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Minimum Relative Entropy for Quantum
Estimation: Feasibility and General Solution

Mattia Zorzi, Francesco Ticozzi and Augusto Ferrante

Abstract—We propose a general framework for solving quan-
tum state estimation problems using the minimum relative
entropy criterion. A convex optimization approach allows s to
decide the feasibility of the problem given the data and, wheever
necessary, to relax the constraints in order to allow for a plsi-
cally admissible solution. Building on these results, theariational
analysis can be completed ensuring existence and uniquesesf
the optimum. The latter can then be computed by standard,
efficient standard algorithms for convex optimization, without
resorting to approximate methods or restrictive assumptioms on
its rank.

Index Terms—Quantum estimation, Kullback-Leibler diver-
gence, Convex optimization

|. INTRODUCTION

situation in which the system dimension is large and the
available measurement are insufficient to completely datex
the state.

To address this second issue, a typical approach in both
the classical and the quantum world is to resort to a MAX-
ENT principle [13], [14], [15%], [16], [7], [17], where one
opts for a “maximum ignorance” criterion on the choice of
parameters that are not uniquely determined by data. The
MAXENT estimation can indeed be seen as a particular
case ofminimum relative entropy estimation, [[1B], where the
information-theoretic pseudo-distance of the estimatides
with respect to some priori state is minimized subjected
to a set of constraints representing the available [19]
[20], [21], [22], |23]. Thisa priori information introduces a

Quantum devices implementing information processirggw ingredient with respect to typical maximum-likelihood

tasks promise potential advantages with respect to thas- cl

methods for quantum estimationl [7].) [9].

sical counterparts in a remarkably wide spectrum of applica A quantum minimum relative entropy method for state

tions, ranging from secure communications to simulators
large scale physical systenis [1]] [2]] [3].

estimation has been discussedinl [21]] [24], wiegaroximate
solutions to minimum relative entropy problems are provided:

In order to exploit quantum features to the advantage oftle estimates are shown to be good approximation of the
desired task, tremendous challenges are posed to expg¢aime@ptimal solution when this is close enough to the prior. G th
ists and engineers, and many of these have stimulated subs@dher hand, a way towards the computation of the erptit

tial theoretically-oriented research. Which particulaolgem
is critical depends on the physical system under considerat
from optical integrated circuits to solid-state devicelse t

mal solution is indicated in[[19]: Georgiou has analyzed the
MAXENT problem for estimating positive definite matrices,
providing a generic form for the optimal solution, pararietr

tasks in the device engineering, protection from noise aifftl the Lagrange multipliers. He has also observed that the

control are manifold([3],[12],[14],15],[[6]. Howeverguantum

results can be extended to the more general minimum relative

estimation [[7] problems are ubiquitous in applications, be it irentropy problem.

testing the output of a quantum algorithm, in reconstructire

We shall here extend Georgiou’s approach, proving exis-

behavior of a quantum channel or in retrieving information dence, uniqueness and continuity of the solution with respe

the receiver of a communication syster [3], [8], [9].][1],

to the measured data, when a generic prior is considered.

[12]. In this paper we focus on state estimation problem fdihe solution can then be computed by standard numerical
finite-dimensional quantum system, namely the reconstnuct methods. However, the approach returns a meaningful answer
of a trace-one, positiveemidefinitematrix given from data, only when there is a full-rank admissible solution among the
and in particular on an estimation method that addresses tgfates compatible with the data. While this appears to be a
critical problems for most real-world situations. The fasises reasonable assumption as quantum full-rank states areigene
when only a small set of potentially noisy data is availabléhis is no longer the case whenever the unknown state is pure

yielding no physically-acceptable solution; the secorghrds
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or near the boundary of the physical state set. In fact, it is
easy to picture realistic scenarios where the effect ofynois
biased measurements might actually force the solutiongto b
on the bounduary, or even outside of the admissible[sét [25],
[Q]. In the latter case the constrained optimization probtas

is” is not feasible, and one has to relax the constraints.

