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Abstract

Most practical communication links are bi-directional. Inthese models, since the source node also

receives signals, its encoder has the option of computing its output based on the signals it received in

the past. On the other hand, from a practical point of view, itwould also be desirable to identify

the cases where such an encoder design may not improve communication rates. This question is

particularly interesting for the case where the transmitted messages and the feedback signals are subject

to eavesdropping. In this work, we investigate the questionof how much impact the feedback has on

the secrecy capacity by studying two fundamental models. First, we consider the Gaussian two-way

wiretap channel and derive an outer bound for its secrecy capacity region. We show that the secrecy

rate loss can be unbounded when feedback signals are not utilized except for a special case we identify,

and thus conclude that utilizing feedback can be highly beneficial in general. Second, we consider a

half-duplex Gaussian two-way relay channel where the relaynode is also an eavesdropper, and find that

the impact of feedback is less pronounced compared to the previous scenario. Specifically, the loss in

secrecy rate, when ignoring the feedback, is quantified to beless than 0.5 bit per channel use when the

relay power goes to infinity. This achievable rate region is obtained with simple time sharing along with

cooperative jamming, which, with its simplicity and near optimum performance, is a viable alternative

to an encoder that utilizes feedback signals.
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I. INTRODUCTION

Most communication links are bi-directional, where the backward channel can carry infor-

mation and/or provides some form of feedback. For example, in ARQ schemes, the backward

channel provides the acknowledgment of receipt of the packets. In peer-to-peer networks, infor-

mation is communicated in both directions. The impact of theexistence of bi-directionality on

the channel capacity has been considered extensively up to date. Shannon proposed the two-way

channel model in [1] where communication took place in both directions, and derived the inner

bound and the outer bound on its capacity region. These bounds were shown to match for the

full-duplex Gaussian two-way channel in [2]. An interesting implication of this result is that the

signals received in the past, i.e., the feedback signals, isnot needed for encoding to achieve the

capacity region for this model. Though this feature is desirable in practice for simpler encoder

design, it is also known that this approach is suboptimal in general, which was proved in [3]

for a two-way channel where the two nodes share a common output from the channel.

In secure communication, the question of whether feedback signals should be used for en-

coding has been studied in several special scenarios. Shannon showed that a completely secure

backward channel can be used to send a “one-time pad” to increase the secrecy capacity of the

forward channel [4]. In [5], it was proved that such a strategy, where the source node decodes the

key from the destination, is optimal for a degraded wiretap channel with a secure rate limited

noiseless feedback link. Another achievable scheme, whichdoes not require decoding of the

feedback, was first proposed in [6] in the setting of secret key generation and later in [7].

The scheme proves even if the forward channel and backward channel each has zero secrecy

capacity and hence sending key back is not possible, a positive secrecy rate can still be achieved

when these two channels are used together. This is done by combining multiple channel uses

and designing codes for the resulting equivalent broadcastchannel in which the eavesdropper is

eventually put at its disadvantage because of its lack of side information. Reference [8] combines

this scheme with the key strategy in [4] and shows a higher secrecy rate is achievable for the

model in [7].

In [5], [7], [8], the destination has the freedom to design the feedback signals. References [8],

[9] also considered the scenario where the destination was restricted to sending its observation

of the channel output, and hence could not manipulate the feedback signal to its advantage. It
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was shown that feedback also helped to achieve a higher secrecy rate in this case.

One feature that is common to the coding schemes in [5], [7], [8] is that the eavesdropper

always receives two separate sets of received signals: one from the forward channel and a second

set of signals from the backward channel if it is not secure. While this is more inline with the

conventional information theoretic models with feedback [10, Section 7.12] [11], letting the

eavesdropper receiving the signals of the forward and the backward channel separately might

inadvertently give the eavesdropper an advantage, as compared to superimposing them together.

Specifically, when the eavesdropper receives the sum of the outputs from the forward and the

backward channel, introducing artificial noise into the backward channel at the time when the

forward channel is in use can interfere the eavesdropper’s observation of the forward channel and

hence reduce its recognizance of the message being transmitted on it. This so-called “cooperative

jamming” scheme has been shown to improve secrecy rates in a Gaussian two-way channel with

an external eavesdropper [12]. Yet in reference [12], the source node does not take advantage of

the signals it received from the backward channel when encoding its transmission signals. The

question remains, therefore, in such a “cooperative jamming” scheme, whether the achievable

rates can be improved by utilizing these signals.

In this paper, we consider the wireless communication scenario where the eavesdropper

observes the sum of the outputs of the forward and the backward channel, and hence the

legitimate nodes in the network can potentially utilize both feedback signals and cooperative

jamming to protect the confidential message. We focus on two models where both techniques

are potentially useful: (i) a class of Gaussian full-duplextwo-way wiretap channels, and (ii) a

Gaussian half-duplex two-way relay channel with an untrusted relay.

For the first model, we derive a computable outer bound to its secrecy capacity region. We

then compare it to the achievable rates when the feedback is ignored at both nodes. Interestingly,

when the ratio of the power constraint of the two legitimate nodes is fixed and the channel is

fully connected with independent link noise, the gap between the achieved secrecy rate and the

outer bound is bounded by a constant, which only depends on the channel gains.

On the other hand, when the ratio of the power constraints is not fixed, we show that ignoring

feedback signals leads to unbounded loss in the secrecy ratewhen the power increases. The loss

is measured as the gap between the achievable rate when the feedback is used and the upper

bound when the feedback is not used, hence is not caused by thepotential sub-optimality of the
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achievable scheme. This result shows that utilizing the feedback for encoding at the legitimate

nodes is highly beneficial for this model in general.

In the second model, we consider the case where the eavesdropper is part of the network rather

than being external to it. In this model, two nodes wish to exchange information via a relay

node from whom the information needs to be kept secret. Here the relay node is “honest but

curious” [13], in that it will faithfully carry out designated relaying scheme, but is not trusted to

decode the message it is relaying. This kind of setting was first considered in [14] for the three

node relay channel and later thoroughly studied in [15] and [16]. Later, in [17], we considered

a restricted version of the model in this work, by studying the case when the feedback signals

were not used at the source or the destination for encoding purposes. In this paper, we identify

one case where doing so will not incur much loss in secrecy rate. More specifically, we will

prove if the power of the relay goes to∞, then the loss in the secrecy rates caused by ignoring

the feedback is bounded by0.5 bit per channel use. Interestingly, a simple TDMA scheme with

cooperative jamming yields the achievable rate.

The channel models in this work are closely related the the channel-type model in secret key

generation literature; see [6], [18]–[21] for example. Themajor difference from these works is

that our model accepts two inputs, one from the source, the other from the destination. The

eavesdropper observes a noisy superposition of these two inputs. This is more complicated

than the channel-type model where the noisy part of the channel is a wiretap channel which

only accepts one input from the source node, and any input from the destination can only be

transmitted over a noiseless public discussion link which is orthogonal to the wiretap channel.

Recently, reference [22] has considered a channel-type secret key generation model where the

channel component in the model accepts inputs from multiplenodes. Yet, these nodes only

receive from the noiseless public discussion link [22, Section II], which is a fundamentally

different model from those considered in this work.

The rest part of the paper is organized as follows: In SectionII, we describe the two models

considered in this work. Section III focuses on the Gaussiantwo-way wiretap channel. Section

IV focuses on the two-way relay channel with an untrusted relay. Section V presents some

alternative proofs to some results in previous sections. Section VI concludes the paper.

Throughout the paper the notationC(x) is defined asC(x) = 1
2
log2(1+x). Alsoxi denotes the

ith component of vectorx, while xi denotes{x1, ...xi}. N (0, σ2) denotes a zero mean Gaussian
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Fig. 1. Two-way wiretap channel

distribution with varianceσ2.

II. CHANNEL MODELS

In this section, we describe the two channel models considered in this work. Both models

involve information exchange between two nodes: Node1 and Node2. Node1 wants to send a

messageW1 to Node2. Node2 wants to send a messageW2 to Node1. Both messages must

be kept secret from the eavesdropper. The encoding functions used at the two nodes are allowed

to be stochastic. Without loss of generality, we useMj to model the local randomness in the

encoding function used by Nodej, j = 1, 2.

A. The Two-Way Wiretap Channel

The first model we consider in this work is a two-way wiretap channel model. The channel

model is shown in Figure 1. The channel description is given by

Pr(Y, Yf , Z|X,Xf) = Pr(Z|X,Xf) Pr(Y |X,Xf , Z) Pr(Yf |Xf , X, Z) (1)

From (1), we observe

Yf − {Xf , X, Z} − Y (2)

is a Markov chain.

At each channel use, Node1 and Node2 transmit simultaneously. At theith channel use, the

encoding function of Node1 is defined as:

Xi = fi(Y
i−1
f ,W1,M1) (3)
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The encoding function of Node2 is defined as

Xf,i = gi(Y
i−1,W2,M2) (4)

Note that with the introduction ofMj , j = 1, 2, we can definefi, gi as deterministic encoders.

Also note that another way to definefi is Xi = fi(X
i−1, Y i−1

f ,M1). It is easy to see that this

definition is equivalent to the definition given in (3).

Letn be the total number of channel uses. Node2 must decodeW1 reliably fromXn
f , Y

n,M2,W2.

Node1 must decodeW2 reliably fromY n
f , X

n,M1,W1. Let the decoding results bêW1 andŴ2

respectively. Then we require

lim
n→∞

Pr(Wj 6= Ŵj) = 0, j = 1, 2 (5)

Hence, from Fano’s inequality [10], we have

H(W1|Xn
f , Y

n,M2,W2) < nε1 (6)

H(W2|Y n
f , X

n,M1,W1) < nε2 (7)

whereεj > 0 and limn→∞ εj = 0, j = 1, 2.

In addition, both messages must be kept secret from the eavesdropper. Hence

I(W1,W2;Z
n) < nε3 (8)

whereε3 > 0 and limn→∞ ε3 = 0.

DefineRj , j = 1, 2 as:

Rj = lim
n→∞

1

n
H(Wj), j = 1, 2 (9)

The secrecy rate region is defined as all rate pairs{R1, R2} for which (5) and (8) holds.

The Gaussian case of the two-way wiretap channel model was first proposed in [12] and is

shown in Figure 2. Formally, the channel is described as:

Yf = Xf +N3 +
√
αX (10)

Y = X +N1 +
√

βXf (11)

Z =
√

h1X +
√

h2Xf +N2 (12)
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Fig. 2. The Gaussian Two-way Wiretap Channel

where
√
α,

√
β,

√
h1,

√
h2 are channel gains.Ni, i = 1, 2, 3 are Gaussian random variables with

zero mean and unit variance, representing the channel noise. We assume that givenN2, N1 is

independent fromN3:

p(N1, N2, N3) = p(N2)p(N1|N2)p(N3|N2) (13)

We useρ to denote the correlation factor betweenN1 andN2. η denotes the correlation factor

betweenN2 andN3. Obviously,−1 ≤ ρ ≤ 1, and−1 ≤ η ≤ 1.

From (1) and (13), we readily see this channel belongs to the class of channels described by

(1) and shown in Figure 1.

Observe that the terms
√
αX and

√
βXf are not shown in Figure 2. This is because each

node knows its own transmitted signal and
√
α,

√
β,

√
h1,

√
h2, and can always subtract the

interference caused by its own transmitted signals. Hence we can remove
√
αX and

√
βXf

from (10) and (11). The channel is hence equivalent to

Yf = Xf +N3 (14)

Y = X +N1 (15)

Z =
√

h1X +
√

h2Xf +N2 (16)

In the sequel we shall focus on this equivalent model instead.

Let the power constraint of Node1 beP . Let the power constraint of Node2 bePr.

