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Abstract

In this paper, we use linear codes to study zero-error Slepian-Wolf
coding of a set of sources with deviation symmetry, where the sources are
generalization of the Hamming sources over an arbitrary field. We extend
our previous codes, Generalized Hamming Codes for Multiple Sources, to
Matrix Partition Codes and use the latter to efficiently compress the target
sources. We further show that every perfect or linear-optimal code is a
Matrix Partition Code. We also present some conditions when Matrix
Partition Codes are perfect and/or linear-optimal. Detail discussions of
Matrix Partition Codes on Hamming sources are given at last as examples.

1 Introduction

Slepian-Wolf (SW) Coding or Slepian-Wolf problem refers to separate encod-
ing of multiple correlated sources but joint lossless decoding of the sources [1].
Since then, many researchers have looked into ways to implement SW cod-
ing efficiently. Noticeably, Wyner was the first who realized that linear coset
codes can be used to tackle the problem [2]. Essentially, considering the source
from each terminal as a column vector, the encoding output will simply be
the multiple of a “fat”1 coding matrix and the input vector. The approach
was popularized by Pradhan et al. more than two decades later [3]. Practical
syndrome-based schemes for S-W coding using channel codes have been further
studied in [4, 5, 6, 7, 8, 9, 10, 11, 12].

Unlike many prior works focusing on near-lossless compression, in this work
we consider true lossless compression (zero-error reconstruction) in which sources
are always recovered losslessly [13, 14, 15, 16, 17]. So we say the SW code can
compress S only if any source tuple in S can be reconstructed losslessly. Obvi-
ously, a SW code can compress S if and only if its encoding map restricted to
S is injective (or 1-1).

∗R. Ma was with the Department of Mathematics at the Hong Kong University of Science
and Technology, Hong Kong.

†S. Cheng is with the School of Electrical and Computer Engineering, University of Okla-
homa, Tulsa, OK, 74135 USA email: samuel.cheng@ou.edu. This work was supported in part
by NSF under grant CCF 1117886.

1The input matrix is “fat” so that the length of encoded vector will be shorter than or
equal to the original.
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The source model for zero-error SW coding can be quite a bit different
from the typical probabilistic model studied in classic SW coding literatures.
For example, for highly correlated sources, we expect that sources from most
terminals are likely to be the same. The trivial case is when all s sources are
identical. The next (simplest non-trivial) possible case is when all sources except
one are identical, and in the source that is different from the rest, only one bit
differs from the corresponding bit of other sources. Such source is known to
be Hamming source [18] since it turns out that it is closely related to Hamming
codes.

In [18], we described a generalized syndrome based coset code and extended
the notions of a packing bound and a perfect code from regular channel coding
to SW coding with an arbitrary number of sources. In [19], we introduced
the notion of Hamming Code for Multiple Sources (HCMSs) as a perfect code
solution for Hamming sources. Moreover, we have shown that there exist an
infinite number of HCMSs for three sources. However, we have also pointed out
that not all perfect codes for Hamming sources can be represented as HCMSs.
In [17], we extended HCMS to generalized HCMS. And we showed that any
perfect SW code for a Hamming source is equivalent to a generalized HCMS
(c.f. Theorem 3 in [17]).

Despite our prior results, Hamming source is a very restricted kind of sources
and only binary Hamming sources had been studied in the past. In this paper,
we extend our prior works to input sources in arbitrary fields. Moreover, we in-
troduce a much general kind of sources with deviation symmetry as to be spelled
out in Definition 2.5. We will also show such sources can be handled system-
atically with the proposed Matrix Partition Codes, which can be interpreted as
an extension of the generalized HCMS described in [17]. We also show that the
Matrix Partition Codes of any linear-optimal compression (i.e., higher compres-
sion is impossible) is a Matrix Partition Code. We also present some conditions
when the Matrix Partition Codes are perfect and/or linear-optimal. Some more
detail discussions are further given for special cases such as Hamming sources.

Let us briefly summarize here the notations and conventions used in this
paper. Matrices are generally denoted with upper case letters while vectors
are denoted by lower case letters. Sets are denoted using script font and fields
are denoted using blackboard bold letter font. As matrices are used as map-
ping during encoding, we call a matrix injective (surjective) when the mapping
corresponding to the matrix is injective (surjective). We may also specify the
domain of the mapping. When none is specified, it is understood that the do-
main contains all possible vectors. For example, we say A|S is injective if the
mapping corresponding to matrix A with input domain S is injective. In other
words, for any σ1, σ2 ∈ S and σ1 6= σ2, Aσ1 6= Aσ2. Further, we call a matrix
A a row basis matrix of a matrix B if rows of A form a basis of the row space
of B.

This rest of the paper is organized as follows. In the next section, we will
introduce the target sources with deviation symmetry and the Matrix Parti-
tion Codes. We will include some motivations of the setup in Section 2.1 and
also derive the maximum possible compression achievable by a Matrix Partition
Code. In Section 3, we discuss when a Matrix Partition Code will be perfect.
Moreover, we use generalized Hamming sources as an example and derive the
necessary conditions of perfectness. In Section 4, we present the major result
of this paper—the uniqueness of Matrix Partition Codes. In Section 5, we will
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present some new results that are restricted to a subset of sources with deviation
symmetry, the Hamming sources. In Section 6, before concluding the paper, we
will determine the condition on the source under which actual compression is
possible.

2 Target Sources and Proposed Codes

2.1 Confined-Correlated Source and Connection to Clas-

sic Probabilistic Source Models

Slepian-Wolf (SW) coding is typically referred to as the (near-)lossless compres-
sion of jointly correlated sources with separate encoders but a joint decoder.
And the source is usually modeled probabilistically in the classic setup. More
precisely, an s terminal system can have the sources X1, X2, · · · , Xs, sampled
from some joint distribution p(x1, x2, · · · , xs) at each time instance independent
of another time instances.

Let us consider a simple example of a two terminal source (s = 2) with
Pr(X1 = 0, X2 = 0) = Pr(X1 = 1, X2 = 1) = 0.4 and Pr(X1 = 1, X2 = 0) =
Pr(X1 = 0, X2 = 1) = 0.1. One can see that the marginal distributions of
both terminals are uniformly distributed (i.e., Pr(X1 = 1) = Pr(X1 = 0) =
Pr(X2 = 1) = Pr(X2 = 0) = 0.5). Thus, any sequence drawn from each
terminal will be equally likely and applying variable length code on a sequence
from one terminal will not improve compression efficiency. Note that this is
true in many scenarios when such kind of symmetry exists and will be described
more precisely in Definition 2.5.

Given a block of n source sequence tuples (x1, · · · ,xs) sampled from the
joint source (where each xi has length n), the encoders Enc1, · · · , Encs apply
on their corresponding source sequences only. That is, we have the ith encoding
output

yi = Enci(xi) (2.1)

has length mi and is independent of xj , j 6= i. For any encoder i, we choose to
have the codeword length mi fixed (independent of the input sequence) since as
we mentioned in the previous paragraph, variable length coding is not going to
increase efficiency for the symmetric source that we consider here.

Receiving the compressed outputs y1, · · · ,ys, a joint decoding map Dec will
try to recover the source blocks from all terminals. That is,

(x̂1, · · · , x̂s) = Dec(y1, · · · ,ys), (2.2)

where x̂i is the estimate of xi.
The problem of the aforementioned probabilistic setup is that for a finite n,

true lossless compression is generally not possible. Denote S as the set of all
possible (x1, · · · ,xs) that can be sampled from the source. Define an encoding
map

Enc(x1, · · · ,xs) = (Enc1(x1), · · · , Encs(xs)). (2.3)

Obviously, for a SW coding scheme to be truly lossless, we must have the re-
stricted map Enc|S to be injective (i.e., no two possible inputs will result in the
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same encoded output). Denote Xi and Yi as the alphabets of input and output
of the ith encoder, respectively. For a finite n and a general distribution that
p(x1, · · · , xs) 6= 0 for any combination of scalars x1,· · · ,xs, every (x1, · · · ,xs)
will have a non-zero probability and thus is in S. This essentially means that
the size of the compressed source |Ym1

1 ×· · ·×Yms

s |, which has to be larger than
|S| for true lossless recovery, is just |Xn

1 ×· · ·×Xn
s |. Therefore, one cannot have

both true lossless recovery and real compression (i.e., the net encoded output is
smaller than the input) in this case.

The catch here is that in a classic SW setup, we will allow n to go to
infinity. In consequence, for any distribution, we will have some (x1, · · · ,xs)
(the jointly typical sequences) to have much higher probabilities than the rest,
in such an extend that the other joint sequences will have negligible probabilities
(essentially 0 as n goes to infinity) and can be ignored. Thus we will have |S|
smaller than |Xn

1 × · · · × Xn
s | if we exclude joint sequences that almost never

happen. And this gives us a near-lossless compression for a very large but finite
n.