Our strategy to solve these issues is organized as follows: a
general setting for posing the feasibility problem and quan
minimum relative entropy with data corresponding to linear
constraints is presented in Sectiéld Il. In Sectlod I, we
propose a way to reformulate thHeasibility analysis as a
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convex optimization problem. The solution of this ancilar 3) Outcome frequencies for general measurements. con-
problem, for which we provide a numerical approach isider repeated measurements oP@sitive-Operator Valued
Appendix[4, also indicates an optimal way to perturb, oveasure (POVM), that is generalized measurements that can
relax the constraints in order to allow for admissible solutionlse used to describe indirect measurements on a system of
to the estimation problem. We also show how the way imterest [3]. A POVM with M outcomes, say: = 1,... M,
which the constraints are relaxed can be tailored to matishassociated to a set of non-negative operaf@rs} L, such
the error distribution or the level of noisy we assume on thbat), Q. = I, playing the role of resolution of the identity
measurements. Once the feasibility analysis returns diymsi for projective measurements. The probability of obtainting
answer, our approach directly leads to the construction ofketh outcome can be computed lgy = tr(pQy), and ex-
reduced problem for which there exists a positive definite stat@erimentally estimated by, after K repeated measurements.
satisfying the given constraints. In Sect[od 1V, we addtess This case in fact includes the first one, and the generalizati
corresponding (reduced, if needed) minimum relative gytroto multiple POVM is straightforward.
problem, showing it admits a unique full-rank solution. The In all these scenarios, data are provided as a set of real val-
latter can be computed from the closed-form solution of thees representing estimatgsof quantitiesy; (that can be either
primal problem, and a standard numerical algorithm to find, (O;) or ¢;), each associated to the state through a linear
the corresponding Lagrange multipliers is suggested. ;Tthen relation of the formf; = tr(pZ;), where Z; have the role of
solution to the non-reduced, original problem is immedjatell,, O; or Q; described above. Clearlff — f; = tr(Z;p) with
obtained. Some concluding remarks and future directiods aprobability one asV — oo. This framework is quite general,
applications are summarized in Sectigh V. and can be adapted to include any case if the data are given as
linear constraints. Another significant situation that ifitghis
framework is when reduced states of a multipartite systems

Il. PROBLEM SETTING are available as data [27], [28]. Finally, by the well-known
Choi-Jaimlokowskii isomorphisni_[29], the same settingd an
A. Quantum States and Measurement Data methods for solution, can be adapted to include estimation o

antum channels, or quantum process tomogragphyi[7], [9].
From a theoretical viewpoinf can be in principle recon-
structed exactly from at least> — 1 averagesf; = tr(pZ;)
i=1...n">—1whenZ,...Z,._, are observables which
do not carry redundant information, namely they form a basis
for the space of traceless Hermitian matrices. In any pralcti

which plays the role of probability distribution in the ctisal application, however, one has to face the following issues:

probability framework. Note that a density matrix depends o 1) Accurate estimateg; of f; are only obtained by aver-
n? — 1 real parameters. aging over a large quantity of trials; Often only a small

set of trials is available, and/or the data are subject to
significant errors;

2) The number of observables required for a unique recon-
struction of p grows quadratically with respect to the
dimension of the quantum system, and exponentially in
the number of subsystems. Typically only a small subset
of these is available;

. — ) We here analyze the estimation problem when these two
1) Outcome frequencies for projective measurements. con- . ! .
aspects are taken into account. The first one will lead us

sider repeated measurements of a (Hermitoinsprvable [26], to consider thefeasibility problem, that is, if the problem

8‘3%5“ Oc’;ri’“l’ V::‘Zﬁiggé} 'II'Sh(tahz aeist?uc{slt(}adr;pgiglt;at?gyadmits a physically admissible solution for the given data.
g bro) ' P " P Since errors may affect thé¢;, the reconstructed state may

possible outcomes at (_aach measurement, and the frequerl]'l(gztybe positive semidefinite, or a valid state that satisfies t
of the k-th outcome given a statp can be computed as

pr = tr(plly). After K measurements ab, we assume we constraints might not even exist. The second issue getigrica

. . . . . leads to a estimation problem where more than one state
are provided with some experimental estimatey,ofi.e. the ) . o o
. ; . . satisfy the constraints, and thus an additional criterias h
experimental relative frequencies of occurenggs= #(0 =

or)/K, With #(0 = o) the number of measurements tha&o be. introduced tc_) arrive at a ur_nque_solutlon. As we sa|q,
a typical strategy in this setting is to introduce an entropi
returned outcomey.

i functional, e.grelative entropy with respect to some reference
2) Observable averages: consider a set oh, measured

- ) state representing priori information.
observables, represented by Hermitian matr@gsvhere now
we only have access to the mean values of the outcomes, _
denoted byO;) (and with possible outcomes ), that can be B. Satement of the Main Problems
theoretically computed a®);) := tr(pO,) and experimentally ~ Consider the setting described above, where we want to
estimated by(O}> =>4 0i kDk- estimate the state of amdimensional quantum systems from

Consider a quantum-level system. Its state is described b;gu
a density operator, namely by a positive semidefinite uaite
matrix

pEDy={pecC”" p=pl>0,tr(p)=1}, (1)

In this work we will be concerned on the problem of recon-
structing an unknown from a set of repeated measurement
data. This is of course agstimation problem in the statistical
language, while in the physics community it is usually regdr
to asstate tomography [[7].

