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Abstract

Most practical communication links are bi-directional.these models, since the source node also
receives signals, its encoder has the option of computmgutput based on the signals it received in
the past. On the other hand, from a practical point of viewydtuld also be desirable to identify
the cases where such an encoder design may not improve cdoatiom rates. This question is
particularly interesting for the case where the transmiitteessages and the feedback signals are subject
to eavesdropping. In this work, we investigate the questbhow much impact the feedback has on
the secrecy capacity by studying two fundamental modelst,Rive consider the Gaussian two-way
wiretap channel and derive an outer bound for its secrecpapregion. We show that the secrecy
rate loss can be unbounded when feedback signals are npédtédxcept for a special case we identify,

and thus conclude that utilizing feedback can be highly fieiak in general. Second, we consider a

arxiv:0911.4432v1 [cs.IT] 23 Nov 2009

half-duplex Gaussian two-way relay channel where the retaje is also an eavesdropper, and find that
the impact of feedback is less pronounced compared to theopiescenario. Specifically, the loss in
secrecy rate, when ignoring the feedback, is quantified tie$ethan 0.5 bit per channel use when the
relay power goes to infinity. This achievable rate regionbtamed with simple time sharing along with
cooperative jamming, which, with its simplicity and neattiopum performance, is a viable alternative

to an encoder that utilizes feedback signals.

This work was presented in part at the 42nd Asilomar Conferesn Signals, System and Computers, October 2008. This
work is supported in part by the National Science FoundatianGrants CCR-0237727, CCF-051483, CNS-0716325, and the
DARPA ITMANET Program via Grant W911NF-07-1-0028.
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I. INTRODUCTION

Most communication links are bi-directional, where the kveard channel can carry infor-
mation and/or provides some form of feedback. For exampl&RQ schemes, the backward
channel provides the acknowledgment of receipt of the gacke peer-to-peer networks, infor-
mation is communicated in both directions. The impact of ékistence of bi-directionality on
the channel capacity has been considered extensively ugt¢éo 8hannon proposed the two-way
channel model in [1] where communication took place in batkeations, and derived the inner
bound and the outer bound on its capacity region. These Isowede shown to match for the
full-duplex Gaussian two-way channel in [2]. An interegtimplication of this result is that the
signals received in the past, i.e., the feedback signatmtimeeded for encoding to achieve the
capacity region for this model. Though this feature is @g#se& in practice for simpler encoder
design, it is also known that this approach is suboptimalenegal, which was proved in [3]
for a two-way channel where the two nodes share a common ofitpn the channel.

In secure communication, the question of whether feedbagkals should be used for en-
coding has been studied in several special scenarios. Shafowed that a completely secure
backward channel can be used to send a “one-time pad” toaserie secrecy capacity of the
forward channel [4]. In [5], it was proved that such a strgi@ghere the source node decodes the
key from the destination, is optimal for a degraded wiretapmmel with a secure rate limited
noiseless feedback link. Another achievable scheme, wtiags not require decoding of the
feedback, was first proposed in [6] in the setting of secrsat ¢eeneration and later in [7].
The scheme proves even if the forward channel and backwaadneth each has zero secrecy
capacity and hence sending key back is not possible, amsticrecy rate can still be achieved
when these two channels are used together. This is done bigimioign multiple channel uses
and designing codes for the resulting equivalent broaddestnel in which the eavesdropper is
eventually put at its disadvantage because of its lack &f isitbrmation. Reference [8] combines
this scheme with the key strategy in [4] and shows a higheresgaate is achievable for the
model in [7].

In [5], [7], [8], the destination has the freedom to desige teedback signals. References [8],
[9] also considered the scenario where the destination estsigted to sending its observation

of the channel output, and hence could not manipulate thdbtek signal to its advantage. It



was shown that feedback also helped to achieve a highercyge@te in this case.

One feature that is common to the coding schemes in [5], B1]iq that the eavesdropper
always receives two separate sets of received signalsromethe forward channel and a second
set of signals from the backward channel if it is not secur&il®this is more inline with the
conventional information theoretic models with feedbadk,[Section 7.12] [11], letting the
eavesdropper receiving the signals of the forward and tlogvierd channel separately might
inadvertently give the eavesdropper an advantage, as cethpasuperimposing them together.
Specifically, when the eavesdropper receives the sum of tkguts from the forward and the
backward channel, introducing artificial noise into the kveard channel at the time when the
forward channel is in use can interfere the eavesdroppbssreation of the forward channel and
hence reduce its recognizance of the message being trées ot it. This so-called “cooperative
jamming” scheme has been shown to improve secrecy rates auasian two-way channel with
an external eavesdropper [12]. Yet in reference [12], thec®node does not take advantage of
the signals it received from the backward channel when @ngats transmission signals. The
guestion remains, therefore, in such a “cooperative jargingcheme, whether the achievable
rates can be improved by utilizing these signals.

In this paper, we consider the wireless communication seenghere the eavesdropper
observes the sum of the outputs of the forward and the backwhannel, and hence the
legitimate nodes in the network can potentially utilize bhétedback signals and cooperative
jamming to protect the confidential message. We focus on twdels where both techniques
are potentially useful: (i) a class of Gaussian full-duptex-way wiretap channels, and (ii) a
Gaussian half-duplex two-way relay channel with an une&dselay.

For the first model, we derive a computable outer bound toetsexy capacity region. We
then compare it to the achievable rates when the feedbagkased at both nodes. Interestingly,
when the ratio of the power constraint of the two legitimateles is fixed and the channel is
fully connected with independent link noise, the gap betwtte achieved secrecy rate and the
outer bound is bounded by a constant, which only dependsegtannel gains.

On the other hand, when the ratio of the power constraintstigixed, we show that ignoring
feedback signals leads to unbounded loss in the secrecyhate the power increases. The loss
is measured as the gap between the achievable rate whenetileatk is used and the upper

bound when the feedback is not used, hence is not caused Ipptdetial sub-optimality of the



achievable scheme. This result shows that utilizing theldaek for encoding at the legitimate
nodes is highly beneficial for this model in general.

In the second model, we consider the case where the eavesdigpart of the network rather
than being external to it. In this model, two nodes wish tohexge information via a relay
node from whom the information needs to be kept secret. Hexeadlay node is “honest but
curious” [13], in that it will faithfully carry out designatl relaying scheme, but is not trusted to
decode the message it is relaying. This kind of setting was donsidered in [14] for the three
node relay channel and later thoroughly studied in [15] dk6].[Later, in [17], we considered
a restricted version of the model in this work, by studying ttase when the feedback signals
were not used at the source or the destination for encodingppeas. In this paper, we identify
one case where doing so will not incur much loss in secrea. tdbre specifically, we will
prove if the power of the relay goes to, then the loss in the secrecy rates caused by ignoring
the feedback is bounded ly5 bit per channel use. Interestingly, a simple TDMA scheméda wit
cooperative jamming yields the achievable rate.

The channel models in this work are closely related the tlaawcbl-type model in secret key
generation literature; see [6], [18]-[21] for example. Thajor difference from these works is
that our model accepts two inputs, one from the source, therdtom the destination. The
eavesdropper observes a noisy superposition of these taudsinThis is more complicated
than the channel-type model where the noisy part of the aasna wiretap channel which
only accepts one input from the source node, and any inpuat fiee destination can only be
transmitted over a noiseless public discussion link whglrithogonal to the wiretap channel.
Recently, reference [22] has considered a channel-typetskey generation model where the
channel component in the model accepts inputs from multiygldes. Yet, these nodes only
receive from the noiseless public discussion link [22, Bectl], which is a fundamentally
different model from those considered in this work.

The rest part of the paper is organized as follows: In Sediijowe describe the two models
considered in this work. Sectidnllll focuses on the Gaussignway wiretap channel. Section
[Vl focuses on the two-way relay channel with an untrustedyteSection V presents some
alternative proofs to some results in previous sectionsti@€VI concludes the paper.

Throughout the paper the notati6i{z) is defined a€”(z) = 3 log,(1+x). Also z; denotes the
ith component of vectar, while z* denotes{z, ...x;}. (0, 0%) denotes a zero mean Gaussian
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Fig. 1. Two-way wiretap channel

distribution with variancer2.

[I. CHANNEL MODELS

In this section, we describe the two channel models corsider this work. Both models
involve information exchange between two nodes: Nodad Node2. Nodel wants to send a
messagél/; to Node2. Node2 wants to send a messagie, to Node 1. Both messages must
be kept secret from the eavesdropper. The encoding fursctised at the two nodes are allowed
to be stochastic. Without loss of generality, we ude to model the local randomness in the

encoding function used by Node j = 1, 2.

A. The Two-Way Wiretap Channel

The first model we consider in this work is a two-way wiretaamhel model. The channel

model is shown in Figurel 1. The channel description is given b
Pr(Y, Yy, Z|X, X;) = Pr(Z|X, X;) Pr(Y|X, X, Z) Pr(Ys| Xy, X, Z) (1)
From (1), we observe
Yy —{X;, X, Z}-Y 2)

is a Markov chain.
At each channel use, Nodeand Node2 transmit simultaneously. At th&h channel use, the

encoding function of Nodé is defined as:

Xi = fi(Yf_l,Wl,Mﬂ 3)



The encoding function of Nod2 is defined as
Xypi = gi(Y'™!, Wa, My) (4)

Note that with the introduction of/;, j = 1,2, we can definef;, g; as deterministic encoders.
Also note that another way to defingis X; = f,-(Xi—l,Y;‘l,Ml). It is easy to see that this
definition is equivalent to the definition given il (3).

Letn be the total number of channel uses. Nadeust decodéV’; reliably from X3, Y™, M, W.
Node 1 must decodéV, reliably from Yy, X, M;, W,. Let the decoding results Hé&, and W,
respectively. Then we require

Jim Pr(W; # Wy) =0, j=1,2 (5)

Hence, from Fano’s inequality [10], we have
H(Wh| X}, Y™, My, W) < e (6)
H(Wa|Y}, X", My, W) < ney 7)

wheree; > 0 andlim,,_,.e; =0, j =1, 2.

In addition, both messages must be kept secret from the draypgser. Hence

I(Wl,W27Zn) < nes (8)
wherees; > 0 andlim,,_,o, g3 = 0.
DefineR;,j = 1,2 as:
.1 .

