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Abstract

The ensemble properties Blandom Vector Quantization (RV@)debooks for limited-feedback beam-
forming in multi-input multi-output (MIMO) systems are sligd with the metrics of interest being the
receivedSNR loss and mutual information loss, both relative to a perébeinnel state information (CSI)
benchmark. The simplest case of unskewed codebooks isdtirdithe correlated MIMO setting and
these loss metrics are computed as a function of the numbatobf feedback B), transmit antenna
dimension (V;), and spatial correlation. In particular, it is establidhtbat: i) the loss metrics are a
product of two components — a quantization component andaargi-dependent component; ii) the
guantization component, which is also common to analysehahnels with independent and identically
distributed (i.i.d.) fading, decays aB increases at the ratz—2/(Nt=1). jii) the channel-dependent
component reflects the condition number of the channelhBurthe precise connection between the
receivedSNR loss and the squared singular values of the channel is showeta Schur-convex
majorization relationship. Finally, the ensemble projgsrbf skewed codebooks that are generated by
skewing RVQ codebooks with an appropriately designed fixesving matrix are studied. Based on an
estimate of the loss expression for skewed codebooks, gtabkshed that the optimal skewing matrix
is critically dependent on the condition numbers of #ifective channe{product of the true channel

and the skewing matrix) and the skewing matrix.
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. INTRODUCTION

Optimal signalling to maximize the achievable rate in minput multi-output (MIMO) com-
munication channels requires appropriate adaptationehtimber of transmit data-streams in
response to th&NR, channel correlation, and the channel state informatio&l)@vailable
at the transmitter and the receiver [1], [2]. On the otherdhan increase in the number of
transmit data-streams results in a significant increasdennumber of radio-frequency (RF)
link chains and imposes a corresponding increase in contylard cost [3]. Thus, in many
later generation (3G/4G and beyond) cellular standards aadWiMAX, 3GPP-LTE, etc., low-
complexity signalling alternatives are preferred. In gaitar, beamformingwhere the number
of transmit data-streams is fixed to be om@épendenof the SNR, channel correlation or CSl)
is an attractive choice due to its low-complexity. Beamfmgnis also preferred when the central
goal is to maximize the coverage area/range of signallingr the60 GHz regime [4] where
a large number of small antennas can be packed in a fixed areapahe array gain possible
with beamforming, and as a mechanism for cross-layer diggah ad-hoc networks.
Background: The performance achieved with a beamforming scheme islgldependent on the
guality of CSI available at both the transmitter and the ikeszeWhile perfect CSI at the receiver
is a reasonable assumption for practical systems, conttran channel tracking and quality of
feedback ensure that perfect CSI at the transmitter is amigpic assumption. Nevertheless, the
possibility of low-rate reverse link feedback from the rigeeto the transmitter has resulted in the
popularity oflimited-feedbaclsystems [5], [6], where3 bits of channel quality information are
fed back to the transmitter. The common method of using teeldfack resource in beamforming
systems is by designing a codebook24f beamforming vectors and feeding back the index of
the best codeword from the codebook over each coherenaedp®ii [6].

Given a channel correlation profile, the problem of optimatign of B-bit codebooks is
ill-posed (in general) and hence, difficult. In the speciade of channels with independent and
identically distributed (i.i.d.) fading, Grassmanniamstructions that are designed to maximize
the minimum distance between beamforming vectors have pegposed in [7] and [8]. The
intuition behind this proposal is that the dominant righmggilar vector of an i.i.d. channel
is isotropically (uniformly) distributed in the space 8f-dimensional unit-norm beamforming
vectors whereV; is the number of transmit antennas. Thus, a “good” limiteeidback codebook
is an efficient quantization of this ambient space. Grassiaancodebooks are obtained via
algebraic techniques [9]-[11] and are technically impassto construct for some¢N,, B)-
combinations.

To overcome this difficulty, inspired by the random codinguament,Random Vector Quan-
tization (RVQ) codebooks have also been proposed in the literat@e RVQ codebooks were
first introduced in the context of signature matrix quaritaafor Code-Division Multiple Access
(CDMA) systems in [13], [14]. RVQ codebooks are instantias of random constructions (in
contrast to Grassmannian codebooks) and the beamformatgrseare isotropic and i.i.d. over



the ambient space. Thus, RVQ codebooks can be designed fa¥,aBB)-combinations and they
are of low-complexity in terms of design. The intuition bathian RVQ codebook design has
been extended to the multi-user setting (with i.i.d. faglimymany recent papers [15]-[19].

In the general single-user setting where the channel marispatially correlated and the
dominant right singular vector of the channel has certaigfgored directions, Grassmannian
codebooks aremismatchedand are hence, sub-optimal. In fact, in [20, Figs. 6 and 7}] [2
illustrative examples are given, where Grassmannian aomebsuffer dramatic performance
losses (on the order @ dB in SNR) relative to the perfect CSI benchmark. In these situations
more complicated (in terms of desigsphericalVector Quantization (VQ) constructions [22]—
[24] based on the Lloyd algorithm have been proposed. Whilecddebooks are optin@alit is
hard to obtain insights on the structure of the optimal codé&b To overcome these difficulties,
rotation and scaling-based codebooks have been propo8gd42]-[29] and shown to result in
significant improvement in performance over Grassmanna@telscooks. The main idea behind
these constructions is to finely quantize the local neighdod around the statistically dominant
eigen-directions and coarsely quantize elsewherg (g large enough to afford this possibility).

Towards the eventual goal of an optimal codebook constmgtit is imperative to under-
stand the performance of existing codebook designs andifigléime merits/demerits of existing
schemes with respect to fundamental limits on performalnctiis direction, the performance of
an ensemble of RVQ codebooks has been studied for i) i.i.dti-mput single-output (MISO)
channels [12], [15], [30], ii) correlated MISO channels metasymptoticB regime via high
resolution quantization theory [31], [32], iii) i.i.d. MIR® channels via bounds [33], [34], iv)
i.i.d. MISO and MIMO channels in the large antenna regimeextreme order statistics [12],
[35], and v) symbol error rate of limited-feedback beamfgnin an i.i.d. MISO setting [36],
[37].

Both exact expressions as well as asymptotic approximatfon3) are available for RVQ
codebooks for MISO channels in both the i.i.d. and corrélaettings and these studies show
that the rate of decay of the loss metrics is of the ordeX of - asB increases. However, in the
MIMO setting, performance analysis is available only inithd. case in the large antenna regime.
Further, since reverse link feedback is a valuable resotitegractically relevant regime is when
B is small and there has been little to no attention in thedttee on performance analysis
relevant to this regime. More importantly, to the best of kmowledge, the performance of non-
RVQ codebooks has not been studied at all. Thus, it is of ésteio understand the ensemble
properties of RVQ codebooks (as well as codebooks desigasddbon RVQ codebooks and
tailored for correlated channels) in the most general tated setting for practically relevant
values of B.

Technically, VQ codebooks meet the necessary conditionsafooptimal codebook construction, but not the sufficient

condition. Nevertheless, it is widely believed that VQ donstions are optimal.



Contributions. The main goal of this work is to study the performance @f-bit RvQ codebook
in correlated MIMO channels with the metrics of interestigeihe receive$NR loss (ASNR,,)
and loss in average mutual informatioa f), both relative to a perfect CSI scheme. For this,
we adopt a program of first averaging the loss metric (with adfichannel realization) over
the randomness in the RVQ codebook structure and then, gaimgraver the randomness in
the channel. In this direction, we identify the structuretted density function of the weighted-
norm of isotropically distributed unit-norm vectors. Withis information, we obtain closed-form
expressions (although the results are modulo averaging adhannel randomness) fakSNR,,
and AI. The fundamental contributions of this work are three-faJdhe loss expressions are
accurate for small values @ across a large family of channels, ii) they are asymptdyi¢aght

in B and the rate of decay witl® is still 2% in correlated MIMO channels, and iii) they
capture the impact of the channel correlation structurehenperformance of RVQ codebooks.

Further, we also establishcantinuousmapping from the space of all majorizable channels to
performance loss with the RVQ codebook in that channel bysigpthat ASNR,, is a Schur-
convex function of the squared singular values of the chlark® important consequence of
this result is that a channel that is well-conditioned letmishe smallest value foASNR,,,
whereas arank-1 channel leads to the largest value fO6NR,,. As the rank of the channel
decreases and/or the condition number of the non-trivigjudar values of the channel increases,
performance loss with the RVQ codebook relative to a pe@&it scheme increases. Intuitively,
RVQ codebooks are isotropic constructions whereas pe@&tbeamforming corresponds to
skewing the signal along the dominant right singular veofahe channel. Thus, a channel that
has an isotropically distributed dominant right singulactor (an i.i.d. channel) is bestatched
for the RVQ codebooks, whereas a channel that has a fixedtidimefor the dominant right
singular vector (aank-1 channel) is poorlymatchedfor RvQ codebooks. This intuition mirrors
the source-channel matchingrinciple for statistical semiunitary precoding estdidid in one
of our prior works [21]. Since majorization only results inpartial ordering on the family of
all channels, we show that a simplified ordering metric torapimately order and compare the
performance of the RVQ scheme (in all channels) is the domiisquared singular value of the
channel.

Recent interest in the limited-feedback literature [22K][has been on the design of skewed
codebooks where a fixed skewing matrix is used to skew an R\d@hmmok (or a Grassmannian
codebook). The skewing matrix biases the isotropic beamifay vectors in the RVQ codebook
and orients them along its singular vectors. Thus, by a lskeitehoice of the skewing matrix,
significant performance improvement can be achieved velat the RVQ scheme. Despite
these observations, technical challenges have ensurethth@erformance analysis of skewed
codebooks has not been addressed in the literature. In shedat of this paper, we overcome
this challenge to generalize our characterization of tiseble properties of RVQ codebooks to
the case of skewed codebooks. Our result captures the ed&R loss in terms of the skewing



matrix thus allowing us to obtain insights into the struetwf the optimal skewing matrix for
limited-feedback beamforming. Our study establishes tligality of the condition numbers of
the effective channefwhich is the product of the true channel matrix and the skgwnatrix)
and the skewing matrix in this question. Building on thisigié, we construct a class of skewed
codebooks that match the left singular vectors of the skgwmatrix with the dominant eigen-
directions of the transmit covariance matrix of the chanhkimerical studies show that these
skewed codebooks significantly out-perform RVQ codeboaitare better than the codebooks
proposed in [25], [26].

