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Abstract

This paper considers compressed sensing and affine rank minimization in both noiseless

and noisy cases and establishes sharp restricted isometry conditions for sparse signal and

low-rank matrix recovery. The analysis relies on a key technical tool which represents points

in a polytope by convex combinations of sparse vectors. The technique is elementary while

leads to sharp results.

It is shown that for any given constant t ≥ 4/3, in compressed sensing δAtk <
√

(t− 1)/t

guarantees the exact recovery of all k sparse signals in the noiseless case through the con-

strained `1 minimization, and similarly in affine rank minimization δMtr <
√

(t− 1)/t ensures

the exact reconstruction of all matrices with rank at most r in the noiseless case via the con-

strained nuclear norm minimization. Moreover, for any ε > 0, δAtk <
√

t−1
t +ε is not sufficient

to guarantee the exact recovery of all k-sparse signals for large k. Similar result also holds

for matrix recovery. In addition, the conditions δAtk <
√

(t− 1)/t and δMtr <
√

(t− 1)/t are

also shown to be sufficient respectively for stable recovery of approximately sparse signals

and low-rank matrices in the noisy case.

Keywords: Affine rank minimization, compressed sensing, constrained `1 minimization, low-

rank matrix recovery, constrained nuclear norm minimization, restricted isometry, sparse signal

recovery.
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1 Introduction

Efficient recovery of sparse signals and low-rank matrices has been a very active area of recent

research in applied mathematics, statistics, and machine learning, with many important appli-

cations, ranging from signal processing [28, 16] to medical imaging [22] to radar systems [3, 21].

A central goal is to develop fast algorithms that can recover sparse signals and low-rank matrices

from a relatively small number of linear measurements. Constrained `1-norm minimization and

nuclear norm minimization are among the most well-known algorithms for the recovery of sparse

signals and low-rank matrices respectively.

In compressed sensing, one observes

y = Aβ + z, (1)

where y ∈ Rn, A ∈ Rn×p with n � p, β ∈ Rp is an unknown sparse signal, and z ∈ Rn is a

vector of measurement errors. The goal is to recover the unknown signal β ∈ Rp based on the

measurement matrix A and the observed signal y. The constrained `1 minimization method

proposed by Candés and Tao [11] estimates the signal β by

β̂ = arg min
β∈Rp

{‖β‖1 : subject to Aβ − y ∈ B}, (2)

where B is a set determined by the noise structure. In particular, B is taken to be {0} in the

noiseless case. This constrained `1 minimization method has now been well studied and it is

understood that the procedure provides an efficient method for sparse signal recovery.

A closely related problem to compressed sensing is the affine rank minimization problem

(ARMP) (Recht et al. [26]), which aims to recover an unknown low-rank matrix based on its

affine transformation. In ARMP, one observes

b =M(X) + z, (3)

where M : Rm×n → Rq is a known linear map, X ∈ Rm×n is an unknown low-rank matrix of

interest, and z ∈ Rq is measurement error. The goal is to recover the low-rank matrix X based

on the linear map M and the observation b ∈ Rq. Constrained nuclear norm minimization [26],

which is analogous to `1 minimization in compressed sensing, estimates X by

X∗ = arg min
B∈Rm×n

{‖B‖∗ : subject to M(B)− b ∈ B}, (4)
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where ‖B‖∗ is the nuclear norm of B, which is defined as the sum of all singular values of B.

One of the most widely used frameworks in compressed sensing is the restrict isometry

property (RIP) introduced in Candés and Tao [11]. A vector β ∈ Rp is called s-sparse if

|supp(β)| ≤ s, where supp(β) = {i : βi 6= 0} is the support of β.

Definition 1.1 Suppose A ∈ Rn×p is a measurement matrix and 1 ≤ s ≤ p is an integer. The

restricted isometry constant (RIC) of order s is defined as the smallest number δAk such that for

all s-sparse vectors β ∈ Rp,

(1− δAs )‖β‖22 ≤ ‖Aβ‖22 ≤ (1 + δAs )‖β‖22. (5)

When s is not an integer, we define δAs as δAdse.

Different conditions on the RIC for sparse signal recovery have been introduced and studied

in the literature. For example, sufficient conditions for the exact recovery in the noiseless case

include δ2k <
√

2 − 1 in [14], δ2k < 0.472 in [6], δ2k < 0.497 in [23], δk < 0.307 in [8], δk < 1/3

and δ2k ≤ 1/2 in [9]. There are also other sufficient conditions that involve the RIC of different

orders, e.g. δA3k + 3δA4k < 2 in [12], δAk + δA2k < 1 in [10], δA2k < 0.5746 jointly with δA8k < 1,

δA3k < 0.7731 jointly with δA16k < 1 in [30] and δA2k < 4/
√

41 in [1].

Similar to the RIP for the measurement matrix A in compressed sensing given in Definition

1.1, a restricted isometry property for a linear mapM in ARMP can be given. For two matrices

X and Y in Rm×n, define their inner product as 〈X,Y 〉 =
∑

i,j XijYij and the Frobenius norm

as ‖X‖F =
√
〈X,X〉 =

√∑
i,j X

2
ij .

Definition 1.2 Suppose M : Rn×m → Rq is a linear map and 1 ≤ r ≤ min(m,n) is an integer.

The restricted isometry constant (RIC) of order r for M is defined as the smallest number δMr

such that for all matrices X with rank at most r,

(1− δMr )‖X‖2F ≤ ‖M(X)‖22 ≤ (1 + δMr )‖X‖2F . (6)

When r is not an integer, we define δMr as δMdre.

As in compressed sensing, there are many sufficient conditions based on the RIC to guarantee the

exact recovery of matrices of rank at most r through the constrained nuclear norm minimization
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(4). These include δM4r <
√

2 − 1 [15], δM5r < 0.607, δM4r < 0.558, and δM3r < 0.4721 [24],

δM2r < 0.4931 [29], δMr < 0.307 [29], δMr < 1/3 [9], and δM2r < 1/2 [9].

Among these sufficient RIP conditions, δAk < 1/3 and δMr < 1/3 have been verified in [9]

to be sharp for both sparse signal recovery and low-rank matrix recovery problems. Sharp

conditions on the higher order RICs are however still unknown. As pointed out by Blanchard

and Thompson [4], higher-order RIC conditions can be satisfied by a significantly larger set of

Gaussian random matrices in some settings. It is therefore of both theoretical and practical

interests to obtain sharp sufficient conditions on the high order RICs.

