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Minimum Relative Entropy for Quantum
Estimation: Feasibility and General Solution

Mattia Zorzi, Francesco Ticozzi and Augusto Ferrante

Abstract—We propose a general framework for solving quan-
tum state estimation problems using the minimum relative
entropy criterion. A convex optimization approach allows us to
decide the feasibility of the problem given the data and, whenever
necessary, to relax the constraints in order to allow for a physi-
cally admissible solution. Building on these results, the variational
analysis can be completed ensuring existence and uniqueness of
the optimum. The latter can then be computed by standard,
efficient standard algorithms for convex optimization, without
resorting to approximate methods or restrictive assumptions on
its rank.

Index Terms—Quantum estimation, Kullback-Leibler diver-
gence, Convex optimization

I. I NTRODUCTION

Quantum devices implementing information processing
tasks promise potential advantages with respect to their clas-
sical counterparts in a remarkably wide spectrum of applica-
tions, ranging from secure communications to simulators of
large scale physical systems [1], [2], [3].

In order to exploit quantum features to the advantage of a
desired task, tremendous challenges are posed to experimental-
ists and engineers, and many of these have stimulated substan-
tial theoretically-oriented research. Which particular problem
is critical depends on the physical system under consideration:
from optical integrated circuits to solid-state devices, the
tasks in the device engineering, protection from noise and
control are manifold [3], [2], [4], [5], [6]. However,quantum
estimation [7] problems are ubiquitous in applications, be it in
testing the output of a quantum algorithm, in reconstructing the
behavior of a quantum channel or in retrieving information at
the receiver of a communication system [3], [8], [9], [10], [11],
[12]. In this paper we focus on state estimation problem for
finite-dimensional quantum system, namely the reconstruction
of a trace-one, positivesemidefinitematrix given from data,
and in particular on an estimation method that addresses two
critical problems for most real-world situations. The firstarises
when only a small set of potentially noisy data is available,
yielding no physically-acceptable solution; the second regards
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situation in which the system dimension is large and the
available measurement are insufficient to completely determine
the state.

To address this second issue, a typical approach in both
the classical and the quantum world is to resort to a MAX-
ENT principle [13], [14], [15], [16], [7], [17], where one
opts for a “maximum ignorance” criterion on the choice of
parameters that are not uniquely determined by data. The
MAXENT estimation can indeed be seen as a particular
case ofminimum relative entropy estimation, [18], where the
information-theoretic pseudo-distance of the estimated state
with respect to somea priori state is minimized subjected
to a set of constraints representing the available data [19],
[20], [21], [22], [23]. This a priori information introduces a
new ingredient with respect to typical maximum-likelihood
methods for quantum estimation [7], [9].

A quantum minimum relative entropy method for state
estimation has been discussed in [21], [24], whereapproximate
solutions to minimum relative entropy problems are provided:
the estimates are shown to be good approximation of the
optimal solution when this is close enough to the prior. On the
other hand, a way towards the computation of the exactopti-
mal solution is indicated in [19]: Georgiou has analyzed the
MAXENT problem for estimating positive definite matrices,
providing a generic form for the optimal solution, parametric
in the Lagrange multipliers. He has also observed that the
results can be extended to the more general minimum relative
entropy problem.

We shall here extend Georgiou’s approach, proving exis-
tence, uniqueness and continuity of the solution with respect
to the measured data, when a generic prior is considered.
The solution can then be computed by standard numerical
methods. However, the approach returns a meaningful answer
only when there is a full-rank admissible solution among the
states compatible with the data. While this appears to be a
reasonable assumption as quantum full-rank states are generic,
this is no longer the case whenever the unknown state is pure
or near the boundary of the physical state set. In fact, it is
easy to picture realistic scenarios where the effect of noisy or
biased measurements might actually force the solutions to be
on the bounduary, or even outside of the admissible set [25],
[9]. In the latter case the constrained optimization problem “as
is” is not feasible, and one has to relax the constraints.

Our strategy to solve these issues is organized as follows: a
general setting for posing the feasibility problem and quantum
minimum relative entropy with data corresponding to linear
constraints is presented in Section II. In Section III, we
propose a way to reformulate thefeasibility analysis as a
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convex optimization problem. The solution of this ancillary
problem, for which we provide a numerical approach in
Appendix A, also indicates an optimal way to perturb, or
relax the constraints in order to allow for admissible solutions
to the estimation problem. We also show how the way in
which the constraints are relaxed can be tailored to match
the error distribution or the level of noisy we assume on the
measurements. Once the feasibility analysis returns a positive
answer, our approach directly leads to the construction of a
reduced problem for which there exists a positive definite state
satisfying the given constraints. In Section IV, we addressthe
corresponding (reduced, if needed) minimum relative entropy
problem, showing it admits a unique full-rank solution. The
latter can be computed from the closed-form solution of the
primal problem, and a standard numerical algorithm to find
the corresponding Lagrange multipliers is suggested. Then, the
solution to the non-reduced, original problem is immediately
obtained. Some concluding remarks and future directions and
applications are summarized in Section V.

II. PROBLEM SETTING

A. Quantum States and Measurement Data

Consider a quantumn-level system. Its state is described by
a density operator, namely by a positive semidefinite unit-trace
matrix

ρ ∈ Dn =
{

ρ ∈ Cn×n | ρ = ρ† ≥ 0, tr(ρ) = 1
}

, (1)

which plays the role of probability distribution in the classical
probability framework. Note that a density matrix depends on
n2 − 1 real parameters.

In this work we will be concerned on the problem of recon-
structing an unknownρ from a set of repeated measurement
data. This is of course anestimation problem in the statistical
language, while in the physics community it is usually referred
to asstate tomography [7].

