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Ensemble Properties of RVQ-Based

Limited-Feedback Beamforming Codebooks
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Abstract

The ensemble properties ofRandom Vector Quantization (RVQ)codebooks for limited-feedback beam-

forming in multi-input multi-output (MIMO) systems are studied with the metrics of interest being the

receivedSNR loss and mutual information loss, both relative to a perfectchannel state information (CSI)

benchmark. The simplest case of unskewed codebooks is studied in the correlated MIMO setting and

these loss metrics are computed as a function of the number ofbits of feedback (B), transmit antenna

dimension (Nt), and spatial correlation. In particular, it is established that: i) the loss metrics are a

product of two components – a quantization component and a channel-dependent component; ii) the

quantization component, which is also common to analysis ofchannels with independent and identically

distributed (i.i.d.) fading, decays asB increases at the rate2−B/(Nt−1); iii) the channel-dependent

component reflects the condition number of the channel. Further, the precise connection between the

receivedSNR loss and the squared singular values of the channel is shown to be a Schur-convex

majorization relationship. Finally, the ensemble properties of skewed codebooks that are generated by

skewing RVQ codebooks with an appropriately designed fixed skewing matrix are studied. Based on an

estimate of the loss expression for skewed codebooks, it is established that the optimal skewing matrix

is critically dependent on the condition numbers of theeffective channel(product of the true channel

and the skewing matrix) and the skewing matrix.
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I. INTRODUCTION

Optimal signalling to maximize the achievable rate in multi-input multi-output (MIMO) com-

munication channels requires appropriate adaptation of the number of transmit data-streams in

response to theSNR, channel correlation, and the channel state information (CSI) available

at the transmitter and the receiver [1], [2]. On the other hand, an increase in the number of

transmit data-streams results in a significant increase in the number of radio-frequency (RF)

link chains and imposes a corresponding increase in complexity and cost [3]. Thus, in many

later generation (3G/4G and beyond) cellular standards such as WiMAX, 3GPP-LTE, etc., low-

complexity signalling alternatives are preferred. In particular, beamforming, where the number

of transmit data-streams is fixed to be one (independentof theSNR, channel correlation or CSI)

is an attractive choice due to its low-complexity. Beamforming is also preferred when the central

goal is to maximize the coverage area/range of signalling, over the60 GHz regime [4] where

a large number of small antennas can be packed in a fixed area toreap the array gain possible

with beamforming, and as a mechanism for cross-layer signalling in ad-hoc networks.

Background: The performance achieved with a beamforming scheme is clearly dependent on the

quality of CSI available at both the transmitter and the receiver. While perfect CSI at the receiver

is a reasonable assumption for practical systems, constraints on channel tracking and quality of

feedback ensure that perfect CSI at the transmitter is an optimistic assumption. Nevertheless, the

possibility of low-rate reverse link feedback from the receiver to the transmitter has resulted in the

popularity of limited-feedbacksystems [5], [6], whereB bits of channel quality information are

fed back to the transmitter. The common method of using the feedback resource in beamforming

systems is by designing a codebook of2B beamforming vectors and feeding back the index of

the best codeword from the codebook over each coherence period [5], [6].

Given a channel correlation profile, the problem of optimal design ofB-bit codebooks is

ill-posed (in general) and hence, difficult. In the special case of channels with independent and

identically distributed (i.i.d.) fading, Grassmannian constructions that are designed to maximize

the minimum distance between beamforming vectors have beenproposed in [7] and [8]. The

intuition behind this proposal is that the dominant right singular vector of an i.i.d. channel

is isotropically (uniformly) distributed in the space ofNt-dimensional unit-norm beamforming

vectors whereNt is the number of transmit antennas. Thus, a “good” limited-feedback codebook

is an efficient quantization of this ambient space. Grassmannian codebooks are obtained via

algebraic techniques [9]–[11] and are technically impossible to construct for some(Nt, B)-

combinations.

To overcome this difficulty, inspired by the random coding argument,Random Vector Quan-

tization (RVQ) codebooks have also been proposed in the literature [12]. RVQ codebooks were

first introduced in the context of signature matrix quantization for Code-Division Multiple Access

(CDMA) systems in [13], [14]. RVQ codebooks are instantiations of random constructions (in

contrast to Grassmannian codebooks) and the beamforming vectors are isotropic and i.i.d. over



the ambient space. Thus, RVQ codebooks can be designed for all (Nt, B)-combinations and they

are of low-complexity in terms of design. The intuition behind an RVQ codebook design has

been extended to the multi-user setting (with i.i.d. fading) in many recent papers [15]–[19].

In the general single-user setting where the channel matrixis spatially correlated and the

dominant right singular vector of the channel has certain preferred directions, Grassmannian

codebooks aremismatchedand are hence, sub-optimal. In fact, in [20, Figs. 6 and 7], [21]

illustrative examples are given, where Grassmannian codebooks suffer dramatic performance

losses (on the order of25 dB in SNR) relative to the perfect CSI benchmark. In these situations,

more complicated (in terms of design)sphericalVector Quantization (VQ) constructions [22]–

[24] based on the Lloyd algorithm have been proposed. While VQ codebooks are optimal1, it is

hard to obtain insights on the structure of the optimal codebook. To overcome these difficulties,

rotation and scaling-based codebooks have been proposed [20], [25]–[29] and shown to result in

significant improvement in performance over Grassmannian codebooks. The main idea behind

these constructions is to finely quantize the local neighborhood around the statistically dominant

eigen-directions and coarsely quantize elsewhere (ifB is large enough to afford this possibility).

Towards the eventual goal of an optimal codebook construction, it is imperative to under-

stand the performance of existing codebook designs and identify the merits/demerits of existing

schemes with respect to fundamental limits on performance.In this direction, the performance of

an ensemble of RVQ codebooks has been studied for i) i.i.d. multi-input single-output (MISO)

channels [12], [15], [30], ii) correlated MISO channels in the asymptotic-B regime via high

resolution quantization theory [31], [32], iii) i.i.d. MIMO channels via bounds [33], [34], iv)

i.i.d. MISO and MIMO channels in the large antenna regime viaextreme order statistics [12],

[35], and v) symbol error rate of limited-feedback beamforming in an i.i.d. MISO setting [36],

[37].

Both exact expressions as well as asymptotic approximations (in B) are available for RVQ

codebooks for MISO channels in both the i.i.d. and correlated settings and these studies show

that the rate of decay of the loss metrics is of the order of2
− B

Nt−1 asB increases. However, in the

MIMO setting, performance analysis is available only in thei.i.d. case in the large antenna regime.

Further, since reverse link feedback is a valuable resource, the practically relevant regime is when

B is small and there has been little to no attention in the literature on performance analysis

relevant to this regime. More importantly, to the best of ourknowledge, the performance of non-

RVQ codebooks has not been studied at all. Thus, it is of interest to understand the ensemble

properties of RVQ codebooks (as well as codebooks designed based on RVQ codebooks and

tailored for correlated channels) in the most general correlated setting for practically relevant

values ofB.

1Technically, VQ codebooks meet the necessary conditions for an optimal codebook construction, but not the sufficient

condition. Nevertheless, it is widely believed that VQ constructions are optimal.



Contributions: The main goal of this work is to study the performance of aB-bit RVQ codebook

in correlated MIMO channels with the metrics of interest being the receivedSNR loss (∆SNRrx)

and loss in average mutual information (∆I), both relative to a perfect CSI scheme. For this,

we adopt a program of first averaging the loss metric (with a fixed channel realization) over

the randomness in the RVQ codebook structure and then, averaging over the randomness in

the channel. In this direction, we identify the structure ofthe density function of the weighted-

norm of isotropically distributed unit-norm vectors. Withthis information, we obtain closed-form

expressions (although the results are modulo averaging over channel randomness) for∆SNRrx

and∆I. The fundamental contributions of this work are three-fold: i) the loss expressions are

accurate for small values ofB across a large family of channels, ii) they are asymptotically tight

in B and the rate of decay withB is still 2−
B

Nt−1 in correlated MIMO channels, and iii) they

capture the impact of the channel correlation structure on the performance of RVQ codebooks.

Further, we also establish acontinuousmapping from the space of all majorizable channels to

performance loss with the RVQ codebook in that channel by showing that∆SNRrx is a Schur-

convex function of the squared singular values of the channel. An important consequence of

this result is that a channel that is well-conditioned leadsto the smallest value for∆SNRrx,

whereas arank-1 channel leads to the largest value for∆SNRrx. As the rank of the channel

decreases and/or the condition number of the non-trivial singular values of the channel increases,

performance loss with the RVQ codebook relative to a perfectCSI scheme increases. Intuitively,

RVQ codebooks are isotropic constructions whereas perfectCSI beamforming corresponds to

skewing the signal along the dominant right singular vectorof the channel. Thus, a channel that

has an isotropically distributed dominant right singular vector (an i.i.d. channel) is bestmatched

for the RVQ codebooks, whereas a channel that has a fixed direction for the dominant right

singular vector (arank-1 channel) is poorlymatchedfor RVQ codebooks. This intuition mirrors

the source-channel matchingprinciple for statistical semiunitary precoding established in one

of our prior works [21]. Since majorization only results in apartial ordering on the family of

all channels, we show that a simplified ordering metric to approximately order and compare the

performance of the RVQ scheme (in all channels) is the dominant squared singular value of the

channel.

Recent interest in the limited-feedback literature [25], [26] has been on the design of skewed

codebooks where a fixed skewing matrix is used to skew an RVQ codebook (or a Grassmannian

codebook). The skewing matrix biases the isotropic beamforming vectors in the RVQ codebook

and orients them along its singular vectors. Thus, by a suitable choice of the skewing matrix,

significant performance improvement can be achieved relative to the RVQ scheme. Despite

these observations, technical challenges have ensured that the performance analysis of skewed

codebooks has not been addressed in the literature. In the last part of this paper, we overcome

this challenge to generalize our characterization of the ensemble properties of RVQ codebooks to

the case of skewed codebooks. Our result captures the receivedSNR loss in terms of the skewing



matrix thus allowing us to obtain insights into the structure of the optimal skewing matrix for

limited-feedback beamforming. Our study establishes the criticality of the condition numbers of

the effective channel(which is the product of the true channel matrix and the skewing matrix)

and the skewing matrix in this question. Building on this insight, we construct a class of skewed

codebooks that match the left singular vectors of the skewing matrix with the dominant eigen-

directions of the transmit covariance matrix of the channel. Numerical studies show that these

skewed codebooks significantly out-perform RVQ codebooks and are better than the codebooks

proposed in [25], [26].
Organization: This paper is organized as follows. In Section II, we introduce the limited-feedback

beamforming setup. In Section III, we study the receivedSNR loss with an ensemble of RVQ

codebooks in the most general (correlated MIMO) setting, whereas in Section IV, our focus is

on ordering (comparing) channels with respect to the receivedSNR loss metric. For this, a partial

ordering in the form of a majorization result and an approximate complete ordering are presented

in Sec. IV. In Section V, we study the mutual information losswith RVQ codebooks, while

in Section VI, we extend the analysis of Sec. III to the skewedcodebook setting. Concluding

remarks are provided in Section VII. Proofs of most of the results are relegated to the Appendices.
Notations: Upper- and lower-case bold symbols are used to denote matrices and vectors, respec-

tively. The i-th element of a vectorx is denoted byx(i) and its two-norm is denoted as‖ · ‖.

The Hermitian transpose of a matrix is denoted by(·)† while the trace and rank operators are

denoted byTr(·) and rank(·), respectively. The eigenvalues of anNt ×Nt positive semi-definite

matrix M are arranged in decreasing order asλ1(M) ≥ · · · ≥ λNt(M). Many times, we will find

it convenient to write the above relationship asλ1 ≥ · · · ≥ λNt when there is no ambiguity about

the matrix under consideration. IfM is a full-rank matrix, the squared condition numberχM is

defined as λ1(MM†)
λNt

(MM†)
. We loosely say thatM is ill-(or well-)conditioned depending on whether

χM is (or is not) significantly larger than1. The indicator function and probability of an event

are denoted by11(·) andPr(·) while the expectation operator is denoted asE [·]. The symbolsC,

B, C•, I anddiag(·) are reserved for limited-feedback codebooks, number of bits of feedback,

constants in theoretical statements/results, identity matrix, and a diagonal matrix, respectively.

The symbolsC andR stand for the complex and real fields whileR+
n andR+ stand for positive

real fields ofn and1 dimensions, respectively. The notationsf(B)
B→∞≍ g(B) and the little-oh

notationf(B) = o(g(B)) asB → ∞ stand for lim
B→∞

f(B)
g(B)

= 1 and lim
B→∞

f(B)
g(B)

= 0.

