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Abstract—This paper considers reliable communications over a deterministic variable within a known set, but its actudledas
multiple-input multiple-output (MIMO) Gaussian channel, where  ynknown to the transmitter. Such a model is call@bapound
the channel matrix is within a bounded channel uncertainty - hannejn information theory, and its capacity is determined as

region around a nominal channel matrix, i.e., an instance of . - . .
the compound MIMO Gaussian channel. We study the optimal the maximum of the worst-case mutual information (max-min

transmit covariance matrix design to achieve the capacityfocom-  channel capacity) of the set of possible channel realiaatio
pound MIMO Gaussian channels, where the channel uncertaint  [8]. From practical viewpoint, it is the maximum data ratetth

region is characterized by the spectral norm. This design mblem  can be reliably transmitted ovemy channel from the given
is a challenging non-convex optimization problem. Howeverin set. Characterizing the capacity of the compound channel

this paper, we reveal that this problem has ahidden convexity . . . .
property, which can be exploited to map the problem into a 'S considered to be an important problem, and has received

convex optimization problem. We first prove that the optimal considerable attention.
transmit design is to diagonalize the nominal channel, andhen In closed-loop MIMO systems, the transmitter is able to
show that the duality gap between the capacity of the compouh  gbtain inaccurate CSI, where the channel error may be caused

MIMO Gaussian channel and the min-max channel capacity IS, estimation, interpolation, mobility, and/or feedbalrkthis
zero, which proves the conjecture of Loyka and Charalambous

(IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2048-2063, 2012). The C2S€; the channel is typically modelled as the sum of a known
key tools for showing these results are a new matrix determiant nominal channel and unknown channel uncertainty. This ad-

inequality and some unitarily invariant properties. ditive channel uncertainty model has been widely utilized i

Index Terms—Channel uncertainty, compound channel, hidden studies on the fundamental Iimits of MIMO channels, e.g.,
convexity, multiple antenna. [O]-[11], and on robust transceiver designs, elg., [1Z}[In
[16], the capacity of the compound Rician MIMO Gaussian

channel with additive channel uncertainty was studied,rerhe
. INTRODUCTION the analysis was restricted to a rank-one nominal channel.

Multiple-input multiple-output (MIMO) techniques haveArbitrary rank nominal channel was considered(in|[17], veher
been extensively used to improve the spectral efficiendiesthe channel uncertainty is limited to the singular value of
wireless communications. The performance of MIMO conthe nominal channel with no uncertainty on the singular
munications relies on access to the channel state infosmatvectors. The capacity of the compound MIMO channel with
(CSI). When the CSI is perfectly known at the transmitte® Multiplicative channel uncertainty model was obtained in
the optimal power allocation is to diagonalize the charii! [ [11], where the region of channel uncertainty is described
However, in practice, the transmitter often has some cHan®¥ spectral norm. In addition, the capacity of the compound
uncertainty, which can result in a significant rate loss,df n MIMO Gaussian channel with additive channel uncertainty

taken into consideration in the transmit covariance matr@s derived in[[11] for some special cases, such as high
design. signal-to-noise ratio (SNR) limit, low SNR limit, and rank-
There have been two categories of research towards reliay® nominal channel.
communications over MIMO Gaussian channels with channel!n this paper, we design the optimal transmit covariance ma-
uncertainty. The first category focuses on stochastic nsoafel trix to achieve the capacity of the compound MIMO Gaussian
channel uncertainty, where the transmitter has accesslyo ofhannel with additive channel uncertainty. We consider the
the statistics of the channel state, but not its realizatighen case where the channel uncertainty is in a bounded region
the channel states change quickly over time, the achievatde around the nominal channel matrix, which is characterized
of the channel is described by the ergodic capacity, €.}, [1PY the spectral norm. This design problem is a challenging
[]. On the other hand, when the channel states vary slowfignconvex optimization problem. However, we reveal thit th
the achievable rate is characterized by the outage capaddpblem possesseshadden convexityroperty, and hence can
which is the maximum data rate achievable at any given st&@ simplified into a convex optimization problem. We first
with probability no smaller than a specified value, e.gl, [LProve that the optimal transmit design is to diagonalize the
BI-[7]. nominal channel. We then show that the duality gap between
The second category of studies were centered on defde capacity of the compound MIMO Gaussian channel (max-

ministic models of channel uncertainty, where the CS| is in channel capacity) and the min-max channel capacity is
zero, which proves the conjecture of Loyka and Charalambous

