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ABSTRACT

Symmetrical multilevel diversity coding (SMDC) is a classical model for coding

over distributed storage. In this setting, a simple separate encoding strategy known

as superposition coding was shown to be optimal in terms of achieving the minimum

sum rate and the entire admissible rate region of the problem in the literature. The

proofs utilized carefully constructed induction arguments, for which the classical

subset entropy inequality of Han played a key role.

This thesis includes two parts. In the first part the existing optimality proofs for

classical SMDC are revisited, with a focus on their connections to subset entropy

inequalities. First, a new sliding-window subset entropy inequality is introduced

and then used to establish the optimality of superposition coding for achieving the

minimum sum rate under a weaker source-reconstruction requirement. Second, a

subset entropy inequality recently proved by Madiman and Tetali is used to develop

a new structural understanding to the proof of Yeung and Zhang on the optimality of

superposition coding for achieving the entire admissible rate region. Building on the

connections between classical SMDC and the subset entropy inequalities developed

in the first part, in the second part the optimality of superposition coding is further

extended to the cases where there is an additional all-access encoder, an additional

secrecy constraint or an encoder hierarchy.
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1. INTRODUCTION

In recent years, the boom of cloud computing applications has mounted great

challenges on the design of the distributed storage systems, where users would like

to store the information on several distributed servers. The motivation of this thesis

is in terms of the robustness issue in distributed storage systems as shown in Fig.

1.1.

Figure 1.1: An example of distributed storage system with failures.
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Particularly, when a network erasure happens temporarily or permanently due

to link failure or disk malfunction, it is still desirable to recover the information

through the erasure-resilient coding schemes. The schemes such as repetition codes

or maximum distance separable (MDS) codes can decode information if at least α

out of the total L servers remains available. General speaking, these erasure coding

schemes are well understood in the literature. However, from the system design point

of view, the problem left is how to choose the decoding threshold α, which controls

the tradeoff between robustness and efficiency as shown in Fig. 1.2. One extreme is

to set α = 1, in which the system is the most robust as long as there is one node

available. However, apparently the information should be repeated at every node,

which may need huge amount of storage in total. On the contrary, when α = L, the

system is the most efficient but the least robust since the information is not decod-

able if any single node fails. Meanwhile, not all information are created equal, i.e.,

some information are more important than others. Take binary representations as an

example: MSBs are more important than LSBs. Due to the information hierarchy,

the design that adapts the decoding threshold to the importance of the source is

preferred. From the architectural level, the fundamental information theoretic ques-

tion about this adaptive design is which coding scheme is optimal, separate encoding

or joint encoding. Separate encoding is easy to implement and manage while joint

encoding is potentially more efficient in terms of minimizing the storage space due

to the principle of network coding.

Symmetrical multilevel diversity coding (SMDC) is a classical model arising from

the coding over distributed storage, which was first introduced by Roche [1] and

Yeung [2]. In this setting, there are a total of L independent discrete memoryless

sources S1, . . . , SL, where the importance of the source Sl is assumed to decrease with

the subscript l. The sources are to be encoded by a total of L randomly accessible

2



E
ffi
c
ie
n
c
y

Robustness

α = 1

α = L

Figure 1.2: Decoding threshold determine the tradeoff between system robustness
and storage efficiency.

encoders. The goal of encoding is to ensure that the number of sources that can be

nearly perfectly reconstructed grows with the number of available encoder outputs at

the decoder. More specifically, denote by U ⊆ ΩL := {1, . . . , L} the set of accessible

encoders. The realization of U is unknown a priori at the encoders. However, the

sources S1, . . . , Sα need to be nearly perfectly reconstructed whenever |U | ≥ α at

the decoder. The word “symmetrical” here refers to the fact that the sources that

need to be nearly perfectly reconstructed depend on the set of accessible encoders

only via its cardinality. The rate allocations at different encoders, however, can be

3



different and are not necessarily symmetrical.

A natural strategy for SMDC is to encode the sources separately at each of the

encoders (no coding across different sources) known as superposition coding [2]. To

show that the natural superposition coding strategy is also optimal, however, turned

out to be rather nontrivial. The optimality of superposition coding in terms of

achieving the minimum sum rate was established by Roche, Yeung, and Hau [3]. The

proof used a carefully constructed induction argument, for which the classical subset

entropy inequality of Han [4] played a key role. Later, the optimality of superposition

coding in terms of achieving the entire admission rate region was established by

Yeung and Zhang [5]. Their proof was based on a new subset entropy inequality,

which was established by carefully combining Han’s subset inequality with several

highly technical results on the analysis of a sequence of linear programs (which are

used to characterize the performance of superposition coding).

This thesis includes two parts. In the first part (Section 2), the optimality proofs

of [3] and [5] are revisited in light of two new subset entropy inequalities:

• First, a new sliding-window subset entropy inequality is introduced, which

not only implies the classical subset entropy inequality of Han [4] in a trivial

way, but also leads to a new proof of the optimality of superposition encoding

for achieving the minimum sum rate under a weaker source-reconstruction

requirement.

• Second, a subset entropy inequality recently proved by Madiman and Tetali [6]

is leveraged to provide a new structural understanding to the subset entropy

inequality of Yeung and Zhang [5]. Based on this new understanding, a condi-

tional version of the subset entropy inequality of Yeung and Zhang [5] is further

established, which plays a key role in extending the optimality of superposition

4



coding to the case where there is an additional secrecy constraint.

In the second part of the thesis (Section 3 to Section 5), three extensions of

classical SMDC are considered:

• The first extension, which we shall refer to as Symmetrical Multilevel Diversity

Coding with an All-Access Encoder (SMDC-A), features an all-access encoder,

in addition to the L randomly accessible encoders in the classical setting, whose

output is available at the decoder at all time. This model is mainly motivated

by the proliferation of mobile computing devices (laptop computers, tablets,

smart phones etc.), which can access both remote storage nodes via unreliable

wireless links and local hard disks which are always available but are of limited

capacity. It is shown that in this setting, superposition coding remains optimal

in terms of achieving the entire admissible rate region. Key to our proof is to

identify the supporting hyperplanes that define the superposition coding rate

region and then apply the subset entropy inequality of Yeung and Zhang [5].

• The second extension, which we shall refer to as Secure Multilevel Diversity

Coding (S-SMDC), extends the problem of SMDC to the secure communica-

tion setting. The problem was first introduced in [7], where the optimality

of superposition coding for achieving the minimum sum rate was established

via the classical subset entropy inequality of Han [4]. Through the conditional

version of the subset entropy inequality of Yeung and Zhang [5] established in

the first part, here we show that superposition coding can, in fact, achieve the

entire admissible rate region of the problem, resolving the conjecture of [7] by

positive.

• The third extension, which we shall refer as Hierarchical Multilevel Diversity

Coding (HMDC), further extends the problem of SMDC to a special asymmet-

5



rical setting. This model is a natural generalization of symmetrical multilevel

diversity coding to heterogeneous distributed storage systems. Recall that in

symmetrical multilevel diversity coding, the number of messages that needs

to be recovered by the decoder depends on the available subset of the encoder

outputs only via its cardinality. Therefore, the underlying assumption for sym-

metrical multilevel diversity coding is that all distributed storage nodes have

the same reliability. For heterogeneous distributed storage systems, one may

associate each storage node with a reliability score and design a coding scheme

such that the number of messages that needs to be recovered by the decoder

depends on the available subset of the encoder outputs via its accumulative

reliability score. Then the encoders are classified into different ranks due to

their different reliability scores. In our setting, the encoders show two reliabil-

ity scores. The encoders with higher reliability score are referred as the strong

encoders, while the others are weak encoders. With this encoder hierarchy, it

is shown that superposition coding remains optimal in achieving the minimum

sum rate but the optimality of achieving the entire admissible rate region is

still unknown. We conjecture that superposition coding is optimal in achieving

the entire admissible rate region.

6



2. SYMMETRICAL MULTILEVEL DIVERSITY CODING REVISITED

2.1 Problem Statement And Optimality Of Superposition Coding

2.1.1 Problem Statement

As illustrated in Figure 2.1, the problem of SMDC consists of:

• a total of L independent discrete memoryless sources {Sα[t]}
∞
t=1, where α =

1, . . . , L and t is the time index;

• a set of L encoders (encoder 1 to L);

• a decoder which can access a nonempty subset U ⊆ ΩL of the encoder outputs.

The realization of U is unknown a priori at the encoders. However, no matter which

U actually materializes, the decoder needs to nearly perfectly reconstruct the sources

S1, . . . , Sα whenever |U | ≥ α.

Encoder 1

Encoder L

Encoder 2(Sn

1
, . . . , Sn

L
)

.

.

.

Decoder

X1

X2

XL

(Ŝn

1
, . . . , Ŝn

|U |)

Sources

XU

R1

R2

RL

Figure 2.1: The classical SMDC problem where a total of L independent discrete
memoryless sources S1, . . . , SL are to be encoded by a total of L encoders. The
decoder, which has access to a subset U of the encoder outputs, needs to nearly
perfectly reconstruct the sources S1, . . . , S|U | no matter what the realization of U is.
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Formally, an (n, (M1, . . . ,ML)) code is defined by a collection of L encoding

functions:

el :
L∏

α=1

Sn
α → {1, . . . ,Ml}, ∀l = 1, . . . , L (2.1)

and 2L − 1 decoding functions:

dU :
∏

l∈U

{1, . . . ,Ml} →

|U |
∏

α=1

Sn
α , ∀U ⊆ ΩL s.t. U 6= ∅. (2.2)

A nonnegative rate tuple (R1, . . . , RL) is said to be admissible if for every ǫ > 0, there

exits, for sufficiently large block-length n, an (n, (M1, . . . ,ML)) code such that:

• (Rate constraints at the encoders)

1

n
logMl ≤ Rl + ǫ, ∀l = 1, . . . , L; (2.3)

• (Asymptotically perfect reconstructions at the decoder)

Pr
{
dU(XU) 6= (Sn

1 , . . . , S
n
|U |)
}
≤ ǫ, ∀U ⊆ ΩL s.t. U 6= ∅ (2.4)

where Sn
α := {Sα[t]}

n
t=1, Xl := el(S

n
1 , . . . , S

n
L) is the output of encoder l, and

XU := {Xl : l ∈ U}.

The admissible rate region R is the collection of all admissible rate tuples (R1, . . . , RL).

The minimum sum rate Rms is defined as

Rms := min
(R1,...,RL)∈R

L∑

l=1

Rl. (2.5)

8



2.1.2 Superposition Coding Rate Region

As mentioned previously, a natural strategy for SMDC is superposition coding,

i.e., to encode the sources separately at the encoders and there is no coding across dif-

ferent sources. Formally, the problem of encoding a single source Sα can be viewed

as a special case of the general SMDC problem, where the sources Sm are deter-

ministic for all m 6= α. In this case, the source Sα needs to be nearly perfectly

reconstructed whenever the decoder can access at least α encoder outputs. Thus,

the problem is essentially to transmit Sα over an erasure channel, and the following

simple source-channel separation scheme is known to be optimal [1, 2]:

• First compress the source sequence Sn
α into a source message Wα using a lossless

source code. It is well known [8, Ch. 5] that the rate of the source message Wα

can be made arbitrarily close to the entropy rate H(Sα) for sufficiently large

block-length n.

• Next, the source message Wα is encoded at encoders 1 to L using a maximum

distance separable code [9]. It is well known [1, 2] that the source message Wα

can be perfectly recovered at the decoder whenever

∑

l∈U

Rl ≥
1

n
H(Wα), ∀U ∈ Ω

(α)
L (2.6)

for sufficiently large block length n, where Ω
(α)
L denotes the collection of all

subsets of ΩL of size α.

Combining the above two steps, we conclude that the admissible rate region for

encoding a single source Sα is given by the collection of all nonnegative rate tuples

9



(R1, . . . , RL) satisfying

∑

l∈U

Rl ≥ H(Sα), ∀U ∈ Ω
(α)
L . (2.7)

By definition, the superposition coding rate region Rsup for encoding the sources

S1, . . . , SL is given by the collection of all nonnegative rate tuples (R1, . . . , RL) such

that

Rl :=
L∑

α=1

r
(α)
l (2.8)

for some nonnegative r
(α)
l , α = 1, . . . , L and l = 1, . . . , L, satisfying

∑

l∈U

r
(α)
l ≥ H(Sα), ∀U ∈ Ω

(α)
L . (2.9)

In principle, an explicit characterization of the superposition coding rate region

Rsup can be obtained by eliminating r
(α)
l , α = 1, . . . , L and l = 1, . . . , L, via a

Fourier-Motzkin elimination from (2.8) and (2.9). However, the elimination process is

unmanageable even for moderate L, as there are simply too many equations involved.

On the other hand, note that the superposition coding rate region Rsup is a convex

polyhedron with polyhedral cone being (R+)L, so an equivalent characterization is

to characterize the supporting hyperplanes:

L∑

l=1

λlRl ≥ f(λ), ∀λ := (λ1, . . . , λL) ∈ (R+)L (2.10)

where

f(λ) = min
(R1,...,RL)∈Rsup

L∑

l=1

λlRl. (2.11)

10



To solving for f(λ), (2.11) can be explicitly written as the following linear pro-

gram,

min
∑L

l=1 λl

(
∑L

α=1 r
(α)
l

)

subject to
∑

l∈U r
(α)
l ≥ H(Sα), ∀U ∈ Ω

(α)
L and α = 1, . . . , L

r
(α)
l ≥ 0, ∀α = 1, . . . , L and l = 1, . . . , L.

(2.12)

The linear program can be further written as

min
∑L

l=1

(
∑L

α=1 λlr
(α)
l

)

subject to
∑

l∈U r
(α)
l ≥ H(Sα), ∀U ∈ Ω

(α)
L and α = 1, . . . , L

r
(α)
l ≥ 0, ∀α = 1, . . . , L and l = 1, . . . , L.

(2.13)

Clearly, the above optimization problem can be separated into the following L

sub-optimization problems:

f(λ) =

L∑

α=1

f ′
α(λ) (2.14)

where

f ′
α(λ) = min

L∑

l=1

λlr
(α)
l , (2.15)

subject to

∑

l∈U

r
(α)
l ≥ H(Sα), ∀U ∈ Ω

(α)
L , (2.16)

r
(α)
l ≥ 0, ∀l = 1, . . . , L. (2.17)

11



The minimization of f ′
α(λ) can be explicitly written as the following linear program

max
(
∑

U∈Ω
(α)
L

cλ(U)
)

H(Sα)

subject to
∑

{U∈Ω
(α)
L

:U∋l}
cλ(U) ≤ λl, ∀l = 1, . . . , L

cλ(U) ≥ 0, ∀U ∈ Ω
(α)
L .

(2.18)

and (2.18) follows from the strong duality for linear programs. For any λ ∈ (R+)L

and any α = 1, . . . , L, let

fα(λ) :=

max
∑

U∈Ω
(α)
L

cλ(U)

subject to
∑

{U∈Ω
(α)
L

:U∋l}
cλ(U) ≤ λl, ∀l = 1, . . . , L

cλ(U) ≥ 0, ∀U ∈ Ω
(α)
L .

(2.19)

Then, we have f ′
α(λ) = fα(λ)H(Sα) and hence

f(λ) =

L∑

α=1

fα(λ)H(Sα) (2.20)

for any λ ∈ (R+)L. Substituting (2.20) into (2.10), we conclude that the superpo-

sition coding rate region Rsup is given by the collection of nonnegative rate tuples

(R1, . . . , RL) satisfying

L∑

l=1

λlRl ≥
L∑

α=1

fα(λ)H(Sα), ∀λ ∈ (R+)L. (2.21)

For a general λ, the linear program (2.19) does not admit a closed-form solution.