II. BEAMFORMING SETUP

We consider a communication system withNt transmit andNr receive antennas where one

data-stream is used for signalling. The baseband model is given by

y =
√
ρHf s + n (1)

whereρ is the transmit power constraint, the complex Gaussian input s is i.i.d. with zero mean

and unit-energy,H is the Nr × Nt-dimensional channel matrix, andn is the Nr-dimensional



proper complex additive white Gaussian noise. In (1),f is a vector on the complex Grassmann

manifold G(Nt, 1). That is, f is a Nt × 1 unit-norm vector representing the equivalence class
{
fejθ, θ ∈ [0, 2π)

}
.

The main emphasis in this work is on the impact of the channel matrix on limited-feedback

performance. For this, we assume that the channel evolves according to a block fading, narrow-

band model. We further assume a Rayleigh fading (zero mean complex Gaussian) model for

the channel coefficients. The second-order statistics are described via a general, mathematically

tractable decomposition of the channel [38]:

H = UrHindU
†
t (2)

whereHind has independent, but not necessarily identically distributed entries, andUt andUr

are unitary matrices that serve as eigen-bases for the transmit and the receive covariance matrices

(Σt andΣr), respectively. The covariance matrices are defined as

Σt , E
[
H†H

]
= UtE

[
H

†
indHind

]
U

†
t (3)

Σr , E
[
HH†

]
= UrE

[
HindH

†
ind

]
U†

r. (4)

The well-known Kronecker-product correlation model (where Hind = Λ
1/2
r HiidΛ

1/2
t with Hiid

denoting an i.i.d. channel matrix) and virtual representation (whereUt and Ur are Fourier

matrices) are special cases of (2). Readers are referred to [38], [39] for a detailed study of

channel modeling issues.

We study the coherent case with perfect CSI at the receiver. With beamforming, both ergodic

capacity and (uncoded) error probability are captured by the receivedSNR, defined as,

SNRrx , ρ · f †H†Hf . (5)

When perfect CSI (H = H) is also available at the transmitter, the optimal choice (fopt) of

beamforming vector onG(Nt, 1) that maximizes the receivedSNR is uH, the dominant right

singular vector ofH (which is also the dominant eigenvector ofH†H). In this case, the received

SNR is given byρλ1, whereλ1 is the dominant eigenvalue ofH†H.

However, perfect CSI is hard to obtain at the transmitter endin practice. Thus, as motivated

in Sec. I, we assume aB-bit limited-feedback model for the reverse link. We need the following

definition to introduce the codebook model.

Definition 1 (Exchangeable & Isotropic random variables): A family of random variables,

X1, · · · , Xn, is said to beexchangeableif the joint distribution is invariant to the set of permu-

tations over{1, · · · , n}. That is,

Pr
(
X1, · · · , Xn ∈ Θ

)
= Pr

(
Xπ1, · · · , Xπn ∈ Θ

)
(6)

for all permutationsΠ = [π1, · · · , πn] and anyΘ in the range space of{X1, · · · , Xn}. A

family of i.i.d. random variables is exchangeable. Exchangeable random variables are identically

distributed [40].



A randomNt × 1 unit-norm vectorf is said to beisotropic if its distribution is invariant to

pre- and post-multiplication by unitary matrices. That is,

Pr
(
f ∈ Θ

)
= Pr

(
ejφUf ∈ Θ

)
(7)

for all Nt × Nt unitary matricesU and φ ∈ [0, 2π), andΘ in the range spaceG(Nt, 1). In

particular, the distribution function of anNt × 1 isotropic beamforming vector is given as [41]

Pr
(
f ∈ Θ

)
=

∫

θ∈Θ

Γ(Nt)

πNt
· δ
(
f †f − 1

)
dθ (8)

whereδ(·) stands for the Dirac delta operator and

Γ(x) =

∫ ∞

0

tx−1e−tdt (9)

stands for the Gamma function extended toC (minus its singularities).

In this work, we assume that an RVQ codebook ofB bits, C = {fi, i = 1, · · · , 2B}, is known

a priori at both the ends. The beamforming vectors inC are isotropic and i.i.d. overG(Nt, 1).

The indexi⋆ of the codeword that maximizes the receivedSNR,

i⋆ = argmax
i

f
†
i H

†Hfi, (10)

is fed back usingB bits. We assume that there is no error or delay in feeding the index back.

Since an RVQ codebook is by construction random, our interest is in the average properties

of an ensemble of RVQ codebooks. We desire to compute the following quantities:

∆SNRrx , EC

[

EH

[

λ1 −maxi f
†
i H

†Hfi

λ1

]]

(11)

∆I , EC

[

EH

[
Iperf − Ilim

]]

. (12)

The receivedSNR loss,∆SNRrx, is the ensemble average (over the family of RVQ codebooks)

of the average (over channel randomness) normalized receivedSNR loss relative to a perfect CSI

scheme. The quantity∆I is the ensemble average of the loss in average mutual information.

In (12), Iperf andIlim denote the mutual information2 achievable with channel realizationH = H

with perfect CSI and limited-feedback using the feedback metric in (10), respectively:

Iperf = log (1 + ρ · λ1) (13)

Ilim = log
(

1 + ρ ·max
i

f
†
i H

†Hfi

)

(14)

whereλ1 ≥ · · · ≥ λNt are the eigenvalues ofH†H in decreasing order.

2All logarithms are to base2, unless specified otherwise.



III. RECEIVED SNR LOSS

The goal of this section is to produce a tractable characterization of∆SNRrx as defined in (11).

For this, note that a simple Fubini argument implies that we can change the order of expectation

in (11) (and (12)). Thus, conditioned on a particular realization of the channelH = H, we seek

to compute the following average:

EC

[

λ1 −maxi f
†
i H

†Hfi

λ1

]

, ∆1. (15)

We then average∆1 overH to obtain∆SNRrx.

A. Equivalent Characterization of∆1

Lemma 1:

• If {fi} are isotropic onG(Nt, 1), the family of random variables
{

|fi(k)|2, k = 1, · · · , Nt

}

(16)

is exchangeable for any fixedi. Recall thatfi(k) is thek-th element offi.

• Further, with a given fixed channel realizationH = H, the family of random variables

{xi, i = 1, · · · , 2B} wherexi = f
†
i H

†Hfi is i.i.d. over its range[λNt , λ1].

Proof: See Appendix A.

If xi are i.i.d. positive random variables, for anyx > 0, we have

Pr

(

max
i=1,··· ,m

xi ≤ x

)

=
(

Pr (xi ≤ x)
)m

(17)

for any choice ofm. Using this fact in conjunction with Lemma 1, we have

EC

[

max
i

f
†
i H

†Hfi

]

− λNt =

∫ λ1

λNt

Pr
(

max
i

f
†
i H

†Hfi > x
)

dx (18)

= λ1 − λNt −
∫ λ1

λNt

Pr
(

max
i

f
†
i H

†Hfi ≤ x
)

dx (19)

where (18) follows from a routine Fubini argument. Hence, upon rearrangement, we have

∆1 =
1

λ1
·
(

λ1 − EC

[

max
i

f
†
i H

†Hfi

])

(20)

=
1

λ1
·
∫ λ1

λNt

(

Pr
(
f †H†Hf ≤ x

) )m

dx (21)

=
1

λ1

·
∫ λ1

λNt

(

Pr
(
f †Λf ≤ x

) )m

dx (22)

where the eigen-decomposition ofH†H is given asH†H = UΛU† with Λ = diag
([
λ1, · · · , λNt

])
,

f is an isotropically distributed vector inG(Nt, 1) in (21) and (22), andm is particularized to

m = 2B in (21) and (22).



B. Distribution Function of the Weighted-Norm of Unit-NormVectors

From the preceding discussion, we conclude that computation of ∆SNRrx requires the distri-

bution function off †Λf , which is a weighted-norm (with weights given by the diagonal entries

of Λ) of isotropically distributed beamforming vectors onG(Nt, 1). We start by characterizing

the relevant distribution functions completely in the special cases ofNt = 2, 3. (A study of the

generalNt case follows.)

Lemma 2:Let f be an isotropically distributed unit-norm vector onG(Nt, 1) and letΛ =

diag ([λ1, · · · , λNt ]) be some fixed diagonal matrix withλ1 ≥ · · · ≥ λNt ≥ 0. The cumula-

tive distribution function (CDF)F (x) of f †Λf over the non-trivial support region (the interval

[λNt , λ1]) is as follows:

F (x)
∣
∣
∣
Nt=2

= x−λ2

λ1−λ2
, λ2 ≤ x ≤ λ1, (23)

F (x)
∣
∣
∣
Nt=3

=







(x−λ3)
2

(λ1−λ3)(λ2−λ3)
, λ3 ≤ x ≤ λ2

F (λ2) +
(x−λ2)(2λ1−x−λ2)
(λ1−λ2)(λ1−λ3)

, λ2 < x ≤ λ1.
(24)

While the behavior ofF (x) is too cumbersome to be stated in the generalNt case, its behavior

over the segment[λ2, λ1] is simple:

F (x) = 1− (λ1 − x)Nt−1

∏Nt

j=2 (λ1 − λj)
, λ2 ≤ x ≤ λ1. (25)

Proof: See Appendix B.

A simple verification shows thatF (λ1) = 1 in all the cases, as expected. The distribution

functions are derived in Appendix B by computing the volume of intersection of a complex

ellipsoid with a unit-radius complex sphere. This computation mirrors and generalizes the com-

putation in [8] where the volume of a spherical cap (intersection of a plane with a unit-radius

complex sphere) is obtained in closed-form. While this generalization is hard to geometrically

visualize beyond theNt = 2 case, it can be seen that the trend over[λ2, λ1] shows the same

behavior as the distribution function in [8].

Fig. 1 illustrates the trends of the CDF by plotting the goodness-of-fit between the theoretical

expressions in Lemma 2 and the CDF estimated via Monte Carlo methods. Three cases are

considered: a)Λ = diag([2 1]) for Nt = 2, b) Λ = diag([3 2 1]) for Nt = 3, and c)Λ =

diag([4 3 2 1]) for Nt = 4.

C. Main Result

The following theorem captures the performance loss with RVQ codebooks.
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Fig. 1. CDF of weighted-norm of isotropically distributed unit-norm vectors.

Theorem 1:In the MIMO setting, in the special cases ofNt = 2 and3, we have

∆1

∣
∣
∣
Nt=2

= A2 ·
[

1− λ2

λ1

]

(26)

∆1

∣
∣
∣
Nt=3

= A3 ·
[(

1− λ3

λ1

)(
λ2 − λ3

λ1 − λ3

)m

+

(

1− λ2

λ1

)

×

m∑

k=1

(
λ2 − λ3

λ1 − λ3

)m−k
2km(m− 1) · · · (m− k + 1)

(2m− 1)(2m− 3) · · · (2m− 2k + 1)

]

, (27)

wherem = 2B, A2 =
1

2B+1
andA3 =

1
2B+1+1

. In the general (Nt ≥ 4) case, we have

∆1 ≈ ANt ·
[(

1− λ2

λ1

)

×
[

Dm +

m∑

k=1

2k ·m(m− 1) · · · (m− k + 1)

(2m+ p− 1) · · · (2m+ p− 2k + 1)
Dm−k

]]

, ∆1, appx,

(28)

ANt =
1

m(Nt − 1) + 1
, p =

2

Nt − 1
− 1, and D , 1−

Nt∏

j=2

λ1 − λ2

λ1 − λj
. (29)

Further, we have the following bounds:

0 ≤ ∆1 −∆1, appx

∆1

≤ ǫB (30)

where

ǫB ,
λ2 − λNt

λ1
· Dm

∆1, appx
. (31)



We will show subsequently (see (38)-(40)) thatǫB
B→∞→ 0 for anyH. That is,∆1, appx is a tight

approximation to∆1 with

∆1 = ∆1, appx + o (∆1, appx) (32)

asB → ∞.

Proof: SinceF (x) is monotonic, the dominant term of the integral in (22) in thegeneral

Nt case is over the interval[λ2, λ1]. Computation of this dominant term results in the statement

of the theorem. See Appendix C for details.

In the special cases whereH is a MISO channel (Nr = 1) or H is effectively a MISO channel

(rank(H†H) = 1), ∆1 can be computed in closed-form [30, Cor. 1], [15] as

∆1 = EC

[

min
i

sin2(θi)
]

= 2Bβ

(

2B,
Nt

Nt − 1

)

(33)

with θi denoting the angle betweenfi anduH (the dominant right singular vector ofH) and

β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt (34)

is the Beta function. The MISO setting can be obtained as a limiting case of Theorem 1 with

λ2 = · · · = λNt → 0.

D. Asymptotics ofB

Theorem 1 separates (to first order) the impact of the channelfrom that of the RVQ codebook

(number of bitsB). Nevertheless, the expressions provided are too complicated to obtain simple

heuristic insights.

To overcome this difficulty, we now provide simplifications for ∆1 asB → ∞. In theNt = 2

setting, the expression for∆1 is already simple. Thus, we start with the case ofNt = 3 and then

study theNt ≥ 4 case.

