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Abstract—We consider the two-encoder multiterminal source
coding problem subject to distortion constraints computed un-
der logarithmic loss. We provide a single-letter description of
the achievable rate distortion region for arbitrarily correlated
sources with finite alphabets. In doing so, we also give the rate
distortion region for the CEO problem under logarithmic loss.
Notably, the Berger-Tung inner bound is tight in both settings.

I. INTRODUCTION

Characterizing the rate distortion region for the two-encoder
lossy source coding problem is perhaps the most well-known,
long-standing open problem in the field of multiterminal
source coding. Indeed, it is commonly referred to as the
multiterminal source coding problem (a tradition to which we
adhere in the present paper). Although this problem was posed
nearly four decades ago, a description of the rate distortion
region eluded researchers for any nontrivial choice of source
distribution and distortion measure until the seminal work [1]
by Wagner et al. in 2008.

In [1], the authors characterized the rate distortion region for
jointly Gaussian sources subject to quadratic distortion con-
straints. Notably, [1] showed that the extension of the single-
encoder vector quantization scheme to two encoders (com-
monly referred to as the Berger-Tung achievability scheme)
suffices to attain any point in the achievable rate distortion
region. However, due to the reliance of [1] on the peculiarities
of the Gaussian distribution, it was still not clear whether the
Berger-Tung achievability scheme would be optimal in other
settings of interest.

In the present paper, we answer this point in the affirmative
for the two-encoder setting. Specifically, we show that the
Berger-Tung achievability scheme is optimal for all finite-
alphabet sources when distortion is measured under logarith-
mic loss. To our knowledge, this constitutes the first time that
the entire rate distortion region has been described for the
multiterminal source coding problem with nontrivial finite-
alphabet sources and nontrivial distortion constraints.

Organization

This paper is organized as follows. In Section II we formally
define the logarithmic loss function and the multiterminal
source coding problem we consider. In Section III we define
the CEO problem and give the rate distortion region under

logarithmic loss. In Section IV we return to the multiterminal
source coding problem and derive the rate distortion region
for the two-encoder setting. Section V delivers concluding
remarks.

II. PROBLEM DEFINITION

Let {Y1(j), Y2(j)}nj=1 be a sequence of independent, iden-
tically distributed random variables with finite alphabets Y1
and Y2, respectively, and joint pmf p(y1, y2).

In this paper, we take the reproduction alphabet Ŷi to be
equal to the set of probability distributions over the source
alphabet Yi for i = 1, 2. Thus, for a vector Ŷ ni ∈ Ŷni , we will
use the notation Ŷi[yi](j) to mean the jth coordinate (1 ≤ j ≤
n) of Ŷ ni (which is a probability distribution on Yi) evaluated
for the outcome yi ∈ Yi. In other words, the decoder generates
“soft” estimates of the source sequences.

We consider the logarithmic loss distortion measure defined
as follows:

d(yi, ŷi) = log

(
1

ŷi[yi]

)
for i = 1, 2.

Using this definition for symbol-wise distortion, it is standard
to define the distortion between sequences as

d(yni , ŷ
n
i ) =

1

n

n∑
j=1

d(yi(j), ŷi(j)) for i = 1, 2.

We remark that logarithmic loss is a widely used penalty
function in the theory of learning and has natural interpreta-
tions and applications in gambling and portfolio theory (cf.
[2, Chapter 9]). Several applications of logarithmic loss in the
context of source coding are discussed in the full manuscript
[3]. To the best of our knowledge, logarithmic loss first
appeared explicitly as a distortion measure in the context of
multiterminal source coding in [4].

A rate distortion code (of blocklength n) consists of encod-
ing functions:

g
(n)
i : Yni →

{
1, . . . ,M

(n)
i

}
for i = 1, 2 (1)

and decoding functions

ψ
(n)
i :

{
1, . . . ,M

(n)
1

}
×
{
1, . . . ,M

(n)
2

}
→ Ŷni for i = 1, 2.



A rate distortion vector (R1, R2, D1, D2) is strict-sense
achievable if there exists a blocklength n, encoding functions
g
(n)
1 , g

(n)
2 , and a decoder (ψ(n)

1 , ψ
(n)
2 ) such that

Ri ≥
1

n
logM

(n)
i for i = 1, 2

Di ≥
1

n

n∑
j=1

Ed(Yi(j), Ŷi(j)) for i = 1, 2.

