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Abstract

Expressions of several capacity regions in quantum information theory involve an op-
timization over auxiliary quantum registers. Evaluating such expressions requires bounds
on the dimension of the Hilbert space of these auxiliary registers, for which no non-trivial
technique is known; we lack a quantum analog of the Carathéodory theorem. In this paper,
we develop a new non-Carathéodory-type tool for evaluating expressions involving a single
quantum auxiliary register and several classical random variables. As we show, such expres-
sions appear in problems of entanglement-assisted Gray-Wyner and entanglement-assisted
channel simulation, where the question of whether entanglement helps in these settings is
related to that of evaluating expressions with a single quantum auxiliary register. To eval-
uate such expressions, we argue that developing a quantum analog of the Carathéodory
theorem requires a better understanding of a notion which we call “quantum conditioning.”
We then proceed by proving a few results about quantum conditioning, one of which is that
quantum conditioning is strictly richer than the usual classical conditioning.

1 Introduction

One of the central goals of information theory is to find computable expressions for capacity
regions of problems involving the transfer of information. An expression is computable if for
every ε > 0, there is an algorithm that stops in finite time Tε and outputs an approximation of
the expression within ε. All computable capacity regions that have been found so far turn out to
be expressible in a so-called single-letter form where a union is taken over a finite set of auxiliary
random variables or auxiliary quantum registers.1 So for computability we need a restriction on
the dimension or cardinality of these auxiliary registers, but no general tool is known for proving
such bounds especially in the quantum case.

The problem of bounding the dimension of auxiliary quantum registers has arisen in the
literature. A single-letter (additive) formula for the entangling capacity of a bipartite unitary
is provided in [1]. This formula involves an optimization over unbounded auxiliary quantum
registers, and the question of how large the auxiliary systems need to be in the optimal protocol
is still open [1]. The problems of squashed entanglement measure [2] and quantum channel
capacity assisted with symmetric side channels [3] provide two other such examples.

To be more precise let us explain the problem of squashed entanglement in more details.
Squashed entanglement of a bipartite state ρAB is defined by

Esq(ρAB) =
1

2
inf
ρABF

I(A; B|F).

where the infimum is taken over all extensions ρABF of ρAB. To compute squashed entanglement
through brute-force search, a dimension bound on auxiliary register F. This is indeed the reason
that even proving the faithfulness of squashed entanglement is a hard problem [4].

Let us consider another example involving one auxiliary quantum register. Given two random
variables X and Y , consider the region formed by pairs

(
H(X|F), H(Y |F)

)
when we take the

1Here given a (classical or quantum) density matrix ρA1...Ak by an auxiliary register we mean and extra
subsystem E and an extension density matrix ρA1...AkE whose marginal on A1 . . .Ak is the starting density
matrix.
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union over all auxiliary registers F. When F is a quantum register, evaluating this region by
numerical brute-force simulation requires a bound on the dimension of F. Given such a bound
we may compare this region with the classical case where F is taken to be an auxiliary random
variable. In particular it is interesting to verify whether all points of this region can be obtained
from classical registers F or not.

An arbitrary expression (even in the classical world) may not admit a dimension bound on
its auxiliary variables. To prove such bounds, classical information theory provides us with a
few tools, mainly the Carathéodory theorem, but also the perturbation method [5, Appendix C],
[6] and some manipulation techniques as in [7]. Not much is known when these techniques fail.
The situation is more murky in the quantum world. It is fair to say that no non-trivial technique
for bounding the dimension of auxiliary quantum registers is known, even for the above simple
example.

1.1 Shared entanglement in classical scenarios

Our main motivation for studying the problem of dimension bounds is to understand the benefit
of entanglement is classical communication settings. It is well-known that entanglement does
not help in the problem of transmission of classical information over a point-to-point classical
channel [8], but is there an information theoretic classical setting in which shared entanglement
helps? To avoid confusions let us explain what we mean by an information theoretic classical
scenario. By a classical scenario we mean settings with classical inputs, outputs, and communi-
cation channels, implying that all variables are classical random variables except perhaps shared
entanglement. Moreover, by an information theoretic setting we mean a framework involving
average quantities over repeated trials permitting an asymptotically vanishing error. From this
perspective, for instance, the increase of the zero-error capacity of classical channels by entan-
glement [9, 10] does not fit into our framework. Similarly violation of Bell’s inequalities [11] in
the presence of entanglement is not an example of our scenarios. Here we explain two examples
in which understanding the benefit of shared entanglement is of interest.

Our first example is the Gray-Wyner problem whose goal is to transmit multiple correlated
sources to multiple distant parties [12]. Recently Winter (personal communication, 2012) has
found the rate region of the entanglement-assisted Gray-Wyner problem, yet we do not know
whether entanglement helps in this scenario or not. The region found by Winter involves taking a
union over several auxiliary quantum systems. If we assume that these auxiliary registers are all
classical random variables, we obtain the classical rate region of the Gray-Wyner problem [12].
In Section 3.1, we introduce a related region with a single auxiliary quantum system. We will see
that if by replacing this single auxiliary quantum register by a classical one we obtain the same
region, then entanglement does not help in the Gray-Wyner problem. Indeed if we could solve
optimization problems over an auxiliary quantum register then we could compare the answer to
the classical case and decide whether shared entanglement helps in the Gray-Wyner problem or
not.

Our second example is the problem of simulating bipartite correlations via communication in
the presence of shared entanglement. That is, how much communication is required to simulate
a given bipartite correlation when the two parties are provided with shared entanglement. While
the overall task of generating correlations is classical in nature, shared entanglement is known
to help in a non-information theoretic setup; for the case of no communication, Bell’s theorem
states that there are bipartite correlations that can be generated in the presence of entanglement.
But how about Bell’s scenarios in an information theoretic setting in which we repeat the Bell
experiment many times and allow for asymptotically vanishing error? One of our main results
in this paper is to show that entanglement can still help. By extending the result of [13] (see
Theorem 2 below) we show that the amount of communication required to simulate a bipartite
correlation in the presence of entanglement can be expressed as an optimization problem over a
quantum auxiliary register. This characterization again fits into the framework of expressions
for which we are interested in a dimension bound. Although we do not have a dimension bound
here, by an ad hoc indirect approach we show that entanglement does help in Bell’s scenarios
even in an information theoretic setting (see Appendix C).
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1.2 A new tool

The few known tools from classical information theory for bounding the dimension of auxiliary
registers are not readily applicable to the quantum setting. The reason is that the main tool from
the classical theory, namely the Carathéodory theorem, heavily relies on the fact that for any
two random variables X and C, the conditional entropy H(X|C) can be written as the convex
linear expression

∑
c p(c)H(X|C = c); i.e., classical conditioning is a simple convexification.

But re-expressing H(X|F) as such a convex combination is invalid when we condition on a
quantum register F. We believe that any proper dimension bound in the quantum case has to
provide insights into “quantum conditioning,” i.e., conditioning on a quantum register. Thus,
understanding quantum conditioning is central to any potential use of Carathéodory theorem in
bounding dimensions.

To understand quantum conditioning we develop a new tool to study optimization problems
involving quantum registers. This is the first bounding tool in quantum information theory, and
is based on a reformulation of the problem in terms of a max-min expression, followed by using
a minimax theorem (see Section 5 or the proof of Theorem 3 for the use of the tool). This tool
is inspired by a work on classical broadcast channels [14, Sec. III.B]. Below we briefly explain
some implications of this tool.

An optimization problem and the mutual information curve: Consider the following
two problems:

Problem 1 Given an arbitrary distribution q(x, y, z), consider the optimization

sup
C−X−Y Z

I(C;Y )− I(C;Z),

over all classical random variables C; thus we basically take the supremum over all channels
p(c|x). This expression shows up in several network information theoretic problems, especially
those involving security (e.g., Wiretap channel problem [5, Theorem 22.1]). Here we ask a
standard cardinality reduction question: can we find the smallest cardinality bound d∗ on the
alphabet size of C that universally works for all q(x, y, z)?

Problem 2 Suppose we are given sets X and C. Then given a channel p(c|x), we can consider
the function p(x) 7→ I(X;C), i.e., the curve (or surface) of mutual information versus the input
distribution. We know that this curve is concave and its maximum is equal to the channel capacity
of p(c|x). Now let us consider all the mutual information curves produced by all channels p(c|x)
with output cardinality of C bounded from above by d, i.e., with |C| ≤ d. We use Γ(d) to denote
this set of all p(x) 7→ I(X;C) curves for channels with output alphabet of size less than or
equal to d. Let ConvHull(Γ(d)) be the convex hull of Γ(d), i.e., the set of all curves of the form
p(x) 7→

∑
i ωiI(X;Ci) for arbitrary non-negative weights ωi that add up to one, and p(ci|x) with

output cardinality bounded from above by d. Clearly

ConvHull(Γ(d)) ⊆ ConvHull(Γ(d+ 1)).

If d = 1, the output of the channel C has to be a constant random variable and p(x) 7→ I(X;C) =
0 is a trivial line (hyperplane). Thus Γ(1) = ConvHull(Γ(1)) contains only a single curve.
As we increase d, we allow for more complicated channels and as such the behavior of the
curve p(x) 7→ I(X;C) can become more complicated. Let d∗ be the smallest integer such that
ConvHull(Γ(d∗)) = ConvHull(Γ(d)) for all d ≥ d∗. If no such d∗ exists, we set it to be infinity.

Our new tool implies that the answer for d∗ to the above two problems is the same (see
Section 5). Thus, we can compute d∗ for the second question from d∗ for the first question. By
standard techniques [5, Appendix C], the cardinality bound of d∗ ≤ |X | on the alphabet set of C
can be imposed in the first problem. Thus the same d∗ ≤ |X | works also for the second example.

Similarly, we can state these two problems in the quantum case:

Problem 3 Given an arbitrary q(x, y, z) compute

sup
F−X−Y Z

I(F;Y )− I(F;Z),

over all quantum registers F, where F−X−Y Z represents the Markov chain condition I(F;XZ|X) =
0. Can we bound the dimension of F in this optimization problem, and if yes, can we find a
minimum dimension bound d∗ on F that universally works for all q(x, y, z)?
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Problem 4 Suppose that we are given a fixed set X . Given a classical-quantum (c-q) channel
X 7→ F, we can consider the curve p(x) 7→ I(X; F), i.e., the curve of mutual information versus
the input distribution. Again we know that this curve is concave and its maximum is equal to
the channel capacity. Now let us consider all the mutual information curves produced by all c-q
channels X 7→ F with output dimension of F bounded from above by d, and denote it by Γq(d).
We write the convex hull of Γq(d) as ConvHull(Γq(d)). Clearly we have

ConvHull(Γq(d)) ⊆ ConvHull(Γq(d+ 1)).

Let d∗ be the smallest integer such that ConvHull(Γq(d)) = ConvHull(Γq(d∗)) for all d ≥ d∗. If
no such d∗ exists, we set it to be infinity.

Again the answers to these questions are the same (see Section 5). Thus, to study Problem 3
we can look at Problem 4.

By the same tool we show in Theorem 3 that there exists a distribution q(x, y, z) such that
the supremum over auxiliary quantum registers F in the above optimization problem yields a
larger value than taking the maximum of the same expression over classical auxiliary random
variables. In other words, there exists a distribution q(x, y, z) such that

sup
F−X−Y Z
F quantum

I(F;Y )− I(F;Z) > max
C−X−Y Z
C classic

I(C;Y )− I(C;Z). (1)

To find such q(x, y, z) we construct a channel X 7→ F whose p(x) 7→ I(X; F) curve does not
belong to ConvHull(Γ(d∗)), the convex hull of curves of the form p(x) 7→ I(X;C) for classical
p(c|x) channels. Interestingly, our example is based on Kochen-Specker sets, and the fact that
shared entanglement increases the one-shot zero-error capacity of classical channels [9].