While the probabilistic approach of the classic SW setup leads to interesting
theoretical performance bounds, an infinite n is not realistic in practice. In
particular, unlike a channel coding problem that is typically designed to operate
at a very high sampling rate, the sampling rate of a SW problem is not a design
parameter but is determined by the nature of the source. For example, in a
typical scenario where the sources are the temperature readings sampled from
different locations, let say, every five minutes. A rather small n, say 100, will
already correspond to over eight hours of delay. Such a delay may not be
acceptable in practical scenarios.

To accommodate a finite delay, one may give up either the lossless require-
ment or the conventional probabilistic model. Giving up the lossless require-
ment will result in the general multiterminal source coding problem, a much
more complicated setup where a general theoretical rate-distortion limit is still
unknown. Instead, we will forfeit the conventional probabilistic model in this
paper. Unlike the conventional SW case, the set S containing all possible joint
sequences is a proper subset of Xn

1 ×· · ·×Xn
s even when n is finite. We will call

such source confined-correlated source to distinguish it from the conventional
case. Another interpretation is simply that joint sequences are directly drawn
from the set S.

Definition 2.1 (Confined-Correlated Source). Given a subset S of Xn
1 × · · · ×

Xn
s , we call the source from which joint sequences are drawn a confined-correlated

source if the probability of having a joint sequence outside S is zero. Note that
once S has been defined, we will treat every element of its equally, regardless
of the original probabilistic structure. And our discussion always directly starts
with a given S. Hence our coding is completely characterized by the source set
S.

Just as most other works in the literatures, we will focus on linear code in
this paper. Here is our mathematical setting. Let F be an arbitrary field. Let
s, n,m1, · · · ,ms be integers that s ≥ 2, n ≥ 1,m1 ≥ 0, · · · ,ms ≥ 0. We restrict
that X1 = · · · = Xs = Y1 = · · · = Ys = F. Hence the source S is a subset of

s terms
︷ ︸︸ ︷

F
n × · · · × F

n and the output codeword space C = F
m1 × · · · × F

ms . Later we
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will further require S to be a source with deviation symmetry (Definition 2.5).
The encoding map is linear in the sense that Enci(xi) = Hixi, where Hi are
mi × n encoding matrices over F for all i. We can have lossless compression
only if (H1, · · · , Hs)|S is injective. Since we will only consider linear lossless
compression in this paper, we will simply refer such kind of compression to as
compression in the following, except for emphasis.

Beside injectivity, we certainly want the output space C to be small. For
this purpose, we define some measure to quantify its size.

Definition 2.2 (Total Code Length, Compression Sum-Ratio, Compression
Ratio Tuples). The total code length M of compression (H1, · · · , Hs) is given
by M = m1+ · · ·+ms, which is dimC. We also define the compression sum-ratio
as M/n and the compression ratio tuples as (m1/n, · · · ,ms/n).

Definition 2.3 (Linear-Optimal Compression). A linear compression is said
to be linear-optimal if there is no other linear compression with respect to the
same source resulting in a shorter total code length.

Definition 2.4 (Perfect Compression). The compression (H1, H2, · · · , Hs) is
said to be perfect if F is finite and |C| = |F|M = |S|.

While there is always a linear-optimal compression scheme, perfect compres-
sion does not always exist. A perfect compression scheme is obviously linear-
optimal but the converse may not be true.

2.2 Confined-Correlated Sources with Deviation Symme-

try

Even with the restriction of linear codes, the considered problem is still too
general. We will introduce the symmetric constraint mentioned in the last
subsection to our target source. Namely, if a joint sequence σ belongs to a
source S, so does a uniform shift σ + (v,v, · · · ,v). The condition is a rather
mild one. Actually, if we imagine that each source output are just readings
derived from a common base source, such symmetry will natural arise if the
observers are symmetrically setup.

Let us consider the equivalent relation on

s terms
︷ ︸︸ ︷

F
n × · · · × F

n that

σ1 ∼ σ2 iff σ1 − σ2 = (v, · · · ,v) for some v ∈ F
n. (2.4)

Then the equivalence classes derived from the equivalence relation partition
the joint sequence space Fn × · · ·×F

n and we may redefine our target source as
follows.

Definition 2.5 (Sources with Deviation Symmetry). A confined-correlated

source S ⊂

s terms
︷ ︸︸ ︷

F
n × · · · × F

n is said to be a source with deviation symmetry if S is
an union of equivalence classes derived from the equivalence relation specified
by (2.4).

A source with deviation symmetry is completely characterized by its compos-
ite equivalence classes, where each can in term be specified by any one element
of the equivalence class. Let us define a representative set as follow.
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Definition 2.6 (Representative Set). A representative set D of a source with
deviation symmetry S contains exactly one element of each equivalence class
that is a subset of S.

Obviously, D is not unique and since D contains exactly one element from
an equivalence class, we have the following property.

δ ∈ D ⇒ (v, · · · ,v) + δ /∈ D, ∀ non-zero v ∈ F
n. (2.5)

Furthermore, if both D and E are representation sets of S, then there exists a
mapping v : D 7→ F

n such that

E = {(v(δ), · · · ,v(δ)) + δ | δ ∈ D}. (2.6)

And from Definition 2.6, source S can be completely characterized by D with

S(D) = {(v, · · · ,v) + δ | v ∈ F
n, δ ∈ D}. (2.7)

Moreover, ∀σ ∈ S, ∃ a unique δ ∈ D and a unique v ∈ F
n such that

σ = (v, · · · ,v) + δ. (2.8)

Indeed, (2.7) guarantees the existence of such v and δ and if (v, · · · ,v) + δ =
(u, · · · ,u) + ζ with another pair of u ∈ F

n, ζ ∈ D, then both δ and (v −
u, · · · ,v − u) + δ are in D. By (2.5), we will have v = u and hence δ = ζ, and
this guarantees the uniqueness. Finally, if F is a finite set, it is easy to see that

|S| = |F|n|D|. (2.9)

Example 2.1 (Hamming Sources). A Hamming source [17] S as defined by

S = {(v, ...,v) + (0, · · · , aej
︸ ︷︷ ︸

i terms

, · · · ,0)|a ∈ F, 1 ≤ i ≤ s, 1 ≤ j ≤ n} (2.10)

is clearly a source with deviation symmetry, where ej is a length-n vector with
zeros for all but the jth component being 1. For s ≥ 3, we can simply choose
the representative set as

D = {(0, · · · , aej
︸ ︷︷ ︸

i terms

, · · · ,0)|a ∈ F, 1 ≤ i ≤ s, 1 ≤ j ≤ n} (2.11)

and we have
|S| = |F|n(1 + s(|F| − 1)n) for finite F. (2.12)

But when s = 2, (2.11) is not a good choice as

(0, e1) = (e1, e1) + (−e1,0), (2.13)

which contravenes the restriction (2.5). Instead, we may choose

D = {(0, aej)|a ∈ F, 1 ≤ j ≤ n} (2.14)

and get
|S| = |F|n(1 + (|F| − 1)n) for finite F. (2.15)
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Before we end this section, we would like to define a vectorized correspon-
dence of D for later usage. Let

D̃ =














d1

d2

...
ds








∣
∣
∣
∣
∣
∣
∣
∣
∣

(d1, · · · ,ds) ∈ D







⊂ F
sn. (2.16)

We have
|D| = |D̃| for finite field F. (2.17)

2.3 Pre-Matrix Partition Codes

The following theorem suggests a way to construct codes for sources with devi-
ation symmetry. We call such codes Pre-Matrix Partition Codes as the name
Matrix Partition Codes will be reserved to the more refined codes to be discussed
shortly afterward.

Theorem 2.1 (Pre-Matrix Partition Codes). Let P be an r×sn matrix (r ∈ Z+)
over F s.t.

P |
D̃

is injective. (2.18)

Suppose P can be partitioned into

P = [Q1| · · · |Qs] s.t. Q1 + · · ·+Qs = 0, (2.19)

where all Qi are r × n matrices. Then for any matrix T ′ that








Q1

...

Qs

T ′








forms an injective matrix, (2.20)

we let {G′
i|1 ≤ i ≤ s} be a row partition of T ′, ie






G′
1
...

G′
s




 = T ′. (2.21)

Encoding matrices (H1, ..., Hs) with

nullHi = null

(
G′

i

Qi

)

for all i (2.22)

form a compression that we name Pre-Matrix Partition Code.

