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Abstract

While much recent progress on interference networks has come about under the assumption
of abundant channel state information at the transmitters (CSIT), a complementary perspective
is sought in this work through the study of interference networks with no CSIT except a coarse
knowledge of the topology of the network that only allows a distinction between weak and
significant channels and no further knowledge of the channel coefficients’ realizations. Modeled
as a degrees-of-freedom (DoF) study of a partially connected interference network with no CSIT,
the problem is found to have a counterpart in the capacity analysis of wired networks with
arbitrary linear network coding at intermediate nodes, under the assumption that the sources
are aware only of the end to end topology of the network. The wireless (wired) network DoF
(capacity) region, expressed in dimensionless units as a multiple of the DoF (capacity) of a
single point to point channel (link), is found to be bounded above by the capacity of an index
coding problem where the antidotes graph is the complement of the interference graph of the
original network and the bottleneck link capacity is normalized to unity. The problems are
shown to be equivalent under linear solutions over the same field. An interference alignment
perspective is then used to translate the existing index coding solutions into wireless network
DoF (wired network capacity) solutions, as well as to find new and unified solutions to different
classes of all three problems. For networks with K messages, a study of the extremes – when
each message achieves half the cake, and when each message can achieve no more than 1/K
of the cake, reveals the necessary and sufficient conditions for each, in terms of alignment
graphs and demand graphs, respectively. Half the cake per message is achievable if and only if
the alignment graph has no internal conflicts. No more than 1/K of the cake is achievable if
and only if the network can be relaxed into a K-unicast setting with an acyclic demand graph,
possibly by eliminating some demands. For half-rate-feasible networks, best case capacity (DoF)
improvements over the best fractional orthogonal scheduling (TDMA) and fractional partition
multicast (CDMA) solutions are explored for multiple groupcast and multiple unicast settings.
For intermediate cases where neither half the cake, nor 1/K of the cake per message is capacity
(DoF) optimal, the interference alignment perspective is used to characterize the symmetric
capacity (DoF) of all cases where each alignment set either does not contain a cycle or does not
contain a fork. A study of linear feasible rates shows duality properties that are used to extend
the scope of previous results. For wireless networks, extensions to multiple antenna networks
are made in symmetric settings where all nodes are equipped with the same number of antennas.
The study of certain topologies of interest, motivated by cellular networks reveals interesting
aligned frequency reuse patterns.

Presented in part at IEEE GLOBECOM 2012. A preliminary version of this work appears as arXiv:1203.2384.
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1 Introduction

Recent years have seen remarkable advances in our understanding of the information theoretic
capacity limits of interference networks, albeit primarily under the assumption of abundant channel
state information at the transmitters (CSIT). While this has revealed ingenious ways to exploit the
finer aspects of CSIT, the results have been difficult to translate into practice where CSIT is
rarely available to the extent that is assumed. This is a problem not only for wireless interference
networks but also for wired networks with inter-session linear network coding, where the abundant
CSIT assumption corresponds to the knowledge of all the transfer functions, comprised of coding
coefficients inside the network. The motivation for this work comes from both wireless and wired
interference network perspectives.

1.1 Wireless Interference Networks

Recognizing the difficulty of translating theoretical insights based on abundant CSIT assumptions
into practice, researchers have started exploring settings with relaxed CSIT assumptions. The state
of affairs is exemplified by the evolution of the idea of interference alignment which was initially
studied under the assumption of perfect CSIT [1, 2] and has since then been studied under a variety
of relaxed CSIT assumptions including compound channels [3], delayed CSIT [4, 5], mixed CSIT
[6, 7], alternating CSIT [8], and CSIT comprised of coherence patterns [9, 10]. From this research
have emerged clever interference alignment schemes that take advantage of channel-variations [1],
complementary channel states [2], outdated channel states [4], quaternionic structures inherent in
complex channels [11], naturally existing channel correlations and coherence patterns [9], desirable
channel coherence patterns enforced through antenna switching [10], the linear [12], algebraic [13]
and rational independence [14] of channels, and the fundamental information dimension of given
channel realizations [15]. Nevertheless, much of the theoretical insights remain too fragile so far to
be translated directly into practice.

This work is motivated by a complementary perspective, illustrated in Fig. 1. Instead of starting
with abundant CSIT and then incrementally relaxing the CSIT assumptions, what if one started
with no CSIT and then incrementally increased the available CSIT — how far could one go toward
the center (practical settings where CSIT is neither extremely minimal nor overly abundant) in
Fig. 1 before the problem becomes intractable?

No
CSIT

Perfect
CSIT

CSIT !̀
 ̀ Prior WorkThis Work !̀

Figure 1: Motivation for this work and relationship to prior work

Consider a K user wireless interference network, defined by input-output relationships:

y1(n) = h11x1(n) + h12x2(n) + · · ·+ h1KxK(n) + z1(n)

y2(n) = h21x1(n) + h22x2(n) + · · ·+ h2KxK(n) + z2(n)

...
...

...

yK(n) = hK1x1(n) + hK2x2(n) + · · ·+ hKKxK(n) + zK(n)
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where over the nth channel use, xj(n) is the symbol transmitted by transmitter j, hij is the constant
channel coefficient between transmitter j and receiver i, zi(n) ∼ N c(0, No) is the additive white
Gaussian noise (AWGN) at receiver i and yi(n) is the symbol received by receiver i, with i, j ∈
{1, 2, · · · ,K}. All symbols are complex.

As a starting point, suppose absolutely no CSIT is available. It is easy to see that this is a
degenerate setting, because with absolutely no CSIT, i.e., no knowledge of even the desired channels,
no guarantees of reliable communication can be made, and the capacity is zero even in the absence
of interference.

Evidently, to make the problem non-degenerate, at least there must be rate guarantees for the
desired channel in the absence of interference. Suppose the transmit power constraints are set
such that each user is able to support a certain SNR value on the desired link in the absence of
interference. That is,

|hii|2 Pi
No

≥ SNR, ∀i ∈ {1, 2, · · · ,K}, (1)

where Pi is the average transmit power constraint for Transmitter i, E
[

1
N

∑N
n=1 |xi(n)|2

]
≤ Pi. N

is the length of codewords and the expectation is over the messages. Thus, the power constraints
are chosen such that, in the absence of interference, each user can achieve a rate log(1+SNR). This
is a natural assumption if all the users desire similar rates. Suppose beyond the interference-free
SNR guarantee of (1), no CSIT is available. The transmitters have absolutely no knowledge of the
strengths of the channels to undesired receivers.

What is the capacity of this interference network? As shown in Section 4.7, it turns out
that the capacity of this interference network can be precisely determined, and corresponds to
the simple time-division-multiple-access (TDMA) scheme, where the users take turns so that each
user transmits for a fraction 1/K of the time, and achieves a rate 1

K log (1 +KSNR) which is the
symmetric capacity of this network. While it is remarkable that the exact capacity can be found
in this case, the optimality of TDMA is perhaps not very interesting.

Next, let us move further to the right in terms of Fig. 1 by incrementally increasing CSIT. In
addition to the interference-free SNR guarantees for the desired channels, as in (1), let us allow just
one bit of CSIT about the interference channel strengths. A natural choice for this one bit CSIT
could be as follows. The receivers compare the nominal received power from the undesired links to
a pre-chosen threshold value, which is effectively the acceptable noise floor, and assign a ‘0’ to all
those (weak) links whose collective contribution is below the noise floor. All other (significant) links
are assigned the value ‘1’. These assignments comprise the 1-bit CSIT of the undesired channel
strengths. Note that this is 1-bit CSIT for the entire duration of communication, and not 1-bit per
channel use, i.e., the assignments are permanent, based on the nominal values of average received
signal strengths, and are not dependent on the actual transmit powers which may vary with time,
e.g., if the optimal scheme is such that the users do not transmit all the time. So, with this 1-bit
CSIT of interference carrying links, what is the capacity of this network? Unlike the previous
cases which turned out to be straightforward, we will see that this question turns out to be most
interesting and highly non-trivial in general.

1.1.1 Example

Under the assumptions stated above, the interference network is comprised of three kinds of channels
— desired channels, significant interference channels, and weak interference channels. Graphically,
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if we represent all sources as black nodes, all destinations as white nodes, all desired channels
as black edges, all significant interference channels as red edges, and omit the weak interference
channels, both to avoid cluttering the graph, and to emphasize their ‘insignificant’ character, then
the resulting network might look like the simple example shown in Fig. 2(a), comprised of K = 5
users. From the transmitters’ perspective, the CSIT consists of interference-free SNR guarantees
of (1) for the desired channels, and the following information about undesired channels

|h12|2 P2 + |h15|2 P5 ≤ No

|h21|2 P1 + |h25|2 P5 ≤ No

|h32|2 P2 + |h34|2 P4 ≤ No

|h42|2 P2 + |h43|2 P3 ≤ No

|h51|2 P1 + |h53|2 P3 + |h54|2 P4 ≤ No

which identifies the weak interference channels. All other interference channels are considered
significant and are shown as red edges in Fig. 2(a).

We will show that the capacity for this network can be characterized to within a constant gap
as 1

2 log(1 + 3SNR/8) ≤ C ≤ 1
2 log(1 + 2SNR) bits/channel-use per user. The gap between the

two bounds is at most 1.2 bits. While the details of this example will be explained later, what
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Figure 2: (a)Partially connected network with no CSIT (except topology). (b) Fully connected network with
abundant CSIT.

is important at this point is to highlight the core problem: In order to obtain the constant gap
result, we will need to first find the degrees of freedom (DoF) of the underlying partially connected
interference network (where the weak channels are set to zero) with no CSIT except the knowledge
of the topology of the network. This is what we call the topological interference management
problem for wireless networks.

1.1.2 Topological Interference Management for Wireless Networks

The topological interference management problem, in the wireless setting, refers to the DoF analysis
of an interference network where all weak interference channels are set to zero, and where the only
CSIT available to the transmitters is the resulting topology of the network, i.e., which channels are
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zero and which ones are non-zero. The topological interference management problem corresponding
to the example network of Fig. 2(a), is defined by the the input output equations:

y1(n) = h11x1(n) + h13x3(n) + h14x4(n) + z1(n) (2)

y2(n) = h22x2(n) + h23x3(n) + h24x4(n) + z2(n) (3)

y3(n) = h31x1(n) + h33x3(n) + h35x5(n) + z3(n) (4)

y4(n) = h41x1(n) + h44x4(n) + h45x5(n) + z4(n) (5)

y5(n) = h52x2(n) + h55x5(n) + z5(n) (6)

Note that all weak interference channels are eliminated (set to zero) here. For the remaining non-
zero channels hij their values are known to be bounded away from zero but the values themselves
are not known to the transmitters. Thus, the only CSIT is comprised of the connectivity, i.e., the
topology of the network.

A DoF characterization for such partially connected interference networks with no CSIT (beyond
topology knowledge) is the central question addressed in this paper. For the simple example of Fig.
2(a), the DoF value will turn out to be 1/2 per user, which will lead us to a constant gap capacity
characterization. Note that orthogonal schemes such as scheduling of non-interfering groups of
users, cannot achieve a symmetric DoF higher than 1/3 per user. This is easy to see because User 2
interferes with User 5, User 5 interferes with User 4 and User 4 interferes with User 2. Indeed, even
for this simple example, it turns out that interference alignment is needed to achieve the optimal
symmetric DoF value of 1/2 per user.

1.1.3 Practical Significance and Relationship to Prior Work

Since the topological interference management problem for wireless networks is a DoF problem, it is
worthwhile to contrast it with previous DoF studies, and to understand the practical implications.
The contrast is drawn pictorially in Fig. 2. Most prior work is based on DoF studies of canonical
models like Figure 2(b), where the network is fully connected and abundant CSIT is available. This
is problematic on both counts. First, of course, the abundant CSIT assumption is too optimistic,
and therefore likely to produce fragile results. Second, the fully connected assumption, which
means that all channel coefficients are non-zero, is also problematic. It may seem reasonable at
first because technically one could argue that the signal strength never decays to absolutely zero.
However, the DoF metric, in addition to its coarse and asymptotic character which makes it useful
primarily for first order analysis, implicitly treats all non-zero channels as equally strong, in the
sense that any channel with a non-zero constant channel coefficient value can carry exactly 1 DoF,
regardless of the magnitude of the constant. Thus, the fully connected model in conjunction with
the DoF metric trivializes the underlying topology of the network.

Having all interference strength comparable to desired signals is a worst-case scenario [16]
rarely encountered in practice. It is not surprising then that the DoF results for fully connected
network models, under realistic channel uncertainty, tend to be overly pessimistic, often predicting
a dramatic collapse of the DoF [17, 18], when in fact practical networks work fine with even smaller
amounts of CSIT. Universal physical phenomena such as propagation path loss, shadowing, and
fading render transmitters and receivers essentially disconnected beyond a point. The localized
nature of connectivity is the enabling premise for spatial frequency re-use, which is the attribute
responsible more than anything else, for the success of existing cellular networks. To the extent that
the differences in strong vs weak signal strengths have been considered through generalized degrees
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of freedom (GDoF) studies [19, 20], ADT style layered deterministic models [21, 22], partially
connected Wyner type models [23, 24, 25], and low-complexity achievable schemes [26, 27], they
are mostly limited to small networks, multicast settings, assume abundant CSIT, or make no claims
of information theoretic optimality.

The topological aspects are expected to become even more interesting in the future, as supported
by the following observations. 1) Increasingly dense and indoor environments and trends toward
customer deployed networks, pico and femto cells, mesh networks, peer-to-peer networks, and the
use of directional antennas, all point to increasingly complex connectivity patterns. 2) Spectrum
shortage is driving the push toward higher frequency bands (e.g., 60GHz) which experience not only
significantly higher path loss and shadowing effects and shorter range of communication, but also a
greater variance of the signal strengths with distance, again highlighting the increasing topological
complexity of wireless networks. Evidently, there is a need to explore information theoretically
optimal ways to exploit the knowledge of the topology of a wireless network without relying on
finer forms of CSIT.

1.2 Wired Networks with Linear Network Coding

The preceding observations are not restricted to wireless networks. Analogous to the accuracy
versus overhead tradeoff of acquiring CSIT in wireless networks, there is a similar accuracy versus
overhead tradeoff in wired network topology discovery, e.g., when the topology discovery is achieved
through end-to-end probes, i.e., through network tomography. For example, layer 3 topology dis-
covery infers the end-to-end connectivity, which is less accurate and carries less overhead than layer
1 topology which attempts to infer the internal link-level topology of the network, which is more
accurate and carries much more overhead. While such topological considerations are centerstage in
wired networks, traditionally the topology is inferred in terms of orthogonal data pipes, for routing
purposes.

Recently, the advent of network coding has blurred the dichotomy of wired1 and wireless. With
network coding, and linear network coding in particular, performed at the intermediate nodes, an
end-to-end wired network behaves much the same way as a wireless interference network, albeit over
finite fields or packets rather than real or complex signals. Interference is introduced by inter-session
coding at the relay nodes, which transmit linear combinations of their incoming symbols on their
outgoing links, thus creating an end-to-end linear interference network. It is then natural to try
to transfer the emerging interference management principles from wireless to wired networks, and
there is recent work aimed at doing just that [28, 29, 30, 31]. However, in transferring insights from
wireless networks to wired networks, a key limitation is that the interference alignment schemes for
wireless networks are developed for simple topologies, fully connected settings, focusing on channel
realizations, whereas wired networks present critical topological features — nodes are absolutely
disconnected if there exists no path between them — and are often less tied to ‘channel realizations’,
since the channel is simply a manifestation of the network coding operations. Thus, the emphasis on
channel rather than topology is also a hurdle in extending the interference management principles
from wireless to wired networks.

1By wired networks, we mean networks of non-interfering capacitated (noise-less) links. Note that while the
original wired network is comprised of non-interfering links, because of network coding operations at intermediate
nodes, the resulting network does generally experience interference between flows.
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1.2.1 Topological Interference Management for Wired Networks

The topological interference management problem for wired networks is the natural counterpart
of the wireless case: it refers to the capacity analysis of wired single input single output (SISO)
networks based on optimal coding/decoding operations at the original source and final destination
nodes, while the intermediate network performs linear network coding operations, creating an end-
to-end linear interference network. Note that a SISO classification requires that each source has
only one outgoing edge and each destination has only one incoming edge. All edges have the same
capacity log |GF| which allows each edge to carry one symbol from a finite field, i.e., a Galois Field,
denoted as GF, per channel use. The linear network coding operations are performed over the same
finite field. Analogous to the assumption of constant channels in the wireless setting, the network
coding coefficients are assumed to remain constant throughout the duration of communication.
The sources and destinations are not necessarily restricted to perform linear encoding or decoding
operations. Indeed, they may use whatever encoding and decoding schemes are information theo-
retically optimal. Most importantly, the CSIT consists of only the topology of the network, i.e., the
transmitters are only aware whether the end-to-end channel coefficients are zero or non-zero val-
ues. The following example illustrates the topological interference management problem for wired
networks.

1.2.2 Example

Consider the multiple unicast setting illustrated in Fig. 3 where five sources, shown as black nodes
on the left, want to communicate with their corresponding destinations on the right, through a
network of intermediate nodes, connected with noise-less links capable of carrying one finite field
GF symbol (packet) per channel use. The intermediate nodes employ linear network coding, so
that the end-to-end transfer functions are represented as:

y1(n) = h11x1(n) + h13x3(n) + h14x4(n) (7)

y2(n) = h22x2(n) + h23x3(n) + h24x4(n) (8)

y3(n) = h31x1(n) + h33x3(n) + h35x5(n) (9)

y4(n) = h41x1(n) + h44x4(n) + h45x5(n) (10)

y5(n) = h52x2(n) + h55x5(n) (11)

where over the nth channel use, xi(n) is the symbol transmitted by source i, hji is the non-zero and
constant channel coefficient between transmitter i and receiver j and yj(n) is the symbol received
by receiver j, with i, j ∈ {1, 2, · · · , 5}. The channel coefficients are comprised of the network
coding coefficients, e.g., h12 = αbgαcb + αcg. All symbols and linear operations are over GF. Most
importantly the transmitters are only aware of which hij are non-zero, i.e., the knowledge of the
end-to-end topology of the network. We are interested in the capacity of this network.

The observant reader may have noticed that the wired network of Fig. 3 and the partially
connected wireless network of Fig. 2(a) have the same logical end-to-end topology. Indeed, these
two problems are solved simultaneously and share a common solution. The DoF of the partially
connected wireless network of Fig. 2(a) and the capacity of the wired network of Fig. 3 are both
equal to 0.5 per user in their respective normalized units. The normalized unit here represents the
DoF (capacity) of one wireless (wired) link by itself, i.e., log |GF| corresponds to 1 DoF.

7



b	
  

1	
  

2	
  e	
  

c	
  

3	
  

4	
  

5	
  

h	
  

f	
  

j	
  
k	
  

m	
  

1	
  

2	
  

3	
  

4	
  

5	
  

a	
  

d	
  

g	
  

i	
  

l	
  

¸ed

¸cb

¸fe

¸fi
¸hb

¸hl

¸ci

¸kl

¸ml

¸md

¸eg

¸ji

¸cg

¸ja

¸hg

Figure 3: Wired multiple unicast network with linear network coding

1.3 Unified View: Capacity of Linear Networks

It is not merely a coincidence that the partially connected wireless network of Fig. 2(a) has the
same DoF, i.e., first order capacity approximation, as the exact capacity of the wired network of Fig.
3, in their respective normalized units. There is a larger message here which is worth highlighting,
and it has to do with the capacity of linear communication networks (wired and wireless).

The capacity of communication networks is often regarded as the holy grail of network infor-
mation theory. While little progress has been made in the classical sense, e.g., with the classical
discrete memoryless network model, there has been remarkable and rapid progress on the smaller
but widely prevalent class of (essentially) linear communication networks, where the channel out-
puts are linear combinations of channel inputs. This includes wired networks with linear network
coding at intermediate nodes, often modeled as purely linear networks over finite fields, as in this
work. It also includes wireless networks where the interaction between signals is linear, albeit
corrupted by additive noise. Here the capacity of the underlying linear communication network
corresponds to the degrees of freedom (DoF) metric, which naturally de-emphasizes the additive
noise, returning the focus to the linear model of signal interaction. The essential property here is
the linearity of the communication network, so the distinction between wired and wireless settings
is often of little significance. Since DoF studies are often viewed narrowly through the lens of wire-
less networks, it is worth highlighting this under-appreciated aspect. It is true that DoF results
provide a first order approximation to the capacity of wireless networks. However, what the DoF
value really represents is the capacity of the underlying linear communication network where the
received signals are simply linear combinations of transmitted signals. This translates into a first
order capacity approximation, DoF, for wireless networks because of the presence of additive noise,
a necessary evil because without it the infinite resolution of the complex alphabet would make the
capacity undefined (infinite). For corresponding linear wired networks, where noise is not an issue,
indeed the DoF results often (not always, because the choice of field can be significant2) translate
directly into exact capacity results. So the significance of DoF studies extends broadly to the entire
class of linear communication networks. We will also highlight this theme throughout this paper:
how the capacity results for wired networks directly translate into DoF results for wireless networks,
and vice-versa.

2The exceptions have not been explored in the literature, and are also beyond the scope of this work.
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From a unified perspective, the central question in this work is to determine the capacity (DoF)
of partially connected SISO linear communication networks for arbitrary topologies, with no CSIT
except the topology of the network. We formally state the problem next, before proceeding to an
overview of the results.

2 Problem Statement

The topological interference management problem for wired and wireless settings, is specified in
terms of the following parameters.

1. A topology matrix T = [tij ]D×S ∈ {0, 1}D×S .

2. S message sets W(Sj), j ∈ {1, 2, · · · , S}.

3. D message sets W(Di), i ∈ {1, 2, · · · , D}.

4. A field F.

The parameters define a linear communication network with S source nodes, labeled S1, S2, · · · , SS
and D destination nodes, labeled D1, D2, · · · , DD. The only parameter that distinguishes the wired
and wireless settings is the field F, taken to be a Galois Field GF for wired settings and the field of
complex numbers C for wireless networks. We will refer to an instance of the topological interference
management problem for wireless networks as

TIM(T ,W(S),W(D),C)

and for wired networks as
TIM(T ,W(S),W(D),GF).

Channel: The channel input-output relationships are defined as:
y1(n)
y2(n)

...
yD(n)

 =


h11 h12 · · · h1S

h21 h22 · · · h2S
...

...
...

...
hD1 hD2 · · · hDS



x1(n)
x2(n)

...
xS(n)

+


z1(n)
z2(n)

...
zD(n)

 (12)

where, over the nth channel use, xj(n) is the transmitted symbol from Source Sj , yi(n) is the
received symbol at Destination Di, zi(n) is the additive noise at Destination Di, and hij is the
constant channel coefficient between Source Sj and Destination Di. All symbols belong to the field
F.

Message Sets: Source node Sj has a set of independent messages, W(Sj), that it wants to send
to their desired destinations. Destination node Di has a set of independent messages W(Di) that
it desires. The set of all messages is denoted as W.

W =

D⋃
i=1

W(Di) =

S⋃
j=1

W(Sj) (13)
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and K = |W| is the total number of messages. Each message has a unique source, i.e., W(Sj) ∩
W(Sj′) = φ if j 6= j′. A message must have at least one desired destination, and may have more
than one desired destinations. If every message has a unique destination, it is called a multiple
unicast setting. The setting where every message is desired by all destinations is often called the
multicast setting. The general case where every message is desired by at least one, possibly more
than one, but not necessarily all destinations, is called the multiple groupcast setting [32]. When
it is important to highlight the number of messages, the multiple unicast or multiple groupcast
settings will be referred to as K-unicast and K-groupcast, respectively.