This paper will be presented in part at IEEE ISIT 2013. [11]. The key tools for proving these results are a new
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matrix determinant inequality (Lemnid 1) and some unitarilyithin an isotopical sefl Note that the channel uncertainty
invariant properties. region [3) provides a conservative performance lower bound
for the regions defined by any other unitarily invariant rixatr
norm, because

Il. SYSTEM MODEL
A2 > (Al

A. Notation

The following notations are used throughout the papebrf)ldS for all matrix A and all unitarily _invaria_nt matrix
Boldface upper-case letters denote matrices, boldfaceriow/ '™ Il ”.‘ [28, Corollary 5'6'.35]' More d|scus_5|ons_ on th_e
case letters denote column vectors, and standard lower ﬁ%gﬂonsmp among some matrix norms are provided in Sectio
letters denote scalars. Lé™*™ denote the set ofn x n
complex-valued matrices, an@™ denote the set ofi x n
square complex-valued matrices. The symBbl represents C. Power Constraint
the set ofn x n Hermitian matrices, an&i represents the  \We consider a general transmit power constraint
set of n x n Hermitian positive semidefinite matrices. Let
X(S) denote a submatrix aX obtained by deleting the rows QeQ, (6)
and columns complementary to those indicatedsbiyom X. whereQ C S!. is a nonempty compact convex set satisfying
The operator dia@, z2, - - - ,z,) denotes a diagonal matrix
with diagonal entries given by, zs,--- ,z,. The matrix UQu” € o, (7
I,, denotes then x n identity matrix. By > 0, we mean D(Q) € 9, (8)
that x; > 0 for all i. The operatorg-)*, Tr(-), and det(-) ) )
on matrices denote the Hermitian, trace, and determindff all Q € Q and all unitary matrixU € C’, whereD(Q)
operations, respectively. Let;(A) and \;(A) represent the is the diagonal matrix _W|th _the_ same _dlag_or_lal el_ements with
singular value and eigenvalue @, respectively. The vector Q- We say that a se is unitarily invariant if it satisfies (T)
oc(A) 2 (o1(A), -  Cuminfmn} (A)) contains the singular and [8). One can show that each unitarily invarigntan be

values of A € C™*". Let A(Q) 2 (M(Q),-- . \(Q)) equivalently expressed as

d_enote a vector cont_aining the eiger_walue_sg)fe s, The Q={QeS, : Q) € Bo,A(Q) > 0}, (9)
singular values and eigenvalues are listed in descendatey.or ) )
We use|||- ||| and||- || to denote matrix norm and vector normWhere Bo is a nonempty compact convex set. Two typical

respectively. examples of unitarily invariant power constraints are thms
power constraint 1]
B. Channel Model Q:={QeSs, :Tx(Q) < t}, (10)

Consider the complex-valued Gaussian vector channel:

—{Qesh ) NQ) <tA(Q) >0},
y=Hz + n, (1) i=1

. . . and the maximum power constraint [14
wherey is a lengthr received vectorH is anr x ¢ channel P aL{14]

matrix, = is a lengtht transmitted vector with zero mean and Q. = {Q € Sﬁr :max{\;(Q)} < P, A(Q) > 0}.
covarianceE{xz} = Q, andn is a complex Gaussian noise '

vector with zero-mean and covarianEgnn’’} =1 _ [1l. OPTIMAL TRANSMIT COVARIANCE DESIGN
The MIMO channeH is an unknown deterministic matrix :
satisfying A. Main Result
The capacity of the compound MIMO Gaussian channel
HeH, (2) @-@) and [6) is[[2D, Theorem 7.1]
where? is the channel uncertainty region defined by Crax min = min  [(Q,H), (11)

max
QEQ [[H-Hol||2<e

A .
H={H: |[[H-Holl: < ¢}, ®) where I(Q,H) = I(x;y) is the mutual information of the