We assume that data are provided in one of the following
forms:
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the real data{fi P_,, experimental estimates of the quantitiespace generated by the observed operaspts) {Z; ... Z,}.

fi = tr(Z;p), for the Hermitian matricesZ,...Z,, with Thus, by applying theGram-Schmidt process, starting with

p < n? — 1. In addition to these, we introduce an auxiliaryX; = =27, = -1, we can compute an orthonormal basis
. NS .V Vn

observableZ, = I and the corresponding estimafe = 1. for it:

In this way, we include the linear constraintp) = 1 in the i—1
constraints associated with the “data”. We wish now to solve Xi=aiZi+Y ojX;, i=2..m<p. (5)
the following problem. A =1
Problem 1: Given{Z;} and{f;}, i=1...p, find: By linearity, by associating these basis elements to thie est
p € Hyn, suchthat p>0, fi= tr(pZ;), i=1,...,p. mates
@) oe =
Here,H,, denotes the vector space of Hermitian matrices of vn
dimension equal ta. Notice that, if we remove the positivity ~ I
constraintp > 0, all other constraints are linear and identify a fi = aifit Z ofi, i=2...m, (6)
hyperplane ir,,. To our aim it is convenient to first address =1
a simpler problem: let we obtain a new yegquivalent set of constraints:
be the set of the density matrices which solve Profilem 1. Note that,] € span{X, ... X, }. _
Problem 2 (Feasibility): Determine ifS is not empty. Let V;...Y,2_,, be an orthonormal completion of

When the problem is feasible, in geneflcontains more X1 ...X;, to a basis oft,. Accordingly, all the Hermitian
than one solution, and in principle any solutiondnfits the Mmatrices, and in particular density operators, can be expre
data. We focus on choosing a solution that has minimu@% . P
distance with respect to am priori state. In the same spirit
of MAXENT problem, this corresponds to give maximum p=2 aXi+ ) BV (8)
priority to fitting the data, and then choosing the admissibl =t =t N _
solution that is the closest (in the relative-entropy pseudWith tr(pXi) = ;. In particular, all the Hermitian matrices
distance) to oura priori knowledge on the systems. ToSafisfying the linear constraints ii](7) depend oh — m
this aim, consider the (Umegaki's) quantum relative entrop@rameterss = [y ... fn2_p,:

betweenp € D,,, andr € int(D,,) [30]: n’—m
S(pl™) = tr(plog p — plog ). ®) p=rot ; P ®)

AssumingT in the interior and with the usual convention thaWhere we have defined the (not necessar”y positive) pseudo_
0log(0) = 0, we do not have to worry about unbounded valuegate associated to the constraints:

of S(p||7).

Problem 3 (Minimum relative entropy estimation): Given po = Z fiXi. (10)
the observablesZ; ... Z, and the corresponding estimates i—1
fi--. fp. soOlve In the light of this observation, the feasibility problem

minimize S(p||7) subject totr(pZi) = fi, i=1...p. (4) cogsists in checking if there exists at least one veglos
p>0 R™ =™ such thatp > 0. To this aim, we introduce an
Here, 7 represents tha priori information on the consideredauxiliary problem. Intuitively, the idea is the followingiven
guantum system. We set= I if no information is available. any Hermitian matrixp,, there always exists a real such
In this situation, [(B) is the opposite of the quantum entropy that po + wI is positive definite. More precisely, ify is
p, and we obtain a MAXENT problem. Note that, the solutioRot positive definite already, it is easy to see that sugh a

to the Problem above may be singular. will need to be positive. On the other hand,sf is already
positive, the perturbed matrix remains positive semi-dtefin
1. EEASIBILITY ANALYSIS for some small, negative:. Studying the minimaly that

correspond to a positive semidefinite matrix offers us a way

_ o _ to understand whether our constraints allow for physically
We start by addressing théeasibility problem, i.e. t0 zdmissible solutions.

determine whenS is not empty. In addition, whenever the | et yus formalize these idea: we define :—

A. An auxiliary problem

problem is not feasible, we show how to determine a suitabley = o 1 ]T e R*-m+1 and
perturbation of the( f;} that makes our problem feasible. We ,
will show that the corresponding only contains singular o=
density matrices when the constraints are relaxed. H(v) := po + Z viYi + Up2 1 X1
Note that, the constraints are Iinearfn and Z;, and can =1
be linearly combineduf; + 8f. = trlp(aZ; + BZx)] for with v = [ v1 ... wp2_my1 | and we consider the follow-

eacha, 8 € R\ {0} andi,k = 1...p. Consider the vector ing minimum eigenvalue problem.
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Problem 4. Given pg as in [10) andY;...,Y,._,, an Proof: Note thatG(v1, ..., V52 ) := [)04—2:‘:21_7" v;Y;
orthonormal completion ofpan {X; ... X,,}, solve represents the parametric family of Hermitian matricest (no
.. T ) necessary positive semidefinite) satisfying constraimt§d).
minimize ¢’v subjectto v eZ:={v| H(v) > O}(ll) Defines := —v,2_,,,1, thus Probleni]4 can be rewritten in

the following way:
Lemma 3.1: Problen[# always admits solution. g way

. . . _ . 3

Proof: First of all, notice that Probleril 4 is a convex maximizes subject to G(v1,...,vp2_p) > 7
optimization problem, and the objective functiofw is linear _ K
and continuous over the s&t Then, the proof is divided in Let e° = —pu be the solution of the above problem. If
three steps. €® < 0, the parametric familyG(v1,..., v,2_,,) does not
Sep 1: We show that"v = v,,>_,,,; is bounded from below ~contains positive semidefinite matrices, accordingly Rnob
onZ:sinceXy,..., Xm,Y1,...,Y,2_,, forms an orthonormal [ does not admit solution. ¥° > 0, the parametric family
basis and/ € span{Xj,...,X,,}, the matrices{Y;} are G(v1,...,v,2_,,) CONtains at least one positive semidefinite
traceless. Thus, matrix and Problerfil1 admits solution. Moreovesif> 0, the
parametric family contains at least one maipix> %I >0

