arXiv:1102.4825v1 [cs.IT] 23 Feb 2011

Computing linear functions by linear coding over
networks

Rathinakumar Appuswamy, Massimo Franceschetti

Abstract

We consider the scenario in which a set of sources generasages in a network and a receiver node demands an arbitrary
linear functionof these messages. We formulate an algebraic test to detenvtiether an arbitrary network can compute linear
functions usindinear codes We identify a class of linear functions that can be compuigidg linear codes in every network that
satisfies a natural cut-based condition. Conversely, fothen class of linear functions, we show that the cut-basedition does
not guarantee the existence of a linear coding solutionlifear functions over the binary field, the two classes araglements
of each other.

I. INTRODUCTION

In many practical networks, including sensor networks aglticular networks, receivers demand a function of the ngessa
generated by the sources that are distributed across thenketather than the generated messages. This situatiandged
in the framework of network computin@![3]={7]._[10],_[11].h€ classical network coding model of Ahlswede, Cai, Li, and
Yeung [1] can be viewed as a the special case of network congpirt which the function to be computed at the receivers
corresponds to a subset of the source messages and comtimm@urs over a network with noiseless links.

In the same noiseless set up lof [1], we consider the scenmaridiich a set of source nodes generate messages over a finite
field and a single receiver node computes a linear functiothese messages. We ask whether this linear function can be
computed by performing linear coding operations at thermésliate nodes.

In multiple-receiver networks, if each receiver node dedsaa subset of the source messages (which is an example of
a linear function), then Dougherty, Freiling, and Zeger $8pwed that linear codes are not sufficient to recover theceou
messages. Similarly, if each receiver node demands the $tine source messages, then Ray and Dei [4] showed that linear
codes are also not sufficient to recover the source mesdagesntrast, in single-receiver networks linear codes afficgent
for both the above problems and a simple cut-based conditimnbe used to test whether a linear solution exists.

Our contribution is as follows. We extend above results $tigating if a similar cut-based condition guarantees ttigtence
of a linear solution when the receiver node demands an arpifinear function of the source messages. We identify tlaeses
of functions, one for which the cut-based condition is sidfit for solvability and the other for which it is not. Thedasses
are complements of each other when the source messagesearthewinary field. Along the way, we develop an algebraic
framework to study linear codes and provide an algebraidition to test whether a linear solution exists, similarthe bne
given by Koetter and Médard|[2] for classical network cagdin

The paper is organized as follows. We formally introduceribevork computation model in Section1-A. In Sectioh 1l we
develop the necessary algebraic tools to study linear cadésntroduce the cut-based condition. In Secfigh IIl, wevslthe
main results for the two classes of functions. Sedfioh |Vabetes the paper, mentioning some open problems.

A. Network model and preliminaries

In this paper, anetwork A/ consists of a finite, directed acyclic multigragh = (V, &), a set ofsource nodesS =
{o1,...,05} € V, and areceiverp € V. Such a network is denoted by = (G, S, p). We use the word “graph” to mean a
multigraph, and “network” to mean a single-receiver netwakle assume that ¢ S, and that the grapt¥ contains a directed
path from every node iV to the receivep. For each node € V, let &;,(u) and&,,:(u) denote the in-edges and out-edges
of u respectively. We also assume (without loss of generality) if a network node has no in-edges, then it is a source node.
We uses to denote the number of sourcgs in the network.

An alphabetA is a nonzero finite field. For any positive integer any vectorz € A™, and anyi, let z; denote thei-th

component ofz. For any index sef{ = {i1,i2,...,i} C {1,2,...,m} with i1 < iy < ... < i, let zx denote the vector
(T4, @iy, .-, 24,) € AlKL
The network computingroblem consists of a network’, a source alphabed, and atarget function
f: AA—B
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where B is thedecoding alphabetA target functionf is linear if there exists a matrix’ over. A such that
flx)=Ta", VzecA®

where ' denotes matrix transposition. For linear target functidghe decoding alphabet is of the forat, with 1 < I < s.
Without loss of generality, we assume thatis full rank (over.4) and has no zero columns. For exampl€eT'ifs the s x s
identity matrix, then the receiver demands the complete&esburce messages, and this corresponds to the classteairke
coding problem. On the other hand,if is the row vector ofl’s, then the receiver demands a sum (ovgrof the source
values. Letn be a positive integer. Given a netwafK with source setS and alphabei4, a message generatds a mapping

a: §— A"
For each source; € S, a(o;) is called amessage vectand it can be viewed as an elementiyf. (rather than as a vector).