In the above example the size of X is large (as large as the size of the smallest Kochen-Specker
set). We show that when X is binary and the dimension of F is two, then any mutual information
curve p(x) 7→ I(X; F) is equal to the p(x) 7→ I(X;C) curve of a carefully constructed classical
channel p(c|x) (see Theorem 4 part 1). Here, we have a non-trivial mapping from an arbitrary
register F of size two, to a classical random variable C. We use this to prove (see Theorem 4
part 2) that for any channel q(y, z|x) we have

sup
F−X−Y Z
dimF=2

I(F;Y )− I(F;Z) = max
C−X−Y Z

I(C;Y )− I(C;Z).

Quantum conditioning is richer than classical conditioning: Our example of a distri-
bution q(x, y, z) with (1) indeed shows that quantum conditioning as defined above, is strictly
richer than classical conditioning (Theorem 3 part (b)). More precisely there exist random vari-
ables X1, . . . , Xm and quantum register F such that for every auxiliary random variable C we
have

(H(X1|C), . . . ,H(Xm|C)) 6= (H(X1|F), . . . ,H(Xm|F)) .

1.3 Organization of the paper

The reminder of this paper is organized as follows. In Section 2 we set up our notation and remind
some preliminaries. In Section 3 we provide two examples, motivating looking at expressions with
a single auxiliary quantum register. The reader may choose to skip this section and continue
with Section 4 that contains some of the main results on dimension bounds. This section
sets up a framework for discussing quantum conditioning (or “quantum convexification”). It is
followed by an example that quantum conditioning is strictly richer than classical conditioning.
Section 5 discusses the potential use of our technique to bound the dimension of auxiliary
quantum registers. Some technical details come in the Appendix.

2 Notations

Classical random variables are denoted by capital letters A,B,X, Y . The set of outcomes (alpha-
bets) of X is denoted by X , and by size of X we mean |X |, size of the set X . By Xn = X1 . . . Xn
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we mean n i.i.d. copies of X, and X`:k (for k ≥ `) means X`X`+1 . . . Xk. Outcomes of Xn

are denoted by xn = x1 . . . xn, so the outcome of the i-th random variable in Xn is xi ∈ X .
The sequence xn = x1 . . . xn happens with probability p(xn) = p(x1) · · · p(xn) where p(x) is the
distribution of X.

To distinguish quantum registers from classical random variables we denote them by boldface
letters E,F, and the dimension of the corresponding Hilbert space to F is denoted by dim F.
Again Fn = F1 . . .Fn denotes n independent copies of F.

H(·) denotes the entropy function (either Shannon or von Neumann entropy), and I(· ; ·) is
the mutual information

I(X;Y ) = H(X) +H(Y )−H(XY ).

Moreover H(X|Y ) = H(XY )−H(Y ) is the conditional entropy. For random variables X,Y, Z
by X − Y − Z (the Markov chain condition) we mean that I(X;Z|Y ) = 0, where I(X;Z|Y ) =
H(X|Y ) +H(Z|Y )−H(XZ|Y ). We use the same notation if either of X,Y or Z is a quantum
register.

When Y is classical X − Y − Z equivalently means that X can be generated out of Y using
a channel independent of Z. When Y is quantum however, by applying a measurement on Y to
generate X we destroy Y . So X,Y do not simultaneously exist and in this case I(X;Z|Y ) has
no meaning. As a result we save the notation X − Y − Z when all X,Y, Z simultaneously exist
and I(X;Z|Y ) = 0. Lemma 2 in Appendix A gives an operational meaning to X −F− Y when
F is a quantum register.

For either probability distributions or quantum states the norm-1 distance is denoted by
‖ · ‖1.

Further notations are developed in Appendix A. These notations are not required to under-
stand the body of the paper.

3 Entanglement-assisted rate regions

In this section we provide two examples to motivate the study of expressions with a single
quantum auxiliary system, and several classical random variables. The reader may choose to
skip this section and continue to Section 4.

3.1 Entanglement-assisted Gray-Wyner problem

The Gray-Wyner problem involves m+1 parties, Alice and m Bobs who we call Bob1, . . . ,Bobm.
In this problem Alice observes i.i.d. copies of X1, . . . , Xm, and her goal is to send Xi to Bobi.
That is, Bobi wants to recover the i.i.d. copies of Xi with probability of error converging to zero
as the number of i.i.d. observations goes to infinity (see Figure 1). To do so, Alice can send a
public message at rate R0 to all Bobs, and m private messages at rates R1, R2, . . . , Rm (at rate
Ri to Bobi).

The Gray-Wyner region is defined to be the set of achievable rate vectors (R0, R1, . . . , Rm),
where by achievable we mean that by sending public and private information at rates R0 and
R1, . . . , Rm respectively, Bobs’ demands can be fulfilled. The Gray-Wyner region, RcGW, is
characterized by the set of all tuples(

I(X1 . . . Xm;C), H(X1|C), . . . ,H(Xm|C)
)
, (2)

where C is an arbitrary auxiliary random variable [12]. That is, (R0, R1, . . . , Rm) is achievable
if and only if there exists an auxiliary random variable C such that R0 ≥ I(X1 . . . Xm;C) and
Ri ≥ H(Xi|C).

Recently Winter (personal communication, 2012) has shown that the rate region of the
entanglement-assisted Gray-Wyner problem, RqGW, is characterized by all tuples(

I(X1 . . . Xm; F1 . . .Fm), H(X1|F1), . . . ,H(Xm|Fm)
)
, (3)

where F1, . . . ,Fm are m arbitrary auxiliary quantum registers.2 Here by entanglement-assisted
we mean that Alice and Bobs can share any multipartite entangled state as a resource.

2Roughly speaking, the converse follows from similar steps as in the classical Gray-Wyner problem. The
achievability follows from a remote state preparation protocol together with the quantum-classical Slepian-Wolf
theorem [16]. Fi is Bobi’s part of the shared (multipartite) entangled state.
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Alice

Bob1

Bob2

Bobm

R0

R1

R2

Rm

X1, . . . , Xm

X̂1

X̂2

X̂m

...

Figure 1: The Gray-Wyner game consists of m+ 1 players, Alice and m Bobs who are indexed
by i = 1, . . . ,m. Alice receives the i.i.d. copies of X1, . . . , Xm, sends public information at rate
R0 to all Bobs and private information at rate Ri to Bobi. The goal of Bobi is to recover Xi.

Although we have a characterization of the entanglement-assisted Gray-Wyner rate region in
a single letter form, we do not know whether this rate region is strictly larger that the classical
rate region or not, i.e., whether entanglement helps in the Gray-Wyner problem or not. Indeed
the inclusion RcGW ⊆ R

q
GW is immediate, but we do not know whether it is strict or not. Our

numerical simulations do not give any point in RqGW outside of RcGW, but this does not give
their equality. This is because our brute-force searches are in bounded dimensions and unlike
the classical case, we do not have a bound on the dimensions of Fi’s in (3).

Let us introduce a third region Rq
′

GW characterized by tuples(
I(X1 . . . Xm; F), H(X1|F), . . . ,H(Xm|F)

)
, (4)

where F is an arbitrary auxiliary quantum register. Note that Rq
′

GW involves a single auxiliary

quantum register. Observe that RcGW ⊆ R
q
GW ⊆ R

q′

GW since by identify F by F1 . . .Fm we have

H(Xi|F1) ≥ H(Xi|F1 . . .Fm). Therefore, if we show that RcGW = Rq
′

GW then we conclude that
entanglement does not help in the Gray-Wyner problem. Note that the problem of comparing

RcGW and Rq
′

GW is a special case of the following general problem: in an optimization problem
involving one auxiliary quantum register and several classical random variables, do we get the
same optimal value if we restrict the auxiliary register to be classical?

3.2 Simulation of bipartite correlations

Our second example (for motivating expressions with a single auxiliary quantum register) is
the problem of simulating bipartite correlations with one-way classical communication. In this
problem Alice and Bob observe i.i.d. repetitions of two random variables X and Y respectively,
and would like to generate i.i.d. repetitions of random variables A and B respectively. Here
X,Y,A,B are jointly distributed according to a given p(a, b, x, y) = p(x, y)p(a, b|x, y). For this
simulation there is a one-way communication link from Alice to Bob at rate R. The question
is for which values of R this simulation is feasible. In the following we describe this problem in
details.

Classical case (with shared randomness): Assume that Alice and Bob observe i.i.d. copies
of Xn and Y n respectively jointly distributed according to

∏n
i=1 p(xi, yi). Here p(x, y) is the joint

distribution of XY . They also share common randomness s at some arbitrary rate. An (n, ε,R)
code consists of a randomized encoder p̃(m|xns) and two randomized decoders p̃(an|mxns),
p̃(bn|myns) such that 1

nH(M) ≤ R and∥∥∥∥∥p̃(an, bn, xn, yn)−
n∏
i=1

p(ai, bi, xi, yi)

∥∥∥∥∥
1

≤ ε, (5)
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where

p̃(an, bn, xn, yn) = p(xn, yn)
∑
s,m

p(s)p̃(m|xns)p̃(an|mxns)p̃(bn|myns).

A rate R is said to be achievable if there exists a sequence of (n, εn, R) codes such that

lim
n→∞

εn = 0.

The set of achievable rates is denoted by Rc.
Yassaee et al. [13] solve a generalization of this problem. Their rate region (Theorem 1 of

[13]) reduces to the following region as a special case.

Theorem 1

Rc =

{
R : ∃p(c|a, b, x, y) :

R ≥ I(X;C|Y ),

C −X − Y,
A− CX − Y B,
B − CY −XA,

|C| ≤ |X ||Y||A||B|+ 1

}
. (6)

Here C is some auxiliary random variable with joint distribution p(c, a, b, x, y) = p(a, b, x, y)p(c|a, b, x, y)
satisfying the above constraints. In other words, R is achievable if and only if R ≥ min I(X;C|Y )
where the minimum is taken over auxiliary random variables C satisfying the conditions given
in equation (6).

We should point out here that the problem of simulating bipartite correlations with classical
communication has been appeared in the literature [17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. For
instance Toner and Bacon [19] show that correlations obtained from projective measurements
on a singlet can be simulated by one bit of (classical) communication. Regev and Toner [23]
prove that a generalization of these correlations can be simulated by two bits of communication.
Moreover, Pironio [18] computes the average amount of communication required to simulated
CHSH-type correlations. Also, Roland and Szegedy [24] find the asymptotic rate of one-way
communication needed to simulate CHSH-type correlations. We will comment more on these
results later in Appendix C, but here we would like to emphasize that none of these papers con-
siders the problem in an information theoretic setting. Namely, some of these papers consider
the problem of simulation in a single shot, and not in a parallel repetition form, and those that
study the asymptotic case of the problem do not allow for asymptotically vanishing probability
of error. Given the fact that the information theoretic setting is a relaxation of the previous
settings, Theorem 1 provides a lower bound on all of the above bounds.

Quantum case (with shared entanglement): The setup here is similar to the classical case
except that instead of shared randomness, Alice and Bob are provided with shared entanglement
with an arbitrary rate. To simulate the correlation, Alice applies a measurement chosen according
to the observed xn, on her part of the shared entanglement. The measurement outcome has
two parts: the first part is taken as an and the second part is taken as the message m to be
transmitted to Bob. Bob uses m and his observation yn to choose a measurement to be applied
on his quantum system. The outcome of this measurement is taken as bn.