In this paper, we develop a new elementary technique for the analysis of the constrained

`1-norm minimization and nuclear norm minimization procedures and establish sharp RIP con-

ditions on the high order RICs for sparse signal and low-rank matrix recovery. The analysis is

surprisingly simple, while leads to sharp results. The key technical tool we develop states an

elementary geometric fact: Any point in a polytope can be represented as a convex combination

of sparse vectors. The following lemma may be of independent interest.

Lemma 1.1 (Sparse Representation of a Polytope) For a positive number α and a posi-

tive integer s, define the polytope T (α, s) ⊂ Rp by

T (α, s) = {v ∈ Rp : ‖v‖∞ ≤ α, ‖v‖1 ≤ sα}.

For any v ∈ Rp, define the set of sparse vectors U(α, s, v) ⊂ Rp by

U(α, s, v) = {u ∈ Rp : supp(u) ⊆ supp(v), ‖u‖0 ≤ s, ‖u‖1 = ‖v‖1, ‖u‖∞ ≤ α}. (7)

Then v ∈ T (α, s) if and only if v is in the convex hull of U(α, s, v). In particular, any v ∈ T (α, s)

can be expressed as

v =
N∑
i=1

λiui, and 0 ≤ λi ≤ 1,
N∑
i=1

λi = 1, and ui ∈ U(α, s, v).

Lemma 1.1 shows that any point v ∈ Rp with ‖v‖∞ ≤ α and ‖v‖1 ≤ sα must lie in a convex

polytope whose extremal points are s-sparse vectors u with ‖u‖1 = ‖v‖1 and ‖u‖∞ ≤ α, and

vice versa. This geometric fact turns out to be a powerful tool in analyzing constrained `1-

norm minimization for compressed sensing and nuclear norm minimization for ARMP, since
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it represents a non-sparse vector by the sparse ones, which provides a bridge between general

vectors and the RIP conditions. A graphical illustration of Lemma 1.1 is given in Figure 1.

Figure 1: A graphical illustration of sparse representation of a polytope in one orthant with

p = 3 and s = 2. All the points in the colored area can be expressed as convex combinations of

the sparse vectors represented by the three pointed black line segments on the edges.

Combining the results developed in Sections 2 and 3, we establish the following sharp suffi-

cient RIP conditions for the exact recovery of all k-sparse signals and low-rank matrices in the

noiseless case. We focus here on the exact sparse and noiseless case; the general approximately

sparse (low-rank) and noisy case is considered in Sections 2 and 3.

Theorem 1.1 Let y = Aβ where β ∈ Rp is a k-sparse vector. If

δAtk <

√
t− 1

t
(8)

for some t ≥ 4/3, then the `1 norm minimizer β̂ of (2) with B = {0} recovers β exactly.

Similarly, suppose b =M(X) where the matrix X ∈ Rm×nis of rank at most r. If

δMtr <

√
t− 1

t
(9)
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for some t ≥ 4/3, then the nuclear norm minimizer X∗ of (4) with B = {0} recovers X exactly.

Moreover, it will be shown that for any ε > 0, δAtk <
√

t−1
t + ε is not sufficient to guarantee

the exact recovery of all k-sparse signals for large k. Similar result also holds for matrix recovery.

For the more general approximately sparse (low-rank) and noisy cases considered in Sections 2

and 3, it is shown that Conditions (8) and (9) are also sufficient respectively for stable recovery

of (approximately) k-sparse signals and (approximately) rank-r matrices in the noisy case. An

oracle inequality is also given in the case of compressed sensing with Gaussian noise under the

condition δAtk <
√

(t− 1)/t when t ≥ 4/3.

The rest of the paper is organized as follows. Section 2 considers sparse signal recovery and

Section 3 focuses on low-rank matrix recovery. Discussions on the case t < 4/3 and some related

issues are given in Section 4. The proofs of the key technical result Lemma 1.1 and the main

theorems are contained in Section 5.

2 Compressed Sensing

We consider compressed sensing in this section and establish the sufficient RIP condition δAtk <√
(t− 1)/t in the noisy case which implies immediately the results in the noiseless case given in

Theorem 1.1. For v ∈ Rp, we denote vmax(k) as v with all but the largest k entries in absolute

value set to zero, and v−max(k) = v − vmax(k).

Let us consider the signal recovery model (1) in the setting where the observations contain

noise and the signal is not exactly k-sparse. This is of significant interest for many applications.

Two types of bounded noise settings,

z ∈ B`2(ε) , {z : ‖z‖2 ≤ ε} and z ∈ BDS(ε) , {z : ‖Az‖∞ ≤ ε},

are of particular interest. The first bounded noise case was considered for example in [18]. The

second case is motivated by the Dantzig Selector procedure proposed in [13]. Results on the

Gaussian noise case, which is commonly studied in statistics, follow immediately. For notational

convenience, we write δ for δAtk.
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Theorem 2.1 Consider the signal recovery model (1) with ‖z‖2 ≤ ε. Suppose β̂`2 is the min-

imizer of (2) with B = B`2(η) = {z : ‖z‖2 ≤ η} for some η ≥ ε. If δ = δAtk <
√

(t− 1)/t for

some t ≥ 4/3, then

‖β̂`2−β‖2 ≤
√

2(1 + δ)

1−
√
t/(t− 1)δ

(ε+η)+

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖β−max(k)‖1√
k

. (10)

Now consider the signal recovery model (1) with ‖AT z‖∞ ≤ ε. Suppose β̂DS is the minimizer

of (2) with B = BDS(η) = {z : ‖AT z‖∞ ≤ η} for some η ≥ ε. If δ = δAtk <
√

(t− 1)/t for some

t ≥ 4/3, then

‖β̂DS−β‖2 ≤
√

2tk

1−
√
t/(t− 1)δ

(ε+η)+

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖β−max(k)‖1√
k

. (11)

Remark 2.1 The result for the noiseless case follows directly from Theorem 2.1. When β is

exactly k-sparse and there is no noise, by setting η = ε = 0 and by noting β−max(k) = 0, we

have β̂ = β from (10), where β̂ is the minimizer of (2) with B = {0}.

Remark 2.2 It should be noted that Theorems 1.1 and 2.1 also hold for 1 < t < 4/3 with

exactly the same proof. However the bound
√

(t− 1)/t is not sharp for 1 < t < 4/3. See Section

4 for further discussions. The condition t ≥ 4/3 is crucial for the “sharpness” results given in

Theorem 2.2 at the end of this section.

The signal recovery model (1) with Gaussian noise is of particular interest in statistics

and signal processing. The following results on the i.i.d. Gaussian noise case are immediate

consequences of the above results on the bounded noise cases using the same argument as that

in [5, 6], since the Gaussian random variables are essentially bounded.