Definition 1.1. A linear network codén a network " consists of the following:

(i) Every edgee € £ carries an elemenof F,» and this element is denoted by. For any nodes € V — p and any out-edge
e € Eut(v), the network code specifies amcoding functiorh(® of the form:

Ty e0(u) + Z Toeze fu€esl
h(e) — e€€in(u) (1)
Te,e2é otherwise
éegm(u)

wherez; ¢, z1,. € Fgn for all é € &, (u).
(i) The decoding function) outputs a vector of lengthwhose;j-th component is of the form:

Z :Ee,j Ze (2)

e€€in(p)
wherez, ; € Fn for all e € &;,,(p). The arithmetic in[(Il) and12) is performed ou@y-.

In this paper, by axetwork codewe always mean a linear network code. In the literature cthses of network codes we
define here is referred to asalar linear codesThese codes were introduced and studied In [2]. A more gkokrss of
linear codes oveF,» were defined and studied inl [8]./[9].

Depending on the context, we may view as a vector of length- over F, or as an element of ;». Without explicit
mention, we use the fact that the additiongb € F,» as elements of a finite field coincides with their sum as el¢sneh
a vector space ovef,. Furthermore, we also vieW, as a subfield off,» without explicitly stating the inclusion map. Let
denote the vectors carried by the in-edges of the receiver.

Zevs Zegs oo Beg, )

Definition 1.2. A linear network code ovefF,- is calleda linear solution for computing in A (or simply alinear solution
if f and A\ are clear from the context) if the decoding functipris such that for every message generatpr

P (Zel,"- ,ze|£m(p)‘)j = f(oz(al)j,-u ,a(as)j) forall j € {1,2,...,n}. 3)

Remarkl.3. Each source generataessymbols oveiF, (viewing F,~ as a vector space ovey) and the decoder computes the
target functionf for each set of source symbols.

A set of edge” C £ is said toseparatesourceso,,, ,...,on, from the receivep, if for eachi € {1,2,...,d}, every
path fromo,,, to p contains at least one edge @ A setC € £ is said to be aut if it separates at least one source from
the receiver. Let\(V') denote the set of all cuts in networX.

For any matrixT' € F.**, let T; denote itsi-th column. For an index sek € {1,2,...,s}, let Tx denote thel x |K|
submatrix ofT" obtained by choosing the columns Bfindexed byK. If C is a cut in a networkV, we define the set

Ko = {i € §:C disconnects; from p}.

Finally, for any network\" and matrix7’, we define
C

min-c T) = i _—
in-cut’, T) cg}\l(?\f) rank Tk ..)

(4)



[l. ALGEBRAIC FRAMEWORK
A. An algebraic test for the existence of a linear solution

Linear solvability for the classical network coding pramblavas shown to be equivalent to the existence of a non-empty
algebraic variety in[[2]. In the following, we present an lg@us characterization for computing linear functiongvading an
algebraic test to determine whether a linear solution fonmating a linear function exists. The reverse problem ofstrtting
a multiple-receiver network coding (respectively, netvaomputing) problem given an arbitrary set of polynomiaigich
is solvable if and only if the corresponding set of polyndsiigs simultaneously solvable is considered in referende [9
(respectively, [[4]).

We begin by giving some definitions and stating a techniaaina, followed by the main theorem below.

For any edge: = (u,v) € &, let headg¢) = v andtail(e) = u. Associated with a linear code ovéy., we define the
following three types of matrices:

« For each source, € S, define thel x |£| matrix A, as follows:

T1e; if e; € 5out(0t)
Ay, =P j € 5
(Ar)s {0 otherwise ©)

« Similarly define thel x |£| matrix B as follows:

€jst if e; in
Bi; = ey, Ieﬂef‘: (p) "
’ 0 otherwise
. Define the|€| x |€| matrix F as follows:
P, = Teje; head_(ei) = tail(e;) o
” 0 otherwise

Since the graplz associated with the network is acyclic, we can assume teaedyes, e, ... are ordered such that the
matrix I is strictly upper-triangular. Lef denote the identity matrix of suitable dimension. Consalaetwork\ with alphabet
F, and consider a linear code ovEy~ with associated matriced:, As, ..., A,, B andF'. For everyr € {1,2,..., s}, define
the 1 x [ matrix

M, = A.(I - F)"'B". (8)

Now let x4 be a vector containing all the non-zero entries of the medric., 7 = 1,2,--- , s, and letzp (respectivelyxr)
be a vector containing all the non-zero entries of the mabifgespectively,F).