A rate R is achievable if there exists a sequence of codes (n, εn, R) as above such that
1
nH(M) ≤ R and the total variation distance between the induced distribution p̃(an, bn, xn, yn)
by the code and the original distribution

∏n
i=1 p(ai, bi, xi, yi) is at most εn, i.e., (5) holds. The

set of achievable rates in this case is denoted by Rq.
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For ε ≥ 0 define

Sε =

{
R : ∃F satisfying the following conditions:

R ≥ I(X; F|Y ),

ρ̃AXY F =
∑
a,x,y

p̃(a, x, y)|a, x, y〉〈a, x, y| ⊗ ρFa,x,y,

p̃(a, b, x, y) = p̃(a, x, y)p̃(b|a, x, y),

‖p̃(a, b, x, y)− p(a, b, x, y)‖1 ≤ ε,
F−X − Y, A− FX − Y,

∃Ψ s.t. Ψ(F, Y ) = (B, Y )

}
. (7)

By the second and third constraints we mean that there is a joint distribution p̃(a, b, x, y) =
p̃(a, x, y)p̃(b|a, x, y) on A,B,X, Y , and that A,X, Y,F simultaneously exist, so there is a cor-
responding c-q state. The last constraint means that there exists a measurement on F chosen
according to Y which generates B. Unlike the classical case, we cannot expect this constraint
to be in the Markov chain form of B − FY −XA paralleling the classical case, since B and F
do not simultaneously exist.

The following theorem is analogous to Theorem 1 in the presence of entanglement.

Theorem 2 S0 ⊆ Rq ⊆
⋂
ε>0 Sε.

Remark 1 Note that the above theorem characterizes the rate region Rq in a single-letter form.
The inclusion S0 ⊆ Rq is the achievability part and Rq ⊆

⋂
ε>0 Sε is the converse. Unlike the

classical case, these two bounds do not match since we do not have a dimension bound on F; if
similar to the last constraint in (6), we had a bound on the dimension of F, then by a simple
compactness argument we could have concluded that S0 =

⋂
ε>0 Sε = Rq.

The proof of the achievability part of this theorem is based on a remote state preparation
protocol with side information. This generalization of remote state preparation protocols could
be of independent interest. Roughly speaking given the Markov chain condition F−X−Y , Alice
after receiving x by sending classical bits at rate I(X; F|Y ) can prepare a copy of F at Bob’s
side. Then by the last constraint in (7), Bob by applying a measurement on F can generate
B. Moreover, the remote state preparation protocol is in such a way that Alice herself, has
a purification of F in hand. Then using A − FX − Y it is shown that she can output A by
measuring this purification. The converse part of the theorem follows from similar steps as the
converse part of Theorem 1. For a full proof of this theorem see Appendix B.

Unfortunately Theorem 2 does not provide an algorithm to compute the rate region Rq
since we have no bound on the dimension of the auxiliary register F. In Appendix C we use
an ad hoc technique based on the principle of Information Causality [27] to derive bounds for
a particular instance of the problem, namely the CHSH-type correlations. This illustrate the
possibility of an entirely different approach for proving computable outer bounds, when proving
dimension bounds on the size of auxiliary registers is difficult. By an entirely different approach
we mean a different approach than the standard converses based on identification of auxiliaries
using past and future of variables (where we start from the n-letter form of an expansion and
use, for instance the chain rule or the Csiszar sum lemma, to derive single letter forms of the
expression). Although it is not clear how to extend the result to non-CHSH-type correlations,
we would like to highlight the possibility of getting around dimension bounds if one is only
interested in computable outer bounds.

4 Quantum conditioning

In the previous section we see that rate regions involving an auxiliary quantum register natu-
rally appear in quantum information theory especially in classical communication settings with
shared entanglement. To compare such rate regions with their completely classical counterparts,
we need to compare quantum auxiliary registers with classical auxiliary random variables. In
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particular, in the Gray-Wyner problem we see that if we could replace conditioning on a quan-
tum register with a classical one, then entanglement does not help. So in this section we focus on
understanding of quantum conditioning (entropic quantities conditioned on a quantum system).
This notion appears, at least in the classical case, when we want to prove dimension bounds.

In the classical world, conditioning on a random variable has several meanings one of which is
convexification. This interpretation is the crux of the Carathéodory theorem, the main classical
tool for bounding cardinality of auxiliary random variables. To isolate this interpretation of
conditioning we begin by some notations. Fix finite sets X1, . . . ,Xm, and consider the map

p(x1, x2, . . . xm) 7→
(
H(X1), H(X2), . . . ,H(Xm)

)
.

The domain of this map is the probability simplex on X1× · · · ×Xm. Let G be the graph of this
map, i.e.,

G =

{(
p(x1, . . . , xm),H(X1), . . . ,H(Xm)

)
for all p(x1, . . . xm)

}
.

Each point in G corresponds to a joint distribution p(x1, . . . xm). Then ConvHull(G), the convex
envelope of G can be seen to be equal to the following:3

ConvHull(G) =

{(
p(x1, . . . , xm), H(X1|C), . . . ,H(Xm|C)

)
for all p(x1, . . . , xm, c)

}
.

Thus conditioning on a (classical) random variable is equivalent to convexification.4

Now the question is what happens when we allow C to be a quantum register. In other words
what we can say about the following set

QConvHull(G) :=

{
(p(x1, . . . , xm), H(X1|F), . . . ,H(Xm|F)) for all p(x1, . . . , xm) and ρFx1...xm

}
.

Observe that QConvHull(G) is convex and contains ConvHull(G). The question is whether this
containment is strict or equality holds. One difficulty of understanding QConvHull(G) is that
unlike the classical case, no bound on the dimension of F is known. This means that we do not
even know how to compute QConvHull(G).

Example. Let m = 3 and X3 = (X1, X2). Then for any p(x1, x2) the coordinates of the
triple

(
H(X1|F), H(X2|F), H(X3|F)

)
satisfy H(X3|F) ≤ H(X1|F) +H(X2|F). Suppose we are

interested in the set of triples where equality H(X3|F) = H(X1|F) + H(X2|F) holds. In this
case I(X1;X2|F) = 0. Now using the structure of states that satisfy strong subadditivity of
quantum entropy with equality [28] we conclude that there exists a classical random variable C
such that I(X1;X2|C) = 0, H(X1|C) = H(X1|F) and H(X2|C) = H(X2|F). This means that

3 To compute the convex envelope of G, one has to take a set of k points and compute their weighted average
(with non-negative weights adding up to one). Since each point corresponds to a joint distribution, we can think
of k distributions pi(x1, . . . , xm), i = 1, . . . , k, and k weights ω1, ω2, · · · , ωk. Let C be a random variable that
takes the value C = i with probability ωi for i = 1, . . . , k. Further define p(x1, . . . , xm|C = i) := pi(x1, . . . , xm).
Then

p(x1, . . . , xm) =
∑
i

p(C = i)p(x1, . . . , xm|C = i)

=
∑
i

ωipi(x1, . . . , xm),

is the weighted average of pi(x1, . . . , xm). Further

H(Xj |C) =
∑
i

p(C = i)H(Xj |C = i)

=
∑
i

ωiHpi(xj)
(Xj),

is also a weighted average. Thus
(
p(x1, . . . , xm), H(X1|C), . . . , H(Xm|C)

)
is the weighted average of the set of

points we started with.
4Size of the alphabet of the auxiliary variable C corresponds to the number of points we need to take to

compute the convex hull of a set. Carathéodory’s theorem is a theorem in convex geometry that bounds this
number. According to this theorem, any point in the convex hull of a set in Rd can be expressed as the convex
combination of at most d+ 1 points in the set.

9



the quantum and classical regions are the same under the constraint that the third coordinate
of the triple is equal to the sum of the first two coordinates.

The first main result of this section is that quantum conditioning is strictly richer than clas-
sical conditioning. Here we introduce new tools that could be useful in bounding the dimension
of quantum registers as well.

Theorem 3 (a) The following three statements are equivalent:

1. QConvHull(G) = ConvHull(G) for any finite sets X1, . . . ,Xm.

2. For a classical-quantum channel X → F determined by a collection of density marices
ρFx for x ∈ X , consider the function p(x) 7→ I(X; F) for distributions p(x) on X . Then
for every ε > 0 there exists a classical channel X → C determined by q(c|x) such that∣∣I(X; F)− I(X;C)

∣∣ ≤ ε for all p(x).

3. For any arbitrary q(x, y, z) consider the optimization problem

sup
F−X−Y Z

I(F;Y )− I(F;Z),

over all quantum registers F satisfying F−X−Y Z. Then the supremum is a maximum
and is attained at a classical F.

(b) There is a counterexample for part (1) implying that all of the above three statements are
false.

Part (a2) of the theorem introduces the problem of uniformly approximating the mutual
information curve (or surface) p(x) 7→ I(X; F) with classical ones. The mutual information
I(X; F) is concave in p(x). Therefore the problem is that of approximating a concave curve (or
surface) with another one. Statement of this theorem says that this is not possible for some
{ρFx }.

Consider the optimization problem introduced in part (a3) of the theorem. Because of
the Markov chain condition, the auxiliary system F is determined by the collection of states
{σx : x ∈ X}. Note that the supremum is not known to be computable because no bound on
the dimension of F is known. The classical form of the expression is supp(c|x) I(C;Y )− I(C;Z),
where we are taking the supremum over all classical channels p(c|x). In the classical case we know
that the supremum is indeed a maximum, and further the cardinality of C can be bounded from
above by |X | using the Convex Cover Method (see [5, Appendix C]) where gj , j − 1, 2, · · · , |X |
in the statement of the lemma are defined as follows:

gj(π) =

{
π(j), j = 1, 2, · · · , |X | − 1;
H(Y )−H(Z), j = |X |.

Observe that it is because of the Markov chain C −X − Y Z that the cardinality bound would
not depend on |Y| and |Z|. The above theorem shows that there exists a distribution q(x, y, z)
such that

sup
F−X−Y Z

I(F;Y )− I(F;Z) > max
p(c|x)

I(C;Y )− I(C;Z). (8)

In the second main result in this section, we consider the above statements in the special
case of |X | = dim F = 2.

Theorem 4 The following two statement hold:

1. Let |X | = dim F = 2 and consider a channel X → F determined by ρF0 , ρ
F
1 . Then one can

find a classical channel q(c|x) such that I(X; F) = I(X;C) for all p(x).

2. For an arbitrary q(x, y, z) where X is binary, consider the supremum

sup
F−X−Y Z

I(F;Y )− I(F;Z),

over all quantum registers F of dimension two. Then the supremum is a maximum and
one can always find a maximizer F that is classical.

We leave a prove of Theorem 4 for Appendix E. Theorem 3 is proved in the following two
subsections.
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4.1 Proof of part (a) of Theorem 3

We show that (a1) implies (a3), (a2) implies (a1), and (a3) implies (a2). The fact that (a1)
implies (a3) is immediate noting that

I(F;Y )− I(F;Z) = H(Y )−H(Z)−H(Y |F) +H(Z|F),

can be expressed in terms of conditional entropies given a quantum register. The Markov chain
constraint F − X − Y Z can also be written as H(Y Z|X) = H(Y Z|X,F) or alternatively as
H(Y Z|X) = H(Y ZX|F)−H(X|F) in terms of conditional entropies given the quantum register.