Proposition 2.1 Suppose the error vector z ∼ Nn(0, σ2I) in (1). δAtk <
√

(t− 1)/t for some

t ≥ 4/3. Let β̂`2 be the minimizer of (2) with B = {z : ‖z‖2 ≤ σ
√
n+ 2

√
n log n} and let β̂DS

be the minimizer of (2) with B = {z : ‖AT z‖∞ ≤ 2σ
√

log p}. Then with probability at least
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1− 1/n,

‖β`2 − β‖2 ≤
2
√

2(1 + δ)

1−
√
t/(t− 1)δ

σ

√
n+ 2

√
n log n

+

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖β−max(k)‖1√
k

,

and with probability at least 1− 1/
√
π log p,

‖β̂DS − β‖2 ≤
4
√

2t

1−
√
t/(t− 1)δ

σ
√
k log p

+

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖β−max(k)‖1√
k

.

The oracle inequality approach was introduced by Donoho and Johnstone [20] in the context

of wavelet thresholding for signal denoising. It provides an effective way to study the performance

of an estimation procedure by comparing it to that of an ideal estimator. In the context of

compressed sensing, oracle inequalities have been given in [7, 9, 13, 15] under various settings.

Proposition 2.2 below provides an oracle inequality for compressed sensing with Gaussian noise

under the condition δAtk <
√

(t− 1)/t when t ≥ 4/3.

Proposition 2.2 Given (1), suppose the error vector z ∼ Nn(0, σ2I), β is k-sparse. Let β̂DS

be the minimizer of (2) with B = {z : ‖AT z‖∞ ≤ 4σ
√

log p}. If δAtk <
√

(t− 1)/t for some

t ≥ 4/3, then with probability at least 1− 1/
√
π log p,

‖β̂DS − β‖22 ≤
256t

(1−
√
t/(t− 1)δAtk)

2
log p

∑
i

min(β2i , σ
2). (12)

We now turn to show the sharpness of the condition δAtk <
√

(t− 1)/t for the exact recovery

in the noiseless case and stable recovery in the noisy case. It should be noted tha tthe result in

the special case t = 2 was shown in [17].

Theorem 2.2 Let t ≥ 4/3. For all ε > 0 and k ≥ 5/ε, there exists a matrix A satisfying

δtk <
√

t−1
t + ε and some k-sparse vector β0 such that

• in the noiseless case, i.e. y = Aβ0, the `1 minimization method (2) with B = {0} fail to

exactly recover the k-sparse vector β0, i.e. β̂ 6= β0, where β̂ is the solution to (2).
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• in the noisy case, i.e. y = Aβ0 + z, for all constraints Bz (may depends on z), the `1

minimization method (2) fails to stably recover the k-sparse vector β0, i.e. β̂ 9 β as

z → 0, where β̂ is the solution to (2).

3 Affine Rank Minimization

We consider the affine rank minimization problem (3) in this section. As mentioned in the intro-

duction, this problem is closely related to compressed sensing. The close connections between

compressed sensing and ARMP have been studied in Oymak, et al. [25]. We shall present here

the analogous results on affine rank minimization without detailed proofs.

For a matrix X ∈ Rm×n (without loss of generality, assume that m ≤ n) with the singular

value decomposition X =
∑m

i=1 aiuiv
T
i where the singular values ai are in descending order, we

define Xmax(r) =
∑r

i=1 aiuiv
T
i and X−max(r) =

∑m
i=r+1 aiuiv

T
i . We should also note that the

nuclear norm ‖ · ‖∗ of a matrix equals the sum of the singular values, and the spectral norm ‖ · ‖

of a matrix equals its largest singular value. Their roles are similar to those of `1 norm and `∞

norm in the vector case, respectively. For a linear operator M : Rm×n → Rq, its dual operator

is denoted by M∗ : Rq → Rm×n.

Similarly as in compressed sensing, we first consider the matrix recovery model (3) in the

case where the error vector z is in bounded sets: ‖z‖2 ≤ ε and ‖M∗(z)‖ ≤ ε. The correspond-

ing nuclear norm minimization methods are given by (4) with B = B`2(η) and B = BDS(η)

respectively, where

B`2(η) = {z : ‖z‖2 ≤ η}, (13)

BDS(η) = {z : ‖M∗(z)‖ ≤ η}. (14)

Proposition 3.1 Consider ARMP (3) with ‖z‖2 ≤ ε. Let X`2
∗ be the minimizer of (4) with

B = B`2(η) defined in (13) for some η ≥ ε. If δMr <
√

(t− 1)/t with t ≥ 4/3, then

‖X`2
∗ −X‖F ≤

√
2(1 + δ)

1−
√
t/(t− 1)δ

(ε+ η) +

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖X−max(r)‖1√
r

.

(15)
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Similarly, consider ARMP (3) with z satisfying ‖M∗(z)‖ ≤ ε. Let XDS
∗ be the minimizer of

(4) with M = BDS(η) defined in (14), then

‖XDS
∗ −X‖F ≤

√
2tr

1−
√
t/(t− 1)δ

(ε+ η) +

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖X−max(r)‖1√
r

.

(16)

In the special noiseless case where z = 0, it can be seen from either of these two inequalities

above that all matrices X with rank at most r can be exactly recovered provided that δMtr <√
(t− 1)/t, for some t ≥ 4/3.

The following result shows that the condition δMtr <
√

(t− 1)/t with t ≥ 4/3 is sharp. These

results together establish the optimal bound on δMtr (t ≥ 4/3) for the exact recovery in the

noiseless case.

Proposition 3.2 Suppose t ≥ 4/3. For all ε > 0 and r ≥ 5/ε, there exists a linear map M

with δMtr <
√

(t− 1)/t+ ε and some matrix X0 of rank at most r such that

• in the noiseless case, i.e. b = M(X0), the nuclear norm minimization method (4) with

B = {0} fails to exactly recover X0, i.e. X∗ 6= X0, where X∗ is the solution to (4).

• in the noisy case, i.e. b = M(X0) + z, for all constraints Bz (may depends on z), the

nuclear norm minimization method (4) fails to stably recover X0, i.e. X∗ 9 X0 as z → 0,

where X∗ is the solution to (4) with B = Bz.