By abusing notation, depending on the context we may Vigw , ; ;, T.,,; as elements df;~ or as indeterminates. Thus,
each of the matrices defined above may either be a matrixEyveor a matrix over the polynomial rin§g = Fyn [z 4, zF, T5].
The context should make it clear which of these two notionseisig referred to at any given point.

Lemma Il.1. The following two statements hold:
1) The matrix —F' has a polynomial inverse with coefficientdfig. [z ], the ring of polynomials in the variables constituting

TE.
2) The decoding function can be written as

S

> a(o,) A(I - F)"'B!

T=1

Proof: The first assertion is a restatement|df [2, Lemma 2] and thenskassertion follows from [2, Theorem 3]. &

Definition I.2. Let R be a polynomial ring. The ideal generated by a subSet R and denoted byX) is the smallest ideal
in R containing X .

Let \V be a network with alphabé@t,. Let R = F [z 4, zp,zp] andT € IquXS. Consider a linear network code for computing
the linear function corresponding 6 in A/ and the associated matricés.,r = 1,2,...,s over R and define

Z, = (Ty)' — M, for T =1,2,...,s.
Let J denote the ideal generated by the element&of R'*! 7 =1,2,...,s in the ring R. More formally, let
J={{(Z),,(Zr)g,....(Z7),}: T=1,2,...,s}).

The ponnomiaIs(Zl-)j are referred to as thgenerating polynomial®ef the idealJ. We denote the Grdimer basis of an
ideal generated by subséf C R of a polynomial ringR by G(X). The following theorem is a consequence of Hilbert
Nullstellensatz (see [13, Lemma VIII.7.2] and the remartera[13, Proposition VIII.7.4]).



Theorem 11.3. Consider a network\" with alphabetF, and the linear target functiorf corresponding to a matris” € A'**.
There exists am > 0 and a linear solution oveff,~» for computingf in A if and only if G(.J) # {1}.

Proof: From Lemmd1L1, the vector computed at the receiver can ligewras

afo1)
a(oz)

1/1 (2611"' ’Ze\sn(p)\) = (Mf Mé M;) : . (9)

a(os)

On the other hand, to compute the linear function corresipgnit 7', the decoding function must satisfy

a(o1)
a(o2)
O (2 e ) =T | |- [from @) (10)
a(os)
It follows that the encoding coefficients in a linear solatimust be such that
(T,)) =M, =0forr=1,2,...,s. [from @) and [10) (11)

If we view the coding coefficients as variables, then it fatothat a solution must simultaneously solve the generating
polynomials of the corresponding ideél By [13, Lemma VII1.7.2], such a solution exists over theedigpic closuré?, of F,,
if and only if J # Fy[xa, zr, zg]. FurthermoreJ # F (x4, zr, x| if and only if G(J) # {1}. Moreover, a solution exists
over the algebraic closui, of F, if and only if it exists over some extension figR}. of F, and the proof is now complete.

]

B. Minimum cut condition

It is clear that the set of linear functions that can be solved network depends on the network topology. It is easilynsee
that a linear solution for computing a linear target functoorresponding td@” € IquXS exists only if the networkV is such
that for everyC' € A(N), the value of the cufC| is at least the rank of the submatfl. . (recall thatK¢ is the index set
of the sources separated by the €0t This observation is stated in the following lemma whiclaisimmediate consequence
of the cut-based bound in [10, Theorem 2.1].

Lemma Il.4. For a network\/, a necessary condition for the existence of a linear sofut@ computing the target function
corresponding tdl” € IquXS is
min-cu{\, T) > 1.

We now consider two special cases. First, consider the cagéhich the receiver demands all the source messages. The
corresponding’ is given by thes x s identity matrix I and the condition min-c@/, T") > 1 reduces to

€]
—>1 VCeAWN
e W)
i.e., the number of edges in the cut be at least equal to thévauof sources separated by the cut. Second, consider tee cas
in which the receiver demands the sum of the source messalgescorresponding matri¥' is an1 x s row vector and the

requirement that min-cgd/, 7') > 1 reduces to
IC|>1 VCeAW)

i.e., all the sources have a directed path to the receiverb&ith of the above cases, the cut condition in Lenima 11.4 ds al
sufficient for the existence of a solution. This is shown_ifl,[Theorem 3.1 and Theorem 3.2] and is reported in the foligwi
Lemma:

Lemma I1.5. Letl € {1,s}. For a network\" with the linear target functiorf corresponding to a matrif’ € A"**, a linear
solution exists if and only if min-cQV, 7) > 1.

