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Quantum Stabilizer Codes from Maximal Curves

Lingfei Jin

Abstract—A curve attaining the Hasse-Weil bound is called a and the corresponding algebraic geometry codes with Hermi-
maximal curve. Usually classical error-correcting codes btained  tian self-orthogonality. In Section 4, we produce good quan
from a maximal curve have good parameters. However, the .,qag from Hermitian self-orthogonal classical codesrgive

quantum stabilizer codes obtained from such classical erm Section 3. C . . Il to show that "
correcting codes via Euclidean or Hermitian self-orthogorlity do ~ >€CU0N 9. LOMPArsons are given as well to show that quantum

not a|Ways possess good parameterS. In this paper, the Hertian COdeS Obtained from our Construction are indeed gOOd.
self-orthogonality of algebraic geometry codes obtaineddm two

maximal curves is investigated. It turns out that the stabiizer Il. PRELIMINARY
quantum codes produced from such Hermitian self-orthogonh ) . ) . )
classical codes have good parameters. In this section, we briefly introduce some notations and

results on algebraic curves and algebraic geometry codies. T
reader may refer to [3][[12] for the details.

Let X be a smooth, projective, absolutely irreducible curve
of genusg defined overK, where K is a finite field. We

. INTRODUCTION denote by K (X) the function field of X. An element of

A powerful construction of quantum codes is through classk (X') is called a function. The normalized discrete valuation
cal codes with certain self-orthogonality [1]] [7]. Amorteese corresponding to a poinP of X’ is written asvp. For every
self-orthogonalities, the Hermitian orthogonality predag- nonzero elemenf of K (X'), we can define a principal divisor
ary quantum codes frony?-ary classical error-correctingdiv(f) := >, vp(f)P.
codes, therefore Hermitian self-orthogonal classicabsaday  For a divisorG, the Riemann-Roch space associated-to
give rise to good quantum stabilizer codes. However, it isemois defined by
challenging to construct Hermitian self-orthogonal dicess i
codes than Euclidean self-orthogonal classical codes. £(G) = {f € K(X)\ {0} : div(f) + G = 0} U{0}.

A good family of Hermitian self-orthogonal classical codeshen £(G) is a finite-dimensional vector space ovir and
is from algebraic geometry codes [4]] [E]] [6]. For instance we denote its dimension b8(G).
[4], a family of Hermitian self-orthogonal generalized Hee Let 2 denote the differential space &. For any nonzero
Solomon codes is constructed and consequently a family differentialw, we can associate a canonical divigov(w) :=
quantum MDS codes is produced. However, the situation’ys , v/5(w)P. All canonical divisors are equivalent and have
not always like this. For instance, if we consider the quantudegree2g — 2. For a divisorG, we define
codes produced from the Hermitian self-orthogonal classic )
codes based on the Hermitian curves, the parameters of these G) = {w e Q\ {0} : div(w) > G}
quantum codes are not satisfactory (se€ [11]). To show th@{g denote the dimension 6(G) by i(G). Then one has
an algebraic geometry code is Euclidean or Hermitian self-
orthogonal, it is essential to construct a proper diffaéegithat i(G) ={(H - G),
satisfies certain condition (See Proposifion 2.3). Thisisally where H is a canonical divisor.
challenging, in particular, for the Hermitian self-ortlwoglity. The Riemann-Roch Theorem says that

In this paper, we first study two maximal curves and the
corresponding classical algebraic geometry codes. A lsefu U(G) =deg(G) —g+1+4(H - G),
result is that we are able to construct a suitable diffeadbi
describe their Euclidean dual codes. Then via their Eualide
self-orthogonality, we can show that these codes are Hamit

self-orthogonal for certain parameters. Finally, we apiblg Vpoints of X andD — P, + -+ P,. Choose a diviso& on
a "

stabilizer method[]1] to obtain quantum codes which h _ >
good parameters or even better parameters compared vg?ﬁhsluzhi tza:l;?%(gr)]yr}sgg(g)) = @. Thenvp,(f) = 0 for

those in [[2], [9]. . :
i C der the foll t
The paper is organized as follows. In Section 2, we briefly onsider the Toflowing two maps

introduce some background on algebraic curves and algebrai U:L(G) = K" f=(f(P),....f(FPn))
geometry codes. Section 3 is devoted to two maximal curvgﬁd
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Index Terms—Algebraic geometry codes, Hermitian self-
orthogonal, Quantum codes.