H, is the nominal channel, anfl - [|» is the spectral norm channelll), i.e.[[1]
defined by 1(Q,H) = logdet (I, + YHQH") ,

Il All2 £ e |Az|z = max{oi(A)} = [o(A)llec- (4) andy is the per-antenna SNR. Finding an efficient solution
= _ o . . of the max-min problem[{11) has been open for a long
The spectral norm is anitarily invariant matrix norm A time (except in some special cases|[11],][14]] [16]), beeaus
unitarily invariant matrix norm satisfies [18, Section 78] I(Q,H) is nonconvex with respect tBl. However, we will
show that the problem{11) possesses a hidden convexity
[TAV]|| = [l Al ()

. . 1This is different from the channel uncertainty model[inl [1&hereH is
X
for all A € C™*™ and for all unitary matricedJ € C™ and within an isotopical set such th&U € # for all H € # and all unitary

V € C". Therefore, the channel uncertaily = H — Hy iS  matrix U.



property when[{B) holds, and thus can be simplified into wsing the same transmit covariance ma@@ Crmin max 1S

convex optimization problem. the minimal capacity of the channels with € H, evaluating
Suppose that the singular value decomposition (SVD) of tihich requires knowledge oH at the transmitter to obtain
nominal channeH, is given by QB We study the min-max probleri{lL6) to gain more insight

into the max-min probleni(11). We consider a more general
channel uncertainty region

whereU, € (C’”_and Vo € C! are unitary mgtrices. The first HAH: |H-H <e), (17)

key result of this paper is stated as follows:

HO - UOEHOV(IJ—Ia (12)

_ , . wherel|| - ||| is a unitarily invariant matrix norm satisfyinfl(5).
Theorem 1. If. Q and # are nonempty sets is d_efmed N For any unitarily invariant matrix norrf| - |||, there is a vector
@), and Q satisfies the unitarily invariant propertigf]) and
norm|| - || such that
(8), then
Al = A 18

holds for allA € C™*" [21, Theorem 3.5.18]. For the special
case of spectral norm, the associated vector norni_ih (18) is
I llso, as given by[(#). We have the following result:

is a solution to Problen{l1), whereU, and V, are defined
in (I2), the diagonal matrices\, and Xj; are determined
by 337 = diag(e™) and Ag = diag(A*), such that(c*, A*)

solves the problem Theorem 2. If Q andH are nonempty set${ is defined in

min{t.r} (I32), and Q satisfies the unitarily invariant propertie)) and

Craxmin = Max min Z log(1 4+ ~vo2)\;), (14) @), then
A}?ZBOQ HU*;'OEHODGS‘f i—1 Q/ _ VO /QVé'{’ H/ _ UO /I—IV(I){7 (19)
with the convex seBg defined in(@). is a solution to Problen{18), whereU, and V, are defined

) . = , .
Proof: The proof of Theoreni]1 relies on the unitarilyIn (T2) the diagonal matriced\q, and Xy, are determined by

/ H !/ / i / !/ /
invariant properties [{4)[15)[X7), andl (8), and a new matriH — diag(o”) and Ag = diag(A’) such that(o”, X') solves
determinant inequality presented in Leninha 1 given belowe. T;ﬁﬁe problem
details of the proof are provided in Appendi} A. [ | min {#,r}

The following lemma is a key technical contribution of this Ciminmax = min_ max Y log(l +707);), (20)

. : . . - AEB
paper, which plays an important role in proving Theoigm 1. H”a‘go”g fzog i=1

Lemma 1 (Matrix Determinant Inequality)If X and A are with the vector norm| - || and the convex seBo defined in
diagonal matrices with nonnegative diagonal entries, thee (@8) and (@), respectively.

solution to Proof: The proof of Theoreni]2 relies on the unitarily
min det [I+(2+A)A(2+A)H] (15) invariant properties [(18)[{5).1(7), and (8), but not the nmat
llAll2=e determinant inequality in Lemnia 1 for the spectral norm case
is a diagonal matrix. Therefore, Theorem] 2 holds for any unitarily invariant ratr
Proof: See AppendikT. = norm. The details of the proof are provided in Apperﬂlx B.