The focus in the rest of the paper is to extend above resuttetoasd ¢ {1, s} by using the algebraic test of Theorémlll.3.



IIl. COMPUTING LINEAR FUNCTIONS

In the following, we first define an equivalence relation agaomatrices and then use it to identify a set of functions that a
linearly solvable in every network satisfying the conditimin-cu{\/, T') > 1. We then construct a linear function outside this
set, and a corresponding network with min{¢uit 7’) > 1, on which such a function cannot be computed with linear sode
Finally, we use this example as a building block to identifged of linear functions for which there exist networks $giig
the min-cut condition and on which these functions are nbtasde.

Notice that for a linear function with matri¥' € Ffzxs, each column ofl" corresponds to a single source node. Hence, for
everys x s permutation matrixl, computingl’x is equivalent to computing'Tlz after appropriately renaming the source nodes.
Furthermore, for every x { full rank matrix @ overF,, computingT'z is equivalent to computing)T'z. These observations
motivate the following definition:

Definition 1.1, Let T € F5** and T’ € FY**. We sayT ~ T if there exist an invertible matrix) of sizel x [ and a
permutation matriXI of sizes x s such thatl’ = QT'II, andT ~ T’ if such@ andII do not exist.

SinceT is assumed to be a full rank matrik, can be chosen such that the fitstolumns of T'II are linearly independent.
Let 7" denote the first columns ofT'IL. By choosing@ = 7!, we havel ~ QT1I = (I P) whereP is anl x s — I matrix.
So for an arbitrary linear target functighand an associated matriX, there exists ahx s — [ matrix P such thatl’ ~ (I P).
Without loss of generality, we assume that each columii’ afssociated with a target function is non-zero.

Theorem 111.2. Consider a networkV" with a linear target function corresponding to a mattixe ng’l)“ (.e,l=s5-1).
If
T~ (I u)

where v is a column vector of units, then a necessary and sufficientlion for the existence of a linear solution is
min-cuf{\, T') > 1.

Proof: Let T = (I ). The ‘necessary’ part is clear from Lemiall.4. We now focustle ‘sufficiency’ part. Notice
that for eachr = 1,2,..., s, the matrix M, (computed as in[{8)) is a row vector of length- 1. Stack these row vectors
to form ans x (s — 1) matrix M as follows,

M,
Mo
M= .
M
Let M; denote thg(s — 1) x (s — 1) submatrix of M obtained by deleting its-th row.
Claim 1: The matrix .
IR0
=1

has a non-zero determinant over the riRg= F,[z 4, zF, z5].
Claim 2: For eachi = 1,2,...,s — 1, we have( A;(] — F)‘lBtM(‘S)l)} #0.
By Claim 1 and the sparse zeros lemima [2], [12], it follow¢ tinzat there exists some > 0 such that the variables. ., .

can be assigned values o} so that thes x (s — 1) matrix

A(I -F)~1Bt
Ay(I — F)"'B?
A —F)"'B
is such that any of it§s — 1) x (s — 1) submatrices\/;),i = 1,2, ..., s obtained by deleting théth row in M, is full rank
overFg.. Define twos — 1 x s — 1 diagonal matrice$/ and D such that fori € {1,2,---,s — 1}
Ui = u;
Dis = (A1 = F)'B'M}) . (12)

Now define the following matrices oveéf,:
B=D"'UM{,)'B
Aj=ui' (A,(I-F)"'B") 4 i=12,...,5-1 (13)

%



By by Claim 2 it follows thatD—! exists. If the matricesl,, F, and B define a linear network code, then by Lemmalll.1,
the vector received by can be written as,

a(o1)
(o
e (. 2) "
a(os)
where,
1211 (I — F)_]‘Bt
| AT -F)'B
M = . . (15)
Ay (I — F)~1Bt
We have
A (I- R (A= F) (DU BY
Ay(I—F)'Bt Ay(I = F)"M(D'U(M[,)) ' B)! )
: - . [from B = D’lU(M(tS))*lB]
As(I — F)~ 1pt As(I — F)—l(D—lU(]\/[(ts))—lB)t
Al - F)"'B' M
A(I = F)'B' M .
= : DU [from ((M(ts))— ) = M(;)l]
As(I - F)*lBtM(‘S)1
I ) . .
- —ipty-r) DU [from construction ofM] (16)
(AS(I — F)7'B'M 5)
A\(I-F)"'Bt
A(I—F)ilBt U- lD
: <AS(I F)~ 1BtM( )) DU [from (I3) and [(1b)
A, (I - F)"'Bt
U71
- ( 1! ) v [from (I2)
~(vt)
1
- ut) (17)
M= (Iu). [from (I5) and [(1I7) (18)

By substituting [(IB) in[(14), we conclude that the receivemputes the desired linear function by employing the networ
code defined by the encoding matricgs;,i = 1,2,...,s}, B, andF.