Organization: This paper is organized as follows. In Secfidn I, we introelthe limited-feedback
beamforming setup. In Sectign]lll, we study the recei$&R loss with an ensemble of RVQ
codebooks in the most general (correlated MIMO) settingenas in Sectiop_ IV, our focus is
on ordering (comparing) channels with respect to the recSWR loss metric. For this, a partial
ordering in the form of a majorization result and an appratercomplete ordering are presented
in Sec.[1M. In Sectiori_V, we study the mutual information laggh RVQ codebooks, while
in Section[V], we extend the analysis of Sec] Ill to the skewedebook setting. Concluding
remarks are provided in Sectibn VII. Proofs of most of theultssare relegated to the Appendices.
Notations: Upper- and lower-case bold symbols are used to denote msitd vectors, respec-
tively. Thei-th element of a vectok is denoted byx(i) and its two-norm is denoted ds ||.
The Hermitian transpose of a matrix is denoted(by while the trace and rank operators are
denoted byTr(-) andrank(-), respectively. The eigenvalues of & x N; positive semi-definite
matrix M are arranged in decreasing order\agM) > --- > Ay, (M). Many times, we will find

it convenient to write the above relationship)as> - - - > Ay, when there is no ambiguity about
the matrix under consideration. M is a full-rank matrix, the squared condition numbgy is
defined as%. We loosely say thaM is ill-(or well-)conditioned depending on whether
xwm IS (or is not) significantly larger thaih. The indicator function and probability of an event
are denoted byt (-) andPr(-) while the expectation operator is denotedEals|. The symbol<’,

B, C,, I anddiag(-) are reserved for limited-feedback codebooks, number of dfitteedback,
constants in theoretical statements/results, identityrirgaand a diagonal matrix, respectively.
The symbolsC andR stand for the complex and real fields whit¢ andR* stand for positive
real fields ofn and1 dimensions, respectively. The notatiofia3) b g(B) and the little-oh

notation f(B) = o(g(B)) as B — oo stand for lim ££) = 1 and lim Lg; = 0.

B—oo 9(B) B—oo 9(

[I. BEAMFORMING SETUP

We consider a communication system with transmit and/V, receive antennas where one
data-stream is used for signalling. The baseband modeVvé&ndy

y=+pHfs+n (2)
wherep is the transmit power constraint, the complex Gaussiantiapsi i.i.d. with zero mean
and unit-energyH is the N, x N;-dimensional channel matrix, and is the N,-dimensional



proper complex additive white Gaussian noise.[In €lis a vector on the complex Grassmann
manifold G(NV;, 1). That is,f is a IV, x 1 unit-norm vector representing the equivalence class
{fei®, 6 €0,2m)}.

The main emphasis in this work is on the impact of the chanratiron limited-feedback
performance. For this, we assume that the channel evolaesdiog to a block fading, narrow-
band model. We further assume a Rayleigh fading (zero meapleax Gaussian) model for
the channel coefficients. The second-order statistics eseriibed via a general, mathematically
tractable decomposition of the channel [38]:

H=U,H;, U] )

where H;,q has independent, but not necessarily identically distedentries, andJ; and U,
are unitary matrices that serve as eigen-bases for thanbasd the receive covariance matrices
(3; and X,), respectively. The covariance matrices are defined as

¥, £ E[H'H|=U,E[H] H.U] 3)
¥, £ E[HH'| =U,E[H,H,|U. (4)

The well-known Kronecker-product correlation model (Whéf,q = A,/* Hig A)/? with Hig
denoting an i.i.d. channel matrix) and virtual represeataiwhere U, and U, are Fourier
matrices) are special cases bf (2). Readers are referre88{p [B9] for a detailed study of
channel modeling issues.

We study the coherent case with perfect CSI at the receivith Méamforming, both ergodic
capacity and (uncoded) error probability are captured leyréteivedSNR, defined as,

SNR, £ p- fTH'HS. (5)

When perfect CSIK = H) is also available at the transmitter, the optimal choifg;)( of
beamforming vector o (N, 1) that maximizes the receivesNR is uy, the dominant right
singular vector oH (which is also the dominant eigenvectordfH). In this case, the received
SNR is given byp)\;, where ), is the dominant eigenvalue ffH.

However, perfect CSl is hard to obtain at the transmitter iengractice. Thus, as motivated
in Secll, we assume B-bit limited-feedback model for the reverse link. We neeel thllowing
definition to introduce the codebook model.

Definition 1 Exchangeable & Isotropic random variables): A family of random variables,

Xi1,---,X,, is said to beexchangeablé the joint distribution is invariant to the set of permu-
tations over{1,--- ,n}. That is,

Pr(Xy, -+, X, €0)=Pr(X,, -, X, €0) (6)
for all permutationsIl = [r,---, 7, and any© in the range space ofX;, ---,X,}. A

family of i.i.d. random variables is exchangeable. Excleaide random variables are identically
distributed [40].



A random N; x 1 unit-norm vectorf is said to beisotropic if its distribution is invariant to
pre- and post-multiplication by unitary matrices. That is,

Pr(f € ©) = Pr(e’?Uf € ©) 7

for all N; x N, unitary matricesU and ¢ € [0,27), and © in the range spacg(N,,1). In
particular, the distribution function of afiV, x 1 isotropic beamforming vector is given as [41]

I'(N,
Pr(f € ©) :/ %ﬁ(f*fq)d@ (8)
pco T
whered(-) stands for the Dirac delta operator and
['(x) = / t" e tdt 9)
0
stands for the Gamma function extendedd@minus its singularities). [ |
In this work, we assume that an RVQ codebookibits, C = {f;, i = 1,---, 25}, is known

a priori at both the ends. The beamforming vectorgimare isotropic and i.i.d. oveg (N, 1).
The indexi* of the codeword that maximizes the recei&dR,

i* = argmax f HTHf;, (10)

is fed back usingB bits. We assume that there is no error or delay in feedingritiexi back.
Since an RVQ codebook is by construction random, our intése the average properties
of an ensemble of RVQ codebooks. We desire to compute thenfimly quantities:

_ fIHTHS,
ASNR, 2 Eg By |2 ma};” ” (11)
1
AI é EC [EH [Iperf_llim}}- (12)

The receivedNR loss, ASNR,,, is the ensemble average (over the family of RVQ codebooks)
of the average (over channel randomness) normalized est&NR loss relative to a perfect CSI
scheme. The quantitpA/ is the ensemble average of the loss in average mutual infmma
In (12), I,e¢ and Iy, denote the mutual informatigmchievable with channel realizatidh = H
with perfect CSI and limited-feedback using the feedbackrimén (10), respectively:

Iperf = lOg (1 —+ P )\1) (13)

Lim = log (1 + p - max fjHTHfi) 14

where)\; > --- > \y, are the eigenvalues ¢f'H in decreasing order.

2All logarithms are to base, unless specified otherwise.



Ill. RECEIVED SNR Loss

The goal of this section is to produce a tractable charaetiéon of ASNR,, as defined in[(11).
For this, note that a simple Fubini argument implies that ese change the order of expectation
in (1I) (and [(1R)). Thus, conditioned on a particular redlan of the channeH = H, we seek
to compute the following average:

A1 — max; f;'HTHfi] A

EC )\1 - Al. (15)

We then averagé\; over H to obtain ASNR,,.

A. Equivalent Characterization ak;

Lemma 1:
. If {f;} are isotropic orng (N, 1), the family of random variables

{|fz-(k‘)|2, k=1, ,Nt} (16)

is exchangeable for any fixed Recall thatf;(%) is the k-th element off;.
« Further, with a given fixed channel realizatidh = H, the family of random variables
{x;,i=1,---,28) wherex; = f/H'Hf; is i.i.d. over its rangd\y,, \].

Proof: See AppendiXA. [
If x; are i.i.d. positive random variables, for amy> 0, we have
Pr (l_r?ax x; < x) = <Pr (x; < x) )m a7
for any choice ofm. Using this fact in conjunction with Lemnid 1, we have
A1
Ec [max fZ.THTHfZ-] D, = / Pr (max FIHIHE, > x) dz (18)
(2 >‘Nt (2
A1
S VI / Pr <maxfj HYHE, < x) dx (19)
AN, !
where [(18) follows from a routine Fubini argument. Hencegrupearrangement, we have
1
- . — THTHE,
A= g <)\1 Ec [mlax £1H Hfz]) (20)
1 A1 m
= —- Pr (fTHTHf < d 21
= /ANt(r( <)) dr (21)
1™ T m
= —- Pr (f'Af < d 22
5 /ANt(r( <)) do (22)

where the eigen-decomposition ldfH is given asH'H = UAUT with A = diag ([A1, -+, Aw,]),
f is an isotropically distributed vector iG(N;, 1) in (21) and [(2R), andn is particularized to
m = 28 in (21) and [(2R).



B. Distribution Function of the Weighted-Norm of Unit-Nokactors

From the preceding discussion, we conclude that computatid\SNR,, requires the distri-
bution function offTAf, which is a weighted-norm (with weights given by the diagosatries
of A) of isotropically distributed beamforming vectors Gii/V;, 1). We start by characterizing
the relevant distribution functions completely in the spkcases ofNV, = 2, 3. (A study of the
generalN; case follows.)

Lemma 2:Let f be an isotropically distributed unit-norm vector 6i{/V;, 1) and letA =
diag ([A1, -+, A\n,]) be some fixed diagonal matrix with, > --- > Ay, > 0. The cumula-
tive distribution function (CDF)F(x) of fTAf over the non-trivial support region (the interval
[An,, A1]) is as follows:

. x—=A
F(x) M = TR TR (23)
(z—A3)°
F(x) — s e 8 ST S A o
Ve | FOw) + SN < e S A

While the behavior off'(z) is too cumbersome to be stated in the gené&fatase, its behavior
over the segmert\,, \;] is simple:

()\1 _ 2;,)N,g—l
Hj‘vth ()‘1 - )‘j)’
Proof: See AppendixB. u

A simple verification shows thak’'(\;) = 1 in all the cases, as expected. The distribution
functions are derived in AppendIx] B by computing the volunfeimtersection of a complex
ellipsoid with a unit-radius complex sphere. This comgatamirrors and generalizes the com-
putation in [8] where the volume of a spherical cap (intetisecof a plane with a unit-radius
complex sphere) is obtained in closed-form. While this galimation is hard to geometrically
visualize beyond théV, = 2 case, it can be seen that the trend oMer \,] shows the same
behavior as the distribution function in [8].

Fig.[ illustrates the trends of the CDF by plotting the goeshiof-fit between the theoretical
expressions in Lemmal 2 and the CDF estimated via Monte Cadthads. Three cases are
considered: a\ = diag([2 1]) for N; = 2, b) A = diag([3 2 1]) for N, = 3, and c)A =
diag([4 3 2 1]) for N; = 4.