Proposition 1: In theNt = 3 case, the dominant term of∆1 behaves as

∆1 =

√
π

2B/2+1
·
[(

1− λ2

λ1

)(

1 +
λ2 − λ3

2(λ1 − λ3)

)]

+ o
(
2−B/2

)
(35)

asB → ∞. Similarly, in theNt ≥ 4 case, we have

∆1 =
κ · 2−

B
Nt−1

Nt − 1

[(

1− λ2

λ1

)(

1 +
D

(1−D)(Nt − 1)

)]

︸ ︷︷ ︸

∆1, asymp

+o
(

2
− B

Nt−1

)

, (36)

whereκ = Γ
(

1
Nt−1

)

andD is as in (29).

Proof: See Appendix D.



From Prop. 1 as well as (33), in the special case whererank(H†H) = 1, we have

∆1 =
2
− B

Nt−1

Nt − 1
+ o

(

2
− B

Nt−1

)

, (37)

which is also established in [15], [30]. For the rate of convergence ofǫB in (31) asB → ∞,

note that

log (ǫB) = log

(
λ2 − λNt

λ1

)

+ 2B log(D) + log

(
1

∆1, appx

)

(38)

(a)
=

B

Nt − 1
− 2B log

(
1

D

)

+O(1) (39)

B→∞≍ −2B log

(
1

D

)

(40)

where (a) follows from Prop. 1 and theO(1) factor is a constant for a givenH.

We now provide a numerical study to illustrate the theoretical results presented in Theorem 1,

and to provide an idea as to how useful the asymptotic approximations are in the non-asymptotic

regime. Three channel realizations of sizeNr × Nt with Nt = Nr = {2, 3, 4} are generated

randomly and then held constant and the performance is averaged over1000 RVQ codebooks.

The three channels are such that the squared singular valuesare: 1) [2 1], 2) [3 2 1], and 3)

[4 3 2 1], respectively. Fig. 2 shows the match between the theoretical expressions in Theorem 1,

the asymptotic approximations in Prop. 1 and Monte Carlo estimates of∆1. We see that the

asymptotic approximations are close even for small values of B (B ≥ 2), which is useful from a

practically motivated limited-feedback perspective. While we have considered the goodness-of-fit

of the three expressions with a specific channel realizationin Fig. 2, the goodness-of-fit of the

three expressions across a large family of channels is studied next.

IV. ORDERING CHANNELS BASED ON RVQ PERFORMANCE

The focus of this section is to develop a basis (or a metric) toorder a family of channels

such that the RVQ performance over a particular channel can be compared with performance

over another channel. In particular, the interest is on those conditions on channelsH1 andH2

that are critical to ensure that

∆1

∣
∣
∣
H1

≤ ∆1

∣
∣
∣
H2

. (41)

Let λ = [λ1, · · · , λNt ] andµ = [µ1, · · · , µNt] denote the vectors of squared singular values

of H1 andH2 with λ1 ≥ · · · ≥ λNt ≥ 0 andµ1 ≥ · · · ≥ µNt ≥ 0. In the special case ofNt = 2,

Theorem 1 shows that

∆1

∣
∣
∣
H1

≤ ∆1

∣
∣
∣
H2

⇐⇒ λ1

λ2

≤ µ1

µ2

. (42)

With λ andµ normalized such that

λ1 + λ2 = ρc = µ1 + µ2, (43)
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(42) is equivalent toλ1 ≤ µ1 or λ2 ≥ µ2. To make this connection more precise in the general

Nt case, we assume that the channels are normalized such that
Nt∑

i=1

λi = Tr(H†
1H1) = Tr(H†

2H2) =
Nt∑

i=1

µi = ρc, (44)

where ρc denotes the channel power. This normalization is commonly used in multi-antenna

channel measurement studies to ensure that the channel power stays fixed, independent of the

distance between the transmitter and the receiver and the energy of the scattering phenomena.

See [39] for a discussion of channel power normalization issues.

We also define the notions of a majorization ordering and a Schur-convex function [42].

Definition 2 (Schur-convex function): We say thatλ is majorized byµ (denoted asλ ≺ µ)

if
k∑

i=1

λi ≤
k∑

i=1

µi, 1 ≤ k ≤ Nt, (45)

with equality fork = Nt. With λ andµ denoting the vectors of squared singular values ofH1

andH2, respectively, equality in (45) fork = Nt is a consequence of (44).

Let f(·) be a function such thatf : R+
Nt

7→ R. We say thatf(·) is Schur-convex onR+
Nt

if

x ≺ y =⇒ f(x) ≤ f(y). (46)

The functionf(·) is Schur-concave if−f(·) is Schur-convex.

With this background, the main result of this section is as follows.



Theorem 2:The normalized receivedSNR loss is a Schur-convex function of the squared

singular values of the channel. That is, ifλ andµ denote the vectors of squared singular values

of H1 andH2 with λ ≺ µ, we have

∆1

∣
∣
∣
H1

≤ ∆1

∣
∣
∣
H2

. (47)

Proof: See Appendix E.

Some comments are in order at this stage.

1) Note that it is difficult to draw the conclusion of Theorem 2from either the exact expression

in the Nt = 3 case or the approximate/asymptotic expressions of Sec. III. Theorem 2

provides a continuous ordering on the space of all possible (majorizable) channels with

respect to RVQ performance. Similar results exploiting majorization theory have been

obtained for the ergodic capacity of MISO systems [43], outage probability of MISO

systems, error performance of orthogonal space-time blockcodes, performance analysis of

precoding in MIMO systems [44], performance of CDMA systems, etc., (see [21], [44],

[45] for details). Theorem 2 leads us to the following conclusion.

Corollary 1: Any channelH with the vector of squared singular values denoted byλ

satisfies
[
ρc
Nt

, · · · , ρc
Nt

]

≺ λ ≺
[
ρc, 0, · · · , 0

]
(48)

resulting in

∆1

∣
∣
∣[

ρc
Nt

,··· , ρc
Nt

] ≤ ∆1

∣
∣
∣
λ

≤ ∆1

∣
∣
∣[

ρc, 0,··· ,0
]. (49)

In other words, the best channel with respect to RVQ performance is well-conditioned

with squared condition numberχH = λ1(H†H)
λNt

(H†H)
equal to1, whereas the worst channel is a

rank-1 channel.

This conclusion fits within the theme ofsource-channel matchingfor signalling design in

single-user MIMO systems, established in [21]: the best channel with respect to a specific

signalling scheme is the channel that optimizes an appropriately definedmatching metric

for that scheme. For the beamforming scheme with∆1 as the chosen metric and given that

an RVQ codebook has isotropic vectors (equally likely to beamform along any direction),

the channel that is best-suited to this scheme should also have dominant right singular

vectors that are isotropic inG(Nt, 1). This choice leads us to the i.i.d. channel matrix [7],

[10]. Similarly, a rank-1 channel with a fixed right singular vector is ill-suited to anRVQ

codebook that is “wasteful” by beamforming isotropically in G(Nt, 1).

2) We now provide two specific examples to illustrate the dependence of∆1 on the rank of

the channel and the condition number.



Corollary 2: Note that

[ρc/Nt, · · · , ρc/Nt] ≺ · · · ≺



 ρc/r
︸︷︷︸

r times

, 0
︸︷︷︸

Nt−r times



 ≺ · · · ≺ [ρc, 0, · · · , 0] . (50)

Thus,∆1 increases as the rankr of the channel decreases.

Further, within the family of channels with the same rankr, ∆1 increases as ther non-zero

squared singular values become more ill-conditioned.
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Fig. 3. ReceivedSNR loss for channels ordered via a majorization relationship as a function ofB.

Fig. 3 plots∆1 as a function ofB across a family of150 channels that can be continuously

majorized as follows. WithNt = Nr = 4 and ρc set arbitrarily to1 (without loss in

generality), the squared singular values for thei-th channel are given as

λi , [1− xi, xi/3, xi/3, xi/3] (51)

wherexi increases from0.01 to 0.75 in steps of0.005. It can be seen that for anyi

λi ≺ λj, 1 ≤ j ≤ i− 1, (52)

and the channel becomes more well-conditioned asi increases. On the other hand,∆1

continuously decreases, thus illustrating Theorem 2.

3) Majorization provides an ordering metric to compare channels with respect to RVQ perfor-

mance. However, it is important to note that the metric only induces apartial ordering on

the family of channels since there exist channels that cannot be compared via a majorization

relationship. A simplified, albeit approximate, channel ordering metric that reflects the

condition number of the channel and allows anapproximate completeordering of channels



is λ1. However, numerical results illustrating the efficacy of this metric are not provided

here for the sake of brevity.

In general, we would like to study the behavior of∆SNRrx = EH [∆1].

Proposition 2: In the special case where{Nt, Nr} → ∞ with Nt

Nr
→ 0, the singular values of

H converge (harden) [21], [46] as follows:

λi(H
†H) → λi

(
E
[
H†H

])
= λi (Σt) , i = 1, · · · , Nt. (53)

Hence, we have

∆SNRrx

O(1)
≈ λ1(Σt)− λ2(Σt)

λ1(Σt)
︸ ︷︷ ︸

D1

·
(

1 +

Nt∏

j=3

λ1(Σt)− λj(Σt)

λ1(Σt)− λ2(Σt)

)

︸ ︷︷ ︸

D2

(54)

with the approximation holding up to a multiplicative constant that depends on the antenna

dimensions andB.

Note thatD1 is minimized whenλ1(Σt) ≈ λ2(Σt) whereasD2 is minimized whenλ2(Σt) ≈
· · · ≈ λNt(Σt) ≈ 0. But D1D2 is minimized whenΣt is well-conditioned. Apart from this case,

estimating∆SNRrx appears to be difficult in general. We therefore resort to numerical studies

to study trends of∆SNRrx.

Following the discussion in the context of channel ordering, we expect that as the rank of

Σt increases and as a consequence, the condition number of the channel decreases on average,

the performance loss with RVQ should decrease. Fig. 4(a) illustrates this heuristic with four

channels generated according to the Kronecker-product correlation model in (2). The eigenvalues

of Σr of the four channels are fixed as1.6 ×
[
4 3 2 1

]
where the factor of1.6 means that

Tr(Σr) = NtNr = 16. The eigenvalues ofΣt are as follows: 1)[16 0 0 0], 2) [8 8 0 0], 3)

[16/3 16/3 16/3 0], 4) [4 4 4 4] ensuring thatTr(Σt) = 16 in all the four cases.

V. M UTUAL INFORMATION LOSS

Following the same development as in Sec. III, we can write∆I as

∆I = EH [∆2] , ∆2 =

∫ U

L

(

Pr (x ≤ x)
)m

dx (55)

wherex = log
(
1 + ρ · f †H†Hf

)
, m = 2B,

L = log (1 + ρλNt) , and U = log (1 + ρλ1) . (56)

It is easy to see that

∆2 =
ρ

loge(2)
·
∫ λ1

λNt

(
Pr
(
f †H†Hf ≤ x

))m

1 + ρx
dx (57)

=
ρ

loge(2)
·
∫ λ1

λNt

(
Pr
(
f †Λf ≤ x

))m

1 + ρx
dx. (58)
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Fig. 4. (a) Average receivedSNR loss and (b) Average mutual information loss as a function ofthe rank ofΣt.

In contrast to the development in Sec. III where the integrand is monotonically increasing,

the integrand in (58) is not necessarily monotonic as it is a ratio of two increasing functions.

Nevertheless, we can trivially capture the trend of∆2 as illustrated next.

Corollary 3: The following asymptotic trend holds for∆2:

∆2 = 2
− B

Nt−1 · ρ(λ1 − λ2) · κ
loge(2)(Nt − 1)

·
[

1 +
D

(1−D)(Nt − 1)

]

+ o
(

2
− B

Nt−1

)

(59)

whereκ andD are as in Theorem 1.

Proof: A trivial bound for1+ρx in (58) over the interval[λ2, λ1] implies that the dominant

term of∆2 (denoted as∆2, appx) can be bounded as

ρ

1 + ρλ1
≤ ∆2, appx · loge(2)
∫ λ1

λ2
(Pr (f †Λf ≤ x))m dx

≤ ρ

1 + ρλ2
. (60)

A consequence of the computation in Theorem 1 is that

∆2 ≤ ∆2, appx ≤ ∆2 (61)

with

∆2 ,
ρ

loge(2)
·ANt ·

(
λ1 − λ2

1 + ρλ1

)

· C1 (62)

∆2 ,
ρ

loge(2)
·ANt ·

(
λ1 − λ2

1 + ρλ2

)

· C1 (63)

where

C1 = Dm +

m∑

k=1

2k ·m(m− 1) · · · (m− k + 1)

(2m+ p− 1) · · · (2m+ p− 2k + 1)
Dm−k (64)



and we have reused the notations (ANt , p,D) from Theorem 1. It is straight-forward to see that

∆2
(

ρ(λ1−λ2)
1+ρλ1

) =
κ · 2−

B
Nt−1

loge(2)(Nt − 1)
·
[

1 +
D

(1−D)(Nt − 1)

]

+ o
(

2
− B

Nt−1

)

(65)

∆2
(

ρ(λ1−λ2)
1+ρλ2

) =
κ · 2−

B
Nt−1

loge(2)(Nt − 1)
·
[

1 +
D

(1−D)(Nt − 1)

]

+ o
(

2
− B

Nt−1

)

, (66)

and thus we have (59).