The secrecy rate region is defined as all rate pgits, R,} for which (8) and[(8) holds.
The Gaussian case of the two-way wiretap channel model wstspfioposed in [12] and is

shown in Figuré 2. Formally, the channel is described as:
Yi=X;+ N3+ VaoX (10)
Y = X + N, +\/BX; (11)

Z =X +\haX; + Ny (12)



Ny
v X
W1 @ W2
W, f 2 ) w,
Y
Vhs P,
Z
Eavesdropper

Fig. 2. The Gaussian Two-way Wiretap Channel

where/a, /B, v'hi,V/hs are channel gainsV;,i = 1, 2,3 are Gaussian random variables with
zero mean and unit variance, representing the channel.ndMseassume that givei,, N; is

independent fromV;:
p(N1, Na, N3) = p(Na)p(N1|Na)p(N3|Na) (13)

We usep to denote the correlation factor betwedh and N,. n denotes the correlation factor
betweenN, and N;. Obviously,—1 < p <1,and—-1 <n < 1.

From (1) and[(IB), we readily see this channel belongs to ldes ©f channels described by
(@) and shown in Figurgl 1.

Observe that the termg’aX and+/3X; are not shown in Figure]2. This is because each
node knows its own transmitted signal ady, /5, v/h1,Vhe, and can always subtract the
interference caused by its own transmitted signals. Heneecan remove/aX and /5X;

from (10) and[(1ll). The channel is hence equivalent to

Yy = X, + Ny (14)
Y =X+N (15)
Z =\l X +\haX; + Ny (16)

In the sequel we shall focus on this equivalent model instead

Let the power constraint of Nodebe P. Let the power constraint of Nodebe P,.

%iEMﬂgP (17)

k=1
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Remark 1: WhenY; is a constant, or, the feedback is ignored by Naodée model reduces

to the relay channel with a confidential message to the relbigch was considered in references
[16], [23], [24]. O

B. Two-Way Relay Channel with an Untrusted Relay

The second model we consider in this work is the Gaussianwtayp+elay channel with an
untrusted relay node. The channel model is shown in Figlrat Zny time slot, the channel
either behaves as a MAC channel, shown on the left, or as al@metachannel, shown on the

right. After normalizing the channel gains, the MAC chanoah be expressed as:
Y, =X1+Xo+N (29)
The broadcast channel can be expressed as:
Y, = VhX, + Ny (20)
Yo=X,+ N, (21)
where/h is the channel gain; # 0. N, N;, N, are independent zero mean Gaussian random
variables with unit variance.
We assume Nodé and Node2 transmit simultaneously during the MAC modg;;, j = 1,2
denote the signals transmitted by Nogealuring theith channel use such that the channel is
in MAC mode.: > 1. We useg; to denote the number of channel uses that the channel was

in the broadcast mode before this channel use. The notéiiodenotes the set of signals:



Similarly X, ; denotes the signal transmitted by the relay node duringtthehannel use that
the channel is in broadcast mode> 1. We usei); to denote the number of channel uses that
the channel was in the MAC mode before this channel use.

Y1, Ys,, Y, are received signals defined in the same fashion.

The channel switches between the MAC mode and the broadcakt atcording to a globally
known schedule. We assume the schedule is independenthlodal randomness at each node,
the messages and the channel noise. The first mode is assoredhie MAC mode. The case
where the first mode is a broadcast mode can be viewed as alspase of invoking the MAC
mode first by transmitting nothing during the first MAC modeéneTrate loss caused by the
wasted channel use is negligible as the number of channslggses toco.

Suppose the MAC mode is activated forchannel uses. The broadcast mode is activated for
m channel uses. Hence the communication spans overn channel uses. It should be noted
that, in general, neither the channel uses of the MAC mode, nor the channel uses of the
broadcast mode have to be consecutive. We assume the sshedtdble, in the sense that the
following limit exists:

n

a= lim
n+m—oo m, + n

(22)
For a givena, we use{T'(a)} to denote a sequence of schedules with increasing total @umb
of channel uses + m such that[(2R) holds, and is the limit of the time sharing factor of the
MAC mode in the schedul@&'(«) asn + m — oo.

The average power constraints for the source, the jammethencelay can be expressed as:

Y B[] <h i=12 23)
k=1
1 & _
—— B (X2] <P (24)
k=1

For the purpose of completeness, we also introduce theiowt&,: = 1,2 to denote the
average power of Nodé during the MAC mode. Since these two nodes are only transmitt

during the MAC model P, and P, are related as

P =Pja, i=1,2 (25)
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Similarly, we useP, to denote the average power of the relay node during the basadnode.

Since the relay node only transmits during the broadcastemBdis related toP, as follows:
P.=P/(1—a) (26)

For theith channel use in which the channel operates in the MAC mbeéesricoding functions

at Node 1,f, ;, is defined as:

Xoi = fra(Y", Wh, M) (27)
Similarly, the encoding functions at Node 2,;, is defined as:

Xoj = foi (Y5, Wa, M) (28)

Note thatf, ;, f; are deterministic functions, and we us£ to model the local randomness at
the relay. For théth channel use in which the channel operates in broadcase nioel encoding

function of the relay nodey;, is defined as:
Xoi = g:(Y,", M,) (29)

whereg; is a deterministic function.
The eavesdropper knows”, X", M,.. Therefore, the secrecy constraint is expressed as

1
lim ——— H(Wy, Wo|Y", X™ M,) = lim

m+n—o0 m +n m+n—o0o M +n

SinceW — { X, Y} — M, is a Markov chain, we have

H(W1, W) (30)

1 1
lim ——— H(Wy, WolY", X" M,) = lim ———H(Wy, W,|Y", X™)  (31)

m+n—oco m, +n m+n—oom +n

Therefore, the secrecy constraint can be expressed as

1 1

m+n—oco m +n m+n—oo m + n

H(Wy, Ws) (32)

Let Wj,j = 1,2 be the decoding result computed by the intended receivé? ofi = 1, 2.

Then the reliable communication requirement is expressed a

lim Pr(W, #W,;)=0,j=1,2 (33)

m—+n—o00

Define R;, R, as

m+n—o00 N —|— m

H(W)),j=1,2 (34)
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The secrecy capacity region is defined as the union of allpates (R, R,) such that there is
an«, a sequence of schedul@'(«)} and a choice of encoding function for whidh32) ahdl (33)
are satisfied.

Remark 2: In general,

lim HWIX™Y") # lim !

n+m—oo n 4+ m n+m—oo n + m

H(WI[Y") (35)

This can be proved by a counterexample: Consider the conuatimm protocol:
1) First the relay node randomly generates and broadcasty ai& X, to Nodel and Node
2 using a channel code.
2) Node1l uses the key as a one-time pad [4] to encrypt its confidentedsagell’ and
sends it to the relay using a channel code. The other nodesinesitent.
3) The relay decodes the codeword sent by Nadand encodes and forwards it to the
destination.
4) The destination recovers the codeword sent by Notdy decoding the signals from the
relay. It then decrypts it with the key it received in stép Haacoversiv.
Since the one-time pad is a perfectly secure cipher [4], it tommunication protocol, we

have:
H(W)=HWI.") (36)

However, since the key is determined Ay", given the keyJW is uniquely determined by’".

Therefore, we have

H(WIX™Y!) =07 HWY) (37)

[1l. FEEDBACK IN THE TWO-WAY WIRETAP CHANNEL
A. Improvement on the Known Achievable Secrecy Rate: A Motivating Example

For the two-way wiretap channel, reference [12] derived emevable rate using Gaussian
codebooks. However, in this scheme, the sigriateceived by Nodd is not used to compute
the signalX transmitted by Nodé. Likewise, the signal” received by Node is not used to

compute the signak,; transmitted by Node. We next show that this scheme can be improved
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upon with respect to the achievable secrecy rate. To shasy ithis sufficient to show that a
larger R, is achievable for Nodé for a set of channel gains. In the following, we provide such
an example.

We assume = 0,7 = 0, which meansV,, N,, N3 are all independent, which was the setting

considered by [12]. The largest rate for Nodachievable with the scheme of [12] is given by:

hiP
Ry =[C(P)-C (m)ﬁ (38)

which is achieved by letting Node transmit an i.i.d. Gaussian sequence with variaite
When # > 1, we observe from[(38) that the secrecy rate is alwayBelow, we choose
P =3,P =1,vV/h = V2,vhy = 1 such that this condition is fulfilled and prove a positive
secrecy rate is achievable with our scheme.

The coding scheme we use is similar to that of [6]. It is congplosf one channel use described
in Figure[4, followed by one channel use described in Figlrie &n odd step, Nodé sends a
signal denoted by; and Node2 sends a signal denoted . After this step, Nodd adds its

received signalX, + N3 to a new signalX; and transmits it in the following even step. At the
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same time, Node sends a signal denoted by. We use the notatiotV; to denote the channel
noise in the odd step anl! to denote the channel noise in the even step.
Combining these two steps, we obtain an equivalent menssydbannel shown in Figuié 6.

The achievable secrecy rate for this channel is given by: [25]

[ (X1;Y) =1 (X1; Ve, Yeo)]* (39)
where
Y =X+ N;+ N (40)
Vo1 = Xy +V2J, + Ny (41)
Yoo = V2(X1 + Xy + N3) + Jo + N} (42)

We then chooseX, X,, Ji, Jo as zero mean independent Gaussian random variables with uni
variance. From Figured 4 and 5, this choice satisfies theagegpower constraints. Evaluating
(39) for this distribution, we get

C(%) _C<2a2+§2—i> -0 (43)

a?+2

wherea = /2.

Since the original channel takes twice as many channel wsesglement this scheme, the
actual secrecy rate is half the value indicated(by (43). Hewehis still means a positive secrecy
rate is achievable.

This means that utilizing feedback signals leads to higlubiexable secrecy rate for this

channel.
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B. Outer Bound

Although we have shown that using feedback can improve tbeeesg rate, it remains unclear
whether this can only be done by letting Nodese the signal” to computeX. If the signalY’
is not available to Nodé, is it possible to achieve the same rate via a smarter wayngpute
X, at Node2? Additionally, if ignoringY” at Node1l is suboptimal, is it possible to bound the
consequent rate loss? To answer these questions, clearlye@d an outer bound on the secrecy
capacity region of this model.