' which is positive definite. On the contrary, fet = 0 there
ulH ()] = trpo + z} Vi + U2 o1 X only exist positive semidefinite matrices which are singula
i=
~ |
= tr(PO) + \/ﬁvn2—m+1 =1+ \/ﬁvn2—m+l

and tr[H(v)] > 0 for each v € 7. Hence, An effective numerical approach for the solution to the

I. (12

2

v =2y > —ﬁ for eachv € 7. problem is described in Appendix A.
Sep 2: Let us consider v, = In the light of the previous result, if. < 0 Problem[1 is
[0 ... 0 Va(=Amin(po) +1) | € T where A\nin(po) feasible andS contains at least one positive definite solution.

denotes the minimum eigenvalue of,. Accordingly, As we will see in Sectiofi_1V, this condition ensures that a
vy = v/n(—=Amin(po) + 1) and Probleni}#4 is equivalent tominimum relative entropy criterion will lead to an admidsib
minimize ¢Tv over the closed sublevel s& = {v | H(v) > solution inS. The remaining cases need to be studied more
0, —Ln < Upzmy1 < V/N(=Amin(po) + 1)} € Z. We carefully. We start by showing how to make Prob[ém 1 feasible
want to show thatZ, is bounded and accordinglycompact when it is not be so for the given constraints. It turns out tha
(recall that we are working in a finite dimensional spacey minimally relaxed problem is feasible agdonly contains
This can done by proving that a sequer{@é}k>0 such that singular density matrices. Next, we deal with the case irctvhi
|v*|| — oo cannot belong tdZ,. It is therefore sufficient to Problenil is feasible and all its solutions are singulamshg
show that the minimum eigenvalue of the associated Hemmitigow they all share a minimal kernel and how to construct
matrix H(v*) tends to—oo as [|v*| — oo with v,,2_,,,; @ reduced problem with a full-rank solution for which the
bounded. Note that the affine map— H(v) is injective, Minimum relative entropy methods work.

sinceY;...Y,2_,,, X; are linearly independent. Accordingly

| H(u*)|| — oo as|jv*|| — co. Since H(v*) is an Hermitian B. Forcing the feasibility condition (case ;> 0)

mrztnx, H(v*) has an eigenvalug; :“Ch that]zy,| 70085 The parametey. given by the auxiliary problem described
2] = oo. By CO”StrUCF'O”tr[H(Q ) =14+ +nvy:_01 above reveals if the original problem is feasible, but also
andvy, is bounded '”ZO-_ThUStr[H(Qk)] < o0, namely  gyggests an “optimal” way to relax unfeasible constraints s
the sum of its eigenvalues is always bounded. Thus, thgfgt they make Problef 1 feasible. In fact, from the definitio

exists an eigenvalue off(v") which approaches-co as of i, we know that there exist; ... v,2_,, € R such that
k — oo. S0,7Z; is bounded.

Step 3: Sincec’v is continuous over the compact $&f, by ~ ~
Weiestrass’ theorem we conclude thd admits a minimum Pu = po+ Z viYs + pXy 20,
point overZy. [ | =1

and:
We need to take into account that the vector which mini- tr(Pu) =1+ V.
mizesc’v overZ may not be in general unique. However, t&From this positive operator, in order to obtain a density
our aim we are more interested in the sign of the minimumpperator, we only need to normalize the trace by defining:

n2—m

Proposition 3.1: Let u = mei% c’v. Then, the following 1
facts hold: B po= 71+\/ﬁup“ (13)
1) If 4> 0, then Probleni]l is not feasible 1 m 7 niomo
2) If u < 0, then Problenf]l1 is feasible and there exists at = —X; + Z — X+ Z — ;.
least one positive definite matrix satisfying constraints v =1t Vg o 1t Vg

in (@) _ _ _ This implies that the original problem can be made feasilgle b
3) If =0, then Problerfill is feasible and all the matricegniformly, “isotropically” contracting the data{ f;} of a factor
satisfying constraints iri.{7) are singular. 1/(1 4 +/np) and, in light of the fact that is a solution to
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Problen %, that this is thinimum amount of contraction that the perturbed constraints
makes Probleil1 feasible. Moreover, the corresponding set

- 1
only contains singular solutions. o= %
However, the entries in the data sgf;} may differ in - 1 A
their reliability, and one would like to be able to relax the fi = mﬂm i=2...m. 17)

corresponding constraints accordingly. This is compéidaty ] ] ]
the fact that the originaj Z;} may not be orthogonal, and theThus, the corresponding Probldm 1 is feasible @hanly
data we are contracting are in fact the linearly transform&@ntains singular solutions.
output of the Gram-Schmidt orthonormalization described
above. C. Casepn=0

This weighed relaxation can be realized as follows: comside |n the limit casen = 0, not only all solutions are singular,
the initial setting of SectiofLlll, where we hayeobservables pyt they share a key property.

