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Abstract

We provide a framework for one-shot quantum rate distortion coding, in which the goal is
to determine the minimum number of qubits required to compress quantum information as a
function of the probability that the distortion incurred upon decompression exceeds some spec-
ified level. We obtain a one-shot characterization of the minimum qubit compression size for an
entanglement-assisted quantum rate-distortion code in terms of the smooth max-information,
a quantity previously employed in the one-shot quantum reverse Shannon theorem. Next, we
show how this characterization converges to the known expression for the entanglement-assisted
quantum rate distortion function for asymptotically many copies of a memoryless quantum infor-
mation source. Finally, we give a tight, finite blocklength characterization for the entanglement-
assisted minimum qubit compression size of a memoryless isotropic qubit source subject to an
average symbol-wise distortion constraint.

1 Introduction

The reliable compression of data is essential for the efficient use of available storage or communica-
tion resources. In one of the first breakthroughs of quantum information theory, Schumacher [30]
proved that the von Neumann entropy of a memoryless quantum information source is the op-
timal rate at which we can compress it. This data compression limit was evaluated under the
requirement that the compression-decompression scheme is asymptotically lossless, in the sense
that the information emitted by the source is recovered with arbitrarily good accuracy in the limit
of asymptotically many copies of the source.

However, one could envisage scenarios in which some imperfection in the recovered information
would be tolerable or even necessary. The characterization of the trade-off between an allowed
distortion and the compression rate is the subject of quantum rate distortion theory. Its classical
counterpart was developed by Shannon [31], and the trade-off is given by a rate-distortion function,
which is defined as the minimum rate of compression for a given distortion, with respect to a
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suitably defined distortion measure. To our knowledge, there are at least two important reasons
for developing the theory of lossy quantum data compression:

1. One might need to compress a quantum information source at a rate smaller than its von
Neumann entropy. This is necessary, for example, in the case where there is insufficient
storage available, or if one needs to transmit information emitted by a source over a channel
whose quantum capacity is smaller than the von Neumann entropy of the source. The strong
converse to Schumacher’s theorem implies that there is no trade-off possible between the rate
of compression and the error incurred in recovery in the asymptotic limit (see Theorem I.19
of [42]). That is, there cannot be a “rate-error” trade-off because if one compresses at a rate
below the von Neumann entropy, then the fidelity between the initial and recovered state
approaches zero exponentially in the number of copies of the source. In spite of this “no-
go” theorem, the theory of quantum rate distortion shows that there can be a fundamental
trade-off between rate and distortion for a suitably defined distortion measure.

2. Allowing a finite distortion in the recovered data is essential for some continuous-variable
quantum information sources (see [39] and references therein) for which the requirement of
arbitrarily good accuracy becomes meaningless.1 That is, we would like to have a theory that
characterizes the compression of analog quantum information into digital quantum informa-
tion along with the distortion incurred in doing so.

The first paper to discuss rate distortion in the quantum realm was by Barnum [3]. He intro-
duced a definition of the quantum rate-distortion function as the lowest rate at which a sender can
compress a memoryless quantum source under some distortion constraint. The main result of his
paper is a lower bound on the quantum rate distortion function in terms of a well-known entropic
quantity, namely, the coherent information. Even though Barnum’s result was the first in quan-
tum rate distortion theory, it is unsatisfactory since the bound is obviously loose—the coherent
information can be negative, whereas the quantum rate distortion function is defined operationally
to be non-negative. Tighter, non-negative lower bounds were found in later work, by allowing for
assisting resources such as entanglement assistance [15] or a side classical channel [40].

Even though classical rate distortion theory has been an area of active research, its quantum
analogue had received very little attention, there being only a few results on it since Barnum’s
work [18, 9, 26]. In the past few years, however, there has been a revival of interest in quantum
rate distortion theory, and quite a few new results have been obtained [15, 16, 40]. These later
works found various expressions for quantum rate distortion functions, both in the absence and
presence of auxiliary resources, which can be exploited in the data compression task.

In all prior work on quantum rate distortion theory, the rate-distortion functions were evaluated
in the limit of asymptotically many copies of a memoryless quantum information source. Since the
data compression rates in those works were achieved using block codes, this corresponds to the
limit n→ ∞, where n denotes the length of the block code. These results then give useful bounds
in an idealized setting, but they are not particularly helpful in characterizing the rate-distortion
trade-off for more realistic settings, such as the finite blocklength setting or one in which the source
is not memoryless.

1An important exception here is the case of a bosonic thermal source, which has a discrete representation in the
orthonormal photon-number basis. Thus, Schumacher compression of a bosonic thermal source is indeed possible,
even though its representation in the coherent-state basis is continuous.
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A more fundamental problem, of both theoretical and practical interest, is to find bounds on
rate distortion functions for a given distortion D ≥ 0 and an “excess-distortion” probability ε > 0.
For example, consider the classical case. Let a source be described by a random variable X taking
values in a finite alphabet X . We would like to find the minimum number of bits to which we can
compress this source, such that the probability of exceeding a distortion level D is no larger than
some small ε > 0:

Pr{d(X, (D ◦ E)(X)) > D} :=
∑

x∈X
pX(x) I{d(x, (D ◦ E)(x)) > D} ≤ ε, (1)

where I{·} denotes the indicator function, d(·, ·) is a distortion measure, and E and D are the
respective encoder and decoder for the scheme. We could then evaluate such a bound for a source
that is invoked a finite number of times. In the classical case, in certain applications, relatively
short blocklengths are in fact common, both due to delay and complexity constraints, and we would
expect similar constraints to apply in the quantum case. In this vein, Kostina and Verdú recently
obtained bounds on the minimum achievable rate of classical data compression as a function of
blocklength n and excess distortion probability ε [25].

2 Overview of Results

In this paper, we contribute the following results:

• We first establish a framework for one-shot quantum rate-distortion theory. This includes
some basic definitions and the notion of an excess-distortion projector, which is derived from
a distortion observable.2 The definitions apply in settings where either there is no assisting
resource or entanglement assistance is available.

• We obtain two lower (converse) bounds (Propositions 7 and 9) on the minimum qubit com-
pression size, which is the minimum number of qubits needed to compress the source state
such that a receiver can recover it up to some specified excess-distortion probability. The
bounds apply in the entanglement-assisted setting, and as such, they apply in the unassisted
case as well. These bounds are given in terms of quantities defined in the smooth-entropy
framework of one-shot information theory (see [29, 33, 19, 14], and references therein) and
are proved by employing ideas from quantum hypothesis testing (see, e.g., [19] and references
therein). One of our converse bounds (Proposition 9) can in fact be viewed as a generalization
of a converse bound proved in the classical case by Kostina and Verdú [25].

• Achievability bounds in Sections 6.1 and 6.2 are proved using a one-shot version of the quan-
tum reverse Shannon (channel simulation) theorem [7]. A channel simulation theorem pro-
vides bounds on the minimum number of qubits that a sender (say, Alice) needs to send
to a receiver (say, Bob) in order to simulate a quantum channel up to a finite accuracy. A
channel simulation strategy then leads to bounds on the one-shot entanglement-assisted quan-
tum rate-distortion function by choosing the simulated channel to depend on the distortion
measure.

2A distortion observable is a generalization of the distortion measure used in classical rate-distortion theory.
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• Theorem 11 unifies the above results, demonstrating that the smooth max-information from [7]
provides a characterization of the one-shot entanglement-assisted rate distortion function up
to logarithmic correction terms.

• The bounds obtained in the one-shot setting readily yield bounds on the minimum qubit
compression rate for finite blocklength, for a memoryless quantum information source. In
the limit of asymptotically large blocklength (n→ ∞), these bounds converge independently
to the known single-letter expression for the entanglement-assisted quantum rate distortion
function [15], given in terms of the quantum mutual information.

• We demonstrate how a good channel simulation protocol, in which the simulated channel
depends on the distortion measure, leads to a rate distortion protocol that performs well with
respect to the excess-distortion probability criterion (see Lemma 19 for details).

• Our final contributions in Section 10 are 1) to evaluate one of the aforementioned converse
bounds for the special case of an isotropic qubit source and an entanglement-fidelity based
distortion measure and 2) to outline a quantum teleportation strategy that nearly meets this
converse bound in the finite blocklength regime. Even though this latter strategy is rather
simple, it represents the first example in quantum rate distortion theory where a strategy
other than channel simulation is used to achieve non-trivial compression rates.

This paper is organized as follows. In the next section, we introduce necessary notation and
definitions, especially for the entropic quantities arising in the statements of the theorems. The
rest of the paper proceeds in the order of the results mentioned above, and then we end with a
conclusion that summarizes our results and points to open questions for future research.

3 Notation and Definitions

Let B(H) denote the algebra of linear operators acting on a finite-dimensional Hilbert space H,
let B(H)+ denote the set of positive semi-definite operators onH, and let D(H) ⊂ B(H)+ denote the
set of density operators (or states), i.e., positive semi-definite operators of unit trace. Furthermore,
we define the set of subnormalized states D≤(H) := {ρ ∈ B(H)+ : Tr ρ ≤ 1}. Throughout this
paper, for simplicity, we restrict our considerations to finite-dimensional Hilbert spaces, and we
denote the dimension of a Hilbert space HA as |A|. 3

For states ρ, σ ∈ D(H), the quantum fidelity is defined as

F (ρ, σ) := ||√ρ√σ||1, (2)

where ‖A‖1 = Tr(
√
AA†). Uhlmann characterized the fidelity as the maximal overlap between any

two purifications |φρ〉 and |φσ〉 of ρ and σ, respectively [36]:

F (ρ, σ) = max
|φρ〉,|φσ〉

|〈φρ|φσ〉|.

Thus, the square of the fidelity has an operational interpretation as the optimal probability with
which a purification of ρ would pass a test for being a purification of σ [24]. Since all purifications are

3However, note that none of our bounds depend on the dimension of the input space, so that our results may
easily be generalized to cases where the data to be compressed is infinite-dimensional. We leave this consideration
for future work, where one should be able to use the methods from [21].
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related by an isometric operation on the purifying system, Uhlmann’s characterization is equivalent
to the following one:

F (ρ, σ) = max
U

|〈φρ|(U ⊗ IH)|φσ〉|, (3)

where |φρ〉 and |φσ〉 are now two fixed purifications of ρ and σ, respectively, and the optimization
is over all isometries acting on the purifying system. The fact that (2) is equal to (3) is known as
Uhlmann’s theorem. The trace distance between two states ρ and σ is defined as follows: ‖ρ−σ‖1,
and the fidelity and trace distance are related by the Fuchs-van-de-Graaf inequalities [20]:

1− F (ρ, σ) ≤ 1
2‖ρ− σ‖1 ≤

√
1− (F (ρ, σ))2. (4)

Moreover, for ρ, σ ∈ D≤(H) let F (ρ, σ) denote the generalized fidelity [35]:

F (ρ, σ) = F (ρ, σ) +
√

(1− Tr ρ)(1− Trσ). (5)

Observe that the generalized fidelity reduces to the standard fidelity in (2) if at least one of the two
states is normalized. The purified distance quantifies the distance between any two subnormalized
states ρ, σ ∈ D≤(H) [35]:

P (ρ, σ) :=

√
1−

(
F (ρ, σ)

)2
. (6)

We denote a quantum channel, i.e., a completely positive trace-preserving (CPTP) map E :
B(HA) 7→ B(HB) simply as EA→B. Similarly, we denote an isometry U : HA 7→ HB ⊗ HC simply
as UA→BC .