Theorem[L implies that the optimal transmit covariance Note that a special case of Theor&h 2 was obtained in

of the MIMO Gaussian channel with worst case channghq, o 3 of[[1M1], wheré| - ||| is limited to the spectral norm
uncertainty is to diagonalize the nominal chankgJ. Such a Il -l and Q is the sum power constraig,

solution structure was previously known only for some saleci
cases, such as high SNR limity (> 1), low SNR limit . .
(v < 1), low rank nominal channels (rafid,) < 2) [i1], C- Duality Gapis Zero
[14], [16]. In contrast, Theorei 1 holds for general nominal It is interesting to see that the max-min probldm](11) and
channels and all SNR values. Further, by Theofdm 1, tiee min-max problem[{16) have similar solution structures,
problem [T1) reduces t@_(114) with much fewer variables. as given in [(IB) and(19), and the difference is only in the
solutions to [(TW) and(20). Next, we study whetHer] (14) and
B. The Dual Problem (20) have a common solution for the spectral norm case.

) ) It is known that the following weak duality relation is
Now, we consider the dual of the max-min probl(ll}aﬂWays true: [[20]

which is given by the followingmin-max channel capacity

prOblem Omax min < C(min max- (21)
Chninmax 2 min max 1(Q, H). (16) Moreover, equality holds if(21), i.e.,
HeH QeQ
Omax min = Uminmax, (22)

It is important to distinguish the capacity of the compound

channelCy,ax min and t.he min-max channel Capaoﬁ%in max- 2The outer optimization o€} in ) is done without knowledge oH.
Chaxmin Can be achieved for any chanréd within H, by 3The inner optimization of in ) is done with knowledge of.



if and only if (I4) and [[(2D) have a common solutidn|[22(27). Therefore [(27) holds &tr*, A\*), and thus(z*, A*) is a
Corollary 9.16]. It was conjectured in_[11] thdi {22) holdsaddle point off. |

for the case thaf]| - ||| = ||| - |||l and the power constraint We note that the conjecture ofJ11] is a special case
is Q = Q1. Here, using Theorenid @] 2, and von Neumannaf Theorem[ B whereQ is restricted to be the sum power
minimax theorem, we can now prove this conjecture: constraintQ;. By Theorem[Ql and3, we have shown that

Theorem 3. If the conditions of Theoreld 1 are satisfied, thent:he covarlance deag_n proble@ 111) is a convex optimization
h duali lati hold problem in nature, if the channel uncertainty regigh is
1) The strong duality relatior22) holds. . characterized by the spectral norm.
2) Problems (I4) and (20) have a common solution

(o*,A*), whereo™ is given by IV. DISCUSSION

o; = max{og,; —¢,0}, (23) It is known that any matrix norm can be bounded within a

and \* is determined by the convex optimization problem constant multiple of the spectral norm: for any matrix norm
lll - [l there exista;, o, > 0 such that

min{t,r}
Crnax min = fmax > log(1+ymax{ogi—e,01°\;). (24)  ar || H—Hollz < |[H - Hol| < ay || H— Holl2, (28)
Az0 =1 whereq; anda;, are independent of the channel erkdr- Hy
Proof: 1) Problem[(IH) can be expressed as but depend on|| - || [18]. The values ofe; and «;, are
min{t,r} summarized in Table | of[11] for some popular matrix norms.
Crin max = Max min Z log(1 4+ yo2)\;) Using this and our results in Theorem 1 and 3, one can
A€Bg 20 derive capacity lower and upper bounds for compound MIMO

A>0 . . . . .
- Gaussian channels with channel uncertainty region destrib

by different matrix norms.