Where

Ŷ ni = ψ
(n)
i (g

(n)
1 (Y n1 ), g

(n)
2 (Y n2 )) for i = 1, 2.

Definition 1. Let RD? denote the set of strict-sense achiev-
able rate distortion vectors and define the set of achievable
rate distortion vectors to be its closure, RD?.

Our ultimate goal in the present paper is to give a single-
letter characterization of the region RD?. However, in order to
do this, we first consider an associated CEO problem. In this
sense, the roadmap for our argument is similar to that of [1].
Specifically, both arguments couple the multiterminal source
coding problem to a parametrized family of CEO problems.
Then, the parameter in the CEO problem is “tuned” to yield
the converse result. Despite this apparent similarity, the proofs
are quite different since the results in [1] depend heavily on
the properties of the Gaussian sources.

III. THE CEO PROBLEM

In order to attack the general multiterminal problem, we
begin by studying the CEO problem (See [5] for an introduc-
tion.). To this end, let {X(j), Y1(j), Y2(j)}nj=1 be a sequence
of independent, identically distributed random variables with
joint pmf p(x, y1, y2) = p(x)p(y1|x)p(y2|x). That is, Y1 ↔
X ↔ Y2 form a Markov chain.

In this section, we consider the reproduction alphabet X̂ to
be equal to the set of probability distributions over the source
alphabet X . As before, for a vector X̂n ∈ X̂n, we will use
the notation X̂[x](j) to mean the jth coordinate of X̂n (which
is a probability distribution on X ) evaluated for the outcome
x ∈ X . As in the rest of this paper, d(·, ·) is the logarithmic
loss distortion measure.

A rate distortion CEO code (of blocklength n) consists of
encoding functions g(n)1 , g

(n)
2 as in (1), and a decoding function

ψ(n) :
{
1, . . . ,M

(n)
1

}
×
{
1, . . . ,M

(n)
2

}
→ X̂n.

A rate distortion vector (R1, R2, D) is strict-sense achiev-
able for the CEO problem if there exists a blocklength n,
encoding functions g(n)1 , g

(n)
2 and a decoder ψ(n) such that

Ri ≥
1

n
logM

(n)
i for i = 1, 2

D ≥ 1

n

n∑
j=1

Ed(X(j), X̂(j)).

Where

X̂n = ψ(n)(g
(n)
1 (Y n1 ), g

(n)
2 (Y n2 )).

Definition 2. Let RD?CEO denote the set of strict-sense
achievable rate distortion vectors and define the set of achiev-
able rate distortion vectors to be its closure, RD?CEO.

A. Inner Bound

Definition 3. Let (R1, R2, D) ∈ RDiCEO if and only if there
exists a joint distribution of the form

p(x)p(y1|x)p(y2|x)p(u1|y1, q)p(u2|y2, q)p(q)

where |Uj | ≤ |Yj | and |Q| ≤ 4, which satisfies

R1 ≥ I(Y1;U1|U2, Q)

R2 ≥ I(Y2;U2|U1, Q)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Q)

D ≥ H(X|U1, U2, Q).

Theorem 1. RDiCEO ⊆ RD
?

CEO.

Before proceeding with the proof, we cite the following
variant of a well-known inner bound:

Proposition 1 (Berger-Tung Inner Bound [6]). The rate dis-
tortion vector (R1, R2, D) is achievable if

R1 ≥ I(U1;Y1|U2, Q)

R2 ≥ I(U2;Y2|U1, Q)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Q)

D ≥ E [d(X, f(U1, U2, Q)]

for a joint distribution

p(x)p(y1|x)p(y2|x)p(u1|y1, q)p(u2|y2, q)p(q)

and reproduction function

f : U1 × U2 ×Q → X̂ .

Proof of Theorem 1: Apply Proposition 1 with the repro-
duction function f(U1, U2, Q) := Pr [X = x|U1, U2, Q]. Then
simply note that E [d(X, f(U1, U2, Q)] = H(X|U1, U2, Q),
which yields the desired result.

Thus, we note that our inner bound is merely the Berger-
Tung inner bound specialized to the case of logarithmic loss.

B. A Matching Outer Bound

A particularly useful property of the logarithmic loss dis-
tortion measure is that the expected distortion is lower-
bounded by a conditional entropy, a property also enjoyed
by quadratic distortion for Gaussian random variables. The
following lemma is a key tool in the proof of the converse.

