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Abstract

In this paper, we study the effect of feedback on the two-user MIMO interference channel. The capacity

region of the MIMO interference channel with feedback is characterized within a constant number of bits, where

this constant is independent of the channel matrices. Further, it is shown that the capacity region of the MIMO

interference channel with feedback and its reciprocal interference channel are within a constant number of bits.

Finally, the generalized degrees of freedom region for the MIMO interference channel with feedback is characterized.
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I. INTRODUCTION

Wireless networks with multiple users are interference-limited rather than noise-limited. The interference

channel (IC) is a good starting point for understanding the performance limits of the interference limited

communications [1]–[7]. Feedback can be employed in the ICs to achieve an improvement in the data

rates [8]–[13]. However, most of the existing works on the ICs with feedback are limited to discrete

memoryless channels, or the single-input single-output (SISO) channels. This paper analyzes the multiple-

input multiple-output (MIMO) Gaussian IC with feedback.

In this paper, we consider the two-user MIMO IC with perfect channel state knowledge at the transmit-

ters and receivers. In large wireless networks, having global knowledge of the channel state is infeasible

and thus the authors of [14] found a saturation effect in the system capacity. In this paper, we assume

that all the nodes know the channel state information of all the links to find the impact of feedback to

the transmitters, which is a fundamental question on its own. While the overhead of gathering global

channel state information must not be neglected, it has been repeatedly shown (cf. [15], [16]) that this

overhead is manageable in the presence of a reduced number of users. This overhead increases as the

number of users increases, and thus some authors have considered knowledge of channel state in a local

neighborhood [17], [18]. With the local network connectivity and channel state information, sub-networks

can be scheduled where each sub-network is operated using an information-theoretic optimal scheme

[19], [20]. Thus, even with the knowledge of the local channel state information, understanding of small

networks can help improve throughput of large networks.

Finding a capacity achieving scheme for an IC with more than two users is an open problem, and

assumptions like treating interference as noise have been used [14], [21], [22]. An approximate capacity

region for the two-user SISO IC was given in [1], which has been further extended to the MIMO IC

in [4]. Even an approximate capacity region is an open problem beyond two-user IC, although capacity

regions have been found in some special cases like double-Z [23], one-to-many [24], many-to-one [24],

and cyclic [25] ICs. In the presence of feedback, an approximate capacity region for the two-user SISO IC

was recently given in [8], where the capacity region is characterized within two bits. It was shown that the

capacity regions of Gaussian ICs increase unboundedly with feedback unlike the Gaussian multiple-access

channel where the gains are bounded [26]. The degrees of freedom for a symmetric SISO Gaussian IC

with feedback is also found in [8]. In this paper, we find an outer bound and an inner bound for the

capacity region that differ by a constant number of bits, and also evaluate the generalized degrees of
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freedom (GDoF) region for a general MIMO IC with feedback.

The first main result of the paper is the characterization of the capacity region of a MIMO IC with

feedback within N1 + N2 + max(N1, N2) bits, where N1 and N2 are the numbers of receive antennas

at the two receivers. An outer-bound is obtained by first outer bounding the covariance matrices of both

input signals and representing the outer bound as a region in terms of the covariance matrix between the

two input signals. This is further outer-bounded by a larger region that does not involve the covariance

matrix. The achievability strategy is based on block Markov encoding, backward decoding, and Han-

Kobayashi message-splitting. This achievable rate and the outer bound are within N1 +N2 +max(N1, N2)

bits of each other thus characterizing the capacity region of the two-user IC within constant number of

bits where the constant is independent of the channel matrices. The achievability scheme that is used to

prove the constant gap result assumes that the transmitted signals from the two transmitters in a time-slot

are uncorrelated, unlike [8] where the signals were assumed correlated in the achievability. Thus, our

achievable rate region is within 3 bits rather than 2 bits as in [8] of the capacity region of a SISO IC with

feedback. An achievability scheme without correlated inputs was also shown to achieve within constant

gap of the capacity region in [12] for a SISO IC with feedback. However, our gap between the inner and

the outer bounds is smaller as compared to [12].

We note that the achievability strategies for a SISO IC in [8], [12] emphasize that the private part from

a transmitter using the Han-Kobayashi message splitting is such that it is received at the other receiver

at the noise floor. However for a MIMO IC with feedback, it is not clear what its counterpart would be.

The Han-Kobayashi message splitting used in this paper gives the notion of receiving the signal at the

noise floor for a MIMO IC with feedback. Many matrix based results are derived in this paper to show a

constant gap between the outer and the inner bounds of the capacity region of a MIMO IC with feedback,

which may be of independent interest.

The second main result of the paper is to show that the capacity region of a MIMO IC with feedback

and that of its corresponding reciprocal channel are within constant number of bits of each other, where

the constant is independent of channel matrices. The reciprocal IC was considered in [4], where the

authors showed that the capacity region of a MIMO IC without feedback is within constant number of

bits of its corresponding reciprocal IC. This paper shows that the constant gap between a MIMO IC and

its reciprocal channel also holds in the presence of feedback.

Most developments on the IC take place in the high-power regime, and the GDoF region characterizes
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the capacity region in the limit of high-power. Thus, we further extend our results to high power regime

to get more understanding on the improvement in the capacity region with feedback. The GDoF region

has been characterized in the symmetric case without feedback [27] and with feedback [28] for a K-user

SISO IC. For a general MIMO IC without feedback, the GDoF region is found for a two-user IC in [5].

The third main result of the paper is a complete characterization of the GDoF region of a general MIMO

IC with feedback when the average signal quality of each link, say ρij for link from transmitter i to receiver

j, varies with a base signal-to-noise ratio (SNR) parameter, say SNR, as limSNR→∞
log ρij
log SNR

= αij , where

αij can be different for each link with i, j ∈ {1, 2}. In other words, the average link quality of each link

can potentially have different exponents of a base SNR. As a special case, we consider a symmetric IC

where the number of antennas at both transmitters is the same, the number of antennas at both receivers

is the same, and the SNRs for the direct links and the cross links are SNR and SNRα, α ≥ 0, respectively.

We find the GDoF (the maximum symmetric point in the GDoF region) for a given α and show that the

GDoF is a “V”-curve rather than a “W”-curve corresponding to the GDoF without feedback as in [5].

Similar result was obtained for a SISO IC in [8] while this paper extends it to a MIMO system.

The remainder of the paper is organized as follows. Section II introduces the model for a MIMO IC

with feedback, reciprocal IC and the GDoF region. Sections III and IV describe our results on the capacity

region and the GDoF region respectively. Section V concludes the paper. The detailed proofs of various

results are given in Appendices A-E.

II. CHANNEL MODEL AND PRELIMINARIES

In this section, we describe the channel model considered in this paper. A two-user MIMO IC consists

of two transmitters and two receivers. Transmitter i is labeled as Ti and receiver j is labeled as Dj for

i, j ∈ {1, 2}. Further, we assume Ti has Mi antennas and Di has Ni antennas, i ∈ {1, 2}. Henceforth,

such a MIMO IC will be referred to as the (M1, N1,M2, N2) MIMO IC. We assume that the channel

matrix between transmitter Ti and receiver Dj is denoted by Hij ∈ CNj×Mi , for i, j ∈ {1, 2}. We shall

consider a time-invariant or fixed channel where the channel matrices remain fixed for the entire duration of

communication. At each discrete time instance, indexed by t = 1, 2, · · · , transmitter Ti transmits a vector

Xi[t] ∈ CMi×1 over the channel with a power constraint tr(E(XiX
†
i )) ≤ 1 (A† denotes the conjugate

transpose of the matrix A).

Let Qij = E(XiX
†
j ) for i, j ∈ {1, 2}. We say A � B if B − A is a positive semi-definite (p.s.d.)

matrix and we say A � B if B � A. The identity matrix of size s × s is denoted by Is. Further, we



5

define x+ , max{x, 0}. We also note that 0 � Qii � I according to Theorem 7.7.3. of [29] since

tr(E(XiX
†
i )) ≤ 1. By definition of Qij , we see that Qij = Q†ji. Moreover, we have 0 � QijQ

†
ij � I ,

where 0 � QijQ
†
ij results from the fact that every matrix in the form of AA† is p.s.d. and QijQ

†
ij � I

results from tr(QijQij
†) = tr(Qii)tr(Qjj) ≤ 1 which gives QijQij

† � I with a similar argument as we

had for Qii. We will sometimes denote Q = Q12 when it does not lead to confusion.

We also incorporate a non-negative power attenuation factor, denoted as ρij , for the signal transmitted

from Ti to Dj . The received signal at receiver Di at discrete time instance t is denoted as Yi[t] for

i ∈ {1, 2}, and can be written as

Y1[t] =
√
ρ11H11X1[t] +

√
ρ21H21X2[t] + Z1[t], (1)

Y2[t] =
√
ρ12H12X1[t] +

√
ρ22H22X2[t] + Z2[t], (2)

where Zi[t] ∈ CNi×1 is independent and identically distributed (i.i.d.) CN(0, INi
) (complex Gaussian noise),

ρii is the received SNR at Di and ρij is the received interference-to-noise-ratio at Dj for i, j ∈ {1, 2}, i 6= j.

A MIMO IC is fully described by three parameters. The first is the number of antennas at each transmitter

and receiver, namely (M1, N1,M2, N2). The second is the set of channel gains, H = {H11, H12, H21, H22}.

The third is the set of average link qualities of all the channels, ρ = {ρ11, ρ12, ρ21, ρ22}. We assume that

these parameters are known to all transmitters and receivers.

For MIMO IC with feedback, the transmitted signal Xi[t] at Ti is a function of the message Wi and

the previous channel outputs at Di for i ∈ {1, 2}. Thus, the encoding functions of the two transmitters

are given as

Xi[t] = fit(Wi, Y
t−1
i ), i ∈ {1, 2}, (3)

where fit is the encoding function of Ti, Wi is the message of Ti and Y t−1
i = (Yi[1], ..., Yi[t−1]). Similarly,

we denote X t
i = (Xi[1], ..., Xi[t]). Let us assume that Ti transmits information at a rate of Ri to Di using

the codebook Ci,n of length-n codewords with |Ci,n| = 2nRi . Given a message mi ∈ {1, . . . , 2nRi}, the

corresponding codeword Xn
i ∈ Ci,n satisfies the power constraint mentioned before. From the received

signal Y n
i , the receiver obtains an estimate m̂i of the transmitted message mi using a decoding function.

Let the average probability of error be denoted by ei,n = Pr( m̂i 6= mi).

A rate pair (R1, R2) is achievable if there exists a family of codebooks Ci,n and decoding functions

such that maxi{ei,n} goes to zero as the block length n goes to infinity. The capacity region C(H, ρ) of
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the IC with parameters H and ρ is defined as the closure of the set of all achievable rate pairs.