However, for λ = 1 := (1, . . . , 1) it can be easily verified that c
(α)
1

= {c1(U) : U ∈

Ω
(α)
L } where

c1(U) :=
1

(
L−1
α−1

) (2.22)

12



is an optimal solution to the linear program (2.19), and we thus have

fα(1) =
∑

U∈Ω
(α)
L

c1(U) =

(
L

α

)

(
L−1
α−1

) =
L

α
(2.23)

for any α = 1, . . . , L. Hence, the minimum sum rate that can be achieved by super-

position coding is given by

min
(R1,...,RL)∈Rsup

L∑

l=1

Rl = f(1) =

L∑

α=1

fα(1)H(Sα) =

L∑

α=1

(L/α)H(Sα). (2.24)

2.1.3 Optimality Of Superposition Coding: Known Proofs

To show that superposition coding is optimal in terms of achieving the entire

admissible rate region, we need to show that for any λ ∈ (R+)L we have

L∑

l=1

λlRl ≥
L∑

α=1

fα(λ)H(Sα), ∀(R1, . . . , RL) ∈ R. (2.25)

In particular, to show that superposition coding is optimal in terms of achieving the

minimum sum rate, we need to show that

L∑

l=1

Rl ≥
L∑

α=1

fα(1)H(Sα) =
L∑

α=1

(L/α)H(Sα), ∀(R1, . . . , RL) ∈ R. (2.26)

Note that for any admissible rate tuple (R1, . . . , RL) ∈ R and ǫ > 0, by the rate

constraints (2.3) we have

n(Rl + ǫ) ≥ H(Xl), ∀l = 1, . . . , L (2.27)

for sufficiently large block-length n. Furthermore, by the asymptotically perfect
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reconstruction requirement (2.4) and the well-known Fano’s inequality we have

H(Sn
1 , . . . , S

n
α|XU) ≤ nδ(n)α (2.28)

for any U ∈ Ω
(α)
L and α = 1, . . . , L, where δ

(n)
α → 0 in the limit as n → ∞ and ǫ → 0.

Thus, for any V ∈ Ω
(α−1)
L we have

H(XV |S
n
1 , . . . , S

n
α−2) = H(XV |S

n
1 , . . . , S

n
α−1) + I(XV ;S

n
α−1|S

n
1 , . . . , S

n
α−2) (2.29)

= H(XV |S
n
1 , . . . , S

n
α−1) +H(Sn

α−1|S
n
1 , . . . , S

n
α−2)−

H(Sn
α−1|S

n
1 , . . . , S

n
α−2, XV ) (2.30)

≥ H(XV |S
n
1 , . . . , S

n
α−1) +H(Sn

α−1)−H(Sn
1 , . . . , S

n
α−1|XV )

(2.31)

≥ H(XV |S
n
1 , . . . , S

n
α−1) + nH(Sα−1)− nδ

(n)
α−1 (2.32)

where (2.31) follows from the facts that all sources are independent so

H(Sn
α−1|S

n
1 , . . . , S

n
α−2) = H(Sn

α−1)

and that

H(Sn
α−1|S

n
1 , . . . , S

n
α−2, XV ) = H(Sn

1 , . . . , S
n
α−1|XV )−H(Sn

1 , . . . , S
n
α−2|XV )

≤ H(Sn
1 , . . . , S

n
α−1|XV ). (2.33)

Therefore, starting with (2.27) and applying (2.32) iteratively may lead us towards

a proof of (2.25) and (2.26). Note, however, that to apply (2.32) iteratively we shall

need to bound from below H(XV |S
n
1 , . . . , S

n
α−1) in terms of H(XU |S

n
1 , . . . , S

n
α−1) for

14



some U ∈ Ω
(α)
L . The key observation of [3] and [5] is that such bounds exist, not for

an arbitrary individual pair of U and V , but rather at the level of an appropriate

averaging among V ∈ Ω
(α−1)
L and U ∈ Ω

(α)
L .

More specifically, [3] considered the classical subset entropy inequality of Han [4],

which can be written as follows.

Theorem 1 (A subset entropy inequality of Han [4]). For any collection of L jointly

distributed random variables (X1, . . . , XL), we have

1
(

L

α−1

)

∑

V ∈Ω
(α−1)
L

H(XV )

α− 1
≥

1
(
L

α

)

∑

U∈Ω
(α)
L

H(XU)

α
(2.34)

for any α = 2, . . . , L.

Essentially, considering the average joint entropy of all subsets of fixed size, (2.34)

says that the average joint entropy per element decreases with the size of the subsets.

The proof of Theorem 1 can be found in Appendix A.

Iteratively applying (2.32) and (2.34), we may obtain

1

L

L∑

l=1

H(Xl) =
1
(
L

1

)

∑

V ∈Ω
(1)
L

H(XV ) (2.35)

≥
1
(
L

m

)

∑

U∈Ω
(m)
L

H(XU |S
n
1 , . . . , S

n
m)

m
+ n

m∑

α=1

H(Sα)

α
− n

m∑

α=1

δ
(n)
α

α
(2.36)

for any m = 1, . . . , L. In particular, let m = L, and we have

1

L

L∑

l=1

H(Xl) ≥
1
(
L

L

)

∑

U∈Ω
(L)
L

H(XU |S
n
1 , . . . , S

n
L)

L
+ n

L∑

α=1

H(Sα)

α
− n

L∑

α=1

δ
(n)
α

α

≥ n
L∑

α=1

H(Sα)

α
− n

L∑

α=1

δ
(n)
α

α
. (2.37)
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Substituting (2.27) into (2.37) and dividing both sides of the inequality by n, we

have

1

L

L∑

l=1

(Rl + ǫ) ≥
L∑

α=1

H(Sα)

α
−

L∑

α=1

δ
(n)
α

α
. (2.38)

Finally, letting n → ∞ and ǫ → 0 completes the proof of (2.26), i.e., superposition

coding can achieve the minimum sum rate for the general SMDC problem.

To prove that superposition coding can in fact achieve the entire admissible rate

region, Yeung and Zhang [5] proved the following key subset entropy inequality.

Theorem 2 (A subset entropy inequality of Yeung and Zhang [5]). For any λ ∈

(R+)L, there exists a function cλ : 2ΩL \ ∅ → R
+ such that:

1) for each α = 1, . . . , L, c
(α)
λ

:= {cλ(U) : U ∈ Ω
(α)
L } is an optimal solution to the

linear program (2.19); and

2) for each α = 2, . . . , L,

∑

V ∈Ω
(α−1)
L

cλ(V )H(XV ) ≥
∑

U∈Ω
(α)
L

cλ(U)H(XU) (2.39)

for any collection of L jointly distributed random variables (X1, . . . , XL).

Iteratively applying (2.32) and (2.39), we may obtain

∑

V ∈Ω
(1)
L

cλ(V )H(V ) ≥
∑

U∈Ω
(m)
L

cλ(U)H(XU |S
n
1 , . . . , S

n
m)+

n

m∑

α=1

fα(λ)H(Sα)− n

m∑

α=1

fα(λ)δ
(n)
α (2.40)

for any m = 1, . . . , L. In particular, let m = L, and note that for α = 1 the optimal
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solution to the linear program (2.19) is unique and is given by

cλ({l}) = λl, ∀l ∈ ΩL. (2.41)

We have

L∑

l=1

λlH(Xl) ≥
∑

U∈Ω
(L)
L

cλ(U)H(XU |S
n
1 , . . . , S

n
L)+

n
L∑

α=1

fα(λ)H(Sα)− n
L∑

α=1

fα(λ)δ
(n)
α (2.42)

≥ n

L∑

α=1

fα(λ)H(Sα)− n

L∑

α=1

fα(λ)δ
(n)
α . (2.43)

Substituting (2.27) into (2.43) and dividing both sides of the inequality by n, we

have
L∑

l=1

λl(Rl + ǫ) ≥
L∑

α=1

fα(λ)H(Sα)−
L∑

α=1

fα(λ)δ
(n)
α . (2.44)

Finally, letting n → ∞ and ǫ → 0 completes the proof of (2.25), i.e., superposition

coding can achieve the entire admissible rate region for the general SMDC problem.

2.2 Minimum Sum Rate Via A Sliding-window Subset Entropy Inequality

In this section, we prove a new sliding-window subset entropy inequality and then

use it to provide an alternative proof of the optimality of superposition coding for

achieving the minimum sum rate.
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2.2.1 A Sliding-window Subset Entropy Inequality

For any integer l let

〈l〉 :=







l mod L, if l mod L 6= 0

L, if l mod L = 0
(2.45)

and for any l = 1, . . . , L and α = 1, . . . , L let

W
(α)
l := {l, 〈l + 1〉, . . . , 〈l + α− 1〉}. (2.46)

As illustrated in Figure 2.2, W
(α)
l represents a sliding window of length α starting

with l when the integers 1, . . . , L are circularly placed (clockwise or counter clockwise)

based on their natural order. We have the following sliding-window subset entropy

inequality.

Theorem 3 (A sliding-window subset entropy inequality). For any collection of L

jointly distributed random variables (X1, . . . , XL), we have

L∑

l=1

H(X
W

(α−1)
l

)

α− 1
≥

L∑

l=1

H(X
W

(α)
l

)

α
(2.47)

for any α = 2, . . . , L. The equalities hold when X1, . . . , XL are mutually independent

of each other.
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1

l

L

〈l + α− 1〉

W
(α)
l

2

α

W
(α)
1

Figure 2.2: An illustration of the sliding windows of length α when the integers
1, . . . , L are circularly placed (clockwise) based on their natural order.

Proof. Consider a proof via an induction on α. First, for α = 2 we have

L∑

l=1

H(X
W

(1)
l

) =
L∑

l=1

H(Xl) (2.48)

=

L∑

l=1

H(Xl) +H(X〈l+1〉)

2
(2.49)

≥
L∑

l=1

H(Xl, X〈l+1〉)

2
(2.50)

=

L∑

l=1

H(X
W

(2)
l

)

2
(2.51)

where (2.50) follows from the independence bound on entropy.

Next, assume that the inequality (2.47) holds for α = r for some r ∈ {2, . . . , L−
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1}, i.e.,

L∑

l=1

H(X
W

(r−1)
l

)

r − 1
≥

L∑

l=1

H(X
W

(r)
l

)

r
. (2.52)

We have

L∑

l=1

H(X
W

(r)
l

) =
1

2

L∑

l=1

[

H(X
W

(r)
l

) +H(X
W

(r)
〈l+1〉

)

]

(2.53)

≥
1

2

L∑

l=1

[

H(X
W

(r+1)
l

) +H(X
W

(r−1)
〈l+1〉

)

]

(2.54)

=
1

2

L∑

l=1

H(X
W

(r+1)
l

) +
1

2

L∑

l=1

H(X
W

(r−1)
〈l+1〉

) (2.55)

=
1

2

L∑

l=1

H(X
W

(r+1)
l

) +
1

2

L∑

l=1

H(X
W

(r−1)
l

) (2.56)

≥
1

2

L∑

l=1

H(X
W

(r+1)
l

) +
1

2
·
r − 1

r

L∑

l=1

H(X
W

(r)
l

) (2.57)

where (2.54) follows from the submodularity of entropy [14, Ch. 14.A]

H(XU) +H(XV ) ≥ H(XU∪V ) +H(XU∩V ) (2.58)

for U = W
(r)
l and V = W

(r)
〈l+1〉 so U ∪ V = W

(r+1)
l and U ∩ V = W

(r−1)
〈l+1〉 , and

(2.57) follows from the induction assumption (2.52). Moving the second term on the

right-hand side of (2.57) to the left and multiplying both sides by 2
r+1

, we have

1

r

L∑

l=1

H(X
W

(r)
l

) ≥
1

r + 1

L∑

l=1

H(X
W

(r+1)
l

). (2.59)

We have thus proved that the inequality (2.47) also holds for α = r + 1.

20



Finally, note that when X1, . . . , XL are mutually independent, we have

L∑

l=1

H(X
W

(α)
l

)

α
=

L∑

l=1

H(Xl), ∀α = 1, . . . , L. (2.60)

This completes the proof of Theorem 3.

Note that for α = L, the classical subset entropy inequality of Han (2.34) and

the sliding-window subset entropy inequality (2.47) are equivalent, and both can be

equivalently written as

1

L− 1

L∑

l=1

H(XΩL\{l}) ≥ H(XΩL
). (2.61)

For a general α, the classical subset entropy inequality of Han (2.34) can be derived

from the sliding-window subset entropy inequality (2.47) via a simple permutation

argument as follows. Let π be a permutation on ΩL. For any l = 1, . . . , L and

α = 1, . . . , L, let

W
(α)
π,l := {π−1(l), π−1(〈l + 1〉), . . . , π−1(〈l + α− 1〉)}. (2.62)

By Theorem 3, we have

1

α− 1

L∑

l=1

H(X
W

(α−1)
π,l

) ≥
1

α

L∑

l=1

H(X
W

(α)
π,l

) (2.63)

for any α = 2, . . . , L. Averaging (2.63) over all possible permutations π, we have

1

L!

∑

π

[

1

α− 1

L∑

l=1

H(X
W

(α−1)
π,l

)

]

≥
1

L!

∑

π

[

1

α

L∑

l=1

H(X
W

(α)
π,l

)

]

. (2.64)
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Note that for any α = 1, . . . , L,

∑

π

L∑

l=1

H(X
W

(α)
π,l

) = L · α!(L− α)!
∑

U∈Ω
(α)
L

H(XU). (2.65)

Substituting (2.65) into (2.64) and dividing both sides of the inequality by L establish

the classical subset entropy inequality of Han (2.34).

2.2.2 The Minimum Sum Rate

The sliding-window subset entropy inequality (2.47) can be used to provide an

alternative proof of the optimality of superposition coding for achieving the minimum

sum rate as follows. Let us first show that

1

L

L∑

l=1

H(Xl) =
1

L

L∑

l=1

H(X
W

(1)
l

) (2.66)

≥
1

L

L∑

l=1

H(X
W

(m)
l

|Sn
1 , . . . , S

n
m)

m
+ n

m∑

α=1

H(Sα)

α
− n

m∑

α=1

δ
(n)
α

α
(2.67)

for any m = 1, . . . , L.

Consider a proof via an induction on m. When m = 1, (2.67) can be written as

1

L

L∑

l=1

H(Xl) ≥
1

L

L∑

l=1

H(Xl|S
n
1 ) + nH(S1)− nδ

(n)
1 (2.68)

which can be obtained via a uniform averaging of (2.32) for α = 2 and V = {l} for

l = 1, . . . , L. Now assume that the inequality (2.67) holds for m = r − 1 for some
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r ∈ {2, . . . , L}. We have

1

L

L∑

l=1

H(Xl) ≥
1

L

L∑

l=1

H(X
W

(r−1)
l

|Sn
1 , . . . , S

n
r−1)

r − 1
+ n

r−1∑

α=1

H(Sα)

α
− n

r−1∑

α=1

δ
(n)
α

α
(2.69)

≥
1

L

L∑

l=1

H(X
W

(r)
l

|Sn
1 , . . . , S

n
r−1)

r
+ n

r−1∑

α=1

H(Sα)

α
− n

r−1∑

α=1

δ
(n)
α

α
(2.70)

where (2.70) follows from the sliding-window subset entropy inequality (2.47) with

α = r. Letting α = r + 1 and V = W
(r)
l in (2.32), we have

H(X
W

(r)
l

|Sn
1 , . . . , S

n
r−1) ≥ H(X

W
(r)
l

|Sn
1 , . . . , S

n
r ) + nH(Sr)− nδ(n)r . (2.71)

Substituting (2.71) into (2.70) gives

1

L

L∑

l=1

H(Xl) ≥
1

L

L∑

l=1

H(X
W

(r)
l

|Sn
1 , . . . , S

n
r )

r
+ n

r∑

α=1

H(Sα)

α
− n

r∑

α=1

δ
(n)
α

α
. (2.72)

This completes the proof of the induction step and hence (2.67).

Now let m = L, and we have

1

L

L∑

l=1

H(Xl) ≥
1

L

L∑

l=1

H(X
W

(L)
l

|Sn
1 , . . . , S

n
L)

L
+ n

L∑

α=1

H(Sα)

α
− n

L∑

α=1

δ
(n)
α

α
(2.73)

≥ n

L∑

α=1

H(Sα)

α
− n

L∑

α=1

δ
(n)
α

α
. (2.74)

Substituting (2.27) into (2.74) and dividing both sides of the inequality by n, we

have

1

L

L∑

l=1

(Rl + ǫ) ≥
L∑

α=1

H(Sα)

α
−

L∑

α=1

δ
(n)
α

α
. (2.75)

Finally, letting n → ∞ and ǫ → 0 completes the proof of (2.26), i.e., superposition

coding can achieve the minimum sum rate for the general SMDC problem.
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Note that unlike the original proof of [3], which uses the classical subset entropy

inequality of Han [4] and hence involves all nonempty subsets U of ΩL, our proof

relies on the sliding-window subset entropy inequality (2.47) and hence only involves

the subsets U of a sliding-window type, i.e., U = W
(α)
l for some l = 1, . . . , L and

α = 1, . . . , L. Therefore, based on our proof, the converse result (2.26) remains to be

true even if we weaken the asymptotically perfect reconstruction requirement (2.4)

to

Pr
{
dU(XU) 6= (Sn

1 , . . . , S
n
|U |)
}
≤ ǫ, ∀U ∈

{

W
(α)
l : l = 1, . . . , L and α = 1, . . . , L

}

.