While Cor. 3 captures the asymptotic trend of∆2 via trivial bounding, it is not tight when

λ1 ≫ λ2. In these situations, it is useful to obtain a tighter estimate for ∆2. This is addressed

next.

Theorem 3:In theNt = 2 case, we have

∆2 =
1

loge(2) · zm

[

loge(1 + z)−
m∑

t=1

(−1)t+1zt

t

]

(67)

wherem = 2B andz ,
ρ(λ1−λ2)
1+ρλ2

. In the generalNt case, we have the following approximations:

∆2 ≈
ρA

loge(2)

(Nt − 1)(1 + ρλ1)
·

∞∑

i=0

γi(1−D)
i+1

Nt−1

m+ i+1
Nt−1

×
[

Dm +

m∑

k=1

2k ·m(m− 1) · · · (m− k + 1) ·Dm−k

(2m+ pi − 1) · · · (2m+ pi − 2k + 1)

]

, ∆2, appx, (68)

γ =
ρA

1 + ρλ1
, A =

(
∏

j≥2

λ1 − λj

) 1
Nt−1

, and pi =
2(i+ 1)

Nt − 1
− 1. (69)

Further, we have

0 ≤ ∆2 −∆2, appx

∆2
≤ ǫ′B (70)

where

ǫ′B ,
ρ(λ2 − λNt)

(1 + ρλNt) · loge(2)
· Dm

∆2, appx
(71)

log(ǫ′B)
B→∞≍ −2B log

(
1

D

)

. (72)

Thus ǫ′B
B→∞→ 0 and

∆2 = ∆2, appx + o (∆2, appx) (73)

asB → ∞.

Proof: See Appendix F.



An alternate expansion for∆2 is also presented in Appendix F. This expansion correspondsto

an alternate form of the integrand in (58) and is captured by aseries where the signs of alternate

terms change. In this spirit, the alternate expansion generalizes (67). From a numerical stand-

point, this oscillatory nature is unattractive due to non-convergence of the series and (68)-(69)

overcomes this problem. We now study the asymptotic trends of ∆2.

Proposition 3: In theNt = 2 case, depending on the relationship betweenρ, λ1 andλ2, two

possibilities arise asB increases. We have

∆2
B→∞≍







1
loge(2)

· z
(m+1)

, z < 1

1
loge(2)

· (z−1)
2·z loge(z)·(m−1)

, z ≥ 1.
(74)

In the generalNt case, asB → ∞, we have

∆2 =
2
− B

Nt−1

loge(2)(Nt − 1)
· ρ(λ1 − λ2)

1 + ρλ1
·
[

κ+
D

1−D

]

︸ ︷︷ ︸

∆2, asymp

+o
(

2
− B

Nt−1

)

(75)

whereκ = Γ
(

1
Nt−1

)
andD is as in (29).

Proof: See Appendix G.

We now illustrate the above theoretical results in Fig. 5(a)and (b) where we plot the instan-

taneous mutual information loss both theoretically and viaMonte Carlo averaging. The squared

singular values of the three channels are (as before): 1)[2 1] for Nt = 2, 2) [3 2 1] for Nt = 3,

and 3)[4 3 2 1] for Nt = 4, respectively. Asymptotic and approximate expressions are tight for

small B values as long asρ is not too large. On the other hand, Fig. 4(b) illustrates thetrend

of ∆I as a function of the rank ofΣt. The channel data used to generate Fig. 4(b) is the same

as that used for generating Fig. 4(a) (see the discussion there).

VI. SKEWED CODEBOOKS FORCORRELATED CHANNELS

From (22) and (55), the asymptotic optimality of RVQ codebooks in the correlated case is

obvious. That is,∆SNRrx → 0 and ∆I → 0 (respectively) asB → ∞, independentof the

channel correlation profile, since a probability term in theintegrand is raised to the power of

m = 2B → ∞. Nevertheless, this does not mean that RVQ codebooks are optimal for any

finite value ofB in the correlated case. While the ensemble averaging of RVQ codebooks is

necessary to make constructive statements about their performance, certain fixed constructions

may significantly outperform other constructions for smallvalues ofB. In fact, it is well-known

that codebooks constructed by exploiting the channel correlation structure clearly outperform

Grassmannian codebooks (and thus, in principle, RVQ codebooks) for smallB and that the

condition number of the channel determines the performanceof these codebooks [20], [25]–

[29].



0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

B

∆ 2

 

 

N
t
 = 2, Monte Carlo

N
t
 = 2, Theory (Exact)

N
t
 = 3, Monte Carlo

N
t
 = 3, Theory (Approximate)

N
t
 = 3, Theory (Asymptotic)

N
t
 = 4, Monte Carlo 

N
t
 = 4, Theory (Approximate) 

N
t
 = 4, Theory (Asymptotic)

ρ = 5 dB
ρ = 10 dB

ρ = 15 dB

−15 −10 −5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

ρ (dB)

∆ 2

 

 

N
t
 = 2, B = 2, Monte Carlo

N
t
 = 2, B = 2, Theory (Exact)

N
t
 = 3, B = 3, Monte Carlo

N
t
 = 3, B = 3, Theory (Approximate)

N
t
 = 4, B = 4, Monte Carlo 

N
t
 = 4, B = 4, Theory (Approximate)

(a) (b)

Fig. 5. Instantaneous mutual information loss computed theoretically and via Monte Carlo averaging as a function of: a)B,

and b)SNR.

To improve over the RVQ performance for finite values ofB, we consider a codebookCsk
whereC =

{
fi, i = 1, · · · , 2B

}
is skewed by a fixedNt ×Nt matrix A and then normalized as

follows:

Csk =
{

A fi

‖A fi‖
, i = 1, · · · , 2B

}

. (76)

The relative receivedSNR loss3 with Csk is given as

∆1, sk = ECsk

[

1− 1

λ1(H†H)
·max

i

f
†
i A

†H†HAfi

f
†
i A

†Afi

]

(77)

and the broad goal is to designAopt where

Aopt = argmin
A

EH [∆1, sk] . (78)

A. Equivalent Characterization of∆1, sk

In this direction, a simple transformation argumentgi =
Afi

‖Afi‖
∈ G(Nt, 1) allows us to check

that

λNt(H
†H) ≤ f

†
i A

†H†HAfi

f
†
i A

†Afi
≤ λ1(H

†H), i = 1, · · · , 2B. (79)

3We will henceforth denote the explicit dependence ofH
†
H on λ1 and use the notationλ1(H

†
H) to distinguish it from the

eigenvalues ofA†
A andA†

H
†
HA.



Further, along the lines of Lemma 1, it can also be checked that
{

f
†
i A

†H†HAfi

f
†
i A

†Afi
, i = 1, · · · , 2B

}

are i.i.d. Hence, as in Sec. III, we can rewrite∆1, sk as

∆1, sk · λ1(H
†H) =

∫ λ1(H†H)

λNt
(H†H)

[

Pr

(
f †A†H†HAf

f †A†Af
≤ x

∣
∣f †f = 1

)]m

dx (80)

where f is an isotropically distributed unit-norm random vector and m = 2B. From (80), it

is clear that quantifying∆1, sk is dependent on knowledge of the distribution function of the

ratio of weighted-norm of isotropically distributed unit-norm vectors. This is a hard problem, in

general, unless there is some underlying structure toA that can be exploited. Of course, imposing

structure onA cannot help solve for (78), an unconstrained optimization problem.

B. Main Result

We overcome this technical difficulty by first studying the special case ofNt = 2. We then

expand the intuition obtained from theNt = 2 case to the more general case.

Proposition 4: In the special case ofNt = 2, ∆1, sk can be bounded by∆1, sk, which behaves

asB → ∞ as:

∆1, sk ≤ ∆1, sk
B→∞≍ 1

2B + 1
·
(

1− λ2(A
†H†HA)

λ1(H†H) · λ1(AA†)

)

. (81)

Proof: The first step to prove the proposition is to establish a simplified version of (80).

The second step deals with bounding∆1, sk by an appropriate∆1, sk and capturing its asymptotic

trend. See Appendix H for details.

Note that in the case of no skewing (A = I), (81) reduces to the result in Theorem 1.

Theorem 4:For theNt = 3 case, the dominant term of an upper bound to∆1, sk behaves as:

∆1, sk · λ1(H
†H) ≤ ∆1, sk · λ1(H

†H) (82)

= 2−
B
2 ·
[

1 +

√
π

2
·
(
λ1(A

†H†HA)

λ1(A†A)
− λ3(H

†H)

)

×

(

1 +
Dsk

(1−Dsk)(Nt − 1)

)

+G

(
λ1(H

†H)λ1(AA
†)

λ1(A†H†HA)

)]

+ o
(
2−B/2

)
(83)

where

Dsk = 1−
Nt∏

j=2

λ1(A
†H†HA)− λNt(H

†H) · λ1(A
†A)

λ1(A†H†HA)− λj(A†H†HA)
(84)

and for some monotonically increasing functionG(·), the structure of which is provided in (263)-

(264) in Appendix I.



If Nt ≥ 4, the asymptotic behavior (inB) of ∆1, sk is as follows:

∆1, sk ≤ ∆1, sk (85)

=
κ · 2−

B
Nt−1

Nt − 1
·
(

1 +
Dsk

(1−Dsk)(Nt − 1)

)

·
(

λ1(A
†H†HA)

λ1(A†A) · λ1(H†H)
− λNt(H

†H)

λ1(H†H)

)

︸ ︷︷ ︸

∆1, sk, asymp

+ o
(

2
− B

Nt−1

)

(86)

whereκ = Γ
(

1
Nt−1

)
andDsk is as in (84).

Proof: See Appendix I.

C. Insights onAopt

While solving forAopt in (78) appears to be difficult, we now develop some insights on its

structure.

1) From (1), recall that the system model (conditioned onH = H) with beamforming vector

of index i from Csk reduces to

y =

√
ρ

f
†
i A

†Afi
HA fi s+ n. (87)

By treatingHA as theeffective channelin (87), an application of Theorem 2 suggests that

∆1, sk is minimized ifHA is well-conditioned. However, this argument is rigorous only if

f
†
i A

†Afi can be treated as a constant for alli so thatA does not arbitrarily scale the power

of the effective channel.

2) In the special case ofNt = 2, from Lemma 2, sincef †i A
†Afi is uniformly distributed over

the interval
[
λ2(A

†A), λ1(A
†A)
]
, well-conditioning ofA is necessary to ensure thatf

†
i A

†Afi

is approximately constant for allfi. Thus, there exists a tension between the two objectives

(of well-conditioning ofHA andA) in deciding the appropriate choice ofA. Prop. 4 makes

this intuition more concrete. From (81), it is clear thatA should be chosen such thatL1,

defined as,

L1 ,
λ1(AA

†)

λ2(A†H†HA)
(88)

is minimized. But minimizingL1 is equivalent to minimizing the two squared condition

numbers (ofHA andA), χHA = λ1(A†H†HA)
λ2(A†H†HA)

andχA = λ1(AA†)
λ2(AA†)

. While a particular choice of

A may makeHA more well-conditioned thanH, this choice may not necessarily correspond

to a well-conditionedA (andvice versa).

3) A further upper bound to the asymptotic trend in (83) of Theorem 4 (up to a multiplicative

constant) in theNt = 3 case is

∆1, sk

O(1)

≤

(

1− λ2(A†H†HA)
λ1(A†H†HA)

)

·
(

1− λ3(A†H†HA)
λ1(A†H†HA)

)

1− λ1(AA†)λ3(H†H)
λ1(A†H†HA)

+G

(
λ1(H

†H) · λ1(AA
†)

λ1(A†H†HA)

)

. (89)



The goal of minimizing the term in (89) is equivalent to the goals of jointly minimizing

L2 ,
λ1(A

†H†HA)

λ3(A†H†HA)
and L3 ,

λ1(AA
†)

λ1(A†H†HA)
. (90)

4) Consider theNt ≥ 4 case. Recasting Theorem 4, it can be seen that∆1, sk, asymp is minimized

if
(

Nt − 2 + L4

)

· L5 (91)

is also minimized, where

L4 ,

Nt∏

j=2

λ1(A
†H†HA)− λj(A

†H†HA)

λ1(A†H†HA)− λNt(H
†H) · λ1(A†A)

(92)

L5 ,
λ1(A

†H†HA)− λNt(H
†H) · λ1(A

†A)

λ1(A†A)
. (93)

In the large-Nt regime, observing that

λ1(A
†H†HA)− λj(A

†H†HA)

λ1(A†H†HA)− λNt(H
†H) · λ1(A†A)

≥ 1 (94)

for all j, we have

Nt − 2 ≪ L4. (95)

Thus, the dominant term of (91) in this regime isL4 · L5.