where H is any canonical divisor.
Before introducing algebraic geometry codes, let us fix some
basic notations. LeP;, . . ., P, be pairwise distincf-rational

w > (resp, (w),...,resp, (w)),
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andCq(D, G), respectively. It is clear that botfi; (D, G) and A. AG codes from the first maximal curve
Cq(D, G) are linear codes ovek. They are called algebraic- . .
ge(gmetr))/ codes (or AG codes for sr){ort). A nice pgroperty is I.‘etF — Fy2(X) be the fgnctlon f|g|d Oft overfF,., where
that the Euclidean dual', (D, G)* (L denotes the EucIideanX is defined by the following equation
dual) of C, (D, G) is Cq(D, G) (see[12, Theorem 11.2.8]).
Furthermore, we have the following results.
Proposition 2.1:([12, Theorem 11.2.2 and Corollary 11.2.3])
Cr(D,G) is an|[n, k,d]-linear code ovetX with parameters

y 4y =it

The genug of X is ¢ = ¢/2 and the number of rational points
is 2¢% + 1. The set of thes@q? + 1 rational points consists

k=0G)— (G —D), d>n—deg(G). of a point at infinity P,, and the otherRq? “finite” rational
N points.
(@) If G satisfiesdeg(G) < n, then Letn = 2¢? and let{ Py, ..., P,} be alln “finite” rational

points. PutD = P; + --- + P,.
Lemma 3.1:For a positive integern, the Euclidean dual
(b) If additionally2g—2 < deg(G) < n, thenk = deg(G) — Cc)nga)mPooV of Cre(D,mPe) is Cr(D,(n + 29 — 2 -
g + 1. m o0 ) -

. : H inh _ _dx
Proposition 2.2: ([12, Theorem 11.2.7])Ca(D,G) is an Proof: Consider the differentiaj = —“=-. Then one can
[n, k*, d*+]-linear code overk with parameters

k=1(G) > deg(G) — g+ 1.

verify thatdiv(n) = —D + (n+2g — 2) P andresp,(n) =1
for all i =1,...,n. Thus, by Proposition 2.3, we have
kt =i(G - D) —i(G), d*+>deg(G)— (29 —2).

N Cr(D,mPx)" = Cqo(D,mPx)
(a) If G satisfiesdeg(G) > 2g — 2, then = C.(D,D —mPx + div(n))
kt =i(G—D)>n+g—1—deg(Q). = Cc(D,(n+29—-2—-m)Py).
(b) If additionally2g — 2 < deg(G) < n, then This completes the proof. [ |

Remark 3.2:From Lemma 311, the dual of the AG code
Cr(D,mP) can be represented as another AG code by
choosing suitable differential. Therefore, self-orthoglity of

To. study Euclidean self-orthogonality, we have to investthe AG code can be described in the term of the degree of
y g Y, HivisorG, i.e.,m in our case. However, this is not always the

gate the relationship betweéry (D, G) andCq(D, G). for oth Actually it i hallenging task ta fi
Proposition 2.3:([12, Theorem 11.2.10]) Lety be a dif- tcr?jirg;; d?frf;lé;\/t?;'necegzdyl 'S & chaflenging tas n

Zeiegmal S;C?h;hnawﬂ = 1 andresp () = 1 for al For simplicity, let us denote byC,, the AG code
T Cc(D,mPy,). Then, the above result says that, =
Cr(D,G)* = Co(D,G) = Cr(D, D — G + div(n)), Crn429—2—m- Hence, Lemm@_3l1 gives the following result.

k* =i(G—-D)=n+g—1—deg(G)

whereC (D, G)* stands for the Euclidean dual 6% (D, G). Corollary 3.3: C,, is Euclidean self-orthogonal ifn <
To obtain good classical AG codes, one is interested in thg2 + g — 1.

number ofK-rational points on an algebraic curve. We denote Recall that the Hermitian inner product for two vectars-

by Nk (X) the number ofK-rational points on an algebraic(q, ... a,),b = (by,...,b,)in F7, is defined by(a, b) iy :=

curve X over K. A celebrated result on the number Af- S, a;b¢. For a linear code overF ., the Hermitian dual

rational points is the Hasse-Weil bound stating that of C'is defined by

NK(X)S |K|+1+2g\/|K|. CJ_H - {VEF”' <V C>H:0VC€C}
: g , .