Lemma 1. Let Z = (g
(n)
1 (Y n1 ), g

(n)
2 (Y n2 )) be the argument

of the reproduction function ψ(n). Then nEd(Xn, X̂n) ≥
H(Xn|Z).

Proof: By definition of the reproduction alphabet, we can
consider the reproduction X̂n to be a probability distribution
on Xn conditioned on the argument Z. In particular, if
x̂n = ψ(n)(z), define s(xn|z) =

∏n
j=1 x̂[x(j)](j), which is



a probability measure on Xn. Then, we obtain the following
lower bound on the expected distortion, conditioned on Z = z:

E
[
d(Xn, X̂n)|Z = z

]
=

1

n

n∑
j=1

∑
xn∈Xn

p(xn|z) log 1

x̂[x(j)](j)

=
1

n
D (p(xn|z)‖s(xn|z)) + 1

n
H(Xn|Z = z)

≥ 1

n
H(Xn|Z = z),

where p(xn|z) = Pr (Xn = xn|Z = z) is the true conditional
distribution. Averaging both sides over all values of Z, we
obtain the desired result.

Definition 4. Let (R1, R2, D) ∈ RDoCEO if and only if there
exists a joint distribution of the form

p(x)p(y1|x)p(y2|x)p(u1|y1, q)p(u2|y2, q)p(q),
which satisfies

R1 ≥ I(Y1;U1|X,Q) +H(X|U2, Q)−D (2)
R2 ≥ I(Y2;U2|X,Q) +H(X|U1, Q)−D

R1 +R2 ≥ I(U1;Y1|X,Q) + I(U2;Y2|X,Q) +H(X)−D
D ≥ H(X|U1, U2, Q). (3)

Theorem 2. If (R1, R2, D) is strict-sense achievable for the
CEO problem, then (R1, R2, D) ∈ RDoCEO.

Proof: Suppose the triple (R1, R2, D) is strict-sense
achievable. Let A be a nonempty subset of {1, 2}, and let
Fj = g

(n)
j (Y nj ) be the message sent by encoder j. Define

Uj(i) = (Fj , Yj(1 : i−1)) and Q(i) = (X(1 : i−1), X(i+1 :
n)) and observe that:

n
∑
k∈A

Rk ≥
∑
k∈A

H(Fk) ≥ I(Y nA ;FA|FAc)

= I(Xn, Y nA ;FA|FAc) (4)

= I(Xn;FA|FAc) +
∑
k∈A

I(Fk;Y
n
k |Xn) (5)

= H(Xn|FAc)−H(Xn|F1, F2)

+
∑
k∈A

n∑
i=1

I(Yk(i);Fk|Xn, Yk(1 : i− 1))

≥ H(Xn|FAc)

+
∑
k∈A

n∑
i=1

I(Yk(i);Fk|Xn, Yk(1 : i− 1))− nD (6)

=

n∑
i=1

H(X(i)|FAc , X(1 : i− 1))

+
∑
k∈A

n∑
i=1

I(Yk(i);Uk(i)|X(i), Q(i))− nD (7)

≥
n∑
i=1

H(X(i)|UAc(i), Q(i))

+
∑
k∈A

n∑
i=1

I(Yk(i);Uk(i)|X(i), Q(i))− nD. (8)

The non trivial steps above can be justified as follows:
• (4) follows since FA is a function of Y nA .
• (5) follows since Fk is a function of Y nk and hence F1 ↔
Xn ↔ F2 form a Markov chain (since Y n1 ↔ Xn ↔ Y n2
form a Markov chain).

• (6) follows since nD ≥ H(Xn|F1, F2) by Lemma 1.
• (7) follows by the chain rule and also from the Markov

condition Yk(i) ↔ Xn ↔ Yk(1 : i − 1) resulting from
the i.i.d. nature of the source sequences.

• (8) follows since conditioning reduces entropy.
Therefore, dividing both sides by n, we have:∑

k∈A

Rk ≥
1

n

n∑
i=1

H(X(i)|UAc(i), Q(i))

+
∑
k∈A

1

n

n∑
i=1

I(Yk(i);Uk(i)|X(i), Q(i))−D.

Also, using Lemma 1 and the fact that conditioning reduces
entropy, we have:

D ≥ 1

n
H(Xn|F1, F2) ≥

1

n

n∑
i=1

H(X(i)|U1(i), U2(i), Q(i)).