(2.76)

This is the definitive advantage of our proof over that based on the classical subset

entropy inequality of Han [4].

2.3 The Subset Entropy Inequality Of Yeung And Zhang Revisited

In this section, we revisit the subset entropy inequality of Yeung and Zhang (2.39),

which played a key in their proof [5] of the optimality of superposition coding for

achieving the entire admissible rate region of the problem. As mentioned previously,

in [5] the subset entropy inequality (2.39) was proved by combining the classical

subset entropy inequality of Han [4] and a number of analysis results on the sequence

of linear programs (2.19). However, the inequality, as stated in Theorem 2, does not

even directly imply the classical subset entropy inequality of Han [4]. The reason

is that Theorem 2 merely asserts the existence of a set of optimal solutions c
(α)
λ

,

α = 1, . . . , L, that satisfies the subset entropy inequality (2.39), rather than providing

a sufficient condition for the inequality to hold. Below, we shall use a subset entropy

inequality recently proved by Madiman and Tetali [6] to summarize the analysis

results of [5] on the sequence of linear programs (2.19) into a succinct sufficient
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condition for the subset entropy inequality (2.39) to hold.

2.3.1 A Subset Entropy Inequality Of Madiman And Tetali

Consider a hypergraph (U,V) where U is a finite ground set and V is a collection

of subsets of U . An example is shown in Fig. 2.3.

U = {1, 2, 3, 4, 5, 6, 7}

V = {e1, e2, e3, e4} = {{1, 2, 3}, {2, 3}, {3, 5, 6}, {4}}

e1

e2

e3

2

1

3

4

5

6

7

Figure 2.3: An example of hypergraph representation of a set U and its collections
of subsets V. Here, the elements in U are vertices and the subsets are edges, each of
which is represented by distinct color. Two vertices are connected if they belong to
the same subset.
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A function g : V → R
+ is called a fractional cover of (U,V) if it satisfies

∑

{V ∈V :V∋i}

g(V ) ≥ 1, ∀i ∈ U. (2.77)

Theorem 4 (A subset entropy inequality of Madiman and Tetali [6]). Let (U,V) be

a hypergraph, and let g be a fractional cover of (U,V). Then

∑

V ∈V

g(V )H(XV ) ≥ H(XU) (2.78)

for any collection of jointly distributed random variables XU .

The proof of Theorem 4 can be found in Appendix A. The following corollary

provides a “chain” form of the subset entropy inequality (2.78). Let M be a positive

integer, and let Σ be a finite ground set. Let Σ(α) be a collection of subsets of Σ for

each α = 1, . . . ,M,. Assuming that Σ(α), α = 1, . . . ,M , are mutually exclusive, then

{Σ(α) : α = 1, . . . ,M} induces a collection of hypergraphs {(U,VU) : U ∈ ∪M
α=2Σ

(α)}

where

VU := {V ∈ Σ(α−1) : V ⊆ U}, ∀U ∈ Σ(α). (2.79)

We shall term each subset V ∈ VU a “child” of U . For convenience, we shall also

define

UV := {U ∈ Σ(α) : U ⊇ V }, ∀V ∈ Σ(α−1) (2.80)

and term each subset U ∈ UV a “parent” of V .

Corollary 1. Let c : ∪M
α=1Σ

(α) → R
+. For any α = 2, . . . ,M , if there exists a
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collection of functions {gU : U ∈ Σ(α)} for which each gU is a fractional cover of

(U,VU) and such that

c(V ) =
∑

U∈UV

gU(V )c(U), ∀V ∈ Σ(α−1) (2.81)

we have
∑

V ∈Σ(α−1)

c(V )H(XV ) ≥
∑

U∈Σ(α)

c(U)H(XU) (2.82)

for any collection of jointly distributed random variables XΣ.

Proof. Fix α ∈ {2, . . . ,M}. For any U ∈ Σ(α), gU is a fractional cover of (U,VU). By

the subset entropy inequality of Madiman and Tetali (2.78), we have

∑

V ∈VU

gU(V )H(XV ) ≥ H(XU), ∀U ∈ Σ(α). (2.83)

Multiplying both sides of (2.83) by c(U) and summing over U ∈ Σ(α), we have

∑

U∈Σ(α)

∑

V ∈VU

c(U)gU(V )H(XV ) ≥
∑

U∈Σ(α)

c(U)H(XU). (2.84)

Note that

∑

U∈Σ(α)

∑

V ∈VU

c(U)gU(V )H(XV ) =
∑

V ∈Σ(α−1)

(
∑

U∈UV

gU(V )c(U)

)

H(XV ) (2.85)

=
∑

V ∈Σ(α−1)

c(V )H(XV ) (2.86)

where (2.86) follows (2.81). Substituting (2.86) into (2.84) completes the proof of

the corollary.
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2.3.2 Connections To The Subset Entropy Inequalities Of Han And Yeung–Zhang

Specifying Σ = ΩL, M = L, and Σ(α) = Ω
(α)
L for α = 1, . . . , L, the subset entropy

inequality of Madiman and Tetali can be used to provide a unifying proof for both

the subset entropy inequality of Han and the subset entropy inequality of Yeung and

Zhang. Note that the choice {Σ(α) = Ω
(α)
L : α = 1, . . . , L} is regular in that each

subset U ∈ Ω
(α)
L has exactly α children in Ω

(α−1)
L , and each subset V ∈ Ω

(α−1)
L has

exactly L− (α− 1) parents in Ω
(α)
L .

To see how the subset entropy inequality of Madiman and Tetali (2.78) implies

the subset entropy inequality of Han (2.34), let

c(U) :=
1

α
(
L

α

) , ∀U ∈ Ω
(α)
L and α = 1, . . . , L (2.87)

and

gU(V ) :=
1

α− 1
, ∀U ∈ Ω

(α)
L , V ∈ VU , and α = 2, . . . , L. (2.88)

For any α = 2, . . . , L and U ∈ Ω
(α)
L ,

∑

{V ∈VU :V ∋i}

gU(V ) =
|{V ∈ VU : V ∋ i}|

α− 1
=

α− 1

α− 1
= 1, ∀i ∈ U (2.89)

so gU is a uniform fractional cover of (U,VU). Furthermore, for any α = 2, . . . , L

and V ∈ Ω
(α−1)
L we have

∑

U∈UV

gU(V )c(U) =
|UV |

(α− 1)α
(
L

α

) =
L− (α− 1)

(α− 1)α
(
L

α

) =
1

(α− 1)
(

L

α−1

) = c(V ). (2.90)

Substituting (2.87) into (2.82) immediately gives the subset entropy inequality of
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Han (2.34).

To see how the subset entropy inequality of Madiman and Tetali (2.78) implies

the subset entropy inequality of Yeung and Zhang (2.39), we shall need the following

result, which is a synthesis of the analytical results on the sequence of linear programs

(2.19) established in [5]. (For completeness, a sketched proof based on the results

of [5] is included in Appendix B.)

Theorem 5 (A linear programing result of Yeung and Zhang [5]). For any λ ∈

(R+)L, any α = 2, . . . , L, and any c
(α)
λ

which is an optimal solution to the linear

program (2.19) with the optimal value fα(λ) > 0, there exists a collection of functions

{gU : U ∈ Ω
(α)
L } for which each gU is a fractional cover of (U,VU) and such that

c
(α−1)
λ

= {cλ(V ) : V ∈ Ω
(α−1)
L } where

cλ(V ) :=
∑

U∈UV

gU(V )cλ(U) (2.91)

is an optimal solution to the linear program (2.19) with α replaced by α− 1.

Now fix λ ∈ (R+)L, and consider the following construction of cλ = ∪L
α=1c

(α)
λ

.

For α = L, choose c
(L)
λ

to be an arbitrary optimal solution to the linear program

(2.19). For α = 1, . . . , L− 1, construct c
(α)
λ

iteratively as follows. Suppose that c
(α)
λ

is already in place for some α = 2, . . . , L such that c
(α)
λ

is an optimal solution to the

linear program (2.19). If the optimal value fα(λ) > 0, construct c
(α−1)
λ

according to

(2.81) so c
(α−1)
λ

is an optimal solution to the linear program (2.19) with α replaced by

α−1. Moreover, by Corollary 1 c
(α−1)
λ

and c
(α)
λ

satisfy the subset entropy inequality of

Yeung and Zhang (2.39). If, on the other hand, fα(λ) = 0, we have cλ(U) = 0 for all

U ∈ Ω
(α)
L . In this case, choose c

(α−1)
λ

to be an arbitrary optimal solution to the linear

program (2.19) with α replaced by α− 1, and c
(α−1)
λ

and c
(α)
λ

will trivially satisfy the

subset entropy inequality of Yeung and Zhang (2.39). We have thus constructed for
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any λ ∈ (R+)L, a sequence of c
(α)
λ

, α = 1, . . . , L, such that each c
(α)
λ

is an optimal

solution to the linear program (2.19), and the subset entropy inequality of Yeung

and Zhang (2.39) holds for each α = 2, . . . , L.

We mention here that even though both the subset entropy inequality of Han

and the subset entropy inequality of Yeung and Zhang can be directly established

from the subset entropy inequality of Madiman and Tetali, this is not the case for

the sliding-window subset entropy inequality (2.47) except for α = 2 and L. This

can be seen as follows.

Let Σ = ΩL, M = L, and Σ(α) = {W
(α)
l : l = 1, . . . , L} for α = 1, . . . , L. Note

that for any α = 1, . . . , L−1, each sliding window W
(α)
l represents a different subset

for different l. (For α = L, all sliding windows W
(L)
l , l = 1, . . . , L, represent the

same subset ΩL.) Furthermore, for any α = 2, . . . , L− 1 each sliding window W
(α)
l

has only two children: W
(α−1)
l and W

(α−1)
〈l+1〉 , and each sliding window W

(α−1)
l has only

two parents: W
(α)
l and W

(α)
〈l−1〉. Now consider the elements l and 〈l + α − 1〉 from

W
(α)
l . Note that among the two children W

(α−1)
l and W

(α−1)
〈l+1〉 of W

(α)
l , l belongs only

to W
(α−1)
l , and 〈l + α − 1〉 belong only to W

(α−1)
〈l+1〉 . Thus, any fractional cover g

W
(α)
l

of the hypergraph (W
(α)
l , {W (α−1)

l ,W
(α−1)
〈l+1〉 }) must satisfy

g
W

(α)
l

(W
(α−1)
l ) ≥ 1 and g

W
(α)
l

(W
(α−1)
〈l+1〉 ) ≥ 1. (2.92)

Now let c(W
(α)
l ) := 1/α for all l = 1, . . . , L and α = 1, . . . , L− 1. We have

g
W

(α)
l

(W
(α−1)
l )c(W

(α)
l ) + g

W
(α)
〈l−1〉

(W
(α−1)
l )c(W

(α)
〈l−1〉) ≥

2

α
>

1

α− 1
= c(W

(α−1)
l ) (2.93)

for any α > 2. We thus conclude that for any 2 < α < L, the sliding-window

subset entropy inequality (2.47) cannot be directly inferred from the subset entropy
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inequality of Madiman and Tetali.

2.3.3 A Conditional Subset Entropy Inequality Of Yeung and Zhang

We conclude this section by providing a conditional extension of the subset en-

tropy inequality of Yeung and Zhang, which will play a key role in proving the

optimality of superposition coding for achieving the entire admissible rate region of

the general S-SMDC problem. We shall start with the following generalization of

Corollary 1.

Let Σ be a finite ground set, and let Σ(α), α = 1, . . . ,M , be a collection of

subsets of Σ. As before, we shall assume that the collections Σ(α), α = 1, . . . ,M , are

mutually exclusive, so {Σ(α) : α = 1, . . . ,M} induces a hypergraph (U,VU) for every

U ∈ ∪M
α=2Σ

(α). For each U ∈ Σ(M) let AU be a collection of subsets of Σ, and let

A(M) := {AU : U ∈ Σ(M)}. For α = 1, . . . ,M − 1, define A(α) := {AU : U ∈ Σ(α)}

iteratively as follows. Suppose that A(α) is already in place for some α = 2, . . . ,M .

Let A(α−1) = {AV : V ∈ Σ(α−1)} where

AV := ∪U∈UV
AU . (2.94)

Proposition 1. For each U ∈ ∪M
α=1Σ

(α), let s(U, ·) : AU → R
+. For any α =

2, . . . ,M , if there exists a collection of functions {gU : U ∈ Σ(α)} for which each gU

is a fractional cover of (U,VU) and such that

s(V,A) =
∑

{U∈UV :AU∋A}

gU(V )s(U,A), ∀V ∈ Σ(α−1) and A ∈ AV (2.95)
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we have

∑

V ∈Σ(α−1)

∑

A∈AV

s(V,A)H(XV |XA) ≥
∑

U∈Σ(α)

∑

A∈AU

s(U,A)H(XU |XA) (2.96)

for any collection of jointly distributed random variables XΣ.

Proof. Fix α ∈ {2, . . . ,M}. For any U ∈ Σ(α), gU is a fractional cover of (U,VU). By

the subset entropy inequality of Madiman and Tetali (2.78), we have

∑

V ∈VU

gU(V )H(XV |XA) ≥ H(XU |XA), ∀U ∈ Σ(α) and A ∈ AU . (2.97)

Multiplying both sides of (2.97) by s(U,A) and summing over A ∈ AU and U ∈ Σ(α),

we have

∑

U∈Σ(α)

∑

A∈AU

∑

V ∈VU

s(U,A)gU(V )H(XV |XA) ≥
∑

U∈Σ(α)

∑

A∈AU

s(U,A)H(XU |XA). (2.98)

Note that

∑

U∈Σ(α)

∑

A∈AU

∑

V ∈VU

s(U,A)gU(V )H(XV |XA)

=
∑

U∈Σ(α)

∑

V ∈VU

∑

A∈AU

s(U,A)gU(V )H(XV |XA) (2.99)

=
∑

V ∈Σ(α−1)

∑

U∈UV

∑

A∈AU

s(U,A)gU(V )H(XV |XA) (2.100)

=
∑

V ∈Σ(α−1)

∑

A∈AV




∑

{U∈UV :AU∋A}

s(U,A)gU(V )



H(XV |XA) (2.101)

=
∑

V ∈Σ(α−1)

∑

A∈AV

s(V,A)H(XV |XA) (2.102)

where (2.102) follows from (2.95). Substituting (2.102) into (2.98) completes the
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proof of the proposition.

Theorem 6 (A conditional subset entropy inequality of Yeung and Zhang). For any

λ ∈ (R+)L and N = 0, . . . , L− 1, there exists for each U ∈ ∪L−N
α=1 Ω

(α)
L a collection of

subsets AU of ΩL such that:

|A| = N and A ∩ U = ∅, ∀A ∈ AU (2.103)

and a function sλ(U, ·) : AU → R
+ such that:

1) for each α = 1, . . . , L−N , c
(α)
λ

= {cλ(U) : U ∈ Ω
(α)
L } where

cλ(U) :=
∑

A∈AU

sλ(U,A) (2.104)

is an optimal solution to the linear program (2.19); and

2) for each α = 2, . . . , L−N ,

∑

V ∈Ω
(α−1)
L

∑

A∈AV

s(V,A)H(XV |XA) ≥
∑

U∈Ω
(α)
L

∑

A∈AU

s(U,A)H(XU |XA) (2.105)

for any collection of L jointly distributed random variables (X1, . . . , XL).

Proof. Fix λ ∈ (R+)L and N ∈ {0, . . . , L − 1}, and let Σ = ΩL, M = L − N , and

Σ(α) = Ω
(α)
L for α = 1, . . . , L − N . Consider the following construction of A(α) and

s
(α)
λ

:= {s(U, ·) : U ∈ Ω
(α)
L }, α = 1, . . . , L−N .

For α = L − N , let A(L−N) = {AU : U ∈ Ω
(L−N)
L } where AU := {ΩL \ U}, i.e.,

each AU contains a single subset A = ΩL \ U of size |A| = L − (L − N) = N and

such that A∩U = ∅. Furthermore, let c
(L−N)
λ

= {cλ(U) : U ∈ Ω
(L−N)
L } be an optimal
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solution to the linear program (2.19) for α = L−N , and let

sλ(U,ΩL \ U) := cλ(U), ∀U ∈ Ω
(L−N)
L . (2.106)

Since by construction each AU , U ∈ Ω
(L−N)
L , contains a single subset A = ΩL \ U ,

we trivially have

∑

A∈AU

sλ(U,A) = cλ(U), ∀U ∈ Ω
(L−N)
L . (2.107)

For α = 1, . . . , L − N − 1, let us construct A(α) and s
(α)
λ

iteratively as follows.