Zy ... Zp (not necessarily orthonormal), withf; = I and  proposition 3.2: Assume that, with the definition above,
fi = 1. Define thereliability indexes 0 < dz...d, < 1 , = (. Then there exists a kern&l which is common for
associated to each observalife... Z,. More precisely, the a|| y ¢ S.
more f; is reliable, the closer to ong; is. This information Proof: Let us assume:. = 0, accordingly Problem 1
can be extracted, for example, from an error analysis on thges only admit singular solutions, withimker(p) > 0
measurement procedures, withassociated to the normalizedy , ¢ S. Pick a solutionp® € S with kernel of min-
reciprocal of the variances. imal dimension. Suppose by contradiction that there exists
When we obtain the orthonormal generatérs. .. X,,,, the 5 € S such thatker(p°) ¢ ker(p). Taking into account
Gram-Schmidt process induces a linear transformation on thee (0, 1), we definep := pp° + (1 — p)p € S. Accordingly
original estimates, . . .,fp: dimker(p) < dimker(p°) which is a contradiction, sincg®
has kernel with minimal dimension af. We conclude that
f fi K =ker(p®) Cker(p) VpeS. |
: =T : (14) This directly implies the following block-form for all the
i f solutions to Problem 1.
" P Corollary 3.1: Let p° € S be a solution with minimal

1 kernel K and consider its block-diagonal form

0
whereT = { vn ] e RmxP,

Ty Ty pO:U[pC{ O}UT,
In order to modify the datdf;} according to their reliability 00
indexes, we define the new set of data: where U is a unitary change of basis consistent with the
Hilbert space decompositioh = K+ @ K so thatp$ > 0.
jr fi Then, the set of all the solutions of Probléin 1 is
1 kds f _
=] a5 s={o=v| % § |0t 1m0 f—uex}. a8
2 B
T kdy, f, As consequence of Corollary 8.1, we can focus on a reduced
version of Problent]1, by considering optimization only on
wherek > max{d{l}. In this way fs, . . .7fp are amplified the support ofp°, for which the minimum relative entropy is

of a factorkd; > 1 according their reliability indexes. This applicable sincey is positive definite, see SectignlV.

will allow for the maximum contraction to be applied to the

most noisy estimates. V. STATE ESTIMATION WITH MINIMUM RELATIVE
In order to compute theninimum p that makes the original ENTROPY CRITERION

problem feasible perturbing the data consistently withirtheA. Reduced Problem

reliability indexes, we can solve Probldm 4 with respect to |, he previous part of the paper we showed how to check

the new pseudo-state: the feasibility of Problenfl]1 given the constraints assediat
m to the data and, if needed, how to relax the constraints in
o = ZfiIXi' (16) such a way that the correspondmg P_robm 1 is feasible. In
= general, however, the set of solutiofisis not constituted by
only one element. In this section, we show how to choose, and
It is easy to see that if the original problem was unfeasiblthen compute, a solution ifi according theminimum quantum
this modified problem is unfeasible as well fofarge enough, relative entropy criterion.
since all thef; corresponding to traceless operators are mul- Given the results of the previous sections, we can assume
tiplied for a factorKd; >> 1. Let ;// > 0 be the parameter that either Probleni]1 admits at least one (strictly) positiv
given by the auxiliary problem whefy, is considered. By the definite solution, or we can resort to a reduced problem for
results of the previous subsection ahd] (13) above, we censid/hich a full rank solution exists. In fact, i only contains
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singular matrices (casp = 0, or after relaxation of the is the adjoint operator of.. Define f = [ fi oo fm ]T
constraints), by Corollarly 3.1 we have that the set of soifuti Since Problerfil5 is a constrained convex optimization prable
is we take into account its Lagrangian
S = {p =U [ %1 8 } Ut pr >0, f; = tr(pXi)} (19)  L(pA) = t(plogp—plogr) = (N f=L(p))
. _ _ _ = tr(plogp —plogT) + (L*(N),p) — (A, f)
for some unitary change of badisconsistent with the Hilbert = trlp(log p — log T+ L*(\))] — <)\’ f) 27)

space partitior{ = K+ @ K. Accordingly for eachp € S,
constraints in[{J7) can be rewritten in the following way where A € R™ is the Lagrange multiplier. Note thai(-, \)
is strictly convex over#,  where#,,  denotes the cone

fi =tr(pX;) = tr <U [ pol 8 } UTXl-> =tr(p1 X;) (20) of the positive definite matrices. Thus, its minimum point is
given by annihilating its first variation
whereX; := [ I 0 |U'X,U é € Hp, wWith n; < n. 0L(p,N;dp) = tr[(logp+ 1 —logT+ L*(N))dp] (28)
Accordingly Problem 1L is equivalent to t

nt C t to the corresponding each directiordp € #,,. Accordingly, the unique minimum
reduced problem withX; ... X,, and fi... f,.. The corre- point for £(-, \) is

sponding set of solutions is

Si={p1 €Hn, | p1 >0, fi =tr(pX;)} (21)
and

which contains the positive definite solutipf. Once chosen
a solutionp; € &y, the corresponding original solution is