Consider a two-dimensional rate region C. Then, the region C ⊕ ([0, a] × [0, b]) denotes the region

formed by {(R1, R2) : R1, R2 ≥ 0, ((R1 − a)+, (R2 − b)+) ∈ C} for some a, b ≥ 0. Similarly, the region

C	 ([0, a]× [0, b]) denotes the region formed by {(R1, R2) : R1, R2 ≥ 0, ((R1 +a)+, (R2 + b)+) ∈ C} for

some a, b ≥ 0. Further, we define the notion of an achievable rate region that is within a constant number

of bits of the capacity region as follows.

Definition 1. An achievable rate region A(H, ρ) is said to be within b bits of the capacity region if

A(H, ρ) ⊆ C(H, ρ) and A(H, ρ)⊕ ([0, b]⊕ [0, b]) ⊇ C(H, ρ).

In this paper, we will use the GDoF region to characterize the capacity region of the MIMO IC with

feedback in the limit of high SNR. This notion generalizes the conventional degrees of freedom (DoF)

region metric by additionally emphasizing the signal level as a signaling dimension. It characterizes the

simultaneously accessible fractions of spatial and signal-level dimensions (per channel use) by the two

users when all the average channel coefficients vary as exponents of a nominal SNR parameter. Thus, we

assume that

lim
log SNR→∞

log ρij
log SNR

= αij, (4)

where αij ∈ R+ for all i, j ∈ {1, 2}. In the limit of high SNR, the capacity region diverges.

The GDoF region is defined as the region formed by the set of all (d1, d2) such that (d1 log SNR −

o(log SNR), d2 log SNR− o(log SNR))1 is inside the capacity region. Thus, the GDoF is a function of link

quality scaling exponents αij . We note that since the channel matrices are of full ranks with probability

1, we will have the GDoF with probability 1 over the randomness of channel matrices.

The property of maintaining the same performance even if the direction of information flow is reversed

is known as the reciprocity of the channel. For a MIMO IC with parameters (M1, N1,M2, N2), H =

{H11, H12, H21, H22}, and ρ = {ρ11, ρ12, ρ21, ρ22}, the reciprocal MIMO IC has parameters (N1,M1, N2,M2),

H
R

= {HT
11, H

T
21, H

T
12, H

T
22}, and ρR = {ρ11, ρ21, ρ12, ρ22}.

III. CAPACITY REGION OF MIMO IC WITH FEEDBACK

In this section, we will describe our results on the capacity region of the two-user MIMO IC with

feedback.
1a = o(log SNR) indicates that limSNR→∞

a
log SNR

= 0.



7

Our first result gives an outer bound on the capacity region of the two-user MIMO IC with feedback.

Let Ro(Q) be the region formed by (R1, R2) satisfying the following constraints for some covariance

matrix Q = E[X1X
†
2]:

R1 ≤ log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21 +
√
ρ11ρ21H11QH

†
21 +
√
ρ11ρ21H21Q

†H†11), (5)

R2 ≤ log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12 +
√
ρ22ρ12H22Q

†H†12 +
√
ρ22ρ12H12QH

†
22), (6)

R1 ≤ log det
(
IN2 + ρ12H12H

†
12 − ρ12H12QQ

†H†12

)
+ log det

(
IN1 + ρ11H11H

†
11 −

[ √
ρ11ρ12H11H

†
12

√
ρ11H11Q

] IN2 + ρ12H12H
†
12

√
ρ12H12Q

√
ρ12Q

†H†12 IM2

−1
 √ρ11ρ12H12H

†
11

√
ρ11Q

†H†11

), (7)

R2 ≤ log det
(
IN1 + ρ21H21H

†
21 − ρ21H21Q

†QH†21

)
+ log det

(
IN2 + ρ22H22H

†
22 −

[ √
ρ22ρ21H22H

†
21

√
ρ22H22Q

†
] IN1 + ρ21H21H

†
21

√
ρ21H21Q

†

√
ρ21QH

†
21 IM1

−1
 √ρ22ρ21H21H

†
22

√
ρ22QH

†
22

), (8)

R1 +R2 ≤ log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12 +
√
ρ22ρ12H22Q

†H†12 +
√
ρ22ρ12H12QH

†
22

)
+ log det

(
IN1 + ρ11H11H

†
11 −

[ √
ρ11ρ12H11H

†
12

√
ρ11H11Q

]
 IN2 + ρ12H12H

†
12

√
ρ12H12Q

√
ρ12Q

†H†12 IM2

−1  √ρ11ρ12H12H
†
11

√
ρ11Q

†H†11

), (9)

R1 +R2 ≤ log det
(
IN1 + ρ11H11H

†
11 + ρ21H21H

†
21 +
√
ρ11ρ21H11QH

†
21 +
√
ρ11ρ21H21Q

†H†11

)
+ log det

(
IN2 + ρ22H22H

†
22 −

[ √
ρ22ρ21H22H

†
21

√
ρ22H22Q

†
]

 IN1 + ρ21H21H
†
21

√
ρ21H21Q

†

√
ρ21QH

†
21 IM1

−1  √ρ22ρ21H21H
†
22

√
ρ22QH

†
22

). (10)

Further, let Ro be the convex hull of Ro(Q) for all covariance matrices Q. The following theorem outer
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bounds the capacity region of the two-user MIMO IC with feedback.

Theorem 1. The capacity region of the two-user MIMO IC with perfect feedback CFB is bounded from

above as follows

CFB ⊆ Ro. (11)

Proof: The proof is given in Appendix A.

From the definition of Ro(Q), by substituting Q = 0 and after some simplifications, we get that Ro(0)

is the region formed by (R1, R2) satisfying the following

R1 ≤ log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21), (12)

R2 ≤ log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12), (13)

R1 ≤ log det
(
IN2 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11H

†
11 −

√
ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1√ρ11ρ12H12H

†
11), (14)

R2 ≤ log det
(
IN1 + ρ21H21H

†
21

)
+ log det(IN2 + ρ22H22H

†
22 −

√
ρ22ρ21H22H

†
21(IN1 + ρ21H21H

†
21)
−1√ρ22ρ21H21H

†
22), (15)

R1 +R2 ≤ log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11H

†
11 −

√
ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1√ρ11ρ12H12H

†
11), (16)

R1 +R2 ≤ log det
(
IN1 + ρ11H11H

†
11 + ρ21H21H

†
21

)
+ log det(IN2 + ρ22H22H

†
22 −

√
ρ22ρ21H22H

†
21(IN1 + ρ21H21H

†
21)
−1√ρ22ρ21H21H

†
22). (17)

The following result gives an inner bound to the capacity region of the two-user MIMO IC with

feedback.

Theorem 2. The capacity region for the two-user MIMO IC with perfect feedback CFB is bounded from

below as

CFB ⊇ Ro(0)	 ([0, N1 +N2]× [0, N1 +N2]). (18)

Proof: The proof is provided in Appendix B.
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The inner bound uses the achievable region for a two-user discrete memoryless IC with feedback as in

[8]. The achievability scheme employs block Markov encoding, backward decoding, and Han-Kobayashi

message-splitting. This result for a discrete memoryless channel is extended to MIMO IC with feedback

using a specific message splitting by power allocation. The transmitted signal Xi from Ti is given as

Xi = Xip +Xiu, (19)

where Xip and Xiu denote the private and public messages of Ti, respectively. We assume that Xip and

Xiu are independent for i = 1, 2. However, these transmitted signals are correlated over time due to block

Markov encoding. The private signal Xip is chosen to be Xip ∼ CN
(
0, KXip

)
, and the public signal Xiu

is chosen to be Xiu ∼ CN (0, KXiu
), where

KXip
= IMi

−√ρijH†ij(INj
+ ρijHijH

†
ij)
−1√ρijHij, (20)

and

KXiu
= IMi

−KXip
, (21)

for i ∈ {1, 2}.

We will show in Appendix B that the power allocation is feasible by showing KXip
� 0 and KXiu

� 0.

Further, this message split is such that the private signal is received at the other receiver with power

bounded by a constant. More specifically we have ρijHijKXip
H†ij � INj

, thus showing that the effective

received signal covariance matrix at Dj corresponding to the private signal from Ti is at or below the

noise floor.

This power allocation is different from that given in [8] even for a SISO channel. Note that the power

split levels in the achievability scheme of [8] do not sum to 1 and thus do not satisfy the total power

constraint. For the special case of SISO IC with feedback, the above gives a fix to the results in [8]. This

power allocation assumes uncorrelated signals transmitted by the two users at each time-slot. The authors

of [12] also used uncorrelated signals for SISO but had a larger gap between the inner and outer bounds

for SISO IC with feedback than that achieved by our achievability strategy.

Having considered the inner and outer bounds for the capacity region of the two-user IC with feedback,

the next result shows that the inner bound and the outer bound are within N1 + N2 + max(N1, N2) bits

thus finding the capacity region of the two-user IC with feedback, approximately.
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Theorem 3. The capacity region for the two-user MIMO IC with perfect feedback CFB is bounded from

above and below as

Ro(0)	 ([0, N1 +N2]× [0, N1 +N2]) ⊆ CFB ⊆ Ro(0)⊕ ([0, N1]× [0, N2]), (22)

where the inner and outer bounds are within N1 +N2 + max (N1, N2) bits.

Proof: The inner bound follows from Theorem 2. For outer bound, we outer-bound the region Ro(Q)

asRo(Q) ⊆ Ro(0)⊕([0, N1]×[0, N2]) in Appendix C. Hence,Ro ⊆ Ro(0)⊕([0, N1]×[0, N2]). Thus, using

Q = 0 in Ro(Q) gives an approximate capacity region with the approximation gap as in the statement of

the theorem.

The authors of [8] found the capacity region for the SISO IC with feedback within 2 bits. The above

theorem generalizes the result to find the capacity region of MIMO IC with feedback within N1 +N2 +

max(N1, N2) bits. Note that the approximate capacity region without feedback in [4] involves bounds on

2R1 +R2 which do not appear in our approximate capacity region with feedback. In addition, in [8], the

approximate capacity region for the SISO IC with feedback involves the covariance matrix of the inputs

in the inner and outer bounds, whereas our approximate capacity region for the MIMO IC with feedback

does not.

Figure 1 gives a pictorial representation for the result of Theorem 3. The inner and the outer bounds

for the capacity region for MIMO IC with feedback are within a constant number of bits from the region

Ro(0) and thus the inner and outer bound regions are within a constant number of bits of each other.

 

 inner bound
R

o
(0)

outer bound

R
1

N
1

N
1
+N

2

N
1
+N

2
N

2

R
2

B

A

Fig. 1. Inner and outer bounds for the capacity region of MIMO IC with feedback are within a constant number of bits. The arrows from
the corners A and B in Ro(0) toward their respective corners on outer bound have vertical length of N1 and horizontal length of N2.
The arrows from the corners A and B in Ro(0) toward their respective corners on inner bound have the vertical and horizontal length of
N1 +N2 each.
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Fig. 2. Inner and outer bounds for the capacity region of MIMO IC with feedback and without feedback.