The von Neumann entropy of a state ρ ∈ D(HA) is given byH(A)ρ := −Tr(ρ log ρ). Throughout
this paper we take the logarithm to base 2. For a bipartite state ρAB ∈ D(HAB), the conditional
entropy of A given B, and the quantum mutual information between A and B are respectively
given by:

H(A|B)ρ := H(AB)ρ −H(B)ρ, (7)

I(A;B)ρ := H(A)ρ +H(B)ρ −H(AB)ρ, (8)

whereH(A)ρ denotes the von Neumann entropy of the reduced state ρA = TrB(ρAB). Furthermore,
for ρ ∈ D(H) and σ ∈ B+(H), such that suppρ ⊆ suppσ, the quantum relative entropy is defined
as

D(ρ||σ) = Tr(ρ log ρ)− Tr(ρ log σ). (9)

We also make use of several other entropic quantities having their origin in the work of Ren-
ner [29]. The max-relative entropy of a subnormalized state ρ ∈ D≤(H) and an operator σ ∈ B(H)+
is defined as [13]

Dmax(ρ||σ) := min{γ : ρ ≤ 2γσ}. (10)

For any ε > 0, the smooth max-relative entropy is given by

Dε
max(ρ||σ) := min

ρ∈Bε(ρ)
Dmax(ρ||σ),

where Bε(ρ) denotes a ball of subnormalized states around ρ ∈ D≤(H):

Bε(ρ) := {ρ ∈ D≤(H) : P (ρ, ρ) ≤ ε}. (11)
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The conditional min-entropy of A given B for ρAB ∈ D≤(HAB) is defined as

Hmin(A|B)ρ := − min
σB∈D(HB)

Dmax(ρAB ||IA ⊗ σB). (12)

If the system B is trivial, then this reduces to Hmin(A)ρ = − log ||ρA||∞, where || · ||∞ denotes the
operator norm. The max-information that B has about A for ρAB ∈ D≤(HAB) is defined as [7]

Imax(A;B)ρ = min
σB∈D(HB)

Dmax(ρAB||ρA ⊗ σB). (13)

For any ε ≥ 0, the smooth versions of the above quantities are defined as follows:

Hε
min(A|B)ρ := max

ρAB∈Bε(ρAB)
Hmin(A|B)ρ, (14)

Iεmax(A;B)ρ := min
ρAB∈Bε(ρAB)

Imax(A;B)ρ. (15)

For sequences of tensor power states, the (conditional) von Neumann entropy and the quantum
mutual information are equal to the smooth entropy quantities defined above in an asymptotic
limit [34, 33]. That is, for a sequence of states {ρAnBn}n≥1, where ρAnBn = ρ⊗nAB ∈ D

(
H⊗n
AB

)
, it is

known that, for ε ∈ (0, 1),

lim
n→∞

1

n
Hε

min(A
n|Bn)ρ = H(A|B)ρ, (16)

lim
n→∞

1

n
Iεmax(A

n;Bn)ρ = I(A;B)ρ. (17)

Furthermore, for any ε ≥ 0 and ρ ∈ D(HA), we define

Hε
0(A)ρ := min

ρ∈Bε(ρ)
H0(A)ρ, (18)

where H0(A)ρ = log rank ρ denotes the Rényi entropy of order zero. It is also known that for a
sequence of states {ρAn}n≥1, with ρAn = ρ⊗nA , and for every ε ∈ (0, 1)

lim
n→∞

1

n
Hε

0(A
n)ρ = H(A)ρ. (19)

(The above result is in [42]. It also follows from (4.2) and Result 6 of [33].)
We shall also make use of the hypothesis testing relative entropy. First, let βε(ρ||σ) denote the

optimal type II error probability in a quantum hypothesis test that distinguishes between ρ and
some other state σ, when the type I error probability is fixed to be less than ε:

βε(ρ||σ) := min
Λ

{Tr{Λσ} : 0 ≤ Λ ≤ I, Tr{Λρ} ≥ 1− ε}. (20)

Wang and Renner [38] define the hypothesis testing relative entropy as

Dε
H(ρ||σ) = − log βε(ρ||σ). (21)

Various properties of this quantity were explored in [19], one of which is the following useful lemma:
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Lemma 1 Let ρ ∈ D(H), σ ∈ B+(H) and 0 < ε ≤ 1. Then

D

√
2(1−ε)

max (ρ||σ) + log

(
1

1− ε

)
≤ Dε

H(ρ||σ) ≤ Dmax(ρ||σ) + log

(
1

1− ε

)
. (22)

We also make use of the gentle operator lemma [41, 28] and another lemma that follows from
a variational characterization of the trace distance:

Lemma 2 (Gentle Operator) Consider a density operator ρ and a measurement operator Λ
satisfying 0 ≤ Λ ≤ I. Suppose that the measurement operator Λ has a high probability of detecting
the state ρ:

Tr{Λρ} ≥ 1− ε, (23)

where 1 ≥ ε > 0 (the probability is high only if ε is close to zero). Then the subnormalized state√
Λρ

√
Λ is 2

√
ε-close to the original state ρ in trace distance:

∥∥∥ρ−
√
Λρ

√
Λ
∥∥∥
1
≤ 2

√
ε. (24)

Lemma 3 Suppose we have two quantum states ρ and σ and an operator Λ where 0 ≤ Λ ≤ I.
Then

Tr{Λρ} ≥ Tr{Λσ} − 1
2‖ρ− σ‖1. (25)

4 One-Shot Quantum Rate Distortion Coding

In this section, we establish definitions for the most general “one-shot” setting of quantum rate
distortion coding, in which there are no assumptions about the structure of the source state or
the distortion observable (defined below). Throughout this paper, we work in a communication
paradigm, in which a sender Alice has access to a quantum information source, and the goal is for
her to use as few noiseless qubit channels as possible to transmit a compressed version of the source
so that a receiver Bob can recover it up to some distortion. This section also establishes definitions
for the entanglement-assisted setting, in which Alice and Bob share entanglement and can exploit
this resource in their compression-decompression task.

4.1 Unassisted One-Shot Quantum Rate-Distortion Code

A quantum source is described by some density operator ρ ∈ D(HA). A lossy quantum data
compression code consists of an encoding map E : B(HA) → B(HM ), which we denote as EA→M

for short, where HM is a compressed space spanned by an orthonormal basis {|1〉, . . . , |M〉}. The
decoding map is defined as D : B(HM ) → B(HB) and denoted by DM→A. Let HR be a purifying
Hilbert space, so that |ϕρ〉RA ∈ HR ⊗HA is a purification of the source state ρ. The joint state of
the reference and the output after the action of the encoding and decoding maps is

(idR ⊗ (DM→B ◦ EA→M))
(
ϕρRA

)
.

A distortion observable ∆RB is some operator in B+(HR ⊗HB) that quantifies the performance
of a lossy quantum compression code [44, 9, 16, 40]. Since ∆RB is positive semi-definite, it has a
spectral decomposition of the following form:

∆RB =
∑

z

dz|φz〉〈φz|RB ,
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where dz ≥ 0 for all z. In this paper, we assume a finite bound on the maximum eigenvalue of the
distortion observable ∆RB :

dmax := ‖∆RB‖∞ <∞.

In order for a distortion observable to quantify the deviation of a protocol’s output state from the
source state, it should depend on the source state in some way.

Let (Π>D)RB denote the excess-distortion projector associated to ∆RB . It is equal to the
projection onto a subspace of HR ⊗ HB spanned by eigenvectors of ∆RB whose corresponding
eigenvalues are larger than some non-negative number D:

(Π>D)RB :=
∑

z : dz>D

|φz〉〈φz|RB . (26)

The excess-distortion projector generalizes the indicator function used to define the excess-distortion
probability in the classical case (where the indicator function selects the event in which the distor-
tion exceeds D, as in (1)) [22, 27, 25].

We have the following definition of a quantum rate-distortion code with performance measured
by the excess-distortion probability:

Definition 4 An (M,D, ε) quantum rate distortion code for {HA,HB, ρ,∆RB} is a code with
|HM | =M and such that

Tr
{
(Π>D)RB(idR ⊗ (DM→B ◦ EA→M))

(
ϕρRA

)}
≤ ε. (27)

The minimum achievable code size at excess-distortion probability ε and distortion D is defined by

M∗(ρ,∆RB ,D, ε) := min{M : ∃ an (M,D, ε) code for {HA,HB , ρ,∆RB}}.
We refer to the quantity log(M∗(ρ,∆RB ,D, ε)) as the minimum qubit compression size.4

The minimum achievable code size is a quantity that is difficult to compute, and one of the goals
of the present paper is to provide useful bounds on it.

The special case D = 0 and ∆RB = IRB − |ϕ〉〈ϕ|RB corresponds to almost lossless quantum
data compression (one-shot Schumacher compression). Indeed, such a choice leads to the condition
in (27) becoming

〈ϕ|RB(idR ⊗ (DM→B ◦ EA→M))
(
ϕρRA

)
|ϕ〉RB ≥ 1− ε,

which is the usual entanglement-fidelity based criterion employed in Schumacher compression [30].
Definition 4 captures the critical idea behind formulating a good one-shot framework for quan-

tum rate distortion: the output of the protocol is allowed to deviate beyond a distortion specified
by D, but only with a probability less than ε.

We could also use a mean distortion criterion, which corresponds to the more traditional formu-
lation in prior work on quantum rate distortion coding [3, 18, 15]. For a given distortion observable
∆RB , the mean distortion of the source state under a CPTP map NA→B is defined as follows:

δmean(ρ,NA→B,∆RB) := Tr(∆RB ωRB), (28)

where
ωRB := (idR ⊗NA→B)ϕ

ρ
RA.

4The minimum qubit compression size should really be defined as ⌈log(M∗(ρ,∆RB, D, ε))⌉, but we will omit the
inclusion of the “ceiling” in the rest of the paper for simplicity.
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Definition 5 An 〈M,D〉 quantum rate distortion code for {HA,HB, ρ,∆RB} is a code with |HM | =
M and mean distortion

δmean(ρ,DM→B ◦ EA→M ,∆RB) ≤ D.

The minimum achievable code size at mean distortion D is defined by

M∗(ρ,∆RB ,D) := min{M : ∃ an 〈M,D〉 code for {HA,HB, ρ,∆RB}}.