Observe that Q(i) is independent of (X(i), Y1(i), Y2(i)) and,
conditioned on Q(i), we have the Markov chain U1(i) ↔
Y1(i) ↔ X(i) ↔ Y2(i) ↔ U2(i). Thus, a standard time-
sharing argument proves the theorem.

Theorem 3. RDoCEO = RDiCEO = RD?CEO.

Proof: We first remark that the cardinality bounds in the
definition of RDiCEO can be imposed without any loss of
generality. This is a consequence of [7, Lemma 2.2] and is
discussed in detail in the full manuscript [3].

Fix p(q), p(u1|y1, q), and p(u2|y2, q) and consider the
extreme points of polytope defined by the inequalities (2)-(3):

P1 = (0, 0, I(Y1;U1|X,Q) + I(Y2;U2|X,Q) +H(X))

P2 = (I(Y1;U1|Q), 0, I(U2;Y2|X,Q) +H(X|U1, Q))

P3 = (0, I(Y2;U2|Q), I(U1;Y1|X,Q) +H(X|U2, Q))

P4 = (I(Y1;U1|Q), I(Y2;U2|U1, Q), H(X|U1, U2, Q))

P5 = (I(Y1;U1|U2, Q), I(Y2;U2|Q), H(X|U1, U2, Q)),

where the point Pj is a triple (R(j)
1 , R

(j)
2 , D(j)). We say a point

(R
(j)
1 , R

(j)
2 , D(j)) is dominated by a point in RDiCEO if there

exists some (R1, R2, D) ∈ RDiCEO for which R1 ≤ R
(j)
1 ,

R2 ≤ R(j)
2 , and D ≤ D(j). Observe that each of these extreme

points is dominated by a point in RDiCEO:

• First, observe that (R
(4)
1 , R

(4)
2 , D(4)) and

(R
(5)
1 , R

(5)
2 , D(5)) are both in RDiCEO, so these

points are not problematic.
• Next, observe that the point (0, 0, H(X)) is in RDiCEO,

which can be seen by setting all auxiliary ran-
dom variables to be constant. This point dominates
(R

(1)
1 , R

(1)
2 , D(1)).



• By using auxiliary random variables (Û1, Û2, Q) =
(U1, ∅, Q), the point (I(Y1;U1|Q), 0, H(X|U1, Q)) is in
RDiCEO, and dominates the point (R(2)

1 , R
(2)
2 , D(2)). By

a symmetric argument, the point (R(3)
1 , R

(3)
2 , D(3)) is also

dominated by a point in RDiCEO.
Since RDoCEO is the convex hull of all such extreme points
(i.e., the convex hull of the union of extreme points over all
appropriate joint distributions), the theorem is proved.

Remark 1. Theorem 3 can be extended to the general case of
m-encoders. Moreover, the converse of the theorem continues
to hold when the reproduction alphabet X̂n is not restricted
to the set of product distributions. The key observation is that
Lemma 1 continues to hold. The reader is directed to the
complete manuscript [3] for details.

IV. MULTITERMINAL SOURCE CODING

With Theorem 3 in hand, we are now in a position to
characterize the achievable rate distortion region for the mul-
titerminal source coding problem under logarithmic loss.

A. Inner Bound

Definition 5. Let (R1, R2, D1, D2) ∈ RDi if and only if there
exists a joint distribution of the form

p(y1, y2)p(u1|y1, q)p(u2|y2, q)p(q)

where |Uj | ≤ |Yj | and |Q| ≤ 5, which satisfies

R1 ≥ I(Y1;U1|U2, Q)

R2 ≥ I(Y2;U2|U1, Q)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Q)

D1 ≥ H(Y1|U1, U2, Q)

D2 ≥ H(Y2|U1, U2, Q).

Theorem 4. RDi ⊆ RD?.

Again, we require an appropriate version of the Berger-Tung
inner bound:

Proposition 2 (Berger-Tung Inner Bound [6]). The rate dis-
tortion vector (R1, R2, D1, D2) is achievable if

R1 ≥ I(U1;Y1|U2, Q)

R2 ≥ I(U2;Y2|U1, Q)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Q)

D1 ≥ E [d(Y1, f1(U1, U2, Q)]

D2 ≥ E [d(Y2, f2(U1, U2, Q)] .

for a joint distribution

p(y1, y2)p(u1|y1, q)p(u2|y2, q)p(q)

and reproduction functions

fi : U1 × U2 ×Q → Ŷi, for i = 1, 2.