5) Combining and unifying the above discussion, a (heuristically) “good” candidate forA

should be such that the two metrics (M1 andM2), defined as,

M1 , 1− λ1(A
†H†HA)

λ1(A†A) · λ1(H†H)
(96)

M2 ,
λ1(A

†H†HA)

λNt(A
†H†HA)

(97)

are minimized jointly, if possible.

6) Conditioned onH = H, note thatM1 ∈ [0, 1] whereasM2 ∈ [1,∞). The smallest value

(of 0) for M1 is achieved with anA such that the eigenvectors ofAA† coincide with those

of H†H in the same order. With this choice,M2 satisfies

M2 = χH · χA. (98)

On the other hand, the smallest value (of1) for M2 is achieved withA =
(
H†H

)−1/2
. With

this choice,M1 satisfies

M1 = 1− 1

χH

. (99)

In other words, whileM1 is minimized by a choice ofA whose left singular vectors

matchthe right singular vectors of the channel,M2 is minimized by a choice thatinverts
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Fig. 6. Performance of skewed codebooks as a function ofB with a) an ill-conditioned channel realization, and b) a well-

conditioned channel realization. Average performance of different families of skewed codebooks as a function of c) theparameter

defining the skewing matrix classes, and d)B.

(or zeroforces) the channel. Thus, optimization overA is a combination of these two

conflicting objectives in an appropriate sense. However, which of these objectives is more

important than the other is not clear.

7) We now address this question via numerical studies for a fixed channel realization. In

the first example, we consider an ill-conditioned channel with Nt = Nr = 4 and squared

singular values[4 3 2 1]. We numerically search overA to minimize

L6(α) , α ·M1 + (1− α) ·M2 (100)

for an appropriate choice ofα ∈ [0, 1] that determines the weights between the two



objectives in (96)-(97). The extreme cases of minimizingM1 (or M2) alone can be

obtained by settingα = 1 (or α = 0) in (100). In Fig. 6(a), we plot the performance

of the skewed codebooks (as a function ofB) with A designed to minimizeL6(α)

for the following five choices ofα: i) α = 0, ii) α = 0.25, iii) α = 0.5, iv) α =

0.75, and v) α = 1. The performance of the RVQ codebook (A = I) is also plotted.

Fig. 6(a) shows that the goal of minimizingM1 is more important than that of minimizing

M2 and the skewed codebook designed with this objective significantly out-performs the

RVQ codebook (without skewing). In Fig. 6(b), we consider the performance of skewed

codebooks designed for the same five choices ofα (as above) in a well-conditioned

channel with squared singular values given by[1.6 1.4 1.2 1]. As in Fig. 6(a), we see

that minimizingM1 (α ≈ 1) is the more relevant objective in terms of limited-feedback

performance. Figs. 6(a) and (b) also show that the performance with a poorly designed

skewing matrix (e.g.,α ≈ 0) can be significantly poorer than the RVQ performance.

8) With ∆SNRrx = E [∆1, sk] as the new metric, the previous study motivates the following

family of matrices (parameterized by the weightα ∈ [0, 1]) for the design of skewed

codebooks:

A1, α = argmin
A

E [L6(α)] (101)

= argmin
A

α · E [M1] + (1− α) · E [M2] . (102)

While the family of skewing matrices within the argument in (101)-(102) is well-defined,

a closed-form expression is hard to obtain forA1, α.

To overcome this difficulty, consider the regime where{Nt, Nr} → ∞ with Nt

Nr
→ 0. Using

the channel hardening principle in this regime [21], [46], the eigenvectors ofAA† for the

choice ofA that minimizesE [M1] can be heuristically replaced with the eigenvectors of

E
[
H†H

]
= Σt. A suitable candidate4 for such anA is

A =
(
Σt

)β
= Ut

(
Λt

)β
U

†
t (103)

for some choice ofβ satisfyingβ ≥ 0. Similarly, the choice ofA that minimizesE [M2]

can be heuristically replaced by

A =
(
Σt

)− 1
2 = Ut

(
Λt

)− 1
2 U

†
t . (104)

We interpolate the two statistics-dependent candidates in(103) and (104) to obtain the

following family of matrices for skewing:

A2, α, β = α ·
(
Σt

)β
+ (1− α) ·

(
Σt

)− 1
2 (105)

= Ut

(

α(Λt)
β + (1− α)(Λt)

− 1
2

)

U
†
t (106)

4Note that since the eigenvectors ofAA
† have to be in the same order as (the order of) the eigenvectorsof H†

H to minimize

M1, this constraint can only be ensured by settingβ ≥ 0 in (103).



for someα ∈ [0, 1] andβ ≥ 0. Note that the right-hand side of (106) can also be written

as

A2, α, β = Uth (Λt) U
†
t = h (Σt) (107)

for an appropriate choice of the matrix functionh(·). In this sense, (107) generalizes the

skewing matrix proposed in [25] (which can be obtained by setting α = 1, β = 1
2
) and the

matrix proposed in [26] (which can be obtained by settingα = 1 = β).

9) We now numerically study the∆SNRrx performance of codebooks obtained by skewing

an RVQ codebook with the two families:{A1, α} and{A2, α, β}. We consider a Kronecker-

product correlated channel withΣt = 1.6 × diag([4 3 2 1]) and Σr = diag([7 5 3 1]).

Note that the channel power is normalized asTr(Σt) = Tr(Σr) = 16.

In the first study, we plot∆SNRrx as a function ofα for the{A2, α, β} family for different

values ofβ andB in Fig. 6(c). For all the{β,B} combinations considered, the smallest

value of ∆SNRrx is achieved asα → 1, thereby justifying the following study where

attention is restricted to the case ofα = 1 from the{A2, α, β} family.

10) In the second study, a numerical search overA is performed with the objective of mini-

mizing: i) E[M1], ii) E[M1] +E[M2], and iii) E[M2], corresponding to three choices from

{A1, α}: i) A1, α=1, ii) A1, α=0.5, and iii) A1, α=0, respectively. Motivated by the study in

Fig. 6(c), four other skewing matrices from the{A2, α=1, β} family are also considered:

iv) A2, α=1, β=0.5, v) A2, α=1, β=1, vi) A2, α=1, β=1.5, and vii) A2, α=1, β=2. Note that as stated

previously, iv) and v) correspond to the skewing matrix choices proposed in [25] and [26],

respectively.

Fig. 6(d) plots∆SNRrx (as a function ofB) for these seven skewed codebooks as well

as the RVQ codebook and we see thatA1, α=1 results in better performance over RVQ

codebooks for smallB values (B ≤ 4). However, asB increases, the average performance

with this choice of skewing matrix deteriorates over an RVQ codebook. On the other hand,

bothA1, α=0.5 as well asA1, α=0 result in poorer performance relative to the RVQ scheme

thus confirming the importance ofM1 overM2 in skewing matrix optimization. We also

see that the{A2, α=1, β} family results in improved performance over the{A1, α} family as

well as RVQ codebooks. Further, the performance with skewing matrices for values ofβ

satisfyingβ > 1 from the{A2, α=1, β} family is better than that achieved with the choices

β = 0.5 andβ = 1.

In general, we observe that for fixedβ values, asα increases, performance gets better for

anyB, with the performance becoming independent ofα for large values ofβ. For fixed

α, largeβ is seen to be better for smallB values (B ≈ 0−3) whereasβ = 1 is robust for

largeB values (B ≈ 7−8). Similar behavior is observed with other choices of transmit and

receive covariance matrices furnishing evidence to the observations in the literature that

appropriately designed skewed codebooks can significantlyout-perform RVQ codebooks

over correlated channels.



VII. CONCLUSION

Limited-feedback communications has become an important component of 3G/4G cellular

standardization efforts. However, performance analysis of limited-feedback schemes, especially

under practical impairments such as channel correlation, has not received much attention in

the literature. The main goal of this work is to study the ensemble properties of aB-bit RVQ

codebook in the correlated MIMO setting with the metrics of interest being the receivedSNR loss

(∆SNRrx) and loss in average mutual information (∆I), both relative to a perfect CSI scheme.

We computed the rate of decay of∆SNRrx and ∆I as a function ofB and the channel

correlation profile. While the rate of decay withB is in conformance with similar results

obtained in the literature for i.i.d. MIMO/MISO/rank-1 MIMO channels [12], [15], [30]–[37],

our result applies to correlated MIMO channels of arbitraryrank and arbitrary choice ofB.

For fixedB, the critical factor limiting the RVQ performance is the condition number of the

channel. We established that the channel correlation profile that minimizes the performance loss

with an RVQ codebook is typically i.i.d.-like (spatially rich) and the profile that maximizes the

performance loss hasrank-1 (spatially poor/sparse structure). This result on the dependence of

RVQ performance on the condition number should not be entirely surprising [20], [21], [31]

given that the RVQ codebook consists of isotropic beamforming vectors and an i.i.d. channel

has dominant right singular vector that is also isotropic.

We then generalized our performance analysis to the case of skewed codebooks where the

RVQ codebook is skewed by a fixed matrix and normalized to ensure unit-norm. From this

characterization, we showed that the tension between well-conditioning of theeffective channel

and well-conditioning of the skewing matrix determines thestructure of the optimal skewing

matrix for limited-feedback beamforming. In particular, we established the criticality of matching

between the left singular vectors of the skewing matrix and the right singular vectors of the

channel. Using this insight, we constructed a class of statistics-dependent (more specifically,

transmit covariance matrix-dependent) skewing matrices that result in significantly improved

performance over RVQ codebooks.

The workhorse behind our study is the structure of the density function of weighted-norm of

isotropically distributed unit-norm vectors. This tool plays an important role in other settings

such as precoder design for broadcast [47] and interferencechannels [48], and norm feedback

in broadcast channels [17]. Notwithstanding the results ofthis paper, the characterization of the

performance loss with skewed codebooks is incomplete. Generalizing our toolkit to the density

function of the ratio of weighted-norms is important in establishing fundamental performance

limits with skewed codebooks (which are linear by definition) as well as non-linear skewed code-

books as constructed in [20], moment and distributional properties on the various performance

metrics, identifying the structure of the optimal skewing matrix, etc. Other problems of interest

in the single-user setting include averaging the loss expressions over the channel randomness

to study the impact of the channel model (Kronecker vs. non-Kronecker) on performance,



establishing possible majorization results for performance metrics as a function of the transmit

and receive covariance matrix eigenvalues, performance ofhigher-rank schemes [34], [49], etc.

Extension of this study to the multi-user setting [15]–[19]is also of practical interest.

APPENDIX

A. Proof of Lemma 1

For the first statement, for anyΘ = [Θ1, · · · ,ΘNt ], note from (8) that

Pr
(

|fi(π1)|2, · · · , |fi(πNt)|2 ∈ Θ
)

=

∫

fi : {|fi(πk)|2 ∈Θk}

Γ(Nt)

πNt
· δ
(
f
†
i fi − 1

)
dfi (108)

=
Γ(Nt)

πNt
· Area

(
fi : {|fi(πk)|2 ∈ Θk}|f †i fi = 1

)
. (109)

Since fi is isotropic onG(Nt, 1), (109) is circularly symmetric and hence, independent of the

permutationΠ.

For the second statement, the Ritz-Rayleigh relationship implies that the range ofxi is

[λNt , λ1]. The independence of{xi, i = 1, · · · , 2B} follows from the independence of{fi, i =
1, · · · , 2B}. To prove that{xi} are also identically distributed, note that if{fi} are isotropic and

i.i.d., then so are{gi = U†fi} for any fixed unitary matrixU. The fixed unitary matrix in this

setting is the eigenvector matrix in an eigen-decomposition of H†H for a given realizationH,

wherein we haveH†H = UΛU†. The diagonal matrixΛ = diag ([λ1, · · · , λNt]) is in general not

the identity matrix. For any fixedk, {|gi(k)|2, i = 1, · · · , 2B} are identically distributed since

{gi} are i.i.d. The conclusion follows sincexi =
∑

k |gi(k)|2λk.

B. Proof of Lemma 2

Following the derivation of the density function off †Λf whenλ2 = · · · = λNt = 0 in [8], we

have

P(x) , Pr
(
f †Λf = x

)
=

∂

∂x
Pr
(
f †Λf ≤ x

)
(110)

with

Pr
(
f †Λf ≤ x

)
= 1− Area (x, 1)

Area (1)
(111)

where

Area (x, y) , Area
(
f †Λf ≥ x, ‖f‖2 = y

)
and (112)

Area (y) , Area
(
‖f‖2 = y

)
(113)



denote the area of a (unit-radius) sphere carved out by the ellipsoid
{
f : f †Λf = x

}
and the

area of a (unit-radius) complex sphere, respectively. The volume of the objects desired in the

computation ofP(x) are

Vol
(
x, r2

)
, Vol

(
f †Λf ≥ x, ‖f‖2 ≤ r2

)
(114)

=

∫ r2

y=0

Area (x, y) dy and (115)

Vol(r2) , Vol
(
‖f‖2 ≤ r2

)
=

∫ r2

x=0

Area(x)dx. (116)

Thus, we have

Area (x, 1) =
∂

∂r2
Vol
(
x, r2

)
∣
∣
∣
r=1

, (117)

Area (1) =
∂

∂r2
Vol(r2)

∣
∣
∣
r=1

and hence, (118)

P(x) = −
∂2

∂xr2
Vol (x, r2)

∣
∣
∣
r=1

∂
∂r2

Vol (r2)
∣
∣
∣
r=1

. (119)

ComputingVol (x, r2) is non-trivial even in the simple case ofNt = 2. This is because every

additional dimension to the complex ellipsoid correspondsto addition of two real dimensions.