4 Discussion

We shall focus the discussions in this section exclusively on compressed sensing as the results on

affine rank minimization is analogous. In Section 2, we have established the sharp RIP condition

on the high-order RICs,

δAtk <

√
t− 1

t
for some t ≥ 4

3 ,

for the recovery of k-sparse signals in compressed sensing. In addition, it is known from [9] that

δAk < 1/3 is also a sharp RIP condition. For a general t > 0, denote the sharp bound for δAtk as
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δ∗(t). Then

δ∗(1) = 1/3 and δ∗(t) =
√

(t− 1)/t, t ≥ 4/3.

A natural question is: What is the value of δ∗(t) for t < 4/3 and t 6= 1? That is, what is the

sharp bound for δAtk when t < 4/3 and t 6= 1? We have the following partial answer to the

question.

Proposition 4.1 Let y = Aβ where β ∈ Rp is k-sparse. Suppose 0 < t < 1 and tk ≥ 0 to be an

integer

• When tk is even and δAtk <
t

4−t , the `1 minimization (2) with B = {0} recovers β exactly.

• When tk is odd and δAtk <

√
t2−1/k2

4−2t+
√
t2−1/k2

, the `1 minimization (2) with B = {0} recovers

β exactly.

In addition, the following result shows that δ∗(t) ≤ t
4−t for all 0 < t < 4/3. In particular,

when t = 1, the upper bound t/(4− t) coincides with the true sharp bound 1/3.

Proposition 4.2 For 0 < t < 4/3, ε > 0 and any integer k ≥ 1, δAtk <
t

4−t + ε is not suffient

for the exact recovery. Specifically, there exists a matrix A with δAtk = t
4−t and a k-sparse vector

β0 such that β̂ 6= β0, where β̂ is the minimizer of (2) with B = {0}.

Propositions 4.1 and 4.2 together show that δ∗(t) = t
4−t when tk is even and 0 < t < 1. We

are not able to provide a complete answer for δ∗(t) when 0 < t < 4/3. We conjecture that

δ∗(t) = t
4−t for all 0 < t < 4/3. The following figure plots δ∗(t) as a function of t based on this

conjecture for the interval (0, 4/3).

Our results show that exact recovery of k-sparse signals in the noiseless case is guaranteed if

δAtk <
√

(t− 1)/t for some t ≥ 4/3. It is then natural to ask the question: Among all these RIP

conditions δAtk < δ∗(t), which one is easiest to be satisfied? There is no general answer to this

question as no condition is strictly weaker or stronger than the others. It is however interesting

to consider special random measurement matrices A = (Aij)n×p where

Aij ∼ N (0, 1/n), Aij ∼

 1/
√
n w.p.1/2

−1/
√
n w.p.1/2

, or Aij ∼


√

3/n w.p.1/6

0 w.p.1/2

−
√

3/n w.p.1/6

.

11



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

t

δ
*

Figure 2: Plot of δ∗ as a function of t. The dotted line is t = 4/3.

Baraniuk et al [2] provides a bound on RICs for a set of random matrices from concentration of

measure. For these random measurement matrices, Theorem 5.2 of [2] shows that for positive

integer m < n and 0 < λ < 1,

P (δAm < λ) ≥ 1− 2

(
12ep

mλ

)m
exp

(
−n(λ2/16− λ3/48)

)
. (17)

Hence, for t ≥ 4/3,

P (δAtk <
√

(t− 1)/t) ≥ 1−2 exp

(
tk
(

log(12e/
√
t(t− 1)) + log(p/k)

)
− n

(
t− 1

16t
− (t− 1)3/2

48t3/2

))
.

For 0 < t < 4/3, using the conjectured value δ∗(t) = t
4−t , we have

P (δAtk < t/(4−t)) ≥ 1−2 exp

(
tk(log(12(4− t)e/t2) + log(p/k))− n

(
t2

16(4− t)2
− t3

48(4− t)3

))
.

It is easy to see when p, k, and p/k → ∞, the lower bound of n to ensure δAtk < t/(4 − t) or

δAtk <
√

(t− 1)/t to hold in high probability is n ≥ k log(p/k)n∗(t), where

n∗ ,

 t/
(

t2

16(4−t)2 −
t3

48(4−t)3

)
t < 4/3;

t/
(
t−1
16t −

(t−1)3/2
48t3/2

)
, t ≥ 4/3.

For the plot of n∗(t), see Figure 1. n∗(t) has minimum 83.2 when t = 1.85. Moreover, among

integer t, t = 2 can also provide a near-optimal minimum: n∗(2) = 83.7.

We should note that the above analysis is based on the bound given in (17) which itself can

be possibly improved.
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Figure 3: Plot of n∗ as a function of t.

5 Proofs

We shall first establish the technical result, Lemma 1.1, and then prove the main results.

Proof of Lemma 1.1. First, suppose v ∈ T (α, s). We can prove v is in the convex hull of

U(α, s, v) by induction. If v is s-sparse, v itself is in U(α, s, v).

Suppose the statement is true for all (l − 1)-sparse vectors v (l − 1 ≥ s). Then for any

l-sparse vector v such that ‖v‖∞ ≤ α, ‖v‖1 ≤ sα, without loss of generality we assume that v is

not (l − 1)-sparse (otherwise the result holds by assumption of l − 1). Hence we can express v

as v =
∑l

i=1 aiei, where ei’s are different unit vectors with one entry of ±1 and other entries of

zeros; a1 ≥ a2 ≥ · · · ≥ al > 0. Since
∑l

i=1 ai = ‖v‖1 ≤ sα, so

1 ∈ D , {1 ≤ j ≤ l − 1 : aj + aj+1 + · · ·+ al ≤ (l − j)α},

which means D is not empty. Take the largest element in D as j, which implies

aj + aj+1 + · · ·+ al ≤ (l − j)α, aj+1 + aj+2 + · · ·+ al > (l − j − 1)α. (18)

(It is noteworthy that even if the largest j in D is l − 1, (18) still holds). Define

bw ,

∑l
i=j ai

l − j
− aw, j ≤ w ≤ l, (19)

13



which satisfies
∑l

i=j ai = (l − j)
∑l

i=j bi. By (18), for all j ≤ w ≤ l,

bw ≥ bj =

∑l
i=j+1 ai

l − j
− l − j − 1

l − j
aj ≥

∑l
i=j+1 ai − (l − j − 1)α

l − j
> 0.

In addition, we define

vw ,
j−1∑
i=1

aiei + (
l∑
i=j

bi)
l∑

i=j,i6=w
ei ∈ Rp, λw ,

bw∑l
i=j bi

, j ≤ w ≤ l, (20)

then 0 ≤ λw ≤ 1,
∑l

w=j λw = 1,
∑l

w=j λwvw = v, supp(vw) ⊆ supp(v). We also have

‖vw‖1 =

j−1∑
i=1

ai + (l − j)
l∑

w=j

bw =

j−1∑
i=1

ai +

l∑
i=j

ai = ‖v‖1,

‖vw‖∞ = max{a1, · · · , aj−1,
l∑
i=j

bi} ≤ max{α,
∑l

i=j ai

l − j
} ≤ α.