Proof. Define S+ = {σ1 − σ2|σ1, σ2 ∈ S}. Since (H1, ..., Hs)|S is injective iff

nullH1 × nullH2 × · · · × nullHs ∩ S+ = {0}, (2.23)
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the validity of the compression solely depends on the null spaces of coding

matrices Hi. Thus we only need to prove for the special case when Hi =

(
G′

i

Qi

)

for all i.
Suppose (

G′
i

Qi

)

(u+ di) =

(
G′

i

Qi

)

(v + fi) for 1 ≤ i ≤ s, (2.24)

where u,v ∈ F
n; (d1, · · · ,ds), (f1, · · · , fs) ∈ D. We get

(
G′

i

Qi

)

(w + di − fi) = 0 for 1 ≤ i ≤ s, (2.25)

where w = u− v. In particular,

Qi(w + di − fi) = 0 for 1 ≤ i ≤ s (2.26)

and hence
Q1(w + d1 − f1) + · · ·+Qs(w + ds − fs) = 0. (2.27)

By (2.19), we get

Q1(d1) + ...+Qs(ds) = Q1(f1) + ..+Qs(fs) (2.28)

⇒ P






d1

...
ds




 = P






f1
...
fs




 . (2.29)

By (2.18),





d1

...
ds




 =






f1
...
fs




 . (2.30)

Then (2.25) become
(
G′

i

Qi

)

(w) = 0 for 1 ≤ i ≤ s, (2.31)

which gives







Q1

...
Qs

T ′








(w) = 0 (c.f. (2.21)). (2.32)

Hence we must have w = u− v = 0 by (2.20).

The Pre-Matrix Partition Codes fulfill the basic requirement of our defini-
tion of compression, i.e., injectivity. They do not take the sizes of the output
codeword spaces into account. In the following, we are going to put more re-
striction on the codes to maximize the compression efficiency (in the sense of
Theorem 2.2).
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2.4 Matrix Partition Codes

Definition 2.7 (Matrix Partition Codes). Let P be a matrix satisfying (2.18)
and (2.19). Let

Y be a row basis matrix of






Q1

...
Qs




 (2.33)

and T be a matrix s.t.
(
Y
T

)

is an invertible n× n matrix. (2.34)

Then we call the compression with encoding matrices

U1

(
C1

G1

)

, · · · , Us

(
Cs

Gs

)

(2.35)

a Matrix Partition Code for source S, where T =






G1

...
Gs




, Ci are row basis

matrices of Qi, and Ui are arbitrary invertible matrices with appropriate sizes
for all i.

Those Ui may seem redundant and we usually set it to identity. But they are
indispensable for the code to cover all perfect compression and linear-optimal
compression. A Matrix Partition Code can be seen as a Pre-Matrix Partition
Code with T ′ = T and G′

i = Gi for all i, and hence it is a valid compression
too.

This type of compression (2.35) first appeared in [17] to deal with the mul-
tiple Hamming sources over Z2, in which we called it Generalized HCMS for
perfect compressions. Now we find that it is applicable to any source with de-
viation symmetry, a class of source much wider than Hamming source, over an
arbitrary field. We would now call the code described by (2.35) as a Matrix
Partition Code and the matrix P as the parent matrix of the Matrix Partition
Code. We will show in Section 4 that every compression of a source with de-
viation symmetry can be deduced from Theorem 2.1. Every linear-optimal or
perfect compression is a Matrix Partition Code. Before doing that, we derive
here the minimum possible sum-ratio (highest compression) allowed by a Matrix
Partition Code.

Theorem 2.2 (Compression Ratio Tuples). Suppose the parent matrix P of

(2.18) and (2.19) is given. Then the compression ratio tuples (m1/n, · · · ,ms/n)
of any Pre-Matrix Partition Code fulfill mi = rankQi+ri, where ri ∈ {0, 1, 2, ··}
for all i such that

r1 + · · ·+ rs ≥ n− rank






Q1

...

Qs




 . (2.36)

Moreover equality (2.36) holds if and only if the code is a Matrix Partition Code.
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The proof below frequently uses the fact that rank A+ rankB ≥ rank

(
A
B

)

and the equality holds iff rowA
⋂

rowB = {0}, where the word row means the
row space of.

Proof. Let i ∈ {1, · · · , s}. Let G′
i, Qi, Hi be those defined in Theorem 2.1.

WLOG, we decompose

G′

i =

(
Ai

Di

)

, (2.37)

such that

row Ai

⋂

row Qi = {0}, row

(
Ai

Qi

)

= row

(
G′

i

Qi

)

. (2.38)

Equation (2.22) becomes nullHi =null

(
Ai

Qi

)

. Therefore rowHi =row

(
Ai

Qi

)

and

rankHi =rank

(
Ai

Qi

)

. Thus we have

mi = number of rows of Hi ≥ rank H = rankAi + rankQi. (2.39)

Moreover













Q1

...
Qs

A1

...
As













is injective (with n columns) by (2.20) and the second equation

in (2.38). We get

rankA1 + · · ·+ rankAs ≥ n− rank






Q1

...
Qs




 . (2.40)

By (2.39) and (2.40), we get (2.36) with ri = mi−rankQi.
Secondly, equality (2.36) holds iff equalities (2.39) and (2.40) both hold. Let

Gi be a row basic matrix of Ai and Ci be a row basic matrix of Qi. We have
row Gi

⋂
row Ci = {0}, thanks to the first equation in (2.38). Equality (2.39)

holds iff Hi is a surjective matrix and hence a row basic matrix of

(
Ai

Qi

)

. Notice

that

(
Gi

Ci

)

is also a surjective matrix of

(
Ai

Qi

)

, we conclude that equality (2.39)

holds iff

Hi = Ui

(
Gi

Ci

)

(2.41)

for an invertible matrix Ui. We also let Y be a row basic matrix of






Q1

...
Qs




. So








Y
G1

...
Gs








is injective and (2.40) is equivalent to rankG1+· · ·+rankGs ≥ n−rankY ,
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which holds iff rowG1 ⊕ · · · ⊕rowGs⊕rowY = F
n. Since all G1, · · · , Gs and Y

are surjective, we conclude equality (2.40) holds iff

(
Y
T

)

is bijective, for T =






G1

...
Gs




 . (2.42)

Notice that (2.41) and (2.42) are all we need to define a Matrix Partition Code
with the given P (c.f. Definition 2.7) and so we complete the proof.

Corollary 1. All the values of compression ratio tuples allowed by (2.36) are

achievable by the Pre-Matrix Partition Codes.

Proof. Given any r1, · · · , rs such that equality (2.36) holds. Let T be a matrix
defined in (2.34) or (2.42). We have

r1 + · · ·+ rs = n− rank






Q1

...
Qs




 = number of rows of T. (2.43)

Hence we can partition T into those Gi such that Gi have ri rows for all i, re-
spectively. Let (H1, · · · , Hs) be a compression of Matrix Partition Code defined
by (2.35) or (2.41). We have

ri = mi − rankQi = number of rows of Gi. (2.44)

Therefore (H1, · · · , Hs) has the corresponding compression ratio tuples of the
given r1, · · · , rs. As a result all the values allowed by the equality in (2.36) are
achievable.

In general, for any (r1, · · · , rs) allowed by (2.36), we let ai ∈ {0, 1, 2, · · · }
such that ri ≥ ai and

a1 + · · ·+ as = n− rank






Q1

...
Qs




 . (2.45)

By the previous argument, there exists a Matrix Partition Code (H1, · · · , Hs)
such that mi = ai+rankQi for all i. Then (H ′

1, · · · , H
′
s) is the Pre-Matrix

Partition Code with the desired compression ratio tuples, where those H ′
i are

obtained by augmenting the corresponding Hi vertically with ri − ai zero rows
for all i.

Corollary 2. The total code length M ≥rankQ1+ · · ·+rankQs−rank






Q1

...

Qs




 for

any Pre-Matrix Partition Code, and the equality holds if and only if the code is

a Matrix Partition Code.

Proof. Simply because M = m1 + · · ·+ms.
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It is tempting to think that changing the choice of D should end up with a
different parent matrix P that may increase compression efficiency. However,
it turns out that it is not the case. The parent matrix P is independent of such
a choice as shown by the following theorem.

Theorem 2.3. Let both D and E be representation sets of source S. If P is a

parent matrix of D as specified in Theorem 2.1, then P |
Ẽ
is also injective, where

Ẽ is a vectorized E given by

Ẽ =












f1
...

fs






∣
∣
∣
∣
∣
∣
∣

(f1, · · · , fs) ∈ E







. (c.f. (2.16)) (2.46)

Proof. From (2.6), there exists mapping v(·) such that

Ẽ =












v(δ) + d1

...
v(δ) + ds






∣
∣
∣
∣
∣
∣
∣

δ = (d1, · · · ,ds) ∈ D







. (2.47)

Suppose

P






v(δ) + d1

...
v(δ) + ds




 = P






v(γ) + g1

...
v(γ) + gs




 , (2.48)

where δ, γ ∈ D such that δ = (d1, ....,ds), γ = (g1, ...,gs). Then

P






d1

...
ds




 = P






g1

...
gs




 by (2.19) ;






d1

...
ds




 =






g1

...
gs




 by (2.18);

i.e. δ = γ and we get





v(δ) + d1

...
v(δ) + ds




 =






v(γ) + g1

...
v(γ) + gs




 .