We begin by deriving a bound oR;.

Theorem 1: For the channel model in Figuté R, is upper bounded by

pax min{I(X;Y), I(X;Y|Z, Xp) + (X5 Yy, Z21X)} (44)
A& f
Proof: See Appendix_A. -

Remark 3: Ignoring Y; at Nodel is equivalent to viewing'; as a constant. Fron)_(44R;,

in this case, is upper bounded by

e min{I(X5Y), 10 Y|Z,X;) + I(X7: Z1X)) (45)
r{A,Ar

which is the upper bound proved in [24].

Theorem 2: The secrecy capacity region of the channel model in Figure Hounded by

Ypr(x,x/) {(R1, Ry) : (47) (48) (49)holds} (46)

0<R <I(X;Y) 47)

0< Ry, <I(XpYy) (48)
[(X;Y\|Z,X5)+1 (X Z,Y¢|X),

Ry + Ry < min ( | ) (Xy 71X) (49)
I(Xp V|2, X)+1(X;Z2,Y|Xy)

Proof: The proof is provided in AppendixIB. -

For a deterministic binary wire-tap channel, Theotém 2ddadhe equivocation capacity region,

as shown by the following theorem:
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Theorem 3: When X, X, are binary andY” = X © X;,Y; = X; ® X, Z = X ® Xy, the
secrecy capacity region is given by
R;>0,j=1,2 (50)

Ri+Ry<1 (51)

Proof: The achievability follows from [26, Theorem 2]. The conwefsllows from Theorem

[2. The sum rate bound specializes as follows:

[(X:;Y|Z,Xp)+1(Xp; Yy, Z|X) (52)
=I(X; X|X & X7, X;) + I (Xp; X7, X & Xf|X) (53)
=1 (X; X|X, Xy) + 1 (Xp; Xy, X|X) (54)
=1 (Xp; Xy, X|X) (55)
<H(X;) <1 (56)

|

We next consider the Gaussian channel.
Theorem 4: WhenY; is a constant, i.eY’ is ignored by Nodd, the secrecy rat&; is upper
bounded by

2
P(1+0*>—+h

inf C ( ) ol (57)

a2>0 (1+0%2—p%) (P +1+0?) 1+ 02

Proof: Define N, as a Gaussian random variable such fkiat- A/(0, 02) and is independent
from N;,i = 1,2,3. Recall thatZ is the signal received by the eavesdropper. We next consider
a channel where the eavesdropper receies N4. SinceZ + N, is a degraded version df,
we can find an upper bound of the original channel by derivingupper bound for this new
channel. This upper bound is found by applying the bolnd. (45)

We next prove that all terms in the upper bound (45) is maeéahihenX, X ; are independent
and each has a Gaussian distribution with zero mean and raexipossible variancel(X;Y)

is obviously maximized by this distribution. For the othemwtterms, we have:

[(X;Y|X}, 2) (58)
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:I<X;X+N1‘Xf,\/h71X+\/h72Xf+N2+N4) (59)

_h (X+N1|Xf,ﬂx+@xf+Ng+N4) — B (N[ Ny + N (60)
<h <X+N1|ﬁX+N2+N4) ~ h(N|Ns + NY) 61)
and
(X5 Z|X) (62)
7 (Xﬁ Jha X+ Ny + M\X) 63)
_h (\fo N, + N4|X) B (Ny+ Ny) (64)
<h <\/h:Xf N+ N4> —h(Ny 4+ Ny) (65)

Equations[(61) and_(65) show that the second terni_ih (45) iémized whenX and X, are
independent. Moreover_(61) is known to be maximized whérhas a Gaussian distribution
with the maximum possible variance; see [2[[]]1(65) is alsaimi&ed whenX; has a Gaussian
distribution with the maximum possible variance. Hence vewehshown the optimal input
distribution for X, X is an independent Gaussian distribution. For this distigii it can be
verified the second term if_(#5) becomgs| (57).

Hence we have proved the theorem. [ |

Remark 4. Wheno? — oo, (54) converges t@'(P), which corresponds to the first term in
(49). Thus, [(BF) is written as one term instead of the two sea® in [(45)[]

Remark 5: We introduceN, to further tighten the bound. For example, consider the case

wherep = n = 0. In this case the upper bound can be expressed as

. P
odin, ¢ <m) +Clahky) (66)

where o = 1/(1 + ¢?). Consider choosing the remaining parameters:as= 1,h, = 10,
P =100, P, = 5. It can be verified that the minimum is attained aroune- 0.09, and not at
0% = 0. Hence, the bound presented here is tighter than the boufg#jn_

Next, we present the following theorem.

Theorem 5. The secrecy capacity region of the Gaussian two-way wiretegmnel is outer
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bounded by
0< R <C(P) (67)
0< Ry <C(F) (68)

P(1+0? Fp) >+C(Pr(hz+1+o2_2\/@7)>

11’1f0220 C (14+02—p?)(h1 P+1+02) 14+02—n?

R, + Ry < min (69)

inf0-2 >0 C

Py (14+0°—han)” o ((Plnt1+0°—2vhp)
(1+02—n?)(h2 Pr+1+02) + 1+02—p2

Proof: Again we consider a channel where the eavesdropper recgivesV, and derive
an outer bound for this new channél, is as defined in the proof of Theordr 4.

To prove the theorem, we first shoW .X;Y), I(X;Y|Z, Xy), [( Xy Yy, Z|X), 1(Xys;Y5),
I(Xp Y| Z,Xy) and I(X; Z, Y| X ;) are maximized simultaneously when and X are inde-
pendent,X ~ AN (0, P), and X; ~ N(0, P,).

Due to the symmetry of the channel model, we only need to show Y'), I(X;Y|Z, Xy)
and I (Xy; Yy, Z|X) are maximized by this distribution.

The case off (X;Y|Z, X;) was shown in the proof of Theorelm 4.

For I(Xy; Yy, Z|X), we have:

I(Xy; Yy, Z]X) (70)
7 (X X+ Ny /I Xy + Ny + N4|X) (71)
—h (@Xf + Ny + No, Xf + N3|X) h (Ny + Ny, Ny) (72)
<h <ﬁXf + Ny + Ny, X+ Ng) — h(Ny + Ny, N3) (73)

Hence I(X;; Y}, Z|X) is maximized whenX and X; are independentX ~ N(0, P), and
X ~N(0, P,). The theorem then is a consequence of Thedrem 2 when ewdlagtkis input
distribution. [ |
Remark 6: The introduction of N, is again useful in tightening the bound. For example,
consider the case whepe=7n =0, hy = 1, hy = 10, P = 100, P, = 5.
In this case the upper bound @, which isC(P), is about3.3291. The first term inside the

minimum in [69), which is also an upper bound &n takes the form:

. P
o ¢ (m) OB ahy +1)) (74)
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wherea = 1/(1 + ¢?). It can be verified that the minimum is smaller th#fa4 and is attained
arounda = 0.32. Hence the upper bound oR; is dominated by the first term inside the

minimum in [69) and is not attained at = 0. [

C. Achievable Rates for the Gaussian Two-way Wiretap Channel

Let us us€z|* to denotemax{x,0}. Then we have the following theorem.

Theorem 6: Define R} as

44+
. h, P 1-a hoP \]"
Ry = max o | C(P) = |C <h2Pr+ 1) T a [C(Pﬁ —¢ <h1P+ 1)] } } (75)
and R; as
+
Ry = max o |C(P,) — |C holr ) _1za C(P)-C _mP T (76)
27 0225 @ " hiP+1 a hoP 41
Define the regiorR as the convex hull of the following three rate pairs(éf;, R»):
(0,0), (R1,0), (0,R3) (77)
The rate regioR is achievable.
Proof: The proof is given in Appendik]IC. [ |

Remark 7: The achievable scheme is composed of two phases. During jpimas with a time
sharing factor ofl — a, Node2 sends a key to Nodé. During phase two, Nodg utilizes this
key to encrypt its message and transmits the result to Notience wherv = 1, R is achieved
when both nodes ignore their received signals when comgutieir transmitting signals.]

Remark 8: The achievable secrecy rate derived here may be potenimatiyoved further by
combining it with the scheme in Section_IlFA. However, as sleall see later, Theoref 6 is
sufficient to bound the rate loss when the feedback signalsatrused by the legitimate nodes.
[]

D. Comparing the achievable rates and the outer bound

We first consider the case with independent link noise, wiidhe model considered in [12].
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1) p=n=0:

Theorem 7: Whenp =n =0, P. = kP, k is a positive constant, anl; # 0,j = 1,2, the
loss in secrecy rates when received signals are not usedrtpute transmitting signals at Node
j, j = 1,2 is bounded by a constant, which is only a functionhg@fand h..

Proof: The proof is given in AppendikxD. [ |
Theorem 8: Even in the case where cooperative jamming is possible4(0, j = 1,2), when
P is not proportionally increasing witl¥,, ignoringY; at Nodel can lead to unbounded loss

in the secrecy rate.
Proof: The proof is given in Appendik]E. [ |

We next consider a special case of the model that attracter $oterest in the past [24],
[28]. In this model,Z is a degraded version of given X, andY; is ignored by Node:

2) hy <1,p=+/hy and Y; is a constant: In this case,N, can be written as/h, Ny + NS,
where N}, is independent fronV,, N5 and Nj ~ A/ (0,1 — h;). Then the signals received by the

eavesdroppeZ can be expressed as:

Z = /X +\[ha Xy + [l N, + N (78)
=/l (X + N2) + NS + \Jho X (79)

From this, we observe that, givexi;, Z is a degraded version o&f = X + V.

Corollary 1. Whenh; < 1,p = v/hy, andhy # 0, Y} is a constant, then the achievable rate
of Ry using cooperative jamming is at masbt bit per channel use from the secrecy capacity.
Remark 9: Corollary[1 was first proposed in [28] and later appeared #].[Rlere we first

describe the approach of [24]:
From Theorenil6 and Remalk 7, the achievable ratg?fom this case is obtained by letting

a =1 and evaluating?;. In this case

B hiP
Ry =C(P) - C(m) (80)
The upper bound proposed in [24] dty is
min{C(P),C(P) — C(h1P) + C(haP,)} (81)

Here we observe (81) can be obtained frdml (57) when evalusithdo? — oo and o? = 0.
Reference [24] proves Corollafy 1 by comparingl(80) dnd.(&1¢an be then verified that the
gap between(80) and (81) is less tHah bit per channel use.
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Fig. 7. Two-way wiretap Channel with Additional Public Neisss Forward Link

The approach of reference [28] is different and uses resulta wiretap channel with noisy
feedback. This proof is delegated to Secfidn V.