We assume that data are provided in one of the following
forms:

1) Outcome frequencies for projective measurements: con-
sider repeated measurements of a (Hermitian)observable [26],
O =

∑

k okΠk, where{Πk} is the associated spectral family
of orthogonal projections. The spectrum{ok} represents the
possible outcomes at each measurement, and the frequency
of the k-th outcome given a stateρ can be computed as
pk = tr(ρΠk). After K measurements ofO, we assume we
are provided with some experimental estimates ofpk, i.e. the
experimental relative frequencies of occurencesp̂k = #(O =
ok)/K, with #(O = ok) the number of measurements that
returned outcomeok.

2) Observable averages: consider a set ofno measured
observables, represented by Hermitian matricesOi, where now
we only have access to the mean values of the outcomes,
denoted by〈Oi〉 (and with possible outcomesoi,k), that can be
theoretically computed as〈Oi〉 := tr(ρOi) and experimentally
estimated by〈Ôi〉 =

∑

k oi,kp̂k.

3) Outcome frequencies for general measurements: con-
sider repeated measurements of aPositive-Operator Valued
Measure (POVM), that is generalized measurements that can
be used to describe indirect measurements on a system of
interest [3]. A POVM withM outcomes, sayk = 1, . . .M,
is associated to a set of non-negative operators{Qk}Mk=1 such
that

∑

k Qk = I, playing the role of resolution of the identity
for projective measurements. The probability of obtainingthe
k-th outcome can be computed byqk = tr(ρQk), and ex-
perimentally estimated bŷqk afterK repeated measurements.
This case in fact includes the first one, and the generalization
to multiple POVM is straightforward.

In all these scenarios, data are provided as a set of real val-
ues representing estimatesf̂i of quantitiesfi (that can be either
pi, 〈Oi〉 or qi), each associated to the state through a linear
relation of the formfi = tr(ρZi), whereZi have the role of
Πi, Oi or Qi described above. Clearlŷfi → fi = tr(Ziρ) with
probability one asN → ∞. This framework is quite general,
and can be adapted to include any case if the data are given as
linear constraints. Another significant situation that fitsin this
framework is when reduced states of a multipartite systems
are available as data [27], [28]. Finally, by the well-known
Choi-Jaimlokowskii isomorphism [29], the same setting, and
methods for solution, can be adapted to include estimation of
quantum channels, or quantum process tomography [7], [9].

From a theoretical viewpoint,ρ can be in principle recon-
structed exactly from at leastn2 − 1 averagesfi = tr(ρZi)
i = 1 . . . n2 − 1 when Z1 . . . Zn2−1 are observables which
do not carry redundant information, namely they form a basis
for the space of traceless Hermitian matrices. In any practical
application, however, one has to face the following issues:

1) Accurate estimateŝfi of fi are only obtained by aver-
aging over a large quantity of trials; Often only a small
set of trials is available, and/or the data are subject to
significant errors;

2) The number of observables required for a unique recon-
struction of ρ grows quadratically with respect to the
dimension of the quantum system, and exponentially in
the number of subsystems. Typically only a small subset
of these is available;

We here analyze the estimation problem when these two
aspects are taken into account. The first one will lead us
to consider thefeasibility problem, that is, if the problem
admits a physically admissible solution for the given data.
Since errors may affect thêfi, the reconstructed state may
not be positive semidefinite, or a valid state that satisfies the
constraints might not even exist. The second issue generically
leads to a estimation problem where more than one state
satisfy the constraints, and thus an additional criterion has
to be introduced to arrive at a unique solution. As we said,
a typical strategy in this setting is to introduce an entropic
functional, e.g.relative entropy with respect to some reference
state representinga priori information.

B. Statement of the Main Problems

Consider the setting described above, where we want to
estimate the state of ann-dimensional quantum systems from
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the real data{f̂i}pi=2, experimental estimates of the quantities
fi = tr(Ziρ), for the Hermitian matricesZ2 . . . Zp, with
p ≪ n2 − 1. In addition to these, we introduce an auxiliary
observableZ1 = I and the corresponding estimatêf1 = 1.
In this way, we include the linear constrainttr(ρ) = 1 in the
constraints associated with the “data”. We wish now to solve
the following problem.

Problem 1: Given {Zi} and{f̂i}, i = 1 . . . p, find:

ρ ∈ Hn, such that ρ ≥ 0, f̂i = tr(ρZi), i = 1, . . . , p.
(2)

Here,Hn denotes the vector space of Hermitian matrices of
dimension equal ton. Notice that, if we remove the positivity
constraintρ ≥ 0, all other constraints are linear and identify a
hyperplane inHn. To our aim it is convenient to first address
a simpler problem: let

S :=
{

ρ ∈ Hn | ρ ≥ 0, f̂i = tr(ρZi)
}

be the set of the density matrices which solve Problem 1.
Problem 2 (Feasibility): Determine ifS is not empty.
When the problem is feasible, in generalS contains more

than one solution, and in principle any solution inS fits the
data. We focus on choosing a solution that has minimum
distance with respect to ana priori state. In the same spirit
of MAXENT problem, this corresponds to give maximum
priority to fitting the data, and then choosing the admissible
solution that is the closest (in the relative-entropy pseudo-
distance) to oura priori knowledge on the systems. To
this aim, consider the (Umegaki’s) quantum relative entropy
betweenρ ∈ Dn, andτ ∈ int(Dn) [30]:

S(ρ‖τ) = tr(ρ log ρ− ρ log τ). (3)

Assumingτ in the interior and with the usual convention that
0 log(0) = 0, we do not have to worry about unbounded values
of S(ρ‖τ).