In Figure 2, we see the improvement in the capacity region for a MIMO IC with feedback. The

parameters chosen for the IC are M1 = 5, M2 = 4, N1 = 6, N2 = 3, ρ11 = ρ22 = 104, ρ12 = ρ21 = 108,

H11 =



0.30 0.19 0.10 0.68 0.65

0.30 0.44 0.38 0.60 0.94

0.35 0.65 0.98 0.58 0.65

0.56 0.14 0.82 0.92 0.72

0.28 0.42 0.19 0.39 0.28

0.46 0.89 0.49 0.20 0.72


, H22 =


0.97 0.67 0.67 0.65

0.60 0.94 0.51 0.53

0.44 0.67 0.50 0.36

 ,

H21 =



0.89 0.95 0.41 0.69

0.81 0.59 0.65 0.98

0.61 0.44 0.60 0.37

0.82 0.16 0.83 0.72

0.10 0.82 0.92 0.28

0.87 0.43 0.91 0.21


, and H12 =


0.11 0.71 0.61 0.31 0.30

0.61 0.23 0.61 0.44 0.31

0.48 0.71 0.27 0.61 0.61

 . (23)

The inner and outer bounds without feedback are taken from [4]. We note that the inner bound with

feedback contains the outer bound without feedback.

Having characterized the approximate capacity region for the MIMO IC with feedback, we next explore

the relation of capacity region of the MIMO IC with feedback with that of the corresponding reciprocal

MIMO IC with feedback. The next theorem shows that the capacity region of the MIMO IC with feedback



12

is approximately the same as that of its corresponding reciprocal channel with feedback.

Theorem 4. The capacity region for the two-user MIMO IC with feedback CFB and the capacity region

for its corresponding reciprocal IC with feedback, CR
FB, are within constant gaps from each other. More

precisely, the following expressions holds:

Ro(0)	 ([0, N1 +N2]× [0, N1 +N2]) ⊆ CFB ⊆ Ro(0)⊕ ([0, N1]× [0, N2]), (24)

Ro(0)	 ([0,M1 +M2]× [0,M1 +M2]) ⊆ CR
FB ⊆ Ro(0)⊕ ([0,M1]× [0,M2]). (25)

Then, we get

CR
FB 	 ([0, N1 +N2 +M1]× [0, N1 +N2 +M2]) ⊆ CFB ⊆

CR
FB ⊕ ([0,M1 +M2 +N1]× [0,M1 +M2 +N2]), (26)

CFB 	 ([0,M1 +M2 +N1]× [0,M1 +M2 +N2]) ⊆ CR
FB ⊆

CFB ⊕ ([0, N1 +N2 +M1]× [0, N1 +N2 +M2]). (27)

Proof: In Appendix D, we show that the region Ro(0) for the MIMO IC is the same as the

corresponding region RR
o (0) for the corresponding reciprocal MIMO IC. Thus, (24)-(25) follow from

Theorem 3. Moreover, (26)-(27) follow from simple manipulations on (24)-(25).

20 40 60 80 100 120
0

20

40

60

80

 

 Outer Bound of C(H,ρ)
Inner Bound of C(H,ρ)

Outer Bound of CR(H,ρ)

Inner Bound of CR(H,ρ)

R
2

R
1

Fig. 3. Inner and outer bounds for the capacity region of MIMO IC with feedback specified in (23) and inner and outer bounds for its
reciprocal channel.

Thus, we see that the capacity region of a two-user MIMO IC with feedback and the corresponding
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reciprocal channel with feedback are within N1 +N2 +M1 +M2 + max (N1 +M1, N2 +M2) bits.

In Figure 3, we compare the inner and outer bounds for the capacity region of the MIMO IC with

feedback specified in (23), and inner and outer bounds for its reciprocal channel. For this figure, the

parameters for the IC are the same as those used for Figure 2. We note that the capacity region of the

MIMO IC with feedback and that of its reciprocal channel with feedback are within a constant gap.

IV. GDOF REGION OF MIMO IC WITH FEEDBACK

This section describes our results on the GDoF region of the two-user MIMO IC with feedback. The

GDoF gives the high SNR characterization of the capacity region. Since the inner and outer-bounds on

the capacity region are within a constant gap, we characterize the exact GDoF region of the MIMO IC

with feedback.

Define

f(u, (a1, u1) , (a2, u2)) ,


min (u, u1)a

+
1 + min ((u− u1)+, u2)a+2 , if a1 ≥ a2

min (u, u2)a
+
2 + min ((u− u2)+, u1)a+1 , otherwise

. (28)

The following result characterizes the GDoF for general MIMO IC with feedback for general power

scaling parameters αij .

Theorem 5. The GDoF region of the two-user MIMO IC with feedback is given by the set of (d1, d2)

satisfying:

α11d1 ≤ f(N1, (α11,M1) , (α21,M2)), (29)

α22d2 ≤ f(N2, (α22,M2) , (α12,M1)), (30)

α11d1 ≤ α12min (M1, N2) + α11min
(
(M1 −N2)

+, N1

)
+

(α11 − α12)
+(min (M1, N1) −min

(
(M1 −N2)

+, N1

)
), (31)

α22d2 ≤ α21min (M2, N1) + α22min
(
(M2 −N1)

+, N2

)
+

(α22 − α21)
+ (min (M2, N2) −min

(
(M2 −N1)

+, N2

) )
, (32)

α11d1 + α22d2 ≤ f (N2, (α22,M2) , (α12,M1)) + α11min
(
(M1 −N2)

+, N1

)
+

(α11 − α12)
+ (min (M1, N1) −min

(
(M1 −N2)

+, N1

) )
, (33)

α11d1 + α22d2 ≤ f (N1, (α11,M1) , (α21,M2)) + α22min
(
(M2 −N1)

+, N2

)
+

(α22 − α21)
+ (min (M2, N2) −min

(
(M2 −N1)

+, N2

) )
. (34)
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Proof: According to Theorem 3, we can see that GDoF = limSNR→∞Ro(0)/ log SNR, which is

evaluated in Appendix E to get the result as in the statement of the theorem.

Since the capacity region of the MIMO IC with feedback and the corresponding reciprocal IC with

feedback are within constant gap, the GDoF region of the MIMO IC with feedback and that of the

corresponding reciprocal IC with feedback are the same, as given in the next corollary.

Corollary 6. The GDoF region for the reciprocal IC with perfect feedback is given by the set of (d1, d2)

satisfying (29)-(34).

We will now consider a special case of Theorem 5 where M1 = M2 = M , N1 = N2 = N , α11 = α22 =

1, and α12 = α21 = α. This MIMO IC is called a symmetric MIMO IC. We also define GDoF, d, as the

supremum over all di such that (di, di) is in the GDoF region. The GDoF for the symmetric MIMO IC

with feedback is given as follows.

Corollary 7. The GDoF for a two-user symmetric MIMO IC with feedback for N ≤ M is given as

follows:

GDoFPF =

 N − α
2
(2N −M)+, if α ≤ 1,

N(α+1
2

)− 1
2
(2N −M)+, if α ≥ 1.

(35)

Since the expressions are symmetric in N and M by Corollary 6, the GDoF for M ≤ N follows by

interchanging the roles of M and N .

Proof: For the symmetric MIMO IC, we have

f(Ni, (αii,Mi) , (αji,Mj)) = f(N, (1,M) , (α,M))

= max(1, α) min(M,N) + min(1, α) min((N −M)+,M). (36)

We will split the proof for N ≤M in two cases.

Case 1 - α ≤ 1: We will go over all equations (29)-(34) and evaluate them for the symmetric case with

α ≤ 1. Equations (29) and (30) can be simplified using (36) as follows

d ≤ max(1, α) min(M,N) + min(1, α) min((N −M)+,M)

= N. (37)
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Equations (31) and (32) can be simplified as

d ≤ αmin (M,N) + min
(
(M −N)+, N

)
+ (1− α)+(min (M,N) −min

(
(M −N)+, N

)
)

= αN + min((M −N), N) + (1− α)N − (1− α)min ((M −N), N)

= N + αmin((M −N), N)

= N + α(N − (2N −M)+). (38)

Equations (33) and (34) can be simplified as

d ≤ 1

2
(max(1, α) min(M,N) + min(1, α) min((N −M)+,M) + min

(
(M −N)+, N

)
+

(1− α)+(min (M,N) −min
(
(M −N)+, N

)
))

=
1

2
(N + (1− α)N + αmin((M −N), N))

= N − 1

2
α(N − (N − (2N −M)+))

= N − α

2
((2N −M)+). (39)

We note that the minimum of the right hand sides of (37), (38), and (39) would give us the GDoF. The

minimum of these three terms is (39) which proves the result for α ≤ 1.

Case 2 - α ≥ 1: In this case, equations (29) and (30) can be simplified as

d ≤ max(1, α) min(M,N) + min(1, α) min((N −M)+,M)

= αN. (40)

Equations (31) and (32) can be simplified as

d ≤ αmin (M,N) + min
(
(M −N)+, N

)
+

(1− α)+(min (M,N) −min
(
(M −N)+, N

)
)

= αN + min((M −N), N). (41)
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Equations (33) and (34) can be simplified as

d ≤ 1

2
(max(1, α) min(M,N) + min(1, α) min((N −M)+,M) + min

(
(M −N)+, N

)
+

(1− α)+(min (M,N) −min
(
(M −N)+, N

)
))

=
1

2
(αN + (N − (2N −M)+))

= N
(α + 1)

2
− 1

2
(2N −M)+. (42)

We note that the minimum of the right hand sides of (40), (41), and (42) would give us the GDoF. The

minimum of these three terms is (42) which proves the result for α ≥ 1.

The authors of [5] found the GDoF for the two-user symmetric MIMO IC without feedback as follows

for N ≤M (We can interchange the roles of N and M if N > M .)

GDoFNF =



N − α(2N −M)+, if 0 ≤ α ≤ 1
2
,

N − (1− α)(2N −M)+, if 1
2
≤ α ≤ 2

3
,

N − α
2
(2N −M)+, if 2

3
≤ α ≤ 1,

min{N,N(α+1
2

)− 1
2
(2N −M)+}, if 1 ≤ α.

(43)

We note that the GDoF with and without feedback are the same for 2
3
≤ α ≤ 1. Figure 4 compares

the GDoF for the two-user symmetric MIMO IC with and without feedback. In Figure 4(a), the “W”-

curve obtained without feedback delineates the very weak (0 ≤ α ≤ 1
2
), weak (1

2
≤ α ≤ 2

3
), moderate

(2
3
≤ α ≤ 1), strong (1 ≤ α ≤ 3− M

N
) and very strong (3− M

N
≤ α) interference regimes. In the presence

of feedback, the “W”-curve improves to a “V”-curve which delineates the weak (0 ≤ α ≤ 1) and strong

(1 ≤ α) interference regimes for all choices of N and M . For M
2
< N ≤ M , we see that the GDoF

with feedback is strictly greater than that without feedback for 0 < α < 2/3 and for α > 3−M/N . For

N ≤M/2, we see that the GDoF with feedback is strictly greater than that without feedback for α > 2.