The last inequality is due to the first part of (18). Finally, note that vw is (l− 1)-sparse, we can

use the induction assumption to find {ui,w ∈ Rp, λi,w ∈ R : 1 ≤ i ≤ Nw, j ≤ w ≤ l} such that

ui,w is s-sparse, supp(ui,w) ⊆ supp(vi) ⊆ supp(v), ‖ui,w‖1 = ‖vi‖1 = ‖v‖1, ‖ui,w‖∞ ≤ α;

In addition, vi =
∑Nw

i=1 λi,wui,w, so v =
∑l

w=j

∑Nw
i=1 λwλi,wui,w, which proves the result for l.

The proof of the other part of the lemma is easier. When v is in the convex hull of U(α, s, v),

then we have

‖v‖∞ = ‖
N∑
i=1

λiui‖∞ ≤
N∑
i=1

λi‖ui‖∞ ≤ α,

‖v‖1 = ‖
N∑
i=1

λiui‖1 ≤
N∑
i=1

λi‖ui‖1 ≤
N∑
i=1

λi‖ui‖0‖ui‖∞ ≤ sα,

which finished the proof of the lemma. �

Proof of Theorem 1.1 First, we assume that tk is an integer. By the well-known Null Space

Property (Theorem 1 in [27]), we only need to check for all h ∈ N (A) \ {0}, ‖hmax(k)‖1 <

‖h−max(k)‖1. Suppose there exists h ∈ N (A) \ {0}, such that ‖hmax(k)‖1 ≥ ‖h−max(k)‖1. Set

α = ‖hmax(k)‖1/k. We divide h−max(k) into two parts, h−max(k) = h(1) + h(2), where

h(1) = h−max(k) · 1{i||h−max(k)(i)|>α/(t−1)}, h(2) = h−max(k) · 1{i||h−max(k)(i)|≤α/(t−1)}.
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Then ‖h(1)‖1 ≤ ‖h−max(k)‖1 ≤ αk. Denote |supp(h(1))| = ‖h(1)‖0 = m. Since all non-zero

entries of h(1) have magnitude larger than α/(t− 1), we have

αk ≥ ‖h(1)‖1 =
∑

i∈supp(h(1))

|h(1)(i)| ≥
∑

i∈supp(h(1))

α/(t− 1) = mα/(t− 1).

Namely m ≤ k(t− 1). In addition we have

‖h(2)‖1 = ‖h−max(k)‖1 − ‖h(1)‖1 ≤ kα−
mα

t− 1
= (k(t− 1)−m) · α

t− 1
,

‖h(2)‖∞ ≤
α

t− 1
.

(21)

We now apply Lemma 1.1 with s = k(t − 1) − m. Then h(2) can be expressed as a convex

combination of sparse vectors: h(2) =
∑N

i=1 λiui, where ui is (k(t− 1)−m)-sparse and

‖ui‖1 = ‖h(2)‖1, ‖ui‖∞ ≤
α

(t− 1)
, supp(ui) ⊆ supp(h(2)). (22)

Hence,

‖ui‖2 ≤
√
‖ui‖0‖ui‖∞ ≤

√
k(t− 1)−m‖ui‖∞ ≤

√
k(t− 1)‖ui‖∞ ≤

√
k/(t− 1)α. (23)

Now we suppose µ ≥ 0, c ≥ 0 are to be determined. Denote βi = hmax(k) + h(1) + µui, then

N∑
j=1

λjβj − cβi = hmax(k) + h(1) + µh(2) − cβi = (1− µ− c)(hmax(k) + h(1))− cµui + µh. (24)

Since hmax(k), h
(1), ui are k-, m-, (k(t − 1) −m)-sparse respectively, βi = hmax(k) + h(1) + µui,∑N

j=1 λjβj − cβi − µh = (1− µ− c)(hmax(k) + h(1))− cµui are all tk-sparse vectors.

We can check the following identity in `2 norm,

N∑
i=1

λi‖A(
N∑
j=1

λjβj − cβi)‖22 + (1− 2c)
∑

1≤i<j≤N
λiλj‖A(βi − βj)‖22 =

N∑
i=1

λi(1− c)2‖Aβi‖22. (25)

Since Ah = 0 and (24), we have A(
∑N

j=1 λjβj − cβi) = A((1−µ− c)(hmax(k) +h(1))− cµui). Set

c = 1/2, µ =
√
t(t− 1)− (t− 1), let the left hand side of (25) minus the right hand side, we get

0 ≤ (1 + δAtk)

N∑
i=1

λi

(
(1− µ− c)2‖hmax(k) + h(1)‖22 + c2µ2‖ui‖22

)
−(1− δAtk)

N∑
i=1

λi(1− c)2
(
‖hmax(k) + h(1)‖22 + µ2‖ui‖22

)
15



=
N∑
i=1

λi

[(
(1 + δAtk)(

1

2
− µ)2 − (1− δAtk) ·

1

4

)
‖hmax(k) + h(1)‖22 +

1

2
δAtkµ

2‖ui‖22
]

≤
N∑
i=1

λi‖hmax(k) + h(1)‖22
[
(µ2 − µ) + δAtk

(
1

2
− µ+ (1 +

1

2(t− 1)
)µ2
)]

= ‖hmax(k) + h(1)‖22
[
δAtk

(
(2t− 1)t− 2t

√
t(t− 1)

)
−
(

(2t− 1)
√
t(t− 1)− 2t(t− 1)

)]
< 0.

We used the fact that

δAtk <
√

(t− 1)/t,

‖ui‖2 ≤
√
k/(t− 1)α ≤

‖hmax(k)‖2√
(t− 1)

≤
‖hmax(k) + h(1)‖2√

t− 1

above. This is a contradiction.

When tk is not an integer, note t′ = dtke/k, then t′ > t, t′k is an integer,

δt′k = δtk <

√
t− 1

t
<

√
t′k − 1

t′k
,

which can be deduced to the former case. Hence we finished the proof. �

Proof of Theorem 2.1. We first prove the inequality on β̂`2 (10). Again, we assume that tk

is an integer at first. Suppose h = β̂`2 − β, we shall use a widely known result (see, e.g., [5],

[13], [12], [19]),

‖h−max(k)‖1 ≤ ‖hmax(k)‖1 + 2‖β−max(k)‖1.