To show that (a2) implies (a1), take some arbitrary finite sets X1, . . . ,Xm, distribution
q(x1, · · · , xm) and states ρFx1,··· ,xm . Let X = (X1, · · · , Xm). Then by (a2) for any ε > 0,

one can find a classical channel q(c|x) such that
∣∣I(X; F)− I(X;C)

∣∣ ≤ ε, for all p(x). We show

that this implies that
∣∣I(Xi; F)− I(Xi;C)

∣∣ ≤ ε for 1 ≤ i ≤ m. Observe that

I(Xi; F) = I(X1X2 · · ·Xm; F)− I(X1X2 · · ·Xm; F|Xi)

= I(X; F)− I(X; F|Xi)

= I(X; F)−
∑
xi

p(xi)I(X; F|Xi = xi).

But I(X; F|Xi = xi) is nothing but the mutual information between X and F at the conditional
distribution pX|Xi(x|xi). Thus we have

∣∣I(X; F) − I(X;C)
∣∣ ≤ ε, and

∣∣I(X; F|Xi = xi) −
I(X;C|Xi = xi)

∣∣ ≤ ε for any xi. This implies∣∣I(Xi; F)− I(Xi;C)
∣∣ ≤ ε+

∑
xi

p(xi)ε = 2ε,

and ∣∣H(Xi|F)−H(Xi|C)
∣∣ ≤ 2ε.

Therefore we have approximated H(Xi|F) with a classical H(Xi|C) for all i within 2ε. This
implies that

QConvHull(G) ⊂ ConvHull(G),

where ConvHull(G) is the closure of ConvHull(G). But ConvHull(G) is a closed set since in the
classical case we can bound the cardinality of the auxiliary C with |X1|× |X2|× |X3| · · · |Xm|+m
using Carathéodory theorem.

Showing that (a3) implies (a2) is challenging and contains the main ideas of this section.
Assume that for all distributions q(x, y, z) we have

sup
F−X−Y Z

I(F;Y )− I(F;Z) = max
p(c|x)

I(C;Y )− I(C;Z). (9)

Note that the right hand side is computable since we can impose the restriction |C| ≤ |X |. Let
P denote the class of all classical channels p(c|x) with |C| ≤ |X |.

Rexpressing in terms of a max-min equation: Fix a distribution q(x) on X and an arbitrary
c-q channel X → F with states σx, x ∈ X . Without loss of generality we assume q(x) > 0 for
all x ∈ X . By our assumption (9) we have

I(F;Y )− I(F;Z) ≤ max
p(c|x)∈P

I(C;Y )− I(C;Z), ∀q(y, z|x).

Equivalently,

max
q(y,z|x)

[
I(F;Y )− I(F;Z)− max

p(c|x)∈P
I(C;Y )− I(C;Z)

]
≤ 0.

Take an arbitrary ε > 0. Lemma 6 of Appendix D shows that one can find a finite set of channels
p(cj |x), (j = 1, 2, · · · ,Mε) to uniformly approximate the continuous function I(C;Y )− I(C;Z)
over the compact set P within ε (an ε-net); i.e., for every p(c|x) ∈ P there exists j such that∣∣∣∣(I(C;Y )− I(C;Z)

)
−
(
I(Cj ;Y )− I(Cj ;Z)

)∣∣∣∣ ≤ ε, ∀q(y, z|x).
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Thus

max
q(y,z|x)

[
I(F;Y )− I(F;Z)− max

1≤j≤Mε

I(Cj ;Y )− I(Cj ;Z)

]
≤ ε.

This means that

max
q(y,z|x)

[
I(F;Y )− I(F;Z)− max

λj≥0:
∑
j λj=1

∑
j

λj
(
I(Cj ;Y )− I(Cj ;Z)

)]
≤ ε.

Alternatively,

max
q(y,z|x)

min
λj≥0:

∑
j λj=1

[
I(F;Y )− I(F;Z)−

∑
j

λj
(
I(Cj ;Y )− I(Cj ;Z)

)]
≤ ε. (10)

Exchanging the order of min and max: The main step in the proof is to use Lemma 7 of
Appendix D to exchange the order of maximum and minimum to get

min
λj≥0:

∑
j λj=1

max
q(y,z|x)

[
I(F;Y )− I(F;Z)−

∑
j

λj
(
I(Cj ;Y )− I(Cj ;Z)

)]
≤ ε. (11)

Thus there exists a choice of λj , not depending on q(y, z|x), such that

max
q(y,z|x)

[
I(F;Y )− I(F;Z)−

∑
j

λj
(
I(Cj ;Y )− I(Cj ;Z)

)]
≤ ε,

which is equivalent to

max
q(y,z|x)

H(F|Z)−H(F|Y )−
∑
j

λj
(
H(Cj |Z)−H(Cj |Y )

) ≤ ε.
Implication of the max-min exchange: Assuming q(y, z|x) = q(y|x)q(z|x) we obtain

max
q(z|x)

H(F|Z)−
∑
j

λjH(Cj |Z)

+ max
q(y|x)

−H(F|Y ) +
∑
j

λjH(Cj |Y )

 ≤ ε.
We can express the two maximums in terms of the same channel as follows

max
q(z|x)

H(F|Z)−
∑
j

λjH(Cj |Z)

 ≤ ε+ min
q(z|x)

H(F|Z)−
∑
j

λjH(Cj |Z)

 . (12)

Let us define

W (p(x)) = H(F)−
∑
j

λjH(Cj)

= H

(∑
x

p(x)σx

)
−
∑
j

λjH

(∑
x

p(x)p(cj |x)

)
.

Then the left hand side of (12) is the upper concave envelope5 of the graph of W (p(x)) whereas
the right hand side is the lower convex envelope of W (p(x)). We know that the difference
between the two is at most ε. Were these two are exactly equal, the function W (p(x)) must have
been linear in p(x) for all p(x) (and not just the q(x) we started with). Therefore the function
W (p(x)) is almost linear.

5The upper concave envelope of a function f(t) is the smallest concave function g(t) such that f(t) ≤ g(t) for
all t. Lower convex envelope is defined similarly.
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1 2 3 4
α (1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)
β (0, 1, 1, 0) (1, 0, 0,−1) (1, 0, 0, 1) (0, 1,−1, 0)
γ (1, 1, 1, 1) (1,−1, 1,−1) (1,−1,−1, 1) (1, 1,−1,−1)
δ (1,−1, 0, 0) (1, 1, 0, 0) (0, 0, 1, 1) (0, 0, 1,−1)
ε (−1, 1, 1, 1) (1, 1, 1,−1) (1,−1, 1, 1) (1, 1,−1, 1)
ζ (1, 0, 1, 0) (0, 1, 0, 1) (1, 0,−1, 0) (0, 1, 0,−1)

Figure 2: Definition of vectors needed for the proof of part (b) of Theorem 3.

The function

V (p(x)) = I(F;X)−
∑
j

λjI(Cj ;X)

= I(F;X)− I(D;X)

is equal to W (p(x)) plus a linear term in p(x), where here D is defined as D = (U,CU ) where
U is a random variable, independent of X taking value j with probability λj . As a result, the
upper concave envelope and lower convex envelope of V (p(x)) at q(x) are also ε-close to each
other.

The function V (p(x)) is zero when p(x) assigns probability one to a single symbol (i.e. on
the vertices of the probability simplex). Thus its lower convex envelope is less than or equal to
the zero function, whereas its upper concave envelope is greater than or equal to zero. Since the
gap between the two is at most ε at the given q(x) and q(x) > 0 for all x, |V (p(x))| should be
close to zero for every p(x). Thus∣∣I(F;X)− I(D;X)

∣∣ ≤ O(ε), ∀p(x).

This completes the proof.

4.2 Proof of part (b) of Theorem 3

The counterexample is inspired by the examples of (classical) channels for which the one-shot
entanglement-assisted zero-error capacity is greater than the zero-error capacity [9, 10]. Here we
explain the details based on the Kochen-Specker type channel of [9]. For more information on
Kochen-Specker sets and their importance see [29, Chapter 7]. See also [30] for a generalization
of Kochen-Specker sets.

Let M = {α, β, γ, δ, ε, ζ} and X = {θi : θ ∈ M, 1 ≤ i ≤ 4}. Moreover, let Y =
{S1, S2, . . . , S18} where Si’s are certain four-elements subsets of X :

S1 = {α1, α4, β1, β4}, S2 = {γ1, γ4, δ1, δ4}, S3 = {ε1, ε4, ζ1, ζ4},
S4 = {α2, α3, β2, β3}, S5 = {γ2, γ3, δ2, δ3}, S6 = {ε2, ε3, ζ2, ζ3},
S7 = {α1, α3, ζ2, ζ4}, S8 = {β2, β4, γ1, γ3}, S9 = {δ2, δ4, ε1, ε3},
S10 = {α2, α4, ζ1, ζ3}, S11 = {β1, β3, γ2, γ4}, S12 = {δ1, δ3, ε2, ε4},
S13 = {α1, α2, δ3, δ4}, S14 = {β1, β2, ε3, ε4}, S15 = {γ1, γ2, ζ3, ζ4},
S16 = {α3, α4, δ1, δ2}, S17 = {β3, β4, ε1, ε2}, S18 = {γ3, γ4, ζ1, ζ2}.

Finally let F be a 4-level quantum system and for θi ∈ X define ρFθi = |ψθi〉〈ψθi | where |ψθi〉’s
are proportional to the vectors given in Fig. 2

Note that |ψθi〉 and |ψθ′j 〉 are orthogonal if and only if θ = θ′ or there exists k, 1 ≤ k ≤ 18,

such that θi, θ
′
j ∈ Sk. In fact each of the 18 subsets {|ψθi〉 : θi ∈ Sk} for all k, as well as the

6 subsets {|ψθi〉 : i = 1, . . . , 4} for all θ ∈ M, consist an orthonormal basis for the Hilbert
space of F. To represent these orthogonality relations form a graph on the vertex set X and
connect two vertices θi and θ′j if 〈ψθi |ψθ′j 〉 = 0. This orthogonality graph contains 18 + 6 cliques
corresponding to the above orthonormal bases, and the edge set of the graph is the union of
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these cliques. The independence number of this graph, namely the maximum number of vertices
no two of which are connected, is 5.

Now consider the following distribution on XMY . Let p(θi) = 1
24 be the uniform distribution

on X. The distribution on M is p(θ′|X = θi) = 1 iff θ′ = θ. To define the distribution on Y note
that for each θi ∈ X , there are exactly three indexes k such that θi ∈ Sk. Let p(Sk|X = θi) = 1/3
iff θi ∈ Sk. Observe that the one-shot zero-error capacity of the channel X → Y (determined by
p(Sk|X = θi)) is log 5 because the independence number of the orthogonality graph is 5 (see [9]
for more details). We finally define the state of F to be ρθi when X = θi.

Now it is easy to verify that

H(X|F) = log 6, H(M |F) = H(M) = log 6, H(Y |F) = H(Y ) = log 18.

These equations are all based on the fact that the average of states ρθi when θi ranges over
a clique of the orthogonality graph, is equal to the maximally mixed state. So by the above
notation

(p(x, θ, y), log 6, log 6, log 18) ∈ QConvHull(G),

where here n = 3 and X1 = X, X2 = M and X3 = Y . To proof QConvHull(G) 6= ConvHull(G)
we show that this point does not belong to ConvHull(G). Suppose there exists a classical random
variable C such that

H(X|C) = log 6, H(M |C) = H(M) = log 6, H(Y |C) = H(Y ) = log 18.

The above three equations imply that (the proof comes later)

I(C;M) = 0, H(X|CM) = 0, MC −X − Y, H(M |CY ) = 0.