The GDoF improvement indicates an unbounded gap in the corresponding capacity regions as the SNR

goes to infinity.

Interestingly, from Figure 4(b) we can see that if we increase M when N ≤ M
2

, the GDoF does not

change. This can be interpreted as that while N ≤ M
2

, N act as a bottleneck and increasing M does not

increase the GDoF. As a special case consider a MISO IC for which we note that the GDoF is the same

for all M ≥ 2. Thus, increasing the transmit antennas beyond 2 does not increase the GDoF. However,

increasing the transmit antennas from 1 to 2 gives a strict improvement in GDoF for all α > 0. Similar
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Fig. 4. GDoF for symmetric MIMO IC with perfect feedback (PF), and no-feedback (NF) for (a) M
2
< N ≤M , and (b) N ≤ M

2
.

result also holds for SIMO systems where increasing the receive antennas from 1 to 2 help increase GDoF

while increasing the receive antennas beyond 2 does not increase the GDoF.

V. CONCLUSIONS

This paper gives the capacity region of the MIMO IC with feedback within N1 + N2 + max(N1, N2)

bits. The achievability is based on the block Markov encoding, backward decoding, and Han-Kobayashi

message-splitting. The capacity region for the MIMO IC with feedback is shown to be within a constant

number of bits from the capacity region of the corresponding reciprocal IC. Further, the GDoF region for

the general MIMO IC is characterized. It is found that for the symmetric IC with feedback, the GDoF

form a “V”-curve rather than the “W”-curve without feedback.

The authors of [13] considered a SISO IC with two rate-limited feedback links. Further, the authors of

[12] considered nine canonical feedback models in the SISO IC, ranging from one feedback link to four

feedback links in various configurations. Extension of this work for different feedback models proposed

in [12] for rate-limited feedback links is an important future work, and is still open. Further, the extension

to the general K-user IC is also open.

APPENDIX A

PROOF OF OUTER BOUND FOR THEOREM 1

In this Appendix, we will show that CFB ⊆ Ro(Q) for some covariance matrix Q = E[X1X
†
2].

The set of upper bounds to the capacity region will be derived in two steps. First, the capacity region is

outer-bounded by a region defined in terms of the differential entropy of the random variables associated
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with the signals. These outer-bounds use genie-aided information at the receivers. Second, we outer-bound

this region to prove the outer-bound as described in the statement of Theorem 1.

The following result outer-bounds the capacity region of two-user MIMO IC with feedback.

Lemma 8. Let Si be defined as Si ,
√
ρijHijXi + Zj . Then, the capacity region of a two-user MIMO

IC with feedback is outerbounded by the region formed by (R1, R2) satisfying

R1 ≤ h(Y1)− h(Z1), (44)

R2 ≤ h(Y2)− h(Z2), (45)

R1 ≤ h (Y2 | X2)− h (Z2) + h(Y1|X2, S1)− h(Z1), (46)

R2 ≤ h (Y1 | X1)− h (Z1) + h(Y2|X2, S1)− h(Z2), (47)

R1 +R2 ≤ h (Y1 | S1, X2)− h (Z2) + h(Y2)− h(Z1), (48)

R1 +R2 ≤ h (Y2 | S2, X1)− h (Z1) + h(Y1)− h(Z2). (49)

Proof: The proof follows the same lines as the proof of Theorem 3 in [8], replacing SISO channel

gains by MIMO channel gains and is thus omitted here.

The rest of the section outer-bounds this region to get the outer bound in Theorem 1. For this, we will

introduce some useful Lemmas.

The next result outer-bounds the entropies and the conditional entropies of two random variables by

their corresponding Gaussian random variables.

Lemma 9 ( [30]). Let X and Y be two random vectors, and let XG and Y G be Gaussian vectors with

covariance matrices satisfying

Cov

 X

Y

 = Cov

 XG

Y G

 , (50)

Then, we have

h(Y ) ≤ h(Y G), (51)

h (Y | X) ≤ h
(
Y G

∣∣ XG
)
. (52)



19

The next result gives the determinant of a block matrix, which will be used extensively in the sequel.

Lemma 10 ( [31]). For block matrix M =

 A B

C D

 with matrices A, B, C, and D, we have:

detM =


detA det(D − CA−1B), if A is invertible,

detD det(A−BD−1C), if D is invertible.
(53)

Now, we introduce a lemma that is a key result which will be used to upper-bound a conditional entropy

term in this section and also to show an upper bound in Appendix C.

Lemma 11. Let L(K,S) be defined as

L (K,S) , K −KS(IN2 + S†KS)
−1
S†K, (54)

for some M1 ×M1 p.s.d. Hermitian matrix K and some M1 × N2 matrix S. Then if 0 � K1 � K2 for

some Hermitian matrices K1 and K2, we have

L (K1, S) � L (K2, S) . (55)

Proof: We note that since K is p.s.d., K + εIM1 is invertible for all ε > 0. Given 0 � K1 � K2, let

F (ε) , L(K2 + εIM1 , S)− L(K1 + εIM1 , S). We need to show that F (0) � 0.

We first show that F (ε) � 0 for all ε > 0. From Woodbury matrix identity (Appendix C.4.3 of [32]),

we have that if A is invertible, (A + BD)−1 = A−1 − A−1B(I + DA−1B)−1DA−1. Thus, we have

L(K + εIM1 , S) = ((K + εIM1)
−1 + SS†)−1 by substituting A as (K + εIM1)

−1, B as S and D as S† in

the above identity.

Thus, F (ε) = ((K2 + εIM1)
−1 + SS†)−1 − ((K1 + εIM1)

−1 + SS†)−1. Since K1 and K2 are Hermitian

p.s.d. matrices with K1 � K2, it easily follows that F (ε) � 0.

Having shown that F (ε) � 0 for all ε > 0, we will now prove the continuity of F (ε) at ε = 0. For this,

we take the partial derivative of F (ε) at ε = 0 and show that it is not unbounded thus proving that F (ε)
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is continuous at ε = 0. Thus, we have

dF (ε)

dε
=

d

dε
L(K2 + εIM1 , S)− L(K1 + εIM1 , S)

=
d

dε
L(K2 + εIM1 , S)− d

dε
L(K1 + εIM1 , S). (56)

Thus, it is enough to show that limε→0
d
dε
L(Ki + εIM1 , S) is bounded. We have

lim
ε→0

d

dε
L(Ki + εIM1 , S) = lim

ε→0

d

dε
(Ki + εIM1 − (Ki + εIM1)S(IN2 + S†(Ki + εIM1)S)

−1
S†(Ki + εIM1))

= IM1 − lim
ε→0

d

dε
((Ki + εIM1)S(IN2 + S†(Ki + εIM1)S)

−1
S†(Ki + εIM1))

= IM1 − S(IN2 + S†KiS)
−1
S†Ki −KiS(IN2 + S†KiS)

−1
S†

+KiS(IN2 + S†KiS)
−1
S†S(IN2 + S†KiS)

−1
S†Ki, (57)

which is bounded. Hence, F (ε) is continuous at ε = 0. Further, since K1 and K2 are Hermitian, we

see that F (ε) is Hermitian and thus normal. From the Wielandt-Hoffman theorem [33], we note that

the L2 norm of the difference in eigen-values (ordered in a particular way) of two normal matrices is

bounded by the Frobenium norm of the difference of the two matrices. This shows that since F (ε) � 0

and F (ε)−F (0)→ 0 as ε→ 0, we have that the eigen-values of F (ε) approach the eigen-values of F (0)

as ε → 0. Therefore, all the eigen-values of F (0) are non-negative which proves that F (0) is positive

semi-definite thus proving the result.

The next three Lemmas outer-bounds entropy and conditional entropies of some random variables.

Lemma 12. The entropy of the received signal at the ith receiver, h(Yi), is outer-bounded as follows

h(Yi) ≤ log det
(
INi

+ ρiiHiiH
†
ii + ρjiHjiH

†
ji +
√
ρiiρjiHiiQijH

†
ji +
√
ρiiρjiHjiQ

†
ijH

†
ii

)
+Ni log (πe) , (58)

for i, j ∈ {1, 2}, i 6= j.
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Proof:

h(Yi)
(a)

≤ h(Y G
i )

= log det πe
(
INi

+ ρiiHiiQiiH
†
ii + ρjiHjiQjjH

†
ji +
√
ρiiρjiHiiQijH

†
ji

+
√
ρiiρjiHjiQ

†
ijH

†
ii

)
(b)

≤ log det
(
INi

+ ρiiHiiH
†
ii + ρjiHjiH

†
ji +
√
ρiiρjiHiiQijH

†
ji +
√
ρiiρjiHjiQ

†
ijH

†
ii

)
+Ni log (πe) , (59)

where (a) follows from Lemma 9, and (b) follows from the fact that log det(.) is a monotonically increasing

function on the cone of positive definite matrices and we have Qii � IMi
for i ∈ {1, 2}.

Taking πe out of the above determinant in the last part, gives the result as in the statement of the

Lemma.

Lemma 13. The conditional entropy of the received signal at the ith receiver given the transmitted signal

from the ith transmitter, h(Yi|Xi) is outer-bounded as follows

h (Yi|Xi) ≤ log det
(
INi

+ ρjiHjiH
†
ji − ρjiHjiQ

†
ijQijH

†
ji

)
+Ni log (πe) , (60)

where Qij is the cross-covariance between Xi and Xj and Qii is the covariance matrix for Xi.

Proof: Let

Ki1 , E

 XiX
†
i XiY

†
i

YiX
†
i YiY

†
i

 = (61)

 Qii
√
ρiiQii

H†ii +
√
ρjiQijH

†
ji

√
ρiiHiiQii +

√
ρjiHjiQ

†
ij E[YiY

†
i ]

 .
where

E[YiY
†
i ] = INi

+ ρiiHiiQiiH
†
ii + ρjiHjiQjjH

†
ji +
√
ρiiρjiHiiQijH

†
ji +
√
ρiiρjiHjiQ

†
ijH

†
ii, (62)

and

Ki2 , E[XiX
†
i ] = Qii. (63)
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According to Lemma 9, we get

h(Yi|Xi) ≤ h(Y G
i |XG

i )

= h(XG
i , Y

G
i )− h(XG

i )

= log detπe(Ki1)− log det πe(Ki2)

= log det(Ki1)− log det(Ki2) + log detπe(INi
). (64)

Due to the reason that Q’s elements are chosen from a continuous space, it is invertible with probability

of one. In addition, according to Corollary 7.7.4(a) of [29], if we have Qii � IMi
, Q−1ii � IMi

. Using

Lemma 10 with M = Ki1 and A = Ki2, we get

log detKi1 = log
(

detE(XiX
†
i ) det(E(YiY

†
i )− E(YiX

†
i )(E(XiX

†
i ))
−1E(XiY

†
i ))
)

= log det
(
E(XiX

†
i )
)

+ log det
(
E(YiY

†
i )− E(YiX

†
i )(E(XiX

†
i ))
−1E(XiY

†
i )
)

(a)
= log det (Qii) + log det

(
INi

+ ρjiHjiQjjH
†
ji − ρjiHjiQ

†
ijQ
−1
ii QijH

†
ji

)
(b)

≤ log det (Qii) + log det
(
INi

+ ρjiHjiH
†
ji − ρjiHjiQ

†
ijQijH

†
ji

)
, (65)

where (a) is obtained by using (61) and some simplifications, and (b) follows from the fact that log det

(.) is a monotonically increasing function on the cone of positive definite matrices and we have Qii � IMi

and Q−1ii � IMi
according to Corollary 7.7.4(a) of [29] for i, j ∈ {1, 2} , i 6= j.