P(/\) _ elogT—I—L*()\) (29)

L(p(A),\) < L(p,N), ¥V € Moy (30)

P If there exists\° such thatp(\°) € S, i.e. f = L(p(\°)),
p=U [ 0 o ] Ut (22) then [3D) implies
In the effort of keeping a simple notation, we will not S(p(A\°)llT) <S(plT), VpES. (31)

distinguish between the reduced and the full problem in ﬂﬁws if we are able to fina®
following discussion, therefore usingfor either the full or the then ’é()\o) is the unique solution to Problel@ 5. This issue is

reduced state{Xi} fpr either the fu_II or reduced observable olved by considering the dual problem whera (if there
andn for the dimension of the full Hilbert space or the reduced_. S : .
xists) maximizes the following functional ov&™

one as needed. We can consider the following simpler prgblem

€ R™ such thatf— L(p(\°))=0,

restricted to strictly positive matrices: inf L(p,A) = L(p(N\),\)
Problem 5. Given the observableX} ... X, and the cor- PEHN + X -
responding estimatef . .. f,,, solve = —tr(esTITE)) (X f).(32)
mini210ize S(p||T) subject totr(pX;) = f;, i=1...m. The existence of such a° is proved in Sectior IV-C.
P

(23) Moreover, we suggest how to efficiently compute it.
Remark 4.1: Whenp = 0, § only contains singular matri-
) _ ces. Instead of considering the reduced problem as we d&d, on
B. Lagrangian and Form of the Full-Rank Solution could try to consider Problefd 3 with relaxed constraint 0.
Now we are ready to derive a solution method for problemn this situation theSater’s condition [31, 5.2.3], however,
the entropic criterion. Consider the linear operator dssed does not hold becausg§ does not contain positive definite

to the above constraints: matrices. Hence, we cannot conclude th@t°) is the desired
. solution of the primal problem. Moreover, for any would
L : #H,—R be p(A°) > 0. This means thap()\°) is not the solution to
tr(pX1) Problent3.
P . (24)
tr(pXom) C. Dual Problem: Existence and Uniqueness of the Solution
Givend=[ A ... An }T cR™ andp € H,, 'I_'he.dual problem cops_ist_s in maximizing_{32) over*
which is equivalent to minimize
(L(p), A) =D Nitr(pXs) = tr(p > NiXi) = (p, L*(N)) J(A) = tr(e s TR L (A F) . (33)
=1 =1
(25) This functional will be referred to adual function throughout
where this Section. Before to prove the existence &f which
minimizes J we need to introduce the following technical

* . m
L™ RY = Hy results.

NS (26)  First of all, note that(\*,f) = 0 for each \* €
P [Range L]*. In fact, if \* € [Range L]t = ker L*, then
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L*(A\t) = 0. SinceS N H,, 4+ # 0, there existspy € H,, + of all note that the minimum singular valueof L* restricted

such thatf = L(p;). Thus, to Range L = [ker L*]* is strictly positive, accordingly

O 1y = (5 Lipg)) = (L0, pg) = te(L* (ML) py) = 0. L7l = al[Ail] = oo (40)
. _ (34)  This means thaf.*();), which is an Hermitian matrix, has

We conclude thah— does not affect/, i.e. at least one eigenvalug; such that|3;| approach infinity.

If 8, — —oo, then the first term of/ tends to infinity and
dominates the second one, accordindlf\;) — oco. In the

We may therefore restrict the search of the minimum point fé@maining possible case no eigenvalueldf\;) approaches
J over Range L. —oo0 and §; — oo. Thus, L*(\;) > MI whereM € R is

Proposition 4.1: J is strictly convex oveRange L. a finite constant and the first term df takes a finite value.

Proof: Since.J is the opposite of(p(\), \), it is convex SINC€S N Hy, . is not empty, there exists; € Hy, 4 such
over R™. The first and the second variation of(\) in thatf = L(ps) and

directiono) € & are: (N F) = (L (V) py) = tr(pF ")) 2 M. (42)
. .
ST(N6N) = — tr/ (e(t=0ogT=I=L"(\) *(5)) (36) Where we exploited the fact that(p;) :]1. This means that
0 (\i, ) cannot approach-co. Finally, [[p7 L*(\;)p} || — oo,

JA+AH) =J(\), VAt e [RangeL]t. (35)

. ot(logT—I—L*(X)) dt S\ F 1 1
¢ )t + (07, f) becausepy > 0. It follows that p%L*(/\i)p%, and hence