Pick a c such that p(C = c) 6= 0 and consider the distribution p(x, θ, y|C = c). By the first
equation p(θ|C = c) = p(θ) = 1/6, and by the second equation X is deterministically computed
from M (and C = c). Using the structure of the distribution p(x, θ) we find that for every
θ ∈ {α, β, γ, δ, ε, ζ} there exists i, 1 ≤ i ≤ 4, such that p(x, θ|C = c) = 1 iff x = θi. We
denote the set of these six θi by T . Thus |T | = 6 and for every θ ∈ M there exists i such that
θi ∈ T . MC −X − Y implies that p(y|C = c,M = θ,X = θi) = p(y|X = θi). So y is uniformly
distributed among the three subsets Sk that contain θi. Finally the last equation says that y
(and C = c) uniquely determines θ. This means that, there is no Sk that contains more that
two elements of T . As a result, T is an independent set of the orthogonality graph of size 6.
This is a contradiction since the independence number of this graph is 5.

A more intuitive argument is based on a zero-error communication protocol over the channel
X → Y using C as shared randomness. We take M as the message to be transmitted from
the sender to the receiver. Note that by the first equation M is independent of C (the shared
randomness), so this analogy makes sense. H(X|CM) = 0 implies that X is a function of CM .
So the sender computes X from M and C, and sends it over the channel. By MC−X−Y given
the input, the output of the channels is independent of M and C. Finally the last equation means
that the receiver can decode M from Y and C, and this can be done with no error. As a result
the one-shot zero-error capacity of X → Y is at least H(M) = log 6 which is a contradiction.

We finish this section by proving that the three equations

H(X|C) = log 6, H(M |C) = H(M) = log 6, H(Y |C) = H(Y ) = log 18,

imply
I(C;M) = 0, H(X|CM) = 0, MC −X − Y, H(M |CY ) = 0.

The first equation directly follows from H(M |C) = H(M) = log 6. To show the third and last
equations we write

H(X|CY ) = H(XY |C)−H(Y |C)

= H(X|C) +H(Y |CX)−H(Y )

= H(X|C) +H(Y |MCX)−H(Y )

≤ H(X|C) +H(Y |X)−H(Y )

= log 6 + log 3− log 18 = 0,
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where in the third line we have used the fact that M is uniquely determined in terms of X.
The above equation implies that H(M |CY ) = 0. Furthermore, the inequality should hold with
equality. This gives us the constraint MC −X − Y . To show the second identity we write

H(X|CM) = H(XM |C)−H(M |C)

= H(X|C)−H(M |C)

= log 6− log 6 = 0,

where we have again used the fact that M is a function of X.

5 Dimension bounds and the mutual information curve

Let us consider the optimization problem

sup
F−X−Y Z

I(F;Y )− I(F;Z),

and assume that we can restrict to quantum registers with dimension bound d∗ that universally
works for all p(x, y, z). That is, assume that there is a bound d∗ that depends only on |X |, |Y|, |Y|
such that in the above optimization we may restrict the dimension of F to be d∗. This is the
problem considered in Section 1.2.

Fix a distribution q(x) on X and an arbitrary c-q channel X → F which maps x ∈ X to σx.
Without loss of generality we assume q(x) > 0 for all x ∈ X . By our assumption we have

I(F;Y )− I(F;Z) ≤ max
E:dim(E)≤d∗

I(E;Y )− I(E;Z), ∀q(y, z|x),

where the maximum is taken over all E with the given dimension bound that satisfy E−X−Y Z
(indeed over all ρEx , x ∈ X where ρEx is of dimension d∗ for all x). Equivalently,

max
q(y,z|x)

[
I(F;Y )− I(F;Z)− max

E:dim(E)≤d∗
I(E;Y )− I(E;Z)

]
≤ 0.

Take an arbitrary ε > 0. Using a similar argument as in Lemma 6 of Appendix D, we can
discretize the set of all E with the given dimension bound that satisfy E−X − Y Z, i.e. to find

a finite set of Ej with ρ
Ej
xj , x ∈ X , (j = 1, 2, · · · ,Mε) to uniformly approximate the continuous

function I(E;Y )− I(E;Z) over the compact set of all such auxiliary E with the given dimension
bound within ε (an ε-net). Thus

max
q(y,z|x)

[
I(F;Y )− I(F;Z)− max

1≤j≤Mε

I(Ej ;Y )− I(Ej ;Z)

]
≤ ε.

This means that

max
q(y,z|x)

[
I(F;Y )− I(F;Z)− max

λj≥0:
∑
j λj=1

∑
j

λj
(
I(Ej ;Y )− I(Ej ;Z)

)]
≤ ε.

Alternatively,

max
q(y,z|x)

min
λj≥0:

∑
j λj=1

[
I(F;Y )− I(F;Z)−

∑
j

λj
(
I(Ej ;Y )− I(Ej ;Z)

)]
≤ ε. (13)

Following very similar arguments as before and exchanging the order of max and min, we conclude
that ∣∣I(F;X)−

∑
j

λjI(Ej ;X)
∣∣ ≤ O(ε), ∀p(x),

for a choice of λj ’s independent of q(y, z|x). This equation suggests that to study dimension
bounds, it would help to understand the behavior of the concave function p(x) 7→ I(F;X) in
terms of the dimension of F. Indeed the question of finding dimension bounds is reduced to the
question of whether or not these functions become more and more complicated (in structure)
as we increase the dimension, so that they cannot be written in terms of those functions with
smaller dimensions.
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6 Conclusion

In this paper we presented a tool for proving dimension bounds on auxiliary quantum systems.
Motivated by the use of Carathéodory theorem in classical information theory, we formalized
the problem of quantum conditioning. We showed that quantum conditioning coincides with
(classical) conditioning in a very special case but in general goes beyond it. We also studied the
role of entanglement in classical communication problems from an information theoretic point
of view. We observed that unlike the problem of point-to-point channel capacity, entanglement
does help in the problem of simulation of correlations by studying CHSH-type correlations. This
may not seem surprising given that shared randomness also helps in the problem of simulation
of correlations. However, the situation is different in the Gray-Wyner problem. Given that
shared randomness does not increase the capacity in the classical Gray-Wyner problem (which
is a communication problem), should entanglement turns out to be helpful in this problem, it
would serve as an interesting example. To pursue this further, one needs to develop new tools
for bounding the dimension of auxiliary quantum systems.

In classical information theory, all of the known tools for bounding the cardinality are affir-
mative, meaning that they either can be used to prove a cardinality bound, or do not yield any
result at all. We know of no expression where a cardinality bound is rigorously proven not to
exists. Thus an interesting problem would be to study the plausibility of an explicit example
where a single auxiliary quantum register shows up, and there is no dimension bound. A good
candidate could be studying the dimension of F in equation (7) since here a dimension bound
may not exist in general. Based on evidences from numerical simulations in [31] it is conjec-
tured that the maximum violation of a particular Bell inequality (called I3322 inequality) with
shared entanglement does not happen in finite dimensions. Although this conjecture is about
simulating bipartite correlations in a single shot and does not directly apply into our framework
in Theorem 2, it suggests that we may not have a dimension bound on F in equation (7).
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Appendix

A Some notations and useful lemmas

We frequently use the gentle measurement lemma in this paper:

Lemma 1 (Gentle measurement lemma [15]) Let ρ be a quantum state and {M0,M1} be a

binary measurement such that tr(M†0M0ρ) ≥ 1− ε. If we measure ρ with {M0,M1} and obtain

0 as the outcome, then the post measurement state ρ′ proportional to M0ρM
†
0 satisfies

‖ρ− ρ′‖1 ≤ 2
√
ε.

We fix an orthonormal basis {|v1〉, . . . , |vdimF〉} for the Hilbert space of F and write all the
transposes (T ) with respect to this basis. Moreover, we set

|Φ〉EF =
1√

dim F

dimF∑
i=1

|vi〉E|vi〉F,

to be the maximally entangled state over EF where E is a copy of F.
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We assume the reader is familiar with the notions of typicality and conditional typicality (see
for example [32, Chapter 12] and [33, Chapter 14]). Here we only fix some notations. Throughout
this paper by typicality we mean strong typicality. The state of a c-q system XF has the form

ρXF =
∑
x

p(x)|x〉〈x| ⊗ ρx

and subsystem F has the average state ρ =
∑
x p(x)ρx. The δ-typical subspace of ρ is determined

by a projection Πn
ρ,δ acting on the Hilbert space of Fn. We may drop the index ρ in Πn

ρ,δ when
there is no confusion.

For every δ, ε > 0 and sufficiently large n we have

tr
(
Πn
δ ρ
⊗n) ≥ 1− ε,

(1− ε)2n(H(F)−cδ) ≤ tr Πn
δ ≤ 2n(H(F)+cδ),

and
2−n(H(F)+cδ)Πn

δ ≤ Πn
δ ρ
⊗nΠn

δ ≤ 2−n(H(F)−cδ)Πn
δ ,

where c is some constant.
For a given xn we define ρxn = ρx1 ⊗ · · · ⊗ ρxn . Moreover, by Πxn

ρ,δ we mean the conditional

δ-typical projection. Again we may denote Πxn

ρ,δ by Πxn

δ when there is no confusion. For every
δ-typical xn we have

tr
(

Πxn

δ ρxn
)
≥ 1− ε,

(1− ε)2n(H(F|X)−δ′′) ≤ tr Πxn

δ ≤ 2n(H(F|X)+δ′′),

and

2−n(H(F|X)+δ′′)Πxn

δ ≤ Πxn

δ ρxnΠxn

δ ≤ 2−n(H(F|X)−δ′′)Πxn

δ ,

where δ′′ = δ′|X | log(dim F) + cδ + |X |cδδ′. We further have

tr(Πn
δ ρxn) ≥ 1− ε.

The following important lemmas, which might be of independent interest, will be used in the
proof of Theorem 2.

Lemma 2 Suppose X − F− Y where X,Y are classical random variables and F is a quantum
register which for every y ∈ Y is purified by E. Then having access to E one can generate X
independent of Y .

Proof: Let τXFY be the joint state of XFY . Due to the structure of tripartite states with
X − F− Y , i.e., satisfy strong subadditivity with equality [28], there exists a decomposition of
the Hilbert space of F of the form

⊕
j FjL ⊗ FjR such that

τXFY =
⊕
j

q(j)

(∑
x

pj(x)|x〉〈x| ⊗ ρjx

)
⊗

(∑
y

pj(y)σjy ⊗ |y〉〈y|

)
,

where ρjx and σjy are states of registers FjL and FjR respectively. Then the marginal distribution
of XY is p(x, y) =

∑
j q(j)pj(x)pj(y), and we have

τFY =
⊕
j

∑
x

q(j)

(∑
x

pj(x)ρjx

)
⊗

(∑
y

pj(y)σjy ⊗ |y〉〈y|

)

=
∑
y

p(y)

(⊕
j

1

p(y)

∑
x

q(j)pj(x)pj(y)ρjx ⊗ σjy
)
⊗ |y〉〈y|,

where p(y) =
∑
j,x q(j)pj(x)pj(y) is the marginal distribution of Y . Then conditioned on Y = y

the state of F is ⊕
j

1

p(y)

∑
x

q(j)pj(x)pj(y)ρjx ⊗ σjy. (14)
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To find a purification of this state let |ψjx〉EjLFjL and |φjy〉EjRFjR
be purifications of ρjx and σjy

respectively. Then ∑
j,x

√
q(j)pj(x)pj(y)

p(y)
|j〉J|x〉X′ |ψj

x〉Ej
L
F
j
L
|φj

y〉Ej
R
F
j
R

is a purification of (14) where the register which purifies F is E = JX′
(⊕

j Ej
LEj

R

)
. Note that

all purifications of (14) are equivalent to the above purification up to a unitary, and E contains
a copy of X as a subsystem with distribution

∑
j q(j)pj(x)pj(y)/p(y) = p(x|y). We are done.