Problem 3 (Minimum relative entropy estimation): Given
the observablesZ1 . . . Zp and the corresponding estimates
f̂1 . . . f̂p, solve

minimize
ρ≥0

S(ρ‖τ) subject to tr(ρZi) = f̂i, i = 1 . . . p. (4)

Here,τ represents thea priori information on the considered
quantum system. We setσ = I if no information is available.
In this situation, (3) is the opposite of the quantum entropyof
ρ, and we obtain a MAXENT problem. Note that, the solution
to the Problem above may be singular.

III. F EASIBILITY ANALYSIS

A. An auxiliary problem

We start by addressing thefeasibility problem, i.e. to
determine whenS is not empty. In addition, whenever the
problem is not feasible, we show how to determine a suitable
perturbation of the{f̂i} that makes our problem feasible. We
will show that the correspondingS only contains singular
density matrices when the constraints are relaxed.

Note that, the constraints are linear in̂fi andZi, and can
be linearly combined:αf̂i + βf̂k = tr[ρ(αZi + βZk)] for
eachα, β ∈ R \ {0} and i, k = 1 . . . p. Consider the vector

space generated by the observed operators,span {Z1 . . . Zp}.
Thus, by applying theGram-Schmidt process, starting with
X1 = 1√

n
Z1 = 1√

n
I, we can compute an orthonormal basis

for it:

Xi := αi
iZi +

i−1
∑

l=1

αi
lXl, i = 2 . . .m ≤ p. (5)

By linearity, by associating these basis elements to the esti-
mates

f̄1 :=
1√
n

f̄i := αi
if̂i +

i−1
∑

l=1

αi
l f̄l, i = 2 . . .m, (6)

we obtain a new yetequivalent set of constraints:

f̄i = tr(ρXi), i = 1 . . .m. (7)

Note that,I ∈ span {X1 . . .Xm}.
Let Y1 . . . Yn2−m be an orthonormal completion of

X1 . . .Xm to a basis ofHn. Accordingly, all the Hermitian
matrices, and in particular density operators, can be expressed
as

ρ =

m
∑

i=1

αiXi +

n2−m
∑

i=1

βiYi, (8)

with tr(ρXi) = αi. In particular, all the Hermitian matrices
satisfying the linear constraints in (7) depend onn2 − m
parametersβ = [β1 . . . βn2−m]:

ρ = ρ̃0 +

n2−m
∑

i=1

βiYi (9)

where we have defined the (not necessarily positive) pseudo-
state associated to the constraints:

ρ̃0 =

m
∑

i=1

f̄iXi. (10)

In the light of this observation, the feasibility problem
consists in checking if there exists at least one vectorβ ∈
Rn2−m such thatρ ≥ 0. To this aim, we introduce an
auxiliary problem. Intuitively, the idea is the following:given
any Hermitian matrixρ̃0, there always exists a realµ such
that ρ̃0 + µI is positive definite. More precisely, if̃ρ0 is
not positive definite already, it is easy to see that such aµ
will need to be positive. On the other hand, ifρ̃0 is already
positive, the perturbed matrix remains positive semi-definite
for some small, negativeµ. Studying the minimalµ that
correspond to a positive semidefinite matrix offers us a way
to understand whether our constraints allow for physically
admissible solutions.

Let us formalize these idea: we definec :=
[

0 . . . 0 1
]T ∈ Rn2−m+1, and

H(v) := ρ̃0 +
n2−m
∑

i=1

viYi + vn2−m+1X1

with v =
[

v1 . . . vn2−m+1

]

and we consider the follow-
ing minimum eigenvalue problem.
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Problem 4: Given ρ̃0 as in (10) andY1 . . . , Yn2−m an
orthonormal completion ofspan {X1 . . . Xm}, solve

minimize cT v subject to v ∈ I := {v | H(v) ≥ 0} .
(11)

Lemma 3.1: Problem 4 always admits solution.
Proof: First of all, notice that Problem 4 is a convex

optimization problem, and the objective functioncT v is linear
and continuous over the setI. Then, the proof is divided in
three steps.
Step 1: We show thatcT v = vn2−m+1 is bounded from below
onI: sinceX1, . . . , Xm, Y1, . . . , Yn2−m forms an orthonormal
basis andI ∈ span {X1, . . . , Xm}, the matrices{Yi} are
traceless. Thus,

tr[H(v)] = tr[ρ̃0 +

n2−m
∑

i=1

viYi + vn2−m+1X1]

= tr(ρ̃0) +
√
nvn2−m+1 = 1 +

√
nvn2−m+1

and tr[H(v)] ≥ 0 for each v ∈ I. Hence,
cT v = vn2−m+1 ≥ − 1√

n
for eachv ∈ I.

Step 2: Let us consider v0 =
[

0 . . . 0
√
n(−λmin(ρ̃0) + 1)

]

∈ I where λmin(ρ̃0)
denotes the minimum eigenvalue of̃ρ0. Accordingly,
cT v0 =

√
n(−λmin(ρ̃0) + 1) and Problem 4 is equivalent to

minimize cT v over the closed sublevel setI0 = {v | H(v) ≥
0, − 1√

n
≤ vn2−m+1 ≤ √

n(−λmin(ρ̃0) + 1)} ⊂ I. We
want to show thatI0 is bounded and accordinglycompact
(recall that we are working in a finite dimensional space).
This can done by proving that a sequence

{

vk
}

k≥0
such that

‖vk‖ → ∞ cannot belong toI0. It is therefore sufficient to
show that the minimum eigenvalue of the associated Hermitian
matrix H(vk) tends to−∞ as ‖vk‖ → ∞ with vm2−n+1

bounded. Note that the affine mapv 7→ H(v) is injective,
sinceY1 . . . Yn2−m, X1 are linearly independent. Accordingly
‖H(vk)‖ → ∞ as‖vk‖ → ∞. SinceH(vk) is an Hermitian
matrix, H(vk) has an eigenvalueηk such that|ηk| → ∞ as
‖vk‖ → ∞. By constructiontr[H(vk)] = 1 +

√
nvk

n2−m+1

andvk
n2−m+1 is bounded inI0. Thustr[H(vk)] < ∞, namely

the sum of its eigenvalues is always bounded. Thus, there
exists an eigenvalue ofH(vk) which approaches−∞ as
k → ∞. So,I0 is bounded.
Step 3: SincecT v is continuous over the compact setI0, by
Weiestrass’ theorem we conclude thatcT v admits a minimum
point overI0.