V. FEEDBACK IN HALF-DUPLEX TWO-WAY RELAY CHANNEL WITH AN UNTRUSTED

RELAY

In this section, we derive the outer bound for the secrecaagpregion of the two-way relay
channel with an untrusted relay in Section 1I-B (Figlte 3). find the outer bound, we first
consider the channel in Figuié 7.

We assumeX; and X, have the same power constraint as fe X, in Figure[3.)/, is now
accessible to Nodé and delivered to the other nodes vigublic noiseless link. The remaining
part of the channel is activated when the original two-wdgyrehannel is in the MAC mode,
and is inactive when the original two-way relay channel neglén the broadcast mode. Doing
so ensures the overall number of channel uses to be the sameebethese two models.

Recall that);, j = 1,2 still models the local randomness at Noflg = 1, 2. The encoding

function of Node 1 at théth channel use when the channel is active can be defined as:
Xui = fr (Y7 Wa, My, M,) (82)

Similarly, the encoding function of Node 2 at tli#ln channel use when the channel is active

can be defined as:
Xo; = fz,z'(Ygi_l, Wa, My, M,) (83)

With these preparations, we present the following theorem:
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Theorem 9: The secrecy rate region of the channel in Fiddre 7 includesétrecy capacity
region of the two-way relay channel in Figurk 3.

Proof: Consider the model in Figurg 3. Suppose during a MAC mode, raegeeveals
X1+ X5+ N to Nodel and Node2. We also add a public noiseless link that takes inputs from
Node 1 and provides outputs to Nodeand the relay. We mak#é/, accessible to Nodé and
use the public noiseless link to delivéf, to Node2 and the relay. This side information does
not increase the knowledge of the relay and hence will notedese the secrecy capacity region
of the channel.

During a broadcast mode, a genie reveals the link noise I8yeio Node2. Similarly, the
link noise V; is revealed to Nodé. This side information will not decrease the secrecy cdpaci
region of the channel either.

With the side information provided to the nodes, the linisxrthe relay to Nodé, 2 can be
removed. This is because

1) Nodel and Node2 have the signal received by the rel&y + Xs + .

2) Nodel sendsM, via the public noiseless forward link. With/, available at Node, it
can compute the signal transmitted by the relay node. Duddgosame reason, Node
knows the signal transmitted by the relay node as well.

3) With noise N, available at Node, Node2 can compute the signal it received from the
relay. For similar reasons, Nodecan compute the signal it received from the relay as
well.

Since N1, N,, N are independent); and N, can be incorporated as the local randomness at
Node 1 and Node2 respectively.

After removing the links from the relay to Node2, the channel indeed becomes that which
is described by Figurel 7, where Nodecorresponds to the relay node whose output broadcast
link to Node 1, 2 is removed. Since, every step we took during this transftomacould only
expand the secrecy capacity region, we have proved theeimeor [ ]

To derive an outer bound for the secrecy capacity of the addanrigurel T, we first consider
the case when the channel is active regardless of whethéwtiway relay channel is in MAC
mode or broadcast mode. We recognize that in this case, #renehbecomes a special case
of the two-way wiretap channel defined in Sectloh Il. Utitigi this connection leads to the

following corollary:
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Corollary 2: The secrecy capacity region of the channel in Fidgure 7 isrcatended by
Ry + Ry < min {C (Pl) .C (152)} (84)
Ry >0,Ry >0 (85)

where P, is the average power constraint of Node

Proof: The channel in Figurgl 7 is a special case of the channel deifinék), where
Y, Y5, Z, X, X; (86)
correspond to
{X1+ N, M}, Xo+ N, {X1+Xo+ N, M} {X1,M,}, X5 (87)

respectively, and®r(Y, Yy, Z| X, X) becomesPr(N).
Therefore the corollary follows as a direct consequence lefofem[b withn = p = 1,
hi=hy=1, 0?=0. [ |
Note that to apply Corollar{]2 to the half-duplex two-wayaelchannel, we need to take
into account the channel uses when the channel in Fgurer@aaive during the channel uses
when the original two-way relay channel is in the broadcastien Hence, the outer bound in

Corollary[2 becomes the following regioA:
Ry + Ry Samin{C’ (Pl/a),C(pQ/a)} (88)
R1>0,Ry >0 (89)

which reflects the number of channel uses during which sorndesare inactive.

Define regionB as
0< R <(1-0a)0(P/(1—a)) (90)
0< R, <(1-a)C(hP./(1—-a)) (91)

Then we have the following theorem:

Theorem 10: An outer bound for the secrecy capacity of two-way relay dehims given by

Uo<a<i{A N B} (92)
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Proof: RegionA follows by applying Corollary 2 and taking into account tleetfthat the
channel is inactive when the original two-way relay charieeh broadcast mode as described
above.

Region B follows from removing the secrecy constraint and applyihg tut-set bound in
[10, Theorem 15.10.1]. To derive_(91), we consider the cuénetthe sefl” includes the relay

node and Node&. From the cut-set bound, we get:
H(Ws) <ml(Xs, X,; V1| X1) + (m 4+ n)e (93)

e >0 andlim,,, 5o = 0.

Therefore, we get

1 m
H(W,) <
(2)_m+

I(Xs, X3 V1| X0) + € (94)
m-+n n

It is easy to see that for the Gaussian two-way relay chariiél;, X,; Y7|X;) is maximized
when X1, X,, X, takes an independent Gaussian distribution with maximussipte variance.
Let m +n — oo, and use the fact thaim,,, ., o miﬂ =1 — «a, we obtain [(9l1) by evaluating
(©4) for this distribution.

Equation [(90) is derived similarly due to the symmetry of thennel model.

Hence we proved the theorem. [ |

Remark 10: When P. — oo, and h # 0, then the region is maximized when — 1. The

outer bound becomes:

Ri+ Ry <min{C (P),C (P,)} (95)
Ry >0,Ry >0 (96)

[

A. Comparison with Achievable Rates

In this section, we compare the outer bound with the achlevsdxcrecy rate region.

We begin by restating an achievable rate farfrom [17]. The rate region then follows from
time sharing.

Theorem 11: [17, Theorem 1] The following secrecy rate Bf is achievable for the model

in Figure[3:

P! P \"
<Ry < — 7
0<h =< 0<P{<Pijo0<a<l l(] <(1 + U?)) ‘ <(1 + Pz)ﬂ o0
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whereo? is the variance of the Gaussian quantization noise detedhiy:

ao (BEYY i wer 98)
() —a-acm)

o?
P, was defined in[(25)F, was defined in[(26).

Remark 11: The achievable scheme above uses compress-and-forwaddNAde 1 and 2
ignore their received signals when computing the transehiignals. The proof can be found
in [17].

Remark 12: For any fixeda such that) < o < 1, if the power of the relayP, — oo, then
o2 — 0, the achievable rate converges to

Py
1+ P

a(C(P) — O ) (99)

Equation [[9P) is a monotonic increasing functionnofHence, as long as < 1, we can always
increasen and increase the achievable secrecy rate. Therefore, When oo, the optimal time
sharing factoro. — 1. The achievable rate then converges to

_ P

C(h) - C(i5) (100)
The secrecy rate region is obtained with time sharing andnverges to
_ 2
< — _
Ry + Ry < C(F) (J(1 m Pz) (101)
Ry >0,Ry, >0 (102)

[]
Utilizing this result, we have the following corollary:
Corollary 3: When P, — oo, the gap between the outer bound and the achievable rate is
bounded by0.5 bit per channel use.
To prove this corollary, we need the following lemma:

Lemma 1. Define the following functions:

o) = gon, (20 (103)
ol.y) = min{C(2), C(y)) (104)

Let h(x,y) = g(z,y) — f(z,y). Then0 < h(z,y) <0.5.
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Eavesdropper

Fig. 8. A wiretap channel with noisy feedback

Proof: Without loss of generalityr < y. For z > y, simply exchange: andy. h(x,y) is

given by
1 l1+z+vy
h =—1 - = 1
1 1+
=—1 1 1
20g2< +1+y> (106)
1
§§ log,(14+1) =0.5 (107)
Clearly h(x,y) > 0. Hence0 < h(z,y) < 0.5. [

Corollary[3 can then be proved by letting= P,,y = P,. The upper bound on the sum rate and
the achievable sum secrecy rate then becgtmey) and f(z,y) when P, — co. Using Lemma

[ we prove the gap between the upper bound and lower boundceafuim secrecy rate is less

than 0.5 bit per channel use. Since the achievable regiorirenduter bound are only different

on the bounds for the sum rate, this proves the gap betweeimrbe bound and outer bound

of the secrecy capacity region is also less than 0.5 bit panmél use wherP, — co. Hence

we have proved Corollaryl 3.

V. ALTERNATIVE PROOFS OFCOROLLARY [IJAND COROLLARY [2

Corollary[1 and Corollary12 can also be proved by using resuit the wiretap channel with

noisy feedback [28]. In this section we provide these prdofscompleteness.

A. A Wiretap channel with noisy feedback

The channel model is shown in Figure 8. Noddsends a messag& to Node2, which must

be kept secret from the eavesdropper. The channel is deddop

Pr(Y, Z,Y;|X, X;) = Pr(Y, ZX) Pr(Y}| X)) (108)
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Within each channel use, Nodeand Node2 take turnsto transmit. This implies that, Figurel8
is not a special case of the two-way wiretap channel in Figlire 1ho\it loss of generality, we
assume Node transmits first.

At the ith channel use, the encoding function of Nades defined as:
Xi = fi(Y], W, My) (109)

Note that since Node transmits first, Nodé has an extra sample &f to use when computing
its transmitted signals. Therefore {n_(109); is used instead oYf"‘l.

The encoding function of Nod2 is defined as
Xypi = g:(Y'™, My) (110)

fi, g; are deterministic functions.
Let n be the total number of channel uses. The destination mustdedd” reliably from

X7, Y™, M,. Hence from Fano’s inequality, we have
H(WI|X}, Y™, M,) < ney (111)

wheree, > 0 andlim,, . €4 = 0.