The proof of the theorem is now complete for the case whea (I u). If T ~ (I u), then there exists a full-rank matrix
@ and a column vector’ of non-zero elements ovéf, such that

T=qQ (Iu). [from From Lemma’All in the Appendix
Since a full-rank linear operator preserves linear-indeleace among vectors, for every such full-rank mafpixwe have
rankTx,) = rank((Q 'T)k,) V C € AWN). (19)
Equation [IP) implies that min-cV/, T") = min-cut\', Q~'T'). SinceQ~'T = (I «’), from the first part of the proof,
there exist am > 0 and coding matrices\., 7 = 1,2,---,s, F, and B over F,» such that the receiver can compute the
linear target function corresponding {é «’) if and only if min-cu{\,T) > 1. It immediately follows that by utilizing a
code corresponding to the coding matricés, - = 1,2,---,s, I', and QB, the receiver can compute the target function

corresponding t@)(I ') =T.



All that remains to be done is to provide proofs of claitnand 2.
Proof of Claim 1 If a cut C is such thajK¢| < s — 1, then

|C| > rankTk.) [from min-cu{N,T) > 1 and [4)
=|Kc¢|. [from T = (I u)]

Thus by [10, Theorem 3.1], there exists a routing solutiondmpute the identity function of the sourcgs;,i € K¢} at the
receiver. Let|K¢| = s—1 and letK¢c = {1,2,...,7 — 1,5+ 1,...,s} for some (arbitrary)j. By LemmallL1, after fixing
a(o;) = 0, the vector received by can be written as

]\/[(tj) Oé(O'jfl)

a(os)

The existence of a routing solution for computing the idgrftinction guarantees that there exist ., z.; € {0, 1} such that
the matrixM ;) has a non-zero determinant ovéy. It follows that the determinant a¥/(;) is non-zero ovelf [z, zF, zB].

Sincej € {1,2,...,s} was arbitrary in the above argument, it follows that the deieant of eachi/(;),j = 1,2,...,s is

non-zero ovelf, [z 4, zr, x| and the claim follows.

Proof of Claim 2 We have

A(I - F) B!
| Au-pB »
M My = : M)
AT - F) 1Bt
@ I
= (AS(I - F)—lBtM(—S)l) (20)

where, (a) follows from the definition ofM(‘S)l. By contraction, assume that there existsian {1,2,...,s — 1} such that
(As(I — F)~'B"), = 0. It then follows that

s—2
A= F)'BM =Y (AS(I - F)—lBtM(—S)l) (A (I - F)7'BM) [from (20) (21)

Jj=1

for some choice of; € {1,2,...,s—1},7=1,2,...,s— 2 and

s—2
(AS(I —-P)7B -y (AS(I - F)*lBtM(;)l) = F)*lB)t) M =0 [from @)
=1 "
s—2
(AS(I ~F)'B =Y (AS(I - F)*lBtM(;)l)_ (A, (I — F)*lB)t) =0. [from M} isfullrank  (22)
i=1 K

Equation [[(2R) implies a linear dependence ameng 1 rows of the matrix)M/. This contradicts the fact that for ea¢h=
1,2,...,8, My is full rank. Thus(As(I — F)*lBtM(;)l)_ #0fori=1,2,...,s— 1 and the claim follows.
’ |

Remarklll.3. We provide the following communication-theoretic intexfation of our method of proof above. We may view
the computation problem as a MIMO (multiple input multipletput) channel where the multiple input is given by the vecto
of symbols generated by the sources, the output is the vdetwded by the receiver, and the channel is given by the mietwo
topology and the network code. Our objective is to chooseammbl to guarantee the desired output, by way of code design
subject to the constraints imposed by network topology. ditennel gain from source; to the receiver is given by the vector
M; of lengths — 1. The first part of the proof utilizes the sparse zeros lemnestablish that there exists a choice of channels
such that the channel between every set ef 1 sources and the receiver is invertible. This is similar te gnoof of the
multicast theorem in_2]. In the second part of the proof, weognize that the interference from different sources ralsst

be “aligned” at the output for the receiver to be able to cotayhe desired function. Accordingly, we have modified théeco
construction to provide such alignment.