Achievable Rates: Each message W ∈ W is an independent random variable that takes values
{1, 2, · · · , 2NR(W )}, each with equal probability. Source Sj uses an encoder, which is a mapping
from the set of messages W(Sj) to a sequence of transmitted symbols xj(1), xj(2), · · · , xj(N) over
N channel uses. Destination Di uses a decoder, which is a mapping from the sequence of received
symbols yi(1), yi(2), · · · , yi(N) to a set of decoded values for its desired messages. An error occurs
if at any destination, the decoded value of a desired message is not the same as the value of that
transmitted message. Here, N is the length of the codebook and R(W ) is the rate associated
with message W . A rate allocation R(W ), that assigns rates to all messages W ∈ W, is said to
be achievable if there exists a sequence of source encoders and destination decoders, indexed by
N , such that the probability of error approaches zero as N approaches infinity. The closure of
achievable rate allocations is known as the capacity region, denoted as C. The symmetric capacity
Csym, of the network is the highest value R0, such that the rate allocation R(W ) = Ro, ∀W ∈ W,
is inside the capacity region.

Channel State Information (CSI): We will assume the following throughout this work.

1. The channel coefficient values are assumed to be fixed throughout the duration of communi-
cation.

2. The topology of the network, T , is known to all sources and destinations.

3. Besides the topology information, there is no CSIT.

4. Besides the topology information, the CSIR only includes the knowledge of the desired channel
coefficients at each receiver.

So far, the problem description is identical for both wired and wireless networks. The remaining
assumptions, specialized to these networks, are stated next.

2.1 Wireless Networks

For wireless networks, the field F = C, the field of complex numbers, so that all symbols are
complex, and the zi(n) terms represent additive white Gaussian noise, independent identically
distributed ∼ N c(0, No). The average transmit power constraint at source Sj is set as Pj , i.e.,
1
NE

[∑N
n=1 |xj(n)|2

]
≤ Pj , to ensure the following nominal interference-free SNR guarantees for all

desired links:

|hij |2 Pj
No

≥ SNR, ∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S},W(Di) ∩W(Sj) 6= φ. (14)
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Thus, the power constraints are chosen such that, in the absence of all other messages, each message
by itself can achieve a rate log(1 + SNR). Since (14) is the only information available to the
transmitters about desired channels, log(1 + SNR) is also the individual capacity of each message
if all other messages are eliminated, i.e., allocated zero rates.

2.1.1 DoF

While our ultimate goal for wireless networks is the capacity characterization within a constant
gap, a useful intermediate step toward this ultimate goal will be a first order analysis, i.e., a DoF
analysis, of a partially connected network where the weak channels are set to zero.

Partially connected model: ∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S}, if tij = 0 then hij = 0. (15)

In this partially connected model, we let SNR approach infinity (by increasing the transmit power
for every source proportionately), and evaluate the achievable rates normalized by log(SNR). If
there exists a sequence of achievable rate allocations R(W ), such that the limit R(W )/ log(SNR)
exists for all W ∈ W as SNR→ ∞, then these limiting values are said to be an achievable DoF
allocation.

DoF(W ) = lim
SNR→∞

R(W )

log(SNR)
, ∀W ∈ W (16)

The closure of the set of achievable DoF allocations is called the DoF region and denoted as DOF .
The symmetric DoF value, DoFsym of the network is the largest value DoFo, such that the DoF
allocation DoF(W ) = DoFo, ∀W ∈ W, is inside the DoF region. As a fair and compact metric, we
are especially interested in the symmetric DoF.

Note that for wireless networks, it is the DoF problem for the partially connected network that
we denote as TIM(T ,W(S),W(D),C).

2.1.2 Capacity within a constant gap for the original wireless network

While the majority of this paper will focus on the DoF of partially connected networks it is im-
portant to remember that the original wireless network is not partially connected. For the original
wireless network, the topology matrix identifies the weak channels as:∑

j:tij=0

|hij |2 Pj ≤ No (17)

so the average received power contribution at destination Di, from all weak interferers Sj , i.e.,
sources for which tij = 0, can be no more than the noise floor. The topological interference
management problem is intended as a stepping stone to obtaining a capacity approximation for the
original wireless network. In particular, we will find capacity approximations accurate to within a
constant gap that does not depend on SNR.

Remark: Note that the “topological interference management problem” refers to the partially
connected network model of (15), and the “original network” refers to the weakly connected model
of (17).

One might wonder, since the conventional DoF formulation involves sending transmit powers
to infinity while the noise floor is fixed, how can (17) continue to hold for a given channel as the
transmit powers approach infinity? Indeed, this is precisely the problem with the conventional
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DoF formulation that we alluded to in Section 1.1.3. Our goal is not to understand the network
in the limit as all transmit powers approach infinity, because such a limit says little about the
original finite SNR setting of interest. It is even misleading to use this limit for insights into the
finite SNR behavior because the conventional DoF limit treats all non-zero channels as essentially
equally strong, thereby fundamentally changing the nature of the interference management problem
relative to the original finite SNR setting where weak interferers fall below the noise floor and can
be ignored at little cost. Our goal is to understand the network at the original, given, finite SNR
values. When we send the transmit powers to infinity, we do so by associating to each SNR value,
a corresponding network realization that satisfies (17). We study this class of networks together,
because these networks have the same fundamental character, the same underlying topology, and
indeed the same (normalized by log(SNR)) capacity within a constant gap. So when we obtain
a capacity characterization, e.g., for the network of Fig. 2 within 1.2 bits, regardless of SNR, we
have established the capacity of each member of a class of networks, such that for any SNR value,
our capacity characterization is within 1.2 bits of the capacity of the network corresponding to
that SNR. This class includes the original network when the SNR value is taken to be the original,
given, SNR value. This distinction is extremely important and worth repeating. The conventional
DoF formulation fixes the channel realizations and scales all the transmit powers proportionately
and finds the limiting (normalized by log(SNR)) value of capacity at infinite SNR, which has little
to do with the capacity of the original network at the given original finite SNR. Our formulation,
however, proceeds through a sequence of network realizations indexed by SNR values, such that
every network in this class has the same capacity (each normalized by its corresponding SNR) within
a constant gap as the original network at its original SNR. In this formulation, the connection to
the original network and the original finite SNR topology is maintained throughout as the SNRs
approach infinity, so that finding the normalized capacity in the infinite SNR limit also determines
the capacity within a constant gap for every network realization along the way, at its corresponding
SNR value. For a deeper understanding of this aspect, we point the reader to the discussion on
the Generalized Degrees of Freedom (GDoF) metric presented by Bresler and Tse in [33], where
also the GDoF metric is instrumental in characterizing the capacity region of a 2 user interference
channel at all finite SNR values within a constant gap. Indeed, our formulation of the problem
as the DoF of a partially connected network can also be equivalently seen as a GDoF formulation
where the SNR exponents of the weak channels have been set to zero.

2.2 Wired Networks

For wired networks, all symbols are from a finite field GF, and the noise terms zi(n) are all zero,
i.e., there is no noise. Like the DoF in the wireless case, the topology of a wired network also
identifies the channels that take zero values:

∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S}, tij = 0 iff hij = 0. (18)

However, in the wired case, this is the actual channel model from which we expect exact capacity
results, and not merely an idealization for first order analysis. We are interested in the capacity
of the network normalized by the capacity of a single link, i.e., a unit capacity represents log |GF|
bits/channel-use. As a fair and compact metric, we are especially interested in the symmetric
capacity. Analogous to the high SNR approximations in the wireless case, we will be content with
capacity characterizations over “sufficiently large finite fields” GF, i.e., fields with sufficiently large
characteristic. Some discussion on the significance of field size restrictions is provided in Section
4.5.
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3 Rates and DoF achievable through Linear Schemes

While the channel model is linear, note that the achievable rates defined in the previous section
are not restricted to linear schemes. Indeed, the information theoretic notions of capacity and DoF
allow arbitrary encoding schemes, and therefore provide the strongest guarantees, not constrained
by complexity. However, linear schemes (also known as vector linear schemes, signal vector space
schemes, or beamforming schemes) are often of interest, not only for their simplicity, but also
because they are very often optimal for linear communication networks from a capacity (wired)
or DoF (wireless) perspective. Since the notion is important to this work, we will define a linear
scheme next.

Linear Scheme: A linear scheme over N channel uses achieving, in the wired case, the rates

R(W ) =
L(W )

N
,∀W ∈ W (19)

and, in the wireless case, the DoF,

DoF(W ) =
L(W )

N
,∀W ∈ W (20)

where L(W ) are non-negative integer values, consists of

1. precoding matrices V(W ) ∈ FN×L(W ), ∀W ∈ W, and

2. receiver combining matrices Ui(W ) ∈ FL(W )×N , ∀W ∈ W(Di), i ∈ {1, 2, · · · , D},

such that the following properties are satisfied

Property 1: Ui(W )V(W̃ ) = 0, (21)

∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S},W ∈ W(Di), W̃ ∈ W(Sj),

such that W 6= W̃ and tij = 1.

Property 2: det(Ui(W )V(W )) 6= 0, ∀W ∈ W(Di), ∀i ∈ {1, 2, · · · , D}. (22)

Evidently, property 1 ensures that all interference is eliminated and Property 2 ensures that the
desired signal is recovered.

Thus, each message W is split into L(W ) independent scalar streams, collectively represented by
the column vector X(W ) = (x1(W ), x2(W ), · · · , xL(W )(W ))T ∈ FL(W )×1, each of which carries one
symbol from F, and is transmitted along the corresponding column vectors (the “beamforming”
vectors) of the precoding matrix V(W ). In the wired case, the symbols xl(W ) are uniformly
distributed over the finite field F, each carrying log |F| bits of information. In the wireless case,

the xl(W ) are independent Gaussian codebooks, each with power
Pj

|W(Sj)|L(W ) where W ∈ W(Sj),

and the columns of V(W ) are scaled to have unit norm (which does not affect Property 1 or 2), so
that the power constraints are satisfied. Note that properties 1 and 2 do not involve SNR or the
values of the non-zero channel realizations hij , and therefore the existence of U,V matrices that
satisfy these properties, does not depend on SNR or the non-zero channel coefficient values. It only
depends on the message sets, the topology, and possibly the field F.
Over the N channel uses, Source Sj sends,

Xj =
∑

W∈W(Sj)

V(W )X(W ). (23)
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Destination Di receives the N × 1 vector,

Yi =
∑
j:tij=1

∑
W∈W(Sj)

hijV(W )X(W ) + Zi, (24)

and for each desired message W ∈ W(Di) ∩W(Sj), projects the received signal vector Yi into the
Ui(W ) space to obtain,

Yi(W ) = Ui(W )Yi = hijUi(W )V(W )X(W ) + Ui(W )Zi, (25)

where the contributions from all other messages are eliminated due to Property 1. Now, as stated
previously, the channel coefficient hij is assumed to be known to Destination i and is non-zero
(otherwise there would be no path for this desired message and the problem would be degenerate),
and according to Property 2, Ui(W )V(W ) is an invertible matrix. The following non-interfering
channels are obtained for each desired symbol stream.

Yi =
1

hij
[Ui(W )V(W )]−1 Yi(W ) = X(W ) +

1

hij
[Ui(W )V(W )]−1 Ui(W )Zi︸ ︷︷ ︸

Zi

(26)

⇒ yi,l(W ) = xl(W ) + zi,l, l ∈ {1, 2, · · · , L(W )}. (27)

Thus, in the wireless case, each non-interfering channel contributes 1/N DoF (it contributes 1 DoF,
but because N channel uses are required by the linear coding scheme, the normalized value is 1/N
per channel use), so that DoF of L(W )/N is achieved for each message W . Note that the additive
noise power for each non-interfering channel is bounded by a constant, away from zero and infinity,
even as SNR approaches infinity, so it is inconsequential for the DoF metric. In the wired case,
there is no noise, and a rate of L(W )/N is achieved for each message W . This is, of course, subject
to the existence of the precoding and receiver combining matrices U,V that satisfy properties 1
and 2. The largest achievable rates (wired) or DoF (wireless) through linear schemes, therefore,
correspond to the largest values of L(W )/N for which such precoding and combining matrices exist.

4 Results

We are interested in the capacity and DoF of partially connected linear wired and wireless networks
with arbitrary connectivity and arbitrary message sets, when there is no CSIT beyond the network
topology. The first set of results reveals the essence of the problem by translating it, somewhat
surprisingly, into a previously studied problem, the index coding problem. The index coding problem
was introduced in 1998 by Birk and Kol [34] and has been studied extensively in the computer-
science community. The index coding problem is described in detail in Appendix A.

Both the topological interference management problem and the index coding problem are com-
prised of a number of sources S, a number of destinations D, and message sets W(Di), W(Sj)
associated with each destination Di and each source Sj . However, while a topological interference
management problem is defined by a topology matrix T ∈ {0, 1}D×S , the index coding problem
is defined by an antidote matrix A ∈ {0, 1}D×S . Intuitively, the roles of the antidote matrix and
the topology matrix are the opposite of each other. For a source and destination pair Sj , Di which
have no desired messages between them, W(Di)∩W(Sj) = φ, the presence of an interference link,
tij = 1, can only hurt by exposing the destination node Di to interference from undesired source
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Sj , but the presence of an antidote link, aij = 1, can only help by providing the destination Di

with antidotes for W(Sj). As it turns out, the relationship between the two problems maps the
antidote matrix A to the complement of the topology matrix T . For a given S×D topology matrix
T , define the complementary topology matrix T , also an S ×D matrix, as

tij =

{
0 if tij = 1
1 if tij = 0

(28)

In this section we present the statements of the results as theorems and corollaries. The proofs
appear in Section C.

4.1 Topological Interference Management as an Index Coding Problem

The first set of results is stated in the following two theorems.

Theorem 4.1 The capacity (DoF) region of the topological interference management problem
TIM(T ,W(S),W(D),F), for wired (wireless) networks, is bounded above by the capacity region of
the corresponding index coding problem IC(A,W(S),W(D)), where A = T . Specifically,

Wireless: DOF (TIM(T ,W(S),W(D),C)) ⊂ C
(
IC(T ,W(S),W(D))

)
(29)

Wired: C (TIM(T ,W(S),W(D),GF)) ⊂ C
(
IC(T ,W(S),W(D))

)
(30)

Note the relationship between all three problems (TIM(wired), TIM(wireless), IC). They have
the same sets of sources and destinations, and the same message sets. Note that TIM problem
requires a field specification — a wired network is associated with a finite field GF, and a wireless
network with the field of complex numbers, C, and the capacity may change depending on the field.
However, the index coding capacity problem does not require a field specification3. Yet, the index
coding problem provides an outer bound for the normalized capacity or DoF of wired and wireless
networks. The relationship becomes even stronger, an equivalence instead of an outer bound, when
restricted to linear solutions.

Theorem 4.2 The achievable rate (DoF) region for TIM(T ,W(S),W(D),F) through linear schemes
is the same as the achievable rate (DoF) region of IC(T ,W(S),W(D)) through linear schemes over
the same field F.

Theorem 4.2 is quite powerful because linear solutions are often capacity optimal for the index
coding problem. In particular, linear solutions will be shown to be capacity optimal for all cases
solved in this paper. It should also be noted that linear solutions are not always optimal for the
index coding problem, as shown by Blasiak et al. in [35] for the general index coding problem, and
by Maleki et al. in [32] for the multiple unicast index coding problem, based on counterexamples
inspired by matroid theory that were originally used to show insufficiency of linear codes for the
general network coding problem by Dougherty et al. in [36]. Interestingly, none of the counterexam-
ples applies directly to the topological interference management problem, for the wired or wireless
case, especially for the multiple unicast setting. As such, it remains an intriguing possibility that
linear codes may yet be sufficient for the topological interference management problem.

For wireless networks, the topological interference management problem (which models a net-
work as partially connected by removing weak interference) was motivated as a stepping stone
to obtain constant gap capacity approximations for the original network. The following theorem
formalizes this relationship.

3Field specification is important if the class of achievable schemes is restricted, say, to linear schemes.
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Theorem 4.3 Whenever a non-asymptotic linear scheme is DoF optimal for an index coding prob-
lem over F = C, then a constant gap capacity approximation is available for the original wireless
network.

The definition of a DoF optimal linear scheme is presented in Appendix A. Thus, according to The-
orem 4.3 solving the topological interference management problem for partially connected wireless
networks guarantees a constant gap capacity approximation for the original wireless network when-
ever linear solutions are DoF optimal for the corresponding index problem over C. Since linear
solutions are DoF optimal for all instances considered in this work, constant gap approximations
for the original wireless networks are automatically implied. For the first few examples we will
study the constant gap approximations in some detail to see how the gap can be made smaller.
In general, however, we will be content with a constant gap guarantee, i.e., non-asymptotic linear
solution to the topological interference management problem that is DoF optimal.

The solution to the motivating examples is presented next to illustrate the application of the-
orems 4.1 and 4.2. A detailed treatment of the constant gap approximation for the wireless moti-
vating example is presented in Section 4.4.1.

4.2 Example

The partially connected wireless network of Fig. 2(a) and the partially connected wired network
of Fig. 3 have the same end-to-end topology. The topology and the message sets are illustrated
in Fig. 4(a), as a unified representative of both wireless and wired settings. Note that this is a
multiple unicast setting with S = D = 5 and W(Si) =W(Di) = Wi.
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! Ŵ3

! Ŵ4
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Figure 4: (a) Topological Interference Management Problem, (b) Associated Index Coding Problem

According to Theorem 4.1, the capacity region of the wired network and the DoF region of the
wireless network represented by Fig. 4(a), is bounded above by the capacity region of the index
coding problem shown in Fig. 4(b), which has the same source and destination nodes, the same
message sets, and antidote links that complement the topology of Fig. 4(a) – whenever there is (is
not) an edge between Sj and Di in Fig. 4(a), then there is not (is) an antidote edge between Sj
and Di in Fig. 4(b). Recall, that all edges in the index coding problem have infinite capacity, with
the exception of the bottleneck edge between nodes N1 and N2, which is normalized to have unit
capacity.

The examples of Fig. 2(a) and Fig. 3 are chosen not because they are particularly challenging
(indeed we will deal with more challenging instances of the index coding problem later in this paper)
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but rather for their historical significance. As it turns out, the specific index coding problem of
Fig. 4(b) is considered originally by Birk and Kol in [34], and is the first known example of
interference alignment. Limiting our discussion to symmetric rates, Birk and Kol have shown that
the symmetric capacity of the index coding problem is 0.5 per message, where the unit is the
capacity of the bottleneck link, and furthermore linear schemes suffice to achieve the symmetric
capacity over any finite field. It is also easy to see that linear schemes achieve the symmetric DoF
of the index coding problem over the field of complex numbers. Therefore Theorems 1 and 2 imply
that the symmetric capacity of the wired network of Fig. 3, and the symmetric DoF of the wireless
network of Fig. 2(a), are both equal to 0.5 per message, where the unit is the individual capacity
or DoF of a non-zero link, respectively.

For the sake of completeness let us summarize the proof of Birk and Kol’s result that the
symmetric capacity of the index coding problem of Fig. 4(b) is 0.5 per user. Let us start with the
achievable scheme. Suppose the bottleneck link carries a finite field GF symbol per channel use,
i.e., it has capacity log |GF| per channel use. In order to achieve a symmetric capacity of 0.5 per
message, we will successfully transmit one GF symbol, xi, per message Wi, such that each symbol
can be recovered at its desired receiver, by using the bottleneck link twice. Birk and Kol’s solution
is to send the following two transmissions on the bottleneck link:

First transmission: x1 + x2 + x5 (31)

Second transmission: x2 + x3 + x4 (32)

Each destination node sees these two transmissions in addition to its own antidotes, from which it
must decode its desired message. To see how this works, as an example consider destination D5,
which already has antidotes for messages W1,W3,W4, so it can remove x1, x3, x4 from its received
signals. This leaves D5 with x2+x5 from the first transmission and x2 from the second transmission.
Clearly, subtracting the latter from the former, it can recover its desired symbol x5. Since one GF
symbol is communicated per two channel uses, the symmetric rate achieved is 0.5 log |GF|, i.e., a
normalized rate of 0.5 per message.

For the outer bound on the symmetric capacity, eliminate all messages except W4,W5. In the
remaining index coding problem, destination D4 sees only the output of the bottleneck link and
has no antidotes, while destination D5 also sees the output of the bottleneck link and in addition
has W4 as antidote. Any reliable coding scheme must allow D4 to decode W4 from just the output
of the bottleneck link. However, after decoding W4, destination node D4 has all the information
available to destination D5, so it must also be able to decode W5. Since D4 is able to decode both
W4,W5 from just the output of the bottleneck link, the sum-rate of W4 and W5 cannot be more
than the capacity of the bottleneck link. Therefore, the symmetric rate cannot be more than half of
the bottleneck link capacity. Including other messages cannot improve the symmetric rate. Thus,
we have the information theoretic outer bound that the symmetric capacity of the index coding
problem of Fig. 4(b) cannot be more than 0.5. Since this is achievable as described above, the
symmetric capacity is 0.5 per message.

4.3 Challenges and opportunities

The index coding problem is an intriguing problem in its own right, as evident from the following
three observations that are almost paradoxical in nature.

1. It is arguably the simplest problem to describe, because it has only one link of finite capacity,
yet it remains an open problem in general.
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2. It is obviously a special case of the general network coding problem, yet for every instance of
the network coding problem, there is an equivalent index coding problem [37, 38].

3. It is the earliest known setting for interference alignment, yet it remains almost unexplored
from an interference alignment perspective.

These observations highlight both the challenges and opportunities associated with the index cod-
ing problem, and by virtue of our results, associated with the topological interference management
problem. Observation 2 shows that through its association with the index coding problem, the
topological interference management problem is associated with every network coding problem,
and the association is the strongest (an equivalence) from the perspective of linear solutions. Solv-
ing the topological interference management problem in its entirety is therefore as hard as solving
network coding problems in their entirety. Conversely, network coding applications such as dis-
tributed storage repair [39], caching [40] etc., can be seen as instances of the topological interference
management problem. The challenging nature of the topological interference management problem
is therefore quite evident. At the same time, Observation 3, points out an opportunity to make
progress on this challenging problem — by using the interference alignment perspective. The in-
terference alignment perspective and the relationship to topological interference management will
be used in this work in the following ways.

1. To simplify and interpret existing solutions of various instances of index coding problems
from the interference alignment perspective.

2. To use solved instances of index coding problems to solve the corresponding instances of
topological interference management problems.

3. To obtain systematic solutions to previously unsolved classes of index coding problems.

4. To identify and solve new classes of index coding problems corresponding to physically moti-
vated topologies.

We begin by explaining the solution to the motivating example from an interference alignment
perspective.

4.4 Interference Alignment Perspective

Let us present the solution to our running example, from an interference alignment perspective.
Recall that interference alignment involves two objectives.

1. Align undesired signals (interference) as much as possible.

2. Keep desired signals separate from interference.

To represent these two objectives, let us introduce the notion of an alignment graph and a conflict
graph, respectively. Starting with a node for each message, we construct the alignment graph and
conflict graphs as follows.

1. Topological Interference Management: The following definitions are for the topological
interference management problem.
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Figure 5: Alignment Graph and Conflict Graph for the Network of Fig. 4(a)

(a) Alignment Graph: Messages Wi and Wj are connected with a solid black edge if
the source(s) of both these messages are heard by a destination that desires message
Wk /∈ {Wi,Wj}.