The messagél’ must be kept secret from the eavesdropper. Hence
I(W;Z") < nes (112)

wherees > 0 andlim,,_,o, g5 = 0.

Theorem 12: The secrecy capacity of the channel model in Fidgure 8 is uppanded by

R. < max min{/(X;Y),I(X;Y|Z)+I(X;;Ys)} (113)
Pr(X,Xy)
Proof: The proof is provided in Appendix] F. [ |

Corollary 4: If X —Y — Z is a Markov chain, the secrecy capacity of the channel madel i

in Figure[8 is given by

pinax )min{](X;Y),I(X;Y) — (X Z) + (X5 Yy)} (114)
r(X, X
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Eavesdropper

Fig. 9. The degraded model

Proof: Equation [(114) is achievable because of [8, Theorem 3.1dehails, the rate (114)

can be obtained by lettinty = X, Y; =Y, Z; =Z, U = ¢, Vi, = Xy, Y, =Y}, Zpy = ¢ IN [8,
Theorem 3.1].

When X —Y — Z is a Markov chain, we noticé(X;Y|Z) = [(X;Y) — I(X; Z). Hence the
achievable[(114) matches the upper boundin](113). [ |

Remark 13: When the backward channét:(Y;|X;) is a rate limited noiseless link, whose
rate isRy, thenI(Xy;Y;) = H(Xf) = Ry. Then using Corollar{]4, we obtain the result in [5].
[

B. Alternative Proof of Corollary[dl

Theorem 13: For the degraded case considered in Secfion 1lI-R2js upper bounded by

@,

min{C(P), O3 P)) (115)

where P, = P, + 1.

Remark 14: Sinceh; < 1, it can be verified that the upper bound[in (IL15) is looser {@&d.
However, this bound is sufficient to prove thé bit gap result.

Proof:

We begin by redrawing the channel model in Figlke 9, wh¥feis a zero mean Gaussian
random variable with variance— h;.

The first termC'(P) follows by removing the eavesdropper and applying the uppend for
Gaussian two-way channel from [2].

In order to obtain the second term [n (115), we convert theehimdFigure[® to the model in

Figure[10. In this new modelY is removed, and the power constraint of Nalés increased
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Eavesdropper

Fig. 10. The model with cooperative jamming

Eavesdropper

Fig. 11. The model with feedback

from P.to P. = P, + 1,:;”. Since Node& can always use this additional power to transmit noise
which is statistically equivalent tdV,, the secrecy capacity of Figurel10 is greater or equal to
the secrecy capacity of Figuré 9.

We next prove that the secrecy capacity of the model in Fifdrenust be greater or equal
to the secrecy capacity of the channel model in Fiquie 10urEid1 is a special case of the
wiretap channel with noisy feedback. For this model, theodimg functions used by Node
and?2 at theith channel use are denoted lfyand ¢g; and are defined il (109) and (110). The
power constraint of Node is Z—jPr. Nodel is not constrained in transmission power.

We prove that any signaling scheme in Figuré 10 can be sieulilay Figurd _Il1. This means
for any set of encoding functions of Nodend2, denoted by f;} {g;} respectively in Figurg10,
we can find encoding functionsf;}, {¢;} for Figure[11, such that given the same noise sequence
Ny = N; and the same local randomness, j = 1, 2, the message can be reliably received by
Node?2 at the same secrecy rate. This can be shown as follows:

We choosef;, the encoding function used by Noden Figure[11 as:

X, =Y+ fi (W, M) (116)
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gi, the encoding function used by Noden Figure[1l is chosen as:

h )
Xpi=y/ hj Gi(XTT = XY My) (117)

Then, as shown below, iK}‘l = \/%Xﬁ—l, thenX;, = \/ijXm-. The notationf*=!(M;, W)
stands forf;(M,,W),j =1,....i — 1.
We begin with:

_ ha i—1 i—1
X = ’/hl G (X = X7, My) (118)
Using (116), we get:

hy i— Fi— i—
Xfﬂ:,/h—jgi (Vi 4 fH (W, M) = X My) (119)
ha i—1 -1y fi-l i—1
=30 (X N P M) - X ) (120)
h ~ ) 1—
:1/h2 (Nf L f(W, M), Mz) (121)
Since Ny ' = Ni~!, (I21) equals:
hy i
,/hj G (N (W M), My) (122)

Since X~! = fi=1(W, M), (I22) equals
h2~ i—1 i—1
iy 0 G (N7 + X M) (123)
_ ha i—1
=1/ h_lgi (Y ,M2) (124)

= | 2X,, (125)

Hence, whem channel uses are involved, we ha¥g = Z—jX}k

Using this result, from[{116) we have

Xi =Yy + f; (W, M) (126)
= Xyi+ Npi+ fi (W, M) (127)

h
2X7’z+le+.fz(W Ml) (128)

1/ XM+N1Z+X Z (129)



30

Wl X VAV1
: B

Fig. 12. Two-way model with one-sided secure link

Therefore the signals received by the eavesdropper in &ifiliris the same signals received by
the eavesdropper in Figure]10.

The destination in Figure_11 knows;,. Therefore, it can computﬁ- (W, My) + Ny,; from
X;— X;,. On the other handf; (W, M)+ N;; = f; (W, M)+ N, , is exactly the signal received
by Node2 in Figure[10 at theth channel use. This fact, along with the fact that, = X,
shows that the destination in Figurel 11 can compute any Isigmavn by the destination in
Figure[10. This means that, i’ can be reliably received in Figufel10, it can also be reliably
received in Figuré_11 at the same rate.

Hence we have proved that an upper bound for the secrecyiyapa&igure[ll is an upper
bound for Figure_10. From Corollaiy 4 it follows that the smxyr capacity of Figuré 11 is
C(Z—jpr). Applying it to Figure[10, we obtained the second term in tipgpar bound [(115).
Hence we have the theorem. [ |
The 0.5 bit gap then follows from Lemmial 1. In our case, the achievaaie can be expressed
as f(z,y) wherex = P, y = Z—f}_’r. The upper bound can be expressed:@s y). Hence from
Lemmall, we proved the gap between the achievable [rate (80)hanupper bound (115) can

not exceed).5 bits per channel use.

C. Alternative Proof of Corollary 2

Consider the channel in Figurel12. It is the same channel@gdfill except that the power
constraint of Node is changed taP,. Again it is a a special case of the wiretap channel with
noisy feedback. For this model, the encoding functions useNodel and2 at theith channel
use are denoted by andg; and are defined if_(109) and (110). is replaced byi;.

Theorem 14: The secrecy rate for the channel in Figlré 12, where each tak@s turn to
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transmit and Node transmits first, is greater than or equal to the maximal aelile individual
rate R, of the channel in Figurd 7.

Proof: We prove the theorem by showing any coding scheme of Figu@ne simulated
by the channel in Figure_12. This means for any set of encofiingtions of nodej, {fj,,-},
j = 1,2, in Figure[T, we can find encoding functions for Notleand Node2 in Figure[12,
such that at the same secrecy rate the mesHagean be reliably received by Node For the
encoding functions defined if_(82) arld {83), we choose theding functions for Figuré 12

are chosen as:
X = fri (Y;_1, Wh, M, Mr) + Yy, (130)
Xpi= f2,z' (Xi_l — X;_I, Wy, Ms, Mr) (131)

M, is obtained by letting Nodé transmitting it over the noiseless public forward link. Tihe
with these encoding functions, the eavesdropper recexastlg the same signal as the signal
received by the eavesdropper in Figure 7, if these two madglsrience the same noise sequence
N; = N and the same local randomness, j = 1,2, M,. This can be proved as follows:

We begin by assuming’;' = X5', and proveX;; = X5, and X; — Y;; = X1 ;.

To prove X;; = X,;, we compare[(131) with(83) and find that we need to prave' —
X' =Yy~ We begin with

i—1 i—1 i—1 i—1 i—1
From [130), we have
Xy (133)
=f7 (Y7 W, My, M) (134)

Since we assum&’; ' = X5 and Nj ' = N!, we get
Vil= X7+ Ny =Xy N =y (135)
Hence [(134) equals
A (Y W, My, M) = X (136)
The equality in[(I36) follows from(82). Henc¥'~* — X' = X{~" and [I3P) equals:

X - X =X N = X N = (137)



32

Hence from[(13]7) we have shown
Xf,i — X2,i (138)

From [135), by comparind (180) with (B2), we get

Xi = Y= Xy (139)

From [138) and[(139), we get
Xi = Xl,i + Yfﬂ' = Xl,i + Xf,i + Nfﬂ' = Xl,i + X27Z' + NZ (140)

Until this point, we have shown that the signals receivedhgydavesdroppers in the two models

in Figure[12 and Figurgl 7 are identical.
From (139), we get

You=X1i +Ni=X; =Y + Ni=X; = Y5, + Ny = X — Xy (141)

Hence Node in Figure[12 can recover the signals received by Nodte Figure[T. On the other
hand, sinceX;; = X,;, Node2 in Figure[I2 can also recover the signals transmitted by Node
2 in Figure[T. This means if a message can be reliably decodaccattain rate by Node in
Figure[7, it can also be decoded reliably by Nadim Figure[7 at the same rate.

Hence we have proved the theorem. [ ]

The secrecy capacity of the model in Figlré 12 is given by (Caold. From Corollary 4,
we know R, < C(P,). We next invoke the same technique we used in the proof of FEne@
in Appendix[B to showC(P,) is also an upper bound on the sum rate. We prove this statement
by showing if R, =, Ry = 9 is achievable, the®k; = r; + r, is also achievable.

Let us construct a message $&t, } which has the same cardinality of the messagd Hét}.

Let part of the secret message be transmitted¥ja The remaining part of the secret message
be transmitted vidV;. The role of; is to be the secret key. Lél; be taken from the set
{W3} according to a uniform distributiori}; is independent fronmi,, and .

Let & be the modulus addition defined oVgr, ... |72 ]| }. Nodel, after decodindVs, transmits
Wg@Wa over the public channel. Since the public channel is nogseldth continuous input, it
can transmifiV, & W, with less tham channel uses. Because Nazl&nows s, it can recover
W, from Wy @ W, if Wy = W,
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The signal available to the eavesdropper now becomes tipeitooit the wiretap channetX™,
and the output of the public linkV, & W,. Then, by the same derivation in (199)-(215), by
replacingZ”™ with X™, we have:

H (W, Wa| X", W, @ W) (142)
>H (W, W,) — ne (143)

wheree > 0. lim, .. = 0. Hence the rate ofl’;, W, is the secrecy raté?;. SincelV, is
chosen from the message $ét,} according to a uniform distribution, we havg = ry + 5.