We now show the existence of a linear function that cannotdmpeited on a network satisfying the min-cut condition.
This network will then be used as a building block to show aal@gous result for a larger class of functions. gtdenote

the matrix
1 0 1
(o1 o) @3

and let f; denote the corresponding linear function. It is possiblsttow with some algebra thdy £ (I ), for any column
vector v, of units, so that the conclusion of Theorém 1Il.2 does nothtdeed, for the functiorf; the opposite conclusion
is true, namelyf; cannot be computed ovel¥; using linear codes. This is shown by the following Lemma.

Lemma lll.4. LetN; be the network shown in Figufé 1 with alphati&t We have

1) min-cufN\;,Ty) = 1.
2) There does not exist a linear solution for computifigin 7.

01

Fig. 1. Network on which there is no linear solution for cortipg f;.

Proof: That min-cufN;,T1) = 1 is easily verified by considering the cat = {e3, ¢4} which attains the minimum. We
now proceed to show, using Theorémlll.3, that a linear smiutioes not exist.
We may assume, without loss of generality, that the negsends its message directly to nodasandos (i.e., z1,e, =
Z1.e, = 1). The matricesZ;, Z,, and Z3 over R can then be written as

(Tl)t =M, = ((1 - xlyesxesyl) (O - Il-,esxt?s,?))

t
(Tg)t — M, = (O — Tej,ezles,1 — x€2=€4:178471)

1- Ley,esLes,2 — Leg,esLey,2

(Tg)t — ]\/[3 = ((1 — $1784$e471) (O — I1764I8472)) .
Consequently, the ideal is given by

J={(1=21,e3%e5,1), (0= 21,5Tes,2),
(0 = Ty e5Tes,1 — TegesTes1),
(1 = Zey e5Tes,2 = Tey,eaTes,2),
(1= 21,6,Tes1)s (0= @1e,Te,2))-

We have

1= (1 — Ley,ezles,2 — x€2=€4xe472)

+ $€1,63‘T€372(1 - xl,egxe;:,,l)
- Iel,egxeg,l(o - xl,eg'reg,Q)
+ I82,64Ie4,2(1 - xl,e4xe4,l)
— Teg,esTey 1(0 — T1,,Tey 2) € J.



Thus, it follows thatG(J) = {1}. By Theoren{IL3, a linear solution does not exist for conmpyitf; in N;. [ |

We now identify a much larger class of linear functions forieththere exist networks satisfying the min-cut conditiart b
for which linear solutions do not exist. Lét be ani x s — [ matrix with at least one zero element afid~ (I P). For each
T in this equivalence class we show that there exist a netwoitkat does not have a solution for computing the linear target
function corresponding td@ but satisfies the cut condition in Lemrhall.4. The main idedheaf proof is to establish that a
solution for computing such a function in netwai implies a solution for computing the function correspomgio 7} in
N1, and then to use Lemniall.4.

Theorem 111.5. Consider a linear target functioyf corresponding to a matrif’ € IFfIXS. If T'~ (I P) such that at least one
element ofP is zero, then there exists a netwokk such that

1) min-cufN,T') = 1.

2) There does not exist a linear solution for computifiin N

Proof: Let 7' = (I P)and Ietf denote the corresponding linear target function. It is gioto show that there exists
a network Ap such that min-cy\p, f) = 1 but Np does not have a linear solution for computifig This is because a
network A/ that does not have a solution for computifigs easily obtained by renaming the sourcesMip as follows: Since
T ~ (I P), there exist) andII such thatT' = Q(I P)II. Let x denote the permutation function on the 4&t2,..., s}
defined by the permutation matriX—!. Obtain the network\V" by relabeling source; in Np aso, ;. 10 see that there does
not exist a solution for computing in A/, assume to the contrary that a solution exists. By using dneesnetwork code in
Np, the receiver computes

Q(I P)H (Im(l),xm(g),...,a:m(s))t = Q(I P) (Il,IQ,...,xs)t.

Thus the receiver icVp can computé[“:ct, which is a contradiction.
Now we construct the networtk’p as claimed. Sincé has at least once zero element, there existea{l+1,1+2,...,s}
such thatT" has a zero inr-th column. Define

K:{ie{l,z,...J}::fy,T:l}

Denote the elements df by
{1, 72,5 dik} -

Let p be an element of1,2,...,l} — K (such ap exists from the fact that the-th column contains at least one zero) and
define B
K={1,2,...,s} — K —{r,p}

and denote the elements af by
{ik vt 01K 420 - - Js— || —2 ) -

SinceT" does not contain an all-zero colurmds| > 0. Now, let V> denote the network shown in Figure 2 whesedenotes
a relay node. It follows from the construction that

le-,jl le-,P leﬂ' _ 1 01
(& 50 706 7o) @
which is equal to the transfer matri® defined in [2B).