F(z)=1-

C. Main Result

The following theorem captures the performance loss witlQRMdebooks.
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Fig. 1. CDF of weighted-norm of isotropically distributeditinorm vectors.

Theorem 1:In the MIMO setting, in the special cases 8f = 2 and 3, we have

Nt:2 )\1
)\3 )\2—)\3 " )\2
A =As-|[1—-= 1-=
Hypy =8 K Al) </\1 —Ag) + ( Al) 8
e =2\ 2mm—1)--(m—k+1)
3 , (27)
wherem = 27, A, = 555 and A3 = 5575 In the general §, > 4) case, we have
A2 o2 mm—1)--(m—k+1) || &
A~ A 1- 22 D™ D™= A appos
P ( Al)x +;(2m—l—p—1)---(2m+p—2k+1) 2P
(28)
1 2 YA — A
o o i é . 1 — \2
Further, we have the following bounds:
0< M <ep (30)
Ay
where
a X—Ay, D (31)




We will show subsequently (sele_(38)-(40)) that "= 0 for any H. That is,A; ,5px IS a tight
approximation toA; with

A1 = Al,appx +o0 (Al,appx) (32)

as B — oo.

Proof: Since F(x) is monotonic, the dominant term of the integral [in](22) in general
N, case is over the intervah,, \;]. Computation of this dominant term results in the statement
of the theorem. See AppendiX C for details. [ |
In the special cases whekkis a MISO channel§/, = 1) or H is effectively a MISO channel
(rank(HTH) = 1), A; can be computed in closed-form [30, Cor. 1], [15] as
A = E¢ [miin sin2(9i)] =285 <2B, %) (33)
with 6; denoting the angle betwednanduy (the dominant right singular vector &f) and

5mwzlﬂﬂhwWﬁ (34)

is the Beta function. The MISO setting can be obtained as #itighcase of Theorern] 1 with
)\2:"':)\Nt — 0.

D. Asymptotics of3

Theorenill separates (to first order) the impact of the chdromal that of the RVQ codebook
(number of bitsB). Nevertheless, the expressions provided are too contgtida obtain simple
heuristic insights.

To overcome this difficulty, we now provide simplificatiors {A; as B — oo. In the V, = 2
setting, the expression fak; is already simple. Thus, we start with the caseé\pf= 3 and then
study theN; > 4 case.

Proposition 1: In the N; = 3 case, the dominant term df; behaves as

NG Ao Ao — Ay B
A=—— |[[1-2) [1+ = 2~ B/2
1= 5Bt N +2<)\1_)\3) +0( ) (35)
as B — oo. Similarly, in the N; > 4 case, we have
B
K-2 M1 Ao D -
s=r 0 () [T e
Al,:;ymp

N¢—1

Proof: See AppendixD. [

wherex =T <#> and D is as in [29).



From Prop[lL as well a§ (B3), in the special case wiarke(H'H) = 1, we have

A 2 9~ N1 37
= N¢—1
TN, o1 (277), 37)

which is also established in [15], [30]. For the rate of cageace ofez in (1) asB — oo,
note that

Aoy — A
log (e5) = log <2TM) + 28 log(D) + log (Al ) (38)
; appx

(@ B 1

=N 1 2”7 log (5) + O(1) (39)
. —
B—oo 1

= —2Plog | — 40
os () (40)

where (a) follows from Progd.J1 and th@(1) factor is a constant for a giver.

We now provide a numerical study to illustrate the theoettiesults presented in Theorém 1,
and to provide an idea as to how useful the asymptotic apprations are in the non-asymptotic
regime. Three channel realizations of sixe x N, with N, = N, = {2,3,4} are generated
randomly and then held constant and the performance is gagraverl000 RVQ codebooks.
The three channels are such that the squared singular vateed)[2 1], 2) [3 2 1], and 3)

[4 3 2 1], respectively. Fid.l2 shows the match between the theatetipressions in Theorem 1,
the asymptotic approximations in Prdg. 1 and Monte Carlomedes of A;. We see that the
asymptotic approximations are close even for small val@igd @B > 2), which is useful from a
practically motivated limited-feedback perspective. Whve have considered the goodness-of-fit
of the three expressions with a specific channel realizatidrig. [2, the goodness-of-fit of the
three expressions across a large family of channels isextutixt.

IV. ORDERING CHANNELS BASED ONRVQ PERFORMANCE

The focus of this section is to develop a basis (or a metrioyrtter a family of channels
such that the RVQ performance over a particular channel eanompared with performance
over another channel. In particular, the interest is ondhmsnditions on channeld; and H,
that are critical to ensure that

Al <Ay

Hy Ho

Let A = [A,---, A @nd p = [p1,- -+, uy,] denote the vectors of squared singular values
of Hy andHy with Ay > --- > Ay, > 0andu, > --- > uy, > 0. In the special case a¥, = 2,
Theoren{ L shows that

(41)

Al <A

Hiy
With A and p normalized such that

= — < (42)

A+ Ay = pe = 1+ pa, (43)
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Fig. 2. Goodness-of-fit of different estimates Af as a function ofB.

(42) is equivalent to\; < u; or A\ > us. To make this connection more precise in the general
N, case, we assume that the channels are normalized such that

Nt Nt
> X =Tr(H{Hy) = Tr(HiHy) = Y i = po, (44)
i=1 =1

where p. denotes the channel power. This normalization is commosiBdun multi-antenna
channel measurement studies to ensure that the channet ptays fixed, independent of the
distance between the transmitter and the receiver and tg\eiwf the scattering phenomena.
See [39] for a discussion of channel power normalizationdass
We also define the notions of a majorization ordering and auScbnvex function [42].
Definition 2 Schur-convex function): We say that\ is majorized byu (denoted as\ < p)
if

k k
DAY iy 1<k N, (45)
i=1 =1

with equality fork = N;. With A and p denoting the vectors of squared singular valuesipf
andH,, respectively, equality if_(45) fok = NV, is a consequence df (44).
Let f(-) be a function such that : R}, — R. We say thatf(-) is Schur-convex oy, if

x <y = f(x) < f(y). (46)

The functionf(-) is Schur-concave if-f(-) is Schur-convex. u
With this background, the main result of this section is d¥es.



Theorem 2:The normalized receive8NR loss is a Schur-convex function of the squared
singular values of the channel. That isAfand u denote the vectors of squared singular values
of H; andH, with A < u, we have

<Ay

AN . 47
Hy Ho

Proof: See AppendiXE. [
Some comments are in order at this stage.

1) Note that it is difficult to draw the conclusion of Theorehr@m either the exact expression
in the N; = 3 case or the approximate/asymptotic expressions of [SecThieorem[ P2
provides a continuous ordering on the space of all possibigdrizable) channels with
respect to RVQ performance. Similar results exploiting ariagtion theory have been
obtained for the ergodic capacity of MISO systems [43], gatgrobability of MISO
systems, error performance of orthogonal space-time litodks, performance analysis of
precoding in MIMO systems [44], performance of CDMA systemts., (see [21], [44],
[45] for details). Theorer]2 leads us to the following cosabun.

Corollary 1: Any channelH with the vector of squared singular values denotedoy
satisfies

Pe pe
[E’“'7ﬁt}—<&<[ﬂm07~“70] (48)

resulting in

Ay (49)

(%] ~

In other words, the best channel with respect to RVQ perfageas well-conditioned

with squared condition numbegy = ;Jit((H,LHFz) equal tol, whereas the worst channel is a
rank-1 channel. [ |
This conclusion fits within the theme sburce-channel matchinigr signalling design in
single-user MIMO systems, established in [21]: the beshobhwith respect to a specific
signalling scheme is the channel that optimizes an ap@tgbyi definedmatching metric
for that scheme. For the beamforming scheme withas the chosen metric and given that
an RVQ codebook has isotropic vectors (equally likely torbfsam along any direction),
the channel that is best-suited to this scheme should alge thaminant right singular
vectors that are isotropic ii(/V;, 1). This choice leads us to the i.i.d. channel matrix [7],
[10]. Similarly, arank-1 channel with a fixed right singular vector is ill-suited to B¥Q
codebook that is “wasteful” by beamforming isotropicaltyG (N, 1).

2) We now provide two specific examples to illustrate the delpace ofA; on the rank of
the channel and the condition number.




Corollary 2: Note that

[Pc/Niy -+ pe/Ni) < -+ < | peJT, 0 <o < [pe 0,4+, 0]. (50)

r times N¢—7r times

Thus, A; increases as the rankof the channel decreases.

Further, within the family of channels with the same rank\, increases as thenon-zero
squared singular values become more ill-conditioned. [ |

L
0 50 100 150
lll-conditioned — Channel Index — Well-conditioned

Fig. 3. Received5NR loss for channels ordered via a majorization relationskig dunction ofB.

3)

Fig.[3 plotsA; as a function ofB across a family o150 channels that can be continuously
majorized as follows. WithV; = N, = 4 and p. set arbitrarily tol (without loss in
generality), the squared singular values for tkte channel are given as

N2 =y, 2/3, 24/3, 2;/3] (51)
wherez; increases front).01 to 0.75 in steps 0f0.005. It can be seen that for any

and the channel becomes more well-conditioned axreases. On the other hanfl;
continuously decreases, thus illustrating Theokém 2.

Majorization provides an ordering metric to compare cteds with respect to RVQ perfor-
mance. However, it is important to note that the metric ontjuices goartial ordering on
the family of channels since there exist channels that damsoompared via a majorization
relationship. A simplified, albeit approximate, channeflasing metric that reflects the
condition number of the channel and allowsagproximate completerdering of channels



is A\;. However, numerical results illustrating the efficacy oftmetric are not provided
here for the sake of brevity.
In general, we would like to study the behavior ABNR,, = Eg [A4].
Proposition 2: In the special case whefeV;, N,} — oo with % — 0, the singular values of
H converge (harden) [21], [46] as follows:

NHH) = N (E[HH]) =X\ (%), i=1,---, N, (53)
Hence, we have
D A1(Ee) — Aa(3e) A (Xe)
ASNR, = : 54
A (Z) ( H Aol 54
'Dl h

Do
with the approximation holding up to a multiplicative comst that depends on the antenna
dimensions and3. [ |
Note thatD; is minimized when\;(3;) ~ A\ (X;) whereasD, is minimized when\y(X%;) ~
- & Ay, () = 0. But DD, is minimized whend, is well-conditioned. Apart from this case,
estimatingASNR,,, appears to be difficult in general. We therefore resort to enical studies
to study trends ofASNR,,.