Due to the symmetry of the channel model, we can prove Bhat C(P) and R, + R, <
C(P) in the same fashion.

This completes the proof.

VI. CONCLUSION

In this work, we have investigated the merit of using the algmeceived by the source node,
i.e., the feedback, for encoder design on achieving a lasgerecy rate region. In order to
answer this question, we studied two models: the Gaussiani@y wiretap channel, and the
Gaussian half-duplex two-way relay channel with an unediselay. For each model, we derived
a computable outer bound for the secrecy capacity regiontheofirst model, by measuring the
gap between the outer bound and the achievable rate reg@findvthe loss in secrecy rate due
to ignoring the feedback signals can be unbounded. Hencegsbef feedback can be highly
beneficial in this model. For the second model, we find thelfaeki can be safely ignored if
the power of the relay is abundant. In particular, the gagveen the achievable rate region and
the outer bound is bounded Ioy5 bit per channel use when the power of the relay goesoto
It is worth mentioning that the achievable rate region irs ttse is attained via a time sharing
cooperative jamming scheme, which, with its simplicity amebr optimum performance, is a

viable alternative to an encoding scheme that utilizesldaekl signals.
APPENDIX A
PROOF OFTHEOREM[I]

Let ¢ = &; + 3, wheree; was defined in[{6), and; was defined in[{8). To simplify the

notation, we use\/; to denote{ M5, W>}. Then we have:

H (Wy) — ne (144)
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<H (W\|Z") — H (W1| 2", X}, Y™, M}) (145)

=1 (Wy; My, X7, Y"|2") (146)
=1 (W X}1 2", Y™, My) + T (Wy; My, Y™ 2") (147)
=1 (Wy; ML, Y™ Z™) (148)
<I (Wl, My, Y} My, Y"|Z") (149)
=1 (W, My, Y7 My, Y™, 2") = T (W, My, Y} 27) (150)

where in [145b) follows from[{6) and(8). Note that since, imsthroof, we are only bounding
the rate ofl¥/;, we omitV, from the condition term of_{6)[ (148) is based on the fact thit
is a deterministic function o "~! and M}, as shown in[{#4).

Then we rewrite the first term in_(1b0) as:

I (Wl, My, Y] My, Y™, Z") (151)
=1 (W, My, Y} Y| Zy, My, Y 2070 ) 1 (W, My, Y Y™ 20, MY) (152)

For the first term in[(152), we have:

I (Wy, My, Y75 Yol Zo, My, Y1 2070 (153)
=1 (W, My, Y7 Vo X, Zi, My, Y 2770 (154)
<h (Yp|Zp, Xs0) = h (Yn\Xf,n, MY 20 W, My, Yf“) (155)
=h (Yol Zn, Xpn) = h (Yol X g, Xo, MG, Y"1, 27 W1, My, YT (156)
—h (Y| Zn, X ) = B (Y| X ps X, Zn) (157)
=1 (X Y| Z, X1) (158)

In (I54), we use the fact that;,, is a deterministic function of M}, Y™}, as shown by[{4).
In (I56), we use the fact that,, is a deterministic function oW, Ml,Yf”‘l}, as shown by
(). In (I5T), we use the fact that

Y, — {Xf,n7 Xnu Zn} o {M£7 Yn_l? Zn_lu Wh M17 an} (159)

is a Markov chain, due td{1) and the channel being memondessthe fact that encoding

functions are causal. In particuldr] (1) allows us to remBygfrom the condition term. Applying
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this result, we find tha{ (1%0) is upper bounded by
(X Yol Zny Xp o) + 1 (Wo, My, YY1 My 27 (160)
The second term i _(160) can be rewritten as:
I (Wl, My, Y7 Y M;|Z“) (161)
=1 (W, My, Y7l Y™ M| 20 ) 0 (Y YOO, MG W, My, Y, 27 (162)

The second term i (162) can be upper bounded as:

I (Yyns Y, My W, My, Y7, 27 (163)
=1 (Ypu; YU, MG|X,0, W, My, Y7, 27) (164)
=h (V| X, Wi, My, YP71 Z20) = B (V| X, W, My, Y1 27 Y MY) (165)
S (YinlXn, Zn) = h (Yol X, W, My, VP, 20, Y M) (166)
=h (Yl Xn, Zn) = b (Ypul X gy X, Zo, W, My, Y7 2070 Y00 MY) (167)
—h (Y| X Zn) = b (Yin| X pns Xy Zo) (168)
— (X3 YVin| X, Zn) (169)

In (164), we use the fact that,, is a deterministic function o{Wl,Ml,Yf"‘l}, as shown by
@). In (IET), we use the fact tha,,, is a deterministic function ofi7}, Y"~!, as shown by
@). In (168), we use the fact that

Yf,n - {XfJU Xn7 ZTL} - {Wl7 M17 an_17 Zn_17 Yn_l? Mé} (170)

is a Markov chain. This is because the encoding functioncawosal and the channel is mem-
oryless.
Applying this result, we find that thaf (160) is now upper bded by

T (X3 Yol Zny X ) + 1(X g Vil X, Zn) + T (Wh, My, Y7~ Yt My 27) (171)
The last term in[(171) can be rewritten as
I (Wl, My, Yyt M5|Z"-1) +1 (Wl, My, Y™ Z, | vt My, Z"-l)

-y (Wl, My, Y] Zn\Z”‘l) (172)
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The second term and the last term[in (172) can be upper boundether:
LWy, My, Y5 Zo| My, Y7t 2070 ) = T (W, My, Y)Y 2| 20 (173)

— ] (Zn; M}, Y”‘1|Z"‘1) —h (Zn\Wl, My, Y7 My, Y Z"—l)

+h (Za] 277 W, My, Y] (174)
< - h (Zn|W1> Mla an_lv Méa Yn_la Zn_l) +h (Zn|Zn_17 W17 M17 an_l) (175)
- - h (Zn‘Xnu Xf,nu W17 M17 an_17 Méa YTL—I’ Zn_l) + h’ (Zn|Xn7 Zn_17 W17 M17 an_l)

(176)
< = 1 (Zal X, X, Wi, My, VP71 MG, Y™ 2070 ) 4 B (2] X) (177)

In (I78), we use the fact thaX,, is a deterministic function of 17y, Ml,Yf”‘l}, and Xy, is a
deterministic function of M}, Y"~'}. In (I78), we use the fact that

Ty = A X, Xgn} — W0, My, Y70 My, Yo 20 (180)

is a Markov chain. This is due to the fact that the channel isnorgless and the encoding
functions [3) and[{4) are causal.
Applying this result to[(172), we find that that (171) is nowpep bounded by:

[(X3 Yol X gy Z0) + I(X g Vi, Zal Xo) + 1 (Wi, My, YP~h Y= My 2771) (181)
Hence we have shown that
H(Wy) —ne < T (Wy, My, Y} Y™, My| 2"
< T (Xo; Yol Xpn, Zn) + 1 (Xgni Yin, Zn| Xa)
+1 (Wl, My YRy Mg\zn—l) (182)

Applying this result repeatedly fat — 1,7 — 2, ..., 1, we have

L) — e (183)
< n

SI—= 3

i=1
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X Eavesdropper

Fig. 13. Two-way wiretap channel with a public noiselessvimd link

Define ) as a random variable that is uniformly distributed ofér2,...,n}. Define X =
XQ, Y = YQ, Z = ZQ, Xf = XﬁQ, Yf = YﬁQ. Then the right hand side dm]g4) equals:

I(X;YZ, X5, Q) + I(X5; Yy, Z1 X, Q) (185)
SI(X;Y|Z,XJ£)+](Xf;Yf,Z|X) (186)

where we use the fact that — {Z, X;, X} — @ is a Markov chain andY;, Z} — {X, X;} - Q
is a Markov chain. Applying this result i _(1B4) and let— oo, we obtained the upper bound

in the theorem.

APPENDIX B

PROOF OFTHEOREM[2

Equation [(4Y7) follows from removing the eavesdropper anglyapg the bounds of two-way
channel from [1]. Equatior (48) can be derived similarlyrtk&to the symmetry of the channel
model.

We next derive[(49). We focus on the first term inside the mimimin (49). The second term
can be derived similarly thanks to the symmetry of the chhnrozlel.

First we add a public noiseless broadcast channel to thenehanFigure 1. The new channel
model is shown in Figure_13. The broadcast channel takesniing& from Nodel. Its outputs
are received by Node and the eavesdropper. Since the channel is noiseless, thet®equal
the input, and is denoted h¥ .. X is continuous. The introduction of the public noiseless
broadcast channel certainly does not decrease the se@peayity region. Hence, to upper bound

the secrecy capacity region of the original channel, we carsider this new model instead. We
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next apply Theorerhll to this channel, which sdsis bounded by
I(X, Xc; Y, Xc|Z, Xc, Xf) —|— I(Xf; Yf, Z, X0|X, Xc) (187)

The first term in[(187) is upper bounded by:

(X, X1 Y, Xc|Z, Xe, Xp) =T (X:Y|Z, Xc, Xy) (188)
=h(Y|Z, X, Xp) = h(Y|Z, X, X, Xy) (189)
<h(Y|Z.X;)—h(Y|Z, X, Xc, X/) (190)
=h(Y|Z,X;)— h(Y|Z,X, X)) (191)
=1 (X;Y|Z,X/) (192)

In (191) we use the fact that — {Z, X, X} — X is a Markov chain.
The second term i$(187) is upper bounded by:

[(X}: Y}, Z, Xe| X, Xc) (193)
—I1(X}: Y}, Z|X, X¢) (194)
<h(Y;,Z|X) — h (Y}, Z|X, X}, X¢) (195)
=h (Y}, Z|X) = h (Y}, Z|X, X}) (196)
=1 (X5 Yy, Z|X) (197)

In (196) we use the fact thdtvy, Z} — {X, X1} — X is a Markov chain.
Hence [(1817) is upper bounded by

I(X;YZ, Xy) + I(Xp3 Yy, Z|1X) (198)

This means introducing a public noiseless forward chanriabb no change in the expression
of the upper bound of?;.