Notice that in the special case whé&h= {j;} and \I_{\ = 0, the network shown in Figuid 2 reduces to the network shown
in Figure[3 which is equivalent to the netwanN( in Figure[d with target functiorf;. SinceA; does not have a solution for
computingf; by LemmdIl.4, we conclude that; cannot have a solution either.

Similarly, we now show that in the general case, if the nekwbi- has a solution for computinj, then such a solution
induces a solution for computing in network Aj, contradicting LemmaTIl}4. Let there exist an> 0 for which there is

a linear solution for computing over A’» using an alphabet ovéf,~. In any such solution, for eache K — {j1}, the
encoding function on the edde;, p) must be of the form

Br,jalof) + Baja(or) (25)

for someg, ;, B2,; € Fgn. Since(oj, p) is the only path from source; to the receiver, it is obvious that ; # 0.
We define the mapy as follows. Leta(o;, ), a(op), a(o,) be arbitrary elements &~ and let

o forje K
*log) = {_(ﬂl,j)lﬂz,ja(m) forje K —{ji}. 0
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Op o

Ojik|

Ojix)42 Ojs_ k)2

Tj k)41

Fig. 2. Network Np with min-cut 1 that does not have aR,-linear solution for computindl P).

Note thata has been chosen such that for any choice@f;, ) , a(o,), anda(o-), every edge: € Ein(p) — {(0i,, p), (v, p)}
carries the zero vector. Furthermore, for the above chdiae, ¢the target function associated withreduces to

(a(ol) +T1ra(0r), a(0) + Taralor), ... alor) + Tl,Ta(UT)) . 27)
Substitutingfjm =1and Tp_, =0 in (1), it follows that the receiver can compute

(a(0j,) + alor), alop))

from the vectors received on edggs, , p) and (v, p). Consequently, it follows that there exist a linear solutaverF . for
computing the linear target function associated with tla@dfer matrix

(1}1 2J1 117'1717 jijl 77')
Tp-,jl Tp-,p TP-,T
in the network shown in Figurgl 3. It is easy to see that thetexé® of such a code implies a scalar linear solution for

Op o

Fig. 3. Subnetwork of\’p used to show the equivalence between solving netwdgk and solving network\/; .
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computingf; in A;. This establishes the desired contradiction.
Finally, we show that min-c@V,7) = 1. Let C € A(N) be a cut such thak'c ¢ K U {p, 7} (i.e, C separates sources
from only the top and middle rows in the netwafkp). We have the following two cases:

1) If o ¢ K¢, then it is easy to see th&€’| > |K¢|. Similarly, if o, € K¢ ando, ¢ K¢, then again|C| > |K¢|.
Consequently, we have

C] €]

rankTx.) — |Kc|

> 1. [from |C| > |Kcl] (28)

[from rankKTx.) < |K¢|]

2) If o, € K¢ ando, € K¢, then from Figuré B|C| = |K|+ 1 and K¢ = K U {p, 7}. Moreover, the index sek” was
constructed such that

7, - Y fi. 29)
i€k
Consequently, we have
rank Tk, ) = rank(Txu(pr}) [from K¢ = K U {p, 7}]
<|K|+1 [from (29)
=Cl. (30)
From [28) and[(30), we conclude thatifc C K U {p, 7}, then
C]
—_ >1.
rankTk.) — L (31)

For an arbitrary cuC' € A(N), let ¢z denote the number of sources I that are separated from the receiver @y(i.e,
cg = |Ke N K|). We have

¢l _ICl—crter
rank(Tk..) rank Tk, )
IC| —cg +ck

32
rank(Tx._x) + ck (32)
Since each source ik is directly connected to the receivéf]| — c; is equal to the number of edges @ separating the
sources inK¢ — K from the receiver. Consequently, from31), it follows that

e (33)
rank(Tx, )

Substituting [(3B) in[(32), we conclude that for alle A(N)
min-cut\V, T') > 1.

Since the edgéoy . . ,,p) disconnects the sourag; ., from the receiver, min-c@V,T) < 1 is immediate and the proof
of the theorem is now complete. ]

We now consider the case in which the source alphabet is beebihary field. In this case, we have that the two function
classes identified by TheoremsTll.2 dnd 1Il.5 are compleieh each other, namely eith& ~ (I 1) or T ~ (I P) with P
containing at least one zero element.