1

n

n
∑

k=1

E
[

X2
k

]

≤ P (17)
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Fig. 3. The Gaussian two-way half-duplex relay channel withan untrusted relay

1

n

n
∑

k=1

E
[

X2
f,k

]

≤ Pr (18)

Remark 1: WhenYf is a constant, or, the feedback is ignored by Node1, the model reduces

to the relay channel with a confidential message to the relay,which was considered in references

[16], [23], [24].

B. Two-Way Relay Channel with an Untrusted Relay

The second model we consider in this work is the Gaussian two-way relay channel with an

untrusted relay node. The channel model is shown in Figure 3.At any time slot, the channel

either behaves as a MAC channel, shown on the left, or as a broadcast channel, shown on the

right. After normalizing the channel gains, the MAC channelcan be expressed as:

Yr = X1 +X2 +N (19)

The broadcast channel can be expressed as:

Y1 =
√
hXr +N1 (20)

Y2 = Xr +N2 (21)

where
√
h is the channel gain,h 6= 0. N , N1, N2 are independent zero mean Gaussian random

variables with unit variance.

We assume Node1 and Node2 transmit simultaneously during the MAC mode.Xj,i, j = 1, 2

denote the signals transmitted by Nodej during theith channel use such that the channel is

in MAC mode. i ≥ 1. We useφi to denote the number of channel uses that the channel was

in the broadcast mode before this channel use. The notationX i
j denotes the set of signals:

{Xj,k, k = 1...i}.
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Similarly Xr,i denotes the signal transmitted by the relay node during theith channel use that

the channel is in broadcast mode.i ≥ 1. We useψi to denote the number of channel uses that

the channel was in the MAC mode before this channel use.

Y1,i, Y2,i, Yr,i are received signals defined in the same fashion.

The channel switches between the MAC mode and the broadcast mode according to a globally

known schedule. We assume the schedule is independent from the local randomness at each node,

the messages and the channel noise. The first mode is assumed to be the MAC mode. The case

where the first mode is a broadcast mode can be viewed as a special case of invoking the MAC

mode first by transmitting nothing during the first MAC mode. The rate loss caused by the

wasted channel use is negligible as the number of channel uses goes to∞.

Suppose the MAC mode is activated forn channel uses. The broadcast mode is activated for

m channel uses. Hence the communication spans overn +m channel uses. It should be noted

that, in general, neither then channel uses of the MAC mode, nor them channel uses of the

broadcast mode have to be consecutive. We assume the schedule is stable, in the sense that the

following limit exists:

α = lim
n+m→∞

n

m+ n
(22)

For a givenα, we use{T (α)} to denote a sequence of schedules with increasing total number

of channel usesn+m such that (22) holds, andα is the limit of the time sharing factor of the

MAC mode in the scheduleT (α) asn+m→ ∞.

The average power constraints for the source, the jammer andthe relay can be expressed as:

1

m+ n

n
∑

k=1

E
[

X2
i,k

]

≤ P̄i, i = 1, 2, (23)

1

m+ n

m
∑

k=1

E
[

X2
r,k

]

≤ P̄r (24)

For the purpose of completeness, we also introduce the notation Pi, i = 1, 2 to denote the

average power of Nodei during the MAC mode. Since these two nodes are only transmitting

during the MAC model,Pi and P̄i are related as

Pi = P̄i/α, i = 1, 2 (25)
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Similarly, we usePr to denote the average power of the relay node during the broadcast mode.

Since the relay node only transmits during the broadcast mode, Pr is related toP̄r as follows:

Pr = P̄r/(1− α) (26)

For theith channel use in which the channel operates in the MAC mode, the encoding functions

at Node 1,f1,i, is defined as:

X1,i = f1,i(Y
φi
1 ,W1,M1) (27)

Similarly, the encoding functions at Node 2,f2,i, is defined as:

X2,i = f2,i(Y
φi
2 ,W2,M2) (28)

Note thatf1,i, f2,i are deterministic functions, and we useMr to model the local randomness at

the relay. For theith channel use in which the channel operates in broadcast mode, the encoding

function of the relay node,gi, is defined as:

Xr,i = gi(Y
ψi
r ,Mr) (29)

wheregi is a deterministic function.

The eavesdropper knowsY n
r , X

m
r ,Mr. Therefore, the secrecy constraint is expressed as

lim
m+n→∞

1

m+ n
H(W1,W2|Y n

r , X
m
r ,Mr) = lim

m+n→∞
1

m+ n
H(W1,W2) (30)

SinceW − {Xm
r , Y

n
r } −Mr is a Markov chain, we have

lim
m+n→∞

1

m+ n
H(W1,W2|Y n

r , X
m
r ,Mr) = lim

m+n→∞
1

m+ n
H(W1,W2|Y n

r , X
m
r ) (31)

Therefore, the secrecy constraint can be expressed as

lim
m+n→∞

1

m+ n
H(W1,W2|Y n

r , X
m
r ) = lim

m+n→∞
1

m+ n
H(W1,W2) (32)

Let Ŵj, j = 1, 2 be the decoding result computed by the intended receiver ofWj , j = 1, 2.

Then the reliable communication requirement is expressed as

lim
m+n→∞

Pr(Ŵj 6= Wj) = 0, j = 1, 2 (33)

DefineR1, R2 as

Rj = lim
m+n→∞

1

n+m
H(Wj), j = 1, 2 (34)
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The secrecy capacity region is defined as the union of all ratepairs (R1, R2) such that there is

anα, a sequence of schedule{T (α)} and a choice of encoding function for which (32) and (33)

are satisfied.

Remark 2: In general,

lim
n+m→∞

1

n+m
H (W |Xm

r , Y
n
r ) 6= lim

n+m→∞
1

n+m
H (W |Y n

r ) (35)

This can be proved by a counterexample: Consider the communication protocol:

1) First the relay node randomly generates and broadcasts a key viaXr to Node1 and Node

2 using a channel code.

2) Node 1 uses the key as a one-time pad [4] to encrypt its confidential messageW and

sends it to the relay using a channel code. The other nodes remain silent.

3) The relay decodes the codeword sent by Node1 and encodes and forwards it to the

destination.

4) The destination recovers the codeword sent by Node1 by decoding the signals from the

relay. It then decrypts it with the key it received in step 1 and recoversW .

Since the one-time pad is a perfectly secure cipher [4], for this communication protocol, we

have:

H (W ) = H (W |Y n
r ) (36)

However, since the key is determined byXm
r , given the key,W is uniquely determined byY n

r .

Therefore, we have

H (W |Xm
r , Y

n
r ) = 0 6= H(W |Y n

r ) (37)

III. FEEDBACK IN THE TWO-WAY WIRETAP CHANNEL

A. Improvement on the Known Achievable Secrecy Rate: A Motivating Example

For the two-way wiretap channel, reference [12] derived an achievable rate using Gaussian

codebooks. However, in this scheme, the signalYf received by Node1 is not used to compute

the signalX transmitted by Node1. Likewise, the signalY received by Node2 is not used to

compute the signalXf transmitted by Node2. We next show that this scheme can be improved
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√
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1

√
2
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upon with respect to the achievable secrecy rate. To show this, it is sufficient to show that a

largerR1 is achievable for Node1 for a set of channel gains. In the following, we provide such

an example.

We assumeρ = 0, η = 0, which meansN1, N2, N3 are all independent, which was the setting

considered by [12]. The largest rate for Node1 achievable with the scheme of [12] is given by:

R1 = [C (P )− C

(

h1P

h2Pr + 1

)

]+ (38)

which is achieved by letting Node2 transmit an i.i.d. Gaussian sequence with variancePr.

When h1
h2Pr+1

≥ 1, we observe from (38) that the secrecy rate is always0. Below, we choose

P = 3, Pr = 1,
√
h1 =

√
2,
√
h2 = 1 such that this condition is fulfilled and prove a positive

secrecy rate is achievable with our scheme.

The coding scheme we use is similar to that of [6]. It is composed of one channel use described

in Figure 4, followed by one channel use described in Figure 5. In an odd step, Node1 sends a

signal denoted byJ1 and Node2 sends a signal denoted byX2. After this step, Node1 adds its

received signalX2 +N3 to a new signalX1 and transmits it in the following even step. At the
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Fig. 6. The Equivalent Channel

same time, Node2 sends a signal denoted byJ2. We use the notationNi to denote the channel

noise in the odd step andN ′
i to denote the channel noise in the even step.

Combining these two steps, we obtain an equivalent memoryless channel shown in Figure 6.

The achievable secrecy rate for this channel is given by [25]:

[I (X1; Y )− I (X1; Ye,1, Ye,2)]
+ (39)

where

Y = X1 +N3 +N ′
1 (40)

Ye,1 = X2 +
√
2J1 +N2 (41)

Ye,2 =
√
2 (X1 +X2 +N3) + J2 +N ′

2 (42)

We then chooseX1, X2, J1, J2 as zero mean independent Gaussian random variables with unit

variance. From Figures 4 and 5, this choice satisfies the average power constraints. Evaluating

(39) for this distribution, we get

C
(

1

2

)

− C





a2

2a2 + 2− a2

a2+2



 > 0 (43)

wherea =
√
2.

Since the original channel takes twice as many channel uses to implement this scheme, the

actual secrecy rate is half the value indicated by (43). However, this still means a positive secrecy

rate is achievable.

This means that utilizing feedback signals leads to higher achievable secrecy rate for this

channel.
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B. Outer Bound

Although we have shown that using feedback can improve the secrecy rate, it remains unclear

whether this can only be done by letting Node1 use the signalY to computeX. If the signalY

is not available to Node1, is it possible to achieve the same rate via a smarter way to compute

Xr at Node2? Additionally, if ignoringY at Node1 is suboptimal, is it possible to bound the

consequent rate loss? To answer these questions, clearly, we need an outer bound on the secrecy

capacity region of this model.

We begin by deriving a bound onR1.

Theorem 1: For the channel model in Figure 1,R1 is upper bounded by

max
Pr(X,Xf )

min{I(X ; Y ), I(X ; Y |Z,Xf) + I(Xf ; Yf , Z|X)} (44)

Proof: See Appendix A.

Remark 3: Ignoring Yf at Node1 is equivalent to viewingYf as a constant. From (44),R1,

in this case, is upper bounded by

max
Pr(X,Xf )

min{I(X ; Y ), I(X ; Y |Z,Xf) + I(Xf ;Z|X)} (45)

which is the upper bound proved in [24].

Theorem 2: The secrecy capacity region of the channel model in Figure 1 is bounded by

∪Pr(X,Xf) {(R1, R2) : (47) (48) (49)holds} (46)

0 ≤ R1 ≤ I (X ; Y ) (47)

0 ≤ R2 ≤ I (Xf ; Yf) (48)

R1 +R2 ≤ min











I (X ; Y |Z,Xf) + I (Xf ;Z, Yf |X) ,

I (Xf ; Yf |Z,X) + I (X ;Z, Y |Xf)











(49)

Proof: The proof is provided in Appendix B.

For a deterministic binary wire-tap channel, Theorem 2 leads to the equivocation capacity region,

as shown by the following theorem:
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Theorem 3: WhenX,Xf are binary andY = X ⊕ Xf , Yf = Xf ⊕ X,Z = X ⊕ Xf , the

secrecy capacity region is given by

Rj ≥ 0, j = 1, 2 (50)

R1 +R2 ≤ 1 (51)

Proof: The achievability follows from [26, Theorem 2]. The converse follows from Theorem

2. The sum rate bound specializes as follows:

I (X ; Y |Z,Xf) + I (Xf ; Yf , Z|X) (52)

=I (X ;X|X ⊕Xf , Xf) + I (Xf ;Xf , X ⊕Xf |X) (53)

=I (X ;X|X,Xf) + I (Xf ;Xf , X|X) (54)

=I (Xf ;Xf , X|X) (55)

≤H (Xf) ≤ 1 (56)

We next consider the Gaussian channel.