Proof of Theorem 4: Similar to the proof of Theo-
rem 1, apply Proposition 2 with the reproduction functions
fi(U1, U2, Q) := Pr [Yi = yi|U1, U2, Q].

B. A Matching Outer Bound

Theorem 5. RDi = RD?.

Proof: Assume (R1, R2, D1, D2) is strict-sense achiev-
able. We first note that the cardinality bounds in the definition
of RDi can be imposed without any loss of generality. This
is a consequence of [7, Lemma 2.2] and is discussed in
detail in the full manuscript [3]. Thus, it suffices to show that
(R1, R2, D1, D2) ∈ RDi, ignoring the cardinality constraints.

With foresight, define a new random variable X as:

X =

{
(Y1, 1) with probability t
(Y2, 2) with probability 1− t. (9)

In other words, X = (YB , B), where B is a Bernoulli random
variable independent of Y1, Y2. Observe that we have the
Markov chain Y1 ↔ X ↔ Y2, and thus, we are able to apply
Theorem 3.

Since (R1, R2, D1, D2) is strict-sense achievable, there exist
reproductions Ŷ ni satisfying

1

n

n∑
j=1

Ed(Yi(j), Ŷi(j)) ≤ Di for i = 1, 2.

Fix the encoding operations and set X̂[(y1, 1)](j) = tŶ1[y1](j)
and X̂[(y2, 2)](j) = (1 − t)Ŷ2[y2](j). Then for the CEO
problem defined by (X,Y1, Y2):

1

n

n∑
j=1

Ed(X(j), X̂(j)) = h2(t) +
t

n

n∑
j=1

Ed(Y1(j), Ŷ1(j))

+
1− t
n

n∑
j=1

Ed(Y2(j), Ŷ2(j))

≤ h2(t) + tD1 + (1− t)D2,

where h2(t) is the binary entropy function. Hence, for
this CEO problem, distortion h2(t) + tD1 + (1 − t)D2

is achievable and Theorem 3 yields a joint distribution1

p(y1, y2)pt(u1|y1, q)pt(u2|y2, q)pt(q) satisfying

R1 ≥ I(U (t)
1 ;Y1|U (t)

2 , Q(t))

R2 ≥ I(U (t)
2 ;Y2|U (t)

1 , Q(t))

R1 +R2 ≥ I(U (t)
1 , U

(t)
2 ;Y1, Y2|Q(t))

 (10)

tD1 + (1− t)D2 ≥ tH(Y1|U (t)
1 , U

(t)
2 , Q(t))

+ (1− t)H(Y2|U (t)
1 , U

(t)
2 , Q(t)), (11)

where the distortion constraint (11) follows since

H(X|U (t)
1 , U

(t)
2 , Q(t)) = h2(t) + tH(Y1|U (t)

1 , U
(t)
2 , Q(t))

+ (1− t)H(Y2|U (t)
1 , U

(t)
2 , Q(t)).

Next, fix ε > 0, and partition the interval [0, 1] as 0 = t1 <
t2 < · · · < tm = 1, such that |tj+1 − tj | < ε

H(Y1,Y2)
. We

have just proven that, for each tj in the partition, there exist
distributions ptj (u1|y1, q), ptj (u2|y2, q), ptj (q) for which the
corresponding joint distribution satisfies (10)-(11).

1Henceforth, we use the superscript (t) to explicitly denote the dependence
of the auxiliary random variables on the distribution parametrized by t.



Now, suppose t satisfies tj < t < tj+1. Then we can
express t as a convex combination t = θtj + (1 − θ)tj+1.
By timesharing between the distributions {ptj (u1|y1, q),
ptj (u2|y2, q), ptj (q)} with probability θ and the distributions
{ptj+1

(u1|y1, q), ptj+1
(u2|y2, q), ptj+1

(q)} with probability
(1 − θ), we obtain a set of distributions2 {pt(u1|y1, q),
pt(u2|y2, q), pt(q)} for which the corresponding joint distri-
bution satisfies

R1 ≥ I(U (t)
1 ;Y1|U (t)

2 , Q(t))

= θI(U
(tj)
1 ;Y1|U

(tj)
2 , Q(tj))

+ (1− θ)I(U (tj+1)
1 ;Y1|U

(tj+1)
2 , Q(tj+1))

R2 ≥ I(U (t)
2 ;Y2|U (t)

1 , Q(t))

= θI(U
(tj)
2 ;Y2|U

(tj)
1 , Q(tj))

+ (1− θ)I(U (tj+1)
2 ;Y2|U

(tj+1)
1 , Q(tj+1))

R1 +R2 ≥ I(U (t)
1 , U

(t)
2 ;Y1, Y2|Q(t))

= θI(U
(tj)
1 , U

(tj)
2 ;Y1, Y2|Q(tj))

+ (1− θ)I(U (tj+1)
1 , U

(tj+1)
2 ;Y1, Y2|Q(tj+1)).