We next prove[(198) is also an upper bound ®n+ R,. This is done by showing i?; =
r1, Ry = ry is achievable, the?, = r, + r, is also achievable.

Construct a message sgt/,} which has the same cardinality of the message{Bét}. Let
part of the secret message be transmittedi¥/ja The remaining part of the secret message is
transmitted vialV;. The role of V5 is to serve as a secret key. LBf, be taken from the set

{W,} according to a uniform distributiori}; is independent froni¥, and ;.
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Let & be the modulus addition defined ovgr, ... |V,
the set{1/,}. Recall thati¥, denote the result obtained by Nodlevhen it tries to decodél/;.

|| is the cardinality of

We let Nodel transmitiV, & W, over the public channel. Since the public channel is nassele
with continuous input, it can transmit/, @ W, with a single channel use. Because Nade
knows W, it can recoveiV, from W, & W, when W, = W.

The signal available to the eavesdropper now becomes thmutoaf the wiretap channel
Z", and the output of the public link, which 8/, & WW,. Conditioned on these signals, the

equivocation ofi1;, W, can be computed as:

H (Wy, Wa| 2", W, & W) (199)

H (W1, Wa| 27, Wy @ Wa, W, © W) (200)
=H (Wy, Wa, Wy @ Wa| 2", Wo & Wa) — H (W, & Wa| 2", W, © W) (201)
=H (W, Wo| Z", Wy @ Wa) + H (W, © Wa Wy, W, 2", W, @ Wa)

— H (Wo @ Wa|Z", W, @ Wh) (202)
> H (W, Wa| 27, Wo © Wa) — H (W, @ Wal| 2", W, © W) (203)
> H (W, Wa| 2", W, @ Wa) — H (W, @& Wa|Wa, 2", W, & W) (204)
=H (W, Wo|Z", Wy @ Wa) — H (Wa|W,, 27, W5) (205)
> H Wy, Wa| 27, W & Wa) — H (Wa| W) (206)
>H (Wi, W,| 2", W, & Wa) — ne (207)

In (207) we use the fact that’, can be reliably decoded by Node Hence [(2017) follows from
Fano’s inequality.

The first term in[(2017) can be bounded as follows:

H (Wh, Wa| 2", W, & W) (208)
=H (Wo|Z",Wo & Wa) + H (Wh|Z", Wo, W, & Wa) (209)
—H (W,|Z" Wy @ W) + H (W12, W, Wa) (210)
=H (Wo|Wo & Wa) + H (W1|Z", W,, W2) (211)

=H (Wa|Wa S WZ) +H (W1|Zn> W2) (212)
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—H (W,) + H (Wy|Z", W) (213)
>H (W,) 4+ H (W;) — ne (214)
>H (Wi, W,) — ne (215)
Equation [[2111) is due to the fact thdt' is independent fromiV,, W5, which leads to:
I (Wa; ZMWo @ W) < T (Wo, Wo @ Wo; Z7) = I (W, Wo; Z7) =0 (216)

Equation [Z2IR) follows from the fact that/, is independent fronZ™,1W,,IW,. Equation [214)
follows from the fact that collective secrecy implies onessege is secure even if the other
message is revealed to the eavesdropper [12].
The argument above shows the ratel®f, IV, is the secrecy raté?;. SincelV, is chosen
from the message s¢tl/,} according to a uniform distribution, we havg = r; + rs.
ThereforeR; + R, is upper bounded by (198).

Hence we have proved the theorem.

APPENDIX C

PROOF OFTHEOREM[@

We prove R, = R;, Ry = 0 is achievable. The achievability o8, = 0, R, = Rj can be
proved similarly due to the symmetry of the channel model.

The communication is divided into two phases:

1) The first phase lasts channel uses. During it, Nodesends a key< to Nodel. At the
same time, Nodé performs cooperative jamming by transmitting an i.i.d. &aan noise
sequence with powepP.

2) The second phase lastschannel uses, during which Nodeencrypts the confidential
messagel’ with K, and sends the result back to NofleAt the same time, Node
performs cooperative jamming by transmitting an i.i.d. &aan noise sequence with power
P..

Leta = n/(n+n) be the time sharing factor of the first pha8e< «v < 1 and« is a constant.

The following notation is used in the remainder of the praofienotes any signal which is

related to the second phase. Otherwise, the signal is defatine first phase. With this notation,
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the signals received by the eavesdropper during the twoegha® given by:

2" = \J X" + \[ho X} + Ny (217)
7" = \[m X" 4 [ X+ Nj (218)

The codebooks used by Nodeand2 are denoted by¢; andC, respectively and are generated
in the following way:

C, is composed of i.i.d. sequences sampled from the Gausssrbdtion A/(0, P,). The
codebook is then randomly binned into several bins. The gizbe codebook depends on the
number of bins needed to represent the kéynd the size of the bin necessary to confuse the

eavesdropper. Specifically, the size of the bin is chosereto b
g€ ()~ (219)

where | z| denotes the largest integer smaller or equat,te > 0 andlim,,_,., € = 0.

Let Ry be the rate of the secret key. Then there 2i¥é¢< bins. Ry is given by:

+
o<y Lty <uin{ [om) o (] e () e

Observe that the key rate is chosen to be smaller {ﬁam) -C (%)r to keep the key
K secret from the eavesdropper. As will be shown later, theikeysed to compensate the rate
loss of the forward channel needed to confuse to eavesdrodpace, the rate of the key is
chosen not to exceed this rate loss, which leads to the @fp2 ) in @20).

C, is composed o' codebooks. Each codebook is composed of i.i.d. sequenogsesh
from the Gaussian distributiaV'(0, P), and is composed daf"“(") i.i.d. Gaussian sequences.
The sequences of each codebook are randomly binned intcabéwues. The size of each bin is

chosen to be:

_ hyP _
\_(nC(W) —nRi—ner)|

P (221)

wheree; > 0 andlim,,_,., ¢; = 0.
During the first phase, Nod2 generates a secret kdy according to a uniform distribution
over{1,...,2"%x} and selects the bin fromd, according tok. Then it chooses a codeword from

this bin according to a uniform distribution and transmitsoi Node 1.
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Since Nodel is transmitting an i.i.d. Gaussian noise sequence duriegfitst phase, the
channel model in this phase is equivalent to the Gaussiagtapirchannel [29], which uses the
same codebook and encoding scheme as we do here. Refer@hgedes that, by doing so,
K is kept secret from the eavesdropper and can be reliablydéecby Nodel. That is:

1

EI(K? Z"|Cy,Co) <€ (222)
Jlim B[Pr(K # K[C1,C2)] = 0 (223)

wheree > 077}1_{205 =0.

Let K be the estimate of Node 1 decodes from its received signal. Notl&computes its
transmitted signals as follows: It first chooses the codkkmzording to the keyx it decoded
from the first phase. Then, it chooses the bin from the codehooording to the secret message
W. Finally, it chooses the transmitted codeword from thisdinording to a uniform distribution.

If K = K, then Node2 knows the sub-codebook used by NotleThe sub-codebook is
composed of i.i.d. Gaussian sequences and its rate is vifteiAWGN channel capacity between
Node 1 and Node2. This observation, along with (223), leads to the followfagt:

lim E[Pr(W # W|Cy,Co)] =0 (224)

n—00
We next bound the equivocation
H(W|2", 27,01, C) (225)

It is understood thaf;, C, is always on the condition term. Hence, we omit it in the séque
simplify the notation and reinstate it only when necessary.

The equivocation rate is then bounded as follows:

H (W|Z", Zﬁ)
=H (Xﬁ, w|z", Zﬁ) —H (Xﬁ|W, A Zﬁ) (226)
> (Xﬁ, w|z", Zﬁ) — he (227)
=H (W|2", 2", X") + H (X" 2", Z") — ne (228)
=H (X"|2",Z2") - ne (229)
=H (X"|2",Z2") — H (X") + H (X") — ne (230)
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=H (X") -y (Xﬁ; z", Zﬁ) — fe (231)
- (Xﬁ) .y (Xﬁ; Zﬁ) -y (Xﬁ; Z"|Zﬁ) — he (232)

Here [227) follows from the fact that giveiir, the number of possibl&™ equals the cardinality

hi

_ P
of the bin that corresponds & from all the 2"« codebooks, which ign(c(thr“)_“). Note

that these candidates of” form a Gaussian codebook by itself with a rater( h;;;fil) -
€1. Since Node2 is transmitting i.i.d. Gaussian noise, the channel betwdede 1 and the
eavesdropper is an AWGN channel whose capacity’ i(s}%). Therefore, givenlV, the
eavesdropper can determif&” from Z™ using joint typical decoding[ (227) then follows by
applying Fano’s inequality.

Equation [22B) follows sinc&l is a deterministic function o™,

The third term in[(23R) can then be bounded as follows:

I (Xﬁ; Z"|Zﬂ) —h (Z"|Zﬁ) —h (Z"|Zﬂ, Xﬂ) (233)
=h(2"2") = h(Z"|X} + NJ, X7) (234)
—h (Z"|Zﬁ) —h (an‘(ﬁ) (235)
<h (Z"|Zﬁ) —h (Z"|Xﬁ, K) (236)
=h (2"|Z") = h(Z"|K) (237)
=h (Z"Z") = h(Z") = h(Z"|K) + h (Z") (238)
=1(Z2"K)—1(2%2") (239)
<I (2" K) < ne, (240)

Equation [23b) is becaus€} + N7 is a sequence of i.i.d. Gaussian noise, which is independent
from Z" and X".

Equation [[2317) follows from the fact th&f” — K — X" is a Markov chain. Equatiod_(240)
follows from (222).

Substituting [(240) into[(232), we have

H(W|z", 2" (241)

>H (X") = I (X" Z") = (ie + ney) (242)
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The second term if_(242) can be bounded as follows. For thisose, we reinstate th@ , C,

on the condition term:

[(X™27C1,C,) (243)
<h(Z") = h(Z"[X",C1,C) (244)
=h (Zﬁ) —h (Zﬁp‘(ﬁ, C, cz) (245)
—h (Zﬁ) —h (Zﬁp‘(ﬁ) (246)
=1 (X'ﬁ; Zﬁ) (247)
=l (X; Z) (248)

Equation [24b) follows from the fact that giveni®, Z" only depends on the jamming signal and
channel noise. Therefore, we can drop codebdadks, from the conditioning term. Equation
(248) follows from the fact that Nod2 transmits i.i.d. Gaussian noise during the second phase,

and the code book used by Nodles composed of i.i.d. Gaussian sequences.