Following the discussion in the context of channel orderwg expect that as the rank of
3}, increases and as a consequence, the condition number dfidheal decreases on average,
the performance loss with RVQ should decrease. [Hig. 4(a¥titites this heuristic with four
channels generated according to the Kronecker-produrglation model in[(R). The eigenvalues
of X, of the four channels are fixed ds6 x [4 32 1} where the factor ofl.6 means that
Tr(X,) = NN, = 16. The eigenvalues o, are as follows: 1)[16 0 0 0], 2) [8 8 0 0], 3)
[16/3 16/3 16/3 0], 4) [4 4 4 4] ensuring thaflr(X;) = 16 in all the four cases.

V. MUTUAL INFORMATION LOSS

Following the same development as in Sed. Ill, we can whteas

U m
Al = Eg[Ay], Ay — / (Prix <)) de (55)
L
wherex = log (1 +p- fTHTHf), m = 28,
L =log (14 pAn,), and U =log(1+ p\i). (56)
It is easy to see that
p (Pr (fTHTHF < x))
Ay = 7
ey / [ 7)
B p Pr fT/\f < x))
ot vt =
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Fig. 4. (a) Average receiveSINR loss and (b) Average mutual information loss as a functiothefrank ofX,.

In contrast to the development in Secl Ill where the integram monotonically increasing,
the integrand in[(88) is not necessarily monotonic as it ist&rof two increasing functions.
Nevertheless, we can trivially capture the trend’of as illustrated next.

Corollary 3: The following asymptotic trend holds fak,:

p(A — X2) - K D __B_
el e | RRI G B
wherex and D are as in Theoreii 1.

Proof: A trivial bound for1+ px in (58) over the interval),, \;] implies that the dominant
term of A, (denoted as\, ,,px) can be bounded as

Ag - 2_Nf’1

P < Ay appx - log,(2) < P

< < : (60)
Lt phe = [ (Pr(FIAf < @)™ da — 1+ A
A consequence of the computation in Theofem 1 is that
éz S A2,appx S Z2 (61)
with
AL — A
A, 2 P gy (22222 62
=2 10g6<2> N (1"‘[))\1 1 ( )
_ AL — A
X, oo P, (M 2) e 63
2 e () © <>
where
T 2k — 1) (m—k+1

2m+p—1)---2m+p—2k+1)



and we have reused the notationk(, p, D) from Theoreni1l. It is straight-forward to see that

A, L 9N T D B
(2rr) ~ loa, )N~ 1) [H (1= D)(N, - 1)} +o(27m) (65)
1+pX1
A, k- 2_% D -
() ~ s DN 1) | [1 T 1)} +o(2m), (66)
14+pA2
and thus we havé (59). u

While Cor.[3 captures the asymptotic trend 4§ via trivial bounding, it is not tight when
A1 > \o. In these situations, it is useful to obtain a tighter esterfar A,. This is addressed
next.

Theorem 3:In the N, = 2 case, we have

1 m t+1 t
Ay=———|log.(1+ 2) (67)
log,(2) - 2 ;
wherem = 28 andz £ % In the generalV, case, we have the following approximations:
Ay ~ Tog,(2) ) Z 7' (1 - D) et %
(Ny — 1)(1+ p)\l) ~  m+ ]\Z,:r_ll

- (m—k+1).-Dm*

" 2
D +Z Qm—|—p —1) (2m+pz—2k+1) —A2,appx> (68)

1

vzi,fb(HM—Aj) Cand p= 2D g eg)

1+p)\1 Nt_]-

Further, we have

A _A appx
0< =2 A;’ PRX < ¢l (70)
where
Ao — Aw,) D™
¢ = plda —Am) 71
b (% ) 108, Ao (D
o0 1
log(€) -~ —2Blog (5> (72)
Thusé, "= 0 and
AZ = A2,appx + 0 (A2,appx) (73)

as B — oo.

Proof: See AppendixF. [ |



An alternate expansion fak, is also presented in Appendix F. This expansion corresptinds
an alternate form of the integrand [n_{58) and is captured bgrees where the signs of alternate
terms change. In this spirit, the alternate expansion gdimes [67). From a numerical stand-
point, this oscillatory nature is unattractive due to nemaergence of the series and(68)1(69)
overcomes this problem. We now study the asymptotic tremds,o

Proposition 3: In the N; = 2 case, depending on the relationship betwegek, and \;, two
possibilities arise a®3 increases. We have

B—oo Ty z<1

A2 = log.(2) (m+1)? (74)
L. (z=1) z>1
log, @) Fzlog,(2)-(m-1) * 2 L

In the generalV; case, asB — oo, we have

ST _ B
Ay = logeé)m 5 p?i p:\f) : {,@ + %] +0 (z—m) (75)
A2, asymp
wherer = T'(5=) and D is as in [29).
Proof: See Appendix G. u

We now illustrate the above theoretical results in Eig. ®(ad (b) where we plot the instan-
taneous mutual information loss both theoretically andM@nte Carlo averaging. The squared
singular values of the three channels are (as beforep 1) for N; =2, 2) [3 2 1] for N; = 3,
and 3)[4 3 2 1] for N, = 4, respectively. Asymptotic and approximate expressioedight for
small B values as long ag is not too large. On the other hand, Fig. 4(b) illustratesttead
of AT as a function of the rank @E,. The channel data used to generate FEig. 4(b) is the same
as that used for generating Fig. 4(a) (see the discussioa)the

VI. SKEWED CODEBOOKS FORCORRELATED CHANNELS

From [22) and[(55), the asymptotic optimality of RVQ codekedn the correlated case is
obvious. That is, ASNR,, — 0 and Al — 0 (respectively) asB — oo, independenof the
channel correlation profile, since a probability term in theegrand is raised to the power of
m = 28 — oo. Nevertheless, this does not mean that RVQ codebooks ammaldor any
finite value of B in the correlated case. While the ensemble averaging of Ry@glmooks is
necessary to make constructive statements about thewrpeahce, certain fixed constructions
may significantly outperform other constructions for snvallues ofB. In fact, it is well-known
that codebooks constructed by exploiting the channel @@ structure clearly outperform
Grassmannian codebooks (and thus, in principle, RVQ camef)ofor small B and that the
condition number of the channel determines the performariadhese codebooks [20], [25]-
[29].
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Fig. 5. Instantaneous mutual information loss computedrtteally and via Monte Carlo averaging as a function of3)
and b)SNR.

To improve over the RVQ performance for finite values®f we consider a codebodk;,
whereC = {fi, i=1,--- ,23} is skewed by a fixedV; x N, matrix A and then normalized as

follows:
Af;
Csk:{—zvizlv"'72B}' (76)
[AL]|
The relative receive@NR Ios@ with C is given as
1 £IATHTHAS,
A =Eeg, |1 - — max o (77)

AM(HTH) i fIATAE
and the broad goal is to design,: where

Aopt = arg ITlAiH En [AI,Sk] . (78)

A. Equivalent Characterization ak; ¢

In this direction, a simple transformation argumegnt= ”ﬁ?”

that

€ G(N, 1) allows us to check

TATHT .
<w<)\l(HTH)’i:1’... 28, (79)

)\Nt(HTH) = fTATAf >~

*We will henceforth denote the explicit dependenceHdH on \; and use the notation; (HTH) to distinguish it from the
eigenvalues oATA and ATHTHA.



1 )
Further, along the lines of Lemnma 1, it can also be checket %I&é:%, i=1,--- ,23}
are i.i.d. Hence, as in Sec.]lll, we can rewritg o as '

M(“*H){ (fTATHTHAf
P (EATRRAL

< z|fTf =
FTATAT < z|f'f 1)} da (80)

A g - M (HTH) :/

An, (HTH)

where f is an isotropically distributed unit-norm random vectodan = 2%. From [80), it

is clear that quantifying); . is dependent on knowledge of the distribution function d# th
ratio of weighted-norm of isotropically distributed umbrm vectors. This is a hard problem, in
general, unless there is some underlying structufettoat can be exploited. Of course, imposing
structure onA cannot help solve fof (78), an unconstrained optimizatimbjem.

B. Main Result

We overcome this technical difficulty by first studying theesial case ofiV, = 2. We then
expand the intuition obtained from th€, = 2 case to the more general case.
Proposition 4: In the special case oV, = 2, A, 4 can be bounded bﬁl,sk, which behaves

asB — oo as:
__ B—oo 1 )‘Z(ATHTHA)
A SAis = o= |1 ' o
1sk S 81,5k 2B 11 ( A (HTH) - A (AAT) &)

Proof: The first step to prove the proposition is to establish a sfiadlversion of [(80).
The second step deals with boundifg . by an appropriate, o and capturing its asymptotic
trend. See AppendixIH for details. [ |
Note that in the case of no skewing & I), (81) reduces to the result in Theorém 1.

Theorem 4:For the NV, = 3 case, the dominant term of an upper bound\o,, behaves as:

AVIOR )\1(HTH) < Zl,sk . )\I(HTH) (©2)
_o-% VT (M(ATHTHA)
=2 : 1+7<W—)\3(HTH))X
Dy AL(HTH) AL (AAT) s

where

(84)

D1 ﬁ A (ATHTHA) — Ay, (HTH) - A (ATA)
s A1 (ATHTHA) — ), (ATHTHA)

and for some monotonically increasing functiéf), the structure of which is provided inh(263)-
(264) in AppendixX]l.



If N; > 4, the asymptotic behavior (i) of A,  is as follows:
Al,sk S Z1,sk (85)

_ 2 Dy, A (ATHTHA) An, (HTH)
SNt (” (1 Da)(N: — 1>) | (M(ATA)-M(HTH) O (HTH) )

-~

A1, sk, asymp
o(z‘ﬂff) (86)
wherer = T'(5=) and D is as in [84).
Proof: See AppendiXl|. [

C. Insights onA,:

While solving for A, in (78) appears to be difficult, we now develop some insighist®
structure.
1) From [1), recall that the system model (conditionedtba- H) with beamforming vector
of index from C,, reduces to

= HAf;s +n. 87
Y VﬁNM ®87)

By treatingHA as theeffective channah (87), an application of Theorel 2 suggests that
Ay & is minimized if HA is well-conditioned. However, this argument is rigorousyah
fZ.TATAfZ- can be treated as a constant foriadlo thatA does not arbitrarily scale the power
of the effective channel.