1
= —tr/ el T I=L N QL (6A) + (OA, ) L*(Ai), have at least one eigenvalue tending>to Accord-
0 ingly J(\;) — oo asi — oo. We conclude that1 is bounded
= —tr(eleT =N L)) + (), f) (37) and accordingly compact. By Weierstrass’ theorehadmits
minimum point overM. |
1 X Finally, A°> may be computed bg.g. employing aNewton
2J(N;0N) = tr[/ oD logT=I=L7(V)) £ *(5)) algorithm with backtracking, see Section VI in[[32], which
0 . lobally converges.
cetllos T=I=L" () ¥ (5)\)dt]. (38) g Y g

. . : . V. CONCLUSIONS
Here, we exploited the expression for the differential o th

matrix exponential (se€ TL9, Appendix IA]). Defir@; — The proposed set of analytic results and algorithms pravide
otllog T=I=L*(\)) \which is pos’itive definite for each ¢ R. & general method to find thexact minimum relative entropy
Thus estimate of a quantum state under general assumptions, that

) is, without requiring the constraints to include a full-kan
N _ . . solution to begin with. A general solution to the problem was
OI(X 8 = /0 Er(Qu L7 (00 QL7 (64))dt (39) missing for quantum estimation, and our feasibility anialys

1 N 1 is of interest for the classical case as well. Summarizing, w
= / tr(QF L™ (0A)Q1-+L"(6A)Q7 )dt > 0. have proposed: (i) A numerical method to decide the featsibil
0 of Problem[1, which is of interest on his own, and compute
Assume now that\ € Range L. If §2J(\;0\) = 0, then the minimum necessary relaxation of the constraints whamev
tr( %L*((S)\)QlftL*(a/\)Qt%) = 0. SinceQ, > 0 for each necessary to obtain at least one solution; (ii) As a sideytd
t € R, it follows that L*(6\) = 0. Since A\ € RangeL, We are able to determine whether there is at least a full-rank
we getdl = 0. We conclude thab2.J();d)\) > 0, for each solution. When this is not the case, we proved there exists,
8\ # 0, i.e. the statement holds. B and devised a way to determine, the maximal common kernel
gf all the solution; (iii) We extended Georgiou’s approaoh t
maximum entropy estimation to our setting, and analyzed in
depth both the primal and the dual optimization problem& Th
general form of a full-rank solution of the reduced problem,
amely the one we obtain by removing the common kernel,
iS given explicitly and depends on the solution of the dual
problem. The latter is proven to be a convex optimization
problem with a unique solution\°, which can be obtained
by standard numerical algorithms.
It is also possible to show,° is continuous with respect to
the data sef (see AppendikB). Since, in view df (R)(\°)
M= {AeR™| J(\) < J(0)} NRange L. is continuous with respect ta°, we can conclude that the
solution to Probleni]5 is continuous with respect to the data
We shall show thatM is bounded. To this aim, consider af; ... f,,. This is of course a desirable property, and ensures
sequence )\ },cn, Ai € Range L such that|| ;|| — oco. It is that for a increasing accuracy of the estimates, the cordpute
therefore sufficient to show thalt(\;) — oo, asi — oco. First  solution will converge to the actual state.

In the light of the previous result, the dual problem admits
most one solution, say®, over Range L. If such a\° does
exist, thery J(\; 6A) = 0V 6\ € Range L which is equivalent
to —L(e'og7—I=L"(\")) 1 f = 0. It means thap(\°) satisfies
constraints in[{[7) and it is therefore the unique solution
Problenb. It remains to show that such\adoes exist.
Proposition 4.2: J admits a minimum point oveRange L.
Proof: We have to show that the continuous functién
takes minimum value oveRange L. Observing that/(0) =
1 tr(7), we can restrict our search over the closed set
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Possible extensions of the present framework include afecordingly, the Newton algorithm with backtracking gldiga
plications to state reconstruction from local marginalgl arconverges,[[31, 9.5.3]. Moreover, the rate of convergence i
its connection to entanglement generationl [2[7]] [28], a# weuadratic in the last stage. Finally, note that the foundtsmh
as comparison with the existing approximate reslults [21] if satisfies the following inequalities, [31, p. 566],
physically meaningful situation. Lastly, the advantageefd
by the introduction of ama priori state in the estimation

problem can be exploited to devise recursive algorithme, th

update existing estimate in an optimal way relying only Owherey. is a solution to PrF’b'e@“ ang the accuracy of
partial data. cTv? with respect to the optimal valug v°.