Hence, P |
Ẽ
is also injective.

3 Perfect Compression of Matrix Partition Code

In this section, we study perfect compression. By Definition 2.4, the field F is
required to be finite, and a code is perfect if and only if the cardinality of the
range of the mapping is the same as that of the source, i.e. |C| = |S|. Since
|C| = |F|M and |S| = |F|n|D| in (2.9) and |D| = |D̃| in (2.17), we have

|F|M−n = |D| = |D̃|. (3.1)

For the sake of simplicity, we won’t extend the definition to infinite field.
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3.1 Perfect Compression for S over Finite Fields

The following theorem explains a necessary condition for a perfect Matrix Par-
tition Code.

Theorem 3.1 (Necessary Condition of Perfect Codes). To have a perfect com-

pression of Matrix Partition Code, we must have an (M − n) × sn matrix P
such that

P |
D̃

is bijective. (3.2)

Proof. Suppose we have a perfect code constructed from a parent matrix P ′,
any matrix P with the same row space of P ′ can be viewed as the parent matrix
of the code. Indeed if rowP =rowP ′, then nullP =nullP ′ and rowQi =rowQ′

i

for all i. Hence P also satisfies (2.18) and (2.19), and shares the same other
components (such as Y , Ci,· · · , etc.) with P ′ in Definition 2.7. In particular,
we let P be a row basic matrix of P ′. Let r be the number of rows of P so that
P is an r × sn matrix. We are going to show P |

D̃
is bijective and r = M − n.

Since we have shown P |
D̃

is injective (that is (2.18)), we only need to show
that P |

D̃
is also surjective. Suppose P |

D̃
is not surjective, then we can pick

a u ∈ F
r such that u /∈ P (D̃). Since P is a row basis matrix and thus is a

surjective matrix, there exists a δ ∈ F
sn with Pδ = u. Notice that by (2.19),

P




δ +






v
...
v









 = P (δ) = u for all v ∈ F

n, (3.3)

thus δ +






v
...
v




 /∈ D̃ for all v ∈ F

n. Therefore we can extend D̃ to D̃′ = D̃ ∪ {δ}

and the source S to the corresponding S ′. Notice that P |
D̃′ is injective and hence

we can compress S ′ by the same compression. This leads to a contradiction as
|S ′| > |S| = |C|.

Finally, by (3.1), we must have r = M − n if P |
D̃

is bijective.

Actually (3.2) is a necessary condition for any perfect compression of the
given S simply because it turns out that any perfect compression can be realized
by a Matrix Partition Code. We will defer the discussion to Section 4.

3.2 Necessary Conditions for Perfect Compression on Gen-

eralized Hamming Source

Let L be a non-empty subset of F s.t. 0 /∈ L. We define

S = {(v, · · · ,v)+(0, · · · , λej
︸ ︷︷ ︸

i−th

, · · · ,0)|v ∈ F
n, λ ∈ L∪{0}, 1 ≤ i ≤ s, 1 ≤ j ≤ n}.

(3.4)
Notice that if L = F − {0}, then S is just the Hamming source over F (c.f.

(2.10)). Therefore we call S as generalized Hamming source. Obviously it is a
source with deviation symmetry.
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Let s ≥ 3. We pick

D = {(0, · · · , λej
︸ ︷︷ ︸

i−th

, · · · ,0)|λ ∈ L ∪ {0}, 1 ≤ i ≤ s, 1 ≤ j ≤ n} (3.5)

and the corresponding

D̃ = {λei|λ ∈ L ∪ {0}, 1 ≤ i ≤ sn}. (3.6)

We have
|D̃| = 1 + |L|sn. (3.7)

To have a perfect compression, we must have (3.1) and hence

|F|M−n = 1 + |L|sn. (3.8)

So, s and |L| can’t be multiplier of p, the characteristic of F (|F| = pu for some
positive integer u). If it is the case, then we have infinite pair of numbers (M,n)
satisfying (3.8) by Euler theorem.

Theorem 3.2 (Necessary Conditions of Perfect Matrix Partition Codes for
Generalized Hamming Sources). The necessary and sufficient condition for the

existence of an (M − n) × sn matrix P which is bijective when restricted to

D̃ is that |F| − 1 is divisible by |L| and ∃ distinct a1, a2, · · · , ak ∈ F, with

k = (|F| − 1)/|L|, such that

F− {0} = {aiλ|1 ≤ i ≤ k;λ ∈ L}. (3.9)

Proof. If L fulfills the conditions, then sn/k = (|F|M−n − 1)/(|F| − 1) by (3.8).
Thus sn/k is an integer. Let {v1,v2, · · · ,vsn/k} be a subset of FM−n that each
element is a not multiplier of the other. Define P through its column

Pi+(j−1)k = aivj , for 1 ≤ i ≤ k, 1 ≤ j ≤ sn/k. (3.10)

Then we will show P |
D̃

is injective. Suppose

P (λ1ei+(j−1)k) = P (λ2eb+(c−1)k), (3.11)

where λ1, λ2 ∈ L ∪ {0}; i, b ≤ k; j, c ≤ sn/k. Then

λ1aivj = λ2abvc, (3.12)

which gives λ1 = λ2 = 0 that yields λ1ei+(j−1)k = λ2eb+(c−1)k immediately or
j = c with λ1 6= 0 6= λ2. So let assume we are in the second case. By counting
the number of elements in both sides of (3.9), we conclude that every nonzero
element of F is a product of a unique λ and a unique aj(λ ∈ L, 1 ≤ j ≤ k).
Thus, we get λ1 = λ2 and i = b. Hence P |

D̃
is injective. By (3.1), P |

D̃
is

bijective.
Conversely, let J be a maximal subset of the index set {1, 2, · · · , sn} such

that Pj , the j-th column of P , is a multiplier of P1 for all j ∈ J . So if Pi is a
multiplier of P1, then i ∈ J . Let Pj = ajP1 for all j ∈ J . The columns of P
must be nonzero and distinct from each other, otherwise P |

D̃
can’t be injective.

It follows that aj are nonzero for all j ∈ J and distinct from each other. Then

the bijectivity of P |
D̃

implies ∀b ∈ F − {0}, ∃ unique λei ∈ D̃ (c.f. (3.6)) with
λ ∈ L, 1 ≤ i ≤ sn, such that P (λei) = bP1. Hence i ∈ J and λai = b. By
counting, we get (|F|−1)/|L| is an integer and (3.9) is fulfilled with k = |J |.
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We remark that Theorem 3.2 only characterizes necessary conditions since
even if P is bijective when restricted to D̃, it does not mean that we will have
a perfect compression of Matrix Partition Codes (see [18]). However, it is not
the case when s = 2. Here we give some examples of perfect compression:

Example 3.1. F = Z11,L = Z11 − {0} (Hamming source over Z11), n = 4 and
s = 3:

H1 = Q1 =

(
1 1 −2 −2
0 2 −1 −7

)

, (3.13)

H2 = Q2 =

(
0 9 1 1
1 5 5 8

)

, (3.14)

H3 = Q3 =

(
−1 1 1 1
−1 4 7 −1

)

. (3.15)

Notice that each nonzero vector of F
2 has one and only one multiplier as a

column vector of P = [Q1Q2 Q3 ].

Example 3.2. F = Z5,L = {1,−1}, n = 4 and s = 3:

H1 = Q1 =

(
1 0 1 1
0 2 2 −2

)

, (3.16)

H2 = Q2 =

(
0 2 −2 2
1 0 −1 −1

)

, (3.17)

H3 = Q3 =

(
−1 −2 1 2
−1 −2 −1 −2

)

, (3.18)

Notice that {a1, a2} = {1, 2} (c.f.(3.9)),

{v1,v2,v3,v4,v5,v6} =

{(
1
0

)

,

(
0
1

)

,

(
−1
−1

)

,

(
1
2

)

,

(
−2
−1

)

,

(
1
−1

)}

(c.f.(3.10)).

Example 3.3. F = Z5,L = {1}, n = 6, s = 4:

H1 = Q1 =

(
1 0 1 1 2 2
0 1 1 2 −2 −1

)

, (3.19)

H2 = Q2 =

(
−1 0 2 −1 2 −1
0 2 2 −2 1 1

)

, (3.20)

H3 = Q3 =

(
2 0 −2 1 −2 1
0 −1 −2 −2 2 −1

)

, (3.21)

H4 = Q4 =

(
−2 0 −1 −1 −2 −2
0 −2 −1 2 −1 1

)

. (3.22)

The matrix P = [Q1Q2 Q3 Q4 ] consists of all nonzero vectors of F2 without
repetition.