2) In the special case af; = 2, from Lemma 2, sincé,.TATAf,- is uniformly distributed over
the interval[\,(ATA), A (ATA)], well-conditioning ofA is necessary to ensure tHaR!Af;
is approximately constant for di]. Thus, there exists a tension between the two objectives
(of well-conditioning ofHA andA) in deciding the appropriate choice Af Prop.[4 makes
this intuition more concrete. From_(81), it is clear tashould be chosen such that,
defined as,

A1 (AAT)
Ao (ATHTHA)
is minimized. But minimizingC, is equivalent to minimizing the two squared condition
numbers (0HA andA), yua = % and ya = Al(ﬁﬁT While a particular choice of

A may makeHA more well-conditioned thaH, this choice may not necessarily correspond
to a well-conditionedA (andvice versa.
3) A further upper bound to the asymptotic trend[in] (83) of dieen[4 (up to a multiplicative
constant) in theV, = 3 case is
1— A2 (ATHTHA) 1— A3 (ATHTHA)
A Oél) M (ATHTHA) ) MATHRR)) | AL(HTH) - A (AAT)
Lsk = 1 — M(AADX(HTH) T A (ATHTHA)
A1 (ATHTHA)

L= (88)

(89)




The goal of minimizing the term ir_(89) is equivalent to thealyoof jointly minimizing
THT T
A1(ATHTHA) and £y 2 A1(AAT) _
A3(ATHTHA) A1(ATHTHA)
4) Consider theéV, > 4 case. Recasting Theoréin 4, it can be seenhaf .s,mp IS Minimized

if

Ly = (90)

(Nt -2+ £4> - Ls (91)

is also minimized, where

ﬁ AL(ATHTHA) — X;(ATHTHA) (©2)
)\1 ATHTHA) — Ay, (HTH) - A; (ATA)
A Al(ATHTHA) — An, (HTH) - A (ATA)
5= : (93)
A1(ATA)
In the large#, regime, observing that
Tt — O\ (ATHT
A (ATHTHA) — X;(ATHTHA) > 1 (94)
A1 (ATHTHA) — Ay, (HTH) - A (ATA)
for all j, we have
N =2 < Ly (95)

Thus, the dominant term of (P1) in this regimeds - Ls.
5) Combining and unifying the above discussion, a (hewast) “good” candidate forA
should be such that the two metrics/{ and M/,), defined as,

A (ATHTHA)

M, & 1-—

! A (ATA) - A (HTH) (96)
2 AM(ATHTHA)

M, = An, (ATHTHA) ®7)

are minimized jointly, if possible.

6) Conditioned onH = H, note thatM; € [0, 1] whereas)M, € [1,00). The smallest value
(of 0) for M, is achieved with a\ such that the eigenvectors AAT coincide with those
of H'H in the same order. With this choicé/, satisfies

M5 = xn - xa. (98)

On the other hand, the smallest value {pfor M, is achieved withA = (HTH)_W. With
this choice,M; satisfies
1
My =1-—— (99)
XH
In other words, whileM; is minimized by a choice oA whose left singular vectors

matchthe right singular vectors of the channél, is minimized by a choice thahverts
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Fig. 6. Performance of skewed codebooks as a functio® afith a) an ill-conditioned channel realization, and b) alwel
conditioned channel realization. Average performanceiftérént families of skewed codebooks as a function of c)ghemeter

defining the skewing matrix classes, and#l)

(or zeroforce} the channel. Thus, optimization ovér is a combination of these two
conflicting objectives in an appropriate sense. Howeverchvbf these objectives is more
important than the other is not clear.

7) We now address this question via numerical studies for edfichannel realization. In
the first example, we consider an ill-conditioned channehw, = N, = 4 and squared
singular values4 3 2 1]. We numerically search oveY to minimize

£6(Oé) £ (07N M1 + (1 - Oé) . Mg (100)

for an appropriate choice of € [0,1] that determines the weights between the two



objectives in [(96)E(97). The extreme cases of minimizihg (or M;) alone can be
obtained by settingr = 1 (or a = 0) in (X00). In Fig.[6(a), we plot the performance
of the skewed codebooks (as a function Bj with A designed to minimizels(«)
for the following five choices ofa: i) a = 0, i) a = 0.25, iii)) « = 0.5, V) a =
0.75, and v) a = 1. The performance of the RVQ codebook & 1) is also plotted.
Fig.[8(a) shows that the goal of minimizing; is more important than that of minimizing
M, and the skewed codebook designed with this objective sogimifiy out-performs the
RVQ codebook (without skewing). In Figl 6(b), we consideg fherformance of skewed
codebooks designed for the same five choicesyofas above) in a well-conditioned
channel with squared singular values given by 1.4 1.2 1]. As in Fig.[6(a), we see
that minimizing M; (a =~ 1) is the more relevant objective in terms of limited-feedbac
performance. Figd.16(a) and (b) also show that the perfocmavith a poorly designed
skewing matrix (e.g.qx & 0) can be significantly poorer than the RVQ performance.

8) With ASNR,, = E[A, «] as the new metric, the previous study motivates the follgwin
family of matrices (parameterized by the weighte [0, 1]) for the design of skewed
codebooks:

At = argmin B [Lg(a)] (101)

= argmAin a-E[M]+(1—-a) -E[M,)]. (102)

While the family of skewing matrices within the argument[f©01)-(102) is well-defined,

a closed-form expression is hard to obtain far,.

To overcome this difficulty, consider the regime whéré, N,.} — oo with % — 0. Using

the channel hardening principle in this regime [21], [46] tigenvectors oAAT for the
choice ofA that minimizesE [M;] can be heuristically replaced with the eigenvectors of
E [H'H] = ,. A suitable candida@efor such anA is

A= ()" =U,(A)" U (103)

for some choice ofj satisfyingg > 0. Similarly, the choice ofA that minimizesE [M;]
can be heuristically replaced by

A=(%)?=U,(A) 2 U] (104)

We interpolate the two statistics-dependent candidate®08) and [(I0#4) to obtain the
following family of matrices for skewing:

Ay o p=ca- (Et)ﬁ +(1-a)- (Et)

D=

(105)

= U, (o) + (1= a)(A)#) U (106)

“Note that since the eigenvectors A’ have to be in the same order as (the order of) the eigenveatdtéH to minimize
M, this constraint can only be ensured by settthg: 0 in (103).



9)

10)

for somea € [0, 1] and 5 > 0. Note that the right-hand side df (106) can also be written
as

PAz.a.p = Uth(As) Ul = 1 () (107)

for an appropriate choice of the matrix functiég). In this sense[(107) generalizes the
skewing matrix proposed in [25] (which can be obtained byirsgty = 1, 5 = %) and the
matrix proposed in [26] (which can be obtained by setting: 1 = ).

We now numerically study thASNR,, performance of codebooks obtained by skewing
an RVQ codebook with the two familie$A; ,} and{A. . s}. We consider a Kronecker-
product correlated channel with; = 1.6 x diag([4 3 2 1]) and X, = diag([7 5 3 1]).
Note that the channel power is normalizedTagX;) = Tr(X,) = 16.

In the first study, we ploASNR,, as a function ot for the {A, , s} family for different
values of5 and B in Fig.[6(c). For all the{3, B} combinations considered, the smallest
value of ASNR,, is achieved asx — 1, thereby justifying the following study where
attention is restricted to the case @f= 1 from the {A, ,, 5} family.

In the second study, a numerical search dves performed with the objective of mini-
mizing: i) E[M;], ii) E[M;] + E[M,], and iii) E[M,], corresponding to three choices from
{AL o} 1) AL az1, 1) Al a—os, and iii) Ay ,—o, respectively. Motivated by the study in
Fig. [6(c), four other skewing matrices from tHé, ,—, s} family are also considered:
V) Az a=1,5=05 V) Az a=1p=1, Vi) Az a=1 =15, and vii) Ay ,—1 3—o. Note that as stated
previously, iv) and v) correspond to the skewing matrix clesiproposed in [25] and [26],
respectively.

Fig. [6(d) plotsASNR,, (as a function ofB) for these seven skewed codebooks as well
as the RVQ codebook and we see tiat,—; results in better performance over RVQ
codebooks for smalB values B < 4). However, asB increases, the average performance
with this choice of skewing matrix deteriorates over an R\d@debook. On the other hand,
both A, ,—o5 as well asA; ,—, result in poorer performance relative to the RVQ scheme
thus confirming the importance a@f/; over M, in skewing matrix optimization. We also
see that thg A, ,—1 5} family results in improved performance over the, ,} family as
well as RVQ codebooks. Further, the performance with skgwmatrices for values of
satisfying > 1 from the {A, .- g} family is better than that achieved with the choices
S =0.5andg = 1.

In general, we observe that for fixgtlvalues, asy increases, performance gets better for
any B, with the performance becoming independentdbr large values of3. For fixed

«, large s is seen to be better for smdll values B ~ 0 — 3) whereas? = 1 is robust for
large B values B ~ 7—8). Similar behavior is observed with other choices of tramsmd
receive covariance matrices furnishing evidence to theebsions in the literature that
appropriately designed skewed codebooks can significanifyperform RVQ codebooks
over correlated channels.



VIlI. CONCLUSION

Limited-feedback communications has become an importantponent of 3G/4G cellular
standardization efforts. However, performance analykigroted-feedback schemes, especially
under practical impairments such as channel correlatias, ot received much attention in
the literature. The main goal of this work is to study the emsie properties of a&-bit RVQ
codebook in the correlated MIMO setting with the metricsraérest being the receivédR loss
(ASNR,,) and loss in average mutual informatioA X), both relative to a perfect CSI scheme.

We computed the rate of decay &fSNR,, and A/ as a function of B and the channel
correlation profile. While the rate of decay with is in conformance with similar results
obtained in the literature for i.i.d. MIMO/MIS@ink-1 MIMO channels [12], [15], [30]-[37],
our result applies to correlated MIMO channels of arbitreepk and arbitrary choice ob.
For fixed B, the critical factor limiting the RVQ performance is the diion number of the
channel. We established that the channel correlation eriifdt minimizes the performance loss
with an RVQ codebook is typically i.i.d.-like (spatiallych) and the profile that maximizes the
performance loss haank-1 (spatially poor/sparse structure). This result on the ddpece of
RVQ performance on the condition number should not be dyntsarprising [20], [21], [31]
given that the RVQ codebook consists of isotropic beamfogmiectors and an i.i.d. channel
has dominant right singular vector that is also isotropic.

We then generalized our performance analysis to the caskeofesl codebooks where the
RVQ codebook is skewed by a fixed matrix and normalized to rensuit-norm. From this
characterization, we showed that the tension betweenameltlitioning of theeffective channel
and well-conditioning of the skewing matrix determines #tricture of the optimal skewing
matrix for limited-feedback beamforming. In particula® wstablished the criticality of matching
between the left singular vectors of the skewing matrix amel right singular vectors of the
channel. Using this insight, we constructed a class ofstiedsidependent (more specifically,
transmit covariance matrix-dependent) skewing matrites tesult in significantly improved
performance over RVQ codebooks.