Suppose that A(α) and s
(α)
λ

are already in place for some α = 2, . . . , L−N such that

|A| = N and A∩U = ∅ for any U ∈ Ω
(α)
L and A ∈ AU , and c

(α)
λ

= {cλ(U) : U ∈ Ω
(α)
L }

where cλ(U) is given by (2.104) is an optimal solution to the linear program (2.19).

First, construct A(α−1) according to (2.94). Based on this construction, for any

V ∈ Ω
(α−1)
L and A ∈ AV we have A ∈ AU for some U ∈ UV ⊆ Ω

(α)
L . Therefore, by

the induction assumption we must have |A| = N and

A ∩ V ⊆ A ∩ U = ∅ (2.108)

for any V ∈ Ω
(α−1)
L and A ∈ AV . Next, construct s

(α−1)
λ

as follows. If the optimal

value fα(λ) > 0, by Theorem 5 there exists a collection of functions {gU : U ∈ Ω
(α)
L }

for which each gU is a fractional cover of (U,VU) and such that c
(α−1)
λ

= {cλ(V ) : V ∈

Ω
(α−1)
L } where cλ(V ) is given by (2.91) is an optimal solution to the linear program

(2.19) with α replaced by α − 1. In this case, let s
(α−1)
λ

= {sλ(V, ·) : V ∈ Ω
(α−1)
L }
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where

sλ(V,A) :=
∑

{U∈UV :AU∋A}

gU(V )sλ(U,A). (2.109)

Thus, for each V ∈ Ω
(α−1)
L we have

∑

A∈AV

sλ(V,A) =
∑

A∈AV




∑

{U∈UV :AU∋A}

gU(V )sλ(U,A)



 (2.110)

=
∑

U∈UV

gU(V )

[
∑

A∈AU

sλ(U,A)

]

(2.111)

=
∑

U∈UV

gU(V )cλ(U) (2.112)

= cλ(V ) (2.113)

Furthermore, by Proposition 1 s
(α−1)
λ

and s
(α)
λ

satisfy the subset entropy inequality

(2.105). If, on the other hand, fα(λ) = 0, we have sλ(U,A) = 0 for all U ∈ Ω
(α)
L and

A ∈ AU . In this case, choose an arbitrary s
(α−1)
λ

such that c
(α−1)
λ

= {cλ(V ) : V ∈

Ω
(α−1)
L } where

cλ(V ) :=
∑

A∈AV

sλ(V,A) (2.114)

is an optimal solution to the linear program (2.19) with α being replaced by α − 1,

and s
(α−1)
λ

and s
(α)
λ

will trivially satisfy the subset entropy inequality (2.105).

We have thus constructed for any λ ∈ (R+)L and N = 0, . . . , L − 1, a sequence

of A(α) and c
(α)
λ

, α = 1, . . . , L − N , such that all conditions of Theorem 6 are met

simultaneously. This completes the proof of the theorem.
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3. SYMMETRICAL MULTILEVEL DIVERSITY CODING WITH AN

ALL-ACCESS ENCODER

3.1 Problem Statement

As illustrated in Figure 3.1, the problem of SMDC-A consists of:

• a total of L independent discrete memoryless sources {Sα[t]}
∞
t=1, where α =

1, . . . , L and t is the time index;

• a set of L+ 1 encoders (encoder 0 to L);

• a decoder who has access to a subset {0} ∪ U of the encoder outputs for some

nonempty U ⊆ ΩL.

The realization of U is unknown a priori at the encoders. However, no matter which

U actually materializes, the decoder needs to nearly perfectly reconstruct the sources

(S1, . . . , Sα) whenever |U | ≥ α.

Formally, an (n, (M0,M1, . . . ,ML)) code is defined by a collection of L + 1 en-

coding functions

el :

L∏

α=1

Sn
α → {1, . . . ,Ml}, ∀l = 0, 1, . . . , L (3.1)

and 2L − 1 decoding functions

dU : {1, . . . ,M0} ×
∏

l∈U

{1, . . . ,Ml} →

|U |
∏

α=1

Sn
α , ∀U ⊆ ΩL s.t. U 6= ∅. (3.2)

A nonnegative rate tuple (R0, R1, . . . , RL) is said to be admissible if for every ǫ > 0,

there exits, for sufficiently large block length n, an (n, (M0,M1, . . . ,ML)) code such
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Encoder 0

Encoder 1

Encoder L

Encoder 2

.

.

.

Decoder

X0

X1

X2

XL

Sources

XU

R1

R2

R0

RL

(Sn

1
, . . . , Sn

L
) (Ŝn

1
, . . . , Ŝn

|U |)

Figure 3.1: SMDC with an all-access encoder 0 and L randomly accessible encoders
1 to L. A total of L independent discrete memoryless sources (S1, . . . , SL) are to be
encoded at the encoders. The decoder, which has access to encoder 0 and a subset U
of the randomly accessible encoders, needs to nearly perfectly reconstruct the sources
(S1, . . . , S|U |) no matter what the realization of U is.

that:

• (Rate constraints at the encoders)

1

n
logMl ≤ Rl + ǫ, ∀l = 0, 1, . . . , L; (3.3)

• (Asymptotically perfect reconstructions at the decoder)

Pr
{
dU(X{0}∪U ) 6= (Sn

1 , . . . , S
n
|U |)
}
≤ ǫ, ∀U ⊆ ΩL s.t. U 6= ∅ (3.4)

where Sn
α := {Sα[t]}

n
t=1, Xl := el(S

n
1 , . . . , S

n
L) is the output of encoder l, and

X{0}∪U := {Xl : l ∈ {0} ∪ U}.

The admissible rate region R is the collection of all admissible rate tuples (R0, R1, . . . , RL).
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3.2 Superposition Coding Rate Region

Similar to classical SMDC, a natural strategy for SMDC-A is superposition cod-

ing, i.e., to encode the sources separately at the encoders and there is no coding

across different sources. Formally, the problem of encoding a single source Sα can be

viewed as a special case of the general problem where the sources Sm are deterministic

for all m 6= α. In this case, the source Sα needs to be nearly perfectly reconstructed

whenever the decoder can access at least α randomly accessible encoders in addition

to the all-access encoder 0. The following scheme is a natural extension of the simple

source-channel separation scheme considered previously for classical SMDC:

• First compress the source sequence Sn
α into a source message Wα using a lossless

source code. It is well known [8, Ch. 5] that the rate of the source message Wα

can be made arbitrarily close to the entropy rate H(Sα) for sufficiently large

block length n.

• Next, divide the source message Wα into two independent sub-messages W
(0)
α

and W
(1)
α so we have

H(Wα) = H(W (0)
α ) +H(W (1)

α ). (3.5)

The sub-message W
(0)
α is stored at the all-access encoder 0 without any coding,

which requires

R0 ≥
1

n
H(W (0)

α ). (3.6)

The sub-message W
(1)
α is encoded by the randomly accessible encoders 1 to L

using a maximum distance separable code [9]. Clearly, the sub-message W
(1)
α
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can be perfectly recovered at the decoder whenever

∑

l∈U

Rl ≥
1

n
H(W (1)

α ), ∀U ∈ Ω
(α)
L (3.7)

for sufficiently large block length n. Eliminating H(W
(0)
α ) and H(W

(1)
α ) from

(3.5)–(3.7), we conclude that the source message Wα can be perfectly recovered

at the decoder whenever

R0 +
∑

l∈U

Rl ≥
1

n
H(Wα), ∀U ∈ Ω

(α)
L (3.8)

Combining the above two steps, we conclude that the rate region that can be

achieved by the above source-channel separation scheme is given by the collection of

all nonnegative rate tuples (R0, R1, . . . , RL) satisfying

R0 +
∑

l∈U

Rl ≥ H(Sα), ∀U ∈ Ω
(α)
L . (3.9)

Following the same footsteps as those for classical SMDC [1,2], it is straightforward

to show that the above rate region is in fact the admissible rate region for encoding

the single source Sα. By definition, the superposition coding rate region Rsup for

SMDC-A is given by the collection of all nonnegative rate tuples (R0, R1, . . . , RL)

such that

Rl :=

L∑

α=1

r
(α)
l (3.10)

for some nonnegative r
(α)
l , α = 1, . . . , L and l = 0, 1, . . . , L, satisfying

r
(α)
0 +

∑

l∈U

r
(α)
l ≥ H(Sα), ∀U ∈ Ω

(α)
L . (3.11)
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Similar to classical SMDC, the superposition coding rate region Rsup for SMDC-

A is a polyhedron with polyhedral cone being the nonnegative orthant in R
L+1 and

hence can be completely characterized by the supporting hyperplanes

L∑

l=0

λlRl ≥ f(λ0,λ), ∀λ0 ≥ 0 and λ := (λ1, . . . , λL) ∈ (R+)L (3.12)

where

f(λ0,λ) = min
(R0,R1,...,RL)∈Rsup

L∑

l=0

λlRl (3.13)

=

min
∑L

l=0

(
∑L

α=1 λlr
(α)
l

)

subject to r
(α)
0 +

∑

l∈U r
(α)
l ≥ H(Sα), ∀U ∈ Ω

(α)
L and α = 1, . . . , L

r
(α)
l ≥ 0, ∀α = 1, . . . , L and l = 0, . . . , L.

(3.14)

Clearly, the above optimization problem can be separated into the following L sub-

optimization problems:

f(λ0,λ) =
L∑

α=1

f ′
α(λ0,λ) (3.15)

where

f ′
α(λ0,λ) =

min
∑L

l=0 λlr
(α)
l

subject to r
(α)
0 +

∑

l∈U r
(α)
l ≥ H(Sα), ∀U ∈ Ω

(α)
L

r
(α)
l ≥ 0, ∀l = 0, . . . , L

(3.16)

=

max
(
∑

U∈Ω
(α)
L

cλ0,λ(U)
)

H(Sα)

subject to
∑

U∈Ω
(α)
L

cλ0,λ(U) ≤ λ0

∑

{U∈Ω
(α)
L

:U∋l}
cλ0,λ(U) ≤ λl, ∀l = 1, . . . , L

cλ0,λ(U) ≥ 0, ∀U ∈ Ω
(α)
L .

(3.17)
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Here, (3.17) follows from the strong duality for linear programs. For any λ0 ≥ 0,

λ ∈ (R+)L, and α = 1, . . . , L, let

fα(λ0,λ) :=

max
∑

U∈Ω
(α)
L

cλ0,λ(U)

subject to
∑

U∈Ω
(α)
L

cλ0,λ(U) ≤ λ0

∑

{U∈Ω
(α)
L

:U∋l}
cλ0,λ(U) ≤ λl, ∀l = 1, . . . , L

cλ0,λ(U) ≥ 0, ∀U ∈ Ω
(α)
L .

(3.18)

We have f ′
α(λ0,λ) = fα(λ0,λ)H(Sα) and hence

f(λ0,λ) =

L∑

α=1

fα(λ0,λ)H(Sα) (3.19)

for any λ0 ≥ 0 and λ ∈ (R+)L.

Note that in the optimization problem (3.18), if the constraint
∑

U∈Ω
(α)
L

cλ0,λ(U) ≤

λ0 is inactive, it can be removed from the program. In this case the optimal value

fα(λ0,λ) = fα(λ), where fα(λ) is the optimal value of the linear program (2.19). On

the other hand, if the constraint
∑

U∈Ω
(α)
L

cλ0,λ(U) ≤ λ0 is active, the optimal value

fα(λ0,λ) = λ0. Combing these two cases, we have

fα(λ0,λ) = min(fα(λ), λ0), ∀α = 1, . . . , L. (3.20)

Substituting (3.19) and (3.20) into (3.12), we conclude that the superposition coding

rate region Rsup for SMDC with an all-access encoder is given by the collection of

all nonnegative rate tuples (R0, R1, . . . , RL) satisfying

L∑

l=0

λlRl ≥
L∑

α=1

min(fα(λ), λ0)H(Sα), ∀λ0 ≥ 0 and λ ∈ (R+)L. (3.21)
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As mentioned previously, the superposition coding rate region Rsup is a poly-

hedron, so among all λ0 ≥ 0 and λ ∈ (R+)L, most of the inequalities in (3.21)

are redundant. Identifying those which define the faces of the superposition coding

rate region Rsup appears to be very difficult. Note, however, that for any given

(R0, R1, . . . , RL) ∈ (R+)L+1 and λ ∈ (R+)L, the left-hand side of (3.21) is a linear,

nondecreasing function of λ0, and the right-hand side of (3.21) is a piecewise linear,

nondecreasing, and concave function of λ0. Thus, the left-hand side of (3.21) will

dominate the right-hand side for every λ0 ≥ 0 if and only if it dominates the right-

hand side at its boundary points λ0 = fm(λ), m = 1, . . . , L, between the adjacent

line segments. See Figure 3.2 for an illustration.

The left-hand side

The right-hand side

0
λ0fL(λ)fL−1(λ) f2(λ) f1(λ)

Figure 3.2: The left-hand and right-hand sides of (3.21) as a function of λ0 for a
fixed (R0, R1, . . . , RL) ∈ (R+)L+1 and λ ∈ (R+)L.

Formally, we have the following proposition, which plays a key role next in proving

the optimality of superposition coding for achieving the entire admissible rate region

of SMDC-A.
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Proposition 2. The superposition coding rate region Rsup for SMDC-A is given by

the collection of all nonnegative rate tuples (R0, R1, . . . , RL) satisfying

fm(λ)R0 +

L∑

l=1

λlRl

≥
L∑

α=1

min(fα(λ), fm(λ))H(Sα) (3.22)

= fm(λ)

m∑

α=1

H(Sα) +

L∑

α=m+1

fα(λ)H(Sα), ∀m = 1, . . . , L and λ ∈ (R+)L (3.23)

where fα(λ) is the optimal value of the linear program (2.19).

Proof. Let us first recall the following results from [5]: for any λ ∈ (R+)L we have

f1(λ) ≥ f2(λ) ≥ · · · ≥ fL(λ) ≥ 0. (3.24)

It follows that

L∑

α=1

min(fα(λ), fm(λ))H(Sα) =

m∑

α=1

fm(λ)H(Sα) +

L∑

α=m+1

fα(λ)H(Sα) (3.25)

= fm(λ)

m∑

α=1

H(Sα) +

L∑

α=m+1

fα(λ)H(Sα). (3.26)

It remains to show that for any given λ ∈ (R+)L, the set of inequalities (3.21) over

all λ0 ≥ 0 is dominated by that over λ0 = fm(λ) for m = 1, . . . , L.

Fix λ ∈ (R+)L, and consider the following three cases separately.

Case 1: λ0 ≥ f1(λ). By (3.24), we have λ0 ≥ fα(λ) and hence min(fα(λ), λ0) =

fα(λ) for any α = 1, . . . , L. For m = 1, the inequality (3.23) can be written as

f1(λ)R0 +

L∑

l=1

λlRl ≥
L∑

α=1

fα(λ)H(Sα) (3.27)
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which implies that

λ0R0 +
L∑

l=1

λlRl ≥ f1(λ)R0 +
L∑

l=1

λlRl (3.28)

≥
L∑

α=1

fα(λ)H(Sα) (3.29)

=
L∑

α=1

min(fα(λ), λ0)H(Sα) (3.30)

for any λ0 ≥ f1(λ).

Case 2: 0 ≤ λ0 < fL(λ). By (3.24), we have λ0 < fα(λ) and hence min(fα(λ), λ0) =

λ0 for any α = 1, . . . , L. For m = L, the inequality (3.23) can be written as

fL(λ)R0 +
L∑

l=1

λlRl ≥ fL(λ)
L∑

α=1

H(Sα) (3.31)

which implies that

λ0R0 +

L∑

l=1

λlRl ≥
λ0

fL(λ)

(

fL(λ)R0 +

L∑

l=1

λlRl

)

(3.32)

≥
λ0

fL(λ)

(

fL(λ)
L∑

α=0

H(Sα)

)

(3.33)

= λ0

L∑

α=0

H(Sα) (3.34)

=

L∑

α=1

min(fα(λ), λ0)H(Sα) (3.35)

for any 0 ≤ λ0 < fL(λ).