Theorem 4: WhenYf is a constant, i.e.,Yf is ignored by Node1, the secrecy rateR1 is upper

bounded by

inf
σ2≥0

C







P
(

1 + σ2 −√
h1ρ

)2

(1 + σ2 − ρ2) (h1P + 1 + σ2)





+ C

(

h2Pr
1 + σ2

)

(57)

Proof: DefineN4 as a Gaussian random variable such thatN4 ∼ N (0, σ2) and is independent

from Ni, i = 1, 2, 3. Recall thatZ is the signal received by the eavesdropper. We next consider

a channel where the eavesdropper receivesZ + N4. SinceZ +N4 is a degraded version ofZ,

we can find an upper bound of the original channel by deriving an upper bound for this new

channel. This upper bound is found by applying the bound (45).

We next prove that all terms in the upper bound (45) is maximized whenX,Xf are independent

and each has a Gaussian distribution with zero mean and maximum possible variance:I(X ; Y )

is obviously maximized by this distribution. For the other two terms, we have:

I (X ; Y |Xf , Z) (58)
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=I
(

X ;X +N1|Xf ,
√

h1X +
√

h2Xf +N2 +N4

)

(59)

=h
(

X +N1|Xf ,
√

h1X +
√

h2Xf +N2 +N4

)

− h (N1|N2 +N4) (60)

≤h
(

X +N1|
√

h1X +N2 +N4

)

− h (N1|N2 +N4) (61)

and

I (Xf ;Z|X) (62)

=I
(

Xf ;
√

h2Xf +N2 +N4|X
)

(63)

=h
(

√

h2Xf +N2 +N4|X
)

− h (N2 +N4) (64)

≤h
(

√

h2Xf +N2 +N4

)

− h (N2 +N4) (65)

Equations (61) and (65) show that the second term in (45) is maximized whenX andXf are

independent. Moreover, (61) is known to be maximized whenX has a Gaussian distribution

with the maximum possible variance; see [27]. (65) is also maximized whenXf has a Gaussian

distribution with the maximum possible variance. Hence we have shown the optimal input

distribution forX,Xf is an independent Gaussian distribution. For this distribution, it can be

verified the second term in (45) becomes (57).

Hence we have proved the theorem.

Remark 4: Whenσ2 → ∞, (57) converges toC(P ), which corresponds to the first term in

(45). Thus, (57) is written as one term instead of the two terms as in (45).

Remark 5: We introduceN4 to further tighten the bound. For example, consider the case

whereρ = η = 0. In this case the upper bound can be expressed as

min
0≤α≤1

C
(

P

αh1P + 1

)

+ C (αh2Pr) (66)

where α = 1/(1 + σ2). Consider choosing the remaining parameters ash1 = 1, h2 = 10,

P = 100, Pr = 5. It can be verified that the minimum is attained aroundα = 0.09, and not at

σ2 = 0. Hence, the bound presented here is tighter than the bound in[24].

Next, we present the following theorem.

Theorem 5: The secrecy capacity region of the Gaussian two-way wiretapchannel is outer
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bounded by

0 ≤ R1 ≤ C(P ) (67)

0 ≤ R2 ≤ C(Pr) (68)

R1 +R2 ≤ min























infσ2≥0C

(

P(1+σ2−
√
h1ρ)

2

(1+σ2−ρ2)(h1P+1+σ2)

)

+ C
(

Pr(h2+1+σ2−2
√
h2η)

1+σ2−η2

)

infσ2≥0C

(

Pr(1+σ2−
√
h2η)

2

(1+σ2−η2)(h2Pr+1+σ2)

)

+ C
(

P(h1+1+σ2−2
√
h1ρ)

1+σ2−ρ2

)























(69)

Proof: Again we consider a channel where the eavesdropper receivesZ + N4 and derive

an outer bound for this new channel.N4 is as defined in the proof of Theorem 4.

To prove the theorem, we first showI(X ; Y ), I(X ; Y |Z,Xf), I(Xf ; Yf , Z|X), I(Xf ; Yf),

I(Xf ; Yf |Z,Xf) and I(X ;Z, Y |Xf) are maximized simultaneously whenX andXf are inde-

pendent,X ∼ N (0, P ), andXf ∼ N (0, Pr).

Due to the symmetry of the channel model, we only need to showI(X ; Y ), I(X ; Y |Z,Xf)

andI(Xf ; Yf , Z|X) are maximized by this distribution.

The case ofI(X ; Y |Z,Xf) was shown in the proof of Theorem 4.

For I(Xf ; Yf , Z|X), we have:

I (Xf ; Yf , Z|X) (70)

=I
(

Xf ;Xf +N3,
√

h2Xf +N2 +N4|X
)

(71)

=h
(

√

h2Xf +N2 +N4, Xf +N3|X
)

− h (N2 +N4, N3) (72)

≤h
(

√

h2Xf +N2 +N4, Xf +N3

)

− h (N2 +N4, N3) (73)

Hence I(Xf ; Yf , Z|X) is maximized whenX and Xf are independent,X ∼ N (0, P ), and

Xf ∼ N (0, Pr). The theorem then is a consequence of Theorem 2 when evaluated at this input

distribution.

Remark 6: The introduction ofN4 is again useful in tightening the bound. For example,

consider the case whereρ = η = 0, h1 = 1, h2 = 10, P = 100, Pr = 5.

In this case the upper bound onR1, which isC(P ), is about3.3291. The first term inside the

minimum in (69), which is also an upper bound onR1 takes the form:

min
0≤α≤1

C
(

P

αh1P + 1

)

+ C (Pr (αh2 + 1)) (74)
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whereα = 1/(1 + σ2). It can be verified that the minimum is smaller than3.24 and is attained

aroundα = 0.32. Hence the upper bound onR1 is dominated by the first term inside the

minimum in (69) and is not attained atσ2 = 0.

C. Achievable Rates for the Gaussian Two-way Wiretap Channel

Let us use[x]+ to denotemax{x, 0}. Then we have the following theorem.

Theorem 6: DefineR∗
1 as

R∗
1 = max

0≤α≤1
α



C (P )−


C

(

h1P

h2Pr + 1

)

− 1− α

α

[

C (Pr)− C

(

h2Pr
h1P + 1

)]+




+



+

(75)

andR∗
2 as

R∗
2 = max

0≤α≤1
α



C (Pr)−


C

(

h2Pr
h1P + 1

)

− 1− α

α

[

C (P )− C

(

h1P

h2Pr + 1

)]+




+



+

(76)

Define the regionR as the convex hull of the following three rate pairs of(R1, R2):

(0, 0), (R∗
1, 0), (0, R∗

2) (77)

The rate regionR is achievable.

Proof: The proof is given in Appendix C.

Remark 7: The achievable scheme is composed of two phases. During phase one, with a time

sharing factor of1− α, Node2 sends a key to Node1. During phase two, Node1 utilizes this

key to encrypt its message and transmits the result to Node2. Hence whenα = 1, R is achieved

when both nodes ignore their received signals when computing their transmitting signals.

Remark 8: The achievable secrecy rate derived here may be potentiallyimproved further by

combining it with the scheme in Section III-A. However, as weshall see later, Theorem 6 is

sufficient to bound the rate loss when the feedback signals are not used by the legitimate nodes.

D. Comparing the achievable rates and the outer bound

We first consider the case with independent link noise, whichis the model considered in [12].
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1) ρ = η = 0:

Theorem 7: When ρ = η = 0, Pr = kP , k is a positive constant, andhj 6= 0, j = 1, 2, the

loss in secrecy rates when received signals are not used to compute transmitting signals at Node

j, j = 1, 2 is bounded by a constant, which is only a function ofh1 andh2.

Proof: The proof is given in Appendix D.

Theorem 8: Even in the case where cooperative jamming is possible (hj 6= 0, j = 1, 2), when

P is not proportionally increasing withPr, ignoringYf at Node1 can lead to unbounded loss

in the secrecy rate.

Proof: The proof is given in Appendix E.

We next consider a special case of the model that attracted some interest in the past [24],

[28]. In this model,Z is a degraded version ofY givenXf , andYf is ignored by Node1:

2) h1 ≤ 1, ρ =
√
h1 and Yf is a constant: In this case,N2 can be written as

√
h1N1 + N ′

2,

whereN ′
2 is independent fromN1, N3 andN ′

2 ∼ N (0, 1− h1). Then the signals received by the

eavesdropperZ can be expressed as:

Z =
√

h1X +
√

h2Xf +
√

h1N1 +N ′
2 (78)

=
√

h1 (X +N1) +N ′
2 +

√

h2Xf (79)

From this, we observe that, givenXf , Z is a degraded version ofY = X +N1.

Corollary 1: Whenh1 ≤ 1, ρ =
√
h1, andh2 6= 0, Yf is a constant, then the achievable rate

of R1 using cooperative jamming is at most0.5 bit per channel use from the secrecy capacity.

Remark 9: Corollary 1 was first proposed in [28] and later appeared in [24]. Here we first

describe the approach of [24]:

From Theorem 6 and Remark 7, the achievable rate forR1 in this case is obtained by letting

α = 1 and evaluatingR∗
1. In this case

R1 = C(P )− C(
h1P

h2Pr + 1
) (80)

The upper bound proposed in [24] onR1 is

min{C(P ), C(P )− C(h1P ) + C(h2Pr)} (81)

Here we observe (81) can be obtained from (57) when evaluatedwith σ2 → ∞ and σ2 = 0.

Reference [24] proves Corollary 1 by comparing (80) and (81). It can be then verified that the

gap between (80) and (81) is less than0.5 bit per channel use.
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Fig. 7. Two-way wiretap Channel with Additional Public Noiseless Forward Link

The approach of reference [28] is different and uses resultson a wiretap channel with noisy

feedback. This proof is delegated to Section V.

IV. FEEDBACK IN HALF-DUPLEX TWO-WAY RELAY CHANNEL WITH AN UNTRUSTED

RELAY

In this section, we derive the outer bound for the secrecy capacity region of the two-way relay

channel with an untrusted relay in Section II-B (Figure 3). To find the outer bound, we first

consider the channel in Figure 7.

We assumeX1 andX2 have the same power constraint as theX1, X2 in Figure 3.Mr is now

accessible to Node1 and delivered to the other nodes via apublic noiseless link. The remaining

part of the channel is activated when the original two-way relay channel is in the MAC mode,

and is inactive when the original two-way relay channel model is in the broadcast mode. Doing

so ensures the overall number of channel uses to be the same between these two models.

Recall thatMj , j = 1, 2 still models the local randomness at Nodej, j = 1, 2. The encoding

function of Node 1 at theith channel use when the channel is active can be defined as:

X1,i = f̃1,i(Y
i−1
1 ,W1,M1,Mr) (82)

Similarly, the encoding function of Node 2 at theith channel use when the channel is active

can be defined as:

X2,i = f̃2,i(Y
i−1
2 ,W2,M2,Mr) (83)

With these preparations, we present the following theorem:
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Theorem 9: The secrecy rate region of the channel in Figure 7 includes the secrecy capacity

region of the two-way relay channel in Figure 3.

Proof: Consider the model in Figure 3. Suppose during a MAC mode, a genie reveals

X1+X2+N to Node1 and Node2. We also add a public noiseless link that takes inputs from

Node1 and provides outputs to Node2 and the relay. We makeMr accessible to Node1 and

use the public noiseless link to deliverMr to Node2 and the relay. This side information does

not increase the knowledge of the relay and hence will not decrease the secrecy capacity region

of the channel.

During a broadcast mode, a genie reveals the link noise levelN2 to Node2. Similarly, the

link noiseN1 is revealed to Node1. This side information will not decrease the secrecy capacity

region of the channel either.

With the side information provided to the nodes, the links from the relay to Node1, 2 can be

removed. This is because

1) Node1 and Node2 have the signal received by the relayX1 +X2 +N .