By repeating this procedure for each interval in the partition,
we obtain a family of such distributions parametrized by t ∈
[0, 1]. Next, we show that the following holds for any t:

tH(Y1|U (t)
1 , U

(t)
2 , Q(t)) + (1− t)H(Y2|U (t)

1 , U
(t)
2 , Q(t))

≤ tD1 + (1− t)D2 + ε. (12)

To simplify notation, define fi(t) , H(Yi|U (t)
1 , U

(t)
2 , Q(t)) for

i = 1, 2 and t ∈ [0, 1]. By construction, we have that

tf1(t) + (1− t)f2(t) ≤ tD1 + (1− t)D2 (13)

whenever t = tj for some tj in the partition. Next, observe
that if t = θtj + (1 − θ)tj+1, then fi(t) = θfi(tj) + (1 −
θ)fi(tj+1) by virtue of the time-sharing scheme. Furthermore,
fi is piecewise-linear (and therefore continuous) and bounded
from above by H(Y1, Y2). Now, suppose t = θtj+(1−θ)tj+1

for some j and θ. Then some straightforward algebra yields:

tf1(t) + (1− t)f2(t)
= (θtj + (1− θ)tj+1) (θf1(tj) + (1− θ)f1(tj+1))

+ (1− θtj − (1− θ)tj+1) (θf2(tj) + (1− θ)f2(tj+1))

≤ θ2 [tjf1(tj) + (1− tj)f2(tj)]
+ (1− θ)2 [tj+1f1(tj+1) + (1− tj+1)f2(tj+1)]

+ θ(1− θ) [(1− tj+1)f2(tj+1) + (1− tj)f2(tj)
+tjf1(tj) + tj+1f1(tj+1)] + ε (14)

≤ θ2 [tjD1 + (1− tj)D2]

+ (1− θ)2 [tj+1D1 + (1− tj+1)D2]

+ θ(1− θ) [(1− tj+1)D2 + (1− tj)D2

+tjD1 + tj+1D1] + ε (15)
= tD1 + (1− t)D2 + ε, (16)

2We can embed the timesharing scheme in the auxiliary variable Q(t).

where (14) follows since |tj+1− tj | is small, and (15) follows
from (13).

This proves (12) and implies that it is impossible to have

f1(t) > D1 + ε and f2(t) > D2 + ε

simultaneously for any t ∈ [0, 1], else we would contradict
(16). Also, we have the following two inequalities at the
endpoints of the interval [0, 1]:

f1(1) ≤ D1 and f2(0) ≤ D2

since t1 = 0 and tm = 1 are in the partition. Combining these
observations with the fact that f1 and f2 are continuous, there
must exist some t∗ ∈ [0, 1] for which f1(t

∗) ≤ D1 + ε and
f2(t

∗) ≤ D2 + ε simultaneously.
Therefore, distributions {pt∗(u1|y1, q), pt∗(u2|y2, q), pt∗(q)}

corresponding to t∗ yield a joint distribution which satisfies
the rate constraints (10) and the distortion constraints

Di ≥ H(Yi|U (t∗)
1 , U

(t∗)
2 , Q(t∗))− ε for i = 1, 2.

Since ε was arbitrary, this proves the converse.

Remark 2. Like Theorem 3, the converse of Theorem 5
continues to hold when the reproduction alphabets are not
restricted to the set of product distributions. The key step is
to consider the super-sources (X,Y1,Y2) = (Xn, Y n1 , Y

n
2 )

in the proof of Theorem 5 and apply the strengthened CEO
converse to obtain the desired joint distribution satisfying (10)-
(11). Details are in the complete manuscript [3].

V. CONCLUDING REMARKS

Generalizing Theorem 5 to three or more encoders rep-
resents a formidable challenge. Indeed, an extension of the
converse alone would not be sufficient since this would imply
optimality of the Berger-Tung inner bound for more than two
encoders. This is known to be false since the Berger-Tung
achievability scheme is suboptimal for the lossless modulo-
sum problem studied by Körner and Marton in [8].
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