The minimum qubit compression size is equal to log(M∗(ρ,∆RB ,D)).

The excess-distortion probability is a stronger criterion for quantum rate distortion coding in
the sense of the following lemma:5

Lemma 6 Suppose that there exists an (M,D, ε) quantum rate distortion code for {HA,HB , ρ,∆RB}.
Then this code is also an 〈M,D + dmaxε〉 quantum rate distortion code for {HA,HB , ρ,∆RB}.

Proof. The proof of this statement easily follows by exploiting the following operator inequality:

∆RB =
∑

z

dz|φz〉〈φz|RB

=
∑

z : dz≤D
dz|φz〉〈φz|RB +

∑

z : dz>D

dz|φz〉〈φz|RB

≤ D IRB + dmax(Π>D)RB .

This then leads to the statement of the lemma:

Tr
{
∆RB(idR ⊗ (DM→B ◦ EA→M))

(
ϕρRA

)}

≤ D + dmaxTr
{
(Π>D)RB(idR ⊗ (DM→B ◦ EA→M))

(
ϕρRA

)}

≤ D + dmaxε.

Thus, the excess-distortion probability is an alternative performance criterion related to the
traditional mean distortion criterion, but more importantly, it leads to a meaningful one-shot
extension of the traditional framework.

4.2 Entanglement-Assisted One-Shot Quantum Rate-Distortion Code

An entanglement-assisted quantum rate distortion code is defined similarly to an unassisted one,
but the sender (Alice) and receiver (Bob) are allowed to share entanglement before the protocol
begins [15]. Let ΨTATB denote the entangled state that they share, where Alice possesses system TA
and Bob possesses system TB , and note that the state can be an arbitrary entangled state. The
protocol begins with Alice and Bob combining their systems TA and TB with the source state ϕρRA,
to produce

ϕρRA ⊗ΨTATB .

5Note, however, that the excess-distortion probability and mean distortion criteria become essentially equivalent
in the independent and identically distributed (i.i.d.) setting. This follows from Lemma 6 and Lemma 19.
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(This is a trivial “appending” CPTP map.) Alice then acts with an encoding map EATA→M , and
Bob acts with a decoding map DMTB→B, resulting in the state

(idR ⊗ (DMTB→B ◦ EATA→M))
(
ϕρRA ⊗ΨTATB

)
. (29)

We can write the combined action of appending, encoding, and decoding as some CPTPmapN ea
A→B:

N ea
A→B(σA) := (DMTB→B ◦ EATA→M)(σA ⊗ΨTATB ), (30)

for any input density operator σA. An (M,D, ε) entanglement-assisted quantum rate distortion code
and an 〈M,D〉 entanglement-assisted quantum rate distortion code are then defined analogously
as in Definitions 4 and 5, respectively, with respect to the state in (29). The minimum achievable
code sizes and minimum qubit compression sizes are defined analogously as well.

5 Converse Bounds for One-Shot Entanglement-Assisted Quan-

tum Rate Distortion Codes

This section provides two general converse bounds that apply to one-shot entanglement-assisted
quantum rate distortion codes. The first converse provides a bound in terms of D1−ε′

H (where ε′ is

related to the excess-distortion probability) and thus is related to D
√
2ε′

max by Lemma 1. We show
in Section 9.2 that in the i.i.d. limit, the expression in this first converse is bounded from below
by the known quantity for the entanglement-assisted quantum rate distortion (EA-QRD) function
from [15].

The second converse in this section provides a bound in terms of Dε
H and can be seen as a

direct quantum generalization of the Kostina-Verdú bound from [25]. We apply this bound in
Section 10.1 to give a tight finite-blocklength characterization of the i.i.d. entanglement-assisted
quantum rate distortion function for an isotropic qubit source. Although this second converse gives
a tight characterization for this example, it is unclear to us if this converse generally converges in
the i.i.d. limit to the known quantity from [15] for all quantum information sources.

Of course, since these converses provide lower bounds on the minimum qubit compression sizes
of entanglement-assisted quantum rate distortion codes, they provide lower bounds for unassisted
codes as well.

5.1 A One-Shot Converse Bound

Proposition 7 Let ρ be the density operator characterizing a quantum information source, and
let |ϕρ〉RA be a purification of it. For any (M,D, ε) entanglement-assisted quantum rate distortion
code for {HA,HB , ρ,∆RB}, we have the following lower bound on its minimum qubit compression
size:

logM∗(ρ,∆RB ,D, ε)

≥ 1

2
min
NA→B

max
σRA

min
ψB

[
D1−ε′
H

(
(idR ⊗NA→B)

(
ϕρRA

)
||σR ⊗ ψB

)
−D1−ε′′

H

(
ϕρRA||σRA

)]
, (31)

where ε′ ≥ 2ε, ε′′ := ε′
(
ε′

2 − ε
)
, the minimization over states ψB may be performed over pure

states, and the outermost minimization is with respect to maps NA→B such that

Tr
{
(Π≤D)RB(idR ⊗NA→B)

(
ϕρRA

)}
≥ 1− ε.
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Proof. First consider the type II error probability β1−ε
(
ϕρRA||σRA

)
defined in (20) for an arbitrary

state σRA, as well as the quantity

max
ψB

β1−ε′(ωRB||σR ⊗ ψB) = max
ψB

min
QRB

{
Tr{QRB(σR ⊗ ψB)} : 0 ≤ QRB ≤ IRB , Tr{QRB ωRB} ≥ ε′

}

for some ε′ ≥ 2ε, where ωRB is the final state of the protocol. We know from the minimax theorem
that there is a state ψB and a POVM element QRB achieving the maximum and the minimum,
respectively, in maxψB

β1−ε′(ωRB ||σR ⊗ ψB), because the optimizations are over convex sets and
the objective function is linear in the objects over which we are optimizing. Let ψ∗

B and Q∗
RB denote

the state and POVM element, respectively, achieving the optimum. Now, from the definition of an
(M,D, ε) EA QRD code for {HA,HB , ρ,∆RB} (see Section 4.2), the following condition holds:

Tr
{
(Π≤D)RB ωRB

}
≥ 1− ε. (32)

Let ω′
RB denote the following state

ω′
RB :=

√
Q∗
RB ωRB

√
Q∗
RB

Tr
{
Q∗
RB ωRB

} . (33)

By Lemma 3, we then have that

Tr
{
(Π≤D)RB ω

′
RB

}
≥ Tr

{
(Π≤D)RB ωRB

}
− 1

2

∥∥ω′
RB − ωRB

∥∥
1

≥ 1− ε− 1

2

∥∥ω′
RB − ωRB

∥∥
1
. (34)

We now compute an upper bound on 1
2‖ω′

RB − ωRB‖1. By letting |ϕω〉R′RB be a particular purifi-
cation of ωRB and by exploiting Uhlmann’s theorem, we have that

F
(
ω′
RB , ωRB

)2 ≥
∣∣〈ϕω|R′RB

(
IR′ ⊗

√
Q∗
RB

)
|ϕω〉R′RB

∣∣2

〈ϕω|R′RB

(
IR′ ⊗Q∗

RB

)
|ϕω〉R′RB

≥ 〈ϕω|R′RB(IR′ ⊗Q∗
RB)|ϕω〉R′RB

≥ ε′.

Using the Fuchs-van-de-Graaf inequalities in (4), it follows that

1

2

∥∥ω′
RB − ωRB

∥∥
1
≤
√

1− F
(
ω′
RB , ωRB

)2

≤
√
1− ε′

≤ 1− ε′

2
.

Substituting into (34) gives us that

Tr
{
(Π≤D)RB ω

′
RB

}
≥ 1− ε−

(
1− ε′

2

)

=
ε′

2
− ε,

11



which finally gives that

Tr
{
(Π≤D)RB

√
Q∗
RBωRB

√
Q∗
RB

}
≥ Tr{Q∗

RBωRB}
(
ε′

2
− ε

)

≥ ε′
(
ε′

2
− ε

)

= ε′′, (35)

by exploiting the definition in (33).
By the result in (35) and the fact that N ea

A→B from (30) is trace preserving, the following
operator defines a particular POVM element ΛRA for which Tr

{
ΛRAϕ

ρ
RA

}
≥ ε′′ is true:

ΛRA = (idR ⊗N ea
A→B)

†
(√

Q∗
RB(Π≤D)RB

√
Q∗
RB

)
, (36)

where † indicates the adjoint of the map idR ⊗N ea
A→B. Hence,

β1−ε′′
(
ϕρRA||σRA

)

≤ Tr
{
(idR ⊗N ea

A→B)
†
(√

Q∗
RB(Π≤D)RB

√
Q∗
RB

)
σRA

}

= Tr
{(√

Q∗
RB(Π≤D)RB

√
Q∗
RB

)
(idR ⊗ (DMTB→B ◦ EATA→M ))(σRA ⊗ΨTATB )

}

≤M Tr
{(√

Q∗
RB(Π≤D)RB

√
Q∗
RB

)
(idR ⊗DMTB→B)(σR ⊗ IM ⊗ΨTB)

}

=M2 Tr
{(√

Q∗
RB(Π≤D)RB

√
Q∗
RB

)
(σR ⊗DMTB→B(πM ⊗ΨTB ))

}

≤M2 Tr{Q∗
RB(σR ⊗DMTB→B(πM ⊗ΨTB ))}

≤M2Tr{Q∗
RB(σR ⊗ ψ∗

B)}
=M2 max

ψB

β1−ε′(ωRB ||σR ⊗ ψB). (37)

The first inequality follows from the definition of β1−ε′′
(
ϕρRA||σRA

)
and (36). The first equality

follows by the definition of the adjoint map. The second inequality follows from the following
operator inequality:

(idR ⊗ EATA→M )(σRA ⊗ΨTATB ) ≤M(σR ⊗ IM ⊗ΨTB).

which is an instance of the operator inequality ρAB ≤ |B|(ρA ⊗ IB) [7, 19]. The second equality
follows from the definition πM := IM/M . The third inequality follows from the operator inequality:

√
Q∗
RB(Π≤D)RB

√
Q∗
RB ≤ Q∗

RB .

The last inequality follows because DMTB→B(πM ⊗ΨTB) is a particular state and the expression
should be optimized over pure states. That is, we can always take a spectral decomposition of
DMTB→B(πM ⊗ΨTB ) as

DMTB→B(πM ⊗ΨTB) =
∑

z

pZ(z)|φz〉〈φz|B,

12



and this leads to

Tr{Q∗
RB(σR ⊗DMTB→B(πM ⊗ΨTB ))}

=
∑

z

pZ(z)Tr{Q∗
RB(σR ⊗ |φz〉〈φz|B)}

≤ max
z

Tr{Q∗
RB(σR ⊗ |φz〉〈φz|B)}

≤ max
ψB

Tr{Q∗
RB(σR ⊗ ψB)}.