Substituting (65) in (64) gives the result as in the statement of the lemma.

Lemma 14. The conditional entropy of the received signal at the ith receiver given Xj and Si, h(Yi|Xj, Si)

is outer-bounded as follows

h (Yi | Xj, Si) ≤ log det

(
INi

+ ρiiHiiH
†
ii −

[ √
ρiiρijHiiH

†
ij

√
ρiiHiiQij

]
 INj

+ ρijHijH
†
ij

√
ρijHijQij

√
ρijQ

†
ijH

†
ij IMj

−1  √ρiiρijHijH
†
ii

√
ρiiQ

†
ijH

†
ii

)
+Ni log (πe) . (66)
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Proof: Let Ki3 and Ki4 be defined as follows

Ki3 , E



√
ρiiHiiXi + Zi
√
ρijHijXi + Zj

Xj

 .

√
ρiiHiiXi + Zi
√
ρijHijXi + Zj

Xj


†

=


INi

+ ρiiHiiQiiH
†
ii

√
ρiiρijHiiQiiH

†
ij

√
ρiiHiiQij

√
ρiiρijHijQiiH

†
ii INj

+ ρijHijQiiH
†
ij

√
ρijHijQij

√
ρiiQ

†
ijH

†
ii

√
ρijQ

†
ijH

†
ij Qjj

 , (67)

and

Ki4 , E


 √ρijHijXi + Zj

Xj

 √ρ12HijXi + Zj

Xj

†


=

 INj
+ ρijHijQiiH

†
ij

√
ρijHijQij

√
ρijQ

†
ijH

†
ij Qjj

 . (68)

Further, let Y ′i =
√
ρiiHiiXi + Zi. Then,

h(Yi|Xj, Si) = h
(√

ρiiHiiXi +
√
ρjiHjiXj + Zi

∣∣ Xj,
√
ρijHijXi + Zj

)
= h

(√
ρiiHiiXi + Zi

∣∣ Xj,
√
ρijHijXi + Zj

)
= h(Y ′i |Xj, Si)

(a)

≤ h(Y ′Gi |SGi , XG
j )

= h(Y ′Gi , SGi , X
G
j )− h(SGi , X

G
j )

= log det πe(Ki3)− log det πe(Ki4)

= log det(Ki3)− log det(Ki4) +Ni log (πe) , (69)

where (a) follows from Lemma 9 by taking the two vectors Si and Xj of lengths Nj and Mj , respectively,

together as a single vector of length of Nj +Mj and then, used Lemma 9.



24

Substituting M = Ki3 and D = Ki4 in Lemma 10, we get

log det (Ki3) = log det (Ki4) + log det

(
INi

+ ρiiHiiQiiH
†
ii

−
[ √

ρiiρijHiiQiiH
†
ij

√
ρiiHiiQij

]
[(Ki4) ]−1

 √ρiiρijHijQiiH
†
ii

√
ρiiQ

†
ijH

†
ii

)

= log det (Ki4) + log det

(
INi

+ ρiiHiiQiiH
†
ii −

[ √
ρiiρijHiiQiiH

†
ij

√
ρiiHiiQij

]
 INj

+ ρijHijQiiH
†
ij

√
ρijHijQij

√
ρijQ

†
ijH

†
ij Qjj

−1  √ρiiρijHijQiiH
†
ii

√
ρiiQ

†
ijH

†
ii

). (70)

Note that since Qjj � IMj
, using Lemma 10 we can see that Qjj = IMj

outer-bounds the determinant

of  INj
+ ρijHijQiiH

†
ij

√
ρijHijQij

√
ρijQ

†
ijH

†
ij Qjj

.
Since B � IMj

implies ABA† � AA†, we have that Qjj = IMj
outer-bounds the expression of the

right hand side of (70). Thus,

log det (Ki3) ≤ log det (Ki4) + log det

(
INi

+ ρiiHiiQiiH
†
ii −

[ √
ρiiρijHiiQiiH

†
ij

√
ρiiHiiQij

]
 INj

+ ρijHijQiiH
†
ij

√
ρijHijQij

√
ρijQ

†
ijH

†
ij IMj

−1  √ρiiρijHijQiiH
†
ii

√
ρiiQ

†
ijH

†
ii

). (71)

Next, we will show that Qii = IMi
maximizes (71).

Let us define S ,
√
ρijH

†
ij , W , Qii −QijQ

†
ij , E , (INj

+ S†WS)−1 and

f (S,Qii) , Qii −
[
QiiS Qij

] INj
+ S†QiiS S†Qij

Q†ijS IMj

−1  S†Qii

Q†ij

 . (72)

We can check that INj
+ S†QiiS S†Qij

Q†ijS IMj

 E −ES†Qij

−Q†ijSE I +Q†ijSES
†Qij

 = IMj+Nj
. (73)
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Hence

f (S,Qii) = Qii −
[
QiiS Qij

] INj
+ S†QiiS S†Qij

Q†ijS IMj

−1  S†Qii

Q†ij


= Qii −

[
QiiS Qij

] E −ES†Qij

−Q†ijSE I +Q†ijSES
†Qij

 S†Q

Q†ij


= Qii −QiiSES

†Qii +QiiSES
†QijQ

†
ij +QijQ

†
ijSES

†Qii −QijQ
†
ij −

QijQ
†
ijSES

†QijQ
†
ij

= Qii −QijQ
†
ij − (Qii −QijQ

†
ij)SES

†(Qii −QijQ
†
ij)

= Qii −QijQ
†
ij − (Qii −QijQ

†
ij)S(I + S†(Qii −QijQ

†
ij)S)−1S†(Qii −QijQ

†
ij)

= W −WS(INj
+ S†WS)−1S†W. (74)

We know that W = Qii−QijQ
†
ij � IMi

−QijQ
†
ij . So, according to Lemma 11 with K1 as Qii−QijQ

†
ij

and K2 as IMi
−QijQ

†
ij , we have f (S,Qii) � f(S, IMi

). Thus, we use this outer-bound by replacing Qii

by I to get

log det (Ki3) − log det (Ki4)

≤ log det

(
INi

+ ρiiHiiH
†
ii −

[ √
ρiiρijHiiH

†
ij

√
ρiiHiiQij

]
 INj

+ ρijHijH
†
ij

√
ρijHijQij

√
ρijQ

†
ijH

†
ij IMj

−1  √ρiiρijHijH
†
ii

√
ρiiQ

†
ijH

†
ii

). (75)

Substituting this in (69), we get

h (Yi | Xj, Si) ≤ log det (Ki3) − log det (Ki4) + log detπe (INi
)

≤ log det

(
INi

+ ρiiHiiH
†
ii −

[ √
ρiiρijHiiH

†
ij

√
ρiiHiiQij

]
 INj

+ ρijHijH
†
ij

√
ρijHijQij

√
ρijQ

†
ijH

†
ij IMj

−1  √ρiiρijHijH
†
ii

√
ρiiQ

†
ijH

†
ii

)
+Ni log (πe) . (76)

The rest of the section considers the 6 terms in Lemma 8 and outer-bounds each of them to get the
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terms in the outer-bound of Theorem 1.

First term: For the first term in Lemma 8,

R1 ≤ h(Y1)− h(Z1)

(a)

≤ log det
(
IN1 + ρ11H11H

†
11 + ρ21H21H

†
21 +
√
ρ11ρ21H11Q12H

†
21 +
√
ρ11ρ21H21Q

†
12H

†
11

)
+N1 log (πe)− h(Z1)

(b)
= log det

(
IN1 + ρ11H11H

†
11 + ρ21H21H

†
21 +
√
ρ11ρ21H11Q12H

†
21 +
√
ρ11ρ21H21Q

†
12H

†
11

)
, (77)

where (a) follows from Lemma 12 and (b) follows from the fact that h(Z1) = log det (πeIN1).

Second term: The second bound is similar to the first bound by exchanging 1 and 2 in the indices.

Third term: For the third bound in Lemma 8, it is sufficient to replace upper bounds of h (Y2 | X2) and

h(Y1|X2, S1) from Lemma 13 and Lemma 14 as follows

R1 ≤ h (Y2 | X2)− h (Z2) + h(Y1|X2, S1)− h(Z1)

(a)

≤ log det
(
IN2 + ρ12H12H

†
12 − ρ12H12Q

†
21Q21H

†
12

)
+N2 log (πe)

+ log det

(
IN1 + ρ11H11H

†
11 −

[ √
ρ11ρ12H11H

†
12

√
ρ11H11Q12

]
 IN2 + ρ12H12H

†
12

√
ρ12H12Q12

√
ρ12Q

†
12H

†
12 IM2

−1  √ρ11ρ12H12H
†
11

√
ρ11Q

†
12H

†
11

)
+N1 log (πe)− h(Z1)− h(Z2)

(b)
= log det

(
IN2 + ρ12H12H

†
12 − ρ12H12Q

†
21Q21H

†
12

)
+ log det

(
IN1 + ρ11H11H

†
11 −

[ √
ρ11ρ12H11H

†
12

√
ρ11H11Q12

]
 IN2 + ρ12H12H

†
12

√
ρ12H12Q12

√
ρ12Q

†
12H

†
12 IM2

−1  √ρ11ρ12H12H
†
11

√
ρ11Q

†
12H

†
11

), (78)

where (a) is obtained by using Lemma 13 and Lemma 14 and (b) follows from the fact that h(Zi) =

log det (πeINi
), for i = 1, 2.

Fourth term: The fourth term is similar to the third term by exchanging 1 and 2 in the indices.