2) Node1 sendsMr via the public noiseless forward link. WithMr available at Node2, it

can compute the signal transmitted by the relay node. Due to the same reason, Node1

knows the signal transmitted by the relay node as well.

3) With noiseN2 available at Node2, Node2 can compute the signal it received from the

relay. For similar reasons, Node1 can compute the signal it received from the relay as

well.

SinceN1, N2, N are independent,N1 andN2 can be incorporated as the local randomness at

Node1 and Node2 respectively.

After removing the links from the relay to Node1, 2, the channel indeed becomes that which

is described by Figure 7, where Node3 corresponds to the relay node whose output broadcast

link to Node 1, 2 is removed. Since, every step we took during this transformation could only

expand the secrecy capacity region, we have proved the theorem.

To derive an outer bound for the secrecy capacity of the channel in Figure 7, we first consider

the case when the channel is active regardless of whether thetwo-way relay channel is in MAC

mode or broadcast mode. We recognize that in this case, the channel becomes a special case

of the two-way wiretap channel defined in Section II. Utilizing this connection leads to the

following corollary:
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Corollary 2: The secrecy capacity region of the channel in Figure 7 is outer bounded by

R1 +R2 ≤ min
{

C
(

P̄1

)

, C
(

P̄2

)}

(84)

R1 ≥ 0, R2 ≥ 0 (85)

whereP̄i is the average power constraint of Nodei.

Proof: The channel in Figure 7 is a special case of the channel definedin (1), where

Y, Yf , Z,X,Xf (86)

correspond to

{X1 +N,Mr}, X2 +N, {X1 +X2 +N,Mr}, {X1,Mr}, X2 (87)

respectively, andPr(Y, Yf , Z|X,Xf) becomesPr(N).

Therefore the corollary follows as a direct consequence of Theorem 5 withη = ρ = 1,

h1 = h2 = 1, σ2 = 0.

Note that to apply Corollary 2 to the half-duplex two-way relay channel, we need to take

into account the channel uses when the channel in Figure 7 is inactive during the channel uses

when the original two-way relay channel is in the broadcast mode. Hence, the outer bound in

Corollary 2 becomes the following regionA:

R1 +R2 ≤ αmin
{

C
(

P̄1/α
)

, C
(

P̄2/α
)}

(88)

R1 ≥ 0, R2 ≥ 0 (89)

which reflects the number of channel uses during which some nodes are inactive.

Define regionB as

0 ≤ R1 ≤ (1− α)C(P̄r/(1− α)) (90)

0 ≤ R2 ≤ (1− α)C(hP̄r/(1− α)) (91)

Then we have the following theorem:

Theorem 10: An outer bound for the secrecy capacity of two-way relay channel is given by

∪0≤α≤1{A ∩B} (92)
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Proof: RegionA follows by applying Corollary 2 and taking into account the fact that the

channel is inactive when the original two-way relay channelis in broadcast mode as described

above.

RegionB follows from removing the secrecy constraint and applying the cut-set bound in

[10, Theorem 15.10.1]. To derive (91), we consider the cut where the setT includes the relay

node and Node2. From the cut-set bound, we get:

H(W2) ≤ mI(X2, Xr; Y1|X1) + (m+ n)ε (93)

ε > 0 and limm+n→∞ ε = 0.

Therefore, we get

1

m+ n
H(W2) ≤

m

m+ n
I(X2, Xr; Y1|X1) + ε (94)

It is easy to see that for the Gaussian two-way relay channel,I(X2, Xr; Y1|X1) is maximized

whenX1, X2, Xr takes an independent Gaussian distribution with maximum possible variance.

Let m+ n → ∞, and use the fact thatlimm+n→∞
m

m+n
= 1 − α, we obtain (91) by evaluating

(94) for this distribution.

Equation (90) is derived similarly due to the symmetry of thechannel model.

Hence we proved the theorem.

Remark 10: When P̄r → ∞, and h 6= 0, then the region is maximized whenα → 1. The

outer bound becomes:

R1 +R2 ≤ min
{

C
(

P̄1

)

, C
(

P̄2

)}

(95)

R1 ≥ 0, R2 ≥ 0 (96)

A. Comparison with Achievable Rates

In this section, we compare the outer bound with the achievable secrecy rate region.

We begin by restating an achievable rate forR1 from [17]. The rate region then follows from

time sharing.

Theorem 11: [17, Theorem 1] The following secrecy rate ofR1 is achievable for the model

in Figure 3:

0 ≤ R1 ≤ max
0≤P ′

1
≤P̄1/α,0<α<1

α

[

C

(

P ′
1

(1 + σ2
c )

)

− C

(

P ′
1

(1 + P2)

)]+

(97)
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whereσ2
c is the variance of the Gaussian quantization noise determined by:

αC

(

P ′
1 + 1

σ2
c

)

= (1− α)C (Pr) (98)

P2 was defined in (25),Pr was defined in (26).

Remark 11: The achievable scheme above uses compress-and-forward. And Node 1 and 2

ignore their received signals when computing the transmitted signals. The proof can be found

in [17].

Remark 12: For any fixedα such that0 < α < 1, if the power of the relayP̄r → ∞, then

σ2
c → 0, the achievable rate converges to

α(C(P1)− C(
P1

1 + P2
)) (99)

Equation (99) is a monotonic increasing function ofα. Hence, as long asα < 1, we can always

increaseα and increase the achievable secrecy rate. Therefore, whenP̄r → ∞, the optimal time

sharing factorα → 1. The achievable rate then converges to

C(P̄1)− C(
P̄1

1 + P̄2
) (100)

The secrecy rate region is obtained with time sharing and it converges to

R1 +R2 ≤ C(P̄1)− C(
P̄1

1 + P̄2
) (101)

R1 ≥ 0, R2 ≥ 0 (102)

Utilizing this result, we have the following corollary:

Corollary 3: When P̄r → ∞, the gap between the outer bound and the achievable rate is

bounded by0.5 bit per channel use.

To prove this corollary, we need the following lemma:

Lemma 1: Define the following functions:

f(x, y) =
1

2
log2

(

(1 + x)(1 + y)

1 + x+ y

)

(103)

g(x, y) = min{C(x), C(y)} (104)

Let h(x, y) = g(x, y)− f(x, y). Then0 ≤ h(x, y) ≤ 0.5.
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Fig. 8. A wiretap channel with noisy feedback

Proof: Without loss of generalityx ≤ y. For x ≥ y, simply exchangex and y. h(x, y) is

given by

h(x, y) =
1

2
log2

(

1 + x+ y

1 + y

)

(105)

=
1

2
log2

(

1 +
1 + x

1 + y

)

(106)

≤1

2
log2(1 + 1) = 0.5 (107)

Clearly h(x, y) ≥ 0. Hence0 ≤ h(x, y) ≤ 0.5.

Corollary 3 can then be proved by lettingx = P̄1, y = P̄2. The upper bound on the sum rate and

the achievable sum secrecy rate then becomeg(x, y) andf(x, y) when P̄r → ∞. Using Lemma

1 we prove the gap between the upper bound and lower bound of the sum secrecy rate is less

than 0.5 bit per channel use. Since the achievable region andthe outer bound are only different

on the bounds for the sum rate, this proves the gap between theinner bound and outer bound

of the secrecy capacity region is also less than 0.5 bit per channel use when̄Pr → ∞. Hence

we have proved Corollary 3.

V. ALTERNATIVE PROOFS OFCOROLLARY 1 AND COROLLARY 2

Corollary 1 and Corollary 2 can also be proved by using results on the wiretap channel with

noisy feedback [28]. In this section we provide these proofsfor completeness.

A. A Wiretap channel with noisy feedback

The channel model is shown in Figure 8. Node1 sends a messageW to Node2, which must

be kept secret from the eavesdropper. The channel is described by

Pr(Y, Z, Yf |X,Xf ) = Pr(Y, Z|X) Pr(Yf |Xf) (108)
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Within each channel use, Node1 and Node2 take turns to transmit. This implies that, Figure 8

is not a special case of the two-way wiretap channel in Figure 1. Without loss of generality, we

assume Node2 transmits first.

At the ith channel use, the encoding function of Node1 is defined as:

Xi = fi(Y
i
f ,W,M1) (109)

Note that since Node2 transmits first, Node1 has an extra sample ofYf to use when computing

its transmitted signals. Therefore in (109),Y i
f is used instead ofY i−1

f .

The encoding function of Node2 is defined as

Xf,i = gi(Y
i−1,M2) (110)

fi, gi are deterministic functions.

Let n be the total number of channel uses. The destination must decodeW reliably from

Xn
f , Y

n,M2. Hence from Fano’s inequality, we have

H(W |Xn
f , Y

n,M2) < nε4 (111)

whereε4 > 0 and limn→∞ ε4 = 0.

The messageW must be kept secret from the eavesdropper. Hence

I(W ;Zn) < nε5 (112)

whereε5 > 0 and limn→∞ ε5 = 0.

Theorem 12: The secrecy capacity of the channel model in Figure 8 is upperbounded by

Re ≤ max
Pr(X,Xf )

min{I(X ; Y ), I(X ; Y |Z) + I(Xf ; Yf)} (113)

Proof: The proof is provided in Appendix F.

Corollary 4: If X − Y − Z is a Markov chain, the secrecy capacity of the channel model in

in Figure 8 is given by

max
Pr(X,Xf )

min{I(X ; Y ), I(X ; Y )− I(X ;Z) + I(Xf ; Yf)} (114)
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Fig. 9. The degraded model

Proof: Equation (114) is achievable because of [8, Theorem 3.1]. Indetails, the rate (114)

can be obtained by lettingVf = X, Yf = Y , Zf = Z, Uf = φ, Vb = Xf , Yb = Yf , Zb = φ in [8,

Theorem 3.1].

WhenX − Y −Z is a Markov chain, we noticeI(X ; Y |Z) = I(X ; Y )− I(X ;Z). Hence the

achievable (114) matches the upper bound in (113).

Remark 13: When the backward channelPr(Yf |Xf) is a rate limited noiseless link, whose

rate isRf , thenI(Xf ; Yf) = H(Xf) = Rf . Then using Corollary 4, we obtain the result in [5].

B. Alternative Proof of Corollary 1

Theorem 13: For the degraded case considered in Section III-D2,R1 is upper bounded by

min{C(P ), C(h2
h1
P̄r)} (115)

whereP̄r = Pr +
1−h1
h2

.

Remark 14: Sinceh1 ≤ 1, it can be verified that the upper bound in (115) is looser than(81).

However, this bound is sufficient to prove the0.5 bit gap result.

Proof:

We begin by redrawing the channel model in Figure 9, whereN ′
2 is a zero mean Gaussian

random variable with variance1− h1.

The first termC(P ) follows by removing the eavesdropper and applying the upperbound for

Gaussian two-way channel from [2].

In order to obtain the second term in (115), we convert the model in Figure 9 to the model in

Figure 10. In this new model,N ′
2 is removed, and the power constraint of Node2 is increased
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from Pr to P̄r = Pr+
1−h1
h2

. Since Node2 can always use this additional power to transmit noise

which is statistically equivalent toN2, the secrecy capacity of Figure 10 is greater or equal to

the secrecy capacity of Figure 9.

We next prove that the secrecy capacity of the model in Figure11 must be greater or equal

to the secrecy capacity of the channel model in Figure 10. Figure 11 is a special case of the

wiretap channel with noisy feedback. For this model, the encoding functions used by Node1

and 2 at theith channel use are denoted byfi and gi and are defined in (109) and (110). The

power constraint of Node2 is h2
h1
P̄r. Node1 is not constrained in transmission power.