We need to take into account that the vector which mini-
mizescT v overI may not be in general unique. However, to
our aim we are more interested in the sign of the minimum.

Proposition 3.1: Let µ = min
v∈I

cT v. Then, the following

facts hold:

1) If µ > 0, then Problem 1 is not feasible
2) If µ < 0, then Problem 1 is feasible and there exists at

least one positive definite matrix satisfying constraints
in (7)

3) If µ = 0, then Problem 1 is feasible and all the matrices
satisfying constraints in (7) are singular.

Proof: Note thatG(v1, . . . , vn2−m) := ρ̃0+
∑n2−m

i=1 viYi

represents the parametric family of Hermitian matrices (not
necessary positive semidefinite) satisfying constraints in (7).
Define ε := −vn2−m+1, thus Problem 4 can be rewritten in
the following way:

maximizeε subject toG(v1, . . . , vn2−m) ≥ ε√
n
I. (12)

Let ε◦ = −µ be the solution of the above problem. If
ε◦ < 0, the parametric familyG(v1, . . . , vn2−m) does not
contains positive semidefinite matrices, accordingly Problem
1 does not admit solution. Ifε◦ ≥ 0, the parametric family
G(v1, . . . , vn2−m) contains at least one positive semidefinite
matrix and Problem 1 admits solution. Moreover ifε◦ > 0, the
parametric family contains at least one matrixρ ≥ ε◦√

n
I > 0

which is positive definite. On the contrary, forε◦ = 0 there
only exist positive semidefinite matrices which are singular.

An effective numerical approach for the solution to the
problem is described in Appendix A.

In the light of the previous result, ifµ < 0 Problem 1 is
feasible andS contains at least one positive definite solution.
As we will see in Section IV, this condition ensures that a
minimum relative entropy criterion will lead to an admissible
solution inS. The remaining cases need to be studied more
carefully. We start by showing how to make Problem 1 feasible
when it is not be so for the given constraints. It turns out that
a minimally relaxed problem is feasible andS only contains
singular density matrices. Next, we deal with the case in which
Problem 1 is feasible and all its solutions are singular, showing
how they all share a minimal kernel and how to construct
a reduced problem with a full-rank solution for which the
minimum relative entropy methods work.

B. Forcing the feasibility condition (case µ > 0)

The parameterµ given by the auxiliary problem described
above reveals if the original problem is feasible, but also
suggests an “optimal” way to relax unfeasible constraints so
that they make Problem 1 feasible. In fact, from the definition
of µ, we know that there existv1 . . . vn2−m ∈ R such that

ρ̃µ := ρ̃0 +
n2−m
∑

i=1

viYi + µX1 ≥ 0,

and:
tr(ρ̃µ) = 1 +

√
nµ.

From this positive operator, in order to obtain a density
operator, we only need to normalize the trace by defining:

ρ :=
1

1 +
√
nµ

ρ̃µ (13)

=
1√
n
X1 +

m
∑

i=2

f̄i
1 +

√
nµ

Xi +

n2−m
∑

i=1

vi
1 +

√
nµ

Yi.

This implies that the original problem can be made feasible by
uniformly, “isotropically” contracting the data{f̄i} of a factor
1/(1 +

√
nµ) and, in light of the fact thatµ is a solution to
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Problem 4, that this is theminimum amount of contraction that
makes Problem 1 feasible. Moreover, the corresponding setS
only contains singular solutions.

However, the entries in the data set{f̄i} may differ in
their reliability, and one would like to be able to relax the
corresponding constraints accordingly. This is complicated by
the fact that the original{Zi} may not be orthogonal, and the
data we are contracting are in fact the linearly transformed
output of the Gram-Schmidt orthonormalization described
above.

This weighed relaxation can be realized as follows: consider
the initial setting of Section II, where we havep observables
Z1 . . . Zp (not necessarily orthonormal), withZ1 = I and
f̂1 = 1. Define thereliability indexes 0 < d2 . . . dp ≤ 1
associated to each observableZ2 . . . Zp. More precisely, the
more f̂i is reliable, the closer to onedi is. This information
can be extracted, for example, from an error analysis on the
measurement procedures, withdi associated to the normalized
reciprocal of the variances.

When we obtain the orthonormal generatorsX1 . . . Xm, the
Gram-Schmidt process induces a linear transformation on the
original estimateŝf1, . . . , f̂p:







f̄1
...

f̄m






= T







f̂1
...
f̂p






(14)

whereT =

[ 1√
n

0

T1 T2

]

∈ Rm×p.

In order to modify the data{f̂i} according to their reliability
indexes, we define the new set of data:







f̂ ′
1
...

f̂ ′
m






= T











f̂1
kd2f̂2

...
kdpf̂p











. (15)

wherek > max{d−1
i }. In this way f̂2, . . . , f̂p are amplified

of a factorkdi > 1 according their reliability indexes. This
will allow for the maximum contraction to be applied to the
most noisy estimates.