By introducingz; = log(a;), this problem can be reformulated Another interesting open problem is whether the matrix de-

as the following convex optimization problem: terminant inequality in Lemnid 1 holds for some other urligari
min{t,r} invariant matrix norms, e.g., the Frobenius (Euclideanmymo

max min log[1 4+ ve%*i )\ (25)
spmin 3 toel | A2 (3 0l = o ()] @9)
- 4,7

s.t. log(max{og; —£,0}) < z; <log(oo,; +¢), Vi,

s.t. max{aoﬂ-—s,O} <o; <oop,ite, Y 1.

If one can generalize Lemnid 1 to another unitarily invariant

where the objective function is concave Xand convex in i norm. then Theoremsl 1 afdd 3 also hold for this
x [23)]. Similarly, (20) can be reformulated as the fOIIOW'nEbarticular matrix norm, with the infinite nor- || in (Z4)

convex optimization problem: replaced by the corresponding vector norm defined By (18).

min{t,r} We have found a counterexample, which shows that
min  max Z log[1 + ve**i \;] (26) Lemma[l does not hold for the matrix nofti ||| = |lo(-)]|1-
© Xl = Consider the matrices
s.t. log(max{og; —&,0}) < a; <log(oo; +¢), Vi. > { (2) (1) ] A= [ 3 g } . (30)
Let us usef(A,z) to denote the objective function il _(25)
and [26). We say a poinlt\o, x) is asaddle pointof f if If A is restricted as a diagonal matrix, one can numerically
. calculate that the optimal objective value of the problem
fQo.zo)=  min  f(ho,x) = max f(A\zo).  (27) P oM P
P Ny min _det [I+(Z+A)A(Z+A)H] (31)

llo(A)]1<1
From von Neumann's minimax theorei [22, Theorem 9.Dk 15 63 However. when
we have: (1) the functiorf has a saddle point; (2) the point '

(Ao, o) is a saddle point off if and only if (Ao, z¢) is a A — [ —0.5 -0.5 } 7 (32)
common solution to[(25) and_(R6). Therefore,1(25) and (26) 0.5 —0.5
have the same optimal value, afnd](22) follows. the value of the objective function il (31) is 15.5. Therefor

2) Let us definex” as zj = log(max{co; — €,0}). By the solution to [(30) and(31) is not necessarily a diagonal
von Neumann’s minimax theorem, we only need to show thafatrix. For other unitarily invariant matrix norms, we ktib

(x*,A*) is a saddle point of . When(Xg, xo) is replaced by not know whether Lemmi 1 holds or not.
(z*, A\*), the minimization problem in{27) can be separated

into several subproblems, i.e., V. CONCLUSION

min log(1 + ve** \}) In this paper, we have investigated the capacity of a com-
* pound MIMO channel with an additive uncertainty of bounded
spectral norm, and derived the optimal transmit covariance
and the solution is given by*. On the other hand, accordingmatrix in close-form. When the channel uncertainty reg®n i

to (24), \* is the solution to the maximization problem incharacterized by the spectral norm, we have revealed amidde

s.t. log(max{og; —&,0}) < a; <log(oo; +¢), Vi,



convexity property in this problem. We have proved thaine extra constraint in the outer maximization problem:
the optimal transmit covariance design is to diagonaliz th
nominal channel matrix and there is zero duality gap between ~/maxmin
the capacity of the compound MIMO Gaussian channel a § max  min J(Q, H)
the min-max channel capacity. QeQ  HeH
Q=VoAqV{

— logdet [T, +v(Ho+A)Q(Ho+A)
325 i om et e (ot A)Q0or &)

Q=V,AQ Ve
APPENDIXA (b) . -
PROOF OFTHEOREMI[I] = ,{g%xgmﬂiislogdet [IT+W(ZHU+A)AQ(2HU+A) } ,
(34)
First, we construct an upper bound@®@f, .« min by IMmposing \whereA 2 UZ AV, step(a) is due the additional constraint
an extra constraint in the inner minimization problem: in the outer maximization, and stef) is due to Hy —

UoZh, VI, Q = VoAQ VY, the definitionA £ UJ AV,
and the unitarily invariant propertie§| (5) aid (7).
According to Lemmall, the optima is a diagonal matrix.