Case 3: fr+1(λ) ≤ λ0 < fr(λ) for some r = 1, . . . , L − 1. By (3.24), we have

λ0 < fα(λ) and hence min(fα(λ), λ0) = λ0 for α = 1, . . . , r, and λ0 ≥ fα(λ) and

hence min(fα(λ), λ0) = fα(λ) for α = r + 1, . . . , L. For m = r and r + 1, the
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inequality (3.23) can be written as

fr(λ)R0 +

L∑

l=1

λlRl ≥ fr(λ)

r∑

α=1

H(Sα) +

L∑

α=r+1

fα(λ)H(Sα) (3.36)

and

fr+1(λ)R0 +

L∑

l=1

λlRl ≥ fr+1(λ)

r+1∑

α=1

H(Sα) +

L∑

α=r+2

fα(λ)H(Sα) (3.37)

respectively, which together imply that

λ0R0 +

L∑

l=1

λlRl =
λ0 − fr+1(λ)

fr(λ)− fr+1(λ)

(

fr(λ)R0 +

L∑

l=1

λlRl

)

+

fr(λ)− λ0

fr(λ)− fr+1(λ)

(

fr+1(λ)R0 +
L∑

l=1

λlRl

)

≥
λ0 − fr+1(λ)

fr(λ)− fr+1(λ)

(

fr(λ)

r∑

α=1

H(Sα) +

L∑

α=r+1

fα(λ)H(Sα)

)

+

fr(λ)− λ0

fr(λ)− fr+1(λ)

(

fr+1(λ)
r+1∑

α=1

H(Sα) +
L∑

α=r+2

fα(λ)H(Sα)

)

= λ0

r∑

α=1

H(Sα) +

L∑

α=r+1

fα(λ)H(Sα)

=

L∑

α=1

min(fα(λ), λ0)H(Sα) (3.38)

for any fr+1(λ) ≤ λ0 < fr(λ).

Combining these three cases completes the proof of the proposition.

3.3 Optimality Of Superposition Coding

The main result of this section is that superposition coding remains optimal in

terms of achieving the entire admissible rate region for SMDC-A, as summarized in
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the following theorem.

Theorem 7. For the general SMDC-A problem, the admissible rate region

R = Rsup. (3.39)

Proof. Based on the discussions from Section 3.2, we naturally haveRsup ⊆ R. Thus,

to show Rsup = R we only need to show that R ⊆ Rsup. In light of Proposition 2,

it is sufficient to show that any admissible rate tuple (R0, R1, . . . , RL) must satisfy

fm(λ)R0 +

L∑

l=1

λlRl ≥ fm(λ)

m∑

α=1

H(Sα) +

L∑

α=m+1

fα(λ)H(Sα) (3.40)

for all m = 1, . . . , L and λ ∈ (R+)L.

Let (R0, R1, . . . , RL) be an admissible rate tuple. By definition, for any sufficiently

large block-length n there exists an (n, (M0,M1, . . . ,ML)) code satisfying the rate

constraints (3.3) for the admissible rate tuple (R0, R1, . . . , RL) and the asymptotically

perfect reconstruction requirement (3.4). Fix λ ∈ (R+)L, and let {c
(α)
λ

: α = 1, . . . , L}

be a set of optimal solutions that satisfies the subset entropy inequality of Yeung

and Zhang (2.39).

Note that for α = 1, the optimal solution for the linear program (2.19) is unique

and is given by

cλ({l}) = λl, ∀l = 1, . . . , L. (3.41)
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We thus have for any m = 1, . . . , L

n

(

fm(λ)R0 +
L∑

l=1

λlRl

)

= fm(λ)nR0 +

L∑

l=1

cλ({l})nRl (3.42)

≥ fm(λ)(H(X0)− nǫ) +
L∑

l=1

cλ({l})(H(Xl)− nǫ) (3.43)

= fm(λ)H(X0) +

L∑

l=1

cλ({l})H(Xl)− n(f1(λ) + fm(λ))ǫ (3.44)

≥ fm(λ)H(X0) +
∑

U∈Ω
(m)
L

cλ(U)H(XU)− n(f1(λ) + fm(λ))ǫ (3.45)

=
∑

U∈Ω
(m)
L

cλ(U)(H(X0) +H(XU))− n(f1(λ) + fm(λ))ǫ (3.46)

≥
∑

U∈Ω
(m)
L

cλ(U)H(X0, XU)− n(f1(λ) + fm(λ))ǫ (3.47)

where (3.43) follows from the rate constraint (3.3), (3.44) and (3.46) are due to the

fact that c
(1)
λ

and c
(m)
λ

are optimal so we have

L∑

l=1

cλ({l}) = f1(λ) and
∑

U∈Ω
(m)
L

cλ(U) = fm(λ) (3.48)

(3.45) follows from the subset entropy inequality of Yeurng and Zhang (2.39) so we

have
L∑

l=1

cλ({l})H(Xl) ≥
∑

U∈Ω
(m)
L

cλ(U)H(XU) (3.49)

and (3.47) follows from the independence bound on entropy.

For any U ∈ Ω
(m)
L and m = 1, . . . , L, by the asymptotically perfect reconstruction
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requirement (3.4) and the well-known Fano’s inequality we have

H(Sn
1 , . . . , S

n
m|X0, XU) ≤ nδ(n)m (3.50)

where δ
(n)
m → 0 in the limit as n → ∞ and ǫ → 0. By the chain rule for entropy,

H(X0, XU)

= H(X0, XU , S
n
1 , . . . , S

n
m)−H(Sn

1 , . . . , S
n
m|X0, XU) (3.51)

= H(Sn
1 , . . . , S

n
m) +H(X0, XU |S

n
1 , . . . , S

n
m)−H(Sn

1 , . . . , S
n
m|X0, XU) (3.52)

= n
m∑

α=1

H(Sα) +H(X0, XU |S
n
1 , . . . , S

n
m)−H(Sn

1 , . . . , S
n
m|X0, XU) (3.53)

≥ n
m∑

α=1

H(Sα) +H(X0, XU |S
n
1 , . . . , S

n
m)− nδ(n)m (3.54)

where (3.53) is due to the fact that S1, . . . , SL are independent memoryless sources,

and (3.54) follows from (3.50). Substituting (3.54) into (3.47), we have

n

(

fm(λ)R0 +

L∑

l=1

λlRl

)

≥
∑

U∈Ω
(m)
L

cλ(U)

(

n

m∑

α=1

H(Sα) +H(X0, XU |S
n
1 , . . . , S

n
m)− nδ(n)m

)

− n(f1(λ) + fm(λ))ǫ

(3.55)

= nfm(λ)

m∑

α=1

H(Sα) +
∑

U∈Ω
(m)
L

cλ(U)H(X0, XU |S
n
1 , . . . , S

n
m)−

n(fm(λ)δ
(n)
m + (f1(λ) + fm(λ))ǫ). (3.56)
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Next, we show, via an induction on m, that for any m = 1, . . . , L we have

∑

U∈Ω
(m)
L

cλ(U)H(X0, XU |S
n
1 , . . . , S

n
m) ≥ n

(
L∑

α=m+1

fα(λ)H(Sα)−
L∑

α=m+1

fα(λ)δ
(n)
α

)

.

(3.57)

First consider the base case with m = L. In this case, the inequality (3.57) is trivial

as the right-hand side of the inequality is zero. Next, assume that the inequality

(3.57) holds for m = l for some l = 2, . . . , L, i.e,

∑

U∈Ω
(l)
L

cλ(U)H(X0, XU |S
n
1 , . . . , S

n
l ) ≥ n

(
L∑

α=l+1

fα(λ)H(Sα)−
L∑

α=l+1

fα(λ)δ
(n)
α

)

.

(3.58)

For any U ∈ Ω
(l)
L , we have

H(X0, XU |S
n
1 , . . . , S

n
l )

= H(X0, XU |S
n
1 , . . . , S

n
l−1)− I(Sn

l ;X0, XU |S
n
1 , . . . , S

n
l−1) (3.59)

= H(X0, XU |S
n
1 , . . . , S

n
l−1)−H(Sn

l |S
n
1 , . . . , S

n
l−1) +H(Sn

l |X0, XU , S
n
1 , . . . , S

n
l−1)

(3.60)

≤ H(X0, XU |S
n
1 , . . . , S

n
l−1)−H(Sn

l |S
n
1 , . . . , S

n
l−1) +H(Sn

l |X0, XU) (3.61)

≤ H(X0, XU |S
n
1 , . . . , S

n
l−1)−H(Sn

l |S
n
1 , . . . , S

n
l−1) + δ

(n)
l (3.62)

= H(X0, XU |S
n
1 , . . . , S

n
l−1)− nH(Sl) + δ

(n)
l (3.63)

where (3.61) follows from the fact that conditioning reduces entropy, (3.62) follows

the fact that

H(Sn
l |X0, XU) ≤ H(Sn

1 , . . . , S
n
l |X0, XU) ≤ nδ

(n)
l (3.64)

and (3.63) follows from the fact that S1, . . . , SL are independent memoryless sources.
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Multiplying both sides of the inequality (3.63) by cλ(U) and summing over all U ∈

Ω
(l)
L , we have

∑

U∈Ω
(l)
L

cλ(U)H(X0, XU |S
n
1 , . . . , S

n
l−1)

≥
∑

U∈Ω
(l)
L

cλ(U)
(

H(X0, XU |S
n
1 , . . . , S

n
l ) + nH(Sl)− nδ

(n)
l

)

(3.65)

=
∑

U∈Ω
(l)
L

cλ(U)H(X0, XU |S
n
1 , . . . , S

n
l ) + n

(

fl(λ)H(Sl)− fl(λ)nδ
(n)
l

)

(3.66)

≥ n

(
L∑

α=l+1

fα(λ)H(Sα)−
L∑

α=l+1

fα(λ)δ
(n)
α

)

+ n
(

fl(λ)H(Sl)− fl(λ)δ
(n)
l

)

(3.67)

= n

(
L∑

α=l

fα(λ)H(Sα)−
L∑

α=l

fα(λ)δ
(n)
α

)

(3.68)

where (3.67) follows from the induction assumption (3.58). Finally, by the subset

entropy inequality of Yeung and Zhang (2.39) we have

∑

U∈Ω
(l−1)
L

cλ(U)H(X0, XU |S
n
1 , . . . , S

n
l−1) ≥

∑

U∈Ω
(l)
L

cλ(U)H(X0, XU |S
n
1 , . . . , S

n
l−1) (3.69)

≥ n

(
L∑

α=l

fα(λ)H(Sα)−
L∑

α=l

fα(λ)δ
(n)
α

)

.

(3.70)

This proves that the inequality (3.57) also holds for m = l − 1 and hence completes

the proof of (3.57).

Substituting (3.57) into (3.56) and dividing both sides of the inequality by n, we
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have

fm(λ)R0 +

L∑

l=1

λlRl ≥ fm(λ)

m∑

α=1

H(Sα) +

L∑

α=m+1

fα(λ)H(Sα)−

(
L∑

α=m

fα(λ)δ
(n)
α + (f1(λ) + fm(λ))ǫ

)

. (3.71)

Letting n → ∞ and ǫ → 0, we have from (3.71) that

fm(λ)R0 +

L∑

l=1

λlRl ≥ fm(λ)

m∑

α=1

H(Sα) +

L∑

α=m+1

fα(λ)H(Sα) (3.72)

for any admissible rate tuple (R0, R1, . . . , RL). This proves that R ⊆ Rsup and hence

completes the proof of the theorem.

3.4 Rate Allocation At The All-access Encoder

In this section, we conclude our discussion on SMDC-A by focusing on a greedy

rate allocation policy at the all-access encoder. Based on our previous discussion

in Section 3.2, the output of the all-access encoder 0 consists of only uncoded in-

formation bits for the source messages W1, . . . ,WL. Hence, its storage efficiency is

the same for each of the information sources S1, . . . , SL. On the other hand, for the

randomly accessible encoders 1 to L, S1 has the highest reconstruction requirement

and hence is the least efficient source to encode, and SL has the lowest reconstruction

requirement and hence is the most efficient source to encode. Therefore, intuitively,

the greedy policy that assigns the remaining rate budget of the all-access encoder 0

to the least efficient source should be optimal.

More specifically, suppose that the rate budget R0 of the all-access encoder 0
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satisfies

q−1
∑

α=1

H(Sα) ≤ R0 <

q
∑

α=1

H(Sα) (3.73)

for some q = 1, . . . , L. The greedy policy stores the source messages W1, . . . ,Wq−1

in their entireties (without any coding) at the all-access encoder 0, and the residual

rate budget R0 −
∑q−1

α=1H(Sα) is then committed in full to the source message Wq.

The residual source messages are Wq, with a residual rate

H(Sq)−

(

R0 −

q−1
∑

α=1

H(Sα)

)

=

q
∑

α=1

H(Sα)− R0 (3.74)

and Wq+1, . . . ,WL with respective rates H(Sq+1), . . . , H(SL). The residual source

messages are encoded at the randomly accessible encoders using superposition cod-

ing, and the corresponding rate region R′
sup(R0) is given by

R′
sup(R0) =

{

(R1, . . . , RL) ∈ (R+)L :
L∑

l=1

λlRl ≥ fq(λ)

(
q
∑

α=1

H(Sα)−R0

)

+

L∑

α=q+1

fα(λ)H(Sα), ∀λ ∈ (R+)L

}

.

(3.75)

Of course, when

R0 ≥
L∑

α=1

H(Sα) (3.76)

all source messages W1, . . . ,WL can be stored at the all-access encoder 0 (without

any coding), and there is no need to use the randomly access encoders 1 to L. In

this case, we have R′
sup(R0) = (R+)L.
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To show that the aforementioned greedy rate allocation policy at the all-access

encoder 0 is optimal, we need to show that R′
sup(R0) matches the R0-slice of the

superposition coding rate region

Rsup(R0) :=
{
(R1, . . . , RL) ∈ (R+)L : (R0, R1, . . . , RL) ∈ Rsup

}
(3.77)

for all R0 ≥ 0. By Proposition 2, for any R0 ≥ 0 the R0-slice of the superposition

coding rate region can be written as

Rsup(R0) =

{

(R1, . . . , RL) ∈ (R+)L :

L∑

l=1

λlRl ≥ max
m=1,...,L

{gm(λ)} , ∀λ ∈ (R+)L

}

(3.78)

where

gm(λ) := fm(λ)

(
m∑

α=1

H(Sα)− R0

)

+
L∑

α=m+1

fα(λ)H(Sα) (3.79)

For any m = 1, . . . , L− 1, it is straightforward to calculate that

gm+1(λ)− gm(λ) = (fm+1(λ)− fm(λ))

(
m∑

α=1

H(Sα)− R0

)

. (3.80)

By (3.24), fm+1(λ)−fm(λ) ≤ 0 for any m = 1, . . . , L−1 and λ ∈ (R+)L. Thus, when
∑q−1

α=1H(Sα) ≤ R0 <
∑q

α=1H(Sα) for some q = 1, . . . , L, we have
∑m

α=1 H(Sα) −

R0 ≥ 0 and hence gm+1(λ)− gm(λ) ≤ 0 for all m = q, . . . , L− 1, and
∑m

α=1 H(Sα)−

R0 ≤ 0 and hence gm+1(λ)− gm(λ) ≥ 0 for all m = 1, . . . , q − 1. We conclude that
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in this case,

max
m=1,...,L

{gm(λ)} = gq(λ) = fq(λ)

(
q
∑

α=1

H(Sα)− R0

)

+
L∑

α=q+1

fα(λ)H(Sα) (3.81)

for any λ ∈ (R+)L and hence Rsup(R0) = R′
sup(R0). WhenR0 ≥

∑L

α=1H(Sα), we

have
∑m

α=1 H(Sα)−R0 ≤ 0 and hence gm+1(λ)− gm(λ) ≥ 0 for all m = 1, . . . , L−1.

In this case,

max
m=1,...,L

{gm(λ)} = gL(λ) = fL(λ)

(
L∑

α=1

H(Sα)− R0

)

≤ 0 (3.82)

for any λ ∈ (R+)L, and we once again have Rsup(R0) = R′
sup(R0). We summarize

the above results in the following theorem.

Theorem 8. Greedy rate allocation at the all-access encoder combined with super-

position coding at the randomly accessible encoders can achieve the entire admissible

rate region for the general SMDC-A problem.
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4. SECURE SYMMETRICAL MULTILEVEL DIVERSITY CODING

4.1 Problem Statement

Let L be a positive integer, and let N ∈ {0, . . . , L−1}. Let {S1[t], . . . , SL−N [t]}
∞
t=1

be a collection of L−N independent discrete memoryless sources with time index t,

and let Sn
α := (Sα[1], . . . , Sα[n]) for α = 1, . . . , L − N . As illustrated in Figure 4.1,

an (L,N) S-SMDC problem consists of a set of L encoders, a legitimate receiver who

has access to a subset U of the encoder outputs, and an eavesdropper who has access

to a subset A of the encoder outputs. Which subsets of the encoder outputs are

available at the legitimate receiver and the eavesdropper are unknown a priori at the

encoders. However, no matter which subsets U and A actually occur, the legitimate

receiver must be able to asymptotically perfectly reconstruct the sources (S1, . . . , Sα)

whenever |U | ≥ N +α, and all sources (S1, . . . , SL−N) must be kept perfectly secure

from the eavesdropper as long as |A| ≤ N .