�

Lemma 3 Suppose that F−X − Y . This means that the joint state of FXY has the form

ρFXY =
∑
x,y

p(x, y)ρx ⊗ |x〉〈x| ⊗ |y〉〈y|.

Let xnyn be jointly typical. Then for sufficiently large n we have

tr
(

Πyn

δ ρxn
)
≥ 1− ε.

Proof: Let Y = {1, 2, . . . , k}. Without loss of generality we may assume that yn has the form

yn = 1 . . . 1︸ ︷︷ ︸
`1

2 . . . 2︸ ︷︷ ︸
`2

3 . . . 3︸ ︷︷ ︸
`3

· · · k . . . k︸ ︷︷ ︸
`k

,

where
∑k
y=1 `y = n. Since yn is typical for all y ∈ {1, . . . , k} we have∣∣∣∣`yn − p(y)

∣∣∣∣ < δ,

which implies that `y is sufficiently large when n is sufficiently large (and p(y) > 0).
By the definition of the conditional typical projection we have

Πyn

δ = Π`1
σ1,δ
⊗ · · · ⊗Π`k

σk,δ
,

where Π
`y
σy,δ

is the typical projection with respect to σy =
∑
x p(x|y)ρx.

With abuse of notation we may write

ρxn = ρx1
⊗ ρx2

⊗ · · · ⊗ ρxn = ρx`1 ⊗ ρx`2 ⊗ · · · ⊗ ρx`k .

x`y is δ-typical with respect to p(x|y) since xnyn is jointly typical. Thus for sufficiently large `y,
we have

tr
(

Π
`y
σy,δ

ρx`y
)
≥ 1− ε

k
.

As a result,

tr
(

Πyn

δ ρxn
)

=

k∏
y=1

tr
(

Π
`y
σy,δ

ρx`y
)
≥
(

1− ε

k

)k
≥ 1− ε.

�

B Proof of Theorem 2

B.1 Proof of Rq ⊆
⋂
ε>0 Sε

The proof follows from similar steps as in the classical case. For every ε > 0 we show that
Rq ⊆ Sε. Let R ∈ Rq. Then by definition there exists an (n, ε,R) code for a sufficiently large
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n such that H(M) = nR. Let Q denote Bob’s part of the shared entangled state after Alice’s
measurement. We have

nR = H(M) (15)

≥ I(Xn;M |Y nQ)

= I(Xn;MQ|Y n)− I(Xn : Q|Y n)

= I(Xn;MQ|Y n) (16)

=

n∑
i=1

I(Xi;MQ|X1:i−1YiY1:i−1Yi+1:n)

=

n∑
i=1

I(Xi;MQX1:i−1Y1:i−1Yi+1:n|Yi), (17)

where (16) follows from the no-signaling principle and (17) follows from the fact that Xn, Y n

are drawn independently. Let U be a random variable uniformly distributed over {1, 2, · · · , n}
and independent of all previously defined registers. Let X = XU , Y = YU , A = AU , B = BU ,
and

F = (M,Q, X1:U−1, Y1:U−1YU+1:n, U).

Thus using equation (17) we can write

R ≥ 1

n

n∑
i=1

I(Xi;MQX1:i−1Y1:i−1Yi+1:n|Yi)

= I(X; F|Y U)

= I(X; FU |Y )− I(X;U |Y ) (18)

= I(X; F|Y ),

where in (18), I(X;U |Y ) = 0 holds because U is independent of (X,Y ). This is because Xn and
Y n are i.i.d. and hence the joint distribution of (X = XU , Y = YU ) conditioned on U = u is
the same as that without conditioning on U = u. Therefore if we show that A,B,X, Y,F satisfy
the conditions given by (7), we are done.

By the definition of X = XU , Y = YU , A = AU , B = BU , the probability distribution over
A,B,X, Y is p̃(a, b, x, y) = 1

n

∑n
i=1 p̃(ai, bi, xi, yi). Therefore,

‖p̃(a, b, x, y)− p(a, b, x, y)‖1 =

∥∥∥∥∥ 1

n

n∑
i=1

p̃(ai, bi, xi, yi)− p(a, b, x, y)

∥∥∥∥∥
1

≤ 1

n

n∑
i=1

‖p̃(ai, bi, xi, yi)− p(a, b, x, y)‖1

≤

∥∥∥∥∥p̃(an, bn, xn, yn)−
n∏
i=1

p(ai, bi, xi, yi)

∥∥∥∥∥
1

≤ ε.
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Next to show that F−X − Y , observe that

I(F;Y |X) = I(MQX1:U−1Y1:U−1YU+1:nU ;YU |XU )

=
1

n

n∑
i=1

I(MQX1:i−1Y¬i;Yi|Xi)

≤ 1

n

n∑
i=1

I(MQX¬iY¬i;Yi|Xi)

=
1

n

n∑
i=1

I(MQ;Yi|XiX¬iY¬i)

≤ 1

n

n∑
i=1

I(MQ;Y n|Xn)

= I(MQ;Y n|Xn)

= 0,

where X¬i and Y¬i denotes X1:i−1Xi+1:n and Y1:i−1Yi+1:n respectively; the last step follows from
the Markov chain condition Y n−Xn−MQ, i.e., M and Q are generated from Xn independent
of Y n.

Next to show that A− FX − Y , note that

I(A;Y |XF) = I(AF;Y |X)

= I(AUMQ, X1:U−1Y1:U−1YU+1:nU ;YU |XU )

=
1

n

n∑
i=1

I(AiMQX1:i−1Y¬i;Yi|Xi)

≤ 1

n

n∑
i=1

I(AnMQX¬iY¬i;Yi|Xi)

=
1

n

n∑
i=1

I(AnMQ;Yi|XiY¬iX¬i)

≤ 1

n

n∑
i=1

I(AnMQ;Y n|Xn)

= I(AnMQ;Y n|Xn)

= 0,

where again the last step follows from the Markov chain condition Y n − Xn − AnMQ, i.e.,
AnMQ are generated from Xn independent of Y n.

Lastly to show that Ψ(F, Y ) = (B, Y ) for some measurement Ψ on F, Y , note that F, Y
includes M,Q, Y1:U−1YU+1:n, U, YU meaning that it contains M,Q, Y n, U . Thus, we can use
the measurement on M,Q, Y n in the code which gives Bn, and depending on the value of U
construct B = BU out of F, Y .

B.2 Proof of S0 ⊆ Rq

To prove the achievability it would be helpful to start with a simpler problem, namely remote
state preparation with classical side information. Remote state preparation has appeared in the
literature [34, 35, 36, 37, 38], but here we need a generalization of such protocols that include
(classical) side information.

The setup of this problem is as follows. Let X,Y be two random variables with joint distri-
bution p(x, y), and let F be a quantum register such that

F−X − Y.

This means that the joint state of XY F is of the form

ρXY F =
∑
x,y

p(x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρFx .
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Alice and Bob receive i.i.d. repetitions of X,Y , and their goal is to prepare i.i.d. repetitions of F
at Bob’s side. The question is how much classical communication from Alice to Bob is required
if they are provided with arbitrary amount of shared entanglement. Formally speaking, we can
define this problem as follows:

Definition 1 Alice and Bob receive n i.i.d. repetitions of X,Y , i.e., Xn and Y n respectively.
They are also provided with an entangled state on registers A,B (that is independent of XnY n).
An (n, ε,R) remote state preparation code consists of

• An Encoder: A quantum channel EAXn→C where C is a classical random variable taking
values in {1, 2, · · · , 2n(R+ε)}. C is the classical message sent from Alice to Bob;

• A Decoder: A quantum channel DBY nC→Y nF̃n .

The total variation distance of an (n, ε,R) code is defined as follows. Let σX
nY nF̃n be the induced

state by the code, i.e., the result of applying E on (A, Xn) and then applying D on (B, Y n, C)
to produce (Y n, F̃n). Then the total variation distance of the code is∥∥∥σXnY nF̃n − (ρXY F)⊗n

∥∥∥
1
. (19)

Given ρXY F, a rate R is said to be achievable if there exists a sequence of (n,R, εn) remote
state preparation codes for n ∈ N such that

lim
n→∞

εn = 0,

and further the total variation distance of the code converges to zero as n converges to infinity.

Theorem 5 (Remote state preparation with classical side information) The minimum achiev-
able rate of one-way (classical) communication for remote state preparation with classical side
information and arbitrary amount of shared entanglement is I(X; F|Y ).

S0 ⊆ Rq is a simple consequence of this theorem. Let F be a quantum register satisfying con-
ditions (7) for ε = 0. By the above theorem Alice can prepare an approximation of Fn at Bob’s
side with almost nI(X; F|Y ) bits of one-way communication. In the remote state preparation
protocol Alice has an approximate purification of Fn in hand (see the details of the proof below).
Thus using A−FX − Y and based on Lemma 2 she can generate an approximation of An. On
the other hand, since by (7) there is a measurement on (F, Y ) which gives B, Bob can generate
an approximation of Bn after receiving Alice’s message. The details are straightforward, so we
only need to prove Theorem 5.

Proof: We start by showing that at least I(X; F|Y ) bits of communication per copy is re-
quired. Suppose that for every ε > 0 and sufficiently large n there is a protocol with nR bits of
communication in which Bob can prepare F̃n such that the trace distance between the state of
(Xn, Y n, F̃n) and (Xn, Y n,Fn) is at most ε. Then by Fannes inequality we have

I(Xn; Fn|Y n)− nε log d− η(ε)/ ln 2 ≤ I(Xn; F̃n|Y n), (20)

where d = (dim F)|X | · |Y| and η(ε) = −ε ln ε. Let M be the message from Alice to Bob and
Q be Bob’s part of the shared entangled state after receiving M . Then by the date processing
inequality we have

I(Xn; F̃n|Y n) ≤ I(Xn;MQ|Y n)

= I(Xn; Q|Y n) + I(Xn;M |Y nQ)

= I(Xn;M |Y nQ)

≤ H(M)

≤ nR,

where in the third line we use the no-signaling principle. Combining the above inequality
with (20) gives the desired result.
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We now discus the achievability protocol. Our protocol is based on the column method for re-
mote state preparation [35, 36]. For a sufficiently large n Alice and Bob share 2n(I(F;X)+δ′′+cδ+α)

copies of |ψ〉E′F′ , where |ψ〉E′F′ is proportional to

|ψ〉E′F′ ∼ I ⊗Πn
δ |Φ〉E′F′ .

Here |Φ〉E′F′ is the maximally entangled state, and Πn
δ = Πn

ρ,δ is the typical projection of
ρ =

∑
x p(x)ρx. We let

τnδ = trE′(|ψ〉〈ψ|E′F′) =
1

trΠn
δ

Πn
δ .

Thus Alice holds copies of E′ and Bob holds copies of F′. They put these copies in groups of
size 2n(I(F;Y )−δ′′−cδ−α). Thus the number of groups is equal to

2n(I(F;X)+δ′′+cδ+α)

2n(I(F;Y )−δ′′−cδ−α)
= 2n(I(F;X)−I(F;Y )+2δ′′+2cδ+2α).