In order to compute theminimum µ that makes the original
problem feasible perturbing the data consistently with their
reliability indexes, we can solve Problem 4 with respect to
the new pseudo-state:

ρ̃′0 =

m
∑

i=1

f̂ ′
iXi. (16)

It is easy to see that if the original problem was unfeasible,
this modified problem is unfeasible as well fork large enough,
since all thef̂i corresponding to traceless operators are mul-
tiplied for a factorKdi >> 1. Let µ′ > 0 be the parameter
given by the auxiliary problem wheñρ′0 is considered. By the
results of the previous subsection and (13) above, we consider

the perturbed constraints

f̄1 =
1√
n

f̄i =
1

1 +
√
nµ′ f̂

′
m, i = 2 . . .m. (17)

Thus, the corresponding Problem 1 is feasible andS only
contains singular solutions.

C. Case µ = 0

In the limit caseµ = 0, not only all solutions are singular,
but they share a key property.

Proposition 3.2: Assume that, with the definition above,
µ = 0. Then there exists a kernelK which is common for
all ρ ∈ S.

Proof: Let us assumeµ = 0, accordingly Problem 1
does only admit singular solutions, withdimker(ρ) > 0
∀ ρ ∈ S. Pick a solutionρ◦ ∈ S with kernel of min-
imal dimension. Suppose by contradiction that there exists
ρ̄ ∈ S such thatker(ρ◦) * ker(ρ̄). Taking into account
p ∈ (0, 1), we defineρ := pρ◦ + (1 − p)ρ̄ ∈ S. Accordingly
dimker(ρ) < dim ker(ρ◦) which is a contradiction, sinceρ◦

has kernel with minimal dimension onS. We conclude that
K = ker(ρ◦) ⊆ ker(ρ) ∀ ρ ∈ S.

This directly implies the following block-form for all the
solutions to Problem 1.

Corollary 3.1: Let ρ◦ ∈ S be a solution with minimal
kernelK and consider its block-diagonal form

ρ◦ = U

[

ρ◦1 0
0 0

]

U †,

where U is a unitary change of basis consistent with the
Hilbert space decompositionH = K⊥ ⊕ K so thatρ◦1 > 0.
Then, the set of all the solutions of Problem 1 is

S =

{

ρ = U

[

ρ1 0
0 0

]

U † | ρ1 ≥ 0, f̄i = tr(ρXi)

}

. (18)

As consequence of Corollary 3.1, we can focus on a reduced
version of Problem 1, by considering optimization only on
the support ofρ◦, for which the minimum relative entropy is
applicable sinceρ◦1 is positive definite, see Section IV.

IV. STATE ESTIMATION WITH M INIMUM RELATIVE

ENTROPY CRITERION

A. Reduced Problem

In the previous part of the paper we showed how to check
the feasibility of Problem 1 given the constraints associated
to the data and, if needed, how to relax the constraints in
such a way that the corresponding Problem 1 is feasible. In
general, however, the set of solutionsS is not constituted by
only one element. In this section, we show how to choose, and
then compute, a solution inS according theminimum quantum
relative entropy criterion.

Given the results of the previous sections, we can assume
that either Problem 1 admits at least one (strictly) positive
definite solution, or we can resort to a reduced problem for
which a full rank solution exists. In fact, ifS only contains
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singular matrices (caseµ = 0, or after relaxation of the
constraints), by Corollary 3.1 we have that the set of solution
is

S =

{

ρ = U

[

ρ1 0
0 0

]

U † | ρ1 ≥ 0, f̄i = tr(ρXi)

}

(19)

for some unitary change of basisU consistent with the Hilbert
space partitionH = K⊥ ⊕ K. Accordingly for eachρ ∈ S,
constraints in (7) can be rewritten in the following way

f̄i = tr(ρXi) = tr

(

U

[

ρ1 0
0 0

]

U †Xi

)

= tr(ρ1X̄i) (20)

whereX̄i :=
[

I 0
]

U †X1U

[

I
0

]

∈ Hn1
with n1 < n.

Accordingly Problem 1 is equivalent to the corresponding
reduced problem withX̄1 . . . X̄m and f̄1 . . . f̄m. The corre-
sponding set of solutions is

S1 =
{

ρ1 ∈ Hn1
| ρ1 ≥ 0, f̄i = tr(ρ1X̄i)

}

(21)

which contains the positive definite solutionρ◦1. Once chosen
a solutionρ̂1 ∈ S1, the corresponding original solution is

ρ̂ = U

[

ρ̂1 0
0 0

]

U †. (22)

In the effort of keeping a simple notation, we will not
distinguish between the reduced and the full problem in the
following discussion, therefore usingρ for either the full or the
reduced state,{Xi} for either the full or reduced observable,
andn for the dimension of the full Hilbert space or the reduced
one as needed. We can consider the following simpler problem,
restricted to strictly positive matrices:

Problem 5: Given the observablesX1 . . . Xm and the cor-
responding estimates̄f1 . . . f̄m, solve

minimize
ρ>0

S(ρ‖τ) subject to tr(ρX̄i) = f̄i, i = 1 . . .m.