(b) Conflict Graph: Each message Wi is connected by a dashed red edge to all other
messages whose sources are heard by a destination that desires message Wi.

2. Index Coding: The following definitions are for the index coding problem.

(a) Alignment Graph: Messages Wi and Wj are connected with a solid black edge if the
source(s) of both these messages are not available as antidotes to a destination that
desires message Wk /∈ {Wi,Wj}.

(b) Conflict Graph: Each message Wi is connected by a dashed red edge to all other mes-
sages whose sources are not available as antidotes to a destination that desires message
Wi.

The solid black edges comprising the alignment graph identify the messages that should be aligned
as much as possible, and the dashed red edges comprising the conflict graph identify messages that
need to be kept separate. The alignment graph and conflict graph for the network of Fig. 4(a)
are shown in Fig. 5. For example, there is a solid black edge between message nodes 1 and 5
because sources S1 and S5, where these two messages originate, are heard by destination D3 (also
D4) where neither of these two messages is desired. Message node 1 is connected by dashed red
edges to message nodes 3 and 4, because the sources S3 and S4 are heard by destination D1 that
desires W1.

Let us also define the notions of alignment sets and internal conflicts which will be useful later
in this work.

1. Alignment Set: Each connected component (through solid black edges) of an alignment
graph is called an alignment set.

2. Internal Conflict: If two messages that belong to the same alignment set have a conflict
(dashed red) edge between them, it is called an internal conflict.

Using this terminology, in Fig. 5 we have three alignment sets: {W1,W5}, {W3,W4}, {W2} and
there are no internal conflicts.
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4.4.1 Symmetric Capacity within 1.2 bits

While the symmetric DoF value of the partially connected wireless setting is already settled by
Theorem 4.1 and the index coding result of Birk and Kol, as 1/2 per message, here we will go
further to obtain a constant gap approximation to the symmetric capacity of the original wireless
network.

Starting with the partially connected network, first, let us consider the outer bound. Note that
the proof of Theorem 4.1 already provides a symmetric capacity outer bound value of 1/2 log(1 +
|S|2SNR) = 1/2 log(1+25SNR) per message. This is good enough for a constant gap approximation,
but we can obtain a smaller gap by improving the outer bound. This outer bound can be improved
by considering only two messages at a time, say W4,W5, in the proof of Theorem 4.1 which gives a
symmetric capacity outer bound 1/2 log(1 + 4SNR) per message. This can be further improved by
considering the Z interference channel between Users 4 and 5, where all non-zero links have strength
SNR, which gives us a symmetric capacity bound 1/2 log(1 + 2SNR) per message. Next, we will
obtain an inner bound on the partially connected network, using the DoF and the interference
alignment perspective.

Based on the alignment and conflict graphs, we will align W1,W5, along a vector, say V1, we will
align W3,W4 along a vector, say V2, and message W2 will be sent along a different vector, say V3.
All these vectors are 2× 1 vectors, so that they carry one symbol over two channel uses, to achieve
0.5 DoF. To avoid conflicts, i.e., to keep desired signals separate from interference, V1,V2,V3 must
be pairwise linearly independent. With this choice, the received signals at each receiver over two
time slots are represented as the following 2× 1 vectors:

y1 = h11V1x1 + h13V2x3 + h14V2x4 + z1 (33)

y2 = h22V3x2 + h23V2x3 + h24V2x4 + z2 (34)

y3 = h31V1x1 + h33V2x3 + h35V1x5 + z3 (35)

y4 = h41V1x1 + h44V2x4 + h45V1x5 + z4 (36)

y5 = h52V3x2 + h55V1x5 + z5 (37)

Note that the interference at each receiver is aligned into one dimension that is linearly independent
of the desired signal dimension, and the two can be separated in the two dimensional space available
to each destination over two channel uses. For example, consider destination D1, which sees the
desired symbol x1 along V1 and both undesired symbols x3, x4 along the same vector V2. To
recover its desired signal, it simply projects the received signal vector y1 along a 2× 1 vector V⊥2 ,
i.e., a vector orthogonal to V2.(

V⊥2

)T
y1 = h11

(
V⊥2

)T
V1x1 +

(
V⊥2

)T
z1 (38)

which is an interference channel on which a rate R(W1) = log(1 + |
(
V⊥2
)T

V1|2SNR) is achievable.
Proceeding similarly, the achievable rate for each message is expressed as follows.

R(W1) =
1

2
log

(
1 +

∣∣∣∣(V⊥2

)T
V1

∣∣∣∣2 SNR

)
(39)

R(W2) =
1

2
log

(
1 +

∣∣∣∣(V⊥2

)T
V3

∣∣∣∣2 SNR

)
(40)
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R(W3) =
1

2
log

(
1 +

∣∣∣∣(V⊥1

)T
V2

∣∣∣∣2 SNR

)
(41)

R(W4) =
1

2
log

(
1 +

∣∣∣∣(V⊥1

)T
V2

∣∣∣∣2 SNR

)
(42)

R(W5) =
1

2
log

(
1 +

∣∣∣∣(V⊥3

)T
V1

∣∣∣∣2 SNR

)
(43)

The factor of 1/2 outside the log is because two overall channel uses are required to create one
interference free channel use for every message. Since we are interested in symmetric rates, we would
like to maximize the minimum of these rates. This corresponds to a Grassmannian packing [41] of
V1,V2,V3 in a two dimensional space, leading to the choice V1 = [1, 0]T ,V2 = [1/2,

√
3/2]T ,V3 =

[−1/2,
√

3/2]. With this choice of precoding vectors, the rate achievable by each message is the
same:

R(W1) = R(W2) = R(W3) = R(W4) = R(W5) =
1

2
log(1 + 3SNR/4) (44)

However, this rate is achieved in the partially connected network where weak channels are set to
zero. Now let us go back to the original network and include the non-zero weak channels. Since,
the weak channels collectively contribute no more than the noise floor No at each receiver, their
worst case impact is to double the noise floor to 2No, i.e., reduce the SNR by half. Thus, in the
original network, the following symmetric rate is achievable.

R(W1) = R(W2) = R(W3) = R(W4) = R(W5) =
1

2
log(1 + 3SNR/8) (45)

We now have the symmetric capacity bounded above and below as 1
2 log(1 + 3SNR/8) ≤ Csym ≤

1
2 log(1 + 2SNR). These bounds are within 1.2 bits of each other, regardless of the value of SNR.
Thus, we have obtained a symmetric capacity approximation that is accurate to within 1.2 bits.

Note that any pairwise linearly independent choices of V1,V2,V3 yield a constant gap ap-
proximation in the wireless case and the exact capacity in the wired case. In particular, choosing
V1 = [1, 0]T , V2 = [0, 1]T , V3 = [1, 1]T gives us Birk and Kol’s solution described earlier, which
is capacity optimal for the finite field case, and within a constant gap for the wireless case (using
normalized V3 = [1/

√
2, 1/
√

2]T ) although the gap would be larger.

4.5 Half-rate-feasibility: When can everyone get half-the-cake?

A remarkable result from the DoF study of fully connected wireless interference networks with
perfect CSIT, is that in a K user interference channel every user can access 0.5 DoF, regardless of
the number of users, K [1]. In the absence of interference, i.e., if a user has the channel entirely to
himself, the DoF value is 1. Therefore, the main result of [1] is often paraphrased as “everyone gets
half the cake”. As positive as this result may be, it relies critically on perfect CSIT, and is therefore
difficult to translate into practice. As we explore the opposite extreme of no CSIT (except topology),
a natural question is to identify in this setting the conditions that allow everyone to achieve half the
cake, i.e., a symmetric capacity of 0.5 per user in the wired setting, and a symmetric DoF value of
0.5 in the wireless setting. Fortunately, the relationship to the index coding problem established in
theorems 4.1 and 4.2 and the half-rate feasibility solution for the index coding problem in [42, 32],
allow us to directly settle this question. We state the result in the form of the following theorem.
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Theorem 4.4 A symmetric rate of 0.5 per user in the wired case and a symmetric DoF of 0.5 per
user in the wireless case is achievable in the topological interference management problem if and
only if there are no internal conflicts.

Recall that an internal conflict exists between two message nodes if they belong to the same align-
ment set and one of them causes interference to one of the intended destinations of the other. Based
on Theorem 4.4 we will call an instance of the topological interference management problem ‘half-
rate-feasible’ if its alignment graph has no internal conflicts, and ‘half-rate-infeasible’ otherwise.

The motivating example studied so far is a network that contains no internal conflict, as evident
from Fig. 5, which is why rate (DoF) 0.5 is achievable in that network. Another such example
is shown in Fig. 6. This is a 9 user interference channel, where source Si (shown in black) has
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Figure 6: (a) A topological interference management problem, (b) Alignment and Conflict graphs

a message Wi for destination Di, the network is partially connected according to the topology
shown in Fig. 6(a), and can represent a wireless or wired network as described previously in
the unified problem statement. The alignment graph and the conflict graph are shown in Fig.
6(b) with solid black edges and dashed red edges, respectively. Evidently, there are 5 alignment
sets: {W1,W5,W10}, {W2,W7}, {W3}, {W4,W6,W8}, {W9}. Since there are no internal conflicts,
according to Theorem 4.4 the symmetric rate (DoF) value of 0.5 per user is feasible for this partially
connected wired (wireless) network with no CSIT beyond the network topology. To achieve this
0.5 DoF per user, it suffices to assign a 2 × 1 vector to each of the alignment sets, such that any
two vectors are pairwise linearly independent.

Going beyond DoF, to find a good constant gap capacity approximation, the vectors should
be made as close to orthogonal as possible. For the 5 alignment sets one could choose vectors
that are 180o/5 = 36o apart. However, the gap can be further improved by noticing that the
vectors assigned to the alignment sets need to be linearly independent only for conflicting sets. In
particular, note that the alignment set {W9} has no conflict with the alignment set {W1,W5,W10},
so these two alignment sets could be assigned the same vector. Equivalently, alignment sets that
have no conflicts can be merged into one alignment set. Doing so leaves us with 4 alignment sets,
and by assigning vectors that are 180o/4 = 45o apart, we obtain the symmetric rate inner bound
R(Wi) = 1

2 log(1 + SNR/2), i ∈ {1, 2, · · · , 9}, for the partially connected channel model. Now we
include weak interference links, bringing us back to the original wireless network. Since including
weak interference links can at worst reduce SNR by a factor of 1/2, the symmetric rate achieved is
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1
2 log(1+SNR/4). The symmetric capacity outer bound, obtained by considering any two messages
that cause interference to each other (e.g., W1,W2) as in the previous example, is again obtained
as 1

2 log(1 + 2SNR). Thus, the symmetric capacity is bounded as 1
2 log(1 + SNR/4) ≤ Csym ≤

1
2 log(1 + 2SNR) giving us an approximation that is accurate within 1.5 bits regardless of the value
of SNR. On the other hand, if we see the topological interference management problem of Fig. 6(a)
as a wired network, then the symmetric capacity is 0.5.

Field size considerations: In general, the number of alignment sets can be arbitrarily large,
even when rate 0.5 per user is feasible. For wireless networks that operate over complex numbers,
one can generate any number of 2× 1 vectors that are pairwise linearly independent, so this is not
an issue from a DoF perspective. However, for wired networks, if the operational field size is too
small, there may not exist sufficiently many pairwise linearly independent vectors in a 2 dimensional
space. For example, over GF(2), there are only 3 vectors of size 2 × 1 that are pairwise linearly
independent. However, this does not affect the capacity result. One can use symbol extensions,
e.g., use the channel 4 times, i.e., operate over a 4 dimensional space instead of a 2 dimensional
space and assign 2 dimensional pairwise non-intersecting vector subspaces to each of the alignment
subgraphs, along which 2 symbols are sent by each transmitter in that subgraph, to equivalently
achieve rate 2/4 = 0.5 per user. For example, it is known from [43] that the number of pairwise

non-intersecting 2-dimensional subspaces of a 4 dimensional vector space over GF(2) is 24−1
22−1

= 5,
which suffices for our current example. Instead of symbol extensions, one can also use a larger
field. Over a larger field, 2 channel uses would still suffice. For example in GF(3), we can choose 5
pairwise linearly independent vectors [1 0]T , [0 1]T , [1 1]T , [2 1]T , [1 2]T , and assign one to each
alignment set of Fig. 6(b). Finally, one can also try to merge the alignment subgraphs as long as
it does not introduce internal conflicts. For example, as mentioned earlier, it is possible to merge
{W9} with {W1,W5} without introducing internal conflicts, which would reduce the number of
required pairwise linearly independent subspaces, and is useful if smaller field sizes or less symbol
extensions are preferred.

It is worthwhile to mention that while the half rate (DoF) feasibility question can be resolved
within polynomial complexity, finding the minimum number of alignment sets that can be obtained
by merging non-conflicting alignment sets, is NP hard [44]. In the wired setting, this is relevant
to the problem of finding if a solution exists over a given finite field and within a given number of
channel extensions. In the wireless setting, this is relevant to the problem of finding the best inner
bound for wireless networks, because the number of alignment sets determines the spacing between
the vectors assigned to the alignment sets, which determines the SNR offset term.

We conclude this section with a simple corollary of Theorem 4.4.

Corollary 4.4 For the topological interference management problem, except the trivial case where
there is no interference at all, whenever half rate (DoF) is feasible, it is also the symmetric capacity
(DoF) of the network.

In other words, if the symmetric capacity (DoF) of a network is greater than 0.5, then it must be
1, i.e., there can be no interference and every message will have the entire channel to itself. The
proof is trivial because whenever two messages interfere, we have either a Z interference channel,
an interference channel, a multiple access channel, a broadcast channel, or a point to point channel,
none of which can achieve a symmetric rate (DoF) greater than 0.5 per message.
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4.6 Optimal versus Conventional Access: Best Case Improvement

The conventional approach to dealing with interferers that are too strong to be treated as noise,
is to avoid them by assigning them orthogonal time/frequency slots (TDMA/FDMA) or precoding
sequences (CDMA). In a fully connected K user interference channel, conventional schemes such as
TDMA/FDMA/CDMA can only achieve a symmetric DoF of 1/K per user. With perfect CSIT,
as shown in [1], interference alignment allows (for almost all channel realizations) 1/2 DoF per
user, regardless of the number of users K. Thus, the improvement of the optimal scheme over
orthogonal schemes is a factor of K/2, which grows linearly with the number of users. In a fully
connected K-user interference network, this is also the best case improvement factor, i.e., a greater
improvement cannot be obtained for any realization of the channel coefficients.

Our present setting allows no CSIT beyond the knowledge of the topology of a partially con-
nected network. Because the network is partially connected, it is possible in certain instances to
still achieve 1/2 DoF per user even without CSIT, as seen in the examples of Fig. 4(a) and Fig.
6(a), and such instances are completely characterized in Theorem 4.4. However, even orthogonal
access schemes may be capable of achieving more than 1/K DoF per user in a partially connected
network. Therefore, a natural question is to determine how much improvement, if any, can be
achieved by optimal topological interference management solutions as compared to more conven-
tional alternatives. In particular, in this section we will try to find the best case improvement
over conventional alternatives. Since the CSIT (and therefore the DoF) are only functions of the
network topology, by best case is meant the topology that leads to the highest improvements.

In terms of network models, in this section we will study the multiple unicast setting as well as
the general multiple groupcast setting. Within each setting we will especially consider half-rate-
feasible networks since such networks are completely characterized in Theorem 4.4. For conventional
alternatives, we will consider orthogonal and multicast schemes which correspond to TDMA and
CDMA, respectively, in their various generalized forms such as (fractional) orthogonal scheduling
and (fractional) partition multicast. The definitions of these terms are summarized in Appendix
B.

Note that while our discussion in this section will often be framed in the context of the DoF
of wireless networks, as described earlier the results can equivalently be interpreted in terms of
the capacity of wired networks, and in terms of the corresponding instances of the index coding
problem.

4.6.1 Multiple Unicasts: Half-rate-feasible networks

Since we have a complete characterization of half-rate-feasible networks for the topological interfer-
ence management problem, let us first compare the DoF optimal solution versus the best orthogonal
(TDMA) or multicast (CDMA) solution for such networks. The result is stated in the following
theorem.

Theorem 4.5 For every multiple unicast topological interference management problem where sym-
metric rate (DoF) of 0.5 per message is achievable, a fractional orthogonal scheduling scheme
(TDMA) can achieve at least the symmetric rate (DoF) of 0.25 per message, and so can fractional
partition multicast (CDMA). Therefore, for this class of networks, the best case improvement of
optimal versus fractional orthogonal scheduling or fractional partition multicast schemes is no more
than a factor of 2.
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Corollary 4.5 For every multiple unicast index coding problem where symmetric rate of 0.5 per
message is achievable, a fractional clique cover scheme can achieve at least the symmetric rate of
0.25 per message, and so can fractional partition multicast.

The proof of Theorem 4.5 is presented in Appendix C.5. Corollary 4.5 is a consequence of the
equivalence between topological interference alignment and index coding problems established in
theorems 4.1 and 4.2.

In light of this result, a question of immediate interest is whether this result can be tightened
further. For example, is it possible that a fractional orthogonal scheduling (or fractional partition
multicast) scheme can always achieve a symmetric DoF value of 0.3 per message whenever a sym-
metric DoF value of 0.5 per message is information theoretically feasible? The following theorem
shows that indeed 0.25 symmetric DoF is the best universal guarantee that can be made.

Theorem 4.6 For every ε > 0, there exists a multiple unicast topological interference management
problem where the symmetric rate (DoF) of 0.5 per message is achievable, and the best fractional
orthogonal scheduling and the best fractional partition multicast scheme cannot achieve a symmetric
rate (DoF) higher than 0.25 + ε per message.

Corollary 4.6 For every ε > 0, there exists a multiple unicast index coding problem where the
symmetric rate of 0.5 per message is achievable, and the best fractional clique cover and the best
fractional partition multicast scheme cannot achieve a symmetric rate higher than 0.25 + ε per
message.

Theorem 4.6 is proved in Appendix C.6 and the corollary follows from the equivalence between
topological interference management and index coding problems established in theorems 4.1 and
4.2.

To paraphrase theorems 4.5 and 4.6, in a multiple unicast setting with no CSIT except knowledge
of the partially connected network topology, whenever it is possible for everyone to get half the
cake, it is possible for everyone to get a quarter of the cake through orthogonal access, i.e., TDMA,
as well as through partition multicast, i.e., CDMA. Further, for this class of networks, the factor
of 2 improvement is the best guarantee that can be made over orthogonal and partition multicast
schemes.

To conclude this section, let us consider the non-fractional versions of orthogonal scheduling and
partition multicast schemes. An interesting observation from Theorem 4.5 (Corollary 4.5) is that
a half-rate-feasible K-unicast topological interference management (index coding) problem always
contains a set of non-interfering messages, i.e., an independent set (clique) of size at least dK/4e.
This follows because if a fractional orthogonal scheme achieves a symmetric rate (DoF) of 0.25 then
a sum-rate (DoF) of K/4 must be achievable by an orthogonal scheme, but the sum-rate (DoF) of
an orthogonal scheme is simply the size of the largest independent set (clique number).

Based on this observation, we obtain an interesting achievability result for orthogonal scheduling
and partition multicast schemes without fractionalization. In a half-rate-feasible K-unicast setting,
an orthogonal scheduling scheme can serve dK/4e messages in the first time slot. This leaves us
with a K1-unicast problem where K1 = (K − dK/4e). Since the problem is still half-rate-feasible,
an orthogonal scheme can now serve dK1/4e messages in the second time slot, leaving us with a
K2-unicast problem where K2 = (K1−dK1/4e). Continuing this pattern for n channel uses, we are
left with a Kn-unicast problem where Kn = (Kn−1 − dKn−1/4e). At this point, one can serve the
remaining Kn users one at a time, over Kn channel uses. Define K0 = K. We can optimize over
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n. Thus, for half-rate feasible K-unicast topological interference management and index coding
problems, orthogonal scheduling and partition multicast schemes, without fractionalization, can
achieve at least a symmetric rate (DoF) value of

DoFsym = sup
n∈Z+

1

n+Kn
≥ sup

n∈Z+

1

n+
(

3
4

)n
K
≥ sup

n∈R+

(
4
3

)n
n
(

4
3

)n
+K

≥ 1

log4/3(K) + 1

where in the last step, instead of the optimizing value n = log4/3(K) + log4/3 log(4/3), we have
chosen n = log4/3(K) for a somewhat simpler expression.

4.6.2 Multiple Unicasts: Half-rate-infeasible networks

As we show next, more significant improvements are possible when we we consider networks where
half-rate is not feasible, or we consider groupcast settings. The following theorem considers multiple
unicast settings where 0.5 symmetric DoF is not achievable.

Theorem 4.7 There exists an explicit family of multiple unicast topological interference manage-
ment problems with K messages where the symmetric capacity (DoF) is at least 1/3 per message,
whereas the highest achievable rate (DoF) of fractional orthogonal scheduling schemes as well as
fractional partition multicast schemes is at most (1 + o(1))K−1/4. The best case improvement is
therefore at least (1/3 + o(1))K1/4.

Theorem 4.7 is a direct consequence of the equivalence results established in theorems 4.1 and 4.2
and a corresponding result for the index coding problem, established by Blasiak et al. in Theorem 3
of [42]. Blasiak et al. present a symmetric instance of a K-unicast index coding problem (where the
side information graph is undirected) based on a projective Hadamard graph, where a symmetric
rate of 1/3 per message is achievable, but the clique number, which bounds the sum-rate of fractional
orthogonal schemes, is at most (1 + o(1))K3/4. Thus the symmetric rate of fractional orthogonal
schemes cannot be higher than (1 + o(1))K−1/4 per message. The extension to fractional partition
multicast follows from the observation that the projective Hadamard example is symmetric (side
information graph is undirected), and therefore the subset of messages that achieves the highest
sum-rate with fractional partition multicast can be covered by disjoint cliques that achieve the
same sum-rate [45]. Thus, the same bounds hold for the highest sum-rate and the symmetric rate
achievable by fractional partition multicast schemes.

Since the result is only a lower bound on the best case improvement, a question of immediate
interest is to determine if other topologies can be found for which the improvement can be even
higher, and conversely to develop non-trivial outer bounds on the best case improvement. An
intriguing question to settle is whether improvements that scale linearly in K, such as the K/2
factor improvement with perfect CSIT, are still possible with no CSIT beyond topology.

4.6.3 Multiple Groupcasts: Half-rate-feasible networks

In this section we will study the best case improvement in the groupcast setting for fractional
orthogonal scheduling and fractional partition multicast. Let us start with fractional orthogonal
scheduling schemes.

Theorem 4.8 There exists an explicit family of multiple groupcast topological interference manage-
ment problems with K messages where the symmetric capacity (DoF) is 0.5 per message, whereas
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the highest achievable rate (DoF) of fractional orthogonal scheduling schemes is not more than 1
K

per message.

Corollary 4.8 There exists an explicit family of multiple groupcast index coding problems with K
messages where the symmetric capacity is 0.5 per message, whereas the highest achievable rate of
fractional hyperclique cover schemes is not more than 1

K per message.

Note that a symmetric rate of 1/K is always achievable by a (non-fractional) orthogonal schedul-
ing scheme in a network with K messages. Therefore, Theorem 4.8 characterizes the best case
improvement over orthogonal and fractional orthogonal schemes for half-rate-feasible K-groupcast
topological interference management problems as K/2. Remarkably, this is the best case improve-
ment over orthogonal (TDMA) schemes even with full CSIT.

Next let us bound the best case improvements over (fractional) partition multicast schemes.