We prove that any signaling scheme in Figure 10 can be simulated by Figure 11. This means

for any set of encoding functions of Node1 and2, denoted by{f̃i} {g̃i} respectively in Figure 10,

we can find encoding functions{fi}, {gi} for Figure 11, such that given the same noise sequence

Nf = N1 and the same local randomnessMj , j = 1, 2, the message can be reliably received by

Node2 at the same secrecy rate. This can be shown as follows:

We choosefi, the encoding function used by Node1 in Figure 11 as:

Xi = Yf,i + f̃i (W,M1) (116)
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gi, the encoding function used by Node2 in Figure 11 is chosen as:

Xf,i =

√

h2
h1
g̃i(X

i−1 −X i−1
f ,M2) (117)

Then, as shown below, ifX i−1
f =

√

h2
h1
X i−1
r , thenXf,i =

√

h2
h1
Xr,i. The notationf̃ i−1(M1,W )

stands forf̃j(M1,W ), j = 1, ..., i− 1.

We begin with:

Xf,i =

√

h2
h1
g̃i
(

X i−1 −X i−1
f ,M2

)

(118)

Using (116), we get:

Xf,i =

√

h2
h1
g̃i
(

Y i−1
f + f̃ i−1 (W,M1)−X i−1

f ,M2

)

(119)

=

√

h2
h1
g̃i
(

X i−1
f +N i−1

f + f̃ i−1 (W,M1)−X i−1
f ,M2

)

(120)

=

√

h2
h1
g̃i
(

N i−1
f + f̃ i−1 (W,M1) ,M2

)

(121)

SinceN i−1
f = N i−1

1 , (121) equals:
√

h2
h1
g̃i
(

N i−1
1 + f̃ i−1 (W,M1) ,M2

)

(122)

SinceX i−1 = f̃ i−1(W,M1), (122) equals
√

h2
h1
g̃i
(

N i−1
1 +X i−1,M2

)

(123)

=

√

h2
h1
g̃i
(

Y i−1,M2

)

(124)

=

√

h2
h1
Xr,i (125)

Hence, whenn channel uses are involved, we haveXn
f =

√

h2
h1
Xn
r .

Using this result, from (116) we have

Xi = Yf,i + f̃i (W,M1) (126)

= Xf,i +Nf,i + f̃i (W,M1) (127)

=

√

h2
h1
Xr,i +N1,i + f̃i (W,M1) (128)

=

√

h2
h1
Xr,i +N1,i +Xi = Zi (129)
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Fig. 12. Two-way model with one-sided secure link

Therefore the signals received by the eavesdropper in Figure 11 is the same signals received by

the eavesdropper in Figure 10.

The destination in Figure 11 knowsXf,i. Therefore, it can computẽfi (W,M1) + Nf,i from

Xi−Xf,i. On the other hand,̃fi (W,M1)+Nf,i = f̃i (W,M1)+N1,i is exactly the signal received

by Node2 in Figure 10 at theith channel use. This fact, along with the fact thatXr,i = Xf,i,

shows that the destination in Figure 11 can compute any signal known by the destination in

Figure 10. This means that, ifW can be reliably received in Figure 10, it can also be reliably

received in Figure 11 at the same rate.

Hence we have proved that an upper bound for the secrecy capacity of Figure 11 is an upper

bound for Figure 10. From Corollary 4 it follows that the secrecy capacity of Figure 11 is

C(h2
h1
P̄r). Applying it to Figure 10, we obtained the second term in the upper bound (115).

Hence we have the theorem.

The 0.5 bit gap then follows from Lemma 1. In our case, the achievablerate can be expressed

asf(x, y) wherex = P , y = h2
h1
P̄r. The upper bound can be expressed ash(x, y). Hence from

Lemma 1, we proved the gap between the achievable rate (80) and the upper bound (115) can

not exceed0.5 bits per channel use.

C. Alternative Proof of Corollary 2

Consider the channel in Figure 12. It is the same channel as Figure 11 except that the power

constraint of Node2 is changed toP2. Again it is a a special case of the wiretap channel with

noisy feedback. For this model, the encoding functions usedby Node1 and2 at theith channel

use are denoted byfi andgi and are defined in (109) and (110).W is replaced byW1.

Theorem 14: The secrecy rate for the channel in Figure 12, where each nodetakes turn to
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transmit and Node2 transmits first, is greater than or equal to the maximal achievable individual

rateR1 of the channel in Figure 7.

Proof: We prove the theorem by showing any coding scheme of Figure 7 can be simulated

by the channel in Figure 12. This means for any set of encodingfunctions of nodej, {f̃j,i},

j = 1, 2, in Figure 7, we can find encoding functions for Node1 and Node2 in Figure 12,

such that at the same secrecy rate the messageW1 can be reliably received by Node2. For the

encoding functions defined in (82) and (83), we choose the encoding functions for Figure 12

are chosen as:

Xi = f̃1,i
(

Y i−1
f ,W1,M1,Mr

)

+ Yf,i (130)

Xf,i = f̃2,i
(

X i−1 −X i−1
f ,W2,M2,Mr

)

(131)

Mr is obtained by letting Node1 transmitting it over the noiseless public forward link. Then,

with these encoding functions, the eavesdropper receives exactly the same signal as the signal

received by the eavesdropper in Figure 7, if these two modelsexperience the same noise sequence

Nf = N and the same local randomnessMj , j = 1, 2,Mr. This can be proved as follows:

We begin by assumingX i−1
f = X i−1

2 , and proveXf,i = X2,i andXi − Yf,i = X1,i.

To proveXf,i = X2,i, we compare (131) with (83) and find that we need to proveX i−1 −
X i−1
f = Y i−1

2 . We begin with

X i−1 −X i−1
f = X i−1 − Y i−1

f +N i−1
f (132)

From (130), we have

X i−1 − Y i−1
f (133)

=f̃ i−1
1

(

Y i−1
f ,W1,M1,Mr

)

(134)

Since we assumeX i−1
f = X i−1

2 andN i−1
f = N i−1, we get

Y i−1
f = X i−1

f +N i−1
f = X i−1

2 +N i−1 = Y i−1
1 (135)

Hence (134) equals

f̃ i−1
1

(

Y i−1
1 ,W1,M1,Mr

)

= X i−1
1 (136)

The equality in (136) follows from (82). HenceX i−1 −X i−1
f = X i−1

1 and (132) equals:

X i−1 −X i−1
f = X i−1

1 +N i−1
f = X i−1

1 +N i−1 = Y i−1
2 (137)
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Hence from (137) we have shown

Xf,i = X2,i (138)

From (135), by comparing (130) with (82), we get

Xi − Yf,i = X1,i (139)

From (138) and (139), we get

Xi = X1,i + Yf,i = X1,i +Xf,i +Nf,i = X1,i +X2,i +Ni (140)

Until this point, we have shown that the signals received by the eavesdroppers in the two models

in Figure 12 and Figure 7 are identical.

From (139), we get

Y2,i = X1,i +Ni = Xi − Yf,i +Ni = Xi − Yf,i +Nf,i = Xi −Xf,i (141)

Hence Node2 in Figure 12 can recover the signals received by Node2 in Figure 7. On the other

hand, sinceXf,i = X2,i, Node2 in Figure 12 can also recover the signals transmitted by Node

2 in Figure 7. This means if a message can be reliably decoded ata certain rate by Node2 in

Figure 7, it can also be decoded reliably by Node2 in Figure 7 at the same rate.

Hence we have proved the theorem.

The secrecy capacity of the model in Figure 12 is given by Corollary 4. From Corollary 4,

we knowR1 ≤ C(P̄2). We next invoke the same technique we used in the proof of Theorem 2

in Appendix B to showC(P̄2) is also an upper bound on the sum rate. We prove this statement

by showing ifR1 = r1, R2 = r2 is achievable, thenR1 = r1 + r2 is also achievable.

Let us construct a message set{Wa} which has the same cardinality of the message set{W2}.

Let part of the secret message be transmitted viaWa. The remaining part of the secret message

be transmitted viaW1. The role ofW2 is to be the secret key. LetW2 be taken from the set

{W2} according to a uniform distribution.W2 is independent fromWa andW1.

Let⊕ be the modulus addition defined over{1, ... ‖W2‖}. Node1, after decodingW2, transmits

Ŵ2⊕Wa over the public channel. Since the public channel is noiseless with continuous input, it

can transmitŴ2⊕Wa with less thann channel uses. Because Node2 knowsW2, it can recover

Wa from Ŵ2 ⊕Wa if W2 = Ŵ2.
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The signal available to the eavesdropper now becomes the output of the wiretap channelXn,

and the output of the public linkWa ⊕W2. Then, by the same derivation in (199)-(215), by

replacingZn with Xn, we have:

H
(

W1,Wa|Xn,Wa ⊕ Ŵ2

)

(142)

≥H (W1,Wa)− nε (143)

where ε > 0. limn→∞ ε = 0. Hence the rate ofW1,Wa is the secrecy rateR1. SinceWa is

chosen from the message set{Wa} according to a uniform distribution, we haveR1 = r1 + r2.

Due to the symmetry of the channel model, we can prove thatR2 ≤ C(P̄1) andR1 + R2 ≤
C(P̄1) in the same fashion.

This completes the proof.

VI. CONCLUSION

In this work, we have investigated the merit of using the signals received by the source node,

i.e., the feedback, for encoder design on achieving a largersecrecy rate region. In order to

answer this question, we studied two models: the Gaussian two-way wiretap channel, and the

Gaussian half-duplex two-way relay channel with an untrusted relay. For each model, we derived

a computable outer bound for the secrecy capacity region. For the first model, by measuring the

gap between the outer bound and the achievable rate region, we find the loss in secrecy rate due

to ignoring the feedback signals can be unbounded. Hence theuse of feedback can be highly

beneficial in this model. For the second model, we find the feedback can be safely ignored if

the power of the relay is abundant. In particular, the gap between the achievable rate region and

the outer bound is bounded by0.5 bit per channel use when the power of the relay goes to∞.

It is worth mentioning that the achievable rate region in this case is attained via a time sharing

cooperative jamming scheme, which, with its simplicity andnear optimum performance, is a

viable alternative to an encoding scheme that utilizes feedback signals.

APPENDIX A

PROOF OFTHEOREM 1

Let ε = ε1 + ε3, whereε1 was defined in (6), andε3 was defined in (8). To simplify the

notation, we useM ′
2 to denote{M2,W2}. Then we have:

H (W1)− nε (144)
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≤H (W1|Zn)−H
(

W1|Zn, Xn
f , Y

n,M ′
2

)

(145)

=I
(

W1;M
′
2, X

n
f , Y

n|Zn
)

(146)

=I
(

W1;X
n
f |Zn, Y n,M ′

2

)

+ I (W1;M
′
2, Y

n|Zn) (147)

=I (W1;M
′
2, Y

n|Zn) (148)

≤I
(

W1,M1, Y
n
f ;M

′
2, Y

n|Zn
)

(149)

=I
(

W1,M1, Y
n
f ;M

′
2, Y

n, Zn
)

− I
(

W1,M1, Y
n
f ;Z

n
)

(150)

where in (145) follows from (6) and (8). Note that since, in this proof, we are only bounding

the rate ofW1, we omitW2 from the condition term of (6). (148) is based on the fact thatXn
f

is a deterministic function ofY n−1 andM ′
2, as shown in (4).

Then we rewrite the first term in (150) as:

I
(

W1,M1, Y
n
f ;M

′
2, Y

n, Zn
)

(151)

=I
(

W1,M1, Y
n
f ; Yn|Zn,M ′

2, Y
n−1, Zn−1

)

+ I
(

W1,M1, Y
n
f ; Y

n−1, Zn,M ′
2

)

(152)

For the first term in (152), we have:

I
(

W1,M1, Y
n
f ; Yn|Zn,M ′

2, Y
n−1, Zn−1

)

(153)

=I
(

W1,M1, Y
n
f ; Yn|Xf,n, Zn,M

′
2, Y

n−1, Zn−1
)

(154)

≤h (Yn|Zn, Xf,n)− h
(

Yn|Xf,n,M
′
2, Y

n−1, Zn,W1,M1, Y
n
f

)

(155)

=h (Yn|Zn, Xf,n)− h
(

Yn|Xf,n, Xn,M
′
2, Y

n−1, Zn,W1,M1, Y
n
f

)

(156)

=h (Yn|Zn, Xf,n)− h (Yn|Xf,n, Xn, Zn) (157)

=I (Xn; Yn|Zn, Xf,n) (158)

In (154), we use the fact thatXf,n is a deterministic function of{M ′
2, Y

n−1}, as shown by (4).