If the number of rational points of a cun& achieves the _ - ) N
upper bound, i.e. N (X) = |K|+ 1 + 29 /[K], then X is _Th(_enC is Herm_man self-orthogonal_lC CC—+#. by th_e def-
called a maximal curve. A well-known maximal curve is thénition of Hermitian self-orthogonality, one can easilytain
Hermitian curve ovef . defined by the equatiops + y = @& useful fact, namely’ C CLH if and only if C* C C
291, whereF - denotes the finite field of? elements. Lots of ~ Theorem 3.4:C',, is Hermitian self-orthogonal ifn < 2¢—
maximal curves can be produced by coverings of the Hermitidn
curve [8]. In the next section, we consider a maximal curve Proof: If m < 2¢—2, then we haveng < n+2g—2—m.

which is also a covering of the Hermitian curve. Thus, one ha€’,,; C Cpi24—2—m. Hence, the desired result
follows from the fact that

[1l. AG CODES FROM MAXIMAL CURVES
Ot =Chyzg-o-m and C% C Cpy.
Throughout the rest of this paper, we consider the finite
field K = [F2, whereq is a power of2. ]



B. AG codes from the second maximal curve Lemma 4.1:(see [1]) There is a-ary [[n,n — 2k, d*]]-

By abuse of notations, we still use the same notations @¢antum stabilizer code whenever there exisisaay classical
in the previous section for our second maximal curve ardermitian self-orthogondh, k|-linear code with dual distance
corresponding AG codes. d+.

Let ¢ be an odd power of. Thus,3 divides ¢ + 1. Let Using the connection of quantum codes with classical
F =F,(X) be the function field oft overF,:, whereX is Hermitian self-orthogonal codes in Leminal4.1, we can derive

defined by the following equation our main result stated as below. Then we use some numerical
. 5 results to show that the quantum codes produced from our
y ty=a". results are indeed good.

The genusy of X is g = ¢ — 1 and the number of rational Example 4.2: The(Q)rem 4.3f q2 is a power of2, then
points is3¢% — 2q + 1. The set of thes8q2 — 2¢ + 1 rational there exists ag-ary [[2¢°,kq = 2¢° — 2m + ¢ — 2,dg >
points consists of a point at infinit§., and the otheBq? —2¢ m+2—ql]; quantum code for any positive integersatisfying

“finite” rational points. g—1<m<2¢-2.
Let n = 3¢> — 2¢ and let{Py,...,P,} be alln “finite” Theorem 4.4:1f ¢ is an odd power o2, then there exists a
rational points. PuD = P, + --- + P,. g-ary [[3¢*> — 2¢*, kg = 3¢> —2m — 4,dg > m + 4 — 2q]],

Lemma 3.5:For a positive integerm, the Euclidean dual quantum code for any positive integer satisfying2q — 3 <
Cr(D,mPy)* of Cr(D,mPy) is Ce(D,(n +2g —2 - m<3q¢—4.

m)Ps) . The proof of Theorem§ 4.3 arld #.8 directly follows from
Proof: Let o be a(¢*> — 1)th primitive root of unity in Theorem§ 314,317 and Lemra}4.1.
Fq2 and define the polynomial Forg = 2 and1 < m < 2, by Theorem{ 4]3 we can
3(g—1)—1 obtain binary quantum codes with parametggs4, 2]], and
ha)=z ] (oﬂ"q“)/S - 1’) ==z (1 - x?"q*”) =2—2”7%. [[8,2, 3]]2 which are optimal from the online tablgl [9].
j=0 Example 4.5:For ¢ = 4 and3 < m < 6, Theorem43