(23)

B. Lagrangian and Form of the Full-Rank Solution

Now we are ready to derive a solution method for problem
the entropic criterion. Consider the linear operator associated
to the above constraints:

L : Hn → Rm

ρ 7→







tr(ρX1)
...

tr(ρXm)






. (24)

Givenλ =
[

λ1 . . . λm

]T ∈ Rm andρ ∈ Hn,

〈L(ρ), λ〉 =
m
∑

i=1

λi tr(ρXi) = tr(ρ
m
∑

i=1

λiXi) = 〈ρ, L∗(λ)〉

(25)
where

L∗ : Rm → Hn

λ 7→
m
∑

i=1

λiXi (26)

is the adjoint operator ofL. Define f̄ =
[

f̄1 . . . f̄m
]T

.
Since Problem 5 is a constrained convex optimization problem,
we take into account its Lagrangian

L(ρ, λ) = tr(ρ log ρ− ρ log τ)−
〈

λ, f̄ − L(ρ)
〉

= tr(ρ log ρ− ρ log τ) + 〈L∗(λ), ρ〉 −
〈

λ, f̄
〉

= tr[ρ(log ρ− log τ + L∗(λ))] −
〈

λ, f̄
〉

(27)

whereλ ∈ Rm is the Lagrange multiplier. Note thatL(·, λ)
is strictly convex overHn,+ whereHn,+ denotes the cone
of the positive definite matrices. Thus, its minimum point is
given by annihilating its first variation

δL(ρ, λ; δρ) = tr[(log ρ+ I − log τ + L∗(λ))δρ] (28)

for each directionδρ ∈ Hn. Accordingly, the unique minimum
point for L(·, λ) is

ρ(λ) = elog τ−I−L∗(λ) (29)

and
L(ρ(λ), λ) ≤ L(ρ̄, λ), ∀ ρ̄ ∈ Hn,+. (30)

If there existsλ◦ such thatρ(λ◦) ∈ S, i.e. f̄ = L(ρ(λ◦)),
then (30) implies

S(ρ(λ◦)‖τ) ≤ S(ρ̄‖τ), ∀ ρ̄ ∈ S. (31)

Thus, if we are able to findλ◦ ∈ Rm such thatf̄−L(ρ(λ◦))=0,
thenρ(λ◦) is the unique solution to Problem 5. This issue is
solved by considering the dual problem whereinλ◦ (if there
exists) maximizes the following functional overRm

inf
ρ∈Hn,+

L(ρ, λ) = L(ρ(λ), λ)

= − tr(elog τ−I−L∗(λ))−
〈

λ, f̄
〉

. (32)

The existence of such aλ◦ is proved in Section IV-C.
Moreover, we suggest how to efficiently compute it.

Remark 4.1: Whenµ = 0, S only contains singular matri-
ces. Instead of considering the reduced problem as we did, one
could try to consider Problem 3 with relaxed constraintρ ≥ 0.
In this situation theSlater’s condition [31, 5.2.3], however,
does not hold becauseS does not contain positive definite
matrices. Hence, we cannot conclude thatρ(λ◦) is the desired
solution of the primal problem. Moreover, for anyλ, would
be ρ(λ◦) > 0. This means thatρ(λ◦) is not the solution to
Problem 3.

C. Dual Problem: Existence and Uniqueness of the Solution

The dual problem consists in maximizing (32) overRm

which is equivalent to minimize

J(λ) = tr(elog τ−I−L∗(λ)) +
〈

λ, f̄
〉

. (33)

This functional will be referred to asdual function throughout
this Section. Before to prove the existence ofλ◦ which
minimizes J we need to introduce the following technical
results.

First of all, note that
〈

λ⊥, f̄
〉

= 0 for each λ⊥ ∈
[RangeL]⊥. In fact, if λ⊥ ∈ [RangeL]⊥ = kerL∗, then
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L∗(λ⊥) = 0. SinceS ∩ Hn,+ 6= ∅, there existsρf ∈ Hn,+

such thatf̄ = L(ρf ). Thus,
〈

λ⊥, f̄
〉

=
〈

λ⊥, L(ρf)
〉

=
〈

L∗(λ⊥), ρf
〉

= tr(L∗(λ⊥)ρf ) = 0.
(34)

We conclude thatλ⊥ does not affectJ , i.e.

J(λ+ λ⊥) = J(λ), ∀ λ⊥ ∈ [RangeL]⊥. (35)

We may therefore restrict the search of the minimum point for
J overRangeL.

Proposition 4.1: J is strictly convex overRangeL.
Proof: SinceJ is the opposite ofL(ρ(λ), λ), it is convex

over Rm. The first and the second variation ofJ(λ) in
directionδλ ∈ Rm are:

δJ(λ; δλ) = − tr

∫ 1

0

(e(1−t)(log τ−I−L∗(λ))L∗(δλ) (36)

· et(log τ−I−L∗(λ)))dt+
〈

δλ, f̄
〉

= − tr

∫ 1

0

elog τ−I−L∗(λ)dtL∗(δλ) +
〈

δλ, f̄
〉

= − tr(elog τ−I−L∗(λ)L∗(δλ)) +
〈

δλ, f̄
〉

(37)

δ2J(λ; δλ) = tr[

∫ 1

0

e(1−t)(log τ−I−L∗(λ))L∗(δλ)

· et(log τ−I−L∗(λ))L∗(δλ)dt]. (38)

Here, we exploited the expression for the differential of the
matrix exponential (see [19, Appendix IA]). DefineQt =
et(log τ−I−L∗(λ)) which is positive definite for eacht ∈ R.
Thus,

δ2J(λ; δλ) =

∫ 1

0

tr(Q1−tL
∗(δλ)QtL

∗(δλ))dt (39)

=

∫ 1

0

tr(Q
1
2

t L
∗(δλ)Q1−tL

∗(δλ)Q
1
2

t )dt ≥ 0.

Assume now thatδλ ∈ RangeL. If δ2J(λ; δλ) = 0, then

tr(Q
1
2

t L
∗(δλ)Q1−tL

∗(δλ)Q
1
2

t ) = 0. SinceQt > 0 for each
t ∈ R, it follows that L∗(δλ) = 0. Since δλ ∈ RangeL,
we getδλ = 0. We conclude thatδ2J(λ; δλ) > 0, for each
δλ 6= 0, i.e. the statement holds.