In the simplest case ofNt = 2, we have the intersection of two four-dimensional real objects

which cannot be visualized pictorially. Nevertheless, thefollowing lemma captures the complete

structure ofP(x) whenNt = 2. The general case follows subsequently.

Lemma 3: If Nt = 2, the random variablef †Λf is uniformly distributed in the interval[λ2, λ1].

Proof: First, note that it follows from [8, Lemma 2] that

Vol(r2) =
πNtr2Nt

Γ(Nt + 1)
. (120)

For computingVol (x, r2), we follow the same variable transformation as in [8]. We setf(k) =

rk exp(jθk) for k = 1, 2. The ellipsoid is contained completely in the sphere of radius r if r is

such thatr ≥
√

x
λ2

whereas the sphere is contained completely in the ellipsoidif r ≤
√

x
λ1

. In

the intermediate regime forr, a non-trivial intersection between the two objects is observed and

one can compute the volume by performing a two-dimensional integration as follows:

Vol
(
x, r2

)
=

∫∫

A

r1r2dr1dr2dθ1dθ2 (121)

= (2π)2 ·
∫∫

B

r1dr1r2dr2 (122)

= (2π)2 ·
∫ r⋆

0

r2dr2 ·
∫ U ′

L′

r1dr1 (123)



where

A =
{
r1, r2 : r21λ1 + r22λ2 ≥ x, r21 + r22 ≤ r2

}
and {θ1, θ2 : [0, 2π)} (124)

B =
{
r1, r2 : r21λ1 + r22λ2 ≥ x, r21 + r22 ≤ r2

}
(125)

L′ =

√

x− r22 λ2

λ1

(126)

U ′ =
√

r2 − r22 (127)

r⋆ =
r2λ1 − x

λ1 − λ2

. (128)

Straight-forward computation from (123) establishes the following:

Vol
(
x, r2

)
=







0 r ≤
√

x
λ1

π2

2
· (r

2 λ1−x)
2

λ1(λ1−λ2)

√
x
λ1

≤ r ≤
√

x
λ2

π2

2
·
(

r4 − x2

λ1λ2

)

r ≥
√

x
λ2

(129)

Using (119), another trivial computation shows that

P(x) =
1

λ1 − λ2
, λ2 ≤ x ≤ λ1. (130)

That is,f †Λf is uniformly distributed in its range.
Lemma 4:This lemma states (without proof) the structure of the density functionP(x) in the

casesNt = 3 andNt = 4. With Nt = 3, we have

P(x) =







0 x ≤ λ3

2 (x−λ3)
(λ1−λ3)(λ2−λ3)

λ3 ≤ x ≤ λ2

2 (λ1−x)
(λ1−λ2)(λ1−λ3)

λ2 ≤ x ≤ λ1

0 x ≥ λ1.

(131)

With Nt = 4, we have

P(x) =







0 x ≤ λ4

3 (x−λ4)
2

(λ1−λ4)(λ2−λ4)(λ3−λ4)
λ4 ≤ x ≤ λ3

κ1 λ3 ≤ x ≤ λ2

3 (λ1−x)2

(λ1−λ2)(λ1−λ3)(λ1−λ4)
λ2 ≤ x ≤ λ1

0 x ≥ λ1

(132)

where

κ1 =
3

(λ1 − λ3) (λ2 − λ4)
· κ2 (133)

κ2 =
(x− λ3) (λ2 − x)

λ2 − λ3
+

(x− λ4) (λ1 − x)

λ1 − λ4
. (134)



C. Proof of Theorem 1

As stated at the beginning of Sec. III, we compute∆1 using Lemma 2. The computation of

∆1 in theNt = 2 case is a straight-forward integration.

For theNt = 3 case, we split the integral computation into two parts: the intervals[λ3, λ2] and

[λ2, λ1]. The integral over the first interval is again straight-forward and results in the contribution

of

1

2m+ 1
· λ2 − λ3

λ1
·
(
λ2 − λ3

λ1 − λ3

)m

. (135)

Upon elementary manipulation, the integral over the secondinterval can be shown to be equiv-

alent to
√

(λ1 − λ2)(λ1 − λ3)

λ1

·
∫

√

λ1−λ2
λ1−λ3

y=0

(
1− y2

)m
dy (136)

which can be computed in closed-form using integral tables [50, 2.512(3), p. 131] via the

transformationy 7→ sin(θ). Combining the two terms, we have the expression for∆1 in the

statement of the theorem.

For theNt ≥ 4 case, exact computation of∆1 is cumbersome. Since the distribution function

F (x) is monotonically increasing, the dominant trend (and term)of ∆1 is captured by the integral

over the segment[λ2, λ1] alone. This integral can be computed in closed-form due to the tractable

nature ofF (x) in this interval. Upon elementary transformations, this integral is seen to be:

C2 ·
∫ θmax

θ=0

cos2m+1(θ) sinp(θ) dθ (137)

with p = 2
Nt−1

− 1,

C2 =
2

(Nt − 1)
·
[

Nt∏

j=2

(

1− λj

λ1

)]
1

Nt−1

(138)

θmax = sin−1





√
√
√
√

Nt∏

j=2

λ1 − λ2

λ1 − λj



 . (139)

Again, using the integral tables [50, 2.511(4), p. 131], we can compute (137) in closed-form as

in the statement of the theorem.



It is obvious that∆1, appx ≤ ∆1. For the other side of (30), note that

1− ∆1, appx

∆1
=

∫ λ2

λNt

(
Pr
(
f †Λf ≤ x

))m
dx

∫ λ1

λNt

(Pr (f †Λf ≤ x))m dx
(140)

≤
1
λ1

∫ λ2

λNt

(
Pr
(
f †Λf ≤ x

))m
dx

∆1, appx
(141)

≤
(
Pr
(
f †Λf ≤ λ2

))m
(λ2 − λNt)

λ1 ·∆1, appx
(142)

=
λ2 − λNt

λ1
· Dm

∆1, appx
(143)

where the third step follows by bounding the distribution byits largest value atx = λ2 and the

last step by noting from (25) that

Pr
(
f †Λf ≤ λ2

)
= D. (144)

D. Proof of Prop. 1

In the general MIMO setting withNt = 3, we have

2k+1m(m− 1) · · · (m− k)

(2m− 1)(2m− 3) · · · (2m− 2k − 1)
=

h(m)

h(m− k − 1)
(145)

whereh(·) is a function defined on the set of integers as

h(m) ,
(m!)2 · 22m

2m!
. (146)

Using Stirling’s formula [51, 6.1.39, p. 257] to approximate the factorial function asm = 2B

increases, we obtain a good estimate of the trend ofh(m), and hence the summation in the

characterization of∆1 in Theorem 1. Retaining the dominant terms, we can write∆1 as

∆1
B→∞≍

√
π

2B/2+1
·
[(

1− λ2

λ1

)(

1 +
λ2 − λ3

2(λ1 − λ3)

)]

. (147)

In theNt ≥ 4 case, we have

2k ·m(m− 1) · · · (m− k + 1)
∏m−1

j=m−k(p+ 1 + 2j)
=

m! · Γ
(

1
Nt−1

+m− k
)

Γ
(

1
Nt−1

+m
)

·m− k!
(148)

whereΓ(·) stands for the Gamma function. Withk = m, the above equation simplifies to

m! · Γ
(

1
Nt−1

)

Γ
(

1
Nt−1

+m
)

B→∞≍

√
2πm ·mm · e−m · Γ

(
1

Nt−1

)

√
2π · e−m ·mm+ 1

Nt−1
− 1

2

(149)

= m
1− 1

Nt−1 · Γ
(

1

Nt − 1

)

(150)



where the asymptotic trend follows from Stirling’s formula. For 1 ≤ k ≤ m− 1, we have

m! · Γ
(

1
Nt−1

+m− k
)

Γ
(

1
Nt−1

+m
)

·m− k!

B→∞≍ m
1− 1

Nt−1 ·
Γ
(

m− k + 1
Nt−1

)

Γ (m− k + 1)
. (151)

Using the trivial inequality
Γ
(

m−k+ 1
Nt−1

)

Γ(m−k+1)
≤ κ

Nt−1
with κ = Γ

(
1

Nt−1

)

, we have

∆1 ≤
κ ·m1− 1

Nt−1

ANt

·
[(

1− λ2

λ1

)

·
(

1 +
D

(1−D)(Nt − 1)

)]

(152)

≍ κ · 2−
B

Nt−1

Nt − 1
·
[(

1− λ2

λ1

)

·
(

1 +
D

(1−D)(Nt − 1)

)]

. (153)

E. Proof of Theorem 2

First, note from (15) that (47) is equivalent to showing that

EC

[
maxi f

†
i H

†
1H1fi

]

λ1
≥ EC

[
maxi f

†
i H

†
2H2fi

]

µ1
. (154)

Using the eigen-decompositions

H
†
1H1 = U1 diag(λ)U

†
1, H

†
2H2 = U2 diag(µ)U

†
2 (155)

in (154), we have

EC

[
maxi f

†
i U1 diag(λ)U

†
1 fi
]

EC

[
maxi f

†
i U2 diag(µ)U

†
2 fi
] ≥ λ1

µ1
. (156)

From Lemma 1, we note that{U†
1 fi} and {U†

2 fi} are i.i.d. and have the same distribution as

{fi}. Thus, (156) is equivalent to showing that

EC

[
maxi f

†
i diag(λ) fi

]

λ1
≥

EC

[
maxi f

†
i diag(µ) fi

]

µ1
. (157)

In other words, the proof is complete if we can show that

f(λ) =
EC

[
maxi

∑

k |fi(k)|2λk

]

λ1
(158)

is a Schur-concave function ofλ.

It is important to note thatf(λ) is a ratio of two Schur-convex functions. For this, it is obvious

that λ ≺ µ implies λ1 ≤ µ1. On the other hand, the numerator off(λ) can be shown to be

Schur-convex sincemax(·) is a convex function of its argument. Without a standard recipe for

studying the Schur-concavity of a ratio of Schur-convex functions, we resort to basic theory [42,

A.2.b, p. 55] from which we can claim thatf(·) is Schur-concave if and only if:



• f(·) is symmetric in its indices. That is,f(λ) = f(λΠ) for all permutationsΠ = [π1, · · · , πNt ].

• f
(
[λ1, s−λ1, λ3, · · · , λNt ]

)
is decreasing inλ1 for all λ1 ≥ s/2 and any choice ofs, λ3, · · · , λNt.

The first condition is straight-forward since

f(λ) =
EC

[
maxi

∑

k |fi(k)|2λk

]

maxk λk

(159)

(a)
=

EC

[
maxi

∑

k |fi(πk)|2λπk

]

maxk λπk

(160)

(b)
=

EC

[
maxi

∑

k |fi(k)|2λπk

]

maxk λπk

= f(λΠ) (161)

where (a) follows from the symmetricity of the sum function and (b) from the exchangeability

of |fi(k)|2 proved in Lemma 1. For the second condition, it can be seen that

f
(

[λ1, s− λ1, λ3, · · · , λNt ]
)

= EC

[

max
i

Ei

]

(162)

Ei = |fi(1)|2 − |fi(2)|2 +
∑

k≥2 |fi(k)|2δk
λ1

(163)

whereδ2 = s, δk = λk, k ≥ 3. For every realization of{fi} from the RVQ codebook and every

choice of s, λ3, · · · , λNt, all the functionsEi, i = 1, · · · , 2B are decreasing inλ1. Thus, the

max(·) function is also decreasing inλ1. Averaging over the RVQ codebook, we arrive at the

second condition.