Formally, an (n, (M1, . . . ,ML)) code is defined by a collection of L encoding

functions

el :

L−N∏

α=1

Sn
α ×K → {1, . . . ,Ml}, ∀l = 1, . . . , L (4.1)

and
∑L

α=N+1

(
L

α

)
decoding functions

dU :
∏

l∈U

{1, . . . ,Ml} →

|U |−N
∏

α=1

Sn
α , ∀U ⊆ ΩL s.t. |U | ≥ N + 1 (4.2)

where K is the key space accessible to all L encoders. A nonnegative rate tuple

(R1, . . . , RL) is said to be admissible if for every ǫ > 0, there exits, for sufficiently

large block length n, an (n, (M1, . . . ,ML)) code such that:
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Encoder 1
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Receiver

X1

X2

XL

(Ŝn

1
, . . . , Ŝn

|U |−N
)

Sources

XU

R1

R2

RL

EavesdropperXA

Figure 4.1: S-SMDC with L randomly accessible encoders 1 to L. A total of L−N
independent discrete memoryless sources (S1, . . . , SL−N) are to be encoded at the
encoders. The legitimate receiver, which has access to a subset U of the encoder
outputs, needs to nearly perfectly reconstruct the sources (S1, . . . , S|U |−N) whenever
|U | ≥ N + 1. The eavesdropper has access to a subset A of the encoder ouputs.
All sources (S1, . . . , SL−N) need to be kept perfectly secret from the eavesdropper
whenever |A| ≤ N .

• (Rate constraints)

1

n
logMl ≤ Rl + ǫ, ∀l = 1, . . . , L; (4.3)

• (Asymptotically perfect reconstruction at the legitimate receiver)

Pr{dU(XU) 6= (Sn
1 , . . . , S

n
|U |−N)} ≤ ǫ, ∀U ⊆ ΩL s.t. |U | ≥ N + 1 (4.4)

where Xl := el((S
n
1 , . . . , S

n
L−N), K) is the output of the lth encoder, and K is
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the secret key shared by all L encoders; and

• (Perfect secrecy at the eavesdropper)

H(Sn
1 , . . . , S

n
L−N |XA) = H(Sn

1 , . . . , S
n
L−N), ∀A ⊆ ΩL s.t. |A| ≤ N (4.5)

i.e., observing the encoder outputs XA does not provide any information re-

garding to the sources (Sn
1 , . . . , S

n
L−N).

The admissible rate region R is the collection of all admissible rate tuples (R1, . . . , RL).

4.2 Superposition Coding Rate Region

A simple strategy for S-SMDC is to encode each of the L−N sources separately

without coding across different sources. Formally, the problem of encoding a single

source Sα can be viewed as a special case of the general S-SMDC problem with

H(Sm) = 0 for all m 6= α. When α = 1, the problem of encoding the single

source S1 is the well-known (L,N + 1) threshold secret sharing problem, for which

the admissible rate region was characterized in the classical works [10, 11]. For the

general case with α ≥ 1, the admissible rate region for encoding the single source

Sα was characterized in [7] via a connection to the problem of threshold ramp-type

secret sharing [12,13] and utilizing some basic polyhedral structure of the admissible

rate region. The result is summarized in the following proposition.

Proposition 3. Let R(α) be the collection of all admissible rate tuples for encoding

the single source Sα. Then, R(α) is given by the collection of all nonnegative tuples

(r
(α)
1 , . . . , r

(α)
L ) such that

∑

l∈U

r
(α)
l ≥ H(Sα), ∀U ∈ Ω

(α)
L . (4.6)
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By definition, the superposition coding rate region Rsup for encoding the sources

S1, . . . , SL−N is given by the collection of nonnegative rate tuples (R1, . . . , RL) such

that

Rl :=
L−N∑

α=1

r
(α)
l , ∀(r

(1)
l , . . . , r

(L−N)
l ) ∈

L−N∏

α=1

R(α). (4.7)

Note thatR(α) is identical to the admissible rate region for encoding the single source

Sα in classical SMDC (even though the reconstruction and secrecy requirements are

different between these two settings). We thus conclude that the superposition coding

rate region Rsup for S-SMDC is given by the collection of nonnegative rate tuples

(R1, . . . , RL) satisfying

L∑

l=1

λlRl ≥
L−N∑

α=1

fα(λ)H(Sα), ∀λ ∈ (R+)L (4.8)

where fα(λ) is the optimal value of the linear program (2.19).

4.3 Optimality Of Superposition Coding

In [7], it was shown that superposition coding can achieve the minimum sum rate

for the general S-SMDC problem. The proof was based on the trivial conditional

version of the subset entropy inequality of Han. The main result of this section is to

show that superposition coding can, in fact, achieve the entire admissible region for

the general S-SMDC problem. Our main technical tool is the conditional extension

of the subset entropy inequality of Yeung and Zhang proved in Theorem 6.

Theorem 9. For the general S-SMDC problem, the admissible rate region

R = Rsup. (4.9)

Proof. Based on the discussions from Section 4.2, we naturally haveRsup ⊆ R. Thus,
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to show Rsup = R we only need to show that R ⊆ Rsup, i.e., any admissible rate

tuple (R1, . . . , RL) must satisfy (4.8).

Let (R1, . . . , RL) be an admissible rate tuple. By definition, for any sufficiently

large block-length n there exists an (n, (M1, . . . ,ML)) code satisfying the rate con-

straints (4.3) for the admissible rate tuple (R1, . . . , RL), the asymptotically perfect

reconstruction requirement (4.4), and the perfect secrecy requirement (4.5). Fix

λ ∈ (R+)L, and choose A(α) and s
(α)
λ

, α = 1, . . . , L − N , to satisfy all the require-

ment of Theorem 6.

First, let us show that

H(XU |S
n
1 , . . . , S

n
α−1, XA) ≥ nH(Sα)− nδ(α)n +H(XU |S

n
1 , . . . , S

n
α, XA) (4.10)

for any U ∈ Ω
(α)
L , A ∈ AU , and α = 1, . . . , L − N , where δ

(α)
n → 0 in the limit as

n → ∞ and ǫ → 0.

Fix U ∈ Ω
(α)
L , A ∈ AU , and α = 1, . . . , L−N . By construction |U | = α, |A| = N ,

and A ∩ U = ∅, so we have |U ∪ A| = |U | + |A| = N + α. By the asymptotically

perfect reconstruction requirement (4.4) and the well-known Fano’s inequality, we

have

H(Sn
1 , . . . , S

n
α|XU , XA) ≤ nδ(α)n (4.11)

where δ
(α)
n → 0 in the limit as n → ∞ and ǫ → 0. Furthermore, by the perfect

secrecy requirement (4.5) we have

H(Sn
1 , . . . , S

n
α|XA) = H(Sn

1 , . . . , S
n
α). (4.12)
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We thus have

H(XU |S
n
1 , . . . , S

n
α−1, XA) + nδ(α)n

≥ H(XU |S
n
1 , . . . , S

n
α−1, XA) +H(Sn

1 , . . . , S
n
α|XU , XA) (4.13)

≥ H(XU |S
n
1 , . . . , S

n
α−1, XA) +H(Sn

α|S
n
1 , . . . , S

n
α−1, XU , XA) (4.14)

= H(XU , S
n
k |S

n
1 , . . . , S

n
α−1, XA) (4.15)

= H(Sn
α|S

n
1 , . . . , S

n
k−1, XA) +H(XV |S

n
1 , . . . , S

n
α, XA) (4.16)

= H(Sn
1 , . . . , S

n
α|XA)−H(Sn

1 , . . . , S
n
α−1|XA) +H(XU |S

n
1 , . . . , S

n
α, XA) (4.17)

= H(Sn
1 , . . . , S

n
α)−H(Sn

1 , . . . , S
n
α−1|XA) +H(XU |S

n
1 , . . . , S

n
α, XA) (4.18)

≥ H(Sn
1 , . . . , S

n
α)−H(Sn

1 , . . . , S
n
α−1) +H(XU |S

n
1 , . . . , S

n
α, XA) (4.19)

= H(Sn
α|S

n
1 , . . . , S

n
α−1) +H(XU |S

n
1 , . . . , S

n
α, XA) (4.20)

= H(Sn
α) +H(XU |S

n
1 , . . . , S

n
α, XA) (4.21)

= nH(Sα) +H(XU |S
n
1 , . . . , S

n
α, XA) (4.22)

where (4.13) follows from (4.11), (4.18) follows from (4.12), (4.19) follows from the

fact that conditioning reduces entropy, (4.21) follows from the fact that the sources

S1, . . . , Sα are mutually independent, and (4.22) follows from the fact that the source

Sα is memoryless. Moving nδ
(α)
n to the right-hand side of the inequality completes

the proof of (4.10).
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Next, let us we show that

∑

U∈Ω
(1)
L

∑

A∈AU

sλ(U,A)H(XU |XA)

≥ n
m∑

α=1

fα(λ)H(Sα)− n
m∑

α=1

fα(λ)δ
(α)
n +

∑

U∈Ω
(m)
L

∑

A∈AU

sλ(U,A)H(XU |S
n
1 , . . . , S

n
m, XA)

(4.23)

for any m = 1, . . . , L−N .

Consider a proof via an induction on m. First consider the base case with m = 1.

We have

∑

U∈Ω
(1)
L

∑

A∈A(U)

sλ(U,A)H(XU |XA)

≥
∑

U∈Ω
(1)
L

∑

A∈A(U)

sλ(U,A)
[
nH(S1)− nδ(1)n +H(XU |S

n
1 , XA)

]
(4.24)

= nf1(λ)H(S1)− nf1(λ)δ
(1)
n +

∑

U∈Ω
(1)
L

∑

A∈AU

sλ(U,A)H(XU |S
n
1 , XA) (4.25)

where (4.24) follows from (4.10) with α = 1.

Next, assume that the inequality (4.23) holds for m = k − 1 for some k =

2, . . . , L−N , i.e.,

∑

U∈Ω
(1)
L

∑

A∈AU

sλ(U,A)H(XU |XA)

≥ n
k−1∑

α=1

fα(λ)H(Sα)− n
k−1∑

α=1

fα(λ)δ
(α)
n +

∑

V ∈Ω
(k−1)
L

∑

A∈AU

sλ(U,A)H(XU |S
n
1 , . . . , S

n
k−1, XA).

(4.26)
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We have

∑

U∈Ω
(k−1)
L

∑

A∈AU

sλ(U,A)H(XU |S
n
1 , . . . , S

n
k−1, XA)

≥
∑

U∈Ω
(k)
L

∑

A∈AU

sk(U,A)H(XU |S
n
1 , . . . , S

n
k−1, XA) (4.27)

≥
∑

U∈Ω
(k)
L

∑

A∈AU

sk(U,A)
[
nH(Sk)− nδ(k)n +H(XU |S

n
1 , . . . , S

n
k , XA)

]
(4.28)

≥ nfk(λ)H(Sk)− nfk(λ)δ
(k)
n +

∑

U∈Ω
(k)
L

∑

A∈AU

sk(U,A)H(XU |S
n
1 , . . . , S

n
k , XA)

(4.29)

where (4.27) follows from (2.105), and (4.28) follows from (4.10) with α = k. Sub-

stituting (4.29) into (4.26) gives

∑

U∈Ω
(1)
L

∑

A∈AU

sλ(U,A)H(XU |XA)

≥ n
k∑

α=1

fα(λ)H(Sα)− n
k∑

α=1

fα(λ)δ
(α)
n +

∑

U∈Ω
(k)
L

∑

A∈AU

sλ(U,A)H(XU |S
n
1 , . . . , S

n
k , XA)

(4.30)

i.e., the inequality (4.23) also holds for m = k. This completes the induction step

and hence the proof of (4.23).

Finally, note that for α = 1 the optimal solution for the linear program (2.19) is

unique and is given by

cλ({l}) = λl, ∀l = 1, . . . , L. (4.31)
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We thus have

n

(
L∑

l=1

λlRl

)

=
L∑

l=1

cλ({l})nRl (4.32)

≥
L∑

l=1

cλ({l})(H(Xl)− nǫ) (4.33)

=
L∑

l=1

cλ({l})H(Xl)− nf1(λ)ǫ (4.34)

=
∑

U∈Ω
(1)
L

cλ(U)H(XU)− nf1(λ)ǫ (4.35)

=
∑

U∈Ω
(1)
L

[
∑

A∈AU

sλ(U,A)

]

H(XU)− nf1(λ)ǫ (4.36)

=
∑

U∈Ω
(1)
L

∑

A∈AU

sλ(U,A)H(XU)− nf1(λ)ǫ (4.37)

≥
∑

U∈Ω
(1)
L

∑

A∈AU

sλ(U,A)H(XU |XA)− nf1(λ)ǫ (4.38)

≥

[

n
L−N∑

α=1

fα(λ)H(Sα)− n
L−N∑

α=1

fα(λ)δ
(α)
n +

∑

U∈Ω
(L−N)
L

∑

A∈AU

sλ(U,A)H(XU |S
n
1 , . . . , S

n
L−N , XA)




− nf1(λ)ǫ (4.39)

≥ n

L−N∑

α=1

fα(λ)H(Sα)− n

L−N∑

α=1

fα(λ)δ
(α)
n − nf1(λ)ǫ (4.40)

where (4.33) follows from the rate constraint (4.3), (4.34) follows from the fact that

c
(1)
λ

is optimal so f1(λ) =
∑L

l=1 cλ({l}), (4.38) follows from the fact that conditioning

reduce entropy, and (4.39) follows from (4.23) with m = L − N . Divide both sides

of (4.40) by n and let n → ∞ and ǫ → 0. Note that δ
(α)
n → 0 in the limit as n → ∞

63



and ǫ → 0 for all α = 1, . . . , L − N . We have thus proved that (4.8) holds for any

admissible rate tuple (R1, . . . , RL). This completes the proof of the theorem.
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5. HIERARCHICAL MULTILEVEL DIVERSITY CODING

5.1 Problem Statement

As shown in Figure 5.1, the problem of HMDC consists of:

• a total of L independent discrete memoryless sources {Sα[t]}
∞
t=1, where α =

1, . . . , L and t is the time index;

• The J encoders consist of two hierarchical encoder sets A and B, where |A|+

|B| = J and |A| + |B|
r

= L for some positive integer r. In other words, the

sources are to be encoded by two sets of encoders A and B. The encoders in

set A have higher rank than the ones in B, therefore we call encoders in A

strong encoders and those in B weak encoders.

• a decoder has access to a subset U of the encoders outputs for some nonempty

U ⊆ A ∪B.

For each U ∈ ΩJ = {1, . . . , J}, there is a corresponding J-dimensional 0-1 vector

u such that ui = 1 if and only if i ∈ U . Define the reliability scores for all encoders

as a J-dimensional weight vector w, as the following

w = (1, . . . , 1
︸ ︷︷ ︸

|A|

,
1

r
, . . . ,

1

r
︸ ︷︷ ︸

|B|

). (5.1)

The realization of U is unknown a priori at the encoders. However, no matter which

U actually materializes, the decoder needs to nearly perfectly reconstruct the sources

S1, . . . , Sα whenever ⌊uTw⌋ ≥ α. The goal of encoding is to ensure that the number

of sources that can be nearly perfectly reconstructed grows with the total weight
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1
, . . . , Sn

L
)
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X1

X|A|

XJ

(Ŝn

1
, . . . , Ŝn

⌊uTw⌋)

Sources

XU

R1

R|A|

RJ

Encoder |A|+1

.

.

.

R|A|+1

X|A|+1

Encoder 1

Encoder J

Encoder |A|

Figure 5.1: The HMDC problem where a total of L independent discrete memoryless
sources S1, . . . , SL are to be encoded by a total of J = |A| + |B| encoders of two
types. Encoders from 1 to |A| are strong encoders and the others are weak encoders.
The decoder, which has access to a subset U of the encoder outputs, needs to nearly
perfectly reconstruct the sources S1, . . . , S⌊uTw⌋ no matter what the realization of U
is.

of accessible encoders. Note that when w is the all one vector of dimension L, the

problem is reduced to the classical SMDC problem.