In the light of the previous result, the dual problem admits at
most one solution, sayλ◦, overRangeL. If such aλ◦ does
exist, thenδJ(λ; δλ) = 0 ∀ δλ ∈ RangeL which is equivalent
to −L(elog τ−I−L∗(λ◦)) + f̄ = 0. It means thatρ(λ◦) satisfies
constraints in (7) and it is therefore the unique solution to
Problem 5. It remains to show that such aλ◦ does exist.

Proposition 4.2: J admits a minimum point overRangeL.
Proof: We have to show that the continuous functionJ

takes minimum value overRangeL. Observing thatJ(0) =
1
e
tr(τ), we can restrict our search over the closed set

M := {λ ∈ Rm | J(λ) ≤ J(0)} ∩ RangeL.

We shall show thatM is bounded. To this aim, consider a
sequence{λi}i∈N

, λi ∈ RangeL such that‖λi‖ → ∞. It is
therefore sufficient to show thatJ(λi) → ∞, asi → ∞. First

of all note that the minimum singular valueα of L∗ restricted
to RangeL = [kerL∗]⊥ is strictly positive, accordingly

‖L∗(λi)‖ ≥ α‖λi‖ → ∞. (40)

This means thatL∗(λi), which is an Hermitian matrix, has
at least one eigenvalueβi such that|βi| approach infinity.
If βi → −∞, then the first term ofJ tends to infinity and
dominates the second one, accordinglyJ(λi) → ∞. In the
remaining possible case no eigenvalue ofL(λi) approaches
−∞ and βi → ∞. Thus,L∗(λi) ≥ MI whereM ∈ R is
a finite constant and the first term ofJ takes a finite value.
SinceS ∩ Hn,+ is not empty, there existsρf ∈ Hn,+ such
that f̄ = L(ρf) and

〈

λi, f̄
〉

= 〈L∗(λi), ρf 〉 = tr(ρ
1
2

f L
∗(λi)ρ

1
2

f ) ≥ M, (41)

where we exploited the fact thattr(ρf ) = 1. This means that
〈

λi, f̄
〉

cannot approach−∞. Finally, ‖ρ
1
2

f L
∗(λi)ρ

1
2

f ‖ → ∞,

becauseρf > 0. It follows that ρ
1
2

f L
∗(λi)ρ

1
2

f , and hence
L∗(Λi), have at least one eigenvalue tending to∞. Accord-
ingly J(λi) → ∞ asi → ∞. We conclude thatM is bounded
and accordingly compact. By Weierstrass’ theorem,J admits
minimum point overM.

Finally, λ◦ may be computed bye.g. employing aNewton
algorithm with backtracking, see Section VI in [32], which
globally converges.

V. CONCLUSIONS

The proposed set of analytic results and algorithms provides
a general method to find theexact minimum relative entropy
estimate of a quantum state under general assumptions, that
is, without requiring the constraints to include a full-rank
solution to begin with. A general solution to the problem was
missing for quantum estimation, and our feasibility analysis
is of interest for the classical case as well. Summarizing, we
have proposed: (i) A numerical method to decide the feasibility
of Problem 1, which is of interest on his own, and compute
the minimum necessary relaxation of the constraints whenever
necessary to obtain at least one solution; (ii) As a side product,
we are able to determine whether there is at least a full-rank
solution. When this is not the case, we proved there exists,
and devised a way to determine, the maximal common kernel
of all the solution; (iii) We extended Georgiou’s approach to
maximum entropy estimation to our setting, and analyzed in
depth both the primal and the dual optimization problems. The
general form of a full-rank solution of the reduced problem,
namely the one we obtain by removing the common kernel,
is given explicitly and depends on the solution of the dual
problem. The latter is proven to be a convex optimization
problem with a unique solution,λ◦, which can be obtained
by standard numerical algorithms.

It is also possible to show,λ◦ is continuous with respect to
the data set̄f (see Appendix B). Since, in view of (29),ρ(λ◦)
is continuous with respect toλ◦, we can conclude that the
solution to Problem 5 is continuous with respect to the data
f̄1 . . . f̄m. This is of course a desirable property, and ensures
that for a increasing accuracy of the estimates, the computed
solution will converge to the actual state.
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Possible extensions of the present framework include ap-
plications to state reconstruction from local marginals and
its connection to entanglement generation [27], [28], as well
as comparison with the existing approximate results [21] in
physically meaningful situation. Lastly, the advantage offered
by the introduction of ana priori state in the estimation
problem can be exploited to devise recursive algorithms, that
update existing estimate in an optimal way relying only on
partial data.

APPENDIX

A. Numerical solution for the feasibility problem

We propose a Newton-type algorithm with logarithmic
barrier for numerically find one solutionv◦ to Problem 4.
Using the same approach of [9, Section 4], we resort to the
approximate problem

min
v∈int(I)

gq(v) (42)

whereq > 0, and

gq(v) := qcT v − log det(H(v)). (43)

Recall that we defined

I = {v | H(v) ≥ 0},

and notice thatgq is continuous and strictly convex over
the set int(I). Moreover limv→∂I gq(v) = +∞ and the
componentvn2−m+1 can be restricted to belong to a closed
and bounded interval. Accordingly the approximated problem
admits a unique solution, denoted byv̂q, which is numerically
computed by employing the Newton algorithm with back-
tracking, [31, 9.5]. Here, we can choose as initial guess the
vector v̂q0 =

[

0 . . . 0
√
n(−λmin(ρ̃0) + 1

]T ∈ int(I).
Concerning thel-th Newton step, we have to solve

∆v̂ql = −H−1
v̂
q

l

∇Gv̂
q

l
(44)

where

∇Gv̂
q

l
= qc−











tr(H(v̂ql )
−1Y1)

...
tr(H(v̂ql )

−1Yn2−m)
tr(H(v̂ql )

−1X1)











Hv̂
q

l
= (45)







tr(H(v̂ql )
−1Y1H(v̂ql )

−1Y1) tr(H(v̂ql )
−1Y1H(v̂ql )

−1Y2) . . .
tr(H(v̂ql )

−1Y2H(v̂ql )
−1Y1) tr(H(v̂ql )

−1Y2H(v̂ql )
−1Y2)

...
. . .