Alice and Bob respectively receive xn and yn. For sufficiently large n, with probability at
least 1 − ε, xnyn is jointly typical. Alice measures her side of |ψ〉E′F′ for all copies using the
measurement {Qxnδ ,

√
I − (Qx

n

δ )2} where

Qx
n

δ =
√

2n(H(F|X)−δ′′)
(√

Πxn
δ ρxnΠxn

δ

)T
.

Note that by the properties of typical projections mentioned in Appendix A, {Qxnδ ,
√
I − (Qx

n

δ )2}
is indeed a valid measurement.

The following lemma is proved in Appendix B.3.

Lemma 4 If we measure |ψ〉E′F′ by the measurement {Qxnδ ,
√
I − (Qx

n

δ )2} acting on subsystem

E′, then the outcome would be Qx
n

δ with probability at least

2−n(I(X;F)+δ′′+cδ)(1− 4
√
ε),

and in this case F′ collapses to some ρ′′xn where

‖ρxn − ρ′′xn‖1 ≤ 6 4
√
ε.

As a result, if this measurement is applied on 2n(I(F;X)+δ′′+cδ+α) copies of |ψ〉E′F′ , with proba-
bility at least 1− e−(1−4

√
ε)2αn one of the outcomes is Qx

n

δ .

This lemma states that with probability at least 1− e−(1−4
√
ε)2αn there exists an index i (if

there are more than one pick one randomly) such that the outcome of the i-th measurement is
Qx

n

δ . Then Bob’s side of the i-th copy of shared entangled states collapses to ρ′′xn . Alice sends
Bob the index of the group to which i belongs. She needs n(I(F;X)− I(F;Y ) + 2δ′′+ 2cδ+ 2α)
bits of communication to send this index.

Now Bob applies the measurement {Πyn

δ , I − Πyn

δ } on all subsystems in the group to which
i belongs. These measurements are indeed measurements on τnδ = trE′(|ψ〉〈ψ|E′F′).

Lemma 5 If we apply the measurement {Πyn

δ , I −Πyn

δ } on 2n(I(F;Y )−δ′′−cδ−α) copies of τnδ , the

probability of obtaining more than one Πyn

δ is at most 2−αn+1

(1−ε) .

The above lemma is proved in Appendix B.3. Thus among Bob’s measurements with high
probability there is at most one outcome Πyn

δ . On the other hand for the i-th subsystem we
have

tr
(

Πyn

δ ρ′′xn
)
≥ tr

(
Πyn

δ ρxn
)
− 6ε

1
4 ≥ 1− ε− 6ε

1
4 ,

where here we use Lemma 3. Therefore, this measurement helps Bob to distinguish the index
i. In fact by the gentle measurement lemma with high probability the measurement on the i-th
subsystem results in a state ρ′′′xn such that

‖ρxn − ρ′′′xn‖1 ≤ ‖ρxn − ρ′′xn‖1 + ‖ρ′′xn − ρ′′′xn‖1
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≤ 6ε
1
4 + 2

√
ε+ 6ε

1
4 .

The probability of error of the protocol can be analyzed as follows. In the first part of the
protocol where Alice measures, with probability at most e−(1−4

√
ε)2αn Alice obtains no Qx

n

δ as
the outcome which results in error. Otherwise there exists i such that Bob’s part of the i-th
system is within 6ε

1
4 of a desired state (ρxn). Then in the second step where Bob measures the

probability of detect some j 6= i is at most 2−αn+1

(1−ε) , and the probability of correctly detecting is

at least 1− ε− 6ε
1
4 . Adding all these error terms, the probability of error of the whole protocol

is at most

e−2nα(1−4
√
ε) +

2−αn+1

1− ε
+ ε+ 6ε

1
4 ,

which tends to zero as ε→ 0 and n→∞. Moreover, the number of communicated bits is equal
to

n(I(F;X)− I(F;Y ) + 2δ′′ + 2cδ + 2α) = n(I(X; F|Y ) + 2δ′′ + 2cδ + 2α).

�

B.3 Proof of Lemmas 4 and 5

Proof of Lemma 4: Observe that(
Qx

n

δ

)(
Qx

n

δ

)†
=
(
Qx

n

δ

)2

= 2n(H(F|X)−δ′′)
(

Πxn

δ ρxnΠxn

δ

)T
≤
(

Πxn

δ

)T
≤ I.

Thus {Qxnδ ,
√
I − (Qx

n

δ )2} defines a measurement. Moreover,

trE′
[(
Qx

n

δ ⊗ IF′
)
|ψ〉〈ψ|E′F′

(
Qx

n

δ ⊗ IF′
)]

=
√
τnδ

((
Qx

n

δ

)T)2√
τnδ

=
2n(H(F|X)−δ′′)

trΠn
δ

Πn
δΠxn

δ ρxnΠxn

δ Πn
δ . (21)

Now the results follows from two applications of the gentle measurement lemma (Lemma 1).
Define

ρ′xn =
Πxn

δ ρxnΠxn

δ

tr (Πxn
δ ρxnΠxn

δ )
, ρ′′xn =

Πn
δ ρ
′
xnΠn

δ

tr (Πn
δ ρ
′
xnΠn

δ )
.

We have tr
(
Πxn

δ ρxn
)
≥ 1− ε. Thus ‖ρxn − ρ′xn‖1 ≤ 2

√
ε, and

tr (ρ′xnΠn
δ ) ≥ tr (ρxnΠn

δ )− 2
√
ε ≥ 1− ε− 2

√
ε.

Therefore, ‖ρ′xn − ρ′′xn‖1 ≤ 2
√
ε+ 2

√
ε, and by the triangle inequality

‖ρxn − ρ′′xn‖1 ≤ 2

(√
ε+

√
ε+ 2

√
ε

)
< 6 4
√
ε.

We can work out equation (21) as follows:

2n(H(F|X)−δ′′)

trΠn
δ

tr
(

Πxn

δ ρxn
)

Πn
δ ρ
′
xnΠn

δ =
2n(H(F|X)−δ′′)

trΠn
δ

tr
(

Πxn

δ ρxn
)

tr (Πn
δ ρ
′
xn) ρ′′xn .

This means that after the measurement, subsystem F′ collapses to ρ′′xn with probability

2n(H(F|X)−δ′′)

trΠn
δ

tr
(

Πxn

δ ρxn
)

tr (Πn
δ ρ
′
xn) ≥ 2n(H(F|X)−δ′′−H(F)−cδ)(1− ε)(1− (ε+ 2

√
ε))

= 2−n(I(F;X)+δ′′+cδ)(1− ε)(1− (ε+ 2
√
ε))

> 2−n(I(F;X)+δ′′+cδ)(1− 4
√
ε).

23



Proof of Lemma 5: First note that

tr
(
τnδ Πyn

δ

)
≤

trΠyn

δ

trΠn
δ

≤ 2n(H(F|Y )+δ′′)

trΠn
δ

≤ 1

1− ε
2−n(I(F;Y )−δ′′−cδ).

Let m = 2n(I(F;Y )−δ′′−cδ−α) and t = 1
1−ε2

−n(I(F;Y )−δ′′−cδ). Thus the probability of obtaining

one or no Πyn

δ as the measurement outcome, is at least the probability of obtaining no Πyn

δ as
the outcome. The latter probability is greater than or equal to

(1− t)m = em ln(1−t) ≥ e−mt/(1−t) ≥ e−2mt

= e−2−nα+1/(1−ε)

≥ 1− 2−αn+1

1− ε
.

We are done.

C Ad hoc bounds for simulating CHSH-type correlations

Consider the problem of simulating the following correlation for a given ε ≥ 0. Let x, y as well
as a, b be binary random variables, and p(a, b|x, y) be equal to 1+ε

4 when a⊕ b = xy holds. This
correlation corresponds to a winning strategy for the CHSH game [39] with probability p = 1+ε

2 .
Here we consider the uniform distribution on inputs (p(x, y) = p(x)p(y) = 1

4 ), and study the
problem of simulation of this correlation in both classical and quantum settings.

Should we allow for arbitrary preshared randomness, the communication cost would be given
by the expression discussed in Theorem 1, i.e., the minimum of I(X;U |Y ) over all classical
random variables U determined by p(u|x, y, a, b) such that the joint distribution p(u, a, b, x, y)
factorizes as

p(u, a, b, x, y) = p(x, y)p(u|x)p(a|u, x)p(b|u, y).

Independence of X and Y implies that I(X;U |Y ) = I(X;U). Moreover, U can be taken
to be a binary random variable using the Fenchel-Eggleston extension of the Carathéodory
theorem (see [5, Appendix C]). Then computing the optimal rate for every ε is a straightforward
optimization problem. The solid line curve of Figure 3 gives the one-way communication cost of
winning the CHSH game with probability p = 1+ε

2 .
Pironio [18] shows that the average amount of communication required to simulated CHSH-

type correlations in the one-shot case is equal to 2ε − 1, which is a linear upper bound on our
curve that is tight at the end points. Moreover, Roland and Szegedy [24] prove that the rate
of one-way communication required to simulate parallel repetitions of these correlations in the
communication complexity setting (without allowing any error) is equal to 1− h(ε), where h(·)
is the binary entropy function. By definitions the solid line curve of Figure 3 is a lower bound
on 1− h(ε). However interestingly this curve obtained from numerical simulations is very close
to 1−h(ε), suggesting that probably the one-way communication cost of simulating CHSH-type
correlations is equal to 1− h(ε) even in the information theoretic setting.

From the plot of Figure 3 we observe that at p = 1
2 + 1

2
√

2
we get a positive rate while in the

presence of entanglement p = 1
2 + 1

2
√

2
can be achieve with no communication. This means that,

unlike the problem of point-to-point channel capacity, entanglement does help in the problem of
simulation of correlations, even in the information theoretic setting.

Should we allow for arbitrary shared entanglement, we have lower and upper bounds on the
communication cost by Theorem 2. Unfortunately both the lower and the upper bounds are
non-computable since we have no bound on the dimension of the auxiliary register F. Therefore,
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Figure 3: (Solid line curve) The one-way communication cost of simulating the CHSH-type
correlation with bias ε assuming preshared randomness. The horizontal axes corresponds to
parameter p = 1+ε

2 (0.75 ≤ p ≤ 1). (Dashed line curve) A lower bound on the entanglement-
assisted one-way communication cost of simulating the CHSH-type correlation with bias ε =
2p− 1. This lower bound is an implication of Information Causality.

to find a computable bound we use an ad hoc technique based on the principle of Information
Causality [27].

Information Causality is based on the following communication scenario. Alice receives a
binary string a1 . . . aN chosen according to the uniform distribution, and Bob receives a random
b ∈ {1, . . . , N}. Alice sends a message m to Bob whose goal is to find ab. Letting gb be Bob’s
guess of ab (after communication), Information Causality states that

H(M) ≥
N∑
i=1

I(Ai;Gi|B = i). (22)

In fact the above inequality holds in any physical theory, including the quantum theory, that
admits a mutual information function satisfying certain natural properties.

It is shown in [27] that Alice and Bob by sharing k = 2n − 1 no-signaling boxes with CHSH-
type correlations with bias ε and sending only one bit from Alice to Bob, can play the above
game for N = 2n in such a way that the right hand side of (22) be equal to 2n

(
1− h( 1+εn

2 )
)
,

where h(·) denotes the binary entropy function. We now would like to simulate this scheme by
two new parties, say Alice′ and Bob′, who instead of non-local boxes, have shared entanglement
as their resources at the outset.