By taking a maximization over all states σRA, we arrive at the following bound:

M ≥ max
σRA

min
ψB

√
β1−ε′′

(
ϕρRA||σRA

)

β1−ε′(ωRB ||σR ⊗ ψB)
.

Taking logarithms, we obtain that

logM ≥ 1

2
max
σRA

min
ψB

[
D1−ε′
H (ωRB||σR ⊗ ψB)−D1−ε′′

H

(
ϕρRA||σRA

)]
.

Finally, we arrive at

logM ≥ 1

2
min
NA→B

max
σRA

min
ψB

[
D1−ε′
H

(
(idR ⊗NA→B)

(
ϕρRA

)
||σR ⊗ ψB

)
−D1−ε′′

H

(
ϕρRA||σRA

)]
.

by taking a minimization over all maps NA→B that meet the following excess-distortion probability
constraint:

Tr
{
(Π≤D)RB(idR ⊗NA→B)

(
ϕρRA

)}
≥ 1− ε.

By taking the state σRA in the maximization in (31) to be equal to the purification ϕρRA, we
arrive at the following corollary of Proposition 7:

Corollary 8 Let ρ be the density operator characterizing a quantum information source. For any
(M,D, ε) entanglement-assisted quantum rate distortion code for {HA,HB , ρ,∆RB}, we have the
following lower bound on its minimum qubit compression size:

logM∗(ρ,∆RB ,D, ε) ≥
1

2
min
NA→B

min
ψB

[
D1−ε′
H

(
ωRB ||ϕρR ⊗ ψB

)
− log

1

ε′′

]
, (38)

where ε′ ≥ 2ε, ε′′ := ε′
(
ε′

2 − ε
)
,

ωRB := (idR ⊗NA→B)
(
ϕρRA

)
,

and the outermost minimization is with respect to maps NA→B such that

Tr
{
(Π≤D)RB ωRB

}
≥ 1− ε.

13



5.2 An Alternative One-Shot Converse Bound

This section details a quantum generalization of the converse theorem in [25]. The converse
presented here lower bounds the minimum qubit compression size for any entanglement-assisted
quantum rate distortion code, and it leads to a tight finite blocklength characterization of the
entanglement-assisted quantum rate distortion function for an isotropic qubit source (see Sec-
tion 10.1).

Proposition 9 Let ρ be the density operator characterizing a quantum information source, and
let |ϕρ〉RA be a purification of it. For any (M,D, ε) entanglement-assisted quantum rate distortion
code for {HA,HB , ρ,∆RB}, we have the following lower bound on its minimum qubit compression
size:

logM∗(ρ,∆RB ,D, ε) ≥
1

2
max
σRA

min
ψB

[
− log Tr

{
(Π≤D)RB(σR ⊗ ψB)

}
−Dε

H

(
ϕρRA||σRA

)]
. (39)

Proof. We start with βε
(
ϕρRA||σRA

)
. From the definition of an (M,D, ε) EA QRD code, (32)

holds as in the previous proof. Thus, the following operator defines a particular POVM element
ΛRA for which Tr

{
ΛRAϕ

ρ
RA

}
≥ 1− ε is true:

ΛRA = (idR ⊗N ea
A→B)

†((Π≤D)RB
)
, (40)

where † indicates the adjoint of the map idR⊗N ea
A→B and N ea

A→B is defined in (30). So βε
(
ϕρRA||σRA

)

is upper bounded by

βε
(
ϕρRA||σRA

)

≤ Tr
{
(idR ⊗N ea

A→B)
†((Π≤D)RB

)
ϕσRA

}

= Tr
{
(Π≤D)RB(idR ⊗DMTB→B)(idR ⊗ EATA→M)(σRA ⊗ΨTATB )

}

≤M Tr
{
(Π≤D)RB(idR ⊗DMTB→B)(σR ⊗ IM ⊗ΨTB )

}

=M2 Tr
{
(Π≤D)RB(σR ⊗DMTB→B(πM ⊗ΨTB ))

}

≤M2max
ψB

Tr
{
(Π≤D)RB(σR ⊗ ψB)

}
. (41)

These inequalities follow for very similar reasons as the inequalities in the proof of Proposition 7.
By rewriting (41) as √

βε
(
ϕρRA||σRA

)

maxψB
Tr
{
(Π≤D)RB(σR ⊗ ψB)

} ≤M, (42)

optimizing the expression on the left with respect to the choice of σRA, and taking logarithms, we
obtain the bound in the statement of the proposition.

This bound clearly applies to unassisted quantum rate distortion codes as well. This follows
both operationally and from the fact that the bound applies when taking the systems TA and TB
to be null.
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5.3 Reduction to the Classical Kostina-Verdú Bound

If the distortion observable is of the classical-classical type, then the analysis reduces to the classical
case, and the above bound can be improved. Indeed, consider ∆RB to have the form:

∑

x

|x〉〈x|R ⊗∆x
B, (43)

where ∆x
B ≥ 0 for all x ∈ X . Then (Π≤D)RB takes the form

∑
x|x〉〈x|R ⊗ (Πx≤D)B where each

(Πx≤D)B is an excess-distortion projector corresponding to ∆x
B. We can bound βε

(
ϕρRA||σRA

)
as

βε
(
ϕρRA||σRA

)
≤ Tr

{
(Π≤D)RB(idR ⊗D)(idR ⊗ E)(ϕσRA)

}
(44)

=
∑

x

qσ(x)Tr
{(

Πx≤D
)
B
(D ◦ E)(|ψx〉〈ψx|A)

}
, (45)

where

|ψx〉A =
1√
qσ(x)

(〈x| ⊗ IA)|ϕσ〉RA, (46)

qσ(x) = Tr{(|x〉〈x| ⊗ IA)ϕ
σ
RA}. (47)

Continuing, we have the upper bound

βε(ϕ
ρ
RA||σRA) ≤M max

|ψ〉B

∑

x

qσ(x)Tr
{(

Πx≤D
)
B
ψB
}
,

and obtain the following bound analogous to that of Kostina and Verdú:

M ≥ max
σ∈D(HRA)

βε
(
ϕρRA||σRA

)

maxψB

∑
x qσ(x)Tr

{
(Πx≤D)B ψB

} .

6 One-Shot Achievability Results via Channel Simulation

In this section, we use known results on entanglement-assisted quantum channel simulation to
find upper bounds on the minimum qubit compression size for an entanglement-assisted quantum
rate distortion code that compresses a quantum information source {ρ,HA}. The basic idea is to
simulate a quantum channel NA→B obeying a distortion constraint of the form

Tr
{
(Π≤D)RB(idR ⊗NA→B)

(
ϕρRA

)}
≥ 1− ε.

The quantum communication required in the simulation then constitutes an achievable compression
size for the source.

For simplicity, fix the excess-distortion probability to be no larger than ε and the distortion to
be D, for a given distortion observable ∆RB . Then denote the minimum achievable code size as

M∗ :=M∗(ρ,∆RB ,D, ε),

so that logM∗ is the minimum qubit compression size.
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Suppose Alice has the source state ρ ∈ D(HA), a purification of which is given by ϕρRA, with R
denoting the reference system. Additionally, Alice and Bob share entanglement which they can
exploit to help them in their compression task. Now set ε > 0 and choose an ε1 > 0 such that
ε1 < ε. To begin the simulation protocol, Alice locally applies an isometric extension UN

A→A′B of a
CPTP map NA→B to the source state ρ, where NA→B satisfies

Tr
{
(Π>D)RB(idR ⊗NA→B)

(
ϕρRA

)}
≤ ε1, (48)

and (Π>D)RB denotes the excess-distortion projector defined by (26). The resulting state, shared
by Alice and the reference is given by

ϕωRA′B =
(
idR ⊗ UN

A→A′B

)(
ϕρRA

)
, (49)

whose marginal state is

ωRB = TrA′(ϕωRA′B) = (idR ⊗NA→B)
(
ϕρRA

)
. (50)

The next phase of the protocol is for Alice to transmit some quantum information to Bob,
making use of the entanglement they share, to ensure that the final state shared between Bob
and the reference system is (ε − ε1)-close in trace distance to the state ωRB . One way for them
to achieve this aim is via a one-shot (ε − ε1)-error quantum state splitting protocol [7], in which
the tripartite pure state ϕωRA′B , initially shared between the reference and Alice, is split between
the reference, Alice, and Bob, such that Bob receives the system B up to an error (ε − ε1). A
state splitting protocol is a particular way to simulate a channel. The protocol consists of Alice
applying local operations (denoted by the encoding CPTP map E) on the systems in her possession
(namely, the systems A′B and her share of the entanglement), sending qubits to Bob, and then
Bob applying local operations on the system he receives and his share of the entanglement. Let
logM(ρ,N ) denote the minimum amount of quantum information that Alice needs to send to Bob
when simulating the channel N on the state ρ. This quantum state splitting protocol simulates the
output state of the quantum channel N on the source state ρ (up to an error (ε − ε1)), at Bob’s
end, and hence (E ,D,M(ρ,N )) constitutes a one-shot (ε− ε1)-error channel simulation code.

Therefore, an upper bound on the minimum qubit compression size logM∗ is given by

logM∗ ≤ min
NA→B , ε1

{logM(ρ,N ) : (a), (b), 0 < ε1 < ε}, (51)

where (a) and (b) denote the following conditions:

(a) : Tr
{
(Π>D)RB(idR ⊗NA→B)

(
ϕρRA

)}
≤ ε1, (52)

and

(b) : there exists a (E ,D,M(N )) one-shot (ε− ε1)-error channel simulation code. (53)

By applying Lemma 3, we obtain an upper bound on the excess-distortion probability for such a
scheme:

Tr
{
(Π>D)RB

(
idR ⊗D ◦ E ◦ UN

A→A′B

)(
ϕρRA

)}

≤ Tr
{
(Π>D)RB(idR ⊗NA→B)

(
ϕρRA

)}
+ ‖
(
idR ⊗D ◦ E ◦ UN

A→A′B

)(
ϕρRA

)
− (idR ⊗NA→B)

(
ϕρRA

)
‖1

≤ ε1 + (ε− ε1) = ε. (54)
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Remark 10 The results presented here and in prior work [32, 43, 26, 15] demonstrate that the
tasks of channel simulation and rate distortion coding are related, but we should be careful not to
conclude that they are the same task. In channel simulation, the criterion for a protocol to be
successful is more stringent, in the sense that a third party should not be able to distinguish between
the output of the actual channel and the simulated one if allowed to input arbitrary states (even
entangled ones) to the channel. The demands of a rate-distortion protocol are not as stringent.
For this task, a protocol is required to have an arbitrarily small excess distortion probability or
meet an average distortion constraint, which depends on the distortion observable being employed.
As we have seen in this section and in prior work [32, 43, 26, 15], a channel simulation protocol
(specialized for tensor-power inputs) can be used for the task of rate distortion, but the opposite is
not necessarily true. Furthermore, a channel simulation protocol might use more resources than are
actually necessary to complete the rate-distortion task since the demands on it are more stringent.
This overconsumption is negligible, for example, in the entanglement-assisted setting where an
arbitrary amount of entanglement of an arbitrary type is allowed, but it is not so in the unassisted
setting. In fact, one of the main open questions regarding quantum rate distortion is to characterize
the unassisted quantum rate distortion function. The best known characterization employs channel
simulation [15], and hence it can possibly be improved using a different method.