Cmax min

(a)
< max min logdet (I, + yYHQH") Hence,Xj; £ Zu, +A in (34) is also a diagonal matrix.
QEQ ||H—Ho|||2<e o
H:UOZOIHZ)V[? Substltutmg this into[(34), we have
() . H Craxmin > Mmax min log det [I, + Xz AQEH]
= log det (I YV, Vo , max min = " HAQEZH
825 B, o det (I +75mV QVoTn) AQEQ =~ la<e
H:U[)EHVé_I min{t,r}

= max min Z log(1 +~02)\;), (35)

)\EBQ Hafo'gﬂxgs

where U, and V, are defined in[{12), stega) is due to =1

the additional constraint in the inner minimization prable where the last step is due fd (4) afidl (9) withrepresenting
and step(b) is due toH = UOEHVH anddet(I+ AB) = the diagonal entries df};. Using [33) and[(35), the optimal
det(I+BA). Let us defineQ 2 V{QV, and useD(Q) to  objective value of[{I1) is given by (lL4).

denote the diagonal matrix that has the same diagonal etsmen Finally, we show [(IB) is an optimal solution tb {11). For

asQ. We then attain this, we substitute the solutioh (13) infa]11), i.e.,
max min logdet (I, + YH HY
Cmaxmin QeQ ”lHiHOHhSE ¢ ( ) Q )
- Q=VoAL VI H=U,z}; VI
< max min log det (IT + X b ) o . * *
CE TFuQEn = max ominlogdet (I +935AGY,)
H=U,SuV{ Q=VoALVE H=U,x}; VI
(a) ~
& min  logdet (IT +72HQ2H) @ : A s
= max min logdet (I +7XHAGY
QGQQ‘IHU?E“ﬂifs Ry, it det (T ThAG DY)
® nax min log det (I +1ZaQX ) ® = 2
= T H H P 2.
Qe 0 [IZr—Sr, o< ! = max omin ) log(L+907N)
(c) B A>0 o>0 =1
< max log det (IT—i— >uD(Q)S ) A
S e g 7EXuD(Q)ZH = Cha ) (36)
(d) N where stef(a) is due to [(b) and{7), stef) is due to [®) and
< max min log det (IT +v¥gD(Q EH)
D(Q)Q IEn—Smll2<e @ ). u
© min{t,r}
= max  min Z log(1 + o2 \:), (33) APPENDIXB

AEBg |lo—09||ec<e

>0 2% i1 PROOF OFTHEOREM[Z
= o> -

Consider the following upper bound 6f,i, max:

where step(a) is due to [), step(b) is due t0[|Za — Chinmax < min ma)chogdet (I, ++HQH™)

Sull: = [|H — Hg||2 which is derived fromH, = H- Uy BV Qe

UoXy, VE, H=UyZugVE and [B), stepc) is due to the (@ . "
Hadamard inequalitylet(A) < []; Ay, step(d) is because = i max logdet (I, +yHQH")
the feasible regio(Q) € Q is larger than the regio@® € Q H=UoXZu V¥ Q=V,AqV¥H

according to[(B), and stefr) is due to [[%#) and[{9) with\; min{t,r}

representing the diagonal entries{Q). ®  in max Z log(1 4+ yo2)\;), (37)

. L <cAEB
Next, we build a lower bound of,.x min by considering llo— "2“” N0 il



where step(a) is due to that the optimal power allocation

Proof: 1) It is known that for anyA,B € C"*! the

result is of the formQ = V,AqV{¥ by using [7), [B), and following singular value inequality hold$ [24, Eq. (5.18)],
the Hadamard inequality][1], stejp) is derived by using[{5), [18, Corollary 7.3.8]

(@), (@), and[(IB) as il (36).