In (156), we use the fact thatXn is a deterministic function of{W1,M1, Y
n−1
f }, as shown by

(3). In (157), we use the fact that

Yn − {Xf,n, Xn, Zn} − {M ′
2, Y

n−1, Zn−1,W1,M1, Y
n
f } (159)

is a Markov chain, due to (1) and the channel being memorylessand the fact that encoding

functions are causal. In particular, (1) allows us to removeYf,n from the condition term. Applying
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this result, we find that (150) is upper bounded by

I (Xn; Yn|Zn, Xf,n) + I
(

W1,M1, Y
n
f ; Y

n−1,M ′
2|Zn

)

(160)

The second term in (160) can be rewritten as:

I
(

W1,M1, Y
n
f ; Y

n−1,M ′
2|Zn

)

(161)

=I
(

W1,M1, Y
n−1
f ; Y n−1,M ′

2|Zn
)

+ I
(

Yf,n; Y
n−1,M ′

2|W1,M1, Y
n−1
f , Zn

)

(162)

The second term in (162) can be upper bounded as:

I
(

Yf,n; Y
n−1,M ′

2|W1,M1, Y
n−1
f , Zn

)

(163)

=I
(

Yf,n; Y
n−1,M ′

2|Xn,W1,M1, Y
n−1
f , Zn

)

(164)

=h
(

Yf,n|Xn,W1,M1, Y
n−1
f , Zn

)

− h
(

Yf,n|Xn,W1,M1, Y
n−1
f , Zn, Y n−1,M ′

2

)

(165)

≤h (Yf,n|Xn, Zn)− h
(

Yf,n|Xn,W1,M1, Y
n−1
f , Zn, Y n−1,M ′

2

)

(166)

=h (Yf,n|Xn, Zn)− h
(

Yf,n|Xf,n, Xn, Zn,W1,M1, Y
n−1
f , Zn−1, Y n−1,M ′

2

)

(167)

=h (Yf,n|Xn, Zn)− h (Yf,n|Xf,n, Xn, Zn) (168)

=I(Xf,n; Yf,n|Xn, Zn) (169)

In (164), we use the fact thatXn is a deterministic function of{W1,M1, Y
n−1
f }, as shown by

(3). In (167), we use the fact thatXf,n is a deterministic function ofM ′
2, Y

n−1, as shown by

(4). In (168), we use the fact that

Yf,n − {Xf,n, Xn, Zn} − {W1,M1, Y
n−1
f , Zn−1, Y n−1,M ′

2} (170)

is a Markov chain. This is because the encoding functions arecausal and the channel is mem-

oryless.

Applying this result, we find that that (160) is now upper bounded by

I (Xn; Yn|Zn, Xf,n) + I(Xf,n; Yf,n|Xn, Zn) + I
(

W1,M1, Y
n−1
f ; Y n−1,M ′

2|Zn
)

(171)

The last term in (171) can be rewritten as

I
(

W1,M1, Y
n−1
f ; Y n−1,M ′

2|Zn−1
)

+ I
(

W1,M1, Y
n−1
f ;Zn|Y n−1,M ′

2, Z
n−1

)

− I
(

W1,M1, Y
n−1
f ;Zn|Zn−1

)

(172)
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The second term and the last term in (172) can be upper boundedtogether:

I
(

W1,M1, Y
n−1
f ;Zn|M ′

2, Y
n−1, Zn−1

)

− I
(

W1,M1, Y
n−1
f ;Zn|Zn−1

)

(173)

=− I
(

Zn;M
′
2, Y

n−1|Zn−1
)

− h
(

Zn|W1,M1, Y
n−1
f ,M ′

2, Y
n−1, Zn−1

)

+ h
(

Zn|Zn−1,W1,M1, Y
n−1
f

)

(174)

≤− h
(

Zn|W1,M1, Y
n−1
f ,M ′

2, Y
n−1, Zn−1

)

+ h
(

Zn|Zn−1,W1,M1, Y
n−1
f

)

(175)

=− h
(

Zn|Xn, Xf,n,W1,M1, Y
n−1
f ,M ′

2, Y
n−1, Zn−1

)

+ h
(

Zn|Xn, Z
n−1,W1,M1, Y

n−1
f

)

(176)

≤− h
(

Zn|Xn, Xf,n,W1,M1, Y
n−1
f ,M ′

2, Y
n−1, Zn−1

)

+ h (Zn|Xn) (177)

=− h (Zn|Xn, Xf,n) + h (Zn|Xn) (178)

=I(Xf,n;Zn|Xn) (179)

In (176), we use the fact thatXn is a deterministic function of{W1,M1, Y
n−1
f }, andXf,n is a

deterministic function of{M ′
2, Y

n−1}. In (178), we use the fact that

Zn − {Xn, Xf,n} − {W1,M1, Y
n−1
f ,M ′

2, Y
n−1, Zn−1} (180)

is a Markov chain. This is due to the fact that the channel is memoryless and the encoding

functions (3) and (4) are causal.

Applying this result to (172), we find that that (171) is now upper bounded by:

I (Xn; Yn|Xf,n, Zn) + I(Xf,n; Yf,n, Zn|Xn) + I
(

W1,M1, Y
n−1
f ; Y n−1,M ′

2|Zn−1
)

(181)

Hence we have shown that

H(W1)− nε ≤ I
(

W1,M1, Y
n
f ; Y

n,M ′
2|Zn

)

≤ I (Xn; Yn|Xf,n, Zn) + I (Xf,n; Yf,n, Zn|Xn)

+ I
(

W1,M1, Y
n−1
f ; Y n−1,M ′

2|Zn−1
)

(182)

Applying this result repeatedly forn− 1, n− 2, ..., 1, we have

1

n
H(W1)− ε (183)

≤1

n

n
∑

i=1

(I(Xi; Yi|Xf,i, Zi) + I(Xf,i; Yf,i, Zi|Xi)) (184)
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Fig. 13. Two-way wiretap channel with a public noiseless forward link

Define Q as a random variable that is uniformly distributed over{1, 2, ..., n}. DefineX =

XQ, Y = YQ, Z = ZQ, Xf = Xf,Q, Yf = Yf,Q. Then the right hand side of (184) equals:

I(X ; Y |Z,Xf , Q) + I(Xf ; Yf , Z|X,Q) (185)

≤I (X ; Y |Z,Xf) + I(Xf ; Yf , Z|X) (186)

where we use the fact thatY −{Z,Xf , X}−Q is a Markov chain and{Yf , Z}−{X,Xf}−Q

is a Markov chain. Applying this result in (184) and letn→ ∞, we obtained the upper bound

in the theorem.

APPENDIX B

PROOF OFTHEOREM 2

Equation (47) follows from removing the eavesdropper and applying the bounds of two-way

channel from [1]. Equation (48) can be derived similarly thanks to the symmetry of the channel

model.

We next derive (49). We focus on the first term inside the minimum in (49). The second term

can be derived similarly thanks to the symmetry of the channel model.

First we add a public noiseless broadcast channel to the channel in Figure 1. The new channel

model is shown in Figure 13. The broadcast channel takes the input from Node1. Its outputs

are received by Node2 and the eavesdropper. Since the channel is noiseless, the outputs equal

the input, and is denoted byXC . XC is continuous. The introduction of the public noiseless

broadcast channel certainly does not decrease the secrecy capacity region. Hence, to upper bound

the secrecy capacity region of the original channel, we can consider this new model instead. We
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next apply Theorem 1 to this channel, which saysR1 is bounded by

I(X,XC ; Y,XC |Z,XC, Xf) + I(Xf ; Yf , Z,XC|X,XC) (187)

The first term in (187) is upper bounded by:

I (X,XC ; Y,XC |Z,XC, Xf) =I (X ; Y |Z,XC, Xf) (188)

=h (Y |Z,XC, Xf)− h (Y |Z,X,XC, Xf) (189)

≤h (Y |Z,Xf)− h (Y |Z,X,XC, Xf) (190)

=h (Y |Z,Xf)− h (Y |Z,X,Xf) (191)

=I (X ; Y |Z,Xf) (192)

In (191) we use the fact thatY − {Z,X,Xf} −XC is a Markov chain.

The second term is (187) is upper bounded by:

I (Xf ; Yf , Z,XC|X,XC) (193)

=I (Xf ; Yf , Z|X,XC) (194)

≤h (Yf , Z|X)− h (Yf , Z|X,Xf , XC) (195)

=h (Yf , Z|X)− h (Yf , Z|X,Xf) (196)

=I (Xf ; Yf , Z|X) (197)

In (196) we use the fact that{Yf , Z} − {X,Xf} −XC is a Markov chain.

Hence (187) is upper bounded by

I(X ; Y |Z,Xf) + I(Xf ; Yf , Z|X) (198)

This means introducing a public noiseless forward channel brings no change in the expression

of the upper bound ofR1.

We next prove (198) is also an upper bound onR1 + R2. This is done by showing ifR1 =

r1, R2 = r2 is achievable, thenR1 = r1 + r2 is also achievable.

Construct a message set{Wa} which has the same cardinality of the message set{W2}. Let

part of the secret message be transmitted viaWa. The remaining part of the secret message is

transmitted viaW1. The role ofW2 is to serve as a secret key. LetW2 be taken from the set

{W2} according to a uniform distribution.W2 is independent fromWa andW1.
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Let ⊕ be the modulus addition defined over{1, ... ‖W2‖}, where‖W2‖ is the cardinality of

the set{W2}. Recall thatŴ2 denote the result obtained by Node1 when it tries to decodeW2.

We let Node1 transmitŴ2 ⊕Wa over the public channel. Since the public channel is noiseless

with continuous input, it can transmit̂W2 ⊕ Wa with a single channel use. Because Node2

knowsW2, it can recoverWa from Ŵ2 ⊕Wa whenW2 = Ŵ2.

The signal available to the eavesdropper now becomes the output of the wiretap channel

Zn, and the output of the public link, which isWa ⊕ Ŵ2. Conditioned on these signals, the

equivocation ofW1,Wa can be computed as:

H
(

W1,Wa|Zn,Wa ⊕ Ŵ2

)

(199)

≥H
(

W1,Wa|Zn,Wa ⊕ Ŵ2,Wa ⊕W2

)

(200)

=H
(

W1,Wa,Wa ⊕ Ŵ2|Zn,Wa ⊕W2

)

−H
(

Wa ⊕ Ŵ2|Zn,Wa ⊕W2

)

(201)

=H (W1,Wa|Zn,Wa ⊕W2) +H
(

Wa ⊕ Ŵ2|W1,Wa, Z
n,Wa ⊕W2

)

−H
(

Wa ⊕ Ŵ2|Zn,Wa ⊕W2

)

(202)

≥H (W1,Wa|Zn,Wa ⊕W2)−H
(

Wa ⊕ Ŵ2|Zn,Wa ⊕W2

)

(203)

≥H (W1,Wa|Zn,Wa ⊕W2)−H
(

Wa ⊕ Ŵ2|Wa, Z
n,Wa ⊕W2

)

(204)

=H (W1,Wa|Zn,Wa ⊕W2)−H
(

Ŵ2|Wa, Z
n,W2

)

(205)

≥H (W1,Wa|Zn,Wa ⊕W2)−H
(

Ŵ2|W2

)

(206)

≥H (W1,Wa|Zn,Wa ⊕W2)− nε (207)

In (207) we use the fact thatW2 can be reliably decoded by Node1. Hence (207) follows from

Fano’s inequality.