Theorem 4.9 There exists an explicit family of multiple groupcast topological interference manage-
ment problems with K messages where the symmetric capacity (DoF) is 0.5 per message, whereas
the highest achievable rate (DoF) of fractional partition multicast schemes is not more than 1√

K
per message.

Corollary 4.9 There exists an explicit family of multiple groupcast index coding problems with K
messages where the symmetric capacity is 0.5 per message, whereas the highest achievable rate of
fractional partition multicast schemes is not more than 1√

K
per message.

Now that we have a lower bound of
√
K/2 on the best case improvement over fractional partition

multicast, let us find an upper bound.

Theorem 4.10 For any multiple groupcast topological interference management problem with K
messages where the symmetric rate (DoF) of 0.5 per message is feasible, a partition multicast
scheme can achieve a symmetric rate (DoF) that is at least 1

d
√

2Ke per message.

Corollary 4.10 For any multiple groupcast index coding problem with K messages where the sym-
metric rate of 0.5 per message is feasible, a partition multicast scheme can achieve a symmetric
rate that is at least 1

d
√

2Ke per message.

Remark: The proof presented in Section C.9 finds a tighter upper bound, 1

d
√

8K+1−1
2

e
instead of

1
d
√

2Ke but the latter is reported in Theorem 4.10 for its relative simplicity.

Note that the outer bound is proved for fractional partition multicast while the inner bound is
proved for partition multicast. Since fractional partition multicast includes partition multicast as
a special case, the outer bound also applies to partition multicast and the inner bound also applies
to fractional partition multicast.

In other words, the result says that there exist K-groupcast networks with no CSIT except
topology, where everyone gets half the cake through interference alignment, but the best TDMA
scheme cannot achieve more than the trivial value of 1/K of the cake per message, and where the
best CDMA scheme cannot achieve more than 1/

√
K of the cake per message. For all such networks,

the best CDMA scheme can always achieve at least 1
d
√

2Ke of the cake per message. Thus, the best
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case improvement over TDMA (orthogonal schemes) is K/2, and the best case improvement over

CDMA (partition multicast schemes) is between
√
K
2 and d

√
2Ke
2 .

These results are limited to half-rate-feasible networks. As shown in the multiple unicast case,
even stronger improvements over partition multicast schemes may be achievable in multiple group-
cast settings that are not half-rate-feasible. Since such settings are far from understood, we leave
this as an open problem, and instead focus on exploring half-rate-infeasible networks in the next
section.

4.7 When is 1/K of the cake per message optimal?

Here we are interested in K-groupcast settings where the symmetric capacity is 1/K, i.e., the trivial
solution that everyone gets 1/K of the cake is capacity optimal. In this section, we will obtain a
complete characterization of such networks.

A sufficient condition for a K-unicast network to have symmetric capacity 1/K was obtained
originally by Bar-Yossef et al. in [46] and generalized subsequently to the multiple groupcast setting
by Neely et al. in [47]. A relevant notion here is the demand graph, defined for the multiple-
groupcast index coding problem in [47]. Note that the definition applies also to multiple-unicast
settings (as a special case of multiple-groupcast) and in both unicast and groupcast settings can
be similarly applied to the topological interference management problem.
Demand Graph for Index Coding: For a K-groupcast index coding problem, the demand
graph is defined as the following directed bi-partite graph with the destination nodes on one side
and message nodes on the other [47]. There is a directed edge from message node Wj to a destination
node Di if the message Wj is desired by destination Di, i.e., Wj ∈ W(Di). There is a directed edge
from a destination node Di to a message Wj if the destination Di has message Wj as antidote, i.e.,
aik = 1, where Wj ∈ W(Sk).
Demand Graph for Topological Interference Management: For a K-groupcast topological
interference management problem, the demand graph is defined as the following directed bi-partite
graph with the destination nodes on one side and message nodes on the other. There is a directed
edge from message node Wj to a destination node Di if the message Wj is desired by destination
Di, i.e., Wj ∈ W(Di). There is a directed edge from a destination node Di to a message Wj if the
destination Di cannot hear the source of the message Wj , i.e., tik = 0, where Wj ∈ W(Sk).

A directed graph is acyclic if it contains no directed cycles, i.e., it is not possible to return to
any starting point while traversing a sequence of directed edges, while respecting the direction of
the edges.

Bar-Yossef et al. showed in [46] that if the demand graph of a K-unicast index coding problem
is acyclic then the symmetric capacity is 1/K per message. Neely et al. generalized the result in
[47] to show that if the demand graph of a K-groupcast index coding problem is acyclic then the
symmetric capacity is 1/K per message. We state here a stronger form of these results and its
extension to the exact capacity of the original wireless network.

Theorem 4.11 For a K-unicast topological interference management problem to have symmetric
capacity (DoF) of 1/K per message it is necessary and sufficient that its demand graph is acyclic.
For a K-groupcast topological interference management problem to have symmetric capacity (DoF)
of 1/K per message, it is sufficient but not necessary that its demand graph is acyclic. The necessary
and sufficient condition for a K-groupcast topological interference management problem to have
symmetric capacity (DoF) of 1/K per message, is that it can be relaxed (by eliminating certain
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message demands) into a K-unicast topological interference management problem for which the
demand graph is acyclic. Further, if each message originates at a distinct source node, then the
exact symmetric capacity of the original wireless network is 1

K log(1 +KSNR).

Corollary 4.11 For a K-unicast index coding problem to have symmetric capacity (DoF) of 1/K
per message it is necessary and sufficient that its demand graph is acyclic. For a K-groupcast
index coding problem to have symmetric capacity (DoF) of 1/K per message, it is sufficient but
not necessary that its demand graph is acyclic. The necessary and sufficient condition for a K-
groupcast index coding problem to have symmetric capacity (DoF) of 1/K per message, is that it
can be relaxed (by eliminating certain message demands) into a K-unicast topological interference
management problem for which the demand graph is acyclic.

Note that the relaxed problem must be a K-unicast problem, i.e., it must still have all K messages,
each of which is desired by exactly one destination. We can eliminate (all but one) message demands
only for those messages that are desired by more than one destination node. Since eliminating
certain message demands cannot reduce the capacity region, the capacity region of the relaxed
network must include the capacity region of the original network. Note that some destination
nodes may be eliminated. For example, Fig. 7(d) is the demand graph of a 5-unicast network
obtained by relaxing the network whose demand graph is shown in Fig. 7(e), and destination 4 is
eliminated without reducing the number of messages.
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Figure 7: (a) A 5-groupcast topological interference management problem, (b) corresponding index coding
problem, (c) the demand graph for both (note that it is acyclic, so the symmetric capacity is 1/5 for both
networks), (d) demand graph for a 5-unicast problem obtained by relaxing the 5-groupcast problem (e) a
5-groupcast problem whose demand graph is not acyclic but its symmetric capacity is still 1/5 (because it can
be relaxed to obtain the same 5-unicast network).

The result in Theorem 4.11 and Corollary 4.11 is stronger than the previous results in the
following ways.
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1. For the multiple unicast index coding problem it is known that the demand graph being
acyclic is sufficient to conclude that the symmetric capacity is 1/K [46]. However, Corollary
4.11 states that it is also necessary.

2. For the multiple groupcast index coding problem also it is known that the demand graph
being acyclic is sufficient to conclude that the symmetric capacity is 1/K [47]. Interestingly,
for multiple groupcast it is not necessary. This can be seen from the demand graph of Fig.
7(e) where one more destination node (number 4) has been added, that desires message 5 and
has message 1 available as antidote, thus introducing a cycle into the demand graph. However,
since the additional destination cannot increase the capacity region, the symmetric capacity
is still 1/5 per message. Evidently the acyclic demand graph condition is not necessary for
K-groupcast index coding networks to have symmetric capacity 1/K. What is necessary and
sufficient, however, is that the K-groupcast network can be relaxed into a K-unicast network
for which the demand graph is acyclic, as stated in Theorem 4.11 and Corollary 4.11.

3. For this class of wireless networks we obtain not just a capacity approximation, but the
capacity itself.

Thus, we have a complete characterization of K-groupcast networks (and K-unicast networks
as a special case) that have symmetric capacity (DoF) of 1/K for all three cases: index coding,
linear wired networks and partially connected wireless networks.

Even for networks where the symmetric capacity is more than 1/K, the acyclic demand graph
property is useful to bound the rates of subsets of messages. This is a commonly used bound
in index coding literature. Here we state the corresponding bound for topological interference
management problem.

Theorem 4.12 ([46]) The symmetric capacity (DoF) of a topological interference management
problem is bounded above as

Csym ≤ 1

Ψ
(46)

where Ψ is the maximum cardinality of an acyclic subset of messages.

Acyclic Subset of Messages: A subset of messagesWo ∈ W is said to be acyclic if the symmetric
capacity (DoF) of this subset of messages is 1

|Wo| per message.
The definition applies to both index coding and topological interference management problems.

Note that the necessary and sufficient condition for a subset of messages to be acyclic is easily ob-
tained from Theorem 4.11 for the topological interference management problem and from Corollary
4.11 for the index coding problem by eliminating the rest of the messages.

4.8 Between the extremes: When less than 1/2 but more than 1/K of the cake
is Optimal

Beyond the non-trivial extremes of 1/2 the cake or only 1/K of the cake per message, capacity
characterizations are available for the index coding problem for certain special antidote graphs
such as the Peterson graph, the Grotzsch graph, and the Chvatal graph, on 10, 11 and 12 vertices
(messages), respectively, for various Cayley graphs of cyclic groups [42], for graphs associated
with certain matroids [35], and cases where the trivial inner and outer bounds (represented by

30



the independence number and the clique cover numbers) coincide. Since the capacity achieving
solutions in most of these cases are based on linear schemes the solutions can be translated directly
into corresponding instances of the topological interference management problem. However, there
are few exact capacity results or general principles available for large classes of problem instances.
In this section we will use the interference alignment perspective to solve some interesting classes
of index coding and topological interference management problems.

4.8.1 Internal Conflicts: An Interference Alignment Perspective

Since we are dealing with half-rate-infeasible networks, these networks must have internal conflicts.
Recall that an internal conflict is when two messages are in the same alignment set, and at least
one of them causes interference to the other’s desired destination. The “conflict” is evident from an
interference alignment perspective. Messages in the same alignment set should be aligned as much as
possible, but conflicting messages cannot be aligned. The tension created by this conflict is captured
by the following outer bound on the symmetric capacity, derived previously by Blasiak et al. in
[42] from a graph theoretic perspective and by Maleki et al. in [32] from an interference alignment
perspective. As we have shown earlier in Theorem 4.1, the index coding problem provides an
outer bound on the corresponding topological interference management problem, any outer bound
for the index coding problem is directly inherited by the corresponding topological interference
management problem as well.

Theorem 4.13 ([42, 32]) The symmetric capacity of a half-rate-infeasible multiple-groupcast in-
dex coding problem is bounded above as:

Csym ≤ ∆

2∆ + 1
(47)

where ∆ is the minimum internal conflict distance.

Corollary 4.13 The symmetric capacity (DoF) of a half-rate-infeasible multiple-groupcast topo-
logical interference management problem is bounded above as:

Csym ≤ ∆

2∆ + 1
(48)

where ∆ is the minimum internal conflict distance.

Conflict Distance: For two nodes that have an internal conflict between them, the conflict
distance is defined as the minimum number of alignment graph edges that need to be traversed to
go from one node to the other. The minimum conflict distance of all internal conflicts is denoted
as ∆.

Remark: Note that the alignment graph may have several connected components, each of which
is an alignment set. For internal conflicts, the distance is over each set. Thus, we can find the
minimum distance for each alignment set and then find the minimum over all alignment sets to get
the conflict distance.

As an example, consider the 9-unicast topological interference management problem shown in
Fig.8(a), whose alignment graph and internal conflicts are shown in Fig. 8(b) as black edges and
dashed red-edges, respectively. Note that for clarity, conflicts that are not internal are not shown.
For example, there is a conflict between nodes 6 and 8 that is not shown. There is an internal
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Figure 8: (a) An instance of the topological interference management problem, and (b) its alignment graph
(black edges) showing internal conflicts as dashed red edges. Conflicts that are not internal are not shown.
(c) If there are no internal conflicts, nodes that belong to the same alignment set should align perfectly (d)
With internal conflicts, conflicting nodes slide out of each other’s way just enough to avoid overlaps while
all nodes try to stay as aligned as possible with their adjacent nodes.

conflict between nodes 3 and 4, and they are connected through the path 4 — 1 — 7 — 6 — 3
which is comprised of 4 edges. However, a shorter path exists, 4 — 7 — 6 — 3, which is comprised
of only 3 edges and which is also the shortest path between 3 and 4. So the conflict distance
between 3 and 4 is 3. However, this is not the minimum conflict distance. The conflict between 4
and 6 has conflict distance 2 because of the path 4 — 7 — 6, and is the minimum conflict distance,
so that ∆ = 2 for this network. Therefore, according to Corollary 4.13 the symmetric capacity
(DoF) of this network cannot be more than 2/5. Indeed, as we will see for this example, 2/5 is the
symmetric capacity.

Since the information theoretic proof of Theorem 4.13 is already available in [42, 32], here we
will highlight only the intuition from an interference alignment perspective, using Fig. 8(c) and
Fig. 8(d), which will naturally explain the achievable scheme as well.

Message W4 should align as much as possible with message W7 because they both cause inter-
ference to destination D2. Similarly, message W7 should align as much as possible with message
W6 because they both cause interference to destination D8. If there were no internal conflicts, this
would force W4,W6,W7 to align perfectly (as done in half-rate-feasible networks). However, as it
turns out in this network, W4 cannot align with W6 because they have an internal conflict (W6

interferes with the desired destination of W4). So, W4 and W6 must “slide” out of each other’s way,
as shown in Fig. 8(d). Since both W4 and W6 want to align with W7, the natural resolution is for
half of W7 to align with W4 and the remaining half to align with W6. If each message occupies d
signal dimensions, this means that there is a d/2 dimensional overlap between W4,W7 and a d/2
dimensional overlap between W6,W7 and no overlap between W4,W7. Next let us see how this
leads us to the outer bound of 2/5 on the symmetric capacity (DoF).

Consider destination D8 that desires message W8, and sees interference from W6,W7. Note that
because of the partial overlap between them, W6,W7 together occupy 1.5d dimensions. The desired
message W8 cannot overlap with the interference space. So the total number of dimensions available
to destination D8 to resolve the desired signal from interference must be at least d + 1.5d = 2.5d
dimensions. Since each destination sees one normalized signal dimension per channel use, we have
the outerbound:

2.5d ≤ 1 (49)
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⇒ d ≤ 2/5. (50)

That is, the symmetric capacity (DoF) cannot be more than 0.4 for this network, as also stated in
Corollary 4.13.

The same intuitive explanation also leads us to the achievability scheme. To achieve symmetric
rate (DoF) of 2/5 per user with a linear scheme, we will operate over 5 channel uses and send 2
symbols from each message. The precoding vectors for W4,W6,W7 are chosen as:

W4 : v1,v2 (51)

W7 : v1,v4 (52)

W6 : v3,v4 (53)

where vi are randomly generated vectors (in a sufficiently large field so that any 5 of them are
linearly independent). Note that W4,W7 align in half of their dimensions, as do W6,W7 but there
is no overlap between W4,W6, consistent with the intuition highlighted in Fig. 8(d). Based on
the alignment and conflict graphs, the remaining messages can be assigned precoding vectors as
follows:

W1 : v1,v2

W3 : v3,v5

W2 : v6,v7

W9 : v7,v8

W5 : v9,v10

W8 : v11,v12

(54)

For simplicity one may use vi = ei for i ∈ {1, 2, · · · , 5}, where ei is the ith column of the 5 × 5
identity matrix, and generate the remaining vi as random linear combinations of the first 5. Other
optimizations are also possible. For example, we can assign the same vectors to W2,W9 since they
have no internal conflict. Such optimizations of the vi are not needed for the capacity of the wired
case, and not necessary for the DoF, or even a constant gap approximation, of the wireless case.
However, the vi should be optimized if the gap to capacity in the wireless case is to be minimized, or
linear solutions over smaller field sizes and few channel extensions are preferred in the wired case.
As observed previously in the half-rate-feasibility study, such optimizations are computationally
quite cumbersome (NP hard) but conceptually not particularly challenging. While an algorithmic
study of these optimizations may be practically illuminating, in this work we are content with a
guarantee of constant gap to capacity that does not depend on SNR.

To further illustrate the ideas, another example is provided in Fig. 9, where the minimum
conflict distance is 3 and the symmetric capacity is 3/7. Achievability follows by assigning 3 vectors
to every message in a 7 dimensional signal space (over 7 channel uses), such that adjacent messages
overlap in 2/3 dimensions (as shown in Fig. 9(d)). For example, one could assign precoding vectors
as,

W4 : v1,v2,v3 (55)

W1 : v2,v3,v4 (56)

W7 : v3,v4,v5 (57)

W6 : v4,v5,v6 (58)

W3 : v5,v6,v7 (59)

W2 : v8,v9,v10 (60)

W9 : v9,v10,v11 (61)
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W5 : v12,v13,v14 (62)

W8 : v15,v16,v17 (63)

Remark: Note that generating the precoding vectors of each alignment set independently of the
other alignment sets is sufficient to maintain the desired linear independence needed to resolve
conflicts across alignment sets. This is a significant simplifying observation that allows us to
decompose the problem and focus on each alignment set and its internal conflicts individually.
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Figure 9: (a) An instance of the topological interference management problem, and (b) its align-
ment graph (black edges) showing internal conflicts as dashed red edges. (c) Without internal conflicts,
W4,W1,W7,W6,W3 would align perfectly (d) With internal conflicts, conflicting nodes slide out of each
other’s way just enough to avoid overlaps while all nodes try to stay as aligned as possible with their adjacent
nodes. This gives us the symmetric capacity (DoF) of the network as 3/7.

The examples of Fig. 8 and Fig. 9 convey quite a few insights about interference alignment. A
natural question now is whether these insights can be translated into systematic solutions for larger
classes of index coding and topological interference management problem instances. The following
theorem presents such a result.

Theorem 4.14 If each alignment set of a half-rate-infeasible multiple-groupcast topological inter-
ference management problem has either no cycles, or no forks4, then the symmetric capacity (DoF)
of the network is min( ∆

2∆+1 ,
1
Ψ), where ∆ is the minimum internal conflict distance of the network

and Ψ is the maximum cardinality of an acyclic subset of messages.

Corollary 4.14 If each alignment set of a half-rate-infeasible multiple-groupcast index coding prob-
lem has either no cycles, or no forks, then the symmetric capacity of the network is min( ∆

2∆+1 ,
1
Ψ),

where ∆ is the minimum internal conflict distance of the network and Ψ is the maximum cardinality
of an acyclic subset of messages.

Remark: Note that the constraint that there are either no cycles, or no forks in each alignment
set restricts the topology of the network such that there can be no more than three interferers at
any receiver. Otherwise, the four or more interferers will form a clique in the alignment graph
which will have both cycles and forks.

With Theorem 4.14 we have the symmetric capacity (DoF) characterization of all index coding
problems and all topological interference management problems for which the alignment graph

4A fork is a vertex that is connected by three or more edges.
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Figure 10: (a) A 7-unicast topological interference management problem for which the symmetric capac-
ity (DoF) is 2/5, (b) its alignment graph (black edges), conflict graph (red edges), and generic solution:
v0,v1,v3,v5,v7,v9,v11,v13, are generic 5× 1 vectors, qji are generic scalars, (c) a particular solution.

does not contain cycles (such an example is presented in Fig. 10). We have a capacity (DoF)
characterization of all index coding problems and all topological interference management problems
for which the alignment graph has no forks. Theorem 4.14 also covers all cases where some alignment
sets may have cycles (but no forks), some may have forks (but no cycles), some may have neither
forks nor cycles (Fig. 9), but none of the alignment sets have both forks and cycles (Fig. 8). Since
we do know the capacity of Fig. 8 and it follows from the same principles as used in Theorem
4.14, evidently there is room for further extension of the scope of the theorem, perhaps to the more
general setting of all alignment sets that do not have overlapping cycles.

As another illustration of the result of Theorem 4.14 an alignment graph is shown in Fig.
11. While conflicts are not shown, the minimum internal conflict distance is assumed to be 2.
Note that the assignment of precoding vectors avoids all conflicts at distance 2 or more. Three
alignment sets are shown, labeled as A1, A2, A3. Alignment set A1 has no cycles and A2 has no
forks. A3 cannot have an internal conflict because the minimum conflict distance is 2. For this
reason, it is possible to assign the same subspace to all messages that are a part of A3. All vi are
randomly generated independent of each other as 5 × 1 vectors. All Qi are randomly generated
2× 1 matrices, meant to extract a random one dimensional subspace from the parent node’s signal
space. Each message occupies 2/5 dimensions and any two adjacent messages occupy no more than
3/5 dimensions, leaving the remaining 2/5 dimensions for the desired signal. Intuitively, the three
main ideas involved in the assignment of precoding vectors are the following:

1. The precoding vectors for each alignment set are generated independently of other alignment
sets. This avoids conflicts across alignment sets because independently generated subspaces
are in general position over sufficiently large fields, and therefore will not overlap if the overall
space is large enough to accommodate both of them.

2. To avoid conflicts across a cycle, the assignment of precoding vectors is also cyclic. See for
example A2 in Fig. 11. The cyclic assignment of vectors allows the dependence between nodes
to first diminish with increasing distance and then re-emerge as one returns to the beginning.

3. To avoid conflicts across forks, the assignment of precoding vectors is based on randomly

35



chosen inherited subspaces from the parent node, complemented with independently generated
vectors. The inherited space allows just the right amount of overlap between adjacent nodes
and the addition of the independently generated vector allows the dependency to fade away at
the distance where conflicts start to appear. See for example A1 in Fig. 11, where with high
probability nodes 1, 3, 4, 5 each have a one dimensional overlap with node 2, but no overlap
with each other or with any other node to which they are not directly connected. 5
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Figure 11: An alignment graph with multiple alignment sets showing a generic solution that avoids all
conflicts at distance 2 or more. Symmetric rate (DoF) achieved is 2/5 per message.

An interesting class of networks included in Theorem 4.14 is the partially connected K user
interference channel where S = D = |W| = K, each source sends one message to its corresponding
destination, and the topology of the network is such that no source is heard by more than three
destinations, and no destination can hear more than three sources.

∀j ∈ {1, 2, · · · , S}, |{i : tij = 1}| ≤ 3 (64)

∀i ∈ {1, 2, · · · , D}, |{j : tij = 1}| ≤ 3 (65)

and the corresponding index coding problem where again S = D = |W| = K and

∀j ∈ {1, 2, · · · , S}, |{i : aij = 0}| ≤ 3 (66)

∀i ∈ {1, 2, · · · , D}, |{j : aij = 0}| ≤ 3 (67)

This is a class of sparsely connected networks. The number of sources that can be heard by a
destination and the number of destinations that can hear a source, is indicative of the density of
a wireless network. By virtue of Theorem 4.14 we have a symmetric capacity characterization for
such networks.