Besides,

‖Ah‖2 ≤ ‖y −Aβ‖2 + ‖Aβ̂`2 − y‖2 ≤ ε+ η. (26)

Define α = (‖hmax(k)‖1 + 2‖β−max(k)‖1)/k. Similarly as the proof of Theorem 1.1, we divide

h−max(k) into two parts, h−max(k) = h(1) + h(2), where

h(1) = h−max(k) · 1{i||h−max(k)(i)|>α/(t−1)}, h(2) = h−max(k) · 1{i||h−max(k)(i)|≤α/(t−1)}.

Then ‖h(1)‖1 ≤ ‖h−max(k)‖1 ≤ αk. Denote |supp(h(1))| = ‖h(1)‖0 = m. Since all non-zero

entries of h(1) have magnitude larger than α/(t− 1), we have

αk ≥ ‖h(1)‖1 =
∑

i∈supp(h(1))

|h(1)(i)| ≥
∑

i∈supp(h(1))

α/(t− 1) = mα/(t− 1).
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Namely m ≤ k(t− 1). Hence, (21) still holds. Besides, ‖hmax(k) + h(1)‖0 = k+m ≤ tk, we have

〈A(hmax(k) + h(1)), Ah〉 ≤ ‖A(hmax(k) + h(1))‖2‖Ah‖2 ≤
√

1 + δ‖hmax(k) + h(1)‖2(ε+ η). (27)

Again by (21), we apply Lemma 1.1 by setting s = k(t−1)−m, we can express h(2) as a weighted

mean: h(2) =
∑N

i=1 λiui, where ui is (k(t− 1)−m)-sparse and (22) still holds. Hence,

‖ui‖2 ≤
√
‖ui‖0‖ui‖∞ ≤

√
k(t− 1)−m‖ui‖∞ ≤

√
k(t− 1)‖ui‖∞ ≤

√
k/(t− 1)α.

Now we suppose 1 ≥ µ ≥ 0, c ≥ 0 are to be determined. Denote βi = hmax(k) + h(1) + µui,

then we still have (24). Similarly to the proof of Theorem 1.1, since hmax(k), h
(1), ui are k-, m-,

(k(t−1)−m)-sparse vectors, respectively, we know βi = hmax(k) +h(1) +µui,
∑N

j=1 λjβj − cβi−

µh = (1− µ− c)(hmax(k) + h(1))− cµui are all tk sparse vectors.

Suppose x = ‖hmax(k) + h(1)‖2, P =
2‖β−max(k)‖1√

k
, then

‖ui‖2 ≤
√
k/(t− 1)α ≤

‖hmax(k)‖2√
(t− 1)

+
2‖β−max(k)‖1√

k(t− 1)
≤
‖hmax(k) + h(1)‖2√

t− 1
+

2‖β−max(k)‖1√
k(t− 1)

=
x+ P√
t− 1

.

We still use the `2 identity (25). Set c = 1/2, µ =
√
t(t− 1)− (t− 1) and take the difference of

the left- and right-hand sides of (25), we get

0 =
N∑
i=1

λi

∥∥∥∥A((hmax(k) + h(1) + µh(2))− 1

2
(hmax(k) + h(1) + µui)

)∥∥∥∥2
2

−
N∑
i=1

λi
4
‖Aβi‖22

=
N∑
i=1

λi

∥∥∥∥A((
1

2
− µ)(hmax(k) + h(1))− µ

2
ui + µh

)∥∥∥∥2
2

−
N∑
i=1

λi
4
‖Aβi‖22

=

N∑
i=1

λi

∥∥∥∥A((
1

2
− µ)(hmax(k) + h(1))− µ

2
ui

)∥∥∥∥2
2

+ µ2‖Ah‖22

+ 2

〈
A

(
(
1

2
− µ)(hmax(k) + h(1))− µ

2
h(2)

)
, µAh

〉
−

N∑
i=1

λi
4
‖Aβi‖22

=
N∑
i=1

λi

∥∥∥∥A((
1

2
− µ)(hmax(k) + h(1))− µ

2
ui

)∥∥∥∥2
2

+ µ(1− µ)
〈
A(hmax(k) + h(1)), Ah

〉
−

N∑
i=1

λi
4
‖Aβi‖22.

Now since βi, (12 − µ)(hmax(k) + h(1))− µ
2ui are all tk-sparse vectors, we apply the definition of
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δAtk and also (27) to get

0 ≤(1 + δ)
N∑
i=1

λi

(
(
1

2
− µ)2‖hmax(k) + h(1)‖22 +

µ2

4
‖ui‖22

)
+ µ(1− µ)

√
1 + δ‖hmax(k) + h(1)‖2(ε+ η)

− (1− δ)
N∑
i=1

λi
4

(
‖hmax(k) + h(1)‖22 + µ2‖ui‖22

)
=

N∑
i=1

λi

[(
(1 + δ)(

1

2
− µ)2 − (1− δ) · 1

4

)∥∥∥hmax(k) + h(1)
∥∥∥2
2

+
1

2
δµ2‖ui‖22

]
+ µ(1− µ)

√
1 + δ

∥∥∥hmax(k) + h(1)
∥∥∥
2

(ε+ η)

≤
[
(µ2 − µ) + δ

(
1

2
− µ+ (1 +

1

2(t− 1)
)µ2
)]

x2 +

[
µ(1− µ)

√
1 + δ(ε+ η) +

δµ2P

t− 1

]
x+

δµ2P 2

2(t− 1)

=− t
(

(2t− 1)− 2
√
t(t− 1)

)(√ t− 1

t
− δ

)
x2 +

[
µ2
√

t

t− 1
·
√

1 + δ(ε+ η) +
δµ2P

t− 1

]
x+

δµ2P 2

2(t− 1)

=
µ2

t− 1

[
−t

(√
t− 1

t
− δ

)
x2 +

(√
t(t− 1)(1 + δ)(ε+ η) + δP

)
x+

δP 2

2

]
,

(28)

which is an second-order inequality for x. By solving this inequality we get

x ≤

(√
t(t− 1)(1 + δ)(ε+ η) + δP

)
+

√(√
t(t− 1)(1 + δ)(ε+ η) + δP

)2
+ 2t(

√
(t− 1)/t− δ)δP 2

2t(
√

(t− 1)/t− δ)

≤
√
t(t− 1)(1 + δ)

t(
√

(t− 1)/t− δ)
(ε+ η) +

2δ +
√

2t(
√

(t− 1)/t− δ)δ

2t(
√

(t− 1)/t− δ)
P.