(46)

are the gradient and the Hessian computed atv̂ql , respectively.
Note that, it is not difficult to prove that

1) The sequence {vql }l≥0 generated by the
algorithm is contained in the compact set
N =

{

v ∈ int(I) | − 1√
n
≤ cT v ≤ cT vq0

}

;
2) gq is twice differentiable and strongly convex onN ;
3) The Hessian ofgq is Lipschitz continuous onN .

Accordingly, the Newton algorithm with backtracking globally
converges, [31, 9.5.3]. Moreover, the rate of convergence is
quadratic in the last stage. Finally, note that the found solution
v̂q satisfies the following inequalities, [31, p. 566],

cT v◦ ≤ cT vq ≤ cT v◦ +
n

q
(47)

wherev◦ is a solution to Problem 4 andn
q

the accuracy of
cT vq with respect to the optimal valuecT v◦.

This method works well only setting a moderate accuracy.
To improve the accuracy, we can iterate the above Newton
algorithm and in each iteration we gradually increase q in
order to find a solutionvξ with a specified accuracyξ > 0
[31, p. 569]:

1) Set the initial conditionsq0 > 0 and vq0 =
[

0 . . . 0
√
n(−λmin(ρ̃0) + 1)

]T ∈ int(I).
2) At the k-th iteration computevqk ∈ int(I) by minimiz-

ing gqk with starting pointvqk−1 by using the Newton
method previously presented.

3) Setqk+1 = βqk with β > 1 closer to one.
4) Repeat steps 2 and 3 until the conditionn

qk
< ξ is

satisfied.

Finally, we deal with the problem to compute a solution
to Problem 1 with kernelK when µ = 0. In this situation,
consider the non-empty convex set

I∗ =







w | ρ̃0 +
n2−m
∑

i=1

wiYi ≥ 0







, (48)

wherew =
[

w1 . . . wn2−m

]T ∈ Rn2−m. Thus, the set
of solutions to Problem 1 is

S =







ρ̃0 +

n2−m
∑

i=1

wiYi | w ∈ I∗







. (49)

We wish to compute a matrixρ◦ ∈ S having kernel cor-
responding to the minimum common kernelK. To this aim
consider the following problem.

Problem 6: Pick u ∈ Rn2−m at random and solve:

wu = arg min
w∈I∗

(w − u)T (w − u). (50)

Note that:

• I∗ is compact (i.e. closed and bounded)
• (w−u)T (w−u) is continuous and strictly convex onI∗.

By Weiestrass’ theorem, the above problem admits a unique
solutionwu.

Let us defineρ◦,u := ρ̃0 +
∑n2−m

k=1 wu
i Yi ∈ S and ρu :=

ρ̃0 +
∑n2−m

k=1 uiYi ∈ S. It is easy to see that Problem 6 can
be rewritten in terms of the matrixρ◦,u as follows:

ρ◦,u = argmin
ρ∈S

‖ρu − ρ‖2F , (51)

where‖ ·‖F denotes theFrobenius matrix norm. Thus,ρ◦,u is
the closest matrix inS (with respect to theFrobenius norm)
to the matrixρu belonging to the hyperplane characterized
by the constraints (7). Hence, randomly generating a finite
sequence{u1 . . . ul} of elements inRn2−m we obtain a subset
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U := {ρ◦,u1 . . . ρ◦,ul} contained inS. Construct the convex
combinationρ̄ := 1

l

∑l
j=1 ρ

◦,uj . Then ρ̄ has minimal kernel
if either one of theρ◦,uj belongs to the interior ofS, or ρ◦,uj

belong to different faces ofS, which is a compact convex set.
By the randomized construction, the probability of remaining
on the boundary ofS becomes small asl grows.

Concerning the computation ofwu, we can resort a Newton-
type algorithm with logarithmic barrier namedexterior-point
method, [33, Chapter 4].

B. Continuity of λ◦ with respect to f̄

We show that the solutionλ◦ is continuous with respect to
the data set̄f . To this aim we take into account the following
result, see [34, Theorem 3.1].

Theorem A.1: Let A be an open and convex subset of a
finite-dimensional euclidean spaceV . Let h : A → R be a
strictly convex function, and suppose that a minimum pointx̄
of h exists. Then, for allε > 0, there existsδ > 0 such that,
for p ∈ Rn, ‖p‖ < δ, the functionhp : A → R defined as

hp(x) := h(x)− 〈p, x〉 (52)

admits a unique minimum point̄xp, and moreover

‖x̄p − x̄‖ < ε. (53)

Consider

J(λ, f̄ ) = tr(elog τ−I−L∗(λ)) +
〈

λ, f̄
〉

(54)

where we make the dependence ofJ uponf̄ . Then, the unique
minimum point is

λ(f̄ ) = arg min
λ∈Rm

J(λ, f̄). (55)

Let δf ∈ Rm be a perturbation of̄f . We haveJ(λ, f̄ + δf) =
J(λ, f̄) + λT δf . Applying the previous theorem, whereδf
is −p, we have:∀ ε > 0 ∃ δ > 0 s.t. if ‖δf‖ < δ then
J(λ, f̄ + δf) admits a unique minimum point

λ(f̄ + δf) = arg min
λ∈Rm

J(λ, f̄ + δf) (56)

and
‖λ(f̄ + δf)− λ(f̄)‖ < ε. (57)

Accordingly, the mapf̄ 7→ λ(f̄) is continuous.
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