Fifth term: According to the fifth bound in Lemma 8, it is sufficient to replace upper bounds of

h(Y1|X2, S1) and h(Y2) from from Lemma 14 and Lemma 12, respectively, and get the fifth bound
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of Theorem 1 as follows

R1 +R2 ≤ h (Y1 | S1, X2)− h (Z2) + h(Y2)− h(Z1)

(a)

≤ log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12 +
√
ρ22ρ12H22Q12H

†
12 +
√
ρ22ρ12H12Q

†
12H

†
22

)
+N2 log (πe)

+ log det

(
IN1 + ρ11H11H

†
11 −

[ √
ρ11ρ12H11H

†
12

√
ρ11H11Q12

]
 IN2 + ρ12H12H

†
12

√
ρ12H12Q12

√
ρ12Q

†
12H

†
12 IM2

−1  √ρ11ρ12H12H
†
11

√
ρ11Q

†
12H

†
11

)
+N1 log (πe)− h(Z1)− h(Z2)

(b)
= log det

(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12 +
√
ρ22ρ12H22Q12H

†
12 +
√
ρ22ρ12H12Q

†
12H

†
22

)
+ log det

(
IN1 + ρ11H11H

†
11 −

[ √
ρ11ρ12H11H

†
12

√
ρ11H11Q12

]
 IN2 + ρ12H12H

†
12

√
ρ12H12Q12

√
ρ12Q

†
12H

†
12 IM2

−1  √ρ11ρ12H12H
†
11

√
ρ11Q

†
12H

†
11

), (79)

where (a) is obtained by using Lemma 14 and Lemma 12 and (b) follows from the fact that h(Zi) =

log det (2πeINi
), for i = 1, 2.

Sixth term: The sixth term is similar to the fifth term by exchanging 1 and 2 in the indices.

APPENDIX B

PROOF OF ACHIEVABILITY FOR THEOREM 2

In this section, we prove the achievability for Theorem 2. More precisely, we will show the following.

Lemma 15. For a given set of (H, ρ), the feedback capacity region of a two-user MIMO Gaussian IC
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can achieve all rate pairs (R1, R2) ∈ A(H, ρ) such that

R1 ≤ log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21)−N1, (80)

R2 ≤ log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12)−N2, (81)

R1 ≤ log det
(
IN2 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11H

†
11 −

√
ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1√ρ11ρ12H12H

†
11)−N1 −N2, (82)

R2 ≤ log det
(
IN1 + ρ21H21H

†
21

)
+ log det(IN2 + ρ22H22H

†
22 −

√
ρ22ρ21H22H

†
21(IN1 + ρ21H21H

†
21)
−1√ρ22ρ21H21H

†
22)−N1 −N2, (83)

R1 +R2 ≤ log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11H

†
11 −

√
ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1√ρ11ρ12H12H

†
11)−N1 −N2, (84)

R1 +R2 ≤ log det
(
IN1 + ρ11H11H

†
11 + ρ21H21H

†
21

)
+ log det(IN2 + ρ22H22H

†
22 −

√
ρ22ρ21H22H

†
21(IN1 + ρ21H21H

†
21)
−1√ρ22ρ21H21H

†
22)−N1 −N2. (85)

In order to prove this result, we will use the result in [8] for a discrete memoryless channel. We will

then give some Lemmas that would help in further inner-bounding these terms for a MIMO IC and finally

go over each expression for the discrete memoryless channel to prove the result.

Lemma 16. The feedback capacity region of the two-user discrete memoryless IC includes the set of

(R1, R2) such that

R1 ≤ I (U2, X1;Y1) , (86)

R2 ≤ I (U1, X2;Y2) , (87)

R1 ≤ I (U1;Y2|X2) + I (X1;Y1 | U1, U2) , (88)

R2 ≤ I (U2;Y1|X1) + I (X2;Y2 | U1, U2) , (89)

R1 +R2 ≤ I (X1;Y1 | U1, U2) + I (U1, X2;Y2) , (90)

R1 +R2 ≤ I (X2;Y2 | U1, U2) + I (U2, X1;Y1) , (91)

over all joint distributions p(u1)p(u2)p(x1|u1)p(x2|u2).

Proof: This result is a special case of Lemma 1 of [8], obtained by substituting the auxiliary variable

U = 0.



29

To achieve this rate region, the authors of [8] developed an infinite-staged achievable scheme that

employs block Markov encoding, backward decoding, and Han-Kobayashi message splitting.

The rest of the section inner bounds this region to get the inner bound in Theorem 2. For this, we will

introduce some useful lemmas.

Lemma 17. The following holds for any Mi ×Nj matrix S

S(INj
+ S†S)−1S† � 0. (92)

Proof: It holds since it can be written as AEA† for A = S and E = (INj
+ S†S)

−1, which is p.s.d.

because E is p.s.d..

Lemma 18. The following holds for any Mi ×Nj matrix S

det(INj
+ S†S − S†S(INj

+ S†S)−1S†S) ≤ 2Nj . (93)

Proof: Let us define V , S†S, we get

det(INj
+ S†S − S†S(INj

+ S†S)
−1
S†S)

= det(INj
+ V − V (INj

+ V )−1V )

= det(INj
+ V − V

(
INj

+ V
)−1

(V + INj
− INj

))

= det(INj
+ V − V (INj

−
(
INj

+ V
)−1

))

= det(INj
+ V (

(
INj

+ V
)−1

))

= det(INj
+ (−INj

+ INj
+ V )(

(
INj

+ V
)−1

))

= det
(
INj

+ INj
−
(
INj

+ V
)−1)

(a)

≤ det
(
2INj

)
= 2Nj , (94)

where (a) follows from the fact that V = S†S is p.s.d., and its eigenvalues are non-negative. So, the

eigenvalues of INj
+V are greater than or equal to 1. As a result, eigenvalues of (INj

+V )−1 are between

0 and 1, i.e. they satisfy 0 ≤ λk ≤ 1. So

det(INj
+ INj

− (INj
+ V )−1) = (2− λ1).....(2− λNj

) ≤ 2Nj , (95)
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which proves (93).

As we said before, our achievability scheme has a power allocation according to (20) and (21). We

note that this power allocation is feasible since IMi
−KXip

� 0 by Lemma 17 substituting √ρijH†ij into

S.

We will now expand the achievability in Lemma 16 using Ui = Xiu for i ∈ {1, 2}. Before expanding

each term in Lemma 16, we evaluate some entropies as follows.

h (Yi) = log det(INi
+ ρiiHiiH

†
ii + ρjiHjiH

†
ji) , (96)

and

h (Yi|Xi) = log det
(
INi

+ ρjiHjiH
†
ji

)
. (97)

In addition, we have

h (Yi | Ui, Uj)

≥ h(Yi|Ui, Uj, Xj)

= log det(INi
+ ρiiHiiKXip

H†ii)

= log det(INi
+ ρiiHiiH

†
ii −
√
ρiiρijHiiH

†
ij(INj

+ ρijHijH
†
ij)
−1√ρiiρijHijH

†
ii). (98)

Moreover, we have

h (Yi | Uj, Xi) ≤ log det(INi
+ ρjiHjiKXjp

H†ji)

(a)

≤ log det (2INi
)

= Ni, (99)

where (a) follows from Lemma 18 by substituting √ρjiH†ji in S. This shows that h (Yi | Uj, Xi) is upper-

bounded by Ni.

In our achievability, h (Yi | Uj, Xi) appeared with a minus sign. So, without loss of generality we can

replace it with its bound Ni for the achievability.

The rest of the section considers the six terms in Lemma 16 and uses each of them to get the terms in

the inner-bound of Lemma 15.
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First term: For the first term in Lemma 16, we have

I (U2, X1;Y1)

= h (Y1)− h(Y1|U2, X1)

(a)
= log det(IN1 + ρ11H11H

†
11 + ρ21H21H

†
21)− h(Y1|U2, X1)

(b)

≥ log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21)−N1, (100)

where (a) follows from (96) and (b) follows from (99).

Second term: The second bound is similar to the first bound by exchanging 1 and 2 in the indices.

Third term: For the third bound in Lemma 16, we have

I (U1;Y2|X2) + I (X1;Y1 | U1, U2)

= h (Y2|X2)− h (Y2|U1, X2) + h (Y1 | U1, U2)− h (Y1 | U1, U2, X1)

≥ h (Y2|X2)− h (Y2|U1, X2) + h(Y1|U1, U2, X2)− h (Y1 | U1, U2, X1)

(a)
= log det

(
IN2 + ρ12H12H

†
12

)
+ log det

(
IN1 + ρ11H11H

†
11 −
√
ρ11ρ12H11H

†
12

(IN2 + ρ12H12H
†
12)
−1√ρ11ρ12H12H

†
11

)
− h (Y2|U1, X2)− h (Y1 | U1, U2, X1)

(b)

≥ log det
(
IN2 + ρ12H12H

†
12

)
+ log det

(
IN1 + ρ11H11H

†
11 −
√
ρ11ρ12H11H

†
12

(IN2 + ρ12H12H
†
12)
−1√ρ11ρ12H12H

†
11

)
−N1 −N2, (101)

where (a) is obtained from (97) and (98) and (b) follows from (99).

Fourth term: The fourth term is similar to the third term by exchanging 1 and 2 in the indices.
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Fifth term: For the fifth bound in Lemma 16, we have

I (X1;Y1 | U1, U2) + I (U1, X2;Y2)

= h (Y1 | U1, U2)− h (Y1 | U1, U2, X1) + h (Y2)− h (Y2|U1, X2) (102)

≥ h(Y1|U1, U2, X2)− h (Y1 | U1, U2, X1) + h (Y2)− h (Y2|U1, X2) (103)

(a)
= log det(IN2 + ρ22H22H

†
22 + ρ12H12H

†
12) + log det

(
IN1 + ρ11H11H

†
11 −
√
ρ11ρ12H11H

†
12

(IN2 + ρ12H12H
†
12)
−1√ρ11ρ12H12H

†
11

)
− h (Y2|U1, X2)− h (Y1 | U1, U2, X1) (104)

(b)

≥ log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + log det

(
IN1 + ρ11H11H

†
11 −
√
ρ11ρ12H11H

†
12

(IN2 + ρ12H12H
†
12)
−1√ρ11ρ12H12H

†
11

)
−N1 −N2, (105)

where (a) is obtained from (96) and (98), and (b) follows from (99).

Sixth term: The sixth term is similar to the fifth term by exchanging 1 and 2 in the indices.

APPENDIX C

PROOF OF OUTER BOUND FOR THEOREM 2

In this section, we prove that covariance matrix Q = 0 is approximately optimal for the capacity region

of the MIMO IC with feedback. As mentioned in Section III, it is enough to prove that

Ro(Q) ⊆ Ro(0)⊕ ([0, N1]× [0, N2]), (106)

for any covariance matrix Q.

Now, we give three important inequalities that would be used in the main proof.
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Define E , (IN2 +
√
ρijHij(I −QijQ

†
ij)
√
ρijH

†
ij)
−1

). The first inequality is as follows

INi
+ ρiiHiiH

†
ii −[ √

ρiiρijHiiH
†
ij

√
ρiiHiiQij

] INj
+ ρijHijH

†
ij

√
ρijHijQij

√
ρijQ

†
ijH

†
ij IMj

−1  √ρiiρijHijH
†
ii

√
ρiiQ

†
ijH

†
ii


= INi

+ ρiiHii (IMi
−[ √

ρijH
†
ij Qij

] INj
+ ρijHijH

†
ij

√
ρijHijQij

√
ρijQ

†
ijH

†
ij IMj

−1  √ρijHij

Q†ij


H†ii

(a)
= INi

+ ρiiHii (IMi
−[ √

ρijH
†
ij Qij

] E −E√ρijHijQij

−√ρijQ†ijH
†
ijE IMj

+
√
ρijQ

†
ijH

†
ijE
√
ρijHijQij


 √ρijHij

Q†ij

H†ii

(b)
= INi

+ ρiiHii

(
I −QijQ

†
ij − (I −QijQ

†
ij)
√
ρijH

†
ijE
√
ρijHij(I −QijQ

†
ij)
)
H†ii

(c)
= INi

+ ρiiHiiL
(
I −QijQ

†
ij,
√
ρijH

†
ij

)
H†ii

(d)

≤ INi
+ ρiiHiiL

(
I,
√
ρijH

†
ij

)
H†ii, (107)

where L(K,S) is as in (54), (a) follows since the inverse can be verified easily, (b) follows from finding

the product of matrices, (c) follows from the definition of L(K,S) in (54), and (d) follows from Lemma

11.