We conclude this section with an interesting example illustrated in Fig. 12. Shown in Fig. 12(a)
and Fig. 12(b) are two instances of a 5-unicast topological interference management problem. While
both instances have the same alignment and conflict graphs, illustrated in Fig. 12(c), they have

5This illustrates why (fractional) coloring solutions are not optimal. Fractional colorings correspond to one-to-one
alignments, whereas forks require subspace alignments to avoid conflicts.
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different symmetric capacity (DoF) values. The symmetric capacity (DoF) of the first network
is 1

Ψ = 1
4 , because its demand graph, shown in Fig. 12(d) is acyclic. The symmetric capacity

(DoF) of the second network is ∆
2∆+1 = 1

3 . One possible achievable scheme for symmetric rate
(DoF) of 1/3 per message for the second network is to use precoding vectors V1 = [1, 0, 0],V2 =
[0, 1, 0],V3 = [1, 1, 0],V4 = [0, 0, 1]. Evidently, the alignment and conflict graphs do not capture
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Figure 12: (a) A 5-unicast topological interference problem, (b) A different instance of a 5-unicast topological
interference problem, (c) Alignment and conflict graphs, identical for both problems, (d) Demand graph for
the first problem is acyclic (e) Demand graph for the second problem is not acyclic.

all the information needed to determine the optimal alignment of signals needed in general. This
observation hints at the complexity of the general problem.

While we pursue information theoretic capacity characterizations, it is also worthwhile to con-
sider the rates achievable by linear achievable schemes, especially since linear schemes, as we have
seen for all the solutions presented in this work, are frequently capacity optimal. This is the issue
explored in the next set of results.

4.9 Linear Feasibility: Duality

Duality of reciprocal channels, e.g., the duality of Gaussian multiple access (MAC) and broadcast
channels (BC) established in [48, 49, 50], where the roles of transmitters and receivers are switched,
can be a very useful property. When duality holds, the solution to a problem solves its dual problem
as well. This is useful because often a problem that seems hard to solve, may have a dual that
is much simpler. For example, the capacity region of the Gaussian MIMO broadcast channel may
seem much more challenging to compute directly, but its dual problem the MIMO MAC is much
simpler. The duality of linear interference alignment solutions for MIMO multiple-unicast networks
(interference channels, X networks), established by Gomadam et al. in [51] is useful to find iterative
and distributed numerical interference alignment solutions.

Note that the MAC-BC duality, as well as the DoF duality of linear solutions for MIMO
multiple-unicast networks are shown for networks with full CSIT. This is a critical assumption.
Duality relationships do not hold in general even at the DoF level with limited or no CSIT. For
example, the DoF collapse for a fully connected MISO BC with no CSIT but the fully connected
SIMO MAC does not need CSIT. Since we are interested in interference networks with no CSIT
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beyond the topology knowledge, one might not expect a duality relationship to hold in this setting.
However, surprisingly, a duality relationship does hold for linear solutions, for both the topological
interference management and index coding problems in the multiple unicast setting, as stated in
the following theorem.

Theorem 4.15 Any rate tuple R(W ) achievable by a linear scheme in a multiple unicast topological
interference management problem TIM(T ,W(S),W(D),C) is also achievable by a linear scheme
in the dual topological interference management problem, TIM(T ′,W ′(S′),W ′(D′),C), where the
roles of sources and destinations are reversed as follows,

S′ = D (68)

D′ = S (69)

T ′ = T T (70)

W ′(S′i) = W(Di), ∀i ∈ {1, 2, · · · , S′} (71)

W ′(D′j) = W(Sj), ∀j ∈ {1, 2, · · · , D′} (72)

Corollary 4.15 Any rate tuple R(W ) achievable by a linear scheme over a field F in a multiple
unicast index coding problem IC(A,W(S),W(D)) is also achievable by a linear scheme over the
same field F in the dual multiple unicast index coding problem, IC(A′,W ′(S′),W ′(D′)), where the
roles of sources and destinations are reversed as follows,

S′ = D (73)

D′ = S (74)

A′ = AT (75)

W ′(S′i) = W(Di), ∀i ∈ {1, 2, · · · , S′} (76)

W ′(D′j) = W(Sj), ∀j ∈ {1, 2, · · · , D′} (77)

As seen from the proof of Theorem 4.15 the duality relationship is quite explicit, when the transmit-
ters and receivers switch roles, so do the precoding and receiver combining matrices, but otherwise
the linear solution does not change, because the feasibility conditions for the original and dual
networks are the same. The restriction to multiple-unicast networks is noteworthy.

Duality relationships allow us to extend the scope of known results to their dual networks. As
an example, the following theorem extends the scope of Theorem 4.14.

Theorem 4.16 If each alignment set of the dual of a half-rate-infeasible multiple-unicast topological
interference management problem has either no cycles, or no forks, then the symmetric capacity
(DoF) of the network is min( ∆

2∆+1 ,
1
Ψ), where ∆ is the minimum internal conflict distance of the

network and Ψ is the maximum cardinality of an acyclic subset of messages.

Corollary 4.16 If each alignment set of the dual of a half-rate-infeasible multiple-unicast index
coding problem has either no cycles, or no forks, then the symmetric capacity of the network is
min( ∆

2∆+1 ,
1
Ψ), where ∆ is the minimum internal conflict distance of the network and Ψ is the

maximum cardinality of an acyclic subset of messages.

Remarkably, while the duality is based on linear achievable schemes, the extension of the result of
Theorem 4.14 stated in Theorem 4.16 is still an information theoretic capacity result, not restricted
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Figure 13: (a) The dual 9-unicast topological interference management problem of the original problem
shown in Fig. 8(a) and (b) its alignment graph showing internal conflicts as dashed red edges. Conflicts that
are not internal are not shown. (c) Dual of the network of Fig. 10(a) and, (d) its alignment and conflict
graphs.

to linear schemes. Note, however, the restriction to multiple-unicasts in Theorem 4.16, whereas
Theorem 4.14 applies to groupcasts. This is because the duality relationship in Theorem 4.15 is
established only for multiple unicast settings.

As examples of the application of duality, consider the network of Fig. 8(a) whose alignment
graph had both forks and cycles in the same alignment set, so that the result of Theorem 4.14 did
not apply to it. However, if we consider its dual network, shown in Fig. 13(a), its alignment graph
shown in Fig. 13(b) turns out to have neither cycles nor forks. Thus, Theorem 4.16 settles the
symmetric capacity (DoF) of the network as 2/5 per user. Similarly, consider the network shown
in Fig. 13(c) whose alignment graph, shown in Fig. 13(d) has both cycles and forks in the same
alignment set, so Theorem 4.14 does not apply to this network. Yet, the dual of this network is the
network, shown in Fig. 10(a), has alignment graph, shown in Fig. 10(b) consisting of no cycles, so
Theorem 4.16 establishes the symmetric capacity (DoF) as 2/5 in this case as well.

As obvious from the examples above, the alignment graph of the original problem can have
distinct properties from that of the dual problem. Remarkably, though, the conflict graphs are
identical in both problems. Of course, because the alignment graph changes, an internal conflict
in one problem may be only an external conflict (conflict between messages in different alignment
sets) in its dual. This is quite intriguing because, as seen throughout this work, internal conflicts
are quite significant whereas external conflicts seem to be irrelevant, at least from the perspective
of linear schemes. Interestingly, as shown in the proof of Theorem 4.16, the minimum internal
conflict distance in the original problem is the same as that in its dual. Finally, we note that the
duality of linear solutions, and the frequent optimality of linear schemes for topological interference
management problems as well as index coding problems, raises the natural question whether an
information theoretic version of this duality holds true as well. This is an interesting open problem
for future work.

4.10 Cellular Topologies

In this section we start with an example of a small cluster of cells, regularly placed, and then
consider infinite cellular arrays.
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4.10.1 4-Cell Downlink Network

Consider the 4 cell downlink setting shown in Fig. 14(a). Each base station is heard at a significant
SNR level only within the cell area shown as a shaded disk centered at that base station. This gives
rise to interference for the users located in the overlapping cellular regions. In the figure we show
two users in each boundary region, one for each of the two cells that overlap at that boundary.
Instead of our regular notation which can be quite cumbersome for cellular networks, in this section
we will adopt a more intuitive notation. For example, receivers a1, a2 want to receive independent
messages Wa1,Wa2 from the base station A, but have to deal with interference from base stations
B,C, respectively.

A

B

C

D

a1

a2

b2
d2

b1

c1

c2

d1

(a) (b)
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! Ŵc1; Ŵd1
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! Ŵc2; Ŵa2
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! Ŵb2; Ŵd2

! Ŵc1; Ŵd1

(c)

Figure 14: (a) Locally connected 4-cell downlink network, (b) Equivalently, a partially connected X network,
(c) Equivalent Index Coding Problem.

Because the users inhabiting the same boundary are statistically indistinguishable from the
transmitters’ perspective, they have the same ability to decode messages and hence may be com-
bined into one equivalent user without loss of generality, as shown in Fig. 14(b), producing a
partially connected X network setting [52] with 8 independent messages, one from each transmitter
to each connected receiver. So, e.g., the receiver labeled ‘ab’ wants to decode two independent
messages sent from transmitters labeled A,B. This is the topological interference management
problem that we want to solve. Fig. 14(c) also shows the corresponding index coding problem that
will be automatically solved simultaneously.

A natural scheme would be an orthogonal (frequency reuse) scheme which eliminates interfer-
ence, e.g., cells A,D are simultaneously active for half the time (or over half the frequency band)
and cells B,C are simultaneously active for the remaining half of the time. This orthogonal scheme
achieves 1/2 DoF per cell, i.e., 1/4 symmetric DoF per message, and it is easy to see that no
orthogonal (or multicast) scheme can achieve higher DoF. However, the optimal symmetric DoF
value with or without CSIT, is 1/3 per message, i.e., an improvement by a factor of 4/3. Note that
1/3 per message is also the symmetric capacity of the equivalent index coding problem shown in
Fig. 14(c).

Let us understand the solution from an interference alignment perspective. It is easy to verify
that the alignment graph for this network contains internal conflicts so it is not half-rate-feasible, it
contains both cycles and forks so we cannot use Theorem 4.14, the demand graph for this multiple
unicast network is not acyclic, so we cannot use Theorem 4.11. Thus, this problem does not fall
into any of the categories that have previously been solved. It is also clear that the alignment
graph has minimum internal conflict distance of ∆ = 1, e.g., a1, a2 cause interference to c2 so they
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Figure 15: Transmitted symbols over three time slots. 1/3 DoF per message are achieved. 1/3 is also the
optimal symmetric DoF value even with perfect CSIT.

are connected by an edge in the alignment graph, but also a1 causes interference to a2, so they are
also connected by an edge in the conflict graph. So, by Corollary 4.13 the symmetric capacity is
bounded above by 1/3.

From achievability perspective, consider the receivers a2, c2. The interfering messages seen by
these receivers are a1, c1. So, let us align them along the same vector. Similarly, consider receivers
a1, b1 which see interference from a2, b2, so let us align a2, b2 as well. Following this argument for
receivers c1, d1 (align c2, d2) and b2, d2 (align b1, d1) we have the following assignments of signal
vectors to messages.

a1, c1 : v1 (78)

a2, b2 : v2 (79)

c2, d2 : v3 (80)

b1, d1 : v4 (81)

where v1,v2,v3,v4 are pairwise linearly independent 3 × 1 vectors in a three dimensional space.
If we choose v1 = [1, 0, 0]T ,v2 = [0, 1, 0]T ,v3 = [0, 0, 1]T ,v4 = [1, 1, 1]T we obtain the solution
illustrated in Fig. 15. The same solution works for the wired (any finite field) and wireless case of
the topological interference management problem, and for the index coding problem as well. Since
the solution is linear and non-asymptotic, it also gives us a constant gap capacity approximation for
the wireless case, although, as usual, the vi can be optimized to make the gap as small as possible.
Remarkably, 1/3 is the symmetric DoF value for this partially connected newtork even with perfect
CSIT.

Another interesting, and much more challenging example of a cluster of cells, comprised of 5
regularly placed cells, is presented in our follow up work in [32].

4.10.2 Infinite arrays of locally connected cells

Here we consider infinite arrays of uniformly placed cells that are locally connected. Three topolo-
gies are considered: 1) Linear Cellular Array, where cells are placed uniformly along a straight line,
2) Square Cellular Array, where the cell placements fall on a square grid, and 3) Hexagonal Cellular
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Array, where the cells are placed uniformly in a hexagonal grid pattern. We are interested primar-
ily in the users located at the boundaries between adjacent cells, since this is where interference is
the most severe and where frequency planning is most needed.6 A one-dimensional cellular model
is shown in Fig. 16. Since in a linear model, each cell has 2 adjacent cells with which it shares
boundaries, Fig. 16 shows two representative users in each cell, one at each shared boundary.

Figure 16: Locally connected one-dimensional cellular array where boundary users hear both adjacent
base stations.

Linear Cellular Array

As shown in Fig. 16, each base station is heard by all users around the cell boundary, both in
its own cell as well as the immediately adjacent cells. However, due to path loss, the signals do
not travel further beyond with a significant strength. Conventional spectral-reuse pattern used in
this setting is shown in Fig. 17(a) where active cells that share a common cell edge are assigned
different spectral bands, or equivalently, only alternating cells are activated, the even numbered
cells for half the time, and the odd numbered cells for the remaining half of the time. Thus, each
cell achieves 1/2 DoF and all inter-cell interference is eliminated. The conventional frequency
reuse solution, 1/2 DoF per cell, is the baseline that we compare against, as we present next an
alternative approach — aligned frequency reuse (an orthogonal solution).

Aligned frequency reuse is illustrated in Fig. 17(b), where a periodic reuse pattern with period 3
cells is repeated along the infinite sequence of cells. Every third cell (shown as the grey shaded cells
in Fig. 17(b)) is sacrificed, i.e., switched off. Since the transmitter of the sacrificed cell generates no
signal, all the boundaries of sacrificed cell become interference free and therefore all the neighboring
cells can serve users that are located on the boundary of the sacrificed cell. Clearly the throughput
per cell and per user can be symmetrized by shifting the pattern so that each cell becomes the sink
cell for 1/3 of the time. The resulting bandwidth allocation from this aligned frequency reuse is 2/3
DoF per cell (1/3 per message) which corresponds to an improvement of 33% over the baseline.
Next we show that this orthogonal solution is also DoF optimal.

Let us consider any user in Fig. 16, e.g, the user in Cell 2 located at the boundary with Cell
3. Let us eliminate all messages except the desired message from BS 2 and the two undesired
messages from BS 3. Clearly eliminating other messages cannot hurt the rates of the remaining
messages. Now we argue that all three remaining messages are resolvable by this user. Since the
desired message is decodable by design, the user can reliably reconstruct and subtract it from its
received signal. This gives the user an invertible channel to BS 3 (within bounded variance noise
distortion), from which it can reliably resolve both messages originating at BS 3. Thus, one user
is able to resolve all 3 messages. Since the user has only 1 antenna, the total DoF of all three

6This is consistent with the fractional frequency reuse principle used, e.g., in Mobile WiMAX, which allows users
near the cell center to follow a reuse factor of 1 and requires frequency planning only for cell edge users.
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Figure 17: (a) Conventional frequency reuse (periodic with period 2) allows 1/2 DoF per cell. (b) Aligned
frequency reuse (periodic with period 3) allows 2/3 DoF per cell, an improvement of 33% per cell. All trans-
missions are isotropic. Note that the red arrows do not indicate directional transmission (all transmission is
isotropic), but rather the choice of the receiver to be served within each active cell. The remaining receivers
are turned off.

messages cannot be more than 1. This gives us an outer bound of 1/3 DoF per message. Since each
cell has two messages, it gives us an outer bound of 2/3 DoF per cell. Thus, the optimal solution
is orthogonal. Remarkably, this is also the optimal symmetric DoF value even with perfect CSIT
(because the outer bound argument presented above is not affected by the presence of CSIT).

Square Cellular Array

The one-dimensional setting shows that the benefits of aligned frequency reuse can be significant,
i.e., 33% improvement over the baseline corresponding to conventional frequency reuse. As we go
from one dimensions to two, perhaps the most interesting question is to determine if the benefits
diminish, increase, or remain the same.

To answer this question, we consider a two dimensional square cellular grid with the same local
connectivity assumptions as in the previous section. We assume, as before, that each user on the
boundary between two cells, hears comparable signal strengths from both base stations, and each
base station can be heard within its own cell and in the vicinity of its boundary with its adjacent
cells. The conventional frequency reuse solution for this setting is shown in Fig. 18, and corresponds
to 1/2 DoF per cell as before.

The aligned reuse pattern is shown in Fig. 19, where again the interference sinks are shown in
grey. The red arrows indicate the intended users whose messages are being transmitted. Recall
that the BS antennas are isotropic, so the red arrows do not represent directional transmissions.
From Fig. 19 it is clear that the achieved DoF value is 4/5 per cell, i.e., 1/5 per message. This
corresponds to an improvement of 60% over the baseline. Next we establish the optimality of this
result.

The proof of the outer bound is similar to the one-dimensional setting. Consider any user at
the boundary between two cells. We claim that this user can resolve not only its desired message,
which it must by design, but also all 4 messages from its neighboring interfering BS. This is because
if we eliminate all other messages, then the user can reconstruct and subtract the signal from its
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Figure 18: Baseline frequency reuse pattern, achieves 1/2 DoF per cell.

Figure 19: Aligned frequency reuse, 60% improvement over the baseline. All transmissions are isotropic.
Red arrows only point out active receivers. All active receivers are adjacent to inactive (grey) cells.

desired BS, and then invert the channel to its interfering BS, thus resolving all 5 messages. Since
a user with only 1 antenna can resolve 5 messages, the DoF per message cannot be more than 1/5.

Achievability of 4/5 DoF per cell is already shown in Fig. 17(b), and clearly requires no
knowledge of channel realizations at the transmitters. Once again it is remarkable that not only is
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the 4/5 DoF per cell the optimal DoF value in the absence of channel knowledge at the transmitters,
but also that it is the optimal value even with perfect channel knowledge. This is because the outer
bound argument presented above is not affected by the presence or absence of CSIT.

Hexagonal Cellular Array

Next, Fig. 20(a) shows the conventional frequency reuse baseline and Fig. 20(b) shows the aligned
frequency reuse pattern for a hexagonal cellular layout. While the conventional pattern achieves
1/3 DoF per cell, the aligned frequency reuse pattern achieves 6/7 DoF per cell, which represents
an improvement of 157% over the baseline.

(b)(a)

Figure 20: Locally connected hexagonal array of cells. (a) Conventional frequency reuse (DoF=1/3 per cell).
(b) Aligned frequency reuse (DoF=6/7 per cell) represents a 157% improvement over the baseline. All active
receivers are adjacent to inactive cells. While not shown explicitly, users are located on the cell boundaries,
one on each side of the boundary. All transmissions are non-directional. Red arrows only indicate the
locations of the active users. The base station transmitters in the grey cells are switched off.

The achieved value is 6/7 DoF per cell, as obvious from the choice of active users illustrated
in Fig. 20. The information theoretic optimality of 6/7 DoF per cell for this setting, both with or
without CSIT, follows from similar arguments as the linear and square array examples. Considering
any user let us eliminate all messages except the desired message and all the messages from the
interfering base station. These 7 messages cannot have a total of more than 1 DoF because the
single user with a single receive antenna can resolve all 7 messages. This follows from the logical
argument that the user must be able to reliably decode his desired message by design, so he must
be able to subtract the signal from the desired base station, which allows the user to re-construct
the transmitted symbol from the interfering base station within bounded variance noise distortion,
and thereby decode all 7 messages.

We note that for the linear and square grid models, the distance to the next strongest interferer
is the same for both the conventional frequency re-use solution and the aligned frequency re-use
solution. The aligned frequency reuse solution for the hexagonal setting on the other hand, is a bit
more sensitive because the next-nearest interferer is closer than with the conventional frequency
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re-use setting. While this is a sobering observation, we note that because the DoF improvement
(157%) is much stronger for the hexagonal setting than the linear or square cellular grids (33% and
60%, respectively), we do have additional room to accommodate interference. Further, in going
beyond DoF, what matters is not only the strengths of the strongest interferers, but the number of
such interferers as well. Since this is only an SNR offset effect it is not visible in DoF studies but is
quite relevant for performance results at finite SNR. The aligned frequency reuse solution for even
the linear and square cellular models will lose some of its projected multiplicative (DoF) gains over
conventional frequency reuse at moderate SNR values due to this SNR offset. On the other hand,
because of the overly pessimistic assumptions regarding CSIT, even modest gains achieved in this
setting bode well for the overall question of practical feasibility of interference alignment schemes.

It is quite remarkable that in a study of optimal scheduling patterns in cellular networks con-
ducted by Bonald et al. in [53] under much more sophisticated and practical propagation models
representative of 3G wireless networks, the optimal scheduling patterns that emerge from the nu-
merical analysis are the same aligned frequency reuse patterns that we find from the information
theoretic DoF analysis in this section.

4.11 MIMO

Multiple antennas have a special place in the DoF studies of wireless networks, as the original
setting that motivated the DoF metric, the idea of spatial multiplexing, which became a stepping
stone to the study of multiuser networks. As such, the implications of multiple-antenna nodes in
our setting, i.e., partially connected wireless networks with no CSIT beyond network topology, are
worth studying.

4.11.1 Symmetric MIMO

As a first step, let us assume that all nodes are equipped with the same number of antennas, Γ.
We will call this the symmetric MIMO setting. Instead of (12) the channel model becomes:

Y1(n)
Y2(n)

...
YD(n)

 =


H11 H12 · · · H1S

H21 H22 · · · H2S
...

...
...

...
HD1 HD2 · · · HDS



X1(n)
X2(n)

...
XS(n)

+


Z1(n)
Z2(n)

...
ZD(n)

 (82)

where, over the nth channel use, Xj(n) ∈ CΓ×1 is the transmitted symbol from Source Sj , Yi(n) ∈
CΓ×1 is the received symbol at Destination Di, Zi(n) ∈ CΓ×1 is the additive noise at Destination
Di, and Hij ∈ CΓ×Γ is the constant channel coefficient matrix between Source Sj and Destination

Di. The average transmit power constraint at source Sj is set as Pj , i.e., E
[∑N

n=1 ||Xj(n)| |2
]
≤ Pj ,

to ensure the following nominal interference-free rate guarantees for all desired links under i.i.d.
Gaussian inputs:

log

(
1 +

Pj
ΓNo

λ2
γ(Hij)

)
≥ log(1 + SNR) ∀γ ∈ {1, 2, · · · ,Γ},

∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S},W(Di) ∩W(Sj) 6= φ. (83)

where λγ(H) is the γth singular value of the channel matrix H. Thus, the power constraints are
chosen such that, in the absence of all other messages, each message by itself can achieve a rate
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Γ log(1 + SNR). For a first order (DoF) analysis we study a partially connected network where the
weak channels are set to zero.

Partially connected model: ∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S}, if tij = 0 then Hij = 0. (84)

In this partially connected model, we let SNR approach infinity (by increasing the transmit power
for every source proportionately), and evaluate the achievable rates normalized by Γ log(SNR) to
find the DoF value.

DoF(W ) = lim
SNR→∞

R(W )

Γ log(SNR)
,∀W ∈ W (85)

Note that we normalize by Γ log(SNR) because that is the (approximate) capacity of a MIMO link.
As it turns out, the symmetric MIMO problem is still essentially the index coding problem. All

the DoF results found in this paper for partially connected SISO networks, apply to MIMO networks
as well (with a corresponding normalization of the DoF). Since the outer bounds come from the
index coding problem and achievability is linear for all results, it suffices to state the following two
theorems for the symmetric MIMO case, which are the symmetric MIMO counterparts of the main
results stated previously in Theorem 4.1 and Theorem 4.2 for the SISO setting.

Theorem 4.17 The DoF region of the topological interference management problem
TIM(T ,W(S),W(D),C), for wireless networks where each node is equipped with Γ antennas, is
bounded above by the capacity region of the corresponding index coding problem IC(A,W(S),W(D)),
where A = T .