F. Proof of Theorem 3

In theNt = 2 case,δ , ∆2 · loge(2) is written as

δ =
ρ

(λ1 − λ2)m

∫ λ1

λ2

(x− λ2)
m dx

1 + ρx
(164)

=
ρ

(λ1 − λ2)m

∫ λ1−λ2

0

xmdx

1 + ρλ2 + ρx
(165)

=
ρ

(λ1 − λ2)m

∫ λ1−λ2

0

[m−1∑

t=0

(−s)txm−1−t +
sm

x+ s

]

dx (166)

= ρ

[
m−1∑

t=0

( −s

λ1 − λ2

)t

· 1

m− t
+

(
s

λ1 − λ2

)m

loge

(
1 + ρλ1

1 + ρλ2

)]

(167)

=

(
s

λ1 − λ2

)m
[

loge(1 + z)−
m∑

t=1

(−1)t+1zt

t

]

(168)

where

s =
1 + ρλ2

ρ
, z =

λ1 − λ2

s
=

ρ(λ1 − λ2)

1 + ρλ2
. (169)



In the generalNt case, the dominant term ofδ = ∆2 · loge(2) is written as

δ ≈
∫ λ1−λ2

0

(

1−
( y

A

)Nt−1
)m

· ρdy

1 + ρλ1 − ρy
(170)

=

∫ λ1−λ2
A

0

ρA
(
1− yNt−1

)m
dy

1 + ρλ1 − ρAy
(171)

whereA =
(
∏

j≥2 λ1 − λj

) 1
Nt−1

. There are two ways in which (171) can be computed: 1)

replacing the denominator of the integrand by an appropriate geometric series, and 2) expanding

the numerator of the integrand using the binomial theorem.

Method 1: With γ = ρA
1+ρλ1

and using the fact thatγy < 1 for all y in (171), we replace the

denominator in (171) with a geometric series to result in

δ =
ρA

1 + ρλ1
·
∫ λ1−λ2

A

0

(
1− yNt−1

)m ·
∞∑

i=0

(γy)i. (172)

Upon elementary integrand transformations, (172) is written as

δ =
2ρA

(Nt − 1)(1 + ρλ1)
·

∞∑

i=0

γi

∫ θmax

0

cos2m+1(θ) sinpi(θ)dθ (173)

whereθmax is as in (139) andpi =
2(i+1)
Nt−1

− 1. Computing this integral in closed-form using [50,

2.511(4), p. 131], we have

δ =
ρA

(Nt − 1)(1 + ρλ1)
·

∞∑

i=0

γi(1−D)
i+1

Nt−1

m+ i+1
Nt−1

×
[

Dm+

m∑

k=1

2k ·m(m− 1) · · · (m− k + 1)

(2m+ pi − 1) · · · (2m+ pi − 2k + 1)
Dm−k

]

. (174)

Method 2: Alternately, expanding the numerator in (171) using the binomial theorem, we have

δ =
ρA

1 + ρλ1

∫ λ1−λ2
A

0

∑m
k=0

(
m
k

)
(−1)ky(Nt−1)kdy

1− γy
(175)

=
ρA

1 + ρλ1
·

m∑

k=0

(
m

k

)

(−1)k
(
λ1−λ2

A

)(Nt−1)k+1

(Nt − 1)k + 1
×

2F1

(

1, (Nt − 1)k + 1; (Nt − 1)k + 2,
ρ(λ1 − λ2)

1 + ρλ1

)

(176)

where the second equation follows from [50, 3.194(5), p. 285], and

2F1(a, b; c, z) =
∞∑

n=0

(a)n(b)n
(c)n

· z
n

n!
(177)

is the Gauss hypergeometric function with(a)n denoting the Pochhammer symbol:

(a)n = a · (a+ 1) · · · · · (a+ n− 1), n ≥ 1, (a)0 = 1. (178)



Using the definition of the hypergeometric function [50, 9.100, p. 1039], we have

δ =
ρA

1 + ρλ1
·

m∑

k=0

(
m

k

)

(−1)k
(
λ1 − λ2

A

)(Nt−1)k+1

×

∞∑

i=0

1

(Nt − 1)k + 1 + i
·
(
ρ(λ1 − λ2)

1 + ρλ1

)i

. (179)

The second expansion suffers from numerical instabilitiesdue to the oscillatory nature (changing

signs) of terms in the expansion.

Correction Term: The expression for the correction termǫ′B in (70)-(71) and its trend in (72)

follows on exactly the same lines as the proof of Theorem 1. Thus the details are not provided

here.

G. Proof of Prop. 3

In the Nt = 2 case, asB increases, two possibilities arise depending on the relationship

betweenρ, λ1 andλ2. In the first case, if

z < 1 ⇐⇒ ρ(λ1 − 2λ2) < 1, (180)

using a Taylor’s series approximation forloge(1 + z), we have

δ
B→∞≍

(
s

λ1 − λ2

)m

· zm+1

m+ 1
=

z

m+ 1
. (181)

On the other hand, if

z ≥ 1 ⇐⇒ ρ(λ1 − 2λ2) ≥ 1, (182)

using the fact that

loge(1 + z) = loge(z) + loge

(

1 +
1

z

)

, (183)

we have

δ
B→∞≍ loge(z) +

1
z

zm
+

m−1∑

t=0

(−1)t

zt(m− t)
(184)

≤ loge(z) +
1
z

zm
+

(

1− 1

z

) m
2
−1
∑

t=0

1

z2t(m− 2t− 1)
(185)

where the second equation follows from the following reasoning:

1

m− 2t
<

1

m− 2t− 1
, t = 0, · · · , m

2
− 1. (186)

We approximate the sum in (185) asB → ∞ by the following integral:

δ
B→∞≍ loge(z) +

1
z

zm
+

(
z − 1

2z

)∫ m
2

0

e−αt

m−1
2

− t
dt (187)



with α = 2 loge(z) ≥ 0. Estimating the above integral from [50, 3.252(5-6), p. 311], we have

δ
B→∞≍ loge(z) +

1
z

zm
+

(
z − 1

2z

)

· e−(m−1) loge(z) ·
[

Ei
(
(m− 1) loge(z)

)
− Ei

(
− loge(z)

)]

(188)

=
loge(z) +

1
z

zm
+

(
z − 1

2 · zm
)

·
[

E1

(
loge(z)

)
+ li
(
zm−1

)]

(189)

whereE1(x) =
∫∞

x
e−tdt

t
andEi(x) = −E1(−x) denote the exponential integral functions, and

li(x) =

∫ x

0

dt

loge(t)
(190)

denotes the logarithmic integral function, respectively.From [51, p. 231], we have

li(x)
x→∞≍ x

loge(x)
=⇒ δ

B→∞≍ (z − 1)

2 · z loge(z) · (m− 1)
. (191)

In the generalNt case, it is easier to capture the asymptotic trends of∆2 using the expression

obtained from Method 1. For this, we first write

2k ·m(m− 1) · · · (m− k + 1)
∏k

j=1(2m− 2j + pi + 1)
=

m! · Γ(m− k + i+1
Nt−1

)

Γ(m+ i+1
Nt−1

) ·m− k!
. (192)

Ignoring the term corresponding toDm in the inner sum in (174),δ can be rewritten as

δ =
1

Nt − 1

∞∑

i=1

e−µi

[
m−1∑

k=0

Dk
m!Γ(k + i

Nt−1
)

k!Γ(m+ 1 + i
Nt−1

)

]

(193)

whereµ = log
(

1+ρλ1

ρ(λ1−λ2)

)

> 0. We split the outer sum into two parts:1 ≤ i ≤ Nt−1 andi ≥ Nt,

and the inner sum into two parts:k = 0 andk ≥ 1 and denote the corresponding contributions

to δ by δi, i = 1, · · · , 4 respectively.

With respect toδ1, we have

δ1 ,
1

Nt − 1

Nt−1∑

i=1

e−µi ·
m! · Γ

(
i

Nt−1

)

Γ(m+ 1 + i
Nt−1

)
(194)

≍ κ

Nt − 1

Nt−1∑

i=1

e−µim
− i

Nt−1 (195)

=
κ

Nt − 1
· 1−

e−µ(Nt−1)

m

eµm
1

Nt−1 − 1
(196)



where the second line follows from the fact thatΓ(x) is monotonically decreasing in0 < x ≤
1 [51] and using the Stirling’s formula forΓ(·). For δ2, we have

δ2 ,
1

Nt − 1

∞∑

i=Nt

e−µi ·
Γ(m+ 1)Γ

(
i

Nt−1

)

Γ(m+ 1 + i
Nt−1

)
(197)

=
1

Nt − 1

∞∑

i=Nt

e−µi · β
(

m+ 1,
i

Nt − 1

)

(198)

≤ 1

Nt − 1

∞∑

i=Nt

e−µi · 1

m+ 1
· Nt − 1

i
(199)

≤ 1

m+ 1
· 1

Nt − 1
· e

−µ(Nt−1)

1− e−µ
(200)

where the second line follows from the definition of the Beta function, and the third line follows

from the fact [52] thatβ(x, y) ≤ 1
xy

if x ≥ 1 andy ≥ 1. We now use the fact [53] that

Γ(n + 1)

Γ(n + s)
≥ n1−s, 0 < s ≤ 1 (201)

to boundδ3 as follows:

δ3 ,
1

Nt − 1

Nt−1∑

i=1

e−µi · Γ(m+ 1)

Γ
(
m+ 1 + i

Nt−1

)

m−1∑

k=1

Dk ·
Γ
(
k + i

Nt−1

)

Γ(k + 1)
(202)

≤ 1

Nt − 1

Nt−1∑

i=1

e−µi Γ(m+ 1)

Γ
(
m+ 1 + i

Nt−1

)

m−1∑

k=1

Dk · k
i

Nt−1
−1 (203)

≍ D

1−D
· 1

Nt − 1

Nt−1∑

i=1

e−µim
− i

Nt−1 (204)

=
D

1−D
· 1

Nt − 1
· 1−

e−µ(Nt−1)

m

eµm
1

Nt−1 − 1
(205)

where the third line follows from Stirling’s formula forΓ(·) and the fact thatk
i

Nt−1
−1 is a

decreasing function ofk.
For δ4, we have

δ4 ,
1

Nt − 1

∞∑

i=Nt

e−µi

m−1∑

k=1

Dk m!Γ(k + y)

k!Γ(m+ 1 + y)
(206)

≤ 1

Nt − 1

∞∑

i=Nt

e−µi ·m! · e1−y

Γ(m+ y + 1)

m−1∑

k=1

Dk · (k + y)k+y− 1
2

(k + 1)k+
1
2

(207)

where we usey in (206) to denotey = i
Nt−1

≥ 1 and the second line follows from [54], where

if b > a ≥ 1, we have

Γ(b)

Γ(a)
<

bb−
1
2

aa−
1
2

· ea−b. (208)



Using the fact that(k+y)k+y−1
2

(k+1)k+
1
2

is monotonically increasing ink for any y ≥ 1, we have

δ4 ≤
1

Nt − 1

∞∑

i=Nt

e−µi ·m! · e1−y

Γ(m+ y + 1)

m−1∑

k=1

Dk · (m+ y)m+y− 1
2

(m+ 1)m+ 1
2

(209)

≤ C3 ·
∞∑

i=Nt

e−µi ·m! · e1−y

Γ(m+ y + 1)
· (m+ y)m+y− 1

2

(m+ 1)m+ 1
2

(210)

≍ C3 ·
∞∑

i=Nt

e−µi · (m+ 1)m+ 1
2 · e

(m+ y + 1)m+y+ 1
2

· (m+ y)m+y− 1
2

(m+ 1)m+ 1
2

(211)

= C3 ·
∞∑

i=Nt

e−µi · e
m+ y + 1

·
(

m+ y

m+ y + 1

)m+y− 1
2

(212)

≍ C3 ·
∞∑

i=Nt

e−µi · e
m+ y + 1

· exp
(

−m+ y − 1
2

m+ y + 1

)

(213)

≤ C3

m+ 1
·

∞∑

i=Nt

e−µi =
C3

m+ 1
· e

−µ(Nt−1)

1− e−µ
(214)

whereC3 = D
(1−D)(Nt−1)

, the third line follows by using Stirling’s formula forΓ(m + 1) (as a

function of m+ 1) andΓ(m + y + 1) (as a function ofm + y) and the fifth line follows from

the fact that

(1 + x)
1
x

x→0≍ e. (215)

Putting together the trends ofδi, i = 1, · · · , 4, we obtain the conclusion in the statement of the

proposition.

With respect to Method 2, we approximate the inner sum in (179) by an appropriate refor-

mulation of the exponential integral, and asB → ∞, we have

δ ≍ ρA

1 + ρλ1

·
m∑

k=0

(
m

k

)

(−1)k
(
λ1 − λ2

A

)(Nt−1)k+1

×

e

(
(Nt−1)k+1

)
µ · E1

((
(Nt − 1)k + 1

)
µ
)

(216)

=
m∑

k=0

(
m

k

)

(−1)k
(
1 + ρλ1

ρA

)(Nt−1)k

· E1

((
(Nt − 1)k + 1

)
µ
)

(217)

whereµ = log
(

1+ρλ1

ρ(λ1−λ2)

)

> 0. The oscillatory nature (changing signs) of the terms in (217)

and the intractable nature of the exponential integral (forgeneral values of the argument) imply

that it is much harder to obtain insights on the asymptotic trends of∆2 with (217) than with

the expression from Method 1.