Example 3.4. F = GF(4) = Z2(α) with α2 + α + 1 = 0; L = {1, α, α + 1},
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n = 7, s = 3

T =
(
0 0 0 0 0 0 1

)
, (3.23)

Q1 =





1 1 0 0 1 α α
1 0 1 0 α 1 α
0 0 0 1 α α 1



 , (3.24)

H1 =

(
T
Q1

)

, (3.25)

H2 = Q2 =





1 α+ 1 0 1 α α+ 1 α+ 1
0 1 α+ 1 0 1 α+ 1 1
1 0 1 α+ 1 1 1 α+ 1



 , (3.26)

H3 = Q3 =





0 α 0 1 α+ 1 1 1
1 1 α 0 α+ 1 α α+ 1
1 0 1 α α+ 1 α+ 1 α



 . (3.27)

It is a Hamming source over GF(4). Each nonzero vector of F3 has one and only

one multiplier as a column vector of P = [Q1 Q2 Q3 ]. Besides, (Q1,

(
T
Q2

)

, Q3)

and (Q1, Q2,

(
T
Q3

)

) are also perfect compressions.

Let s = 2. We rewrite (3.4) as

S = {(v,v) + (0, aei)|v ∈ F
n, 1 ≤ i ≤ n, a ∈ L ∪ L− ∪ {0}}, (3.28)

where L− = {−a|a ∈ L}. We have

D = {(0, aei))|1 ≤ i ≤ n, a ∈ L ∪ L− ∪ {0}}. (3.29)

The corresponding

D̃ = {aei|a ∈ L ∪ L− ∪ {0}, n < i ≤ 2n}. (3.30)

Then
|D̃| = 1 + n|L ∪ L−|. (3.31)

To have a perfect compression, we must have (3.1), i.e.

|F|M−n = 1 + n|L ∪ L−|. (3.32)

Now we are seeking an (M − n) × 2n matrix P to be bijective when restricted
to D̃. Since the first n columns in P virtually play no role on D̃, it can be
arbitrary. Let

P = [−Q2 Q2 ]. (3.33)

where Q2 is an (M − n)× n matrix so that P satisfies (2.19). Let

D̃′ = {aei|a ∈ L ∪ L− ∪ {0}, 1 ≤ i ≤ n}, (3.34)

which is just the nontrivial segment of the D̃ in (3.30).

Theorem 3.3 (Necessary and Sufficient Conditions of Perfect Matrix Partition
Codes for Generalized Hamming Sources with s = 2). The following statements

imply each other:
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• We have an (M − n)× 2n matrix P which is bijective when restricted to

D̃.

• We have an (M − n)× n matrix Q2 which is bijective when restricted to

D̃′.

• ∃ distinct a1, a2, · · · , ak ∈ F, with k = (|F| − 1)/|L ∪ L−|, such that F −
{0} = {aiλ|1 ≤ i ≤ k;λ ∈ L ∪ L−}.

Proof. Similar to the proof of Theorem 3.2 .

Once we have the Q2 in the above theorem, it can be shown that the pair
(
G1

Q2

)

,

(
G2

Q2

)

is a Matrix Partition Code and a perfect compression whenever




G1

G2

Q2



 forms an n×n invertible matrix. Notice that (In×n, Q2) is also a perfect

compression, which is a Matrix Partition Code with certain U1.

Example 3.5. F = GF (4) with α2 +α+1 = 0, L = F−{0}, n = 5, s = 2. Let

Q2 =

(
1 0 1 1 1
0 1 1 α 1 + α

)

. (3.35)

The following pairs of matrices are all perfect compression:

• I5×5 and Q2;

•

(
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Q2

)

and Q2;

•

(
0 0 1 0 0
0 0 0 0 1

Q2

)

and

(
0 0 0 1 0

Q2

)

.

3.3 Examples beyond Generalized Hamming Source

Here we will provide some examples where the sources are not generalized Ham-
ming. The first two examples illustrate that one can modify a given compression
when the original source has been deformed.

Example 3.6. F = Z11, s = 5, n = 6.
D = {(0, · · · ,0, aej

︸ ︷︷ ︸

i−th

,0, · · · ,0) | a ∈ F, 1 ≤ i ≤ 3, 1 ≤ j ≤ 4}.

Notice that this is just the Hamming source (c.f. Example 3.1) trapping in
a bigger space. So we can modify the previous setting to obtain a new perfect
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compression.

H1 = Q1 =

(
1 1 −2 −2 0 0
0 2 −1 −7 0 0

)

, (3.36)

H2 = Q2 =

(
0 9 1 1 0 0
1 5 5 8 0 0

)

, (3.37)

H3 = Q3 =

(
−1 1 1 1 0 0
−1 4 7 −1 0 0

)

, (3.38)

Q4 = Q5 =

(
0 0 0 0 0 0
0 0 0 0 0 0

)

, (3.39)

T =

(
0 0 0 0 1 0
0 0 0 0 0 1

)

. (3.40)

And we chose H4 =
(
0 0 0 0 1 0

)
, H5 =

(
0 0 0 0 0 1

)
.

Example 3.7. F = Z11, s = 4, n = 5.

D ={(0, · · · ,0, aej
︸ ︷︷ ︸

i−th

,0, · · · ,0) | a ∈ F, 1 ≤ i ≤ 3, 1 ≤ j ≤ 5} (3.41)

− {(ae1,0,0,0), (0, ae1,0,0), (0,0, ae2,0) | a ∈ F}. (3.42)

This is the source of the Example 3.1 with some shifting. We extend P =
[Q1 Q2 Q3 Q4] accordingly.

H1 = Q1 =

(
1 1 −2 −2 1
0 2 −1 −7 0

)

, (3.43)

H2 = Q2 =

(
0 9 1 1 0
1 5 5 8 1

)

, (3.44)

H3 = Q3 =

(
−1 1 1 1 1
−1 4 7 −1 4

)

, (3.45)

Q4 = −Q1 − Q2 − Q3 =

(
0 0 0 0 −2
0 0 0 0 −5

)

, and H4 =
(
0 0 0 0 1

)
, a

row basis matrix of Q4.

In the third example, we make use of an existing code to create a compression
for another source, where D has been changed almost completely. The old code
works as long as the parent matrix P still fulfills (2.18) with the new D̃. If
the existing one is a perfect compression and P |new D̃

is bijective, then the
compression is also perfect for the new source simply by counting.

Example 3.8. F = Z5, n = 6, s = 4.

D ={(±ej,0,0)|1 ≤ j ≤ 6} ∪ {(0, ej ,0,0)|j ∈ {2, 3, 5, 6}}∪

{(e3,0, e1, e3), (e1 + e2,0, e3, e3), (0, e1 + e2 + e4,0,0)}∪

{(3e1, 2e2,−2e1, e4 + e2), (0,0,0, e4), (e5, e6,0,0)}∪

{(0,0, e4,0), (0,0,0, e2), (0,0,0,0)}. (3.46)

The compression (H1, H2, H3, H4) is the same as Example 3.3.
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4 Uniqueness of Matrix Partition Codes

In this section, we will show that Matrix Partition Codes are unique in the sense
that any linear-optimal or perfect compression is a Matrix Partition Code.

4.1 Null Space View

We will first study the null spaces of lossless compression simply because null
spaces of coding matrices determines injectivity entirely.

Lemma 4.1. If (H1, · · · , Hs) is a lossless compression of a source with devia-

tion symmetry, then we have nullH1 ∩ · · · ∩ nullHs = {0}.

Proof. Let v ∈ nullH1∩· · · ∩nullHs. Pick a σ ∈ S. We have σ+(v, · · · ,v) ∈ S
(c.f. Definition 2.5). Moreover, (H1, · · · , Hs)(σ) = (H1, · · · , Hs)(σ+(v, · · · ,v)).
As (H1, · · · , Hs) is a compression, σ = σ + (v, · · · ,v) that v = 0.

Thus if nullH1 ∩ · · · ∩ nullHs−1 ⊃ K 6= {0}, we have nullHs ∩ K = {0}.
In this situation, the following theorem tells us that we can build up another
compression H ′

1, · · · , H
′
s merely by shifting the K from the one of the first s− 1

terminals to the last terminal.