Theorem 111.6. Let! ¢ {1,s} and letT € F,**. If T » (I 1), then there exists ahx (s — ) matrix P such thatP has at
least one zero element afd~ (I P).

Proof: SinceT is assumed to have a full row rank,~ (I P) for somel x (s —[) matrix (I P) overFs. If P has0’s,
then we are done. Assume to the contrary tRas a matrix of non-zero elements. We only need to considecése when
(s—1) > 1 (sinceT = (I 1)). Fori =1,2,...,1—1, let () denote the-th column vector of thé x I identity matrix. Define
Q= (¢MWp? ... (=1 1) and letlI be a permutation matrix that interchanges Mk and (I + 1)-th columns and leaves the
remaining columns unchanged. It is now easy to verify that

QI P)II=(QQP)II
— (I P) (34)
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where P is anl x s — [ matrix with at least on® element: for; € {1,2,--- ;1 — 1}

Pio = (QP)is
= (Q1);
=141
=0.
Thus, (I P) ~ (I P) and by transitivity we conclude that ~ (I P) which proves the claim. [ |

IV. CONCLUSION

We wish to mention the following open problems arising frdms twork.

« Is there a graph-theoretic condition that allows to deteenvhether a given network is solvable with reference to argiv
linear function? We have provided an algebraic test in tesfrthe Groldner basis of a corresponding ideal, but we wish
to know whether there is there an algorithmically more effititest.

« We showed that min-cgd',T') = 1 is not sufficient to guarantee solvability for a certain sla$ linear functions. A
possible direction of future research is to ask whetherethgra constant such that min-cyt\', 7') > ¢ guarantees
solvability. Alternatively, for every constart does there exist a netwosk and a matrixI” such that min-cyt\', T') > ¢
and . does not have a linear solution for computing the linearetafgnction associated witi'?
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APPENDIX

Lemma A.l. LetT € quxs. If w € F;~! is a column vector of non-zero elements ana- (I ), then there exists a full rank

matrix @ and a column vector,” of non-zero elements ovéY, such thatl’ = @ (I v).

Proof: Let @ denote the matrix obtained by collecting the fifst— 1) columns ofT". We will first show that the matrix
Q is full-rank. After factoring out, we then prove that the last column must have non-zero entrie
SinceT ~ (I u), there exists a full-rank matrig) and a permutation matrikl such that
T=Q (Tu)ll
=(Q Qu) IL. (35)
From [35), the columns of) are constituted by the columns @f in which caseQ is full-rank, or columns ofQ contains

(s — 2) columns ofQ aanu. We will now show that the vectaw cannot be written as a linear combination of any set of
s — 2 column vectors ofy. Assume to the contrary that there existe F,, for j € {1,2, s — 2} such that

s—2
QU = Zanj (36)

j=1
where@, denotes the-th column ofQ. Let a denote the vector such thef = a;,j = 1,2,...5s—2, andas_; = 0. We have
u—a#0 [from us—1 # 0 andas—1 = 0]
Qu—a)=0 [from (38). (37)
(37) contradicts the fact thap is full-rank. Henceu;’s satisfying [36) do not exist and consequendlyjs a full-rank matrix.

We now have
T=Q(I )

whereu’ = Q1T and hencel’ ~ (I ). Furthermore]l’ ~ (I u) andT ~ (I ') implies that(I u) ~ (I u'). Thus, there
exists a full-rank matrixP and a permutation matrikl such that
(ITu)=P (Iuv)1I
= (P Pu') 1L (38)
Let (Y denote thei-th column of I. It follows from (38) that eithena) Pu’ = u and P itself is an(s — 1) x (s — 1)
permutation matrix, ofb) For somej € {1,2,...,s— 1}, j-th column of P is u, and the remaining columns must constitute
the s — 2 columnsg™ () ... ¢(7=D ¢+ 4(s=1) of I for somer. If (a) is true, themw’ = P~ '« and the elements af

are non-zero sinc® ! is another permutation matrix. (b) is true, thenPv’ = ¢(") and it must be that; # 0 (if v = 0,
then (Pu’), = 0 which contradictsPu’ = ¢(7)). Let L = {i : i # j, andw/ # 0}. We must have

o) = whu+ Y uj U, (39)
€D

If we denote the number of non-zero entries in a veeatdny |u|, then we have

1— ‘¢<r>
> |ufu| - |D| [from (39)
=(s—1)—[D|
>1 [from |D| < s —2] (40)
From [40), it follows that D| = s — 2 and consequently that every elementubfis non-zero. The proof of the lemma is now
complete. [ ]
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