Finally, note that ‖h−max(k)‖1 ≤ ‖hmax(k)‖1+P
√
k, by Lemma 5.3 in [9], we obtain ‖h−max(k)‖2 ≤

‖hmax(k)‖2 + P , so

‖h‖2 =
√
‖hmax(k)‖22 + ‖h−max(k)‖22

≤
√
‖hmax(k)‖22 + (‖hmax(k)‖2 + P )2

≤
√

2‖hmax(k)‖22 + P

≤
√

2x+ P

≤
√

2t(t− 1)(1 + δ)

t(
√

(t− 1)/t− δ)
(ε+ η) +

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖β−max(k)‖1√
k

=

√
2(1 + δ)

1−
√
t/(t− 1)δ

(ε+ η) +

√2δ +
√
t(
√

(t− 1)/t− δ)δ

t(
√

(t− 1)/t− δ)
+ 1

 2‖β−max(k)‖1√
k

,
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which finished the proof.

When tk is not an integer, again we define t′ = dtke/k, then t′ > t and δAt′k = δAtk <
√

t−1
t <√

t′−1
t′ . We can prove the result by working on δAt′k.

For the inequality on β̂DS (11), the proof is similar. Define h = β̂DS − β. We have the

following inequalities

‖ATAh‖∞ ≤ ‖AT (Aβ̂`2 − y)‖∞ + ‖AT (y −Aβ)‖∞ ≤ η + ε,

〈A(hmax(k)+h
(1)), Ah〉 = 〈hmax(k)+h

(1), ATAh〉 ≤ ‖hmax(k)+h
(1)‖1(ε+η) ≤

√
tk(ε+η)‖hmax(k)+h(1)‖2,

(29)

instead of (26) and (27). We can prove (11) basically the same as the proof above except that

we use (29) instead of (27) when we go from the third term to the fourth term in (28). �

Proof of Proposition 2.1. By a small extension of Lemma 5.1 in [5], we have ‖z‖2 ≤

σ
√
n+ 2

√
n log n with probability at least 1 − 1/n; ‖AT z‖∞ ≤ σ

√
2(1 + δA1 ) log p ≤ 2σ

√
log p

with probability at least 1− 1/
√
π log p. Then the Proposition is immediately implied by The-

orem 2.1. �

Proof of Proposition 2.2. The proof of Proposition (2.2) is similar to that of Theorem 4.1 in

[9] and Theorem 2.7 in [15].

First, as in the proof of Proposition 2.1, we have ‖AT z‖∞ ≤ λ/2 with probability at least

1/
√
π log n. In the rest proof, we will prove (12) in the event that ‖AT z‖∞ ≤ λ/2. Define

K(ξ, β) = γ‖ξ‖0 + ‖Aβ −Aξ‖22, γ =
λ2

8
= 2σ2 log p.

Let β̄ = arg minξK(ξ, β). Since K(β̄, β) ≤ K(β, β), we have γ‖β̄‖0 ≤ γ‖β‖0, which means β̄ is

k-sparse.

Now we introduce the following lemma which can be regarded as an extension of Lemma 4.1

in [9].

Lemma 5.1 Suppose A ∈ Rn×p, k ≥ 2 is an integer, s > 1 is real and sk is integer. Then we

have δAsk ≤ (2s− 1)δAk . Similarly, suppose M : Rm×n → Rq is a linear map, r ≥ 2 is an integer,

s > 1 is real and sr is integer. Then we have δMsr ≤ (2s− 1)δMr .
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We omit the proof here as the proof of Lemma 4.1 in [9] can still apply to this lemma.

By Lemma 5.1, we can see when 1 < t < 2,

δA2k ≤ (2
2k

dtke
− 1)δAdtke ≤ (4/t− 1)δAtk ≤

√
t/(t− 1)δAtk.

When t ≥ 2, δA2k ≤ δAtk, which means

δA2k ≤
√
t/(t− 1)δAtk, (30)

whenever t ≥ 4/3.

Next, we have

‖β̄ − β‖22 ≤
1

1− δA2k
‖Aβ̄ −Aβ‖22 ≤

1

1−
√
t/(t− 1)δAtk

‖Aβ̄ −Aβ‖22.

With a small edition on Lemma 5.4 in [9] and Lemma 3.5 in [15], we have

‖AT (y −Aβ̄)‖∞ ≤ ‖AT (y −Aβ)‖∞ + ‖ATA(β − β̄)‖∞ ≤ λ.

Since β̄ is k-sparse, we can apply Theorem 2.1 by plugging β by β̄ and get

‖β̂ − β̄‖2 ≤
√

2t‖β̄‖0
1−

√
t/(t− 1)δAtk

2λ.

Hence,

‖β̂ − β‖22 ≤ 2‖β̂ − β̄‖22 + 2‖β̄ − β‖22 ≤
16t‖β̄‖0λ2

(1−
√
t/(t− 1)δAtk)

2
+

2

1−
√
t/(t− 1)δAtk

‖Aβ̄ −Aβ‖22

≤ 128t

(1−
√
t/(t− 1)δAtk)

2
K(β̄, β).

Suppose β′ =
∑p

i=1 β · 1{|βi|>µ}, where µ =
√

γ
1+δAk

. Then

K(β̄, β) ≤ K(β′, β) ≤ γ
p∑
i=1

1{|βi|>µ} + ‖Aβ′ −Aβ‖22

≤ γ
p∑
i=1

1{|βi|>µ} + (1 + δAk )

p∑
i=1

1{|βi|≤µ}|βi|
2 ≤

p∑
i=1

min(γ, (1 + δAk )|βi|2)

≤ 2 log p

p∑
i=1

min(σ2, |βi|2).

Therefore, we have proved (12) in the event that ‖AT z‖∞ ≤ λ/2. �
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Proof of Theorem 2.2. For any ε > 0 and k ≥ 5/ε, suppose p ≥ 2tk, m′ = ((t − 1) +√
t(t− 1))k, m is the largest integer strictly smaller than m′. Then m < m′ and m′ −m ≤ 1.

Since t ≥ 4/3, we have m′ ≥ k. Define

β1 =

√
k +

mk2

m′2

−1

(

k︷ ︸︸ ︷
1, · · · , 1,

m︷ ︸︸ ︷
− k

m′
, · · · ,− k

m′
, 0, · · · , 0) ∈ Rp,

then ‖β1‖2 = 1. We define linear map A : Rp → Rp, such that for all β ∈ Rp,

Aβ =

√
1 +

√
t− 1

t
(β − 〈β1, β〉β1) .