Formally, an (n, (M1, . . . ,MJ)) code is defined by a collection of J encoding func-

tions:

el :
J∏

α=1

Sn
α → {1, . . . ,Ml}, ∀l = 1, . . . , J (5.2)

and 2J − 1 decoding functions:

dU :
∏

l∈U

{1, . . . ,Ml} →

⌊uTw⌋
∏

α=1

Sn
α , ∀U ⊆ ΩJ s.t. U 6= ∅. (5.3)

A nonnegative rate tuple (R1, . . . , RJ) is said to be admissible if for every ǫ > 0,

there exits, for sufficiently large block-length n, an (n, (M1, . . . ,MJ)) code such that:
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• (Rate constraints at the encoders)

1

n
logMl ≤ Rl + ǫ, ∀l = 1, . . . , J ; (5.4)

• (Asymptotically perfect reconstructions at the decoder)

Pr
{

dU(XU) 6= (Sn
1 , . . . , S

n
⌊uTw⌋)

}

≤ ǫ, ∀U ⊆ ΩJ s.t. U 6= ∅ (5.5)

where Sn
α := {Sα[t]}

n
t=1, Xl := el(S

n
1 , . . . , S

n
L) is the output of encoder l, and

XU := {Xl : l ∈ U}.

The admissible rate region R is the collection of all admissible rate tuples (R1, . . . , RJ).

The minimum sum rate Rms is defined as

Rms := min
(R1,...,RJ )∈R

J∑

l=1

Rl. (5.6)

5.2 Superposition Coding Rate Region

A simple strategy for HMDC is to encode each of the L sources separately without

coding across different sources. Formally, the problem of encoding a single source Sα

can be viewed as a special case of the HMDC problem with H(Sm) = 0 for all m 6= α.

In this case, the source Sα needs to be nearly perfectly reconstructed whenever the

decoder can access a encoder set with weight at least α. This is essentially the same

problem of multicast a single source through a 3-layer acyclic network to multiple

destinations [14]. Therefore, any network multicast code can be used to encoder Sα.

An example of such network coding problem is given in Figure 5.2.

The result on this network coding problem is summarized in the following propo-

sition [14].
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Sα

Ŝα Ŝα Ŝα

strong encoders weak encoders

Figure 5.2: A single source network multicast example for coding a single source Sα

(α = 2) with 2 strong encoders and 2 weak encoders.

Proposition 4. Let R(α) be the collection of all admissible rate tuples for encoding

a single source Sα. Then, R(α) is given by the collection of all nonnegative tuples

(R
(α)
1 , . . . , R

(α)
L ) such that

∑

l∈U

R
(α)
l ≥ H(Sα), ∀U ∈ Θ

(α)
J . (5.7)

where Θ
(α)
J := {U : U ∈ ΩJ , u

Tw = α}.

Note that for U ′ ∈ ΩJ with (u′)Tw ∈ (α, α+1), U ′ can be easily reduced to some

U with uTw = α.

By definition, the superposition encoding rate region Rsup for HMDC is given by
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the collection of all nonnegative rate tuples (R1, . . . , RJ) such that

Rl :=

L∑

α=1

r
(α)
l (5.8)

for some nonnegative r
(α)
l , α = 1, . . . , L and l = 1, . . . , J , satisfying

∑

l∈U

r
(α)
l ≥ H(Sα), ∀U ∈ Θ

(α)
J . (5.9)

Note that we discard those decoding constraints on the set U ′ with (u′)Tw ∈ (α, α+1),

which are dominated by (5.9).

In principle, an explicit characterization of the superposition coding rate region

Rsup can be obtained by eliminating r
(α)
l , α = 1, . . . , L and l = 1, . . . , J , via a

Fourier-Motzkin elimination from (5.8) and (5.9). However, the elimination process

is unmanageable even for moderate L and J , as there are simply too many equa-

tions involved. On the other hand, note that the superposition coding rate region

Rsup is a convex polyhedron with polyhedral cone being (R+)J , so an equivalent

characterization is to characterize the supporting hyperplanes:

J∑

l=1

λlRl ≥ f(λ), ∀λ := (λ1, . . . , λJ) ∈ (R+)J (5.10)

where

f(λ) = min
(R1,...,RJ)∈Rsup

J∑

l=1

λlRl (5.11)

=

min
∑J

l=1

(
∑L

α=1 λlr
(α)
l

)

subject to
∑

l∈U r
(α)
l ≥ H(Sα), ∀U ∈ Θ

(α)
J and α = 1, . . . , L

r
(α)
l ≥ 0, ∀α = 1, . . . , L and l = 1, . . . , J.

(5.12)
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Clearly, the above optimization problem can be separated into the following L sub-

optimization problems:

f(λ) =
L∑

α=1

f ′
α(λ) (5.13)

where

f ′
α(λ) =

min
∑J

l=1 λlr
(α)
l

subject to
∑

l∈U r
(α)
l ≥ H(Sα), ∀U ∈ Θ

(α)
J

r
(α)
l ≥ 0, ∀l = 1, . . . , J

(5.14)

=

max
(
∑

U∈Θ
(α)
J

cλ(U)
)

H(Sα)

subject to
∑

{U∈Θ
(α)
J

:U∋l}
cλ(U) ≤ λl, ∀l = 1, . . . , J

cλ(U) ≥ 0, ∀U ∈ Θ
(α)
J .

(5.15)

and (5.15) follows from the strong duality for linear programs. For any λ ∈ (R+)J

and any α = 1, . . . , L, let

fα(λ) :=

max
∑

U∈Θ
(α)
J

cλ(U)

subject to
∑

{U∈Θ
(α)
J

:U∋l}
cλ(U) ≤ λl, ∀l = 1, . . . , J

cλ(U) ≥ 0, ∀U ∈ Θ
(α)
J .

(5.16)

Then, we have f ′
α(λ) = fα(λ)H(Sα) and hence

f(λ) =

L∑

α=1

fα(λ)H(Sα) (5.17)

for any λ ∈ (R+)J . Substituting (5.17) into (5.10), we conclude that the superpo-

sition coding rate region Rsup is given by the collection of nonnegative rate tuples
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(R1, . . . , RJ) satisfying

J∑

l=1

λlRl ≥
L∑

α=1

fα(λ)H(Sα), ∀λ ∈ (R+)L. (5.18)

5.3 Optimality Of Superposition Coding For Minimum Sum Rate

In this section, we show that superposition coding is optimal in achieving the

minimum sum rate. For a general λ, the linear program (5.16) does not admit a

closed-form solution. When considering the sum rate, λ = (λ1, . . . , λJ) = 1, the

following lemma gives a sufficient condition for the optimal solution.

Lemma 2. For λ = 1, c
(α)
1

is an optimal solution to (5.16) if

∑

U∈Θ
(α)
J

:U∋l

c1(U) = 1, ∀l = 1, . . . , J. (5.19)

Meanwhile,

fα(1) =
L

α
. (5.20)

Proof. Write the constraints of the linear program to
∑

U∈Θα
J
c1(U)u ≤ 1. Then for

the J-dimensional weight vector w, we have

∑

U∈Θα
J

c1(U)(u · w) ≤ 1 · w. (5.21)
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Since u · w = α for all U ∈ Θ
(α)
J , we have

∑

U∈Θα
J

c1(U) ≤
L

α
. (5.22)

Therefore, fα(1) ≤
L
α
. And the equality holds if and only if (5.19) holds.

As discussed before, in order to show that superposition coding achieves the

minimum sum rate, we need to show for any coding scheme, its sum rate should

satisfy

J∑

l=1

Rl ≥
L∑

α=1

L

α
H(Sα). (5.23)

As in the classical SMDC, we need some sort of subset entropy inequalities to

prove (5.23). For λ = 1, the following proposition gives a way to construct an optimal

solution to (5.16) with α replaced by α− 1 via the given optimal solution to (5.16).

Proposition 5. Suppose that c
(α)
1

,which satisfies (5.19), is an optimal solution to

linear program (5.16) and for each U ∈ Θ
(α)
J , there are s(U) strong encoders and

t(U) weak encoders, i.e., s(U) + t(U)
r

= α. Then for V ∈ Θα−1
L ,

c1(V ) =
∑

U∈Θ
(α)
J

,U⊃V

s(U)=s(V )+1

p(U)c1(U) +
∑

U∈Θ
(α)
J

,U⊃V

t(U)=t(V )+r

q(U)c1(U) (5.24)

p(U) =
t(U)− r

s(U)t(U) + r − s(U)r
(5.25)

q(U) =
1

(
t(U)−1
r−1

)
r

(s(U)t(U) + r − s(U)r)
(5.26)

is an optimal solution to linear program (5.16) with α replaced by α− 1.

Proof. We prove by induction on α. Initially, for U ∈ Θ
(L)
J , U = ΩJ is the unique
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subset. Thus we have a unique optimal solution c1(U) = 1 by Lemma 2.

Suppose c
(α)
1

is an optimal solution to linear program (5.16) and the following

equality holds.

∑

U∈Θ
(α)
J

,U∋l

c1(U) = 1, ∀l = 1, . . . , J. (5.27)

A key observation for providing the ”chain” form of the subset entropy inequality

is the following. For any subset U ∈ Θ
(α)
J as the parent set, there are two ways

to construct the child subset. One is to reduce any one strong encoders from U ,

the other is to reduce any r weak encoders from U . The combinations to do such

reductions are captured in (5.25) and (5.26), which can be easily checked by simple

counting argument.

Hence,

∑

V ∈Θ
(α−1)
J

,V ∋l

c1(V )

=
∑

V ∈Θ
(α−1)
J

,V ∋l

∑

U∈Θ
(α)
J

,U⊃V

s(U)=s(V )+1

p(U)c1(U) +
∑

V ∈Θ
(α−1)
J

,V ∋l

∑

U∈Θ
(α)
J

,U⊃V

t(U)=t(V )+r

q(U)c1(U) (5.28)

=
∑

U∈Θ
(α)
J

,U∋l

∑

V ∈Θ
(α−1)
J

,U⊃V

s(U)=s(V )+1

p(U)c1(U) +
∑

U∈Θ
(α)
J

,U∋l

∑

V ∈Θ
(α−1)
J

,U⊃V

t(U)=t(V )+r

q(U)c1(U) (5.29)

=
∑

U∈Θ
(α)
J

,U∋l

c1(U) (5.30)

= 1. (5.31)

This implies that when λ = 1, there is always an α-optimal solution.

Now we can establish the inequality chain in the following theorem to prove the
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optimality of separate encoding in terms of minimum sum rate.

Theorem 10. If λ = 1, for any optimal solution c
(α)
1

to linear program (5.16), there

exists an optimal solution c
(α−1)
1

to linear program (5.16) with α replaced by α − 1

such that

∑

U∈Θ
(α)
J

c1(U)H(XU) ≤
∑

V ∈Θ
(α−1)
J

c1(V )H(XV ) (5.32)

Proof. This is simply true by invoking the Madiman-Tetali subset inequality. To

show that, we need to verify

gU(V ) :=







p(U), if s(U) = s(V ) + 1;

q(U), if t(U) = t(V ) + r.
(5.33)

is indeed a fractional cover.

If l belongs to strong encoders,

∑

V ∈VU :V ∋l

gU(V ) = (s(U)− 1)p(U) +

(
t(U)

r

)

q(U) = 1; (5.34)

otherwise

∑

V ∈VU :V ∋l

gU(V ) = s(U)p(U) +

(
t(U)− 1

r − 1

)

q(U) = 1. (5.35)

Therefore, we arrives at

∑

V ∈VU :V ∋l

gU(V ) = 1, ∀l ∈ U. (5.36)
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Thus, by the same argument as shown in Corollary 1, we complete the proof.

Now we are ready to show the optimality of superposition for achieving the min-

imum sum rate.

Theorem 11. For the minimum sum rate of HMDC problem,

Rms =

L∑

α=1

L

α
H(Sα). (5.37)

Proof. Iteratively applying the decoding requirements and (5.32), we may obtain

∑

V ∈Θ
(1)
L

c1(V )H(V ) ≥
∑

U∈Θ
(m)
L

c1(U)H(XU |S
n
1 , . . . , S

n
m)

+ n
m∑

α=1

fα(1)H(Sα)− n
m∑

α=1

fα(1)δ
(n)
α

(5.38)

for any m = 1, . . . , L. In particular, let m = L, and there exists an optimal solution

to the linear program (5.16) with α = 1 such that

∑

U∈Θ
(1)
L

,U∋l

c1(U) = 1. (5.39)
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We have

J∑

l=1

H(Xl) =






∑

U∈Θ
(1)
L

,U∋l

c1(U)






J∑

l=1

H(Xl)

≥
∑

U∈Θ
(1)
L

c1(U)H(XU) (5.40)

≥
∑

U∈Θ
(L)
L

c1(U)H(XU |S
n
1 , . . . , S

n
L) + n

L∑

α=1

fα(1)H(Sα)− n
L∑

α=1

fα(1)δ
(n)
α

≥ n

L∑

α=1

fα(1)H(Sα)− n

L∑

α=1

fα(1)δ
(n)
α , (5.41)

where (5.40) is by the entropy independence bound.

Substituting and dividing both sides of the inequality by n, we have

J∑

l=1

(Rl + ǫ) ≥
L∑

α=1

fα(1)H(Sα)−
L∑

α=1

fα(1)δ
(n)
α . (5.42)

Finally, letting n → ∞ and ǫ → 0 completes the proof of (5.37), i.e., superposition

coding can achieve the minimum sum rate for the HMDC problem.

5.4 Optimality Of Superposition Coding Beyond Minimum Sum Rate

Based on the result of Theorem 11, it is very tempting to conjecture that super-

position coding can in fact achieve the entire admissible rate region for the HMDC

problem. However, even if we only consider the points on the boundary of the rate

region where the supporting hyperplanes are characterized by two coefficients in the

sense that

λ = (λ1, . . . , λ1
︸ ︷︷ ︸

|A|

, λ2, . . . , λ2
︸ ︷︷ ︸

|B|

),
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the problem seems nontrivial. In Appendix C, we verify that superposition coding is

indeed optimal for this case where r = 2 and there are 4 discrete memoryless sources

to be encoded by 2 strong encoders and 4 weak encoders. Our proof relies on an

explicit characterization of the optimal solutions to the linear programs (5.16). The

optimality of superposition coding is then proved by carefully establishing the subset

inequality in the same form as (5.32).

Extending such a proof strategy to the general HMDC problem, however, faces

a number of challenges. To begin with, explicitly finding the optimal solution to

the linear programs for the general λ seems extremely complicated, because the

relationship between the optimal solutions to linear programs with different α is

unclear due to the vast number of combinations of strong and weak encoders that

satisfy the decoding constraints. To understand the structure of the linear program

(5.16) is currently under the investigation. Moreover, even knowing the optimal

solution, it is not straightforward to establish the subset inequality in the same form

of (5.32) for all possible supporting hyperplanes of the entire rate region, since we

need to verify whether the optimal solutions to the linear programs of different α can

be connected with the notion of fractional covering. Finally, it is possible that the

potentially necessary inequalities to establish the optimality is beyond the framework

of hypergraph covering as the sliding-window subset inequality (2.47).
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6. CONCLUSION

SMDC is a classical model for coding over distributed storage. In this setting, a

simple separate encoding strategy known as superposition coding was shown to be

optimal in terms of achieving the minimum sum rate [3] and the entire admissible

rate region [5] of the problem. The proofs utilized carefully constructed induction

arguments, for which the classical subset entropy inequality of Han [4] played a key

role.

This thesis includes two parts. In the first part the existing optimality proofs for

classical SMDC were revisited, with a focus on their connections to subset entropy in-

equalities. First, a new sliding-window subset entropy inequality was introduced and

then used to establish the optimality of superposition coding for achieving the min-

imum sum rate under a weaker source-reconstruction requirement. Second, a subset

entropy inequality recently proved by Madiman and Tetali [6] was used to develop a

new structural understanding to the proof of Yeung and Zhang [5] on the optimality

of superposition coding for achieving the entire admissible rate region. Building on

the connections between classical SMDC and the subset entropy inequalities devel-

oped in the first part, in the second part the optimality of superposition coding was

further extended to the cases where there is an additional all-access encoder (SMDC-

A), an additional secrecy constraint (S-SMDC) or an encoder hierarchy (HMDC).

However, we are only able to show that superposition coding is optimal in achieving

the minimum sum rate in HMDC case. The optimality for the entire admissible rate

region is under further research.