6.1 Channel Simulation with the Help of an Arbitrary Entangled State

First let us consider the situation in which the entanglement shared between Alice and Bob is
allowed to be in an arbitrary form. In particular, we can allow them access to embezzling states
[37], which is useful because they can generate any other entangled state from such a resource by
acting only with local operations. Theorem III.10 of [7] (building upon prior work in [17, 1]) states
that a one-shot (ε−ε1)-error quantum state splitting protocol with a “δ-ebit embezzling state” (for
any δ > 0) can be achieved by quantum communication equal to

1

2
Iδ

′

max(B;R)ω + 2 log
1

δ′′
+ 4 + log log |B|. (55)

where ε− ε1 =
(
δ′′ + δ′ + δ · log |B|+ |B|− 1

2

)
, δ′′ > 0, δ′ > 0, and ωRB is the state defined by (50).

In the above, Iδ
′

max(B;R)ω denotes the smooth max-information of ωRB and is defined as in (15).
As stated in Footnote 6 of [7], one can make the error ε − ε1 arbitrarily small by enlarging the
Hilbert space B as needed to a space B′ that contains B as a subspace. This enlargement then
increases the error term δ · log |B′|, but one can compensate for this by decreasing δ appropriately
(taking a larger embezzling state). To simplify things a bit, we can just choose ε1 = δ′ = δ′′ = ε/5,
the enlarged space B′ to have dimension at least (5/ε)2, and the term δ · log |B′| to be no larger
than ε/5. Our conclusion is that a one-shot 4ε/5-error quantum state splitting protocol can be
achieved by quantum communication equal to

1

2
Iε/5max(B;R)ω + 2 log(5/ε) + 4 + log log(|B|+ (5/ε)2), (56)

with the last term following from the fact that |B′| = max(|B|, (5/ε)2) ≤ |B|+ (5/ε)2.
Hence, if Alice and Bob share entanglement in the form of embezzling states, then the mini-

mum achievable code size for an (M,D, ε) entanglement-assisted quantum rate distortion code for

17



{HA,HB , ρ,∆RB} is bounded from above as follows:

logM∗ ≤ min
NA→B

{
1

2
Iε/5max(B;R)ω + 2 log(5/ε) + 4 + log log(|B|+ (5/ε)2) : (a)

}
, (57)

where ε1 in (a) is equal to ε/5.

6.2 Channel Simulation with Maximally-Entangled States

Now let us consider the situation in which the entanglement shared between Alice and Bob is
restricted to be in the form of maximally entangled states. Note that in this case the one-shot
quantum state-splitting protocol is the time-reversal of the one-shot fully-quantum Slepian-Wolf
(FQSW) protocol [14]. In the latter, Alice and Bob share a bipartite state, whose purification is
held by an inaccessible reference, and the aim of the protocol is for Alice to send her system to Bob
using as little quantum communication as possible, and at the same time generate entanglement
with him. It can be viewed as a time-reversal of the quantum state splitting protocol because
the resource, namely, entanglement, which is consumed in quantum state splitting, is generated in
FQSW. An upper bound on the quantum communication cost for a one-shot (ε− ε1)-error FQSW
protocol, as obtained from Theorem 8 of [14], thus yields the following upper bound on logM(ρ,N ):

logM(ρ,N ) ≤ 1

2

[
Hδ

0(B)ω −Hδ
min(B|R)ω

]
+ log

1

δ′
, (58)

for some δ > 0, such that ε = 2
√
5δ′ + 2

√
δ, and δ′ = δ +

√
4
√
δ − 4δ. In the above, ωRB denotes

the state defined by (50), and Hδ
0(B)ω and Hδ

min(B|R)ω are the smooth entropies of the state
ωB = TrR ωRB and ωRB, defined as in (18) and (14) respectively. So if Alice and Bob share
entanglement in the form of maximally entangled states, then

logM∗ ≤ min
NA→B, ε1

{
1

2

[
Hδ

0(B)ω −Hδ
min(B|R)ω

]
+ log

1

δ′
: (a), 0 < ε1 < ε

}
. (59)

We should note that this bound is not as tight as the bound from the previous section, due to the
following inequality [7]:

Imax(A;B)ρ ≤ H0(A)ρ −Hmin(A|B)ρ.

Furthermore, the quantity on the right-hand side can become arbitrarily large when evaluated for
particular states. However, if we restrict Alice and Bob to using maximally entangled states for
entanglement assistance, then the bound in (59) is the best known bound.

7 One-Shot Entanglement-Assisted Quantum Rate-Distortion The-

orem

This section unifies the converse bound from Corollary 8 and the achievability bound from Sec-
tion 6.1 to establish a one-shot entanglement-assisted quantum rate-distortion theorem. The fol-
lowing theorem shows that the upper and lower bounds on the minimum qubit compression size
for an entanglement-assisted quantum rate-distortion code can both be expressed in terms of the
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same smooth entropic quantity, namely, the smooth max-information, up to logarithmic correction
terms.6

Theorem 11 Let ρ ∈ D(HA) be the density operator characterizing a quantum information source,
and let |ϕρ〉RA be a purification of it. For any (M,D, ε) entanglement-assisted quantum rate distor-
tion code for {HA,HB , ρ,∆RB}, we have the following bounds on its minimum qubit compression
size:

min
NA→B

{
1

2
Iε/5max(B;R)ω + χ1 : Tr((Π≤D)RB ωRB) ≥ 1− ε/5

}
≥

logM∗(ρ,∆RB ,D, ε) ≥ min
NA→B

{
1

2
I2

√
2ε′

max (B;R)ω − χ2 : Tr((Π≤D)RB ωRB) ≥ 1− ε

}
, (60)

where

ωRB := (idR ⊗NA→B)ϕ
ρ
RA, (61)

χ1 := 2 log(5/ε) + 4 + log log(|B|+ (5/ε)2) (62)

χ2 :=
1

2
log

((
1

ε′
+

1

1−
√
2ε′

)(
1

ε′/2− ε

))
, (63)

ε′ ≥ 2ε, and NA→B is a CPTP map from D(HA) to D(HB).

Remark 12 In the special case of (almost) lossless quantum data compression, i.e., D = 0 and
∆RB = IRB − |ϕRB〉〈ϕRB | (with ϕRB := ϕρ a purification of ρA and HA isomorphic to HB), it
is known that the minimum qubit compression size is given by Hǫ

0(ρA). This, together with Theo-
rem 10, gives an operational proof that Iε

′
max(A : R)ϕ, for ϕ = ϕρAR a pure state, is approximately

(up to additive terms of the form χ1 and χ2, and some appropriately chosen ε′ > 0) equal to
Hε

0(ρA).

Remark 13 The above converse bound and achievability result can be applied to (unassisted) one-
shot rate distortion in the purely classical setting. To do so, pick a distortion observable of classical-
classical type as in (1) and consider classical information sources (diagonal in the same basis as the
distortion observable). The converse bound, which includes the possibility of entanglement assis-
tance, also bounds the unassisted case. Channel simulation in the achievability argument nominally
requires the use of embezzling states, but for classical channels this can be reduced to randomness
shared between sender and receiver, as for the case of quantum-to-classical channels (measurements)
in [8]. However, the channel simulation is only used to output a state ωRB which satisfies the con-
straint on the excess distortion probability, Tr((Π>D)RB ωRB) ≤ ε. Since this constraint is linear,
we may interpret it as the average constraint for the different states ωiRB resulting from the shared
randomness i, and we are free to pick the best value (least excess distortion probability) i.

6However, note that it is possible to provide a similar characterization in terms of the hypothesis testing relative
entropyD1−ε

H or the alternative smooth max-information (defined in (68)), due to the relation between these quantities
and the smooth max-information.
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Proof of Theorem 11. The upper bound on logM∗ follows readily from the result in (57). So
we focus on establishing the lower bound on logM∗. Corollary 8 establishes (38) as a lower bound
on logM∗, and we find that

logM∗ ≥ 1

2

[
min
NA→B

min
σB

D1−ε′
H

(
ωRB||ϕρR ⊗ σB

)
− log

1

ε′′

]
(64)

≥ 1

2

[
min
NA→B

min
σB

D
√
2ε′

max

(
ωRB||ϕρR ⊗ σB

)
− log

(
1

ε′/2− ε

)]
(65)

≥ 1

2

[
min
NA→B

min
σB

min
τR

min
ω̃RB∈B

√
2ε′ (ωRB)

Dmax(ω̃RB||τR ⊗ σB)− log

(
1

ε′/2− ε

)]
(66)

=
1

2

[
min
NA→B

Ĩ
√
2ε′

max (B;R)ω − log

(
1

ε′/2 − ε

)]
. (67)

The first inequality exploits Corollary 8, but using a minimization over mixed states σB (recall
that even if the minimization is defined to be over mixed states, the optimizing state will be pure).
The second inequality follows from the relation in Lemma 1 between the hypothesis testing relative
entropy and the smooth max-relative entropy. The third inequality follows by taking a further
minimization over states τR and by recalling the definition of the smooth max-relative entropy.
The equality follows by defining the alternative smooth max-information as [10, 11]

Ĩεmax(R;B)ω := min
ω̃RB∈Bε(ωRB)

Ĩmax(R;B)ω̃, (68)

where
Ĩmax(R;B)ω := min

σR∈D(HR)
min

τB∈D(HB)
Dmax(ωRB ||σR ⊗ τB). (69)

Now consider the following relation between the alternative smooth max-information Ĩε
′′′

max(B;R)ω
and the smooth max-information Iε

′′+ε′′′
max (B;R)ω from Lemma 4.2.1 of [10]: for any ε′′ > 0 and any

ε′′′ ≥ 0,

Iε
′′+ε′′′

max (B;R)ω ≤ Ĩε
′′′

max(B;R)ω + log

(
2

(ε′′)2
+

1

1− ε′′′

)
. (70)

Choosing ε′′ =
√
2ε′ and ε′′′ =

√
2ε′ and applying the above relation, we find that the RHS of (67)

is larger than

1

2

[
min
NA→B

I2
√
2ε′

max (B;R)ω − log

((
1

ε′
+

1

1−
√
2ε′

)(
1

ε′/2− ε

))]
, (71)

giving us the lower bound on logM∗ stated in the theorem.