The first term in (207) can be bounded as follows:

H (W1,Wa|Zn,Wa ⊕W2) (208)

=H (Wa|Zn,Wa ⊕W2) +H (W1|Zn,Wa,Wa ⊕W2) (209)

=H (Wa|Zn,Wa ⊕W2) +H (W1|Zn,Wa,W2) (210)

=H (Wa|Wa ⊕W2) +H (W1|Zn,Wa,W2) (211)

=H (Wa|Wa ⊕W2) +H (W1|Zn,W2) (212)
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=H (Wa) +H (W1|Zn,W2) (213)

≥H (Wa) +H (W1)− nε (214)

≥H (W1,Wa)− nε (215)

Equation (211) is due to the fact thatZn is independent fromWa,W2, which leads to:

I (Wa;Z
n|Wa ⊕W2) ≤ I (Wa,Wa ⊕W2;Z

n) = I (Wa,W2;Z
n) = 0 (216)

Equation (212) follows from the fact thatWa is independent fromZn,W1,W2. Equation (214)

follows from the fact that collective secrecy implies one message is secure even if the other

message is revealed to the eavesdropper [12].

The argument above shows the rate ofW1,Wa is the secrecy rateR1. SinceWa is chosen

from the message set{Wa} according to a uniform distribution, we haveR1 = r1 + r2.

ThereforeR1 +R2 is upper bounded by (198).

Hence we have proved the theorem.

APPENDIX C

PROOF OFTHEOREM 6

We proveR1 = R∗
1, R2 = 0 is achievable. The achievability ofR1 = 0, R2 = R∗

2 can be

proved similarly due to the symmetry of the channel model.

The communication is divided into two phases:

1) The first phase lastsn channel uses. During it, Node2 sends a keyK to Node1. At the

same time, Node1 performs cooperative jamming by transmitting an i.i.d. Gaussian noise

sequence with powerP .

2) The second phase lastsn̄ channel uses, during which Node1 encrypts the confidential

messageW with K, and sends the result back to Node2. At the same time, Node2

performs cooperative jamming by transmitting an i.i.d. Gaussian noise sequence with power

Pr.

Let α = n/(n+ n̄) be the time sharing factor of the first phase.0 ≤ α ≤ 1 andα is a constant.

The following notation is used in the remainder of the proof:x̄ denotes any signalx which is

related to the second phase. Otherwise, the signal is related to the first phase. With this notation,
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the signals received by the eavesdropper during the two phases are given by:

Zn =
√

h1X
n +

√

h2X
n
f +Nn

2 (217)

Z̄ n̄ =
√

h1X̄
n̄ +

√

h1X̄
n̄
f + N̄ n̄

2 (218)

The codebooks used by Node1 and2 are denoted byC1 andC2 respectively and are generated

in the following way:

C2 is composed of i.i.d. sequences sampled from the Gaussian distribution N (0, Pr). The

codebook is then randomly binned into several bins. The sizeof the codebook depends on the

number of bins needed to represent the keyK and the size of the bin necessary to confuse the

eavesdropper. Specifically, the size of the bin is chosen to be

2
⌊n(C

(

h2Pr
h1P+1

)

−ǫ)⌋
(219)

where⌊x⌋ denotes the largest integer smaller or equal tox, ǫ > 0 and limn→∞ ǫ = 0.

Let RK be the rate of the secret key. Then there are2nRK bins.RK is given by:

0 < RK =
1

n
H (K|C1, C2) < min







[

C (Pr)− C

(

h2Pr
h1P + 1

)]+

, C

(

h1P

h2Pr + 1

)







(220)

Observe that the key rate is chosen to be smaller than
[

C (Pr)− C
(

h2Pr

h1P+1

)]+
to keep the key

K secret from the eavesdropper. As will be shown later, the keyis used to compensate the rate

loss of the forward channel needed to confuse to eavesdropper. Hence, the rate of the key is

chosen not to exceed this rate loss, which leads to the termC
(

h1P
h2Pr+1

)

in (220).

C1 is composed of2nRK codebooks. Each codebook is composed of i.i.d. sequences sampled

from the Gaussian distributionN (0, P ), and is composed of2n̄C(P ) i.i.d. Gaussian sequences.

The sequences of each codebook are randomly binned into several bins. The size of each bin is

chosen to be:

2
⌊(n̄C

(

h1P

h2Pr+1

)

−nRK−n̄ǫ1)⌋
(221)

whereǫ1 > 0 and limn→∞ ǫ1 = 0.

During the first phase, Node2 generates a secret keyK according to a uniform distribution

over{1, ..., 2nRK} and selects the bin fromC2 according toK. Then it chooses a codeword from

this bin according to a uniform distribution and transmits it to Node1.
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Since Node1 is transmitting an i.i.d. Gaussian noise sequence during the first phase, the

channel model in this phase is equivalent to the Gaussian wiretap channel [29], which uses the

same codebook and encoding scheme as we do here. Reference [29] proves that, by doing so,

K is kept secret from the eavesdropper and can be reliably decoded by Node1. That is:

1

n
I (K;Zn|C1, C2) ≤ ε (222)

lim
n→∞

E[Pr(K̂ 6= K|C1, C2)] = 0 (223)

whereε ≥ 0, lim
n→∞

ε = 0.

Let K̂ be the estimate ofK Node1 decodes from its received signal. Node1 computes its

transmitted signals as follows: It first chooses the codebook according to the keŷK it decoded

from the first phase. Then, it chooses the bin from the codebook according to the secret message

W . Finally, it chooses the transmitted codeword from this binaccording to a uniform distribution.

If K̂ = K, then Node2 knows the sub-codebook used by Node1. The sub-codebook is

composed of i.i.d. Gaussian sequences and its rate is withinthe AWGN channel capacity between

Node1 and Node2. This observation, along with (223), leads to the followingfact:

lim
n̄→∞

E[Pr(Ŵ 6=W |C1, C2)] = 0 (224)

We next bound the equivocation

H
(

W |Zn, Z̄ n̄, C1, C2
)

(225)

It is understood thatC1, C2 is always on the condition term. Hence, we omit it in the sequel to

simplify the notation and reinstate it only when necessary.

The equivocation rate is then bounded as follows:

H
(

W |Zn, Z̄ n̄
)

=H
(

X̄ n̄,W |Zn, Z̄ n̄
)

−H
(

X̄ n̄|W,Zn, Z̄ n̄
)

(226)

≥H
(

X̄ n̄,W |Zn, Z̄ n̄
)

− n̄ε (227)

=H
(

W |Zn, Z̄ n̄, X̄ n̄
)

+H
(

X̄ n̄|Zn, Z̄ n̄
)

− n̄ε (228)

=H
(

X̄ n̄|Zn, Z̄ n̄
)

− n̄ε (229)

=H
(

X̄ n̄|Zn, Z̄ n̄
)

−H
(

X̄ n̄
)

+H
(

X̄ n̄
)

− n̄ε (230)
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=H
(

X̄ n̄
)

− I
(

X̄ n̄;Zn, Z̄ n̄
)

− n̄ε (231)

=H
(

X̄ n̄
)

− I
(

X̄ n̄; Z̄ n̄
)

− I
(

X̄ n̄;Zn|Z̄ n̄
)

− n̄ε (232)

Here (227) follows from the fact that givenW , the number of possiblēX n̄ equals the cardinality

of the bin that corresponds toW from all the2nRK codebooks, which is2
n̄(C

(

h1P

h2Pr+1

)

−ǫ1)
. Note

that these candidates of̄X n̄ form a Gaussian codebook by itself with a rate ofC
(

h1P
h2Pr+1

)

−
ǫ1. Since Node2 is transmitting i.i.d. Gaussian noise, the channel betweenNode 1 and the

eavesdropper is an AWGN channel whose capacity isC
(

h1P
h2Pr+1

)

. Therefore, givenW , the

eavesdropper can determinēX n̄ from Z̄ n̄ using joint typical decoding. (227) then follows by

applying Fano’s inequality.

Equation (229) follows sinceW is a deterministic function of̄X n̄.

The third term in (232) can then be bounded as follows:

I
(

X̄ n̄;Zn|Z̄ n̄
)

=h
(

Zn|Z̄ n̄
)

− h
(

Zn|Z̄ n̄, X̄ n̄
)

(233)

=h
(

Zn|Z̄ n̄
)

− h
(

Zn|X̄ n̄
f + N̄ n̄

2 , X̄
n̄
)

(234)

=h
(

Zn|Z̄ n̄
)

− h
(

Zn|X̄ n̄
)

(235)

≤h
(

Zn|Z̄ n̄
)

− h
(

Zn|X̄ n̄, K
)

(236)

=h
(

Zn|Z̄ n̄
)

− h (Zn|K) (237)

=h
(

Zn|Z̄ n̄
)

− h (Zn)− h (Zn|K) + h (Zn) (238)

=I (Zn;K)− I
(

Zn; Z̄ n̄
)

(239)

≤I (Zn;K) ≤ nε2 (240)

Equation (235) is becausēX n̄
f + N̄

n̄
2 is a sequence of i.i.d. Gaussian noise, which is independent

from Zn and X̄ n̄.

Equation (237) follows from the fact thatZn −K − X̄ n̄ is a Markov chain. Equation (240)

follows from (222).

Substituting (240) into (232), we have

H
(

W |Zn, Z̄ n̄
)

(241)

≥H
(

X̄ n̄
)

− I
(

X̄ n̄; Z̄ n̄
)

− (n̄ε+ nε2) (242)



44

The second term in (242) can be bounded as follows. For this purpose, we reinstate theC1, C2
on the condition term:

I
(

X̄ n̄; Z̄ n̄|C1, C2
)

(243)

≤h
(

Z̄ n̄
)

− h
(

Z̄ n̄|X̄ n̄, C1, C2
)

(244)

=h
(

Z̄ n̄
)

− h
(

Z̄ n̄|X̄ n̄, C1, C2
)

(245)

=h
(

Z̄ n̄
)

− h
(

Z̄ n̄|X̄ n̄
)

(246)

=I
(

X̄ n̄; Z̄ n̄
)

(247)

=n̄I
(

X̄ ; Z̄
)

(248)

Equation (246) follows from the fact that given̄X n̄, Z̄ n̄ only depends on the jamming signal and

channel noise. Therefore, we can drop codebooksC1, C2 from the conditioning term. Equation

(248) follows from the fact that Node2 transmits i.i.d. Gaussian noise during the second phase,

and the code book used by Node1 is composed of i.i.d. Gaussian sequences.

Since

I
(

X̄ ; Z̄
)

= C

(

h1P

h2Pr + 1

)

(249)

H
(

X̄ n̄|C1, C2
)

= nRK + n̄C (P ) (250)

we have

H
(

W |Zn, Z̄ n̄, C1, C2
)

(251)

= (nRK + n̄C (P ))− n̄C

(

h1P

h2Pr + 1

)

− (n̄ε+ nε2) (252)

≥H(W |C1, C2)− (n̄(ε+ ǫ1) + nε2) (253)

Therefore0 ≤ I(W ;Zn, Z̄ n̄|C1, C2) < (n̄(ε+ ǫ1) + nε2). This, along with (224), gives us:

lim
n,n̄→∞

1

n+ n̄
I(W ;Zn, Z̄ n̄|C1, C2) + E[Pr(Ŵ 6=W )|C1, C2] = 0 (254)

From the linearity of expectation and non-negativity of mutual information and probability, we

see that there must exists codebooksC1 = C∗
1 , C2 = C∗

2 such that both terms on the left hand side

of (254) go to0 asn, n̄ → ∞. This observation, along with that fact thatn + n̄ channel uses

are involved, proves that the secrecy rate pair(R∗
1, 0) is achievable.