The workhorse behind our study is the structure of the deffisitiction of weighted-norm of
isotropically distributed unit-norm vectors. This toolagé an important role in other settings
such as precoder design for broadcast [47] and interferehaenels [48], and norm feedback
in broadcast channels [17]. Notwithstanding the resultghisf paper, the characterization of the
performance loss with skewed codebooks is incomplete. &kniag our toolkit to the density
function of the ratio of weighted-norms is important in dditshing fundamental performance
limits with skewed codebooks (which are linear by definijiaa well as non-linear skewed code-
books as constructed in [20], moment and distributionapprties on the various performance
metrics, identifying the structure of the optimal skewingtnx, etc. Other problems of interest
in the single-user setting include averaging the loss asgiwas over the channel randomness
to study the impact of the channel model (Kronecker vs. noorkcker) on performance,



establishing possible majorization results for perforogametrics as a function of the transmit
and receive covariance matrix eigenvalues, performandegbfer-rank schemes [34], [49], etc.
Extension of this study to the multi-user setting [15]-[19klso of practical interest.

APPENDIX

A. Proof of Lemmall
For the first statement, for arty = [©4,--- ,Oy,], note from [(B) that
Pe(E (- Il € 6) = | s, 1) (108)
£,

Ny
i {fi(m)Peorr T

DO pvea(f, < {[6(ro)l* € O4IEE 1) (109)

Ve
Sincef; is isotropic onG(N, 1), (I09) is circularly symmetric and hence, independent ef th
permutationIl.

For the second statement, the Ritz-Rayleigh relationsiiplies that the range ok; is
[An,, A1]- The independence dfx;, i = 1,---, 25} follows from the independence df;, i =
1,---,2P}. To prove that{x;} are also identically distributed, note that{if;} are isotropic and
i.i.d., then so argg; = U'f;} for any fixed unitary matrixJ. The fixed unitary matrix in this
setting is the eigenvector matrix in an eigen-decompasitibHH for a given realizatiorH,

wherein we haved'H = UAUT. The diagonal matrix\ = diag ([\,- -, An,]) is in general not
the identity matrix. For any fixed, {|g;(k)|?, i = 1,---, 28} are identically distributed since
{g:} are i.i.d. The conclusion follows since = 3", |gi(k)|* . m

B. Proof of Lemm&]2

Following the derivation of the density function 6fAf when\, = --- = \y, = 0 in [8], we
have
P(z) £ Pr(fiAf=2z) = agPr (FTAf < 2) (110)
i
with
Area (z, 1)
AL < - bl S Mt
Pr (f'Af < ) 1 Area (1) (111)
where
Area (z, y) = Area (f'Af > z, [|f]|> = y) and (112)

Area (y) £ Area (||f]|* = y) (113)



denote the area of a (unit-radius) sphere carved out by thsatl {f : f'Af =z} and the
area of a (unit-radius) complex sphere, respectively. Tolame of the objects desired in the
computation ofP(z) are

Vol (z,7%) £ Vol (£'Af >z, [|f||* < r?) (114)
= / Area (z,y)dy and (115)
y=0
Vol(r*) £ Vol (||f]|* < r*) = / Area(z)dx. (116)
=0
Thus, we have
9 2
Area (z,1) = WVOI (x,r ) o (117)
Area (1) = iVol(rz) and hence, (118)
or? r=1
aiQVOI (z,7?) B
Pz) = — r=1 (119)

2:Vol (r2)

r=1

ComputingVol (z, r?) is non-trivial even in the simple case 8f = 2. This is because every
additional dimension to the complex ellipsoid correspotaladdition of two real dimensions.
In the simplest case oV, = 2, we have the intersection of two four-dimensional real otge
which cannot be visualized pictorially. Nevertheless, ftiiowing lemma captures the complete
structure ofP(x) when N, = 2. The general case follows subsequently.

Lemma 3:1f N, = 2, the random variabl& Af is uniformly distributed in the intervah,, A;].

u
Proof: First, note that it follows from [8, Lemma 2] that
N¢,.2N¢
Vol(r?) = —— . 120
oA = w1 (120)

For computingVol (z,r?), we follow the same variable transformation as in [8]. Wef§é) =
rexp(jbx) for kK = 1,2. The ellipsoid is contained completely in the sphere ofuadiif r is
such thatr > = whereas the sphere is contained completely in the ellipgatd< 1 In

the intermediate regime for, a non-trivial intersection between the two objects is and
one can compute the volume by performing a two-dimensiartagration as follows:
Vol (l’, 7’2) = // 7’17’2d7’1d7’2d61d62 (121)
A
= (27T)2 . // ridriredry (122)
B
r* U’

= (27T)2'/ 7“2d7“2'/ ridry (123)
0 /



where

A = {rl,r2 SN TN >, v s < 7“2} and {601,60, :
B = {7"1,7"2 SN TSN >, s < r2}
I T — 13\
A1
U = r? —r3
N A\ —x
rt = —.
AL — Ao
Straight-forward computation fronmd _(I23) establishes thieoWwing:
0 r < /\11
2\ 2 (7“2 )\1—96)2 = =
Vol (l‘,?“ ) - 2T NaA) M Srs by

Using (119), another trivial computation shows that

1
= <x < ).

That is, fTAf is uniformly distributed in its range.

0,27)}  (124)
(125)

(126)

(127)

(128)

(129)

(130)

Lemma 4:This lemma states (without proof) the structure of the dgrfeinction P(x) in the

casesN, = 3 and N, = 4. With N, = 3, we have

;

0 i S )\3
2 (x—A3)
P(z) = (>\1—>\3)(>\j—>\3) A3 ST < Ag
2 (AM1—x)
it 2 ST S A
L 0 i Z )\1
With N, = 4, we have
( 0 X S )\4
3 (z—A4)2
(>\1—>\4)()\2—>\i)(>\3—>\4) M ST S A3
P(z) = K1 Az <z < Ay
3 (M —z)2
(>\1—>\2)()\11—>\3)(>\1—>\4) A2 ST <M
L 0 T 2 )\1
where
K = 3 K
' M= 2s) (A —Ay)
o (JZ‘ — )\3) ()\2 — .T) (.CL’ — )\4) ()\1 — .CL’)
2 .

)\2—)\3 )\1_)\4

(131)

(132)

(133)

(134)



C. Proof of Theorerh]1

As stated at the beginning of Sécl lll, we compike using Lemmad 2. The computation of
A in the N, = 2 case is a straight-forward integration.

For theN; = 3 case, we split the integral computation into two parts: tiervals|\s;, A\,] and
[A2, A\1]. The integral over the first interval is again straight-fardrand results in the contribution

of
1 A=Az A=A\
. . . 1

2m+1 )\1 ()\1—)\3) ( 35)

Upon elementary manipulation, the integral over the sedotedval can be shown to be equiv-
alent to

A1—A2

V= VER L L.
M ‘/y:o (1=v")" dy (136)

which can be computed in closed-form using integral tabl® P.512(3), p. 131] via the
transformationy — sin(6). Combining the two terms, we have the expressionZgrin the
statement of the theorem.

For the N; > 4 case, exact computation df; is cumbersome. Since the distribution function
F(x) is monotonically increasing, the dominant trend (and tesfnl), is captured by the integral
over the segmeni.,, \;] alone. This integral can be computed in closed-form dueddrtictable
nature of F'(x) in this interval. Upon elementary transformations, thiegnal is seen to be:

en)ax
C, - / cos?™1(6) sin? (0) do (137)
6=0
with p = ﬁ —1,
C, = (138)
Onax = (139)

Again, using the integral tables [50, 2.511(4), p. 131], wa compute[(137) in closed-form as
in the statement of the theorem.



It is obvious thatA ,,,x < A;. For the other side of (30), note that

)\ m
D _ (Pr (Af < z)) da (140)
Ay fj; (Pr (FIAf < 2))™ dx
1 Az m
L Pr (fIAf < o dx
S A1 >‘Nt ( ( )) (141)
Al,appx
. (Pr (FTAf < A2))™ (A2 — Aw,) (142)
)\1 ' Al,appx
Ay — AN D™
= L. 143
)\1 Al,appx ( )

where the third step follows by bounding the distributionitsylargest value ai = A\, and the
last step by noting fron{_(25) that

Pr (fIAf < \o) = D. (144)

D. Proof of Prop[1

In the general MIMO setting withV; = 3, we have
25 m(m —1)--- (m — k) h(m)

Cm—1)2m—3)---2m—2k—1) h(m—k—1) (143)
whereh(-) is a function defined on the set of integers as
(m))? - 22m
h(m) & ~——"— (146)

2m)!
Using Stirling’s formula [51, 6.1.39, p. 257] to approximahe factorial function as: = 28
increases, we obtain a good estimate of the trend(ef), and hence the summation in the
characterization of\; in Theorenl]l. Retaining the dominant terms, we can whieas

B—oo \/7_T )\2 )\2 —)\3
A X —— 1= 1+ —1]. 147
1 2B/2+1 K )\1) ( +2()\1—)\3))} (147)

In the V; > 4 case, we have

l. _1 —
2k~m(m—1)~-~(m—k+1):m' F(Nt—l_'_m k) (148)
H‘;r;_rrlb—k<p+1+2j> F(ﬁjtm) -m — k!

wherel'(-) stands for the Gamma function. With= m, the above equation simplifies to

A
r <—Nt1_1 + m) T Vomemm .t

1 1
— 1_Nt71 .
m r <Nt — 1) (150)




where the asymptotic trend follows from Stirling’s formukor1 < k£ < m — 1, we have

m!-T (— +m — k:) r < — L )
B2 i me . . (151)
r <—Nt—1 + m) -m — k!

I'(m-—Fk+1)

Using the trivial inequality <F( ’erszv:l) ) < w75 with xk =T <N 1) we have
1——L
K-m N¢g—1 )\2 D
AL —— (1 —-——=]-(1 152
< (-8) ()] (152
B
K-2 N1 Ao D
== . [{1-2).(1 . 1
v |(08) (o) (o9
u
E. Proof of Theorerl2
First, note from[(1b) tha{ (47) is equivalent to showing that
Ec[ max; £ HIH, £] . Ec[max; f] H§H2fi]. (154)
At H1
Using the eigen-decompositions
HIH, = U, diag(A) U], HiH, = U, diag(p) U} (155)
in (154), we have
B[ max; ! U; diag A UI ] _ Ay (156)

Ec[maxlf U, diag(pe )UTf} i

From Lemmall, we note thgtU! f;} and {Ulf;} are i.i.d. and have the same distribution as
{f;}. Thus, [(156) is equivalent to showing that

Ec[max; f] diag(A) fi] . Ee [ max; f] diag(p) £;]

157
A - U (157)
In other words, the proof is complete if we can show that
E ; £;(k)|>A

A
is a Schur-concave function .