Now for all dtke-sparse vector β,

‖Aβ‖22 =

(
1 +

√
t− 1

t

)
(β − 〈β1, β〉β1)T (β − 〈β1, β〉β1) =

(
1 +

√
t− 1

t

)(
‖β‖22 − |〈β1, β〉|2

)
.

Since β is dtke-sparse, by Cauchy-Schwarz Inequality,

0 ≤ |〈β1, β〉|2 ≤ ‖β‖22 · ‖β1 · 1supp(β)‖22

≤ ‖β‖22‖β1,max(dtke)‖22 = ‖β‖22 ·
m′2 + k(dtke − k)

m′2 +mk

≤ m′2 + k2(t− 1) + k

m′2 +m′k
· 1

1− k(m′−m)
m′2+m′k

‖β‖22

=
m′2 + k2(t− 1)

m′2 +m′k
· m
′2 + k2(t− 1) + k

m′2 + k2(t− 1)
· 1

1− k(m′−m)
m′2+m′k

‖β‖22

= 2
√
t− 1(

√
t−
√
t− 1) · (1 +

1

tk
) · 1

1− 1
2k

‖β‖22

≤
(

2
√
t(t− 1)− 2(t− 1)

)
· (1 +

5

2k
)‖β‖22

≤
(

2
√
t(t− 1)− 2(t− 1) +

5

2k

)
‖β‖22.

We used the fact that m′ ≥ k, 0 < m′ −m ≤ 1 and

m′2 + k2(t− 1)

m′2 +m′k
=

(
(t− 1) +

√
t(t− 1)

)2
+ t− 1(

(t− 1) +
√
t(t− 1)

)2
+
(

(t− 1) +
√
t(t− 1)

)
=

(t− 1)
(
t− 1 + t+ 2

√
t(t− 1) + 1

)
√
t(t− 1)

(√
t+

√
(t− 1)

)2
=

2
√
t− 1√

t+
√
t− 1

= 2
√
t− 1

(√
t−
√
t− 1

)
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above. Hence,(
1 +

√
t− 1

t

)
‖β‖22 ≥ ‖Aβ‖22 ≥

(
1−

√
t− 1

t
−

(
1 +

√
t− 1

t

)
5

2k

)
‖β‖22 ≥

(
1−

√
t− 1

t
− ε

)
‖β‖22,

which implies δAtk ≤
√

(t− 1)/t+ ε.

Now we consider

β0 = (

k︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0) ∈ Rp,

γ0 = (

k︷ ︸︸ ︷
0, · · · , 0,

m︷ ︸︸ ︷
k

m′
, · · · , k

m′
, 0, · · · , 0).

Note that Aβ1 = 0, so Aβ0 = Aγ0. Besides, β0 is k-sparse and ‖γ0‖1 < ‖β0‖1.

• In the noiseless case, i.e. y = Aβ0, the `1 minimization method (2) fails to exactly recover

β0 through y since y = Aγ0, but ‖γ0‖1 < ‖β0‖1.

• In the noisy case, i.e. y = Aβ0 + z, assume that `1 minimization method (2) can sta-

bly recover β0 with constraint Bz. Suppose β̂z is the solution of `1 minimization, then

limz→0 β̂z = β0. Note that y−A(β̂z − β0 + γ0) = y−Aβ̂z ∈ Bz, by the definition of β̂z, we

have ‖β̂z − β0 + γ0‖1 ≥ ‖β̂z‖1. Let z → 0, it contradicts that ‖γ0‖1 < ‖β0‖1. Therefore, `1

minimization method (2) fails to stably recover β0. �

Proof of Proposition 4.1. We use the technical tools developed in Cai and Zhang [10] to

prove this result. We begin by introducing another important concept in the RIP framework -

restricted orthogonal constants (ROC) proposed in [11].

Definition 5.1 Suppose A ∈ Rn×p, define the restricted orthogonal constants (ROC) of order

k1, k2 as the smallest non-negative number θAk1,k2 such that

|〈Aβ1, Aβ2〉| ≤ θAk1,k2‖β1‖2‖β2‖2,

for all k1-sparse vector β1 ∈ Rp and k2-sparse vector β2 ∈ Rp with disjoint supports.

Based on Theorem 2.5 in [10],

δAtk +
2k − tk
tk

θAtk,tk < 1 (31)
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is a sufficient condition for exact recovery of all k-sparse vectors. By Lemma 3.1 in [10], θAtk,tk ≤

2δAtk when tk is even; θAtk,tk ≤
2tk√

(tk)2−1
δAtk when tk is odd. Hence,

δAtk +
2k − tk
tk

θAtk,tk ≤
4− t
t

δAtk, when tk is even;

δAtk +
2k − tk
tk

θAtk,tk ≤

(
1 +

4k − 2tk√
(tk)2 − 1

)
δAtk, when tk is odd.

The proposition is implied by the inequalities above and (31). �

Proof of Proposition 4.2. The idea of the proof is quite similar to Theorem 3.2 by Cai and

Zhang [9]. Define

γ =
1√
2k

(

2k︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0),

A : Rp → Rp

β 7→ 2√
4− t

(β − 〈β, γ〉γ) .

Now for all non-zero dtke-sparse vector β ∈ Rp,

‖Aβ‖22 =
4

4− t
〈β − 〈β, γ〉γ, β − 〈β, γ〉γ〉 =

4

4− t
(‖β‖22 − 〈β, γ〉2).

We can immediately see ‖Aβ‖22 ≤ (1 + t/(4− t))‖β‖22. On the other hand by Cauchy-Schwarz’s

inequality,

〈β, γ〉2 = 〈β, γ · 1{supp(β)}〉2 ≤ ‖β‖22(
∑

i∈supp(β)

γ2i ) ≤ ‖β‖22 ·
dtke
2k

.

For k > 1/ε, we have

‖Aβ‖22 ≥
4

4− t
(1− dtke

2k
)‖β‖22 ≥

4

4− t
(1− tk

2k
− ε/2)‖β‖22 > (1− t

4− t
− ε)‖β‖22.

Therefore, we must have δAtk = δAdtke < t/(4− t) + ε.

Finally, we define

β0 = (

k︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0), β′0 = (

k︷ ︸︸ ︷
0, · · · , 0,

k︷ ︸︸ ︷
−1, · · · ,−1, 0, · · · , 0).

Then β0, β
′
0 are both k-sparse, and y = Aβ0 = Aβ′0. There’s no way to recover both β0, β

′
0 only

from (y,A). �
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