Hence we have proved the theorem.
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APPENDIX D

PROOF OFTHEOREM 7

Since received signals are not used to compute transmittingsignals at Nodej, j = 1, 2, we

let α = 1 in Theorem 6. In this case, whenP = kPr, R∗
j becomes:

R∗
1 = C (P )− C

(

h1
h2k + 1/P

)

(255)

R∗
2 = C (kP )− C

(

h2k

h1 + 1/P

)

(256)

The sum rate bound given by Theorem 5 is upper bounded by:

min

{

C
(

P

h1P + 1

)

+ C ((h2 + 1) kP ) , C

(

kP

h2kP + 1

)

+ C ((h1 + 1)P )

}

(257)

To prove Theorem 7, it is sufficient to show bothR∗
1 andR∗

2 are within constant gaps of (257),

as we show below:

C
(

P

h1P + 1

)

+ C ((h2 + 1) kP )− R∗
1 (258)

=C
(

P

h1P + 1

)

+ C ((h2 + 1) kP )− C (P ) + C

(

h1
h2k + 1/P

)

(259)

≤C
(

P

h1P + 1

)

+ C ((h2 + 1) kP )− C (P ) + C

(

h1
h2k

)

(260)

≤C
(

1

h1

)

+ C ((h2 + 1) kP )− C (P ) + C

(

h1
h2k

)

(261)

=C
(

1

h1

)

+
1

2
log2

(

1 + (h2 + 1) kP

1 + P

)

+ C

(

h1
h2k

)

(262)

≤C
(

1

h1

)

+
1

2
log2

(

1 + max {1, (h2 + 1) k}P
1 + P

)

+ C

(

h1
h2k

)

(263)

≤C
(

1

h1

)

+
1

2
log2 (max {1, (h2 + 1) k}) + C

(

h1
h2k

)

(264)

For R∗
2, we have:

C
(

P

h1P + 1

)

+ C ((h2 + 1) kP )− R∗
2 (265)

=C
(

P

h1P + 1

)

+ C ((h2 + 1) kP )− C (kP ) + C

(

h2k

h1 + 1/P

)

(266)

≤C
(

P

h1P + 1

)

+ C ((h2 + 1) kP )− C (kP ) + C

(

h2k

h1

)

(267)
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≤C
(

1

h1

)

+ C ((h2 + 1) kP )− C (kP ) + C

(

h2k

h1

)

(268)

=C
(

1

h1

)

+
1

2
log2

(

1 + (h2 + 1) kP

1 + kP

)

+ C

(

h2k

h1

)

(269)

≤C
(

1

h1

)

+
1

2
log2 (h2 + 1) + C

(

h2k

h1

)

(270)

Hence we have proved the Theorem.

APPENDIX E

PROOF OFTHEOREM 8

To prove this theorem, we only need show that it is possible toachievable a secrecy rate for

Node1 that exceeds the upper bound given by Theorem 4. Consider thecase whenh1 = h2 = 1.

Then by evaluating (57) atσ2 = 0 andσ2 → ∞ with ρ = η = 0, we find the secrecy rateR1 is

bounded by

min{C(P ), C(Pr) + 0.5} (271)

whenYf is ignored by Node1. ChoosePr andP such that

C(Pr) + 0.5 < 0.4C(P ) (272)

For this power configuration, from (271), we observe thatR1 is upper bounded by0.4C(P ).

Let theα in Theorem 6 be0.5. R∗
1 then becomes:

0.5C (P )− 0.5
[

C
(

P

Pr + 1

)

− C (Pr) + C
(

Pr
P + 1

)]+

(273)

A sufficient condition forR∗
1 = 0.5C(P ) is that

C
(

P

Pr + 1

)

+ C
(

Pr
P + 1

)

> C (Pr) (274)

It can be verified that this condition is equivalent to
(

P
Pr+1

+ 1
)2

P + 1
> 1 (275)

A sufficient condition for it to hold is:
(

P
Pr+1

+ 1
)2

(√
P + 1

)2 > 1 (276)
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which means
√
P > Pr + 1 (277)

ChoosePr = P 1/4. For sufficiently largeP , both (272) and (277) can be fulfilled. In this case,

the achievable rate is0.5C(P ), which is greater than the upper bound0.4C(P ). The difference

is 0.1C(P ), which is not a bounded function ofP . Hence we have proved the theorem.

APPENDIX F

PROOF OFTHEOREM 12

The upper boundI(X ; Y ) follows from removing the eavesdropper and applying the upper

bound for two-way channel from [1]. Hence we only need to prove the second term inside the

minimum.

Let ε = ε4 + ε5, whereε4, ε5 were defined in (111) and (112). Then we have:

H (W )− nε (278)

≤H (W |Zn)−H
(

W |Zn, Xn
f , Y

n,M2

)

(279)

=I
(

W ;M2, X
n
f , Y

n|Zn
)

(280)

=I
(

W ;Xn
f |Zn, Y n,M2

)

+ I (W ;M2, Y
n|Zn) (281)

=I (W ;M2, Y
n|Zn) (282)

≤I
(

W,M1, Y
n
f ;M2, Y

n|Zn
)

(283)

=I
(

W,M1, Y
n
f ;M2, Y

n, Zn
)

− I
(

W,M1, Y
n
f ;Z

n
)

(284)

In (279) we use (111) and (112). In (282) we use the fact thatXn
f is a deterministic function

of Y n−1 andM2, as shown in (110).

For the first term in (284), we have:

I
(

W,M1, Y
n
f ;M2, Y

n, Zn
)

(285)

=I
(

W,M1, Y
n
f ; Yn|Zn,M2, Y

n−1, Zn−1
)

+ I
(

W,M1, Y
n
f ;Zn|M2, Y

n−1, Zn−1
)

+ I
(

W,M1, Y
n
f ; Y

n−1, Zn−1,M2

)

(286)

For the first term in (286), we have:

I
(

W,M1, Y
n
f ; Yn|Zn,M2, Y

n−1, Zn−1
)

(287)
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≤h (Yn|Zn)− h
(

Yn|M2, Y
n−1, Zn,W,M1, Y

n
f

)

(288)

=h (Yn|Zn)− h
(

Yn|Xn,M2, Y
n−1, Zn,W,M1, Y

n
f

)

(289)

=h (Yn|Zn)− h (Yn|Xn, Zn) (290)

=I (Xn; Yn|Zn) (291)

In (289), we use the fact thatXn is a deterministic function ofW,M1, Y
n
f . In (290), we use the

fact thatYn − {Xn, Zn} − {M2, Y
n−1, Zn−1,W,M1, Y

n
f }, since the channel is memoryless and

encoding functions are causal.

Applying this result, we find that (284) is upper bounded by

I (Xn; Yn|Zn) + I
(

W,M1, Y
n
f ;Zn|M2, Y

n−1, Zn−1
)

+ I
(

W,M1, Y
n
f ; Y

n−1, Zn−1,M2

)

− I
(

W,M1, Y
n
f ;Z

n
)

(292)

=I (Xn; Yn|Zn) + I
(

W,M1, Y
n
f ;Zn|M2, Y

n−1, Zn−1
)

+ I
(

W,M1, Y
n
f ; Y

n−1, Zn−1,M2

)

− I
(

W,M1, Y
n
f ;Z

n−1
)

− I
(

W,M1, Y
n
f ;Zn|Zn−1

)

(293)

We next bound the second term and the last term in (293) together, as shown below:

I
(

W,M1, Y
n
f ;Zn|M2, Y

n−1, Zn−1
)

− I
(

W,M1, Y
n
f ;Zn|Zn−1

)

(294)

=h
(

Zn|M2, Y
n−1, Zn−1

)

− h
(

Zn|W,M1, Y
n
f ,M2, Y

n−1, Zn−1
)

− h
(

Zn|Zn−1
)

+ h
(

Zn|Zn−1,W,M1, Y
n
f

)

(295)

=− I
(

Zn;M2, Y
n−1|Zn−1

)

− h
(

Zn|W,M1, Y
n
f ,M2, Y

n−1, Zn−1
)

+ h
(

Zn|Zn−1,W,M1, Y
n
f

)

(296)

≤− h
(

Zn|W,M1, Y
n
f ,M2, Y

n−1, Zn−1
)

+ h
(

Zn|Zn−1,W,M1, Y
n
f

)

(297)

=− h
(

Zn|Xn,W,M1, Y
n
f ,M2, Y

n−1, Zn−1
)

+ h
(

Zn|Xn, Z
n−1,W,M1, Y

n
f

)

(298)

=− h (Zn|Xn) + h (Zn|Xn) (299)

=0 (300)

In (298), we use the fact thatXn is a deterministic function ofW,M1, Y
n
f . In (299), we use

the fact thatZn − Xn − {W,M1, Y
n
f ,M2, Y

n−1, Zn−1} is a Markov chain andZn − Xn −
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{Zn−1,W,M1, Y
n
f } is a Markov chain. Both are a consequence of the fact that the channel is

memoryless and the encoding functions (109) and (110) are causal.

Applying this result to (293), we find it is upper bounded by:

I (Xn; Yn|Zn) + I
(

W,M1, Y
n
f ; Y

n−1, Zn−1,M2

)

− I
(

W,M1, Y
n
f ;Z

n−1
)

(301)

The second term in (301) can be combined with the last term in (301) and expressed as:

I
(

W,M1, Y
n
f ; Y

n−1,M2|Zn−1
)

(302)

=I
(

W,M1, Y
n−1
f ; Y n−1,M2|Zn−1

)

+ I
(

Yf,n; Y
n−1,M2|W,M1, Y

n−1
f , Zn−1

)

(303)

The last term in (303) can be upper bounded as:

I
(

Yf,n; Y
n−1,M2|W,M1, Y

n−1
f , Zn−1

)

(304)

≤h (Yf,n)− h
(

Yf,n|W,M1, Y
n−1
f , Zn−1, Y n−1,M2

)

(305)

=h (Yf,n)− h
(

Yf,n|Xf,n,W,M1, Y
n−1
f , Zn−1, Y n−1,M2

)

(306)

=h (Yf,n)− h (Yf,n|Xf,n) (307)

=I (Xf,n; Yf,n) (308)

In (306), we use the fact thatXf,n is a deterministic function ofY n−1,M2. (307) follows because

Yf,n −Xf,n − {W,M1, Y
n−1
f , Zn−1, Y n−1,M2} is a Markov chain.

Applying this result to (301), we find (301) can be upper bounded as:

I (Xn; Yn|Zn) + I (Xf,n; Yf,n) + I
(

W,M1, Y
n−1
f ; Y n−1,M2|Zn−1

)

(309)

Hence we have shown

H(W )− nε ≤ I
(

W,M1, Y
n
f ; Y

n,M2|Zn
)

≤ I (Xn; Yn|Zn) + I (Xf,n; Yf,n) + I
(

W,M1, Y
n−1
f ; Y n−1,M2|Zn−1

)

(310)

Applying this result repeatedly forn− 1, n− 2, ..., 1, we have

1

n
H(W )− ε ≤ 1

n

n
∑

i=1

(I(Xi; Yi|Zi) + I(Xf,i; Yf,i)) (311)

Let us defineQ as a random variable that is uniformly distributed over{1, 2, ..., n}. Further,

defineX = XQ, Y = YQ, Z = ZQ, Xf = Xf,Q, Yf = Yf,Q. Then, the right hand side of (311)

can be expressed as

I(X ; Y |Z,Q) + I(Xf ; Yf |Q) (312)
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≤h (Y |Z)− h (Y |X,Z,Q) + h (Yf)− h (Yf |Xf , Q) (313)

=h (Y |Z)− h (Y |X,Z) + h (Yf)− h (Yf |Xf) (314)

=I (X ; Y |Z) + I (Xf ; Yf) (315)

Applying this result in (303) and lettingn→ ∞, we obtain the upper bound in the theorem.
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