The second inequality is as follows

log det
(
INj

+ ρijHijH
†
ij − ρijHijQijQ

†
ijH

†
ij

)
≤ log det

(
INj

+ ρijHijH
†
ij

)
. (108)
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The third inequality is as follows

log det(INi
+ ρiiHiiH

†
ii + ρjiHjiH

†
ji +
√
ρiiρjiHiiQijH

†
ji +
√
ρiiρjiHjiQ

†
ijH

†
ii)

(a)

≤ log det(INi
+ ρiiHiiH

†
ii + ρjiHjiH

†
ji + ρiiHiiQiiH

†
ii + ρjiHjiQjjH

†
ji)

(b)

≤ log det(INi
+ 2ρiiHiiH

†
ii + 2ρjiHjiH

†
ji)

≤ log det(INi
+ ρiiHiiH

†
ii + ρjiHjiH

†
ji) +Ni, (109)

where (a) follows from (A−B)
(
A† −B†

)
= AA†+BB†−AB†−BA† � 0 by substituting

√
ρiiHiiXi

and √ρjiHjiXj in A and B, respectively, (b) follows from the fact that I � Qii.

Thus, we proved that among these three expansions, the first two expansions we started with are

maximized by Qij = 0 while the third one is is outer-bounded by the corresponding expression with

Qij = 0 plus N1.

Now, we consider each of the six expressions in the definition of the regionRo(Q) and outer-bound each

expression to find the gap with Ro(0) being constant thus proving that Ro(Q) ⊆ Ro(0)⊕([0, N1]×[0, N2])

which proves the result.

Let the right-hand sides of the six expressions in the definition of R0(Q) in (5)-(10) be labeled as

I1(Q), I2(Q), I3(Q), I4(Q), I5(Q), and I6(Q) respectively. Then, the constant gap outer-bound is shown

in the following Lemma.

Lemma 19. We have

I1(Q) ≤ I1(0) +N1, (110)

I2(Q) ≤ I2(0) +N2, (111)

I3(Q) ≤ I3(0), (112)

I4(Q) ≤ I4(0), (113)

I5(Q) ≤ I5(0) +N2, (114)

I6(Q) ≤ I6(0) +N1. (115)
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Proof: We start with (110).

I1(Q) = log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21 +
√
ρ11ρ21H11QH

†
21 +
√
ρ11ρ21H21Q

†H†11)

(a)

≤ log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21) +N1

= I1(0) +N1, (116)

where (a) follows from (109).

Proof of (111) is similar to (110) by exchanging 1 and 2 in the indices.

For the proof of (112) we have,

I3(Q) = log det
(
IN2 + ρ12H12H

†
12 − ρ12H12QQ

†H†12

)
+ log det

(
IN1 + ρ11H11H

†
11 −

[ √
ρ11ρ12H11H

†
12

√
ρ11H11Q

] IN2 + ρ12H12H
†
12

√
ρ12H12Q

√
ρ12Q

†H†12 IM2

−1
 √ρ11ρ12H12H

†
11

√
ρ11Q

†H†11

)
(a)

≤ log det
(
IN2 + ρ12H12H

†
12

)
+ log det

(
IN1 + ρ11H11H

†
11 −

ρ11ρ12H11H
†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11

)
= I3(0), (117)

where (a) follows since the first expression is outer-bounded as in (108) and the outer-bound for the

second expression can be shown on similar lines as (107).

Proof of (113) is similar to (112) by exchanging 1 and 2 in the indices.
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For the proof of (114) we have

I5(Q) = log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12 +
√
ρ22ρ12H22Q

†H†12 +
√
ρ22ρ12H12QH

†
22

)
+ log det

(
IN1 + ρ11H11H

†
11 −

[ √
ρ11ρ12H11H

†
12

√
ρ11H11Q

]
 IN2 + ρ12H12H

†
12

√
ρ12H12Q

√
ρ12Q

†H†12 IM2

−1  √ρ11ρ12H12H
†
11

√
ρ11Q

†H†11

)
(a)

≤ log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) + log det

(
IN1 + ρ11H11H

†
11 −

ρ11ρ12H11H
†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11

)
+N2

= I5(0) +N2, (118)

where (a) follows from (109) and using similar steps as in (107).

Proof of (115) is similar to (114) by exchanging 1 and 2 in the indices.

APPENDIX D

PROOF OF RECIPROCITY IN Ro(0)

In this section, we prove that replacing H and ρ by H
R

and ρR, respectively, and interchanging M and

N for antennas at the nodes gives the same expressions in Ro(0).

We shall prove this in two steps. In the first step we shall prove

Ro(H, ρ) = Ro(H
′

, ρR), (119)

where H
′

= {H†11, H
†
21, H

†
12, H

†
22} and in the second step we shall prove that

Ro(H
′

, ρR) = Ro(H
R
, ρR). (120)

Clearly, the above two equalities prove the lemma.

Let the right-hand sides of the six expressions in the definition of R0(0) in (12)-(17) be labeled as I1,

I2, I3, I4, I5, and I6 respectively.
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First Step: In this step, we prove that:

I1 = I ′3, (121)

I2 = I ′4, (122)

I3 = I ′1, (123)

I4 = I ′2, (124)

I5 = I ′6, (125)

I6 = I ′5, (126)

where I ′k is obtained from Ik by interchanging M and N , replacing Hij with H†ji, and replacing ρij with

ρji.

Since I1 and I3 are both bounds for R1, I2 and I4 are both bounds for R2, and I5 and I6 are both

bounds for R1 +R2, (121)-(126) will prove that Ro(H, ρ) = Ro(H
′

, ρR).

We start with proving (121). For simplicity we define K , (IN1 + ρ21H21H
†
21)
−1, K ′

, (IM1 +
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ρ21H
†
21H21)

−1, and L , ρ11H11H
†
11. We get

I1 = log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21) (127)

= log det(IN1 + ρ21H21H
†
21) + log det(IN1 +Kρ11H11H

†
11)

= log det(K−1) + log det(IN1 +KL)

(a)
= log det(K−1) + log det(IN1 + LK)

= log det(K−1) + log det(IN1 + LKI)

= log det(K−1) + log det(IN1 + LK(I + ρ21H21H
†
21 − ρ21H21H

†
21))

= log det(K−1) + log det(IN1 + LK(I + ρ21H21H
†
21 − ρ21H21(I)H†21))

= log det(K−1) + log det(IN1 + LK(I + ρ21H21H
†
21 − ρ21H21(K

′−1
K

′
)H†21))

= log det(K−1) +

log det(IN1 + LK(I + ρ21H21H
†
21 − ρ21H21((I + ρ21H

†
21H21)K

′
)H†21))

= log det(K−1) +

log det(IN1 + LK((I + ρ21H21H
†
21)− ρ21((I + ρ21H21H

†
21)H21K

′
)H†21))

= log det(K−1) + log det(IN1 + LK(K−1 − ρ21K−1H21K
′
)H†21))

= log det(I + ρ21H
†
21H21) + log det(IN1 + L(I − ρ21H21K

′
)H†21))

(b)
= log det(I + ρ21H

†
21H21) + log det(I + L− Lρ21H21K

′
H†21)

= log det(I + ρ21H
†
21H21) +

log det(I + ρ11H11H
†
11 − ρ11ρ21H11H

†
11H21(I + ρ21H

†
21H21)

−1H†21)

(c)
= log det(I + ρ21H

†
21H21) +

log det(I + ρ11H
†
11H11 − ρ11ρ21H†11H21(I + ρ21H

†
21H21)

−1H†21H11) (128)

= I ′3, (129)

where (a), (b) and (c) follow from Sylvester’s determinant theorem [34]. (122) can be proved similarly

due to symmetry. In addition, (123) and (124) can be obtained in the reverse direction similarly.

We move toward the proof of (125). We should prove

I5 = I ′6, (130)
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where

I5 = log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12) +

log det(IN1 + ρ11H11H
†
11 − ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11), (131)

and

I ′6 = log det(IM1 + ρ11H
†
11H11 + ρ12H

†
12H12) +

log det(IM2 + ρ22H
†
22H22 − ρ22ρ12H†22H12(IM1 + ρ12H

†
12H12)

−1H†12H22). (132)

If we define

a , log det(IN2 + ρ22H22H
†
22 + ρ12H12H

†
12), (133)

b , log det(IN1 + ρ11H11H
†
11 − ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1H12H

†
11), (134)

c , log det(IM1 + ρ11H
†
11H11 + ρ12H

†
12H12), (135)

d , log det(IM2 + ρ22H
†
22H22 − ρ22ρ12H†22H12(IM1 + ρ12H

†
12H12)

−1H†12H22), (136)

then, it is sufficient to prove a+ b = c+ d or a− d = c− b.

Since (127) is equal to (128), we have

log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21)−

log det(I + ρ11H
†
11H11 − ρ11ρ21H†11H21(I + ρ21H

†
21H21)

−1H†21H11) =

log det(I + ρ21H
†
21H21). (137)

Using similar method, we can see that

a− d = log det(IM1 + ρ12H
†
12H12), (138)

and

c− b = log det(IN2 + ρ12H12H
†
12), (139)

which according to Sylvester’s determinant theorem [34] are equal. This proves the I5 = I ′6.

(126) can be proved similar to the proof of (125) due to symmetry.
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Second Step: It can be proved with a similar discussion as in Appendix E of [4]. A brief sketch of

the proof is given below for completeness.

Suppose S is a p.s.d. matrix and S∗ represents its complex conjugate, i.e., the matrix obtained by

replacing all its entries by the corresponding complex conjugates. Then, it is easy to see that

log det(I + S) = log det(I + S∗). (140)

However, note that all the terms in the different bounds of Ro(0) are of the form of log det(I + S). This

in turn proves that if we replace all the channel matrices of a two-user MIMO IC with feedback by their

complex conjugates the set of upper bounds remain the same. From this fact, it easily follows that

Ro(H
′

, ρR) = Ro(H
R
, ρR). (141)

APPENDIX E

PROOF OF THEOREM 5

In this section, we will find the limit of Ro(0)/ log SNR as SNR → ∞ to get the result as in the

statement of the Theorem 5 when ρij ∼ SNRαij (ρij ∼ SNRαij represents that limSNR→∞
log ρij
log SNR

= αij).