Theorem 4.18 The achievable DoF region through linear schemes, for TIM(T ,W(S),W(D),C)
where each node is equipped with Γ > 1 antennas includes the DoF region of the SISO case (Γ = 1).

That the MIMO case should include the SISO case may seem trivial at first because one could
simply discard all but one antenna. However, Theorem 4.18 is not trivial because of the normal-
ization of the DoF by the 1/Γ factor. What Theorem 4.18 claims is that the DoF scale with the
number of antennas, i.e., with Γ antennas at each node, the prelog of the linear achievable rates
is scaled by a factor of Γ. This is consistent with the spatial scale invariance property observed
in MIMO interference networks with perfect CSIT [54, 55] which has been conjectured to hold in
general for networks with perfect CSIT. Since we assume no CSIT beyond topology knowledge, it
is remarkable that spatial-scale invariance holds here as well.

4.11.2 Asymmetric MIMO

While the symmetric MIMO formulation of the topological interference management problem re-
tains the essential character of an index coding problem, in this section we provide an example of an
asymmetric MIMO topological interference management problem, which is fundamentally distinct
from the index coding problem. Note that the asymmetric setting is richer than the index coding
problem because of the varieties of antenna configurations one can have. For example, even the uni-
versal normalizing factor for the DoF metric, usually chosen as the DoF of one transmitter-receiver
pair, is not applicable, since different links can have different DoF. Therefore the DoF values in
this section will not be normalized by the antenna dimension.

DoF(W ) = lim
SNR→∞

R(W )

log(SNR)
, ∀W ∈ W (86)
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The main idea illustrated here is interference diversity. Interference diversity refers to the ob-
servation that each receiver experiences a different set of interferers, and therefore depending on
the actions of its own set of interferers, the interference-free signal space at each receiver can be ar-
tificially made to fluctuate differently from other receivers. The knowledge of these pre-determined
fluctuations, without requiring CSIT, creates opportunities for blind interference alignment schemes
in the manner of [9, 10, 56], but without the caveats of these previous works.

Figure 21: Interference to macrocell users from in-band femtocell deployments

We illustrate this concept through an example of a heterogeneous cellular downlink, shown
in Fig. 21. Such a situation would be typical for customer-deployed cells such as femtocells. For
example, consider customers in areas around b1 and c1, who are located inside macrocell dead spots
and set up their own femtocell base stations B,C for wireless access, but then these femtocell base
stations also interfere with neighboring macrocell users a1, a2, respectively.

The resulting topological interference management problem is equivalently shown in Fig. 22 with
asymmetric antenna configurations. Note that while all transmitters (base stations) are equipped
with two antennas, the receivers in cells B,C are equipped with only single receive antennas.
The channels are constant for the duration of communication as assumed throughout this work
and there is no CSIT beyond the topology of the network. Since the goal of this example is to
highlight interference diversity, we will focus on cell A, and the two receivers a1, a2, who experience
different interferers in transmitters B,C, respectively. Suppose cells B, C achieve 1 DoF each.
The question is to find out how many DoF cell A can achieve simultaneously. A naive argument
might be as follows. Since cells B,C achieve 1 DoF each and have only single antenna receivers,
the interference from base stations B,C must be consume one DoF at each of receivers a1, a2,
respectively. Essentially, this would mean that receivers a1, a2 would sacrifice one antenna to
cancel the interference. That leaves cell A with a two-antenna transmitter, two single-antenna
receivers and no CSIT which would suggest a collapse of DoF for cell A, i.e., cell A should not be
able to achieve any more than 1 DoF.

The naive reasoning is incorrect because it ignores the diversity of interference seen by the
two receivers a1, a2. It turns out that cell A can achieve 4/3 DoF with no CSIT, no reconfigurable
antennas and constant channels. The achievable scheme is simply the blind alignment scheme of [9],
albeit without the restriction that nature must produce suitable distinct coherence patterns, and
without the restriction to reconfigurable antennas as in [10]. Instead, the key here is interference
diversity. We operate over three time slots. Transmitters B,C send a new symbol in each time
slot. However, transmitter B uses his first transmit antenna for the first 2 time slots and then
his second transmit antenna for the third time slot, whereas transmitter C uses his first transmit
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Figure 22: An asymmetric MIMO instance of the topological interference management problem, exploiting
interference diversity. Cell A can achieve 4/3 DoF while Cells B and C achieve 1 DoF each.

antenna for the first time slot and his second transmit antenna for the last 2 time slots. In cell A,
receivers a1, a2 simply discard the dimension along which interference is received. The net effect is
that receiver a1 becomes a single antenna receiver, with a channel that remains the same for the
first 2 time slots and then changes during the third time slot, whereas receiver a2 becomes a single
antenna receiver with a channel that changes after the first time slot and then stays constant across
the last two time slots. In other words, we have created the staggered coherence blocks required
for blind interference alignment [9], and thus, 4/3 DoF are easily achieved by cell A, but without
requiring reconfigurable antennas, or relying on nature to create suitable statistical distinctions
between the users. However, somewhat curiously, a tight DoF outer bound for this example has so
far been elusive and the optimality of 4/3 DoF for cell A remains open.

The interference diversity example suggests that the topological interference management prob-
lem, in spite of its similarity to the index coding problem in symmetric MIMO settings, can present
a distinct set of challenges in asymmetric settings with arbitrary antenna configurations on top of
arbitrary topology and arbitrary message sets.

5 Discussion

The study of wireless networks with little to no CSIT offers a counterpoint to recent works on
settings with abundant CSIT. As the abundant CSIT assumptions are incrementally relaxed and
minimal CSIT assumptions incrementally enhanced, the hope is that the two perspectives will
converge over practical regimes of interest, where CSIT is neither as abundant nor as scant as often
assumed in theoretical studies. The results presented here are more introductory than conclusive,
intended to lay down the groundwork for the complementary perspective, and to present supporting
evidence of its promise.

Because of the coarse nature of the results several cautionary notes are in order, especially
for wireless networks. The study undertaken here focuses on first order capacity characterizations
(DoF) as a stepping stone to constant gap capacity approximations. The quality of approximation
improves with SNR, i.e., the difference of scale between desired channel strengths and the ‘weak’
interferers whose net signal strength fall below the noise floor. Also, since the focus of the paper
is not on minimizing the gaps, there is much room left for improving the bounds to make the gaps
smaller which would be an interesting direction for future work. Another interesting issue here
is the choice of the effective noise floor by the receivers. If a receiver chooses an effective noise
floor too low, then most interferers would exceed the threshold, the network would become more
connected and there would be fewer opportunities to exploit topological interference management.
On the other hand, if a receiver chooses the effective noise floor too high, then the network will be
sparsely connected and there would be plenty of opportunities to exploit topological interference
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management, but the SNR itself will suffer. Therefore, the optimal choice of the effective noise
floor threshold is another interesting research avenue for future work.

It should also be pointed out that while the CSIT is minimally limited to topology, favoring
robust results, there are still quite a few idealizations built into the model — asynchronous networks,
partial or mismatched topology knowledge and A/D saturation/non-linearities are some of the
significant practical concerns that are ignored here.

From a theoretical standpoint, the unified framework of capacity of linear communication net-
works is intriguing and shows that DoF studies, often viewed as first order capacity approximations
for wireless networks, are more generally useful as the exact capacity characterizations for the un-
derlying linear communication network. Expanding this unified framework would be a worthwhile
direction to pursue. Closely related to the study of linear networks is the optimality of linear
solutions. While non-linear solutions are known to be necessary in some cases, it would be useful
to understand whether such counter-examples are the exception or the norm. In particular, for the
topological interference management problem, it is not clear whether linear solutions are sufficient.

The best case improvement of optimal solutions versus other conventional solutions such as weak
fractional orthogonal scheduling, weak fractional partition multicast, local fractional coloring, for
the K-unicast settings as well as the K-groupcast settings, remain open problems. Algorithm design
for random instances of index coding and topological interference management problems, that
incorporate the interference alignment principles, as used in the achievability proof of Theorem 4.14
is a promising direction. Duality of index coding and topological interference management problems,
shown here from a linear coding perspective, remains an open problem from an information theoretic
perspective. The idea of splitting an index coding problem or a topological interference management
problem by alignment sets, each of which can be solved as an independent problem, used to great
advantage for linear schemes in this work, is also intriguing from a broader information theoretic
perspective.

Appendix

A Index Coding Problem: IC(A,W(S),W(D))

The following parameters define an index coding problem.

1. An antidote matrix A ∈ {0, 1}D×S .

2. S message sets W(Sj), j ∈ {1, 2, · · · , S}, collectively denoted as W(S).

3. D message sets W(Di), i ∈ {1, 2, · · · , D}, collectively denoted as W(D).

These parameters define a communication network with S source nodes, labeled S1, S2, · · · , SS
and D destination nodes, labeled D1, D2, · · · , DD, and two additional nodes, labeled N1, N2, that
are connected by a unit capacity edge going from N1 to N2, known as the bottleneck link. There is
an infinite capacity link from every source to the node N1, and an infinite capacity link from N2 to
every destination node. What it means is simply that N1 knows all the messages, so all the coding
is performed at N1, and the output of the bottleneck link is available to all destination nodes.

Message Sets: Source node Sj has a set of independent messages, W(Sj), that it wants to send
to their desired destinations. Destination node Di has a set of independent messages W(Di) that
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it desires. The set of all messages is denoted as W.

W =

D⋃
i=1

W(Di) =

S⋃
j=1

W(Sj) (87)

Each message has a unique source, i.e., W(Sj) ∩ W(Sj′) = φ if j 6= j′. If every message also has
a unique destination node, it is called the multiple unicast setting. However, in general a message
may be desired by multiple destinations. To distinguish it from the unicast setting defined earlier
and the multiple multicast setting where every message is desired by every destination, we call this
the multiple groupcast setting [32].

Antidotes: The antidotes are defined by the matrix A = [aij ]D×S of zeros and ones, with

aij =

{
0, no path exists from Sj to Di except through the bottleneck link,
1, a direct link of infinite capacity exists from Sj to Di.

(88)

The presence of an antidote link, i.e., an infinite capacity link between Sj and Di, simply means
that the messages W(Sj) are already available to Di for free. To avoid degenerate scenarios, we
will assume throughout that aij = 0 whenever W(Di) ∩ W(Sj) 6= φ, i.e., if destination node Di

desires a message that originates at source node Sj , then there is no infinite capacity link between
them. The desired messages must, therefore, pass through the bottleneck link, and their rate can
at most be one.

Coding schemes, probability of error, achievable rates and capacity region are defined in the
standard information theoretic sense of vanishing probability of error, albeit it is noteworthy that
Langberg et al. have shown in [57] that the vanishing-error capacity of the index coding problem
is the same as the zero-error capacity.

Field: While the field is irrelevant for the information theoretic capacity of the index coding
problem, in order to identify linear schemes we will associate an auxiliary field F with the bottleneck
link. If F is a finite field, i.e., the bottleneck link can transmit one symbol from F each channel
use, then we will express the capacity of the index coding problem, normalized by log(|F|). If F
is the field of complex numbers, then we will interpret the bottleneck link as an AWGN channel
with transmit power S2P , AWGN power No, and capacity log(1 + S2SNR), where SNR = P/No,
and express the capacity of the index coding problem normalized by log(1 + S2SNR). Note that,
because of network equivalence theorem of [58], the choice of field is irrelevant to the normalized
capacity of the index coding problem. However, the field specification will be useful to deal with
linear solutions.

Linear Scheme: A linear scheme over N channel uses, when F is a finite field, achieving the rates

R(W ) =
L(W )

N
,∀W ∈ W (89)

and when F is the field of complex numbers, achieving the DoF,

DoF(W ) =
L(W )

N
,∀W ∈ W (90)

where L(W ) are non-negative integer values, consists of
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1. precoding matrices V(W ) ∈ FN×L(W ), ∀W ∈ W,

2. receiver combining matrices Ui(W ) ∈ FL(W )×N , ∀W ∈ W(Di), i ∈ {1, 2, · · · , D}

such that the following properties are satisfied

Property 1: Ui(W )V(W̃ ) = 0, (91)

∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S},W ∈ W(Di), W̃ ∈ W(Sj),

such that W 6= W̃ and aij = 0.

Property 2: det(Ui(W )V(W )) 6= 0, ∀W ∈ W(Di). (92)

So, each message W is split into L(W ) independent scalar streams, collectively represented by
the column vector X(W ) = (x1(W ), x2(W ), · · · , xL(W )(W ))T ∈ FL(W )×1, each of which carries
one symbol from F, and is transmitted along the corresponding column vectors (the “beamform-
ing” vectors) of the precoding matrix V(W ). In the finite field case, the symbols xl(W ) are
uniformly distributed over the finite field F, each carrying log |F| bits of information. When F = C,
the field of complex numbers, the xl(W ) are independent Gaussian codebooks, each with power
S2P/(

∑
W L(W )), and the columns of V(W ) are scaled to have unit norm (which does not affect

Property 1 or 2), so that the power constraints are satisfied.
Over the N channel uses, node N1 sends on the bottleneck link to N2 the N × 1 vector,

X =
∑
W∈W

V(W )X(W ). (93)

N2 receives the N × 1 vector Y = X + Z and passes it to all destinations through the infinite
capacity links that connect N2 to each destination. Note that Z = 0 in the finite field case.

Destination Di removes the contribution from known antidotes and then for each desired mes-
sage W ∈ W(Di) ∩W(Sj), projects the remaining signal into the Ui(W ) space to obtain

Yi(W ) = Ui(W )

Y −
∑

j:aij=1

 ∑
W ′∈W(Sj)

V(W ′)X(W ′)

 (94)

= Ui(W )V(W )X(W ) + Ui(W )Z, (95)

where the contributions from all other messages are eliminated due to Property 1. Now, according
to Property 2, Ui(W )V(W ) is an invertible matrix, so that the following non-interfering channels
are obtained for each desired symbol stream.

Yi = [Ui(W )V(W )]−1 Yi(W ) = X(W ) + [Ui(W )V(W )]−1 Ui(W )Zi︸ ︷︷ ︸
Zi

(96)

⇒ yi,l(W ) = xl(W ) + zi,l, l ∈ {1, 2, · · · , L(W )}. (97)

Over F = C, each non-interfering channel with AWGN contributes 1/N DoF (it contributes 1 DoF,
but because N channel uses are required by the linear coding scheme, the normalized value is 1/N
per channel use), so that DoF of L(W )/N is achieved for each message W . In the finite field case,
there is no noise, and a rate of L(W )/N is achieved for each message W .
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DoF Optimal Non-Asymptotic Linear Scheme: Suppose an index coding problem has sym-
metric capacity Csym per message. If a non-asymptotic (i.e., precoding over finite number, N , of
channel uses) linear precoding scheme can achieve symmetric DoF = Csym per message for this
index coding problem over C, then the linear scheme is said to be DoF optimal. Clearly, Csym
must be a fraction L/N in this case.

B Conventional Access: Orthogonal (TDMA) and Multicast (CDMA)

The essence of orthogonal and multicast schemes is defined as follows.
Orthogonal Transmission: An orthogonal transmission serves, over a single channel use, a subset
of messages Wo ⊂ W such that no message in Wo sees interference from any other message in Wo.
In terms of the conflict graph, the set of messages served simultaneously over a channel use by
an orthogonal scheme, Wo, is an independent set of the conflict graph. Since the transmission is
interference-free, the rate (DoF) allocated to each message inWo over this one channel-use is unity,
and the sum-rate (sum-DoF) value over this one channel use is |Wo|. Orthogonal schemes may be
seen as TDMA (time division).
Multicast Transmission: A multicast transmission serves, over k channel uses, a subset of
messages Wm ⊂ W, such that every destination that desires a message from Wm sees interference
from less than k other messages withinWm. Since, no destination sees more than k−1 interferers in
addition to its desired message, a total of k linearly independent equations delivered over k channel
uses suffices for every destination to resolve one symbol from each of the interfering messages
and one symbol from the desired message. This is accomplished by ‘spreading’ each symbol by a
different k×1 pseudo-random code vector. Since only one symbol is sent from each message inWm

over k channel uses, the rate (DoF) allocated to each message in Wm over these k channel uses, is
1
k and the sum-rate (sum-DoF) value over these k channel uses is |Wm|

k . Multicast schemes may be
seen as CDMA (code division).

If the goal is to achieve only the best sum-rate (sum-DoF) possible through orthogonal or
multicast schemes, then it suffices to serve the best (corresponding to the highest sum-rate) subset
of messages Wo or Wm, and the remaining messages are ignored. For orthogonal schemes, the
highest sum-rate (sum-DoF) is the independence number of the conflict graph. Note that an
orthogonal scheme is a special case of multicast. This is because if we choose Wm = Wo then
multicast achieves the same sum-rate (DoF) as an orthogonal scheme. Therefore, for multicast
schemes, the highest sum-rate (DoF) is at least as high as that for orthogonal schemes.

Beyond sum-rates, e.g., if the goal is to optimize the symmetric rate achieved by all messages,
then both orthogonal and multicast schemes are naturally extended to all messages W by appro-
priately partitioning the set of messages.
Symmetric Rate (DoF) – Orthogonal Scheduling and Partition Multicast: For orthogonal
scheduling, the conflict graph is partitioned into independent sets, i.e., the symmetric rate (DoF)
1
α per message is achieved if the vertices of the conflict graph can be covered by α independent
sets that are mutually disjoint. This is done by scheduling the independent sets one after another
through an orthogonal scheme.

For multicast, the set of messages is partitioned into mutually disjoint subsets and each subset
is served by a multicast scheme [45]. If W1,W2, · · · ,Wp are p mutually-disjoint and collectively
exhaustive subsets of the set of all messages,W, and if each destination that desires a message from
Wi sees less than mi interfering messages from within Wi, then by serving the partitions one after
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another through a multicast scheme, the symmetric rate (DoF) value achieved is 1
m1+m2+···+mp

per
message.

Once again, note that orthogonal cover is a special case of partition multicast. Thus, the
symmetric rate of partition multicast is at least as high as that of orthogonal scheduling. In
general symmetric rates achieved by partition multicast can be strictly higher, as illustrated in Fig.
23.

1

2

3

1

2

3

Figure 23: A 3-unicast setting where the best orthogonal scheme can only achieve symmetric DoF 1/3
per message but a multicast scheme achieves symmetric DoF 1/2 per message (information theoretically
optimal).

It is also worthwhile to mention that orthogonal scheduling and partition multicast are equiva-
lent for the class of symmetric unicast networks (represented by undirected side-information graphs
in [45]) where if message Wi interferes with the desired destination of message Wj then message
Wj interferes with the desired destination of (message Wi, as shown by Tehrani et al. in [45].
Fractional Orthogonal Scheduling and Fractional Partition Multicast: While the subsets
of messages as defined above, are disjoint, the achievable rate (DoF) regions of both orthogonal
cover and partition multicast schemes can be enlarged by allowing each message to be a part of
multiple subsets and considering only the average rate (DoF) of each message in the long term.
This gives us the fractional version [59] of orthogonal cover and partition multicast schemes, and
the resulting schemes are therefore called fractional orthogonal scheduling and fractional partition
multicast.

The benefits of fractional schemes are evident through the example illustrated in Fig. 24(a). It
is easy to verify that no orthogonal scheduling or partition multicast scheme can achieve symmetric
DoF higher than 1/3 in this network, which may be achieved by successively serving orthogo-
nal subsets of messages such as {W1,W3}, {W2,W4}, {W5}. However, a symmetric rate (DoF) of
2/5 per message is achievable in Fig. 24(a) by the fractional orthogonal scheduling: {W1,W3},
{W3,W5}, {W5,W2}, {W2,W4},{W4,W1}. Note that each message is a part of two subsets. As
usual, fractional orthogonal scheduling schemes are a special case of fractional partition multicast.
Incidentally, for this example the best fractional orthogonal scheduling scheme is also the best
fractional partition multicast scheme, because it achieves the information theoretically optimal
symmetric rate (DoF) value for the network of Fig. 24(a), as shown in [42, 32].
Groupcast: Strong (messages) and Weak (destinations) Partitioning: In this work we
use only the definitions provided above, where the multicast partitioning or orthogonal scheduling
is based on messages. It is possible, however, to weaken the definitions by allowing partitioning or
scheduling based on destinations rather than messages. For multiple unicast, where each message is
desired by exactly one destination and without loss of generality one can assume that each destina-
tion desires exactly one message, there is a 1 to 1 association of messages with destinations. Thus,
partitioning/scheduling messages is equivalent to partitioning/scheduling destinations. However,
for groupcast settings, where each message may be desired by multiple destinations, partition-
ing/scheduling of messages is not the same as the partitioning/scheduling of destinations. The
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Figure 24: (a) A 5-unicast topological interference management problem, (b) its conflict graph, (c) A 5-
groupcast topological interference management problem that has the same conflict graph

distinction is noted by Blasiak et al. in Definition 2.5 of [42] where based on a side-information hy-
pergraph representation, the orthogonal scheduling of messages is called a strong hyperclique cover
and the orthogonal scheduling of destinations is called a weak hyperclique cover. Note that an
orthogonal scheduling of destinations means that the destinations being scheduled simultaneously
must not see interference from each others’ desired messages. The strong hyperclique is a special
case of a weak hyperclique, i.e., orthogonal scheduling of messages is a special case of orthogonal
scheduling of destinations. The weak orthogonal scheduling schemes in general can achieve higher
rates (DoF) than strong orthogonal scheduling schemes. The same applies to partition multicast
and the fractional versions of both orthogonal scheduling and partition multicast as well, where we
can similarly define weak partition multicast, fractional weak partition multicast, and fractional
weak orthogonal scheduling. While the class of weak (fractional) schemes is the most powerful
class for both orthogonal scheduling and partition multicast, in this work we only consider strong
(fractional) schemes, and the qualifier “strong” will be omitted for compact notation.

C Proofs

C.1 Proof of Theorem 4.1

Starting from a reliable encoding/decoding scheme for the partially connected wireless network
setting, we will go through a series of steps, each of which cannot reduce capacity, to arrive at the
corresponding index coding problem.

1. ∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S}, if tij = 1, then set the value of the channel coefficient as
follows

hij =

√
SNR× No

Pj
(98)

Since this is one of the values that these channels can take, any reliable coding scheme must
work for this choice of channel coefficient values as well.

2. ∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S}, if tij = 0, then let a Genie provide the messages W(Sj)
to destination node Di. Note that none of these are desired messages.
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3. ∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S}, if tij = 0, then replace the (previously zero) channel
coefficient values with new non-zero values hij such that

hij =

√
SNR× No

Pj
(99)

and allow full CSIR. This cannot hurt because of the previous step which provided all the
messages from the “formerly disconnected” transmitters to each receiver. Knowing all the
messages from a transmitter allows the receiver to construct the transmitted codewords. Since
the receiver has full CSIR, it can simply subtract the new interferers.

4. Allow full cooperation between all sources and allow full CSIT.

5. At this point, note that all channels have strength SNR, the D×S channel coefficient matrix
is rank 1, and all destinations see statistically equivalent signals. Since capacity depends only
on marginals, let us assume, without loss of generality, that all destinations see the same
received signal. Since all destinations see the same output signal, we have an 1× S multiple
input single output (MISO) channel whose output is available to all destinations. With the
transmit signal power from each source and the additive noise power at the destination all
normalized to unity, the channel vector is

√
SNR [1, 1, · · · , 1]︸ ︷︷ ︸

1×S

, and the total transmit power is

S. This MISO channel has capacity log(1+S2SNR) [60]. By the network equivalence theorem
of [58] we replace this MISO channel with a noise-free link of capacity log(1 + S2SNR). This
becomes the bottleneck link and the transformation to the index coding problem is complete.