8 Finite Blocklength Quantum Rate Distortion Coding

One of the most important settings for quantum rate distortion theory is the independent and
identically distributed (i.i.d.) setting with an average symbol-wise distortion observable. In this
case, the source is specified as n copies of some density operator ρA, where n is some finite positive
integer, and it is helpful to consider a purification |ϕρ〉⊗nRA of the source. In this case, one considers
block codes of length n defined by an encoding map EAn→Mn : D(H⊗n

A ) 7→ D(H⊗n
M ), and a decoding

map DMn→Bn : D(H⊗n
M ) 7→ D(H⊗n

B ). The relevant distortion observable in this scenario is the
average symbol-wise distortion observable which is defined as follows:
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Definition 14 (Average symbol-wise distortion observable) Given a single-symbol distor-
tion observable ∆RB, we can define an average symbol-wise distortion observable ∆RnBn acting
on n symbols as follows:

∆RnBn :=
1

n

n∑

i=1

(
I⊗(i−1)

)
Ri−1

1
Bi−1

1

⊗∆RiBi
⊗
(
I⊗(n−i)

)
Rn

i+1
Bn

i+1

. (72)

where Ri−1
1 := R1 · · ·Ri−1, Rni+1 := Ri+1 · · ·Rn, with a similar convention for Bi−1

1 and Bn
i+1.

The following lemma gives a particular form for the spectral decomposition of ∆RnBn , which
in turn leads to a specification of the average symbol-wise excess-distortion projector, the latter
being an operator defined as follows. If the spectral decomposition of ∆RnBn is given by ∆RnBn =∑

i λiP
n
i , then for any distortion D > 0, the average symbol-wise excess-distortion projector is

given by
(
Π>D

)
RnBn :=

∑
i:λi>D

Pni .

Lemma 15 The average symbol-wise distortion observable ∆RnBn has the following spectral de-
composition:

∆RnBn =
∑

zn

dzn |φzn〉〈φzn |, (73)

where

zn := (z1, z2, . . . , zn), (74)

dzn :=
1

n

n∑

i=1

dzi , (75)

|φzn〉 := |φz1〉 ⊗ · · · ⊗ |φzn〉, (76)

and dzi and |φzi〉 are defined through the spectral decomposition of ∆RiBi
.

The decomposition in (73) implies that the average symbol-wise excess-distortion projector can
be written as (

Π>D
)
RnBn =

∑

zn : dzn>D

|φzn〉〈φzn |. (77)

Proof. One can easily check that |φzn〉 is an eigenvector of ∆RnBn with eigenvalue dzn . Since the
orthonormal basis {|φzn〉} spans the whole support of ∆RnBn , this eigenvector-eigenvalue relation
implies that ∆RnBn has the spectral decomposition as given in the statement of the lemma. The
form of the average symbol-wise excess-distortion projector follows readily from its definition and
the decomposition in (73).

Remark 16 As remarked in Refs. [16, 40], the classical case emerges as a special case in the
distortion observable framework. In the classical case, the distortion observable is taken to be of
the classical-classical type:

∆RB =
∑

x,y

d(x, y)|x〉〈x|R ⊗ |y〉〈y|B , (78)

for some distortion measure d(x, y) and orthonormal bases {|x〉}, {|y〉}. By applying Lemma 15,
the average symbol-wise distortion observable becomes

∆RnBn =
∑

xn,yn

d(xn, yn)|xn〉〈xn|Rn ⊗ |yn〉〈yn|Bn , (79)
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where

d(xn, yn) =
1

n

n∑

i=1

d(xi, yi). (80)

Analogously to the one-shot case described in Section 4.2, we define an (Mn,D, ε) entanglement-
assisted quantum rate distortion code of blocklength n as follows.

Definition 17 An (Mn,D, ε) entanglement-assisted quantum rate distortion (EA QRD) code for{
H⊗n
A ,H⊗n

B , ρ⊗n,∆RnBn

}
is a code with

∣∣H⊗n
M

∣∣ =Mn such that

Tr
{(

Π>D
)
RnBn(idRn ⊗ (N ea

An→Bn))
(
ϕρRA

)⊗n} ≤ ε. (81)

where
N ea
An→Bn(σAn) := (DMnTB→B ◦ EAnTA→Mn)(σAn ⊗ΨTATB ), (82)

The corresponding minimum achievable code size, denoted as M∗
n(ρ

⊗n,∆RnBn ,D, ε), is the mini-
mum value of M such that there exists an (Mn,D, ε) EA QRD code of blocklength n.

We define the mean distortion of n copies of the source state, ρ⊗n, under any CPTP map
NAn→Bn , analogously to the one-shot case, but in terms of the corresponding average symbol-wise
distortion observable ∆RnBn :

δ(n)mean(ρ,NAn→Bn ,∆RB) := Tr
(
∆RnBn ωRnBn

)
, (83)

where ωRnBn := (idRn ⊗NAn→Bn)
(
ϕρRA

)⊗n
. In particular, such a map induces the following mean

distortion on the ith subsystems RiBi:

δmean

(
ρ,N (i)

An→Bn ,∆RB

)
:= Tr(∆RiBi

ωRiBi
), (84)

where ωRiBi
is the reduced state of ωRnBn on the subsystems RiBi, and N (i)

An→Bn denotes the
marginal operation on these systems and is given by

N (i)
An→Bn

(
ρ⊗n

)
:= TrA1,A2,...,Ai−1,Ai+i,...,An

(
NAn→Bn

(
ρ⊗n

))
(85)

Lemma 18 Fix ε > 0, D > 0 and consider a rate distortion observable ∆RB. If NAn→Bn is a
CPTP map acting on ρ⊗n such that

Tr
((
Π≤D

)
RnBn ωRnBn

)
≥ 1− ε,

where ωRnBn := (idRn ⊗NAn→Bn)
(
ϕρRA

)⊗n
, then the corresponding mean distortion satisfies the

bound
δ(n)mean(ρ,NAn→Bn ,∆RB) ≤ D + dmaxε, (86)

where dmax denotes the maximum eigenvalue of the distortion observable.

Proof. This follows directly from the definitions (72) and (77) of ∆RnBn and
(
Π≤D

)
RnBn , and is

analogous to the proof of Lemma 6.
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8.1 Channel Simulation, Quantum Rate Distortion Coding, and Excess-Distortion

Probability

Lemma 1 of [15] shows that a channel simulation protocol can always be used for quantum rate
distortion coding with an average symbol-wise distortion constraint, whenever the simulated chan-
nel meets a mean single-symbol distortion constraint.7 The following lemma is a counterpart to
that result—Lemma 19 shows that a channel simulation protocol can always be used for quantum
rate distortion coding under a symbol-wise excess-distortion probability constraint, whenever the
simulated channel meets a mean single-symbol distortion constraint:

Lemma 19 Fix εsim, δ > 0 and D ≥ 0. Let ∆RB be a distortion observable such that ‖∆RB‖∞ =
dmax <∞. Let ρA be a state with purification |ϕρ〉RA and NA→B be a quantum channel such that

Tr{∆RB ωRB} ≤ D − δ,

where ωRB := (idR ⊗NA→B)
(
ϕρRA

)
and supp(ωRB) ⊆ supp(∆RB). Furthermore, let Fn : D(H⊗n

A ) 7→
D(H⊗n

B ) denote a quantum operation, such that

1
2

∥∥σRnBn − ω⊗n
RB

∥∥
1
≤ εsim,

where
σRnBn := (idRn ⊗Fn)

((
ϕρRA

)⊗n)
.

Then the average symbol-wise excess-distortion probability satisfies the following bound:

Tr
{(

Π>D
)
RnBn σRnBn

}
≤ exp

{
−2nδ2/d2max

}
+ εsim.

Proof. Let Z be a random variable with the following distribution:

pZ(z) := 〈φz|ωRB |φz〉,

where we recall that ∆RB =
∑

z dz|φz〉〈φz |. Let the nth i.i.d. extension Zn of Z have the distribu-
tion:

pZn(zn) := 〈φzn |ω⊗n
RB|φzn〉.

Then the first condition in the statement of the lemma is equivalent to

Tr{∆RB ωRB} =
∑

z

dz pZ(z) = EZ{dZ} ≤ D − δ.

Also, observe from the i.i.d. assumption that EZ{dZ} = EZn

{
dZn

}
, so that

EZn

{
dZn

}
+ δ ≤ D.

Using the spectral decomposition in (77) and the definition of pZn , we can then write

Tr
{(

Π>D
)
RnBn ω

⊗n
RB

}
=

∑

zn : dzn>D

pZn(zn).

7Lemma 1 of [15] was proved for the entanglement fidelity based distortion measure, but a quick inspection of its
proof reveals that the lemma holds for an arbitrary distortion observable.
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An exponentially decreasing tail bound on Tr
{(

Π>D
)
RnBn ω

⊗n
RB

}
follows by appealing to Hoeffding’s

inequality [23, 12]:

∑

zn : dzn>D

pZn(zn) = Pr
Zn

{
dZn > D

}

≤ Pr
Zn

{
dZn > EZn

{
dZn

}
+ δ
}

≤ exp
{
−2nδ2/d2max

}
.

We obtain the statement of the lemma by appealing to Lemma 3 and the above inequality:

Tr
{(

Π>D
)
RnBn σRnBn

}
≤ Tr

{(
Π>D

)
RnBn ω

⊗n
RB

}
+ 1

2

∥∥σRnBn − ω⊗n
RB

∥∥
1

≤ exp
{
−2nδ2/d2max

}
+ εsim.

Remark 20 In much of the prior work on quantum rate distortion theory, the channel simulation
method was used to prove achievability for rate distortion coding with a mean distortion constraint
in a variety of scenarios [26, 15, 16, 40]. The above lemma demonstrates that all of these channel
simulation methods can be extended to achieve rate distortion coding with an excess-distortion
probability constraint.

8.2 Average Symbol-Wise Entanglement Fidelity Distortion Observable

A particular example of an average symbol-wise distortion measure is the entanglement fidelity
based distortion measure that Barnum introduced [3]. The distortion observable corresponding to
it is taken from the average symbol-wise entanglement fidelity:

∆RnBn :=
1

n

n∑

i=1

(
I⊗(i−1)

)
Ri−1

1
Bi−1

1

⊗
(
IRiBi

− |ϕρ〉〈ϕρ|RiBi

)
⊗
(
I⊗(n−i)

)
Rn

i+1
Bn

i+1

.

We can think of this distortion observable as being analogous to a Hamiltonian that assigns an
energy penalty of one on average if the output state is orthogonal to |ϕρ〉〈ϕρ|RB . Thus, the above
distortion observable is a quantum analog of the classical Hamming distortion measure. We can
expand the distortion observable ∆RnBn by making the following assignments:

Π0 := |ϕρ〉〈ϕρ|RB , (87)

Π1 := IRB − |ϕρ〉〈ϕρ|RB . (88)

By applying the spectral decomposition in (73), we arrive at

∆RnBn =
n∑

j=1

j

n




∑

xn∈{0,1}n : wt(xn)=j

Πxn


, (89)

where
Πxn := Πx1 ⊗ · · · ⊗Πxn ,
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and wt(xn) is equal to the Hamming weight of the string xn. Thus, the analogy with the classical
Hamming weight distortion measure becomes clear: A reproduction of the quantum source at the
output is given an average penalty proportional to the number of terms in the tensor product that
are orthogonal to |ϕρ〉〈ϕρ|RB .