It is important to note thaf () is a ratio of two Schur-convex functions. For this, it is alivs
that A < p implies \; < ;. On the other hand, the numerator pfA) can be shown to be
Schur-convex sincenax(-) is a convex function of its argument. Without a standardpedor
studying the Schur-concavity of a ratio of Schur-convexctions, we resort to basic theory [42,
A.2.b, p. 55] from which we can claim thdt(-) is Schur-concave if and only if:



« f(-)is symmetricinits indices. Thatig(A) = f(All) for all permutationgI = |7y, -+ , 7]
e f([A,s=A1, A3, -+, Ap,]) is decreasing iny for all A\; > s/2 and any choice of, A3, - - - , Ay,
The first condition is straight-forward since

Ec[max; >, |£i(k)[*Ax]

A = 159
ey maxy A (459)
@ Ec [max; -, |£i(m) | Ax, | (160)
maxy Ar,
E ; £,(k)|2\x
®) c[maX Zk‘ (k)| k} = f(AII) (161)
maxy Ar,

where (a) follows from the symmetricity of the sum functiomda(b) from the exchangeability
of |f;(k)|* proved in Lemmall. For the second condition, it can be seen tha

F(s = A ds,+ Aw]) = Be [max E] (162)
£;(k)|?0
By = G - [ + 2222 ‘A< el (163)
1
whered, = s, 0, = A, k > 3. For every realization off;} from the RVQ codebook and every
choice ofs, A3, -+, \y,, all the functionsE;, i = 1,---,28 are decreasing in\,. Thus, the
max(-) function is also decreasing ik;. Averaging over the RVQ codebook, we arrive at the
second condition. [ |
F. Proof of Theoreml3
In the N, = 2 case,d = A, - log, (2) is written as
A m
p Yz — )" dx
0= / 164
(AL —=A2)™ /5, 1+ px (164)
A1—A
p 17z x"dx
= T 165
P A=Ay cm—1 gm
_ \t,m—1—t d 166
(Al—)\z)m/o [;( s)'x +x—|—8]x (166)
m—1 t m
—S 1 S 14 p)\l
— . 1 167
p[; (Al—A2> m—t+<)\1—)\2) Oge(l—i—p)\g)] (167)
s m m (_1)t+1zt
= log, (1 - -~ 1
(%) [oge< -3 (168)
where
S:l+p}\2, Z:)\l—)\gzp()\l—)\g). (169)

P S 1+p)\2



In the generalV, case, the dominant term éf= A, - log,(2) is written as

A=Az Ne—1\ ™ d
y pdy
o [ ()Y
0 <A> 1+ pAi — py (70
:/ A=y dy (171)
0 1+ pA1 — pAy

1
where A = <Hj22 Al — )\j)w. There are two ways in which_(1l71) can be computed: 1)
replacing the denominator of the integrand by an apprapgabmetric series, and 2) expanding
the numerator of the integrand using the binomial theorem.
Method 1: With ~ = 1+ A and using the fact thaty < 1 for all y in (I71), we replace the
denominator in[(171) with a geometric series to result in

A1—A2 o0
pA / 4 Ne—1\™ i

= . 11—y . . 172
erswill MR Gt T ;(vy) (172)

Upon elementary integrand transformations, (172) is amiths

2pA Omax

0= os?™H( Pi(0)do 173
(N, — 1)(1 + ph1) Z / ) sin™ (0) (173)

whereb,,.. is as in [I3D) ang, =
2.511(4), p. 131], we have

— 1. Computing this integral in closed-form using [50,

i+1

_ Al "
5_(Nt—1 )(1+ pAr) ; Zj_ll b
Z m(m—1)---(m—k+1) pk| (174)
k=1 (2m+pz_1) (2m+pz_2k+1)
Method 2: Alternately, expanding the numerator [n (171) using theobiral theorem, we have
A=Ay AQ (No— kd
5:&/ ZkO()( 1)*y Y (175)
1+ pA 1=y
m L=\ (Ve—1)k+1
_ pA Z m (—1)k (A AA ) %
1 + p)\l =0 ]{f (Nt — 1)]€ + 1
p(A — >\2)>
(1, (N, —Dk+1;(N, — Dk +2, 8222/ 176
oFi (1= Db+ 15 2, P (176)
where the second equation follows from [50, 3.194(5), p.]28bd
N (@), 2
oI (a,b;c,2) = Z BONEE (177)

n=0
is the Gauss hypergeometric function wii#),, denoting the Pochhammer symbol:

(a)p=a-(a+1)----- (a+n—-1), n>1, (a)y=1. (178)



Using the definition of the hypergeometric function [50,@1p. 1039], we have

m i (Ne=1)k+1
_ > <m)(_1)’f <A1 A2) x

k=0

oo

1 p(M = A2) !
Z(Nt—l)k+1+z"< 1+ pA ) ' (179)

1=0

The second expansion suffers from numerical instabildigs to the oscillatory nature (changing
signs) of terms in the expansion.

Correction Term: The expression for the correction tewf in (70)-(71) and its trend in(72)
follows on exactly the same lines as the proof of Theokém LisTthe details are not provided
here. [ ]

G. Proof of Prop[B

In the N; = 2 case, asB increases, two possibilities arise depending on the ogiskiip
betweenp, \; and \,. In the first case, if

z2<1<= p(A —2X) < 1, (180)
using a Taylor’'s series approximation flrg, (1 + z), we have
B—oo s gt 2
s 2 . — . 181
()\1 — )\2) m —|— 1 m —|— 1 ( )
On the other hand, if
using the fact that
1
log, (1 + 2) =log,(z) + log, (1 + —) : (183)
z
we have
o 1 1 m—1 1\t
oozl Tz _EUT (184)
Zm — 2 (m — 1)
log, () + 2 1 i 1
<=7 z4(1-Z 1
- zm * ( z) Z 2%(m — 2t —1) (185)
t=0
where the second equation follows from the following reasgn
1 1 m
-0 - — —1. 1
m—2t<m—2t—1’t 0,0 (186)

2
We approximate the sum if_(185) & — oo by the following integral:

oo 1 1 — El —at
552 0g,(z) + 1 +<z 1)/ c dt (187)
0

2m 2z ml_t¢




with o« = 2log,(z) > 0. Estimating the above integral from [50, 3.252(5-6), p. 3% have
Booo log,(2) + L

5 R (ZQ_ 1) e (m=Dlog.(2) | [Ei((m— 1)log, (2)) — Ei( — loge(z))} (188)
z z
log,(z) + z—1 e

= o + 5w ) [El(loge(z)) +li(z 1)] (189)

whereE;(z) = [ %ﬁdt andEi(z) = —E;(—z) denote the exponential integral functions, and
Todt
li(x) = / — 190
D= )y e (90)
denotes the logarithmic integral function, respectiveiom [51, p. 231], we have
| = b = : 191
O w7 T Tale ) (o) (190

In the generalV; case, it is easier to capture the asymptotic trend&-pfising the expression
obtained from Method 1. For this, we first write

2 mlm — 1) (m—k+1) _mi-Tlm—k+ )
H§:1(2m—2j+pi+l) L(m + ’+1 ) -m — kL
Ignoring the term corresponding 0™ in the inner sum |n[(ﬂ4)<5 can be rewritten as

ad [m m!I'(k + 5 )

(192)

(193)

Z k'Fm+1+ ~-7)

i=1 k

p(A1—A2)
and the inner sum into two parts:= 0 andk > 1 and denote the corresponding contributions

tod by o;,i=1,---,4 respectively.
With respect ta);, we have

whereu = log ( Ltph ) > 0. We split the outer sum into two parts:< i < N;—1 andi > N,

Ni¢—1 ]
1 ¢ m!-F( L )

6 £ e N 194
! Nt—lg D(m+1+ ) (194)

o ol ,
= > et (195)

N, -1 &
—n(N¢g—1)
1 _ e

S — (196)



where the second line follows from the fact tH&t:) is monotonically decreasing it < = <
1 [51] and using the Stirling’s formula fa(-). For d,, we have

1 & P+ D) (55)
5 & e M : (197)
P DL VY ¥y
1 o i
_ L) 1
Nt_lg;e B(m+ NI (198)
 [— .1 N, -1
< L : 199
SN -1 :ZN © 1l (199)
1 1 e (200)

“m+1 N,—1 1—en
where the second line follows from the definition of the Betadtion, and the third line follows
from the fact [52] that3(z,y) < xiy if x> 1andy > 1. We now use the fact [53] that

r 1
Lln+1) >nl™ 0<s<1 (201)
L'(n+s)
to boundds as follows:
Ni—1 m—1
1 —~ e M .-T(m+1) k + )
5y 2 DF. —M 202
s Nt—liz:;F(m—l—leNt ; T(k+1) (202)
N¢—1 m—1
1 o m + 1 i 4
< e M DF . gm—T 203
_Nt_1; F(m+1+Nt ; 299
Ne—1
D 1 . i
= . —Wipy TN =T 204
1-D N, -1 ; c-m (204)
—u(Ng—1)
D 1 1—-«—-
m (205)

T1-D Ny —1 gt g

where the third line follows from Stirling’s formula fof'(-) and the fact that™ 7 ' is a
decreasing function of.
For ¢4, we have

1 - — m!T'(k+y)
S 206
! Nt—li:ZN kz KIT(m+1+y) (206)
1 el eV (kA y)td
< Dk = 207
_Nt_l,_zt F(m+y+1) Z (k+1)k+% (207)

where we usg in (206) to denote; =
if b>a>1, we have

Ceo b, (208)



NI §
Using the fact tha% is monotonically increasing ik for anyy > 1, we have
+

e T e iy (m 4 y)™tv—2
9y < Db.—— 27 209
4‘]\@—12}% Fm+y+1)z; (m+ 1)™*2 (209)
<C ie_ul'm"el Vo (mty)me (210)
T & Tmty+l) ()
~C ~§:6_Hi.(m_|_1)m+é.e' (m_‘_y)m-i-y_% (211)
3 = (m+y+1)m+y+§ (m+1)m+§
:(:3.2 mty \"E (212)
Nm+y+1 m+y+1
=Cs- . — 213
’ ZNm+y+1 eXp( m+y+1) (213)
C3 > — i C3 e_H(Nt—l)
- i : 214
“m+1 Ze m+1 1—e*# (214)

=Ny
whereC; = W, the third line follows by using Stirling’s formula fof(m + 1) (as a
function of m + 1) andI'(m + y + 1) (as a function ofn + y) and the fifth line follows from
the fact that