Since
- h, P
I(X,Z)_C<h2pr+1> (249)
H (X7[Cy,C,) = nRi + nC (P) (250)
we have
H(W|2", 27,01, C) (251)
= (nRy 4 nC (P)) — nC P — (RE + ney) (252)
=(nRxg+n n TP+ 1 ne + neo
ZH(W|Cl, CQ) — (ﬁ(E + 61) + n€2) (253)

Therefore0 < I(W; Z", Z"|Cy,Cy) < (n(e + €1) + ney). This, along with [224), gives us:

I(W; Z", Z™|Cy, Cy) + E[Pr(W # W)|Cy,C) =0 (254)

nlf%goo n+n
From the linearity of expectation and non-negativity of galtinformation and probability, we
see that there must exists codebo6ks= C;,C, = C; such that both terms on the left hand side
of (254) go to0 asn,n — oo. This observation, along with that fact that+ 7 channel uses
are involved, proves that the secrecy rate p&if, 0) is achievable.

Hence we have proved the theorem.
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APPENDIX D

PROOF OFTHEOREM[7

Since received signals are not used to compute transmitgrpls at Nodeg, j = 1,2, we
let « = 1 in Theoren(®. In this case, wheh = kP, It} becomes:

. oM
R =C(P) C<h2k+1/P> (255)
. hok
R;=C(kP)-C <7h1 n 1/P> (256)
The sum rate bound given by Theoréin 5 is upper bounded by:
i c( P )+C((h c0kp) o — ) ey P (257)
S RV 2 Y\ hokP + 1 !

To prove Theorerll7, it is sufficient to show baltj and R; are within constant gaps df (257),

as we show below:

C(hlpp+1)+0((h2+1)kP)—R’{ (258)
:C(hlpp+1)+C((h2+1)kP)—C(P)+C<h2kiLr711ﬂ3> (259)
§C<hlpp+1)+C((h2+1)kP)—C(P)+C<%> (260)
<c <hi1> +C((ha+1)kP) - C(P)+C (%) (261)
—C <hi1> + % log, (1 i (?2:131) kP) +C (%) (262)
<C (%) + % log, (1 - max {i’ih]ff DL P) +C <%) (263)
<C (hil) + % log, (max {1, (hy + 1) k}) + C (%) (264)

For R;, we have:

C<h1PP+1)+C((h2+1)kP)—R§ (265)
:C<h1PP+1) +C((h2+1>kp)—0(kp)+c<%> (266)
sc(hlpp+1) +C((h2+1>kp)—0(kp)+c<hhif> (267)
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1 h
<C (h—) +C((hy+1)kP) — C (kP) + C (%) (268)
1 1
B 1 1 1+ (ho+ 1) kP hok
—c <h—l>+§log2< - >+c<h—1> (269)
<C <i> + Loy (hy 4+ 1)+ 0 (12 (270)
hl 2 hl
Hence we have proved the Theorem.
APPENDIX E

PROOF OFTHEOREMI[8

To prove this theorem, we only need show that it is possiblactievable a secrecy rate for
Node1 that exceeds the upper bound given by Thedrem 4. Consideaeewherh; = hy, = 1.
Then by evaluating(37) at> = 0 ando? — oo with p = n = 0, we find the secrecy ratg, is
bounded by

min{C(P),C(P,) + 0.5} (271)
whenY; is ignored by Nodel. ChooseP, and P such that
C(P,)+ 0.5 <04C(P) (272)

For this power configuration, froni (2[71), we observe tRatis upper bounded bg.4C(P).
Let thea in Theoren{® be&.5. R} then becomes:

0.5C (P) 05{0< P > C(P)+C< i )+ 273)
' ' P.+1 " P+1
A sufficient condition forR; = 0.5C(P) is that
P P,
() () - oo
It can be verified that this condition is equivalent to
P 2
(7 +1)
Pl
Pl > 1 (275)
A sufficient condition for it to hold is:
P 2
g+ 1
M > 1 (276)

(VP +1)
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which means
VP>P +1 (277)

ChooseP, = P'/*, For sufficiently largeP, both [272) and[{277) can be fulfilled. In this case,
the achievable rate i8.5C(P), which is greater than the upper boundC'(P). The difference

is 0.1C'(P), which is not a bounded function @f. Hence we have proved the theorem.

APPENDIX F

PROOF OFTHEOREMI[I2

The upper bound (X;Y) follows from removing the eavesdropper and applying theeapp
bound for two-way channel from [1]. Hence we only need to prtwe second term inside the
minimum.

Let ¢ = ¢4 + 5, Whereey, e5 were defined in[(111) and(1112). Then we have:

H (W) —ne (278)
<H(W|Z") - H (W|Z2", X}, Y™, M) (279)
=1 (W; My, X7, V" 2") (280)
=1 (W; X}| 2" Y™, My) + I (W; My, Y| 2") (281)
=1 (W; My, Y™ Z™) (282)
<I (W, My, Y} My, Y™ Z") (283)
=1 (W, My, Y} My, Y™, Z”) 1 (W, My, Y Z") (284)

In (279) we use[(111) and (1112). In(282) we use the fact fhiatis a deterministic function
of Y"~! and M,, as shown in[(110).
For the first term in[(284), we have:

(W, My, YF; M, Y™, Z") (285)
=1 (W, My, Y] Y| Ziy M, Y, Z"—l) +1 (W, My, YT Zo| Mo, Y71, Z"-l)
(W, My, Y5 Y™ 200 My) (286)
For the first term in[(286), we have:

I(W, My, Y5 Yol Zn, My, Y7, 207 (287)
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<h(Y,|Z,) = h (Yn|M2, Yl zn W, M, Yf“) (288)

=h (Yol Zn) = b (Yol X, Mo, Y"1, 27 W, My, YT) (289)
=h (Y| Zn) — h (Y| Xn, Z) (290)
=1 (X,;Ya|Zy) (291)

In (289), we use the fact thaX,, is a deterministic function ofV, M, Y. In (290), we use the
fact thatY, — {X,,, Z.} — {M,, Y"~', Z"~", W, M;,Y}'}, since the channel is memoryless and
encoding functions are causal.

Applying this result, we find that (284) is upper bounded by

[(Xn; Yol Zo) + 1 (W, My, Y5 Zo| My, Y, 2071
+1 (W, MY Y 2 Mz) — 1 (W, My, YT Z") (292)

=1 (X3 YalZo) + 1 (W, My, Y75 Zo| Mo, Y1, 2770

+ (W, My, YY"t 20 M) — 1 (W, My, Y] Z2)
-y (W, My, Y Zn|Z"‘1) (293)
We next bound the second term and the last terni_in] (293) tegedk shown below:

(W, My, Y] Zy| My, Y™, 2071 ) = 1 (W, My, YT Z,| 277 (294)

=h (Zn|M2, Yl Z"—l) —h (Zn\W, My, Y], My, Y™ Z"—l)
— 1 (Za| 2" + b (2o 2" W, ML YT (295)

= — I (Za; My, Y™V 2777)

-1

— 1 (Za|W, My, Y7 My, Y 2070 (2,207 W My, YT (296)
< — h (Za|W, My, YJ, My, Y8, Z2070) b (2, 2070 W, My, YT (297)
= — h (2| X0, W, My, Y], My, Y"1 207 ) 4 b (2] X, 277, W, My, YT (298)
= — 1 (Za| X)) + h (Z,] X,) (299)
=0 (300)

In (298), we use the fact thaX,, is a deterministic function ofV, M, Y} . In (299), we use
the fact thatZ, — X,, — {W, My, Y}, My, Y"*, Z""'} is a Markov chain andz, — X,, —



49

{Zn=1, W, M,,Y}'} is a Markov chain. Both are a consequence of the fact thatherel is
memoryless and the encoding functions {109) &nd](110) arsata
Applying this result to[(293), we find it is upper bounded by:

[ (X3 Yal Zn) + T (W, My, Y75 Y™ 2070 My ) — 1 (W, My, Y75 277 (301)

The second term i _(301) can be combined with the last teri30d)(and expressed as:

I (W, My, YRy M2|Z"‘1) (302)
=1 (W, My, YLy M2|Z"‘1) +1 (Yf,n; Yl MW, M,y Y Z“—l) (303)
The last term in[(303) can be upper bounded as:
(Vs Y MW, My, Y7 207 (304)
<h(Ypn) = h (YealW, My, Y7 2070 Y00 M) (305)
=h (Y1) = b (Yn| X, W, My, Y770, 2070 Y0 MG ) (306)
=h (Yn) = h (YiulXsn) (307)
=I (Xyn; Yyn) (308)

In (308), we use the fact that,, is a deterministic function of "~*, M,. (307) follows because
Vig — Xpn — AW, My, Y~ 271 Y"1 My} is a Markov chain,
Applying this result to[(301), we find(301) can be upper badds:

I(Xp; Yol Zo) + T (X g Yin) + 1 (W, My YRy M2|Z"‘1) (309)
Hence we have shown
H(W)=ne < I (W, My, Y/5Y", My|2")
ST (X3 YalZo) + 1 (X g Vi) + 1 (W, My Y75V M 2770 (310)
Applying this result repeatedly fat — 1,7 — 2, ..., 1, we have
%H _e<l Z (XY Z) + 1(X 1 V7)) (311)

Let us define) as a random vanable that is uniformly distributed oyér2,...,n}. Further,
defineX = Xo,Y =Yy, Z = Zg, X; = X;q,Y; = Yy q. Then, the right hand side of (311)

can be expressed as

I(X;Y12,Q) + (X5 Y4|Q) (312)
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<h(Y|Z) = h(Y]X.Z,Q) + h (¥;) = h (Y| X}. Q) (313)
=h(Y|Z)—-h(Y|X,Z)+ h(Ys) — h (Y| Xy) (314)
—[(X:Y12) + 1 (X5;Y) (315)

Applying this result in[(308) and letting — oo, we obtain the upper bound in the theorem.
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