By applying Lemma 15 again, we can determine the form of the excess-distortion observable(
Π>D

)
RnBn corresponding to ∆RnBn , with 0 ≤ D ≤ 1. Since two projectors Πxn and Πyn with

xn, yn ∈ {0, 1}n are orthogonal whenever xn 6= yn, by using (26) and (89), we can write

(
Π>D

)
RnBn =

∑

j∈{1,...,n} : j/n>D




∑

xn∈{0,1}n : wt(xn)=j

Πxn


. (90)

9 First-Order Convergence for a Memoryless Quantum Source

Consider the case in which Alice has n > 1 copies of the source state ρ ∈ D(HA). Let M∗
n(D, ε)

denote the minimum achievable code size, for an entanglement-assisted quantum rate distortion
code of blocklength n, at excess-distortion probability ε and distortion D, for the average symbol-
wise distortion observable ∆RnBn defined by (72). In this section, we show that the one-shot bounds
from the previous sections converge to the known expression for the entanglement-assisted quantum
rate distortion function from [15]:

lim
ε→0

lim
n→∞

1

n
log(M∗

n(D, ε)) = Rqea(D), (91)

where

Rqea(D) :=
1

2
min
NA→B

{I(R;B)ω : δmean(ρ,NA→B,∆RB) ≤ D}, (92)

where δmean(ρ,NA→B,∆RB) denotes the mean distotion and is defined through (28). (We should
clarify that [15] proved the above result for an entanglement fidelity based distortion measure, but
it is clear that the results there hold for an arbitrary distortion observable.)

9.1 First-Order Convergence of the Achievability Bound for a Memoryless

Source

We now show that the one-shot expressions from Sections 6.2 and 6.1 provide a lower bound on the
entanglement-assisted quantum rate distortion function defined in (92). We do this by applying
Lemma 19 and the one-shot bounds in Sections 6.2 and 6.1.

We first analyze how the expression (59) from Section 6.2 converges; the analysis for the ex-
pression (57) from Section 6.1 then follows similarly. From (59) and the fact that we are now
considering the average symbol-wise excess-distortion projector

(
Π>D

)
RnBn , it follows that if Alice

and Bob share entanglement in the form of maximally entangled states, then

1

n
logM∗

n ≤ min
NAn→Bn , ε1

{
1

2n

[
Hδ

0(B
n)Ω −Hδ

min(B
n|Rn)Ω

]
+

1

n
log

1

δ′
: (A), 0 < ε1 < ε

}
, (93)

for every n and ε, where NAn→Bn is a CPTP map from D(H⊗n
A ) → D(H⊗n

B ), δ, δ′ are positive
constants defined as in Section 6.2,

ΩRnBn = (idRn ⊗NAn→Bn)
(
ϕρRA

)⊗n
, (94)

25



and (A) denotes the condition

(A) : Tr
((

Π>D
)
RnBn(idRn ⊗NAn→Bn)

(
ϕρRA

)⊗n) ≤ ε1, (95)

for
(
Π>D

)
RnBn the excess-distortion projection operator defined in (77).

We can obtain an upper bound on the RHS of (93) by restricting the minimization to CPTP
maps of the form NAn→Bn := (NA→B)

⊗n. Furthermore, we can simply pick ε1 = ε/2 so that we
just require that the excess-distortion probability of the ideal simulation of the map (NA→B)

⊗n is
no larger than ε/2 (recall that the ideal simulation is achieved by Alice acting on the source state
with the Stinespring isometry of the map). This yields the following bound

1

n
logM∗

n ≤ min
NA→B

{
1

2n

[
Hδ

0(B
n)ω⊗n −Hδ

min(B
n|Rn)ω⊗n

]
+

1

n
log

1

δ′
: (A′)

}
, (96)

where
(A′) : Tr

((
Π>D

)
RnBnω

⊗n
RB

)
≤ ε

2
, (97)

Now consider any map NA→B such that Tr{∆RBωRB} ≤ D − ν for some ν > 0 where

ωRB = (idR ⊗NA→B)
(
ϕρRA

)
.

By Lemma 19, the excess-distortion probability resulting from the ideal simulation obeys

Tr
((
Π>D

)
RnBnω

⊗n
RB

)
≤ exp{−2nν2/d2max}.

For large enough n, this can be made less than ε/2, so that we can further restrict the minimization
to maps satisfying Tr{∆RBωRB} ≤ D − ν. Then the following upper bound applies for large
enough n:

1

n
logM∗

n ≤ min
NA→B

{
1

2n

[
Hδ

0(B
n)ω⊗n −Hδ

min(B
n|Rn)ω⊗n

]
+

1

n
log

1

δ′
: Tr{∆RBωRB} ≤ D − ν

}
,

(98)
and the total excess-distortion probability of the protocol (which consists of the ideal simulation
followed by quantum state-splitting) is less than ε. Then the relations (19) and (16) imply that
the following bound holds

lim
ε→0

lim
n→∞

1

n
logM∗

n(D, ε) ≤ min
NA→B

{
1

2
[H(B)ω −H(B|R)ω] : Tr{∆RBωRB} ≤ D − ν

}

= min
NA→B

{
1

2
I(R;B)ω : Tr{∆RBωRB} ≤ D − ν

}
, (99)

By taking the limit ν → 0, we observe that the one-shot expression is bounded from above by the
entanglement-assisted quantum rate distortion function given in (92).

If instead Alice and Bob share entanglement in the form of embezzling states, then it follows
from (57) that

1

n
logM∗

n ≤ min
NAn→Bn

{
1

2n
Iε/5max(B

n;Rn)Ω +
1

n

(
2 log(5/ε) + 4 + log log(|Bn|+ (5/ε)2)

)
: (A)

}
,

(100)
where ε1 = ε/5 in (A) and ΩRnBn is the state defined by (94). A very similar argument as above
then shows that this expression is bounded from above by (92) in the limit.
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9.2 First-order convergence of the converse bound for a memoryless source

We now show that in the limit of asymptotically many copies of a memoryless source, the converse
bound given by Corollary 8 is bounded from below by the expression (92) for the entanglement-
assisted quantum rate distortion function.

Theorem 21 For an average symbol-wise distortion measure, the lower bound from Corollary 8 is
bounded from below by Rqea(D) defined in (92):

lim
ε→0

lim
n→∞

1

n
min

NAn→Bn

min
ψBn

1

2

[
D1−ε′
H

(
ωRnBn ||

(
ϕρR
)⊗n ⊗ ψBn

)
− log

1

ε′′

]
≥ Rqea(D). (101)

where ε′ > 2ε, ε′′ = ε′(ε′/2− ε),

ωRnBn := (idRn ⊗NAn→Bn)
((
ϕρRA

)⊗n)
, (102)

and the outermost minimization is over quantum channels NAn→Bn such that

Tr
{(

Π≤D
)
RnBn(idRn ⊗ (N ea

An→Bn))
(
ϕρRA

)⊗n} ≥ 1− ε. (103)

In proving the above theorem we make use of the following lemma, which follows directly from
Lemma 14 of [15].

Lemma 22 The entanglement-assisted quantum rate distortion function Rqea(D) is non-increasing
and convex:

D1 < D2 =⇒ Rqea(D1) ≥ Rqea(D2).

Rqea(λD1 + (1− λ)D2) ≤ λRqea(D1) + (1− λ)Rqea(D2),

where 0 ≤ λ ≤ 1.

We also make use of the following property of the quantum mutual information which was proved
in [15].

Lemma 23 (Superadditivity of quantum mutual information): The quantum mutual information
is superadditive in the sense that for any CPTP map NA1A2→B1B2

,

I(R1R2;B1B2)σ ≥ I(R1;B1)σ + I(R2;B2)σ,

where
σR1R2B1B2

= NA1A2→B1B2
(φR1A1

⊗ ϕR2A2
).

Proof of Theorem 21. First note that the condition (103), Lemma 18 and the definition (72)
of ∆RnBn implies that

Tr
(
∆RnBnωRnBn

)
≡ 1

n

n∑

i=1

Tr(∆RiBi
ωRiBi

) ≤ D + dmaxε, (104)

where dmax denotes the maximum eigenvalue of the distortion observable ∆RB .
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Let N ∗
An→Bn be the map achieving the minimum in (101) and define the output state ωRnBn :=

(idRn ⊗N ∗
An→Bn)

((
ϕρRA

)⊗n)
. Using Lemma 1 with δ = 1−ε′, and the following relation from [13],

D
√
2ε′

max (ρ||σ) ≥ D(ρ̃||σ), (105)

where ρ̃ ∈ B
√
2ε′(ρ) is the state minimizing the smooth max-entropy, we find that

LHS of (101) ≥ 1

n
min
ψBn

1

2

[
D

√
2ε′

max

(
ωRnBn ||

(
ϕρR
)⊗n ⊗ ψBn

)
+ log

(
ε′

2
− ε

)]

≥ 1

n
min
ψBn

1

2

[
D
(
ω̃RnBn ||

(
ϕρR
)⊗n ⊗ ψBn

)
+ log

(
ε′

2
− ε

)]

≥ 1

n
min

ψBn ,τRn

1

2

[
D(ω̃RnBn ||τRn ⊗ ψBn) + log

(
ε′

2
− ε

)]

≥ 1

2n

[
D(ω̃RnBn ||ω̃Rn ⊗ ω̃Bn) + log

(
ε′

2
− ε

)]

=
1

2n

[
I(Rn;Bn)ω̃RnBn

+ log

(
ε′

2
− ε

)]

≥ 1

2n
I(Rn;Bn)ωRnBn

− f(ε, ε′, n), (106)

where

f(ε, ε′, n) :=
1

2n

[
5
√
2ε′n log|R| − 3h2

(√
2ε′
)
+ log

(
ε′

2
− ε

)]
.

The third inequality follows by introducing a further minimization. The fourth inequality follows
from

min
σR,τB

D(ρRB ||σR ⊗ τB) = D(ρRB ||ρR ⊗ ρB).