This method works well only setting a moderate accuracy.
To improve the accuracy, we can iterate the above Newton
algorithm and in each iteration we gradually increase q in
A. Numerical solution for the feasibility problem order to find a solution® with a specified accuracg > 0

n
CTQO S CTQq S CTQO_’_ _ (47)
q

APPENDIX

We propose a Newton-type algorithm with Iogarithmi&31’ p. 569]: o N
barrier for numerically find one solution® to Problem[%#. 1) Set the initial conditionsqy > 0 and v® =

Using the same approach &fl [9, Section 4], we resort to the [ 0 ... 0 /n(=Amin(fo) +1) }T € int(7).
approximate problem 2) At the k-th iteration compute?* € int(Z) by minimiz-
] ing gq, with starting pointy?-1 by using the Newton
Ueff}]ltf(lz) 94() (42) method previously presented.
B 3) Setgri+1 = Bqr with 8 > 1 closer to one.
whereq > 0, and 4) Repeat steps 2 and 3 until the conditigh < ¢ is
9q(v) = gc” v — log det(H (v)). (43)  satisfied. _ ,
Finally, we deal with the problem to compute a solution
Recall that we defined to Problem[L with kernelC when u = 0. In this situation,

consider the non-empty convex set
T={u| H() >0}, Py

n%—m
and notice thatg, is continuous and strictly convex over T, =L w| jo+ Z wY; >0, (48)
the setint(Z). Moreover lim,_s7 g,(v) = +oo and the - —
component,,z_,, 1 can be restricted to belong to a closed
and bounded interval. Accordingly the approximated pnoblewherew = [ Wi ... Wp2_m }T € RV =™ Thus, the set
admits a unique solution, denoted &%, which is numerically of solutions to Problerll is
computed by employing the Newton algorithm with back- 2
tracking, [31, 9.5]. Here, we can choose as initial guess the _ )~ 5
vectord? = [0 ... 0 A(—Amin(fo)+1 ]" € int(Z). S=ymt ; witilwel . (49)

Concerning theé-th Newton step, we have to solve ) . ]
We wish to compute a matrixy® € S having kernel cor-

Ab} = —HQ}IVG@;J (44) responding to the minimum common kerri€l To this aim
consider the following problem.

where Problem 6: Pick u € R”*~™ at random and solve:
tr(H () ~1Y;
HH @) w" = arg min (w - u)" (w - u). (50)
VGp = qc— : e
- tr(H (1) ™' Yoz _m) Note that:
tr(H (0) ™' X1) « Z. is compact (i.e. closed and bounded)
Hype = (45) o (w—u)?(w—u) is continuous and strictly convex @h.
tr(H (0]) "Y1 H(9])"'Y1) tr(H(8]) " 'YiH(8]) " 'Ya) ... By Weiestrass’ theorem, the above problem admits a unique
tr(H (0]) Yo H (0])'Y1) tr(H(0f) ' YoH (8])'Y2) solutionw.

Let us2definep°=" = po + ZZ;’” wiY; € § and p* =
Po+ Y1 u;Y; € S. Itis easy to see that Probldm 6 can
be rewritten in terms of the matrix>:* as follows:

are the gradient and the Hessian computedl atespectively. o . u 9
Note that, it is not difficult to prove that p= arglpnelg lo* = ol (51)

1) The sequence {vj};>o generated by the where| .||, denotes thérobenius matrix norm. Thusp® is
algorithm is  contained in the compact sSefhe closest matrix irS (with respect to theFrobenius norm)

.(46)

N = {Q €int(Z) | — ﬁ <y < CTQS}; to the matrix p* belonging to the hyperplane characterized
2) g, is twice differentiable and strongly convex ovi; by the constraints[{7). Hence, randomly generating a finite

3) The Hessian ofy, is Lipschitz continuous onV. sequencéu, ...y, } of elements iR™”~™ we obtain a subset
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U = {p>"r...p>"} contained inS. Construct the convex [g]
combinationp := %Zézl p>% . Then p has minimal kernel
if either one of thep®>"s belongs to the interior of, or p°%s
belong to different faces af, which is a compact convex set.
By the randomized construction, the probability of remagni [1°]
on the boundary o becomes small asgrows.

Concerning the computation af*, we can resort a Newton- [11]
type algorithm with logarithmic barrier namestterior-point
method, [33, Chapter 4].

El

[12]

B. Continuity of A° with respect to f

We show that the solution® is continuous with respect to
the data seff. To this aim we take into account the following
result, see[[34, Theorem 3.1]. [14]

Theorem A.1: Let A be an open and convex subset of ?15]
finite-dimensional euclidean spadéé Leth : A — R be a
strictly convex function, and suppose that a minimum paint [16]
of h exists. Then, for alk > 0, there exists) > 0 such that,
for p € R™, ||p|| < 4, the functionh, : A — R defined as

hp() := h(z) — (p, ) (52)

[13]

[17]

[18]
admits a uniqgue minimum point,, and moreover
o [19]
Iz, — 3]l <. (53)
Consider [20]
TN ) = tr(es TN 4 (X ) (54)  [21]

where we make the dependence/afipon f. Then, the unique
minimum point is

[22]

A(f) = arg min J(A, f).

AER™

Let §f € R™ be a perturbation of. We haveJ(\, f +6f) =
J(\, f) + AT6f. Applying the previous theorem, whetef
is —p, we have:V ¢ > 03¢ > 0 s.t. if ||0f] < ¢ then
J(\, f +6f) admits a unique minimum point

(55) [23l

[24]

[25]

Mf+6f)=arg min J(\, f+6f) (56) 126)

AER™ [27]

and B B -
IMF+85) =MD <« (57) ¥

Accordingly, the mapf — A(f) is continuous. [29]
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