(1+a2)= P2 (215)
Putting together the trends of, i = 1,-- - , 4, we obtain the conclusion in the statement of the
proposition.
With respect to Method 2, we approximate the inner suniin](b§@an appropriate refor-
mulation of the exponential integral, and Bs— oo, we have

- 1+p>\1 0 k A

k=

e(vmnrst)i g (((Nt — 1k + 1)u> (216)

_ g (1:) (—1)k (1 ;jAl)(M_M - E1<((Nt 1k 1)M) (217)

where u = log (m&tgb) > 0. The oscillatory nature (changing signs) of the terms[in/j21

and the intractable nature of the exponential integral giemeral values of the argument) imply
that it is much harder to obtain insights on the asymptogads of A, with (217) than with
the expression from Method 1. [ |




H. Proof of Prop[#

We can rewrite the distribution function relevant in compgtA, . as follows:

r (% < o|fif = 1) — 1= Pr(f1AT (H'H — oT) Af > 0]f'f = 1) (218)
— 1 - Pr(f/B.f > 0[f'f = 1) (219)

whereB,, is defined as
B, = ATHTHA — zATA. (220)

Remark 1. Note thatB, is Hermitian, but not positive semi-definite. In fa&, has the same
number of positive, negative, and zero eigenvalue:ﬁl—diﬁ — xI) AAT, which is the same as
those ofH'H — zI (see [55, Theorem 7.6.3, p. 465] for details). Using an eidgromposition
for B, of the formB, = V, I,V in the special case oV, = 2 wherel, = diag([I'1z, ['2.2])
such thatl’; , > I's ., we have:

1) Iy, > 0="Ty, if =X (HH),

2) T, >0>Ty, if v € (A(HTH), A (HTH)),

3) 'y, =02>Ty, if z= X (HH).

Thus, we can rewritd (219) as
(fTATHTHAf
p (2T

Te — 1 _ 2 2 e
FTATA gx\ff_1)_1 Pr(|f(1)\ Ty + [£(2)] FmZO\ff—l) (221)

= 1= Pr([f()P (Do = Toa) > —Touffif = 1) (222)
—=1—Pr (|f(1)|2 > _ Paa]

‘Fl,x| + |F2,m‘
where the second equation follows from noting that, > 0 andI';, < 0 for all €

[A2(HTH), A1 (HTH)]. We now use [8, Lemmas 2 and 4] to compute the above term (see Ap
pendix[B for details) as

fif = 1) (223)

Iy [y,
Pr (|f(1)|2 > _ Pae] £ — 1) = # (224)
U1z + [Tol U1z + [Togl
Thus, A, « can be expressed as
1 A1(HTH) |F2 | m
Al gg= —— / <—“’) dx. 225
L) S Ul + To] (225)

Now observe that\; ( is monotonically increasing as a function gff: Thus, an upper
bound onl=2z! also results in a corresponding upper boundAan. For this, note that

|F1-,w|
Iy = Xo(ATHTHA — 2ATA) (226)
> A (ATHTHA) — 2, (ATA) (227)




where the second step follows from a routine application @yl inequality [55]. Since the
right-hand side of[(227) is non-positive for al] we thus have

T < 21 (ATA) — Xy (ATHTHA). (228)
ForI'y ., we use [56, Corollary 11] to see that

Iiz > (A(HTH) — 2) - A\ (AAT). (229)

Note that the bounds in_(2P8) and (229) are non-trivial (ikathe bounding terms are non-
negative). Combining them, we have
T4 < oA (ATA) — Ny (ATHTHA)
T1zl = (M(HTH) —2) - A (AAT)
Using the bound in[(230), after a routine integral compatatit is straightforward to see that

(230)

1 A2 (ATHTHA) A2(HTH)
Ay g <—— - [1— (1= (CyH™) — : m 231
PSS (R - (aany (0" = gy - (G (231)
Z:,,sk
wherem = 28 and
H) . T — THT
C, — Ao(HTH) - A1 (AAT) — Xy (ATH HA). (232)
A1(HTH) - A1 (AAT) — A (ATHTHA)

SinceC, < 1 and B — oo, the conclusion in[(81) is immediate. [ |

|. Proof of Theoreni]4

For any integek > 1, define the following expectation over the ensemble of RVQ@etmoks

KT\ %
G 2 (EC (%) D . (233)
It is easy to check that
Jim Gy = A (HTH) (234)
Gi1 > Ay, (H'H). (235)

and it follows from Lyapunov’s inequality [57, Prob. 28, p43] that(,, is non-decreasing with

k. Since

A (ATHTHA)
A1 (ATA)

it can be concluded that there exists some> 1 and somek satisfying K| < Ky < oo such

that

An,(HTH) < < Ai(H'H), (236)

THt
G < *aa <Gk (237)

MHH) =272 < Gr, < M(HH). (238)



Thus,A; « can be bounded as

SR [ FATHIHAL "
Ay M(HIH) < [ SO et =1)| d
Lo M )< An, (HTH) ' ftATAf  — x‘ *
oL G £TATHTHAF "
- T Te
+Z/G [Pr( FIATAF Sx‘ff—l)} dx
k=K k—1
A (HTH) fIATHTHAS "
R T
+/GK {Pr( FTATAF §x‘ff—1)} dx (239)
U
2N g (240)

For the first term ofA, . in (239) (denoted a9;), sincefTATAf < \;(ATA), we have

fIATHTHASE fIATHTHASE
PAT A et ) <pr (AT o ‘f*f:l 241
( fFIATAF —x‘ )— r( AR = ) -
A (ATHTHA) — 22\ (ATA)) Y
_q o )~ zh(ATA)) (242)

[13, M (ATHTHA) — X;(ATHTHA)

where the second step follows from an application of Lerhimathé distribution of TATHTHAT.
Using a computation that mirrors that in Theorem 1, we have

Bosso K- 27%T (A (ATHTHA) ; Dy
[ ( M (ATA) —An(HH) ) 1+(1—Dsk)(Nt—1) (243)

with k = T( and

N)

N Tyt _ tHY . 1
DSkzl_H)\l(A HTHA) — Ay, (HTH) - A1 (ATA)

A (ATHTHA) — X;(ATHTHA) (244)

The tightness of[(243) follows from the tightness resulabbshed in Theorern] 1.

For bounding the second term ¢f (239) (denoted/gds we need a reverse Cauchy-Schwarz
inequality, which is presented next.

Lemma 5:Let X be a positive random variable. Let:) : R — R be a monotonically
increasing function such thatX) and(¢g(X))? are integrable. If: is such thay(z) < E [¢(X)],
we have

Pr(X >uz) > (245)



Proof: Sincex is such thakE [¢(X)] > ¢(z), using the standard Cauchy-Schwarz inequality

and the monotonicity of(-), we have

E[g(X)] - g(z) < E[g(X)] - E[g(X)1(X < )] (246)
=E[¢(X) - g(X)L(X < )] (247)
= E[g(X)1(X > z)] (248)
<VE]|(g |- Pr(X > z). (249)
Rearrangingl(249), we have the conclusion of the lemma. [ |
For eachk satisfying K| < k < Ky, we repeatedly apply Lemnia 5 with
fTIATHTHAS
~ T fATAS (250)
andg(z) = z* to get the following bound foff;:
Ky @ k kN 2™
* (Gi)" — )
T, < / 1— <7 dz 251
<3 [ (G @
Ky kol _2\m
-y (Gax) / (1—y*)" dy _ (252)
R P o (GoF (G
Ky k I
(Gax) / ¢ 2
< — 1—y))"d 253
_kZI;Lk‘(Gk—l)k_l A=y dy (253)
where [, = W the second equation follows from a transformatipm-> (Cig) k;,f ,

and the third step follows by trivially bounding < I,.. Note that the monotonicity aff; with

k implies thatl, < 1. With the transformatiory — sin(f), we can reuse the computation in

Theoremll to estimat@,. However, this estimate is not sufficient for our purpose hadce,
we will establish a tighter estimate now.
From [50, 2.512(3), p. 131] and Stirling’s formula fatm) in (148), we have

Ky m—1
ng \/ﬂ‘m-]k 1—]2
Zk: (Go T 2m+1 <+; e (254)
Sinceh(j) =< /xj for j Iarge, we can estimaté (254) by
Ky _
- (G2k)k~\/7rm-]k /006 OkT
T (2m+1) = k:ZK E G 1+ 1 de (255)
KU k . .
-y (Co)” -y Iy <1 + F(m’o‘“) (256)
=TI, ]{3 . (Gk—l) A/ T

B Ky (G - /7 - I, 1 — erf( /o)
- k:ZKL k- (Gr-1)F! <1 i Vv ) 0



wherea;, = log, (ﬁ) and
k:

[(a,x) = / tvle~tat (258)
is the incomplete Gamma function. The second step folloemff51, 6.5.3, p. 260], and
erf(x / (259)
\/—

is the error function. The third step follows from [51, 6.B,. 262]. Note that a® increases,
K\ increases and;,, — 0. As a result, we have

2
o = log, (14— )RR (260)
1- 12
In this setting, from [51, 7.1.6, p. 297], we thus have
B—>oo _ ng)
Z G G T (261)
for some constan€;. Using the relatlonshlp |r1:(ZB7E(ZB8), we can write (264) a
Bowe oz (Gare)™ RS M(HTH) (A(HTH)A (AAT))
T Cy-272 - (262)
K- (G-t &= k1 A (ATHTHA)
5 1 K -1 Ky—-1 + 1 k
<98 .Cn (H H) - 1 A1(HTH) n Z 1 A1(HTH) AL (AAT)
K.\, (HTH) S k+1 1\ Ai(ATHTHA)
=K
(263)
L 9-%

o (M(HTH) - Al(AAT))
A1 (ATHTHA)
where we have used the symbolic notat@f) to denote the monotonically increasing function
in (263) for a givenH. The tightness of[(264) is due to the tight estimation of thiegral
in (253).
For the third term of[(239) (denoted ), we trivially over-boundPr (“é‘fﬂ;‘f” < z|fif = 1)
by 1 and use the definition oKy to obtain

(264)

Ts < M(HH) — Gy, <277 (265)
Combining the three term§;, 7, and 73, we have
At s M(HTH) <A - A (HTH) (266)
Boso ) B A1 (HTH) AL (AAT) K2R
=2 (HG( NAHHA) ) )TN, T

A1 (ATHTHA) ) ( Dy, )
e — Ay (HH) ) - [ 1+ : 267
( A (ATA) n(H'H) (1— Dg)(N, — 1) (267)

If N, > 4, itis clear that the first term in_(267) is sub-dominant rigkato the second term. The
statement of the theorem hence follows. [ ]
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