Then, we construct a lower bound 6%, max:

max log det (I, +vHQH?
e n _ maxlog det (L +7HQH)

min max —

min  maxlogdet (I, +7vXgAgX
[[H-—Hl[|<e QeQ & ( TEHAQ H)

max logdet (I, +7XgAqQX
= s <. g log det (I +7 2 Aq Br)

min max logdet (I, +v7XgAQX
= IS, < Ageo S (I +75aAQBn)

min{t,r}
@ 2
= min max log(1 + vyoi i), 38
o< ; g(L+y07N),  (38)

where step(a) is due to the optimal power allocation result

by using [7), [(8), and the Hadamard inequality [1], stepis

due to [(T), stefdc) is due to the following result for unitarily

invariant matrix norm:[[18, Theorem 7.4.51]]21, Eq. (3®]3
%8 — Zg, ||| < [[H — Hol|,

with ¥y and ¥y, being the diagonal matrices in the SVDs
of H andHy, and step(d) is due to [®) and{18). Ther_(20)

loi(A+B) —o;(A)] < |IBlll2, Vi=1,---,min{t,r}.
By this, we have
oi(Z+A)
> max {oi(X) — [|All2,0}
> max{0;(X) —e,0}, Vi=1,--- ,min{t,r}, (42)

where the maximization is due to the fagf(3X + A) > 0
Moreover,o; (X + A) = 0 for min{t,r} <i <t.

Sinceg;; > 0, the singular values of the diagonal matBix
are given by{ci1, 22, -+ ,5p,0,- - ,0}. Let us defing;;; as
gj; = 0 for min{t,r} < j < t. Hence, we attain

det [(Z+A)7(Z+A)]

=[]oi(=+A)?
J=1
¢
> H max {o;(X) — ¢,0}>
=1
j t
= H max{g;; —¢&,0}2.

J=1

follows from (37) and[(38).[{19) can be proved similarly to 2) SinceX is a diagonal matrix, after deleting the rows and

(I3). Hence, the theorem is proven. [ |

APPENDIXC
PROOF OFLEMMA [T]

In order to prove Lemmall, we first need to show the

following result:

Lemma 2. Let ¥ = [g;] € R"™™* be a diagonal ma-
trix with non-negative diagonal entries;; > 0 for ¢
1,---,min{r,t}, and A € C"™** be a matrix satisfying
Al <e.

1) The following inequality holds:

det [(Z+ A) (B + A)] > [] max{s;; — =0}, (39)

j=1
whereg;; are defined by;; = 0 for min{t,r} < j <t.
2) Let S be a proper subset of1,2,--- ,t}, then
det {[=(3) + AS)" [B(5) + A(S)] |

> H max{g;; —¢,0}%, VS C{1,2,---,t},(40)
jes

where X(S) denotes the submatrix &X obtained by

deleting the rows and columns complementary to those

indicated byS from X.

3) LetA = (= + A)H(Z + A), then:
det [A(S)] > ] max{s;; —¢,0}?,
jeSs
VS C{1,2,--,t}. (41)

columns, the singular values of the submafkS) are given
by {¢:; : i € S}. Moreover, after deleting some rows and
columns, the spectral norm aA(S) satisfies||A(S)||z <
IIA]l|2 [L8, Thoerem 7.3.9]. Therefore

det {[2(5) + A9 [2(9) + A(S>]}
S|
et H O'j[z S +

S|

> H max {o; (X2
j=1

5]

> H max {o; (X2
i=1
= H max{g;; —¢&,0}%.

jes

3) For any givenS C {1,2,---,t}, one can interchange
the rows and columns & and (X + A) by multiplying with
two permutation matriceP € S, andQ € S, asB = PAP
and® = Q(X + A)P, such thatA(S) and 3(S) + A(S)
are the leading submatrices Bf and ®, respectively, i.e.,

A(9))?