Finally, we mention here that an “asymmetric” setting of the multilevel diversity

coding problem was considered in the recent work [15], where the sources that need
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to be asymptotically perfectly reconstructed depend on, not only the cardinality,

but the actual subset of the encoder outputs available at the decoder. Unlike the

symmetrical setting considered in [1–3,5] and in this thesis, as demonstrated in [15]

for the case with three encoders, coding across different sources is generally needed

to achieve the entire admissible rate region of the problem.
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APPENDIX A

PROOFS OF SUBSET ENTROPY INEQUALITIES

In this part, the differences in the proof techniques for subset entropy inequalities

are highlighted. Before proceeding to the proof, we shall revisit the entropy function.

The entropy H(X) of a discrete random variable X with possible values x1, . . . , xn

and probability mass function p(X) is defined by

H(X) = E[log p(X)] = −
n∑

i=1

p(xi) log p(xi). (A.1)

Similarly, we can define joint entropy, conditional entropy, mutual information and

so on. The key properties of entropy function includes the following. For random

variables X ,Y and Z,

• Chain rule: H(XY ) = H(X) +H(Y |X),

• Nonnegativity of mutual information: I(X ; Y |Z) ≥ 0,

• Conditioning reduces entropy: H(X|Y ) ≥ H(X|Z) if Y is some function of Z.

Meanwhile, we know that entropy function belongs to a more general class of set

function: submodular set functions. A function f : 2Ω → R is defined by satisfying

one of the following inequalities.

• Submodularity: f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ),

• Diminishing return: f(S ∪X)− f(S) ≥ f(T ∪X)− f(T ),∀S ⊆ T ,

where S,T and X are subsets of Ω.
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A.1 Proof Of Han’s Subset Inequality

For L jointly distributed random variables (X1, . . . , XL), consider the average

joint entropy over all subsets of a fixed size. First prove the right end of the Han’s

subset inequality chain, i.e.,

H(X1, . . . , XL) ≤
∑

U∈Ω
(L−1)
L

XU

L− 1
(A.2)

Using the chain rule to break the joint entropy into two terms, we have

H(X1, . . . , XL) = H(X1, . . . , XL−1) +H(XL|X1, . . . , XL−1) (A.3)

H(X1, . . . , XL) = H(X1, . . . , XL−2, XL) +H(XL−1|X1, . . . , XL−2, XL) (A.4)

≤ H(X1, . . . , XL−2, XL) +H(XL−1|X1, . . . , XL−2) (A.5)

... (A.6)

H(X1, . . . , XL) ≤ H(X2, . . . , XL) +H(X1). (A.7)

Adding these L inequalities and using the chain rule to combine conditional en-

tropy terms,

LH(X1, . . . , XL) ≤
L∑

l=1

H(X1, . . . , Xl−1, Xl+1, . . . , XL) +H(X1, . . . , XL) (A.8)

Rearranging the terms in (A.8) leads to (A.2).

For each |U |-element subset U , taking a uniform average over its (|U |−1)-element

subsets, one has

H(XU) ≤
∑

V⊂U,|V |=|U |−1

H(XV )

|U | − 1
, ∀U ∈ ΩL. (A.9)
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Taking a uniform average over all subsets of the same size as U , we arrive at

Han’s subset inequality.

A.2 Proof Of Madiman–Tetali’s Inequality

Equip the elements in any set U with indices of natural increasing order. For

j ∈ U , denote by < j as the subset of elements with indices smaller than j.

H(XU) =
∑

j∈U

H(Xj|X<j) (A.10)

≤
∑

j∈U

H(Xj|X<j)
∑

V ∈VU

g(V )I{j∈V } (A.11)

=
∑

j∈U

∑

V ∈VU

g(V )I{j∈V }H(Xj|X<j) (A.12)

=
∑

V ∈VU

g(V )
∑

j∈V

H(Xj|X<j) (A.13)

≤
∑

V ∈VU

g(V )
∑

j∈V

H(Xj|X<j∩V ) (A.14)

=
∑

V ∈VU

g(V )H(XV ) (A.15)

where (A.10) is due to chain rule of entropy functions, (A.11) is due to the fac-

tional cover, (A.13) is by interchanging the sum order and (A.14) is by the fact that

conditioning reduces entropy.

It is not hard to see that the proof of Madiman-Tetali’s inequality follows the same

steps as the one of Han’s inequality. The only difference the averaging coefficients.

The average coefficients for Han’s inequality are uniform, while the coefficients for

Madiman-Tetali’s inequality are non-uniform in general and form fractional covers .

Furthermore, the proofs for both Han’s subset inequality and Madiman-Tetali’s

inequality only depend on the properties of condtional entropy, i.e., the chain rule

and the fact that conditioning reduces entropy. However, in order to show the sliding-
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window subset entropy inequality, we rely on the submodularity of entropy functions.

In fact, submodularity can induce the properties of conditional entropy.
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APPENDIX B

PROOF OF THEOREM 5

Consider a proof via an induction on the total number of encoders L. Fix λ ∈

(R+)L. Without loss of generality, let us assume that

λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0. (B.1)

First consider the base case with L = 2. In this case, the optimal solution to the

linear program (2.19) is unique and is given by

cλ({l}) = λl, l = 1, 2 and cλ({1, 2}) = λ2. (B.2)

When f2(λ) = λ2 > 0, it is straightforward to verify that

g{1,2}({l}) = λl/λ2, l = 1, 2 (B.3)

is a fractional cover of ({1, 2}, {{1}, {2}}) and such that

cλ({l}) = g{1,2}({l})cλ({1, 2}), l = 1, 2. (B.4)

Now, assume that the theorem holds for L = N − 1 for some integer N ≥ 3.

Fix α ∈ {2, . . . , N}, and let c
(α)
λ

be an optimal solution to the linear program to

(2.19) with the optimal value fα(λ) > 0. Next, we show that we can always find

a collection of functions {gU : U ∈ Ω
(α)
L } for which each gU is a fractional cover of

(U,VU) and such that c
(α−1)
λ

= {cλ(V ) : V ∈ Ω
(α−1)
L } where cλ(V ) is given by (2.91)
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is an optimal solution to the linear program (2.19) with α replaced by α− 1.

We shall consider the following three cases separately.

Case 1: λ1 ≤
λ2+···+λN

α−1
. In this case, it is sufficient to consider for any U ∈ Ω

(α)
N ,

the uniform fractional cover

gU(V ) =
1

α− 1
, ∀V ∈ VU (B.5)

for the hypergraph (U,VU) so we have

cλ(V ) =
∑

U∈UV

cλ(U)

α− 1
, ∀V ∈ Ω

(α−1)
N . (B.6)

By [5, Eq. (39)], c
(α−1)
λ

constructed as such is an optimal solution to the linear

program (2.19) with α replaced by α− 1.

Case 2: λ1 > λ2+···+λN

α−2
. In this case, by [5, Lemma 6] cα(U) > 0 implies that

U ∋ 1. Furthermore, by [5, Lemma 8] c̃
(α−1)
λ

= {c̃λ(Ũ) : Ũ ⊆ Ω̃N−1 := {2, . . . , N}}

where

c̃λ(Ũ) = cλ({1} ∪ Ũ) (B.7)

is an optimal solution to the linear program

max
∑

Ũ∈Ω̃
(α−1)
N−1

c̃λ(Ũ)

subject to
∑

Ũ∈Ω̃
(α−1)
N−1 ,Ũ∋l

c̃λ(Ũ) ≤ λl, ∀l = 2, . . . , N

c̃λ(Ũ) ≥ 0, ∀Ũ ∈ Ω̃
(α−1)
N−1

(B.8)

with the optimal solution f̃α−1(λ) = fα(λ) > 0. Thus, by the induction assumption

there exists a collection of functions {g̃Ũ : Ũ ∈ Ω̃
(α−1)
N−1 } such that each g̃Ũ is a
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fractional cover of (Ũ , ṼŨ) and c̃
(α−2)
λ

= {c̃λ(Ṽ ) : Ṽ ∈ Ω̃
(α−2)
N−1 } where

c̃λ(Ṽ ) :=
∑

Ũ∈Ũ
Ṽ

c̃λ(Ũ)g̃Ũ(Ṽ ) (B.9)

is an optimal solution to the linear program

max
∑

Ṽ ∈Ω̃
(α−2)
N−1

c̃λ(Ṽ )

subject to
∑

Ṽ ∈Ω̃
(α−2)
N−1 ,Ṽ ∋l

c̃λ(Ṽ ) ≤ λl, ∀l = 2, . . . , N

c̃λ(Ṽ ) ≥ 0, ∀Ṽ ∈ Ω̃
(α−2)
N−1 .

(B.10)

For any U ∈ Ω
(α)
N such that U ∋ 1, let Ũ = U \ {1}, and let

gU(V ) :=







g̃Ũ(Ṽ ), if V = {1} ∪ Ṽ for some Ṽ ∈ ṼŨ

0, otherwise.
(B.11)

For any U ∈ Ω
(α)
N such that 1 /∈ U , let us choose gU to be an arbitrary fractional

cover of (U,VU). Then, for any V ∈ Ω
(α−1)
N such that V ∋ 1 we have

cλ(V ) =
∑

U∈UV

cλ(U)gU(V ) (B.12)

=
∑

Ũ∈Ũ
Ṽ

cλ({1} ∪ Ũ)g̃Ũ(Ṽ ) (B.13)

=
∑

Ũ∈Ũ
Ṽ

c̃λ(Ũ)g̃Ũ(Ṽ ) (B.14)

= c̃λ(Ṽ ) (B.15)

where Ṽ = V \ {1}, and for any V ∈ Ω
(α−1)
N such that 1 /∈ V

cλ(V ) =
∑

U∈UV

cλ(U)gU(V ) = 0. (B.16)
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By [5, Eq. (46)], c
(α−1)
λ

constructed as such is an optimal solution to the linear

program (2.19) with α replaced by α− 1. It remains to show that gU is a fractional

cover of (U,VU) for any U ∈ Ω
(α)
N such that U ∋ 1.

Fix U ∈ Ω
(α)
N such that U ∋ 1. For any i ∈ U \ {1}, we have

∑

{V ∈VU :V ∋i}

gU(V ) =
∑

{V ∈VU :V⊇{1,i}}

gU(V ) =
∑

{Ṽ ∈Ṽ
Ũ
:Ṽ ∋i}

g̃Ũ(Ṽ ) ≥ 1 (B.17)

and
∑

{V ∈VU :V ∋1}

gU(V ) ≥
∑

{V ∈VU :V⊇{1,i}}

gU(V ) ≥ 1. (B.18)

This completes the proof of Case 2.

Case 3: λ2+···+λN

α−1
< λ1 ≤ λ2+···+λN

α−2
. In this case, we shall need the following

notations. For any U ∈ Ω
(α)
N and τ ∈ {1, . . . , α}, denote by aU(τ) the smallest

positive integer l such that

|{1, . . . , l} ∩ U | = τ. (B.19)

Let

Wτ (U) := U \ {aU(τ)} (B.20)

so Wτ (U) ∈ Ω
(α−1)
N . For each U ∈ Ω

(α)
N , m ∈ {2, . . . , α}, and τ ∈ {m, . . . , α}, let

ξU,m,τ : Ω
(α−1)
N → R

+ where

ξU,m,τ(V ) :=







b
(α)
m−1−b

(α)
m

fα(λ)
, if V = Wτ (U)

0, otherwise
(B.21)

b
(α)
l := λl − λ̃l (B.22)

and λ̃l :=
∑

{U∈Ω
(α)
N

,U∋l}

cλ(U), ∀l = 1, . . . , L. (B.23)
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Let

β :=

α−1∑

m=2

(b
(α)
1 − b(α)m ). (B.24)

Consider the collection of functions {gU : U ∈ Ω
(α)
N } where

gU(V ) :=

(

1−
β

fα(λ)

)
1

α− 1
+

α∑

m=2

α∑

τ=m

ξU,m,τ(V ), ∀V ∈ VU . (B.25)

This gives

cλ(V ) =

(

1−
β

fα(λ)

)
∑

U∈UV

cλ(U)

α − 1
+
∑

U∈UV

α∑

m=2

α∑

τ=m

ξU,m,τ(V )cλ(U), ∀V ∈ Ω
(α−1)
N .

(B.26)

By [5, Eq. (55)], c
(α−1)
λ

constructed as such is an optimal solution to the linear

program (2.19) with α replaced by α− 1. It remains to show that gU is a fractional

cover of (U,VU) for any U ∈ Ω
(α)
N

Note that for any i ∈ U ,

∑

{V ∈VU ,V ∋i}

(

1−
β

fα(λ)

)
1

α− 1
= 1−

β

fα(λ)
(B.27)

and

∑

{V ∈VU ,V ∋i}

α∑

m=2

α∑

τ=m

ξU,m,τ(V ) =

α∑

m=2

α∑

τ=m




∑

{V ∈VU ,V ∋i}

ξU,m,τ(V )



 (B.28)

=
α∑

m=2

α∑

τ=m

b
(α)
m−1 − b

(α)
m

fα(λ)
1{aU (τ)6=i} (B.29)

=
α∑

m=2

b
(α)
m−1 − b

(α)
m

fα(λ)

(
α∑

τ=m

1{aU (τ)6=i}

)

(B.30)
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≥
α∑

m=2

b
(α)
m−1 − b

(α)
m

fα(λ)
(α−m) (B.31)

=
β

fα(λ)
(B.32)

where (B.32) follows from [5, Eq. (66)]. Combing (B.27) and (B.32) gives

∑

{V ∈VU ,V ∋i}

gU(V ) ≥ 1−
β

fα(λ)
+

β

fα(λ)
= 1. (B.33)

We thus conclude that gU as defined in (B.25) is indeed a fractional cover of (U,VU)

for any U ∈ Ω
(α)
N . This completes the proof of Case 3.
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APPENDIX C

HMDC: 2 STRONG ENCODERS AND 4 WEAK ENCODERS

In this part, consider the case where r = 2 and there are 4 discrete memoryless

sources to be encoded by 2 strong encoders and 4 weak encoders. We briefly sketch

the computation that is used to show superposition coding is optimal in achieving the

points on the boundary of the entire rate region where the supporting hyperplanes

are only characterized by two coefficients in the sense that

λ = (λ1, . . . , λ1
︸ ︷︷ ︸

|A|

, λ2, . . . , λ2
︸ ︷︷ ︸

|B|

).

For this particular problem, we discuss the optimal solution for each α = {1, 2, 3, 4}.

• α = 1.

We can rewrite the constraints in (5.15) explicitly as



















1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 1 1 0 0 0

0 0 1 0 0 1 1 0

0 0 0 1 0 1 0 1

0 0 0 0 1 0 1 1



















c
(1)
λ
(U) ≤ λ

T (C.1)
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It is not hard to see that f1(λ) = 2λ1 + λ2 with an optimal solution such that

c
(1)
λ
(U) =







λ1, uTw = 1, ui = 1, i ∈ {1, 2};

λ2

3
, uTw = 1, ui = 0, i = 1, 2.

(C.2)

• α = 2.

Similarly, we can get f2(λ) = λ1 + λ2, where an optimal solution has the

following form

c
(2)
λ
(U) =







λ1, uTw = 2, ui = 1, i = 1, 2;

λ2, uTw = 2, ui = 0, i = 1, 2.
(C.3)

• α = 3.

This case is a little bit complicated since the optimal solution depends on the

order of λ1 and λ2.

– If λ2

2
≤ λ1 ≤ 2λ2, f3(λ) =

2
3
(λ1 + λ2) and an optimal solution is

c
(3)
λ
(U) =







2λ1−λ2

9
, uTw = 3, ui = 1, i = 1, 2;

2λ2−λ1

3
, uTw = 3, ui = 0, i ∈ {1, 2}.

(C.4)

– If λ1 <
λ2

2
, f3(λ) = 2λ1 and an optimal solution is

c
(3)
λ
(U) = λ1, u

Tw = 3, ui = 0, i ∈ {1, 2}. (C.5)

– If λ1 > 2λ2, f3(λ) = 2λ2 and an optimal solution is

c
(3)
λ
(U) =

λ2

3
, uTw = 3, ui = 1, i = 1, 2. (C.6)

93



• α = 4.

In this case, f4(λ) = min{λ1, λ2} and the optimal solution is unique and

c
(4)
λ
(U) = min{λ1, λ2}, ui = 1 ∀ i = {1, . . . , 6}. (C.7)

With all the optimal solutions for α = 1 to 4 discussed above, for any λ1 and λ2,

we can easily establish the same results as those in Corollary 1 and thus have the

desired inequality chain to show the optimality of superposition coding.
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