1) 1 (3M—1)/2 is similar
to that for the firstv except that we need to skt= (m+1)/8 and is omitted.
The proof of the conclusion fof3(M™1)/4 —1)(3(M1)/2 1 1) 4 (3M—1)/2 is similar to that for the first

v except that we need to skt= (m+1)/4 and is omitted. [
The dual code$f(iv7 o.m) of the code<((1 y,pm) in Theoren{ 5.2 has parametgp”— 1, p™—1—2m,2].
The minimum distance oa‘f(Llem) is 2 asv is odd.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, we presented five families of three-weightagy cyclic codes and settled their weight
distributions. The duals of the first two families of ternargdes are optimal. The first two families
of cyclic codes have the weight distribution in Talple I, wvehihe last three families have the weight
distribution of tablel. It would be interesting to invegtite the applications of these cyclic codes in
authentication codes, secret sharing and frequency hgggiguences using the frameworks developed in
[2], [4], [8l, [3], [26].

The key technique for settling the weight distributions bége cyclic codes in this paper is the
application of the noninvertible transformations— x* from GHq) to GHq) with gcds,q—1) =2
and Lemmad_3]1. With these innovations we were able to deteriiie weight distributions of the cyclic
codes with the help of known results on certain exponentiaiss

Note that gcév,q—1) =1 andv—1=0 (mod p— 1) for all thev's listed in Theoreni 5]2. It follows
from the discussions in Section A2 in_[13] and the weightribstion of the code((; \,pm) of Theorem
that the crosscorrelation function of any maximum-tergequence of period— 1 over GKp) and
its v-decimated version takes on only the following three catreh values:

—1— p(m+1)/27 —l, _1+ p(m+1)/2

These three-level decimation valueshould be new and form another contribution of this papeheo t
theory of sequences.
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