Let Rq be the entanglement-assisted communication cost of simulating the non-local box
with bias ε. Alice′ and Bob′ can simulate the scheme of Alice and Bob by first sending kRq

bits from Alice′ to Bob′ to simulate the k boxes, and then one bit to simulate the message that
was passed from Alice to Bob. This enables Bob′ to faithfully simulate gi. Now since Alice′

and Bob′ play the game in a quantum world for which Information Causality holds, we may use
inequality (22). The right hand side of (22) is equal to 2n

(
1− h( 1+εn

2 )
)

and the left hand side,
namely the number of communicated bits is kRq + 1. Therefore,

(2n − 1)Rq + 1 ≥ 2n
(

1− h
(

1 + εn

2

))
,

which implies

Rq ≥ 2n

2n − 1

(
1− h

(
1 + εn

2

))
− 1

2n − 1
.
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Computing this lower bound for all n and taking the optimal one for every ε, we obtain the
dashed line curve of Figure 3. We see that the lower bound is equal to one at p = 1, thus it has
to be tight at this point. By [27], the above lower bound (for n converging to infinity) would
also be tight at the other end point p ≤ 1

2 + 1
2
√

2
. However, it may be loose in between because

firstly we have considered the specific scheme of [27] for using boxes, and secondly this lower
bound holds more generally for any physical theory satisfying properties of mutual information
given in [27] and not only for quantum physics. Nonetheless, we would like to highlight that the
lower bound at p = 1 is tight in any such physical theory, as shown in the figure.

D An ε-net of classical channels

The following lemmas complete the argument of Section 4 and follow the same notations.

Lemma 6 There exists a finite set of channels p(cj |x), (j = 1, 2, · · · ,Mε) such that for every
p(c|x) ∈ P there exists j such that∣∣(I(C;Y )− I(C;Z)

)
−
(
I(Cj ;Y )− I(Cj ;Z)

)∣∣ ≤ ε, ∀q(y, z|x).

Proof: Define
T (p(x), p(c|x)) = H(C),

for all p(x) and p(c|x) ∈ P. Then T is a continuous function defined on a compact set. Thus
T is uniformly continuous, i.e., for every ε > 0 there exists δ > 0 such that if ‖(p(x), p(c|x)) −
(p(x′), p(c′|x))‖1 ≤ δ, then

|T (p(x), p(c|x))− T (p(x′), p(c′|x))| ≤ ε/2.

On the other hand, the set P of points p(c|x) is compact. Thus, there exists a δ-net, i.e.,
there exists a finite set of points p(cj |x), j = 1, . . . ,Mε, such that for every p(c|x) there exists j
with ‖p(c|x)− p(cj |x)‖1 ≤ δ. This implies that for every p(x),

|T (p(x), p(c|x))− T (p(x), p(cj |x))| ≤ ε/2.

Now note that

I(C;Y )− I(C;Z) = H(C|Z)−H(c|Y )

=
∑
z

p(z)T (p(x|z), p(c|x))−
∑
y

p(y)T (p(x|y), p(c|x)),

is the difference of two convex combinations of evaluations of T .
�

Lemma 7 With the notation developed in Section 4, we have

min
λj≥0:

∑
j λj=1

max
q(y,z|x)

[
I(F;Y )− I(F;Z)−

∑
j

λj
(
I(Cj ;Y )− I(Cj ;Z)

)]

= max
q(y,z|x)

min
λj≥0:

∑
j λj=1

[
I(F;Y )− I(F;Z)−

∑
j

λj
(
I(Cj ;Y )− I(Cj ;Z)

)]
Proof: To show the legitimacy of exchanging the maximum and minimum we use Corollary 2
of [40] with the choice of Tj(q(y, z|x)) = I(F;Y ) − I(F;Z) − I(Cj ;Y ) + I(Cj ;Z), and d = Mε.
To apply this corollary we need to show the convexity of the set

A =
{

(a1, ..., aMε
) : aj ≤ I(F;Y )− I(F;Z)− I(Cj ;Y ) + I(Cj ;Z) for some q(y, z|x)

}
.

Take two arbitrary points in A. We show that their average is in A. Corresponding to these two
points are two channels q(y1, z1|x) and q(y2, z2|x). We construct q(y0, z0|x) as follows. Let U be
the uniform binary random variable over {1, 2} independent of all previously defined registers.
Let Y0 = (U, YU ) and Z0 = (U,ZU ). Then it is easy to verify that

Tj(q(y0, z0|x)) =
1

2

(
Tj(q(y1, z1|x)) + Tj(q(y1, z1|x))

)
.

This implies that the average of the two points is in A. �
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E Proof of Theorem 4

By part (a) of Theorem 3 it suffices to prove the first part. Since |X | = 2 the distribution of X
is determined by p(X = 0) = p and p(X = 1) = p̄ = 1− p. I(X; F) for p = 0 and p = 1 is equal
to zero and equal to I(X;C) for every X → C. Therefore we only need to show that there exists
a classical channel X → C such that

∂2

∂p2
I(X; F) =

∂2

∂p2
I(X;C),

at every p. On the other hand since I(X; F) and H(F) differ only at a linear function in terms
of p, it is sufficient to show that there exists a classical channel X → C with

∂2

∂p2
H(F) =

∂2

∂p2
H(C).

Let −→s = (s1, s2, s3) and −→r = (r1, r2, r3) be the Bloch sphere representations of ρ0 and ρ1

respectively, i.e.,

ρ0 =
1

2
I +

1

2
(s1σx + s2σy + s3σz) , ρ1 =

1

2
I +

1

2
(r1σx + r2σy + r3σz) ,

where σx, σy, σz are Pauli matrices. If −→r = −→s then ρ0 = ρ1 and the existence of C is immediate.
Thus we assume −→r 6= −→s . The margin of F is equal to

ρ = ρp = pρ0 + p̄ρ1 =
1

2
I +

1

2

(
(p̄r1 + ps1)σx + (p̄r2 + ps2)σy + (p̄r3 + ps3)σz

)
,

so the eigenvalues of ρ are

λ = λp =
1 + ‖p̄−→r + p−→s ‖

2
,

and 1−λ. Therefore, H(F) = h(λ) where h(·) denotes the binary entropy function. The second
derivative of the binary entropy function is computed as

∂2

∂p2
h(λ) = −λ′′(lnλ− ln(1− λ))− λ′2

(
1

λ(1− λ)

)
, (23)

where λ′ = ∂
∂pλ and λ′′ = ∂2

∂p2λ, and for simplicity we take the natural logarithm instead of
logarithm in base 2.

Let us define

Z = Zp = ‖p̄−→r + p−→s ‖2 = ‖−→s −−→r ‖2p2 + 2〈−→r |−→s −−→r 〉p+ ‖−→r ‖2,

and ∆ = ‖−→r ‖2 · ‖−→s − −→r ‖2 − 〈−→r |−→s − −→r 〉2. By Cauchy-Schwarz inequality ∆ ≥ 0 and ∆ ≤
‖−→s −−→r ‖2 since ‖s‖, ‖r‖ ≤ 1. Then λ = 1+

√
Z

2 and

λ′ =
Z ′

2
√
Z
, λ′′ =

2Z ′′Z − Z ′2

8Z3/2
,

where Z ′ = ∂
∂pZ and Z ′′ = ∂2

∂p2Z. Putting in (23) we obtain

∂2

∂p2
H(F) =− Z ′2

4Z(1− Z)
− 2Z ′′Z − Z ′2

8Z3/2

(
ln(1 +

√
Z)− ln(1−

√
Z)
)
.

Using the Taylor expansions ln(1 + Z) =
∑∞
k=1

(−1)k+1

k Zk and 1
1−Z =

∑∞
k=0 Z

k we find that

∂2

∂p2
H(F) =

Z ′′

2
+

(
Z ′′Z

2
− Z ′2

4

) ∞∑
k=0

1

2k + 3
Zk +

Z ′2

4

∞∑
k=0

Zk.

Finally using the definition of Z we conclude that

∂2

∂p2
H(F) = −‖−→s −−→r ‖2

[
∆

‖−→s −−→r ‖2
∞∑
k=0

1

2k + 3
Zk +

(
1− ∆

‖−→s −−→r ‖2

) ∞∑
k=0

Zk
]
.
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A classical channel X → D for |D| = 2 is determined by

p(D = 0|X = 0) = a, p(D = 0|X = 1) = b.

We denote such a D by Da,b. Then H(Da,b) = h(ap+ bp̄) and

∂2

∂p2
H(Da,b) = − (a− b)2

−(a− b)2p2 + (a− b)(1− 2b)p+ b(1− b)

Let us assume that

a〈−→r |−→s −−→r 〉 =
(
‖−→s −−→r ‖2 + 〈−→r |−→s −−→r 〉

)
b− ‖

−→s −−→r ‖2

2
. (24)

Then

∂2

∂p2
H(Da,b) = − ‖−→s −−→r ‖2(

b(1−b)‖−→s −−→r ‖2
(a−b)2 + ‖−→r ‖2

)
− Z

= −‖−→s −−→r ‖2
∞∑
k=0

Zk(
b(1−b)‖−→s −−→r ‖2

(a−b)2 + ‖−→r ‖2
)k+1

.

We now claim that for every 0 ≤ θ ≤ 1 there exist 0 ≤ aθ, bθ ≤ 1 that satisfy (24) and

bθ(1− bθ)‖−→s −−→r ‖2

(aθ − bθ)2
+ ‖−→r ‖2 =

1

θ
.

By continuity we only need to prove the claim for θ = 0 and θ = 1. For θ = 0 take a0 = b0 = 1/2,
and for θ = 1 take a1 to be equal to

1

2
+

1

2

‖−→s −−→r ‖2 + 〈−→r |−→s −−→r 〉√
‖−→s −−→r ‖2 · (1− ‖−→r ‖2) + 〈−→r |−→s −−→r 〉2

,

and b1 to be equal to

1

2
+

1

2

〈−→r |−→s −−→r 〉√
‖−→s −−→r ‖2 · (1− ‖−→r ‖2) + 〈−→r |−→s −−→r 〉2

.

Using ‖−→r ‖, ‖−→s ‖ ≤ 1, it is easy to see that 0 ≤ a1, b1 ≤ 1. We thus have

∂2

∂p2
H(Daθ,bθ ) = −‖−→s −−→r ‖2

∞∑
k=0

θk+1Zk

Now define a channel X → C which with probability 1 − ∆
‖−→s −−→r ‖2 is equal to X → Da1,b1 ,

and with probability ∆
‖−→s −−→r ‖2 is equal to the channel X → Daθ2 ,bθ2

where 0 ≤ θ ≤ 1 is chosen

uniformly at random. Observe that

∂2

∂p2
H(C) = − ∆

‖−→s −−→r ‖2

∫ 1

0

∂2

∂p2
H(Daθ2 ,bθ2

)dθ −
(

1− ∆

‖−→s −−→r ‖2

)
∂2

∂p2
H(Da1,b1)

= −‖−→s −−→r ‖2
[

∆

‖−→s −−→r ‖2

∫ 1

0

∞∑
k=0

θ2k+2Zkdθ +

(
1− ∆

‖−→s −−→r ‖2

) ∞∑
k=0

Zk

]

= −‖−→s −−→r ‖2
[

∆

‖−→s −−→r ‖2
∞∑
k=0

(∫ 1

0

θ2k+2dθ

)
Zk +

(
1− ∆

‖−→s −−→r ‖2

) ∞∑
k=0

Zk

]

= −‖−→s −−→r ‖2
[

∆

‖−→s −−→r ‖2
∞∑
k=0

1

2k + 3
Zk +

(
1− ∆

‖−→s −−→r ‖2

) ∞∑
k=0

Zk

]

=
∂2

∂p2
H(F).
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