It is easy to see that— o' splits completely in if and only Producesl-ary([32, 34—2m, m—2]], quantum codes. Namely,

if 4 is divisible by (q+1)/3. Furthermoreg splits completely [[32,28, 1], [[32,26, 2[4, [[32, 24, 3]}, [[32,22, 4]]4 quantum
in F. This implies that the principal divisativ (h(z)) is D— codes can be derived. These codes have good parameters. For

(3¢% — 2¢) Pss. instance, in the online tablel[2], [§86, 22, 4]]4 quantum code
Consider the differential) = %. Then one can verify iS given. This implies_ that our quantum code has a smaller
thatdiv(n) = —D + (n +2g — 2) P andresp, (n) = 1 for all léngth for the same dimension and distance.
i=1,...,n. Thus, by Proposition 2.3, we have Example 4.6:Let ¢ = 8 and7 < m < 14. Then by
N TheorenT 4B, we can deriveary [[126,134 — 2m, m — 6]|s
Ce(D,mPx)™ = Cqo(D,mPx) quantum codes. For instance, new quantum codes with pa-
= Cr(D,D —mPy +div(n)) rameters[[128, 108, 6]]s, [[128,106,7]]s, [[128,104,8]]s can
= Cr(D,(n+2g—2—m)Psy). be produced. They have reasonably better parameters com-
pared with the quantum codes with paramefgr$, 108, 6]]s,
This completes the proof. B [[134,106,7]]s, [[134, 96, 8]]s given in [Z].
For simplicity, let us denote byC,, the AG code Example 4.7:Let ¢ = 8 and 13 < m < 20. Then we can
Cc(D,mPs). Then, the above result says that, = gerive 8-ary [[176, 188 — 2m, m — 12]]s quantum codes. For

Cnt2g—2-m. Hence, Lemma 35 gives the following results.instance, new quantum codes with parameffgfs, 154, 5]]s,
Corollary 3.6: Cy, is Euclidean self-orthogonal ifn < (1176, 152, 6]]s, [[176,150,7]]s, [[176,148,8]]s can be pro-

n/2+g—1. _ ) N ) duced. They have reasonably better parameters compared
Theorem 3.7:C,, is Hermitian self-orthogonal ifn. < 3¢—  ith the quantum codes with parameteifg85, 149, 5]s,
4. (185,125, 7]]s, [[185, 113, 8]]s given in [Z].

Proof: If m < 2q—2, then we haveng < n+2g—2-m.  The ahove examples show that we can derive quantum codes
Thus, one hag’,,y C Chizg—2-m. Hence, the desired resulty, ., Theorem[Z13 which are optimal or even have better
follows from the fact that parameters compared withl [2],][9]. However, for largeit

C-=Chyogo-m and CL C Cpy. is_ difficult to find expli(_:it known codes to compare with ours
. since there are no suitable tables for reference. Nevegbgel
This completes the proof. B e can still illustrate our result by comparing it with some
bounds for large;. We only discuss the quantum codes given
IV. QUANTUM STABILIZER CODES in Theoren{ 4.B.

In this section, we apply the Hermitian self-orthogonatify = Remark 4.8:Let us analyze the parameters of the quantum
the classical AG codeS,,, constructed in the previous sectiorcodes given in Theorem 4.3.

to produce quantum stabilizer codes and then analyze thq’w From the quantum Singleton bound and Theofem 4.3, the

parameters. _ quantum codes given in Theorém14.3 satisfy
Let us first recall a result on quantum codes obtained from

Hermitian self-orthogonal classical codes. n+2—q<kg+2dg<n+2,



where n is the length2¢?. So the difference of our
quantum codes from the Singleton boundyis
(ii) Let us consider the quantum Hamming bouhd [7]

L(do—1)/2]

e <n> (¢® - 1)
=0 M
For instance, we just consider the case wheare- 2¢q —
3. Then,dg = ¢ — 1. Thus, if take logarithm of the
right-hand side of the above Hamming bound, we get the
following limit

1 (¢—2)/2 n . 3
alogq Z <')(q2—1)] -3

=0

as g tends tooo, i.e., the right-hand side of the above
Hamming bound ig;??/2+°(9) The left-hand side of the
above Hamming bound ig??—2. If we take logarithm of
both the sides with basg then one can see the difference
is aboutq/2 + o(q). This difference is smaller than the
one compared with the Singleton bound.
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