This follows from Theorem 3 since the capacity region is inner and outer- bounded by Ro(0) with constant

gaps which would vanish for the degrees of freedom.

Before going over each of the terms in Ro(0) and finding its high SNR limit, we first give some

Lemmas that will be used for the proof of the Theorem.

Lemma 20 ( [4]). Let Hij ∈ CNj×Mi be a full rank channel matrix. Then, the following holds

log det
(
INj

+ ρijHijH
†
ij

)
= αijmin (Mi, Nj) log SNR + o(log SNR), (142)

where ρij ∼ SNRαij .

Lemma 21 ( [4]). Let Hii ∈ CNi×Mi and Hji ∈ CNi×Mj be two full rank channel matrices such that

[HiiHji] is also full rank. Then, the following holds

log det(INi
+ ρiiHiiH

†
ii + ρjiHjiH

†
ji) = f(Ni, (αii,Mi) , (αji,Mj))log SNR + o(log SNR) (143)
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where f is defined in (28) and ρij ∼ SNRαij .

Lemma 22. Let Σ ∈ CN×M be a diagonal matrix with elements σ1, ..., σm where m = min(M,N) and

Λ ∈ Cm×m be a diagonal matrix with elements |σ1|2, ..., |σm|2, then

Σ†

 (Im + Λ)−1 0

0 I(N−M)+

Σ

=

 Im − (Im + Λ)−1 0

0 0(M−N)+

 . (144)

Proof: We will split the proof in two cases, depending on whether M ≥ N or M < N .

Case 1 - M ≥ N : In this case, we have

Σ†

 (Im + Λ)−1 0

0 I(N−M)+

Σ

=


σ∗1 0 0

0
. . . 0

0 0 σ∗m

0 0 0




1

1+|σ1|2 0 0

0
. . . 0

0 0 1
1+|σm|2



σ1 0 0 0

0
. . . 0 0

0 0 σm 0



=



|σ1|2
1+|σ1|2 0 0 0

0
. . . 0 0

0 0 |σm|2
1+|σm|2 0

0 0 0 0(M−N)+



=


1− 1

1+|σ1|2 0 0 0

0
. . . 0 0

0 0 1− 1
1+|σm|2 0

0 0 0 0(M−N)+


=

 Im − (Im + Λ)−1 0

0 0(M−N)+

 . (145)
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Case 2 - M < N : In this case, we have

Σ†

 (Im + Λ)−1 0

0 I(N−M)+

Σ

=


σ∗1 0 0 0

0
. . . 0 0

0 0 σ∗m 0





1
1+|σ1|2 0 0 0

0
. . . 0 0

0 0 1
1+|σm|2 0

0 0 0 I(N−M)+




σ1 0 0

0
. . . 0

0 0 σm

0 0 0



=



|σ1|2
1+|σ1|2 0 0 0

0
. . . 0 0

0 0 |σm|2
1+|σm|2 0

0 0 0 0(M−N)+



=


1− 1

1+|σ1|2 0 0 0

0
. . . 0 0

0 0 1− 1
1+|σm|2 0

0 0 0 0(M−N)+


=

 Im − (Im + Λ)−1 0

0 0(M−N)+

 . (146)

Lemma 23. Let Hii ∈ CNi×Mi and Hij ∈ CNi×Mj be two channel matrices with each entry independently

chosen from CN(0, 1). Then, the following holds with probability 1 (over the randomness of channel

matrices).

log det(INi
+ ρiiHiiH

†
ii −
√
ρiiρijHiiH

†
ij(INj

+ ρijHijH
†
ij)
−1√

ρiiρijHijH
†
ii)

=
[
αiimin

(
(Mi −Nj)

+, Ni

)
+ (αii − αij)+

(
min (Mi, Ni) −min

(
(Mi −Nj)

+, Ni

) )]
log SNR

+o(log SNR). (147)

where ρij ∼ SNRαij .

Proof: Let the singular value decomposition (SVD) of the channel matrix Hij be given by Hij = Vij

ΣijU
†
ij , where Vij ∈ UNj×Nj and Uij ∈ UMi×Mi are unitary matrices and Σij ∈ UNj×Mi is a rectangular
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matrix containing the singular values along its diagonal. Using the SVD of the matrix Hij we get

INi
+ ρiiHiiH

†
ii −
√
ρiiρijHiiH

†
ij(INj

+ ρijHijH
†
ij)
−1√ρiiρijHijH

†
ii

= INi
+ ρiiHii

(
IMi
− ρijH†ij

(
INj

+ ρijHijH
†
ij

)−1
Hij

)
H†ii (148)

(a)
= INi

+ ρiiHii(IMi
− ρijH†ijVij

 (Imij
+ SNRαijΛij)

−1 0

0 I(Nj−Mi)
+

V †ijHij)H
†
ii

= INi
+ ρiiHii(IMi

− ρijUijΣ†ij

 (Imij
+ SNRαijΛij)

−1 0

0 I(Nj−Mi)
+

ΣijU
†
ij)H

†
ii

= INi
+ ρiiHiiUij(IMi

− SNRαijΣ†ij

 (Imij
+ SNRαijΛij)

−1 0

0 I(Nj−Mi)
+

Σij)U
†
ijH

†
ii

(b)
= INi

+ ρiiHiiUij(IMi
−

 Imij
− (Imij

+ SNRαijΛij)
−1 0

0 0(Mi−Nj)+

)U †ijH
†
ii

= INi
+ SNRαiiHiiUij

 (Imij
+ SNRαijΛij)

−1 0

0 I(Mi−Nj)
+

U †ijH†ii, (149)

where (a) results from SVD of the matrix Hij and (b) follows from Lemma 144.

Let us decompose Uij ∈ UMi×Mi into two parts, Uij1 and Uij2 such that Uij = [Uij1 Uij2], where

Uij1 ∈ UMi×min{Mi,Nj} and Uij2 ∈ UMi×(Mi−Nj)
+ . Then, we get

log det(INi
+ ρiiHiiH

†
ii −
√
ρiiρijHiiH

†
ij(INj

+ ρijHijH
†
ij)
−1√ρiiρijHijH

†
ii)

= log det(INi
+ SNRαiiHii(Uij

 (Imij
+ SNRαijΛij)

−1 0

0 I(Mi−Nj)
+

U †ij)H†ii)
= log det(INi

+Hii(SNR
αiiUij1(Imij

+ SNRαijΛij)
−1U †ij1 + SNRαii(Uij2U

†
ij2))H

†
ii)

= log det(INi
+ SNRαiiHiiUij2U

†
ij2H

†
ii + SNRαii−αijHiiUij1(SNR

−αijImij
+ Λij)

−1
U †ij1H

†
ii, (150)

where mij = min(Mi, Nj), Λij is a diagonal matrix containing the non-zero eigenvalues of HijH
†
ij .

We note that Λij is invertible and when SNR is large, we can bound SNR−αijImij
+Λij from above and

below as, Λij � SNR−αijImij
+ Λij � I + Λij . We will only pursue the direction where SNR−αijImij

+

Λij � Λij and can see that both the directions produce the same result and thus replacing the inner

and outer bound by equality. In what follows, even though SNR−αijImij
+ Λij � Λij , we will substitute
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SNR−αijImij
+ Λij = Λij since by the inner and outer-bounding approach, it can be seen that the limit

will be exactly the same thus not causing any difference in the result. Thus, we have

log det(INi
+ ρiiHiiH

†
ii −
√
ρiiρijHiiH

†
ij(INj

+ ρijHijH
†
ij)
−1√ρiiρijHijH

†
ii)

= log det(INi
+ SNRαiiHiiUij2U

†
ij2H

†
ii + SNR(αii−αij)HiiUij1(Λij)

−1U †ij1H
†
ii + o(log SNR)

(a)
= log det(INi

+ SNRαiiHiiUij2U
†
ij2H

†
ii + SNR(αii−αij)

+

HiiUij1(Λij)
−1U †ij1H

†
ii

(b)
= f(Ni, (αii, (Mi −Nj)

+), ((αii − αij)+,min(Mi, Nj)))log SNR + o(log SNR )

= [αiimin
(
(Mi −Nj)

+, Ni

)
+ (αii − αij)+ min((Ni − (Mi −Nj)

+)+, Nj,Mi)log SNR

+o(log SNR )

(c)
=

[
αiimin

(
(Mi −Nj)

+, Ni

)
+ (αii − αij)+

(
min (Mi, Ni) −min

(
(Mi −Nj)

+, Ni

) )]
log SNR

+o(log SNR ), (151)

where (a) follows from the fact that if (αii − αij) is less than zero we have

SNR(αii−αij)
+

HiiUij1(Λij)
−1U †ij1H

†
ii = o(log SNR), (152)

(b) follows from Lemma 21 and that HiiUij1, HiiUij1Λ
−1/2
ij and Hii[Uij2 Uij1Λ

−1/2
ij ] are all full rank with

probability 1; (c) follows from some simple manipulations.

The rest of the section considers the 6 terms in Ro(0) in (12)-(17), and finds the GDoF region for the

MIMO IC with feedback.

First term: According to the first bound in Ro(0), we have

log det(IN1 + ρ11H11H
†
11 + ρ21H21H

†
21)

(a)
= f((N1, (α11,M1) , (α21,M2)))log SNR + o(log log SNR ), (153)

where (a) is obtained from (21). Now, dividing both sides by log SNR, we get the first GDoF expression.

Second term: The second bound is similar to the first bound by exchanging 1 and 2 in the indices.
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Third term: According to the third bound in Ro(0), we have

log det
(
IN2 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11H

†
11 −

√
ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1√ρ11ρ12H12H

†
11)

(a)
= α12min (M1, N2) + α11min

(
(M1 −N2)

+, N1

)
+

(α11 − α12)
+min (M1, N1) −min

(
(M1 −N2)

+, N1

)
+ o(log SNR ), (154)

where (a) is obtained from Lemma 142 and Lemma 23. Now, dividing both sides by log SNR, the third

GDoF bound results.

Fourth term: The fourth term is similar to the third term by exchanging 1 and 2 in the indices.

Fifth term: According to the fifth bound in Ro(0), we have

log det
(
IN2 + ρ22H22H

†
22 + ρ12H12H

†
12

)
+ log det(IN1 + ρ11H11H

†
11 −
√
ρ11ρ12H11H

†
12(IN2 + ρ12H12H

†
12)
−1√ρ11ρ12H12H

†
11)

(a)
= f ((N2, (α22,M2) , (α12,M1))) + α11min

(
(M1 −N2)

+, N1

)
+

(α11 − α12)
+ (min (M1, N1) −min

(
(M1 −N2)

+, N1

) )
+ o(log SNR ), (155)

where (a) is obtained from Lemma 21 and Lemma 23. Now, dividing both sides by log SNR, the fifth

GDoF bound results.

Sixth term: The sixth term is similar to the fifth term by exchanging 1 and 2 in the indices.
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