Theorem 4.1 (Nullspace Shifting). Suppose (H1, · · · , Hs) is a compression for

S. Let π be a permutation of the index set {1, 2, · · · , s} that

{
nullHπ(i) = K ⊕Ni, for 1 ≤ i < s,
nullHπ(s) = Ns,

(4.1)

where K,Ni are subspaces of Fn. Then (H ′
1, · · · , H

′
s) is also a compression for

S if

{

nullH ′

π(1) = N1,

nullH ′

π(i) = K ⊕Ni, for 1 < i ≤ s.
(4.2)

Furthermore if Hi and H ′
i are surjective for all i, then the two compressions

have the same compression sum-ratio. For finite field that if (H1, · · · , Hs) is a

perfect compression, then (H ′
1, · · · , H

′
s) is also a perfect compression.

Proof of Theorem 4.1. WLOG, let’s put π = 1 for simplicity. Note that (H ′
1,

· · · , H ′
s)|S is injective if and only if nullH ′

1 × · · · × nullH ′
s ∩ S+ = {0}, where

S+ = {σ1 − σ2|σ1, σ2 ∈ S}.2 Let σ+ ∈ nullH ′
1 × · · · × nullH ′

s ∩ S+. Decompose
σ+ = (n1,k2 +n2, · · · ,ks−1 +ns−1,ks +ns), where ni ∈ Ni and ki ∈ K for all
i. Since S+ is also a source with deviation symmetry, we have

σ+−(ks, · · · ,ks) = (n1−ks,k2+n2−ks, · · · ,ks−1+ns−1−ks,ns) ∈ S+. (4.3)

By checking the null space of (H1, · · · , Hs), we find σ+ − (ks, · · · ,ks) ∈ S+ ∩
nullH1×· · ·×nullHs = {0} because (H1, · · · , Hs)|S is injective. The first entry
in the RHS of (4.3) gives n1 = ks = 0, and all other entries follow suit and give
ki = 0 = ni for all i. Hence σ+ = 0 and (H ′

1, · · · , H
′
s)|S is injective.

2 Here we use the notation S+ for the sake of consistence with [17], where {σ1−σ2|σ1, σ2 ∈
S} = {σ1 + σ2|σ1, σ2 ∈ S} since only binary sources were considered.
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Next if all Hi and H ′
i are surjective for all i, then the two compressions have

the same compression sum-ratio (sn−
∑s

i=1 dimNi − (s− 1)dimK)/n.
Lastly, if (H1, · · · , Hs) is a perfect compression, then (H1, · · · , Hs)|S is sur-

jective, still more so for (H1, · · · , Hs) per se. If (H
′
1, · · · , H

′
s) is also surjective,

the codeword spaces of the two compressions will be of the same dimension
sn−

∑s
i=1 dimNi − (s− 1)dimK and hence same cardinality.

4.2 Proof of Uniqueness of Matrix Partition Codes

In this part, we present a major result of the paper—the proof of uniqueness
of Matrix Partition Codes. We will need to first illustrate how a parent matrix
can be extracted from arbitrary compression. This in turn requires the following
lemma.

Lemma 4.2. Given a compression (H1, · · · , Hs) of S, we define an (s−1)n×sn
matrix

X =







I −I 0 · · · 0 0
0 I −I · · · 0 0

· · ·
0 0 0 · · · I −I







, (4.4)

where I denotes the n× n identity matrix, and an M × sn matrix

J =





H1 · · · 0
· · ·

0 · · · Hs



 . (4.5)

We have (X, J) forms a compression for another source with deviation symmetry

S ′ = {(v,v + d′)|v ∈ F
sn,d′ ∈ D̃} ⊂ F

sn × F
sn, (4.6)

where D̃ was defined in (2.16). If in addition, (H1, · · · , Hs) is a perfect com-

pression for S, then (X, J) is a perfect compression for S′.

Proof. Suppose



X






v1

...
vs






∣
∣
∣
∣
∣
∣
∣

J






v1 + d1

...
vs + ds









 =




X






u1

...
us






∣
∣
∣
∣
∣
∣
∣

J






u1 + f1
...

us + fs









 (4.7)

where vi,ui ∈ F
n for all i; (d1, · · · ,ds), (f1, · · · , fs) ∈ D(⇔






d1

...
ds




 ,






f1
...
fs




 ∈ D̃).

From the outputs of X , we get







v1 − v2

v2 − v3

...
vs−1 − vs








=








u1 − u2

u2 − u3

...
us−1 − us








⇒








v1 − u1

v2 − u2

...
vs−1 − us−1








=








v2 − u2

v3 − u3

...
vs − us








. (4.8)

Thus we have
w , v1 − u1 = v2 − u2 = · · · = vs − us. (4.9)
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The outputs of J give






H1(v1 + d1)
...

Hs(vs + ds)




 =






H1(u1 + f1)
...

Hs(us + fs)




 (4.10)






H1(w + d1)
...

Hs(w + ds)




 =






H1(f1)
...

Hs(fs)






Since (w+ d1, · · · ,w+ ds) and (f1, · · · , fs) ∈ S and (H1, · · · , Hs) is a com-
pression for S, we have (w + d1, · · · ,w + ds) = (f1, · · · , fs). By (2.8) and the
fact that (d1, · · · ,ds) and (f1, · · · , fs) are both in D, we get

w = 0 and (d1, · · · ,ds) = (f1, · · · , fs), (4.11)

i.e. 




v1

...
vs




 =






u1

...
us




 and






v1 + d1

...
vs + ds




 =






u1 + f1
...

us + fs




 . (4.12)

Thus, (X, J) is a compression for S ′.
Finally, if (H1, · · · , Hs) is a perfect compression, then |C| = |S| = |F|n|D|.

On the other hand, the target space of (X, J) is F(s−1)n × C, whose cardinality
is |F|(s−1)n|C| = |F|sn|D| = |F|sn|D̃| = |S ′|. Therefore, (X, J) is also a perfect
compression.

Theorem 4.2 (Existence of ParentMatrix). Given a compression (H1, · · · , Hs),
∃ a surjective parent matrix P of S satisfying (2.18) and (2.19) with nullHi ⊂
nullQi for all i. Moreover, if Hi are surjective for all i, then P is an (M−n)×sn
matrix such that for finite F, P |

D̃
is bijective if and only if (H1, · · · , Hs) is a

perfect compression.

Proof. Lemma 4.2 tells us that the corresponding (X, J) defined in (4.4) and
(4.5) is a compression of S ′ (c.f. (4.6)). By Theorem 4.1, any two matrices with
null spaces {0} and nullX ⊕ nullJ also forms a compression for S ′. Therefore,
(Isn×sn, P ) is a compression of S ′, where P is an r × sn surjective matrix with
nullP = nullX ⊕ nullJ . It follows that

r = sn− dimnullX − dimnullJ. (4.13)

To see P is the parent matrix that we are looking for, we partition P into P =
[Q1, · · · , Qs], where Qi are r×n matrices for all i. We haveQ1+Q2+...+Qs = 0
since

nullX =












v
...
v






∣
∣
∣
∣
∣
∣
∣

v ∈ F
n







⊂ nullP. (4.14)
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Thus P satisfies (2.19). Moreover,

nullJ =












n1

...
ns






∣
∣
∣
∣
∣
∣
∣

ni ∈ nullHi for 1 ≤ i ≤ s







⊂ nullP (4.15)

implies
nullHi ⊂ nullQi for all i. (4.16)

To prove P |
D̃

is injective (c.f. (2.18)), we let d′, f ′ ∈ D̃. Suppose Pd′ = P f ′.
We have

(Isn×sn0, P (0+ d′)) = (Isn×sn0, P (0+ f ′)). (4.17)

Since both (0,0+d′) and (0,0+ f ′) belong to S ′ and (Isn×sn, P )|S′ is injective,
we get d′ = f ′ and hence P satisfies (2.18).

Next if Hi are surjective for all i, then

M + dimnull(H1, · · · , Hs) = sn (4.18)

M + dimnullJ = sn

M − n = sn− dimnullJ − dimnullX

because dimnullX = n. Hence (4.13) becomes

r = M − n (4.19)

that P is an (M − n)× sn matrix. Lastly for finite F, (H1, · · · , Hs) is a perfect
compression iff |F|M−n = |D̃| by (3.1), iff P |

D̃
is bijective as we have already

shown P |
D̃

is injective.

Theorem 4.3 (Uniqueness of Partition Codes). Every linear lossless compres-

sion of a source with deviation symmetry is a Pre-Matrix Partition Code with

a parent matrix obtained in Theorem 4.2. If the compression is linear-optimal

or perfect, then the code is a Matrix Partition Code.

Proof. Let (H1, · · · , Hs) be a compression and P be the corresponding parent

matrix in Theorem 4.2. We have null













Q1

...
Qs

H1

...
Hs













⊂ null






H1

...
Hs




 = {0} by Lemma

4.1. Hence













Q1

...
Qs

H1

...
Hs













is injective. By Theorem 2.1, (H ′
1, · · · , H

′
s) is a compression
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of Pre-Matrix Partition Code if nullH ′
i = null

(
Qi

Hi

)

for all i. In particular,

(H1, · · · , Hs) itself is such a compression because nullHi ⊂ nullQi (c.f. (4.16)).
If in addition that the compression code is linear-optimal or perfect, then it

must be a Matrix Partition Code by the coronaries of Theorem 2.2.