(5)) = NA(S)|2, 0}

() —,0)°

s_(AB) C\ o (SS+AES) M
o ct D ) o N G )’
SinceP” =P, Qf = Q, P2 =1 andQ? =1, we attain

B=PZ+A)7QQ=Z+A)P=2",

thereby

A(S)

(2(S) + AS)T (2(S) + A(S)) + NN,



Then,
A(S) = ((5) + A(S) " (3(5) + A(S)) = 0,

which further implies that 18, Corollary 7.7.4]

det [A(S)] > det [(2(3) + AT (2(8) + A(S))} .

Finally, by using [[4D), the result if_{(#1) follows. [

and [46), we have

det [E11 + Ego + B(S)]
= det[E11 + B(S)] + det [E11 + B(S \ {2})]
> (1+max{g11—5, O}Qdu) H (max{gjj—s, O}dej)
JeS\{1}
+ (1—|—max{§11 —¢, O}lel) H (max{gjj—s, O}dej)

jes\{1,2}
2

Using part (3) of Lemma&l2, we can establish the following= [ | (1+max{c;; —=,0}°d;;) ] (max{;;—z 0}°d;;).

lemma:

Lemma 3. Let ¥ = [;;] € R"™** and D = [d;;] € R**! be
two diagonal matrices with non-negative diagonal entraas)
A € C™! be a matrix satisfyind|A[||2 <. Then

det [I; + (£ + A)"(Z + A)D]
min{t,r}

> [ (+max{q; —c0}%d;),  (43)
j=1

where equality is achieved by the diagonal mat&& with
diagonal entries given by

A} = gj; —max{sj;—¢,0}, j=1,--- ,min{t, r}.

Then, Lemmadll follows from((43).
Proof: We prove the inequality

det [I; + (£ 4+ A)"(Z + A)D]

> [ (1 + max{s;; —£,0}°d;,) (44)
i=1

by induction, where;;; for min{t,r} < j <t are defined as

gjj = 0.

Let B = (X + A)¥(Z + A)D. By part (3) of LemmdR2

and D being a diagonal matrix, we attain

det [B(S)] > [ (max{s;;—¢,0}%d;;)
JjES

VS C{1,2,-,t}. (45)

For any setS satisfying {1} € S C {1,2,---,t}, by the
cofactor (Laplace) expansioh 24, Eq. (6.2.5)] &ft[B(.59)]
and [45%), we attain

det [Ell + B(S)]
— det[B(S)] + det [B(S\ {1})]

> ] (max{;;—£,01%d;;)+ [ (max{s;;—e,0}%d;;)

jes jes\{1}
= (1+max{§11 —&, O}lel) H (max{cjj —&, O}dej) (46)
JES\{1}

Similarly, for any setS satisfying {1,2} C S C
{1,2,---,t}, by the cofactor expansion @fet[E;; + B(S)]

J=1 jes\{1,2}

Suppose that for any sét satisfying{1,2,--- ,k} C S
{1,2,---,t}, the following inequalities hold

N

det [Ell 4+ 4+ Ekk + B(S)]

k
> || (1+max{g;; —e,0}%d;;)
=1

X H (max{gjj—a,O}dej) .

JeS\{1,2,+ .k}

(47)

Then, for any setS satisfying {1,2,---,k + 1} C
S < {1,2,---,t}, by the -cofactor expansion of
det [E11 + - -+ + Exr + B(S)] and [4Y), we have

det [Ell + -+ E(k+l)(k+1) + B(S)}
=det[E11 + - - + Eg + B(9)]

+det [E1y + - + Egg + B(S\ {k +1})]
k

> || (1+max{g;; —&,0}%d,;)
j=1
X H (max{gjj—a,O}dej)
FJES\{1,2, -k}
k
+ | | (1+max{c;; —e,0}%d;;)
j=1
x [I  (max{q;—e0)7d;)
FES\{1,2, 1}
k+1

— H (1+max{s;; —¢,0}%d;;)

j=1
x [I  (max{gy;—e 05%dy;)
FES\{1,2,+ k+1}

By induction, the result of(44) follows.
Finally, (44) reduces td (43) sineg; = 0 for min{¢,r} <
J<t []
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