The last inequality follows by applying the Alicki-Fannes’ inequality (continuity of conditional
entropy) [2]. Continuing we have,

LHS of (106) ≥ 1

2n

n∑

i=1

I(Ri;Bi)− f(ε, ε′, n)

≥ 1

n

n∑

i=1

Rqea(Tr(∆RiBi
ωRiBi

))− f(ε, ε′, n)

≥ Rqea

(
1

n

n∑

i=1

Tr(∆RiBi
ωRiBi

)

)
− f(ε, ε′, n)

≥ Rqea(D + dmaxε)− f(ε, ε′, n). (107)

The first inequality follows from superadditivity of quantum mutual information (Lemma 23).
The second inequality follows from the fact that the state ωRiBi

has mean distortion equal to
Tr(∆RiBi

ωRiBi
), and Rqea(Tr(∆RiBi

ωRiBi
)) is the minimum of half the quantum mutual information

over all CPTP maps on the system RiAi with this distortion. The last two inequalities follow from
the convexity of the function Rqea(D) (Lemma 22), the inequality (104), and from the fact that
Rqea(D) is a non-increasing function of D (Lemma 22).

Finally, we can take ε′ = 3ε. Then in the limit as n → ∞ and ε → 0, the lower bound in the
last line of (107) converges to Rqea(D).
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10 Finite Blocklength Results for the Isotropic Qubit Source

In this section, we obtain tight lower and upper bounds on the minimum achievable code size for
the case of an isotropic qubit source with entanglement assistance [18, 40]. These bounds hold for
any finite blocklength n, the entanglement fidelity based distortion observable ∆RnBn from (89),
any excess-distortion probability ε, and any distortion D where 0 ≤ D ≤ 1. In this case, the source
is equal to π⊗nA , where πA := IA/2. A purification of one copy of the source is the Bell state

|Φ〉RA :=
1√
2
(|00〉RA + |11〉RA).

Ref. [40] proved that the entanglement-assisted quantum rate distortion function in (92) for this
example is equal to

Rqea(D) =

{
1− 1

2H
(
{1−D, D3 ,

D
3 ,

D
3 }
)

if 0 ≤ D ≤ 3
4 ,

0 if 3
4 ≤ D ≤ 1,

(108)

where we have used the notation H({·}) to denote the Shannon entropy of the probability distri-
bution inside the braces {·}.

The methods in the following subsections combined with the results of Kostina and Verdú
[25] allow us to conclude the following finite blocklength characterization for entanglement-assisted
quantum rate distortion coding of an isotropic qubit source:

R(n,D, ε) :=
1

n
log(M∗

n(D, ε)) = 1− 1

2
[h2(D)−D log 3] +

1

4n
log(n) +O

(
1

n

)
. (109)

if 0 < D < 3
4 .

10.1 Finite Blocklength Converse for the Isotropic Qubit Source

Applying Proposition 9 (specifically, the bound in (42)) to the scenario mentioned above, we have
the following lower bound on the minimum achievable code size M :

M ≥ max
σRnAn

min
ψBn

√
βε
(
Φ⊗n
RA||σRnAn

)

Tr
{(

Π≤D
)
RnBn(σRn ⊗ ψBn)

}

≥ min
ψBn

√
βε
(
Φ⊗n
RA||Φ⊗n

RA

)

Tr
{(

Π≤D
)
RnBn

(
π⊗nR ⊗ ψBn

)}

≥
√

1− ε

2−nmaxψBn Tr
{(

Π≤D
)
RnBn

(
I⊗nR ⊗ ψBn

)} . (110)

The second inequality follows by choosing σRnAn from the optimization to be equal to Φ⊗n
RA. The

third inequality follows from the definition of βε
(
Φ⊗n
RA||Φ⊗n

RA

)
in (20) and by realizing that π⊗nR =

2−nI⊗nR . Since the expression in the trace features the operator I⊗nR on the right side, we can
evaluate it effectively by taking a partial trace of the excess distortion observable with respect to
the Rn systems. By exploiting the expansion in (90) and the fact that

TrR{Π0} = TrR{ΦRB} =
1

2
IB ,

TrR{Π1} = TrR{IRB − ΦRB} =
3

2
IB,
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we find that

TrRn

{(
Π≤D

)
RnBn

}
= TrRn





∑

j∈{1,...,n} : j/n≤D




∑

xn∈{0,1}n : wt(xn)=j

Πxn








=
∑

j∈{1,...,n} : j/n≤D




∑

xn∈{0,1}n : wt(xn)=j

TrRn{Πxn}




=
∑

j∈{1,...,n} : j/n≤D




∑

xn∈{0,1}n : wt(xn)=j

(
1

2

)n−j(3

2

)j
I⊗nB




=
∑

j∈{1,...,n} : j/n≤D

(
n

j

)(
1

2

)n−j(3

2

)j
I⊗nB

=
1

2n

∑

j∈{1,...,n} : j/n≤D

(
n

j

)
3jI⊗nB

=
1

2n
S⌊nD⌋I

⊗n
B

where

Sk :=

k∑

j=0

(
n

j

)
3j . (111)

Substituting into (110), this leaves us with
√

1− ε

2−2nS⌊nD⌋maxψBn Tr{ψBn} =

√
1− ε

2−2nS⌊nD⌋
.

Taking logarithms of both sides and dividing by n, we get

1

n
logM ≥ 1− 1

2n
log S⌊nD⌋ +

1

2n
log(1− ε).

Applying the following estimate stated as Eq. (390) in Appendix H of [25], which holds for 0 <
D < 3/4,

logS⌊nD⌋ = nh2(D) + nD log 3− 1

2
log n+O(1), (112)

we find that

R =
1

n
logM ≥ 1− 1

2
[h2(D) +D log 3] +

log(n)

4n
+O

(
1

n

)
.

Considering that the bound from [15] for the entanglement-assisted quantum rate distortion
function was the first-order term 1− 1

2 [h2(D) +D log 3], the above bound provides a strong refine-
ment of it that includes logarithmic corrections for finite blocklength.

The following bound applies to entanglement-assisted rate distortion with classical communi-
cation by applying super-dense coding [6]:

1

n
logMC ≥ 2− [h2(D) +D log 3] +

log(n)

2n
+O

(
1

n

)
.
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10.2 Finite Blocklength Achievability Part for the Isotropic Qubit Source

10.2.1 The Teleportation Method

For the case of an isotropic qubit source, there is a simple teleportation strategy [4] for achieving
its entanglement-assisted quantum rate distortion function. First, we consider a strategy that
employs entanglement assistance with noiseless classical communication, and we count the number
of classical bits sent. Then, we relate this strategy to one with entanglement assistance and noiseless
quantum communication by employing super-dense coding [6].

The protocol outlined here is related to the forward classical communication cost of simulating
a Bell-diagonal channel via teleportation [5]. However, the task that is accomplished here is rate-
distortion coding rather than channel simulation (see Remark 10).

The protocol operates as follows:

1. Alice shares n copies of the Bell state |Φ〉RA with the reference. She also shares n copies
of the maximally entangled state |Φ〉A′B with Bob (recall that in the entanglement-assisted
setting, they are allowed as much entanglement as they need in any form that they wish).

2. Alice and Bob operate as in the teleportation protocol [4]. She performs a Bell measure-
ment on each of the AA′ systems, obtaining a classical sequence xn := x1 · · · xn, where
xi ∈ {0, 1, 2, 3}.

3. If Alice were to send the sequence xn itself, then Bob would be able to reconstruct the states
(|Φ〉RB)⊗n perfectly. Instead, Alice and Bob employ a classical 4-ary rate distortion code
with codewords {yn(m)}m∈[M ]. So, Alice finds the codeword representative yn(m) with min-
imum distortion from the measurement outcomes xn, as measured by the Hamming distance
distortion measure:

d(xn, yn) :=
1

n

n∑

i=1

I{xi 6= yi},

where I{·} is an indicator function, equal to one if its argument is true and equal to zero
otherwise. Alice then sends the index m of the codeword representative yn(m) over the
noiseless classical channels.

4. Bob, knowing the code {yn(m)}m∈[M ], performs the correction operations according to the
sequence yn(m) as given in the teleportation protocol. The result is that he creates a state
of the following form:

|Φxn,yn〉 :=
n⊗

i=1

σyiσxi |Φ〉RiBi
,

where σyi and σxi are one of the four Pauli operators {I, σX , σY , σZ}.

5. The distortion as measured by the symbol-wise entanglement fidelity is then equivalent to
the distortion d(xn, yn) as given above, because

Tr

{
1

n

n∑

i=1

(
IRiBi

− |Φ〉〈Φ|RiBi

)
|Φxn,yn〉〈Φxn,yn |

}
=

1

n

n∑

i=1

I{xi 6= yi}.
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Thus, the performance of this protocol as measured by the excess-distortion probability is
exactly the same as the performance of a classical rate distortion code for a uniform 4-ary source.
Kostina and Verdú have calculated tight finite blocklength bounds for this case [25], and as such,
we can consider them directly for our purposes here. In particular, they have shown that there
exists a classical (n,M,D, ε) code satisfying

ε ≤
(
1− S⌊nD⌋4

−n)M ,

where Sk is defined in (111). Applying their bound stated as Eq. (395) of Appendix H of [25] and
the same estimate as in (112), we find the following bound:

2− h2(D)−D log 3 +
1

2n
log n+O

(
1

n

)
≥ 1

n
logM.

Using the fact that this then leads to a protocol for entanglement-assisted quantum rate distortion
coding by super-dense coding, we obtain the following bound for such a code:

1− 1

2
[h2(D)−D log 3] +

1

4n
log n+O

(
1

n

)
≥ 1

n
logMQ.

11 Conclusion

We have provided a framework for one-shot quantum rate distortion coding, by introducing the
notion of an excess-distortion projector corresponding to a distortion observable. We then proved
lower and upper bounds on the minimum qubit compression size of an entanglement-assisted quan-
tum rate distortion code. The lower bounds also serve as lower bounds for unassisted codes, since
entanglement can only help to reduce the minimum qubit compression size. These bounds were ex-
pressed in terms of entropic quantities familiar from the smooth entropy formalism [29, 33, 19, 14].
Next, we showed how these entanglement-assisted bounds converge to the known expression for
the entanglement-assisted quantum rate distortion function of a memoryless quantum information
source. Finally, we determined a tight, finite blocklength characterization for the entanglement-
assisted minimum qubit compression size of an isotropic qubit source. The quantum teleportation
strategy used in the achievability part of this characterization is the first strategy, to our knowl-
edge, different from channel simulation to be employed for the purpose of quantum rate distortion
coding.

There are many questions to consider going forward from here. First, it would be ideal to find
better characterizations of the minimum qubit compression size for an unassisted source (this is of
course related to the fact that we would like a better characterization of the unassisted quantum
rate distortion function other than the one given in [15], which is in terms of the entanglement of
purification). Second, understanding a quantum analog of the “tilted information” from [25] might
be helpful since this quantity gives a second-order refinement of the classical rate-distortion function.
Finally, it would also be good to generalize quantum rate distortion theory to the continuous-
variable setting since this is one of the main motivations for pursuing quantum rate distortion. Some
results were offered in [9], but unfortunately they only considered Barnum’s coherent-information
lower bound, which we know is not a good bound since it can become negative.
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