Given an S, there always exists a linear-optimal compression (H1, · · · , Hs)
for it. For finite field, if the compression is perfect, then |S| = |C| and we
could not extend S without compromising the minimal compression sum-ratio.
Otherwise, we have room to add more elements to S without changing the
compression. We can enlarge (see the proof of Theorem 3.1) the corresponding
set D̃ (and hence the S per se) until the surjective parent matrix P (c.f. Theorem
4.2) we are working with becomes bijective when restricted to the extended D̃.
The compression for the extended S is now perfect and we cannot extend thing
further. Hence the extended S is one of the largest sets containing S that admit
the same minimal sum-ratio. Conversely, let S ′ ⊃ S and both admit the same
minimal sum-ratio. Let (H ′

1, · · · , H
′
s) be a linear-optimal compression for S ′.

The compression must be perfect or S ′ is not one of those largest by the same
argument. Notices that the compression works for S, a subset of S ′. Actually,
it is a linear-optimal compression for S.

This method does not work for infinite field. Even with both (H1, · · · , Hs)|S
and P |

D̃
being bijective, there can be another compression (H ′

1, · · · , H
′
s) with

the same compression sum-ratio such that (H ′
1, · · · , H

′
s)|S and P ′|

D̃
is merely

injective. Thus, S can still be extended without compromising the minimal
sum-ratio. Here is an example. Let F = R, s = 2, n = 2 and

D = {(0, ae1), (0, be2) | |a| ≥ 1, |b| < 1}. (4.20)

Notice that the two dimensional vector space {(v,v)|v ∈ R
2} is a proper subset

of S. Hence S cannot be compressed into C if dim C ≤ 2. It is not difficult

to see that

((
1 0
0 1

)

, (1 1)

)

is a compression for S and it is bijective when

restricted to S. The compression is linear-optimal as dim C = 3. The parent
matrix P = (−1 −1 1 1) is also bijective when restricted to the corresponding

D̃. Now

((
1 0
0 1

)

, (2 1)

)

is another compression for S with parent matrix

P ′ = (−2 −1 2 1). Neither

((
1 0
0 1

)

, (2 1)

)

|S nor P ′|
D̃

is bijective.

5 Matrix Partition Codes for Hamming Sources

In this section, we will use Hamming sources described in (2.10) to give more
concrete examples for Matrix Partition Codes. Moreover, we will discuss linear-
optimal compression for Hamming sources over both finite and infinite fields.

5.1 Parent matrix P of a Matrix Partition Code for a

Hamming Source

Recall a Hamming source S described by (2.10). For s ≥ 3, we have D in (2.11).
The corresponding

D̃ = {aei|a ∈ F, 1 ≤ i ≤ sn} ⊂ F
sn (c.f. (2.16)). (5.1)
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To have an r × sn matrix P satisfying (2.18), the necessary and sufficient con-
dition is

each column of P can’t be the multiple of the other. (5.2)

Say if Pi = aPj , wherePi andPj are the i-th and j-th column of P , respectively;
and a ∈ F. Then P (ei) = P (aej) and (2.18) implies i = j and a = 1. Conversely
if P (aei) = P (bej), then aPi = bPj . Condition (5.2) will imply a = b = 0 or
a = b 6= 0 and i = j, i.e., (2.18) will be fulfilled. As sn ≥ 3, we have

r > 1. (5.3)

For infinite F, we can always achieve (5.2) with r = 2. Explicitly, P can be

P =

(
1 1 · · · 1
a1 a2 · · · asn

)

, (5.4)

where a1, a2, · · · , asn are distinct. When F is finite. The condition (5.2) becomes

sn ≤ (|F|r − 1)/(|F| − 1). (5.5)

Take r = 2 and F = Z5 as an example. Condition (5.5) gives sn ≤ 6 and P can
be any segment of

(
0 1 1 1 1 1
1 0 1 2 3 4

)

(5.6)

Now we consider s = 2 with D given by (2.14). The corresponding

D̃ = {aei|a ∈ F, s < i ≤ 2s}. (5.7)

Let P = [Q1|Q2] with Q1 and Q2 are r×n matrices. The necessary and sufficient
condition for P to satisfy (2.18) become

Q1 is arbitrary; each column of Q2 can’t be the multiple of the other. (5.8)

Obviously, we can further set Q1 = −Q2 such that (2.19) will be satisfied. Again
we can always achieve (5.8) with r = 2 if F is infinite, e.g. we can set

Q2 =

(
1 1 · · · 1
a1 a2 · · · an

)

, (5.9)

with distinct elements a1, · · · , an of F. For finite F, the condition (5.8) become

n ≤ (|F|r − 1)/(|F| − 1). (5.10)

5.2 Linear-Optimal compression for Hamming Source with

s = 2

As in the last section (5.7)-(5.10) mentioned. We take

P = [−Q2 Q2 ]. (5.11)

with Q2 satisfying the condition (5.8). Let C2 be a row basis matrix of Q2 as
in the Matrix Partition Code. Then C2 also fulfills (5.8). For simplicity, we
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assume Q2 itself is surjective and C2 = Q2. Notice that Q2 also equal to the Y

in (2.33) Let T =

(
G1

G2

)

be the matrix that fulfills (2.34), we have

(

U1

(
G1

Q2

)

, U2

(
G2

Q2

))

forms a Matrix Partition Code for S, (5.12)

for any invertible matrices U1, U2 with appropriate sizes. Notice that

(
T
Q2

)

is

invertible by (2.34) with Q2 = Y . Let U1 be the inverse of

(
T
Q2

)

and U2 be an

identity matrix. Put G1 = T and G2 as void, we get a compression

(In×n, Q2). (5.13)

Let Q2 be an r′×n matrix. The total code length for (5.13) and hence for (5.12)
as well is

M = n+ r′ (5.14)

For finite F and a given n. We must have |S| ≤ |C|, ie

|S| = |F|n(1 + n(|F| − 1)) ≤ |F|n+r′

n ≤ (|F|r
′

− 1)/(|F| − 1). (5.15)

The total code length M will be minimized if r′ is the smallest integer satisfying
(5.15). Fortunately, such r′ observes the sufficient condition (5.10) with r =
r′. That means we can always pick a Q2 with that r and get linear-optimal
compressions.

For infinite F and n = 1, {[1], [1]} is a linear-optimal compression, since
something like {[1], void} would give the same output for {e1, e1} and {e1, 2e1}.
For n ≥ 2, we can always pick r = 2 with Q2 defined in (5.9) to get Matrix
Partition Codes (5.12) with M = n+ 2. The compression obtained is actually
linear-optimal. Let (H ′

1, H
′
2) be another compression with another codeword

space C′. The proper subset

B = {(v,v + ae1)|v ∈ F
n, a ∈ F} ⊂ S (5.16)

is a vector space with dimension n+1. Since all of the compressions considered
are linear and injective within S, the output of B is a vector subspace of C′ with
dim n+ 1. To accommodate the output of the (0, e2), which belongs to S but
not B, dimC′ must be at least n+ 2.

5.3 Optimal Lossless Compression for Hamming Source

over Infinite Fields

We have found such a compression for s = 2 in the previous section. So let
s ≥ 3. For n = 1, the linear-optimal compression is {[1], · · · , [1]}. The reason is
the same as the case of s = 2.

Now let s ≥ 3 and n ≥ 2. First we will deal with the compression ratio.
By more or less the same argument of the two-source case (c.f. (5.16)), the
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dimension of the codeword space C cannot be less than n + 2. In addition,
each column within any encoding matrix cannot be multiple of each other. Say
if (H1)i = a(H1)j , then (aei,0, · · · ,0) and (ej ,0, · · · ,0) will share the same
output. That means each encoding matrix has at least 2 rows since n ≥ 2.
Therefore we have

dimC ≥ max(n+ 2, 2s). (5.17)

Now we are going to build a compression for S over F with characteristic 0 and
dimC = max(n + 2, 2s). By (5.17), that compression will be a linear-optimal
compression. We construct a 2 × sn matrix P , the parent matrix, through its
component P = [Q1| · · · |Qs] (c.f. (2.19)). We will make use of the fact that
F contains all rational numbers as a subfield. Let p1, p2, · · · , ps, q be prime
numbers such that

0 < ps = p1 < p2 < · · · < ps−1 < q. (5.18)

Let
{
t2i−1 = piq
t2i = pi+1

for 1 ≤ i < s. (5.19)

We define the j-th column of Qi as

(Qi)j =

(
tj2i−1

tj2i

)

=

(
(piq)

j

pji+1

)

for 1 ≤ i < s, 1 ≤ j ≤ n. (5.20)

They are not multiplier of each other. Say if (Qi)j is a multiplier of (Qk)l, then

(piq)
jplk+1 = (pkq)

lpji+1, (5.21)

which gives i = k and l = j. We put Qs = −(Q1 + · · ·+Qs−1) and get

(Qs)j = −

(
qj(pj1 + pj2 + · · ·+ pjs−1)

pj2 + pj3 + · · ·+ pjs

)

for 1 ≤ j ≤ n, (5.22)

which is a multiplier of

(
qj

1

)

since p1 = ps. Obviously the vectors in (5.22) are

not multipliers of the others nor multipliers of those in (5.20). Hence by (5.2),
our P satisfies (2.18). It fulfils (2.19) by construction.