H. Proof of Prop. 4

We can rewrite the distribution function relevant in computing ∆1, sk as follows:

Pr

(
f †A†H†HAf

f †A†Af
≤ x

∣
∣f †f = 1

)

= 1− Pr
(

f †A†
(
H†H− xI

)
Af ≥ 0

∣
∣f †f = 1

)

(218)

= 1− Pr
(

f †Bxf ≥ 0
∣
∣f †f = 1

)

(219)

whereBx is defined as

Bx , A†H†HA− xA†A. (220)

Remark 1: Note thatBx is Hermitian, but not positive semi-definite. In fact,Bx has the same

number of positive, negative, and zero eigenvalues as
(
H†H− xI

)
AA†, which is the same as

those ofH†H− xI (see [55, Theorem 7.6.3, p. 465] for details). Using an eigen-decomposition

for Bx of the formBx = VxΓxV
†
x in the special case ofNt = 2 whereΓx = diag

(
[Γ1,x, Γ2,x]

)

such thatΓ1,x ≥ Γ2,x, we have:

1) Γ1,x ≥ 0 = Γ2,x if x = λ2(H
†H),

2) Γ1,x ≥ 0 ≥ Γ2,x if x ∈ (λ2(H
†H), λ1(H

†H)),

3) Γ1,x = 0 ≥ Γ2,x if x = λ1(H
†H).

Thus, we can rewrite (219) as

Pr

(
f †A†H†HAf

f †A†Af
≤ x

∣
∣f †f = 1

)

= 1− Pr
(

|f(1)|2Γ1,x + |f(2)|2Γ2,x ≥ 0
∣
∣f †f = 1

)

(221)

= 1− Pr
(

|f(1)|2 (Γ1,x − Γ2,x) ≥ −Γ2,x

∣
∣f †f = 1

)

(222)

= 1− Pr

(

|f(1)|2 ≥ |Γ2,x|
|Γ1,x|+ |Γ2,x|

∣
∣
∣f

†f = 1

)

(223)

where the second equation follows from noting thatΓ1,x ≥ 0 and Γ2,x ≤ 0 for all x ∈
[λ2(H

†H), λ1(H
†H)]. We now use [8, Lemmas 2 and 4] to compute the above term (see Ap-

pendix B for details) as

Pr

(

|f(1)|2 ≥ |Γ2,x|
|Γ1,x|+ |Γ2,x|

∣
∣
∣f

†f = 1

)

=
|Γ1,x|

|Γ1,x|+ |Γ2,x|
. (224)

Thus,∆1, sk can be expressed as

∆1, sk =
1

λ1(H†H)
·
∫ λ1(H†H)

λ2(H†H)

( |Γ2,x|
|Γ1,x|+ |Γ2,x|

)m

dx. (225)

Now observe that∆1, sk is monotonically increasing as a function of|Γ2,x|

|Γ1,x|
. Thus, an upper

bound on|Γ2,x|

|Γ1,x|
also results in a corresponding upper bound on∆1, sk. For this, note that

Γ2,x = λ2(A
†H†HA− xA†A) (226)

≥ λ2(A
†H†HA)− xλ1(A

†A) (227)



where the second step follows from a routine application of Weyl’s inequality [55]. Since the

right-hand side of (227) is non-positive for allx, we thus have

|Γ2,x| ≤ xλ1(A
†A)− λ2(A

†H†HA). (228)

For Γ1,x, we use [56, Corollary 11] to see that

Γ1,x ≥
(
λ1(H

†H)− x
)
· λ1(AA

†). (229)

Note that the bounds in (228) and (229) are non-trivial (thatis, the bounding terms are non-

negative). Combining them, we have

|Γ2,x|
|Γ1,x|

≤ xλ1(A
†A)− λ2(A

†H†HA)

(λ1(H†H)− x) · λ1(AA†)
. (230)

Using the bound in (230), after a routine integral computation, it is straightforward to see that

∆1, sk ≤
1

m+ 1
·
[

1− λ2(A
†H†HA)

λ1(H†H) · λ1(AA†)
· (1− (C4)

m)− λ2(H
†H)

λ1(H†H)
· (C4)

m

]

︸ ︷︷ ︸

∆1, sk

(231)

wherem = 2B and

C4 =
λ2(H

†H) · λ1(AA
†)− λ2(A

†H†HA)

λ1(H†H) · λ1(AA†)− λ2(A†H†HA)
. (232)

SinceC4 ≤ 1 andB → ∞, the conclusion in (81) is immediate.

I. Proof of Theorem 4

For any integerk ≥ 1, define the following expectation over the ensemble of RVQ codebooks

Gk ,

(

EC

[(
f †A†H†HAf

f †A†Af

)k
]) 1

k

. (233)

It is easy to check that

lim
k→∞

Gk = λ1(H
†H) (234)

G1 ≥ λNt(H
†H). (235)

and it follows from Lyapunov’s inequality [57, Prob. 28, p. 143] thatGk is non-decreasing with

k. Since

λNt(H
†H) ≤ λ1(A

†H†HA)

λ1(A†A)
≤ λ1(H

†H), (236)

it can be concluded that there exists someKL ≥ 1 and someKU satisfyingKL ≤ KU < ∞ such

that

GKL−1 ≤ λ1(A†H†HA)
λ1(A†A)

≤ GKL
(237)

λ1(H
†H)− 2−

B
2 ≤ GKU

≤ λ1(H
†H). (238)



Thus,∆1, sk can be bounded as

∆1, sk · λ1(H
†H) ≤

∫ λ1(A
†H†HA)

λ1(A
†A)

λNt
(H†H)

[

Pr

(
f †A†H†HAf

f †A†Af
≤ x

∣
∣f †f = 1

)]m

dx

+

KU∑

k=KL

∫ Gk

Gk−1

[

Pr

(
f †A†H†HAf

f †A†Af
≤ x

∣
∣f †f = 1

)]m

dx

+

∫ λ1(H†H)

GKU

[

Pr

(
f †A†H†HAf

f †A†Af
≤ x

∣
∣f †f = 1

)]m

dx (239)

, ∆1, sk. (240)

For the first term of∆1, sk in (239) (denoted asT1), sincef †A†Af ≤ λ1(A
†A), we have

Pr

(
f †A†H†HAf

f †A†Af
≤ x

∣
∣
∣f

†f = 1

)

≤ Pr

(
f †A†H†HAf

λ1(A†A)
≤ x

∣
∣
∣f

†f = 1

)

(241)

= 1−
(
λ1(A

†H†HA)− xλ1(A
†A)
)Nt−1

∏Nt

j=2 λ1(A†H†HA)− λj(A†H†HA)
(242)

where the second step follows from an application of Lemma 2 to the distribution off †A†H†HAf .

Using a computation that mirrors that in Theorem 1, we have

T1
B→∞≍ κ · 2−

B
Nt−1

Nt − 1
·
(
λ1(A

†H†HA)

λ1(A†A)
− λNt(H

†H)

)

·
(

1 +
Dsk

(1−Dsk)(Nt − 1)

)

(243)

with κ = Γ
(

1
Nt−1

)
and

Dsk = 1−
Nt∏

j=2

λ1(A
†H†HA)− λNt(H

†H) · λ1(A
†A)

λ1(A†H†HA)− λj(A†H†HA)
. (244)

The tightness of (243) follows from the tightness result established in Theorem 1.

For bounding the second term of (239) (denoted asT2), we need a reverse Cauchy-Schwarz

inequality, which is presented next.

Lemma 5:Let X be a positive random variable. Letg(·) : R+ 7→ R+ be a monotonically

increasing function such thatg(X) and(g(X))2 are integrable. Ifx is such thatg(x) ≤ E [g(X)],

we have

Pr (X > x) ≥

(

E[g(X)]− g(x)
)2

E
[(
g(X)

)2
] . (245)



Proof: Sincex is such thatE [g(X)] ≥ g(x), using the standard Cauchy-Schwarz inequality

and the monotonicity ofg(·), we have

E[g(X)]− g(x) ≤ E[g(X)]− E[g(X)11(X ≤ x)] (246)

= E [g(X)− g(X)11(X ≤ x)] (247)

= E [g(X)11(X > x)] (248)

≤
√

E [(g(X))2] · Pr(X > x). (249)

Rearranging (249), we have the conclusion of the lemma.

For eachk satisfyingKL ≤ k ≤ KU, we repeatedly apply Lemma 5 with

X =
f †A†H†HAf

f †A†Af
(250)

andg(x) = xk to get the following bound forT2:

T2 ≤
KU∑

k=KL

∫ Gk

Gk−1

[

1−
(
(Gk)

k − xk

(G2k)k

)2
]m

dx (251)

=

KU∑

k=KL

(G2k)
k

k

∫ Ik

0

(1− y2)m dy

((Gk)k − y(G2k)k)
k−1
k

(252)

≤
KU∑

k=KL

(G2k)
k

k · (Gk−1)k−1

∫ Ik

0

(1− y2)m dy (253)

where Ik = (Gk)
k−(Gk−1)

k

(G2k)k
, the second equation follows from a transformationy 7→ (Gk)

k−xk

(G2k)k
,

and the third step follows by trivially boundingy ≤ Ik. Note that the monotonicity ofGk with

k implies thatIk ≤ 1. With the transformationy 7→ sin(θ), we can reuse the computation in

Theorem 1 to estimateT2. However, this estimate is not sufficient for our purpose andhence,

we will establish a tighter estimate now.
From [50, 2.512(3), p. 131] and Stirling’s formula forh(m) in (146), we have

T2 ≍
KU∑

k=KL

(G2k)
k

k · (Gk−1)k−1
·
√
πm · Ik
2m+ 1

·
(

1 +
m−1∑

j=1

(1− I2k)
j

h(j)

)

. (254)

Sinceh(j) ≍ √
πj for j large, we can estimate (254) by

T2 · (2m+ 1) ≍
KU∑

k=KL

(G2k)
k · √πm · Ik

k · (Gk−1)k−1

(

1 +

∫ ∞

1

e−αkx

√
πx

dx

)

(255)

=

KU∑

k=KL

(G2k)
k · √πm · Ik

k · (Gk−1)k−1

(

1 +
Γ (1/2, αk)√

παk

)

(256)

=

KU∑

k=KL

(G2k)
k · √πm · Ik

k · (Gk−1)k−1

(

1 +
1− erf(

√
αk)√

αk

)

(257)



whereαk = loge

(
1

1−I2
k

)

, and

Γ(a, x) =

∫ ∞

x

ta−1e−tdt (258)

is the incomplete Gamma function. The second step follows from [51, 6.5.3, p. 260], and

erf(x) =
2√
π

∫ x

0

e−t2dt (259)

is the error function. The third step follows from [51, 6.5.17, p. 262]. Note that asB increases,

KU increases andIk → 0. As a result, we have

αk = loge

(

1 +
I2k

1− I2k

)
B→∞≍ I2k . (260)

In this setting, from [51, 7.1.6, p. 297], we thus have

T2
B→∞≍ 2−

B
2

KU∑

k=KL

C5 ·
(G2k)

k

k · (Gk−1)k−1
(261)

for some constantC5. Using the relationship in (237)-(238), we can write (261) as

T2
B→∞≍ C5 · 2−

B
2 ·
(

(G2KL
)KL

KL · (GKL−1)KL−1
+

KU−1∑

k=KL

λ1(H
†H)

k + 1

(
λ1(H

†H)λ1(AA
†)

λ1(A†H†HA)

)k
)

(262)

≤ 2−
B
2 · C5 · λ1(H

†H) ·
(

1

KL

·
(

λ1(H
†H)

λNt(H
†H)

)KL−1

+

KU−1∑

k=KL

1

k + 1

(
λ1(H

†H)λ1(AA
†)

λ1(A†H†HA)

)k
)

(263)

, 2−
B
2 ·G

(
λ1(H

†H) · λ1(AA
†)

λ1(A†H†HA)

)

(264)

where we have used the symbolic notationG(·) to denote the monotonically increasing function

in (263) for a givenH. The tightness of (264) is due to the tight estimation of the integral

in (253).

For the third term of (239) (denoted asT3), we trivially over-boundPr
(

f†A†H†HAf
f†A†Af

≤ x
∣
∣f †f = 1

)

by 1 and use the definition ofKU to obtain

T3 ≤ λ1(H
†H)−GKU

≤ 2−
B
2 . (265)

Combining the three termsT1, T2 andT3, we have

∆1, sk · λ1(H
†H) ≤ ∆1, sk · λ1(H

†H) (266)

B→∞≍ 2−
B
2 ·
(

1 +G

(
λ1(H

†H)λ1(AA
†)

λ1(A†H†HA)

))

+
κ · 2−

B
Nt−1

Nt − 1
×

(
λ1(A

†H†HA)

λ1(A†A)
− λNt(H

†H)

)

·
(

1 +
Dsk

(1−Dsk)(Nt − 1)

)

. (267)

If Nt ≥ 4, it is clear that the first term in (267) is sub-dominant relative to the second term. The

statement of the theorem hence follows.
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