Since at each step the capacity region is not reduced, the capacity region of the resulting index
coding problem is an outer bound on the capacity region of the original wireless network. Note
that in the index coding problem the bottleneck link capacity is normalized to unity. This means
that if the rate allocation R(W ) is on the boundary of the capacity region of the index coding
problem, then the rate allocation R(W ) log(1+S2SNR) must be either on the boundary or outside
the capacity region of the partially connected wireless network. Dividing the rates by log(SNR)
and taking the limit SNR→∞, we find that R(W ) is on the boundary or outside the DoF region
of the partially connected wireless network.

A similar transformation is used in the wired case as well. Starting from a reliable encod-
ing/decoding scheme for the partially connected wired network setting, we will go through a series
of steps, each of which cannot reduce capacity, to arrive at the corresponding index coding problem.

1. ∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S}, if tij = 1, then set the value of the channel coefficient as
follows

hij = 1 (100)

Since this is one of the values that these channels can take, any reliable coding scheme must
work for this choice of channel coefficient values as well.

2. ∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S}, if tij = 0, then let a Genie provide the messages W(Sj)
to destination node Di. Note that none of these are desired messages. Equivalently, instead
of a Genie, we can include an infinite capacity antidote link between Sj and Di whenever
tij = 0. Such a link allows the messages W(Sj) to be made available to Di.
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3. ∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S}, if tij = 0, then replace the (previously zero) channel
coefficient values with new non-zero values hij such that

hij = 1 (101)

and allow full CSIR. This cannot hurt because of the previous step which provided all the
messages from the “formerly disconnected” transmitters to each receiver. Knowing all the
messages from a transmitter allows the receiver to construct the transmitted codewords. Since
the receiver has full CSIR, it can simply subtract the new interferers.

4. Allow full cooperation between all sources and allow full CSIT.

5. At this point, note that all channel coefficient values are identical and all destinations see
the same signal. Since all destinations see the same output signal, we have an 1× S multiple
input single output (MISO) channel of capacity log |GF| whose output is available to all
destinations. This becomes the bottleneck link. The Genie signals are made available through
antidote links, and the transformation to the index coding problem is complete.

C.2 Proof of Theorem 4.2

The proof of Theorem 4.2 is evident from the description of linear schemes for the topological
interference management problem, and the index coding problem. In particular, note that replacing
A with T , the feasibility conditions on U,V matrices are identical in both settings. Hence, the
linear achievable rates are identical in both settings as well.

C.3 Proof of Theorem 4.3

Suppose the index coding problem has symmetric capacity Csym. By Theorem 4.1 the symmet-
ric capacity of the wireless topological interference management problem is bounded above by
Csym log(1 + S2SNR) per message. This is also an outer bound for the original wireless network
because removing interference cannot hurt. Now consider achievability. We are given that a linear
scheme is DoF optimal for the index coding problem over C. So we must have Csym = L

N for some
finite, non-negative integer values L,N , corresponding to the number of symbols sent per message
and the number of channel uses, respectively. By Theorem 4.2 a linear scheme can achieve the
same symmetric DoF for the topological interference management problem, with the same L,N .
Let V(W ),Ui(W ),∀W ∈ W, i ∈ {1, 2, · · · , D} be the precoding and receiver combining matrices
for the DoF optimal linear scheme. The signal to noise ratio for the interference-free channel (27)
is

|hij |2Pj
No

1

|W(Sj)|Lδi,l
≥ SNR

1

|W(Sj)|Lδi,l
≥ SNR

1

KLδmax
(102)

where δi,l is the (l, l)th term of [Ui(W )V(W )]−1Ui(W )U†i (W )
(
[Ui(W )V(W )]−1

)†
and δmax is the

maximum values it takes across i, l. Therefore an achievable rate guarantee for each message W is

R(W ) = Csym log

(
1 + SNR

1

KLδmax

)
, ∀W ∈ W (103)
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The gap between this achievable rate and the outer bound of Csym log(1+S2SNR) is no more than
Csym log(S2KLδmax). Clearly it can be made smaller, but since this is already an SNR independent
gap, it suffices for the present purpose.

C.4 Proof of Theorem 4.4

Since the outer bound is shown for the index coding problem in [42, 32] and the achievable scheme is
linear over any field, Theorem 4.1 and Theorem 4.2 directly translate the result into the topological
interference management setting.

C.5 Proof of Theorem 4.5

Here we will prove the achievability result for fractional orthogonal scheduling schemes. Since
fractional orthogonal scheduling is a special case of fractional partition multicast, the achievability
result for the latter is automatically implied.

Let us assume that each destination desires only one message. There is no loss of generality in
this assumption because if multiple messages are desired by a destination, then one can replace it
with multiple destinations with identical received signals, each interested in only one of the originally
desired messages. Because this is a unicast setting, now we have D messages andW(Dj) = Wj . Let
us construct the alignment graph and conflict graph for the network and let the resulting alignment
sets be A1, A2, · · · , Am, where m is the number of alignment sets.

Consider an m ×m matrix M , whose elements are disjoint and collectively exhaustive sets of
messages. Let M(i, j) be the element in the ith row and jth column of the matrix M . Then we
have:

M(i, j) ⊂ W
M(i, j) ∩M(i′, j′) = φ if (i, j) 6= (i′, j′)⋃

i,j∈{1,2,··· ,m}

M(i, j) =W

A message Wi belongs to M(j, k) if Wi is in the alignment set Aj and its desired destination Di

sees interference from a message in alignment set Ak. Note that all the interfering messages seen
by a destination belong to the same alignment set (by definition of alignment sets), so there is
no ambiguity in this assignment of Wi to M(j, k). If the destination Di sees no interference, and
Wi belongs to the alignment set Aj , then we let Wi ∈ M(j, j + 1). The indices i, j in M(i, j) are
interpreted modulo m, so m+ 1 is the same as 1. Note that the diagonal elements of M are empty
sets.

We will now identify a set of non-interfering messages that can be simultaneously transmitted by
an orthogonal scheme. From the integers 1, 2, · · · ,m, choose bm/2c distinct values, r1, r2, · · · , rbm/2c,
that will serve as indices for extracting a submatrix of M . Specifically from the m × m matrix
M , let us eliminate columns r1, r2, · · · , rbm/2c and eliminate all rows except rows r1, r2, · · · , rbm/2c.
Let the set of all messages in the surviving submatrix be denoted as M[r1,r2,··· ,rbm/2c]. Then these
messages cause no interference to each other and can be simultaneously transmitted by an orthog-
onal scheme. This is because, the way M is constructed, a message in column r of M can only
see interference from messages in row r of M . Since the surviving row indices are exclusive of the
surviving column indices, there can be no interference among surviving messages.

Now let repeat this orthogonal scheduling process for every possible choice of the bm/2c distinct
values, r1, r2, · · · , rbm/2c. There are a total of

(
m
bm/2c

)
choices of indices. The messages in M(i, j), i 6=
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j survive only if the chosen indices contain i and do not contain j. This can happen in
(

m−2
bm/2c−1

)
ways. Thus, over

(
m
bm/2c

)
channel uses, every message gets scheduled a total of

(
m−2
bm/2c−1

)
times,

giving us an achieved DoF value

DoF(W ) =

(
m−2
bm/2c−1

)(
m
bm/2c

) , for all W ∈ W (104)

=
bm/2c(m− bm/2c)

m(m− 1)
(105)

=

{
0.25 + 1

4(m−1) if m is even,

0.25 + 1
4m if m is odd.

(106)

Thus, whenever symmetric DoF of 0.5 per message is achievable through any means, fractional
orthogonal scheduling (and therefore, also fractional partition multicast) schemes can achieve at
least symmetric DoF of 0.25 per message. We conclude with an illustration of the details of the
proof for the example presented in Fig. 6.

A1 = {W1,W5,W10}
A2 = {W2,W7}
A3 = {W3}
A4 = {W4,W6,W8}
A5 = {W9}

M =

{} {W10} {W1} {W5} {}
{W2} {} {W7} {} {}
{} {W3} {} {} {}

{W4,W8} {} {W6} {} {}
{} {} {} {W9} {}

M[1,2] = {W1,W5,W7}, M[1,3] = {W3,W5,W10}, M[1,4] = {W1,W6,W10}
M[1,5] = {W1,W5,W9,W10}, M[2,3] = {W2}, M[2,4] = {W2,W4,W6,W7,W8}, M[2,5] = {W2,W7,W9}
M[3,4] = {W3,W4,W8}, M[3,5] = {W3,W9}, M[4,5] = {W4,W6,W8}

Note that over 10 channel uses every message is scheduled a total of 3 times, thus achieving a
symmetric DoF value of 0.25 + 1

4m = 0.3 per message.

C.6 Proof of Theorem 4.6

We will construct a network where 0.5 symmetric DoF is achievable and find an outer bound on
the best sum rate achievable by partition multicast. This is also the best sum rate achievable
by fractional partition multicast. Since the sum-rate achieved by (fractional) partition multicast
cannot be smaller than the sum-rate achieved by (fractional) orthogonal scheduling schemes, the
outer bound will also apply to (fractional) orthogonal scheduling schemes. To bound the symmetric
rate, then we will use the property that the symmetric rate cannot be larger than the sum-rate
divided by the number of messages.

Let us construct a network with m(m− 1) messages (choose m as an even number), where 0.5
symmetric DoF is achievable, and for which the M matrix, constructed as in the proof of Theorem
4.5, contains exactly one message in every off-diagonal element. The network has m(m−1) sources
and m(m− 1) destinations, i.e., S = D = m(m− 1), and source Si wants to send the message Wi
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to destination Di. The alignment graph for this network has m alignment sets, each with m − 1
elements. The message in M(i, j), i 6= j is in alignment set Ai, and its desired destination sees
interference from all the m − 1 messages in the alignment set Aj . Since all interferers come from
other alignment sets, there are no internal conflicts, and 0.5 symmetric DoF is feasible.

For ease of exposition let us illustrate the construction through an example where m = 4. The
alignment sets and the matrix M for this example are shown below.

A1 = {W1,W2,W3}
A2 = {W4,W5,W6}
A3 = {W7,W8,W9}
A4 = {W10,W11,W12}

M =

{} {W1} {W2} {W3}
{W4} {} {W5} {W6}
{W7} {W8} {} {W9}
{W10} {W11} {W12} {}

If a message appears in the jth column of the matrix M , then the destination that desires that
message, sees interference from precisely the 3 messages that are in the jth row of the matrix M . For
example, since the message W1 is in the second column of M , the destination that desires W1 sees
interference from the three messages W4,W5,W6 that appear in the second row. The destination
that desires W8 also sees interference from W4,W5,W6 whereas the destination that desires W4 sees
interference from W1,W2,W3, and so on.

Leaving the example, now let us return to the general construction where m is a large even
number. For this network, consider any partition multicast (or orthogonal scheduling) scheme.
Specifically, consider the partition that achieves the highest sum-DoF among all partitions. This
is a group of messages that are multicast over the network. Let us call these the active messages.
Suppose the maximum number of interferers seen by a destination node within the group of active
messages is l (for orthogonal schemes, set l = 0 throughout this proof). So the multicast takes place
over l + 1 channel uses and the DoF achieved per active message is 1

l+1 . To find the sum-DoF we
need to bound the number of active messages. Suppose the active messages comes from n1 distinct
columns of M : specifically from columns j1, j2, · · · , jn1 . Now, a message in column j1 of M sees
interference from all m− 1 messages in the alignment set Aj1 . Since no more than l interferers are
seen within the active set of messages, no more than l messages in Aj1 can be active. By the same
logic, each of the n1 alignment sets Aj1 , Aj2 , · · · , Ajn1

cannot contain more than l active messages.
Therefore, the corresponding n1 rows of M cannot contain a total of more than n1l active messages.
Since all active messages come only from n1 columns, the remaining rows of M cannot contain more
than (m− n1)n1 active messages. Thus, the total number of active messages cannot be more than
(m− n1)n1 + n1l = n1(m− n1 + l). The sum-DoF of this partition therefore is bounded above by
n1(m − n1 + l)/(l + 1), and the symmetric DoF achieved by this partition multicast scheme are
bounded above by:

DoFsym(Partition Multicast) ≤ n1(m− n1 + l)

l + 1
× 1

m(m− 1)
(107)

If n1 ≤ m − 1, then the term m−n1+l
l+1 is no larger than m − n1 and the product n1(m − n1) is

no larger than m2/4. Therefore the achieved symmetric DoF is no larger than 1
4 + 1

4(m−1) . For any

ε > 0, we can make 1
4(m−1) ≤ ε by choosing m ≥ 1

4ε + 1.

If n1 = m, then ml/(l + 1) is no larger than m − 1 (because l ≤ m − 1), and the achieved
symmetric DoF is no larger than 1

m . This is no larger than 0.25 + ε if m ≥ 4.
Therefore, choosing m ≥ max

(
4, 1

4ε + 1
)
, we have the desired statement for the network thus

created — symmetric DoF of 0.5 per message is feasible, but partition multicast or orthogonal
schemes cannot achieve a symmetric DoF higher than 0.25+ε.
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C.7 Proof of Theorem 4.8

Let us construct a half-rate-feasible K-groupcast network with K sources, each with one message.
We have K−1 desired destinations for each message, each destination desiring only one message, so
that the total number of destinations is K(K−1). In addition to its desired message, each destina-
tion sees only one interferer. Each of the desired destinations of a particular message sees a different
interferer. In this network, because every message causes interference to every other message at
some destination, an orthogonal scheme cannot schedule more than one message simultaneously.
Thus, the highest symmetric DoF achievable by a fractional orthogonal scheduling scheme is 1/K
for this network. Note that because each destination sees only one interferer, a multicast approach
easily achieves symmetric DoF of 0.5 in this network, so it is indeed half-rate-feasible.

C.8 Proof of Theorem 4.9

Consider a half-rate feasible network with m alignment sets, each containing m − 1 messages, so
that the total number of messages is K = m(m− 1). Each message originates at a distinct source
node. There are a total of m− 1 destinations interested in each message. Each destination desires
only one message. So the total number of destinations is m(m − 1)2. Of the m − 1 destinations
that desire each message, each is uniquely associated with one of the m− 1 alignment sets that do
not contain the desired message, in the sense that it sees interference from all m−1 messages in its
associated alignment set. For example, suppose message W1 is in alignment set A1 and is desired
by destinations D1, D2, · · · , Dm−1. Then D1 sees interference from all the m − 1 messages in the
alignment set A2, D2 sees interference from all the m − 1 messages in the alignment set A3, · · · ,
and Dm−1 sees interference from all the m− 1 messages in the alignment set Am. Since there are
no internal conflicts, this network has symmetric DoF 0.5 per message.

Once again, let us illustrate the construction through an example where m = 4. The alignment
sets and the matrix M for this example are shown below.

A1 = {W1,W2,W3}
A2 = {W4,W5,W6}
A3 = {W7,W8,W9}
A4 = {W10,W11,W12}

M =

{} {W1} {W2} {W3}
{W4} {} {W5} {W6}
{W7} {W8} {} {W9}
{W10} {W11} {W12} {}

In this example, for every message there are 3 destination nodes that desire that message, and there
are 3 alignment sets that do not contain this message. Each of these three destinations that desire
the given message, experiences interference from all 3 messages in one of the 3 alignment sets that
do not contain the given message. So, for example, message W1 is desired by three destinations,
one of which sees interference from W4,W5,W6, one that sees interference from W7,W8,W9 and
one that sees interference from W10,W11,W12. Note that messages in the same row belong to an
alignment set and do not interfere with each other, so that symmetric DoF value is 0.5 per message.

Leaving the example and returning to the general m construction, now consider a partition
multicast scheme for the network. Specifically, consider the partition that achieves the highest
sum-DoF among all partitions. This is a group of messages that are multicast over the network.
Let us call these the active messages. Suppose the maximum number of interferers seen by a
destination node within the group of active messages is l. So the multicast takes place over l + 1
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channel uses and the DoF achieved per message is 1
l+1 . To find the sum-DoF we need to bound the

number of active messages. We will consider two possibilities.
First, suppose all active messages come from the same alignment set. In this case, there is no

interference between them, l = 0, the DoF per active message is 1, the sum-DoF value is at most
m − 1, and the symmetric DoF achieved by this partition multicast scheme can be no more than
(m− 1)/(m(m− 1)) = 1/m.

Now, suppose the active messages come from more than one alignment set. Let the maximum
number of active messages that come from the same alignment set be no. Then, l = no, and the DoF
achieved per active message is 1/(no+1). Since there are m alignment sets, and each can contribute
no more than no active messages, the total number of active messages cannot be more than mno.
The sum-DoF value achievable through partition multicast is no more than mno/(no + 1). The
symmetric DoF achieved through fractional partition multicast scheme is no more than the highest
possible sum-DoF value achieved by partition multicast divided by the total number of messages.
So the symmetric DoF are bounded above as:

DoFsym(Fractional Partition Multicast) ≤ mno
no + 1

× 1

m(m− 1)
(108)

≤ 1

m
(109)

This is because no/(no + 1) is an increasing function of no and the maximum possible value of no
is m− 1.

Therefore in every case the symmetric DoF achieved by the fractional partition multicast scheme
cannot be more than 1/m. Since the number of messages, K = m(m− 1), we have m >

√
K. The

symmetric DoF achieved by fractional partition multicast schemes therefore cannot be more than
1/
√
K.

C.9 Proof of Theorem 4.10

Consider a multiple groupcast network with K messages that is half-rate-feasible. Assume, without
loss of generality, that each destination desires exactly one message. Suppose there are m alignment
sets, Ai, labeled in order of decreasing cardinality, i.e., |A1| ≥ |A2| ≥ · · · ≥ |Am|. Let T be an
integer value to be defined later. Consider the following algorithm that sends one symbol from each
message over T time slots.
begin

t=1;
while |At| ≥ T − t+ 1 do

transmit all messages from At in time slot t;
t→ t+ 1;

end
Over the remaining T − t+ 1 time slots, multicast the remaining messages;

end
The algorithm has two phases. The first part is an orthogonal transmission phase and the

second part is a multicast phase. Note that a half-rate-feasible network does not have internal
conflicts, so the messages that belong to the same alignment set do not interfere with each other.
It is therefore possible to multicast all messages from the same alignment set over one time slot.
This part is an orthogonal scheme. So the algorithm uses orthogonal transmission for the first
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t− 1 time slots to multicast messages from A1, A2, · · · , At−1, one alignment set per time slot. The
orthogonal transmission phase stops when |At| ≤ T − t. At this point there are T − t+ 1 time slots
left, and all remaining alignment sets, At, At+1, · · · , Am have no more than T − t messages each.
Since all interfering messages seen by a destination have to be in the same alignment set, evidently
no destination sees more than T − t interfering messages in addition to its own desired message.
Therefore, T − t+ 1 time slots are sufficient to multicast all remaining messages.

The algorithm can only fail if the orthogonal phase continues until the end and even after T
time slots not all messages have been transmitted. Mathematically, the algorithm can fail only if
both of the following conditions are true.

|At| ≥ T − t+ 1, ∀t ∈ {1, 2, · · · , T} (110)

and K >
T∑
t=1

|At|. (111)

So the algorithm is guaranteed to succeed if

K ≤
T∑
t=1

(T − t+ 1) (112)

=
T (T + 1)

2
(113)

Or, equivalently, the algorithm is guaranteed to succeed if T 2 +T − 2K ≥ 0. This condition is true
if

T ≥
√

8K + 1− 1

2
(114)

So, let us set T = d
√

8K+1−1
2 e. Thus, a symmetric DoF of 1

T = 1

d
√

8K+1−1
2

e
per message is always

achievable by a partition multicast scheme.

A slightly weaker result, but with a simpler expression, is obtained by recognizing that
√

8K+1−1
2 ≤√

2K. So by setting T = d
√

2Ke, a symmetric DoF of 1
d
√

2Ke is always achievable by a partition

multicast scheme.

C.10 Proof of Theorem 4.11

Bar-Yossef et al. [46] have shown that for a K-unicast index coding problem, that the demand graph
is acyclic, is sufficient to conclude that the network has symmetric capacity 1/K. In fact, their
proof also implies the stronger statement: an acyclic demand graph implies that the sum capacity
is 1 (because there exists a node with no antidotes that is able to decode all messages). To show
that the acyclic demand graph condition is also necessary, we construct a proof by contradiction.
Consider a K-unicast index coding problem where the demand graph is not acyclic, i.e., it contains
one or more cycles, but still has symmetric capacity is 1/K. Consider any such cycle. Let the set of
message nodes involved in this cycle be denoted byW(cycle). Since there is only one outgoing edge
from any message node, going to the only destination node that desires the message (unicast), the
cycle only includes the desired destinations of the messages in W(cycle). Since they are a part of
a cycle, each of these destinations must have at least one outgoing edge to a message in W(cycle),
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i.e., each destination has at least one antidote from the messages within the cycle. Therefore, by
themselves all the messages in W(cycle) can be simultaneously multicast to achieve a symmetric

rate 1/(|W(cycle)| − 1), i.e., a sum-capacity of
|W(cycle)|

(|W(cycle)|−1)
which is greater than 1. But this is a

contradiction because the the sum-capacity of the original network is only 1. Thus, it is established
that the acyclic demand graph condition is both necessary and sufficient for a K-unicast index
coding problem to have symmetric capacity 1/K per message.

Since the capacity region of the index coding problem is an outer bound on the corresponding
topological interference management problem and symmetric rate (DoF) of 1/K is always achiev-
able, the necessary and sufficient condition for a K-unicast topological interference management
problem is the same as that for the corresponding index coding problem. Thus, it is established
that the acyclic demand graph condition is both necessary and sufficient for a K-unicast topological
interference management problem to have symmetric capacity (DoF) 1/K per message.

Next, let us consider a K-groupcast index coding problem and show that it has symmetric
capacity 1/K per message if and only if it can be relaxed into a K-unicast setting with an acyclic
demand graph. The “if” part is trivial because the relaxing operation (eliminating demands) cannot
reduce the capacity region of the network, and the resulting K-unicast network has symmetric
capacity 1/K per message (because it has an acyclic demand graph). It remains to show the “only
if” part.

We start with the observation that a K-groupcast index coding problem can have symmetric
capacity 1/K only if at least one destination node has no antidotes. This is because if every
destination has at least one antidote, then a multicast (CDMA) approach can achieve a symmetric
rate 1/(K−1) per message, so 1/K cannot be the symmetric capacity. This observation is essential
to the proof.

Consider any instance of a K-groupcast index coding problem that has symmetric capacity
1/K per message. We will relax this problem into a K-unicast index coding problem that has
an acyclic demand graph. From the groupcast problem, select a destination node, Di, that has
no antidotes. As just proved, such a node must exist. For all the messages desired by this node,
W(Di), eliminate all other demands, i.e., relax the network so that any W ∈ W(Di) is only desired
by Di. Clearly, after this relaxation Di and W(Di) cannot be a part of any cycle in the demand
graph, because the outgoing edges from message nodes W ∈ W(Di) only go to Di and Di has
no outgoing edges (because it has no antidotes). Include the node Di and the messages W(Di)
into our unicast construction and eliminate them from the original groupcast problem. After this
elimination, also remove any destination nodes that are left with no desired messages (because
all their desired messages were in W(Di)). At this point the unicast problem has only |W(Di)|
messages. Our goal is to build it up to K messages.