If 2(s− 1) ≥ n, we let T ′ (c.f. (2.20)) be a void matrix and have an injective
2(s− 1)× n matrix

R =






Q1

...
Qs−1




 =







t1 t21 · · · tn1
t2 t22 · · · tn2

· · ·
t2(s−1) t22(s−1) · · · tn2(s−1)







(5.23)

It is injective as it contains the minor







t1 t21 · · · tn1
t2 t22 · · · tn2

· · ·
tn t2n · · · tnn







(5.24)
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whose determinant is

t1t2 · · · tn
∏

i>j

(ti − tj) 6= 0 (c.f. (5.19)). (5.25)

By Theorem 2.1, (Q1, · · · , Qs) is a compression for S, a linear-optimal compres-
sion (c.f. (5.17)). It is also a Matrix Partition Code with void T and Ci = Qi

for all i.
For 2(s− 1) < n, we pick any nonzero t2s−1, · · · , tn such that ti 6= tj for all

i 6= j. We let

T ′ =





t2s−1 t22s−1 · · · tn2s−1

· · ·
tn t2n · · · tnn



 . (5.26)

Then

R =








Q1

...
Qs−1

T ′








=







t1 t21 · · · tn1
t2 t22 · · · tn2

· · ·
tn t2n · · · tnn







, (5.27)

whose determinant is not zero as all ti are distinct. Hence R is injective

(actually bijective) and by Theorem 2.1,

(
G1

Q1

)

, · · · ,

(
Gs

Qs

)

is a compression

of S, a linear-optimal compression again, where






G1

...
Gs




 = T ′. It is a Matrix

Partition Code with T = T ′, Y =






Q1

...
Qs−1




 and Ci = Qi for all i.

Actually, for infinite field F with any characteristic, the chance for two ran-
domly picked vectors (with more than one entry) to be multipliers of the others
are virtually zero. So one may just pick Q1, Q2, · · · , Qs−1 randomly, instead
of (5.20). Then define Qs as −(Q1 + Q2 + · · · + Qs−1). The chance to have
a pair of columns in P = [Q1| · · · |Qs] that are multipliers of the others are

again virtually zero. Moreover,






Q1

...
Qs−1




 should have full rank as its entries are

randomly selected. So if 2(s − 1) ≥ n, then






Q1

...
Qs−1




 should be injective and

(Q1, · · · , Qs) forms a linear-optimal compression like the aforementioned exam-

ple. For 2(s − 1) < n, we should be able to augment






Q1

...
Qs−1




 to a bijective








Q1

...
Qs−1

T







. Then

(
G1

Q1

)

, · · · ,

(
Gs

Qs

)

will forms an linear-optimal compression for

S as before.
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6 Structure of Deviation Symmetry

Given n, s,F, let Σ be the set of sources with deviation symmetry. For any
S ∈ Σ, we pick a representative set D(S) of it. Notice that we have n degree
of freedom in choosing a particular δ ∈ D(S). Therefore it is possible to fix
a certain component to be a constant within the whole D(S). Say if we want
to fix the last component to be zero, then we simply replace δ =(d1, · · · ,ds)
with (d1, · · · ,ds) − (ds, · · · ,ds), ∀(d1, · · · ,ds) ∈ D(S). We call such fixing as
component-fixing. Since each component contains n entries, the component-
fixing eliminates all n degrees of freedom in choosing δ.

Let us impose a component-fixing throughout the Σ. It can be shown that
S1 ⊂ S2 if and only if D(S1) ⊂ D(S2). Now D can be viewed as an injective
mapping. It is more than that. More specifically, after fixing the last component
to be zero, then D : Σ → power set of F

n × · · · × F
n

︸ ︷︷ ︸

s−1 terms

×{0} becomes a bijective

mapping. Power set of a set is a σ-algebra for sure. Actually, we can show by
definition (2.1) that Σ is also a σ-algebra. The bijective mapping D preserves
their structures in sense that D(

⋃∞

i=1 Si) =
⋃∞

i=1 D(Si), D(Sc) = D(S)c and
D(∅) = ∅, where c stands for complement.

Throughout the paper, we say S can be compressed by the encoding matrices
(H1, · · · , Hs) if (H1, · · · , Hs)|S is injective, which does not specify if the source
actually is compressed into a smaller space. To distinguish thing, we will say S
is compressible if and only if it can be compressed by (H1, · · · , Hs) into a lower
dimensional space (i.e. dim C < sn). We will make use of the component-fixing
to determine the necessary and sufficient condition for S to be compressible.

Theorem 6.1. S is compressible if and only if there exists a subset D− of

F
n−1 × F

n × · · · × F
n

︸ ︷︷ ︸

s−2 terms

such that the representative set D can be expressed as

D =

{

π

(

B

[
f(d1, · · · ,ds−1)

d1

]

,d2, ...,ds−1,0

)

|(d1, · · · ,ds−1) ∈ D−

}

, (6.1)

where π is a position permutation of the F
n-vectors, B is an n × n invertible

matrix and f is a well-defined function from D− to F.

Proof. ”⇒” Suppose S can be compressed by (H1, · · · , Hs) into a lower dimen-
sional space. One of the Hi, say i = 1 WLOG, must have a nonzero null space.
So let 0 6= v ∈ nullH1. Also let A be an (n− 1)× n matrix with null A = span
{v}. Then S can also be compressed by (A, In, · · · , In

︸ ︷︷ ︸

s−1 terms

) whose null space is a

subspace of (H1, · · · , Hs)’s. Fix the last component of every δ ∈ D to be zero.
For any σ ∈ S, ∃ a unique v ∈ F

n and a unique (d,d2, ...,ds,0) ∈ D such that
σ = (v + d,v + d2, · · · ,v + ds−1,v). We have

(A, In, · · · , In
︸ ︷︷ ︸

s−1 terms

)σ = ([0|In−1]B
−1(v + d),v + d2, · · · ,v + ds−1,v), (6.2)

where B is an n× n invertible matrix such that AB = [0|In−1]. Therefore, we
get everything back directly, except for the first entry of B−1d. Since the S can
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be compressed by (A, In, · · · , In
︸ ︷︷ ︸

s−1 terms

) (losslessly), we must be able to retrieve the

lost part from the output. Mathematically, the first entry of B−1d has to be a
function of [0|In−1]B

−1d,d2, · · · ,ds−1 and v. However, we are talking about
deviation symmetry that D does not depend on v. Therefore D has the form of
(6.1) with π = 1 and d1 = [0|In−1]B

−1d.
”⇐” Conversely, given (6.1), we let H1 = [0|In−1]B

−1, H2 = H3 = · · · =
Hs = In. Then S can be compressed by (Hπ(1), · · · , Hπ(s)) losslessly.

The argument in the theorem can be generalized until null Hi 6= {0} for all
i, i.e. actual compression happens at each terminal.

7 Conclusion

In this paper, we study zero-error linear coding of a set of rather general sources
known as sources with deviation symmetry. Matrix Partition Codes can be used
to efficiently compress sources with deviation symmetry. We will conclude here
by summarizing the construction procedure of a Matrix Partition Code in the
following. Suppose we want to compress a source with deviation symmetry
S losslessly. We can simply search the compression within the framework of
Theorem 2.1 because Theorem 4.3 tells us that there is no other way causing
difference. So we need to fix a D (c.f. (2.7), (2.5)) first. Theorem 2.3 ensures
that the choice of D does not affect the end results.

Then we have to find the parent matrix P , an r×sn matrix satisfying (2.18)
and (2.19). Such P always exists as compression always exists. Precisely all
encoding matrices are identity matrix forms a trivial compression and X (c.f.
(4.4)) is the corresponding parent matrix. The problem is about the compression
rate. Basically, P with lower r ends up with more efficient compression. On
the other hand, it is easier to form the P with higher r. Once we get P , we
can follow the mechanism of Matrix Partition Code to get a code of highest
compression efficiency (with that P) in sense of Theorem 2.2 and its second
corollary.
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