Consider the remaining K1-groupcast index coding problem, where K1 = K − |W(Di)|. Since
the demand graph is still acyclic, this network must have symmetric capacity 1

K1
. Therefore, once

again we can find a destination Dj that has no antidotes among these K1 messages, eliminate
all other demands for the messages desired by Dj , then include Dj and W(Dj) into the unicast
construction and eliminate them from the original groupcast problem. Note that Dj may have
antidotes from W(Di) which will be preserved, but as explained earlier, these cannot be a part of
a cycle in the relaxed unicast construction.

The procedure described above can be repeated until we have transferred all K messages into
the unicast network. The construction also guarantees that the demand graph is acyclic, completing
the proof of the “only if” part. Once again, because the index coding problem capacity provides
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an outer bound for the topological interference management problem, and the 1/K rate (DoF)
is always achievable, the necessary and sufficient condition for symmetric capacity (DoF) of 1/K
in the K-groupcast topological interference management problem is inherited directly from the
corresponding index coding problem.

Lastly, let us derive the exact capacity result for the original wireless network. First, the outer
bound: Set all weak interference channels to zero, and the significant interference channels to be
the same as desired channels, i.e., all with strength SNR and all with zero phase. Any achievable
scheme must work for all possible channel realizations and this is one possible channel realization,
so it can be used for the outer bound argument. Now, because the demand graph is acyclic the
argument presented in [47] leads us to the conclusion that there is a destination node in the network
that can decode all messages. For example, in the example Fig 7 it is Destination 2. After decoding
its desired signals W1,W2,W4, it can subtract out the signal from Source 4 from its received signal
to obtain a signal statistically equivalent to the signal received by Destination 3, from which it
can then decode all the messages desired by Destination 3, i.e., W3,W5. Thus, Destination 2 can
decode all the messages in the network. Using the multiple-access-channel capacity bound for this
node gives us a sum-capacity outer bound log(1+KSNR). This automatically implies a symmetric
capacity outer bound of 1

K log(1 +KSNR) per message.
Achievability of this symmetric rate is described as follows. The transmit power of each source,

Pi, is such that each desired message is capable of the same average SNR guarantee (14). There
are K sources, one for each message, so let each source transmit for only 1/K fraction of the time
according to a TDMA scheme, at a power level KPi, so that the average power constraint is still
satisfied, and the rate achieved is 1

K log(1 +KSNR) per message, which matches the outer bound.
Thus, we have an exact characterization of the symmetric capacity for this class of networks.

C.11 Proof of Theorem 4.14

Since the outer bound is already available from Corollary 4.13, we need to prove only the achiev-
ability.

Note that if each alignment set contains either no cycles, or no forks, then the maximum
cardinality of an acyclic subset of messages is 4. This is because in an acyclic subset there must
be a message whose desired destination sees interference from all other messages. Any destination
that sees interference from more than 3 messages will introduce a clique of size 4 or higher into the
alignment set, which has both cycles and forks.

So, let us first consider the case where an acyclic subset of cardinality 4 is present. The only
way this can happen if there exist 4 messages Wj1 ,Wj2 ,Wj3 ,Wj4 such that messages Wj1 ,Wj2 ,Wj3

interfere with a destination that desires Wj4 ; Wj1 ,Wj2 interfere with a destination that desires Wj3 ;
and Wj1 interferes with a destination that desires Wj2 . In this case, an independently generated
4 × 1 vector is assigned to every message W ∈ W. Since no destination can see more than 3
interferers in a network where each alignment set has either no cycles or no forks, a multicast
(CDMA) approach can always achieve a rate (DoF) value of 1/4 per message. Since this is also
a capacity (DoF) outer bound according to Theorem 4.12, the capacity (DoF) characterization is
complete for this case. Incidentally, this is the only case where the symmetric capacity is not ∆

2∆+1 .

So in the remainder of the proof we will prove the achievability of ∆
2∆+1 for all other cases.

The goal is to operate over 2∆+1 channel uses and choose ∆ precoding vectors for each message,
along which ∆ symbols for that message will be sent. A key idea here is that the precoding for
each alignment set is designed independently. So we will describe the precoding vector design for
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each type of alignment set.

Alignment sets with no internal conflicts:
For each alignment set Ai that has no internal conflicts, we randomly generate a (2∆ + 1) × ∆
matrix V(Ai).

V(Ai) = rand(2∆ + 1,∆) (115)

where rand(a, b) is a function that returns a randomly generated a× b matrix. The same precoding
matrix V(Ai) will be used by every message node in Ai. That is, ∆ symbols for each message
W ∈ Ai will be sent along the ∆ columns (normalized, in the wireless case, to satisfy power
constraints) of V(Ai). As an example, note that this is the case for alignment set A3 in Fig. 11.

Next we describe precoder design for the alignment sets that have internal conflicts. These are
further classified as follows.

Alignment sets with no cycles:

1. From each alignment set Ai with no cycles (may have multiple forks), arbitrarily choose one
message node to be the root node of that alignment set. Without loss of generality, let the
chosen root node of alignment set Ai be the message W1(Ai).

2. For each root node W1(Ai), randomly and independently generate a (2∆ + 1) × ∆ matrix
V1(Ai).

V1(Ai) = rand(2∆ + 1,∆), (116)

This is the precoding matrix to be used by the root node message.

3. Since this alignment set is acyclic and undirected and each connected component has a des-
ignated root, each node that is not a root node has a unique parent node. For each non-root
message node Wj(Ai), j 6= 1, let its parent node be denoted as Wπ(j)(Ai).

4. The precoding matrix for every non-root node Wj(Ai), j 6= 1 is generated as:

Qj(Ai) = rand(∆,∆− 1) (117)

Vj(Ai) = [Vπ(j)(Ai)Qj(Ai) rand(2∆ + 1, 1)] (118)

The random matrix Qj(Ai) is simply meant to choose a generic ∆− 1 dimensional subspace from
the signal space of the parent node. This is appended with an independently generated vector
that will (with high probability over a sufficiently large field) be in general position with respect
to all previously generated vectors, i.e., linearly independent of any 2∆ of previously generated
vectors. Thus, any two messages that are connected by an edge in the alignment graph will have a
∆−1 dimensional overlap between their signal spaces. Because the construction always includes an
independent random vector in addition to the space inherited from the parent, message nodes that
are connected by a path of two edges in the alignment graph, have an overlap of ∆− 2 dimensions,
message nodes that are connected by a path of three edges have an overlap of ∆ − 3 dimensions,
and so on, so that messages that are connected by a path of ∆ edges (or more) have no overlap.
Thus, all conflicts are avoided. An example of the construction is provided in Fig. 10(c) where the
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alignment set has no cycles, ∆ = 2 and message W5 is chosen as the root node. Another example
is alignment set A1 in Fig. 11 where node 1, corresponding to W1 is chosen as the root node.

Alignment sets with no forks :— Cycles of length greater than 3:
An alignment set Ai with no forks, that contains a cycle, can only be a cycle itself. Let the length
of the cycle be |Ai| = l. Note that since the cycle contains internal conflicts, the length of the cycle,
l ≥ 2∆. Label the messages in the cycle (in order) as W1(Ai),W2(Ai), · · · ,Wl(Ai). Randomly
generate l vectors, each (2∆ + 1) × 1, and call them v1(Ai),v2(Ai), · · · ,vl(Ai). Now assign the
vectors cyclically (subscripts modulo l) as follows:

W1(Ai) : v1(Ai),v2(Ai), · · · ,v∆(Ai) (119)

W2(Ai) : v2(Ai),v3(Ai), · · · ,v∆+1(Ai) (120)

W3(Ai) : v3(Ai),v4(Ai), · · · ,v∆+2(Ai) (121)

... :
... (122)

Wl(Ai) : vl(Ai),v1(Ai), · · · ,v∆−1(Ai) (123)

Note that this construction ensures that there are no overlaps between conflicting nodes. As an
example, note that this is the case for alignment set A2 in Fig. 11.

Alignment sets with no forks :— Cycle of length 3:
Consider an alignment set Ai that is a cycle of length 3 (i.e., a triangle) with internal conflicts
(∆ = 1), and comprised of messages {Wj1 ,Wj2 ,Wj3}. If no destination sees all three messages as
interference, then our regular construction works, i.e., simply assign a randomly generated 3 × 1
vector to each of the three message nodes that form the triangle.

Now consider the case where a destination that desires message Wj4 sees interference from all
three messages Wj1 ,Wj2 ,Wj3 . Here also there are two cases. First, the case where {Wj1 ,Wj2}
interfere with a destination that desires Wj3 . Note that there cannot be conflict between Wj1 ,Wj2

otherwise we would have an acyclic subset of messages of cardinality 4 (a case that we already
considered at the beginning of this proof). In this case, the precoding vectors are assigned as
follows.

Wj1(Ai),Wj2(Ai) : rand(3, 1) (124)

Wj3(Ai) : rand(3, 1) (125)

Thus, the same random vector is assigned to messages Wj1 ,Wj2 and an independently generated
vector is assigned to Wj3 . Thus, together Wj1 ,Wj2 ,Wj3 span a two dimensional subspace, leaving
one dimension for Wj4 , so that the rate 1/3 per message can be achieved. An example is illustrated
in Fig. 25.

The last remaining case is where no two of Wj1 ,Wj2 ,Wj3 cause interference to a destination
that desires the third message from this group. Such an example is illustrated in Fig. 12(b). In
this case if a destination that desires one of these three messages sees interference from another one
of these messages (internal conflict) then it must see only one interferer. To generate the precoding
vectors we will generate three random vectors in a two dimensional space. The vectors are assigned
as follows:

Q(Ai) = rand(3, 2) (126)
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Figure 25: (a) Example of a TIM problem (b) Signal vector assignments

Wj1(Ai) : Q(Ai)rand(2, 1) (127)

Wj2(Ai) : Q(Ai)rand(2, 1) (128)

Wj3(Ai) : Q(Ai)rand(2, 1) (129)

Again, together Wj1 ,Wj2 ,Wj3 span a two dimensional subspace, leaving one dimension for Wj4 . An
example is illustrated in Fig. 26. Here, we have only one alignment set A, Q(A) = [1, 3; 4, 2; 2, 5],
and the 2× 1 projection vectors are [1; 0], [0; 1] and [1; 1].
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Figure 26: (a) Example of a TIM problem (b) Signal vector assignments.

This completes the construction. What remains is to show that with high probability (i.e.,
probability 1 in the wireless case, and a probability that can be as close to 1 as needed over a
sufficiently large field in the wired case) the desired signals at each destination have no overlap with
the interference. Without loss of generality we will assume each destination desires one message.
Because the proof for the case of acyclic subset of cardinality 4 has already been completed at the
beginning of this proof, here we will assume that no such acyclic subset exists.

Consider a destination whose interfering messages come from an alignment set that has no
internal conflicts. Thus, all interfering messages span the same ∆ dimensional space, and the
desired signal (because it belongs to a different alignment set) spans an independently generated ∆
dimensional space. Since the overall number of dimensions is 2∆ + 1, with high probability these
two spaces have no overlap.

Henceforth we consider only destinations whose interfering messages come from an alignment
set that has internal conflicts.

Consider a destination that sees three interfering messages. The three interfering messages
form an alignment set that is a cycle of length 3, and the minimum conflict distance is 1. It is
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easy to verify that the achievable scheme allocates only a 2 dimensional space to the interferers,
independently generated from the precoding vector for the desired message. Since the overall space
is 3 dimensional (3 channel uses), the desired signal is separable from interference.

Henceforth we consider only destinations that see no more than two interfering messages.
Consider a destination whose interfering messages come from an alignment set that has no

cycles (but may have multiple forks). Suppose the desired message, say Wi, sees two interferers
Wj ,Wk. Then Wj ,Wk must be connected by an edge in the alignment graph. Therefore, they
must have a ∆− 1 dimensional overlap, so that together they must span ∆ + ∆− (∆− 1) = ∆ + 1
dimensions. Further, if Wi is in the same alignment set, then Wj ,Wk must be at least ∆ edges away
from Wi, so that with high probability the union of the spans of Vj ,Vk is in general position with
respect to Vi. Since the total space is 2∆ + 1 dimensional, it is big enough to accommodate the
interference and the desired signal without forcing them to overlap. Thus, the desired signal does
not overlap with interference with high probability. If the message Wi is in a different alignment
set then again its signal space is independently generated and with high probability has no overlap
with the space spanned by the interference. If the message Wi sees only one interferer, Wj , then
once again because Wi,Wj are at least ∆ edges apart (or belong to different alignment sets), the
signal spaces Vi,Vj have no overlap with high probability.

Lastly, consider a destination whose two interfering messages come from an alignment set that
is a cycle. Because of the construction, these two interfering messages span a ∆ + 1 dimensional
space. If the desired signal is in the same alignment set as the interfering messages, then it is
separated by at least ∆ edges, and therefore with high probability has no overlap with interference.
If the desired signal is in a different alignment set, then its signal space is independently generated
from the interference and again has no overlap with interference with high probability.

Remark: Note that the “high probability” condition is meant in the sense of the standard
random coding argument, as a proof of existence, and does not imply that the codebooks are
actually random (unknown a-priori). Over a sufficiently large field, all the generic properties (linear
independence conditions) are true with high probability for randomly generated signal spaces. This
means that there must exist a choice of signal spaces for which all linear independence conditions
hold. This is the deterministic choice of signal spaces that is actually used by the linear scheme.

C.12 Proof of Theorem 4.15

The proof follows from a direct mapping of precoding and combining matrices from the origi-
nal problem to the dual problem. If the rate tuple R(W ) = L(W )

N is achievable through linear
schemes over N channel uses, then according to Section 3, there must exist precoding matrices
V(W ) ∈ FN×L(W ), ∀W ∈ W and receiver combining matrices Ui(W ) ∈ FL(W )×N ,∀W ∈ W(Di), i ∈
{1, 2, · · · , D}.

Let us define U(W ) ∈ FL(W )×N as follows:

∀W ∈ W,U(W ) = Ui(W ), such that W ∈ W(Di) (130)

Note that this definition is unambiguous only in the multiple unicast setting, where each message
has a unique desired destination. With this definition, Property 1 and Property 2 can be written
as:

Property 1: U(W )V(W̃ ) = 0, (131)

∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S},W ∈ W(Di), W̃ ∈ W(Sj),
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such that W 6= W̃ and tij = 1.

Property 2: det(U(W )V(W )) 6= 0, ∀W ∈ W. (132)

which can further be re-written, equivalently, as:

Property 1: (V(W ))T (U(W̃ ))T = 0, (133)

∀i ∈ {1, 2, · · · , S}, j ∈ {1, 2, · · · , D},W ∈ W(Si), W̃ ∈ W(Dj),

such that W 6= W̃ and tji = 1.

Property 2: det((V(W ))T (U(W ))T ) 6= 0, ∀W ∈ W. (134)

In the dual problem, for the same rate tuple R(W ) = L(W )
N to be achievable through linear

schemes over N channel uses, there must exist precoding matrices V′(W ) ∈ FN×L(W ),∀W ∈ W
and receiver combining matrices U′(W ) ∈ FL(W )×N , ∀W ∈ W, such that:

Property 1: U′(W )V′(W̃ ) = 0, (135)

∀i ∈ {1, 2, · · · , D′}, j ∈ {1, 2, · · · , S′},W ∈ W ′(D′i), W̃ ∈ W ′(S′j),
such that W 6= W̃ and t′ij = 1. (136)

Property 2: det(U′(W )V′(W )) 6= 0, ∀W ∈ W. (137)

Let us set the values of the dual precoding and combining matrices as follows.

U′(W ) = (V(W ))T (138)

V′(W ) = (U(W ))T (139)

In the dual problem, since S′ = D,D′ = S,W ′(D′i) = W(Si),W ′(S′j) = W(Dj), t
′
ij = tji, we note

that Property 1 represented by (135) and Property 2 represented by (137) in the dual problem are
identical to Property 1 represented by (133) and Property 2 represented by (134) in the original
problem. Therefore, feasibility of the original problem implies feasibility of the dual problem, and
vice versa.

C.13 Proof of Theorem 4.16

Consider a half-rate-infeasible multiple unicast topological interference management problem whose
dual has either no cycles or no forks in each alignment set of its alignment graph. By Theorem 4.14,
the dual problem has symmetric capacity (DoF) of ∆′

2∆′+1 per message, where ∆′ is the minimum
conflict distance of the dual problem. Further, by the proof of achievability of Theorem 4.14, the
symmetric capacity is achievable by a linear scheme. Now, by Theorem 4.15, any rate achievable
by linear schemes in the dual problem is also achievable by linear schemes in the original problem.
Therefore, the original problem can achieve at least a symmetric rate (DoF) of ∆′

2∆′+1 per message.

What remains to be shown is that ∆′

2∆′+1 is also a symmetric capacity (DoF) outer bound for the
original topological interference management problem. To show this, we now prove that the original
problem cannot have a larger minimum conflict distance than the dual problem, i.e., ∆ ≤ ∆′.

To simplify the notation, let us make some observations. First, note that without loss of
generality we can assume each destination desires only one message. If a destination desires multiple
messages, one can create multiple copies of that destination (each connected to the same set of
source nodes) such that each destination desires only one message. Next, since we are only interested
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in the alignment graph at this point, note that the alignment graph is not affected if we assume
each message originates at a separate source. Again, if multiple messages originate at a source, we
can create multiple copies of that source node (each connected to the same set of destinations),
each of which is the source of only one message. Note that the latter assumption is not known to
be without loss of generality for evaluating the capacity of a network. However, for the alignment
and conflict graphs, which are our only concern right now, it involves no loss of generality, i.e., the
alignment and conflict graphs are unaffected by this assumption.

Based on these observations, we assume without loss of generality, that our K-unicast network
has K messages W1,W2, · · · ,WK , originating at sources S1, S2, · · · , SK and intended for destina-
tionsD1, D2, · · · , DK , respectively. In the dual network also there areK messages, W1,W2, · · · ,WK ,
originating at sources S′1, S

′
2, · · · , S′K and intended for destinations D′1, D

′
2, · · · , D′K , respectively.

Recall that source S′i in the dual network corresponds to destination Di in the original network and
destination D′j in the dual network corresponds to source Sj in the original network.

Without loss of generality, using the simplified notation, let us represent a minimum conflict
distance path in the alignment graph of the dual problem as follows.

S′j1
D′j2←→ S′j3

D′j4←→ · · ·
D′j2∆′−2←→ S′j2∆′−1

D′j2∆′←→ S′j2∆′+1
(140)

and

t′j1j2∆′+1
= 1 (141)

The chain in (140) represents the edges in the alignment graph as follows: There is an edge between
Wj1 and Wj3 because they both cause interference at destination D′j2 . There is an edge between
Wj3 and Wj5 because both cause interference at destination D′j4 , and so on. The conflict arises at
the ends of the chain because destination D′j1 hears the source S′j2∆′+1

of the message Wj2∆′+1
.

Translating back into the original network, this means that Wj2 causes interference at desti-
nations Dj1 and Dj3 . Wj4 causes interference at destinations Dj3 and Dj5 , and so on. So, in the
alignment graph of the original network there must be an edge between Wj2 and Wj4 because they
are both heard by Dj3 , there must be an edge between Wj4 and Wj6 because they are both heard
by Dj5 , · · · , and finally (and most importantly) there must be an edge between Wj2∆′ and Wj1

because they are both heard by Dj2∆′+1
. There is also a conflict because Wj2 is heard by Dj1 . This

is represented as follows:

Sj2
Dj3←→ Sj4

Dj5←→ · · ·
Dj2∆′−1←→ Sj2∆′

Dj2∆′+1←→ Sj1 (142)

and

tj1j2 = 1 (143)

Thus we have an internal conflict in the original network of conflict distance ∆′. The minimum
internal conflict distance of the original network is therefore bounded as ∆ ≤ ∆′. By Corollary
4.13, this implies that the original network cannot have a symmetric capacity higher than ∆′

2∆′+1 .
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C.14 Proof of Theorem 4.17

The proof is almost identical to the proof of Theorem 4.1, so we only briefly summarize it here.
We set the values of all channel matrices to be

Hij =

(√
SNR× ΓNo

Pj

)
IΓ, ∀i ∈ {1, 2, · · · , D}, j ∈ {1, 2, · · · , S} (144)

where IΓ is the Γ × Γ identity matrix, and provide all messages W(Sj) such that tij = 0 to
destination Di so that it can remove the interference from Sj introduced by the non-zero channel
values. We then allow full cooperation between all sources and since the resulting channel is rank
Γ, we replace it with a point to point MIMO Gaussian channel comprised of Γ parallel channels
of capacity log(1 + S2SNR) each, whose transmitter has access to all messages and whose received
signal is made available to all destinations. Using network equivalence theorem of [58] this MIMO
link is replaced with a noise-free channel of capacity Γ log(1+S2SNR) which becomes the bottleneck
link and the transformation to the index coding problem is complete.

C.15 Proof of Theorem 4.18

To prove that the normalized DoF achievable in the SISO case are also achievable in the MIMO
topological interference management problem, we assume a linear scheme exists for a SISO network
and show how the same scheme can be applied over MIMO networks. Suppose precoding matrices
V(W ) and receiver combining matrices Ui(W ) exist for the SISO setting that satisfy Property 1
(21) and Property 2 (22). We now describe the corresponding linear scheme for the MIMO setting.

Each messageW is split into L(W ) independent messages, W (1),W (2), · · · ,W (L(W )). For each
W (l), X(W (l)) is a Γ × 1 vector containing Γ symbols, that will be transmitted over N channel
uses along the precoding vector V(W (l)) which represents the lth column of V(W ). Each X(W (l))

symbol is from an independent Gaussian codebook, with power
Pj

Γ|W(Sj)|L(W ) where W ∈ W(Sj),

and the columns of V(W ) are scaled to have unit norm.
Over the N channel uses, Source Sj sends the ΓN × 1 vector,

Xj =
∑

W∈W(Sj)

L(W )∑
l=1

V(W (l))⊗X(W (l)). (145)

where ⊗ is the Kronecker product. Destination Di receives the ΓN × 1 vector,

Yi =
∑
j:tij=1

∑
W∈W(Sj)

L(W )∑
l=1

(IN ⊗Hij) (V(W (l))⊗X(W (l))) + Zi, (146)

=
∑
j:tij=1

∑
W∈W(Sj)

L(W )∑
l=1

V(W (l))⊗ (HijX(W (l))) + Zi, (147)

and for each desired message W ′ ∈ W(Di) ∩ W(Sj), l
′ ∈ {1, 2, · · · , L(W ′)}, projects the received

signal vector Yi into the Ui(W
′(l′))⊗ IΓ space to obtain,

Yi(W
′(l′)) = (Ui(W

′(l′))⊗ IΓ)Yi (148)
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=
∑
j:tij=1

∑
W∈W(Sj)

L(W )∑
l=1

(Ui(W
′(l′))⊗ IΓ)(V(W (l))⊗ (HijX(W (l))))

+ (Ui(W
′(l′))⊗ IΓ)Zi︸ ︷︷ ︸

Z̃i

(149)

=
∑
j:tij=1

∑
W∈W(Sj)

L(W )∑
l=1

(Ui(W (l′))V(W (l)))((HijX(W (l)))) + Z̃i (150)

= HijX(W ′(l′)) + Z̃i (151)

where Ui(W
′(l′)) is the l′th row of the matrix

[Ui(W
′)V(W ′)]−1Ui(W

′) (152)

the contributions from all other messages are eliminated due to Property 1. Thus, the interference
free Γ × Γ MIMO channel is available for each message, over which (normalized) 1/N DoF are
achieved for each W (l), l ∈ {1, 2, · · · , L(W )}, so that L(W )/N DoF are achieved per message
W ∈ W.
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