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“Pretty strong” converse for the guantum capacity
of degradable channels

Ciara Morgan and Andreas Winter

Abstract—We exhibit a possible road towards a strong converse transmitted asymptotically faithfully over that chanmehen
for the quantum capacity of degradable channels. In partictar, using itn — oo times.

we show that all degradable channels obey what we call a  Ag for all channel capacity theorems, the quantum capacity
pretty strong” converse: When the code rate increases abav

the quantum capacity, the fidelity makes a discontinuous jurp theorem consists of a direct part and a converse. Thg direct

from 1 to at most -, asymptotically. A similar result can be part states that for rates below a certain threshold thest ex

shown for the private (classical) capacity. codes with decoding error (quantified as a certain distance
Furthermore, we can show that if the strong converse holds from noiseless transmission) tending @oin the number of

for symmetric channels (which have quantum capacity zero), channel uses. The converse states that if the rate lies above

then degradable channels obey the strong converse: The al®v ;s rashold then the error does not gdttor any sequence
mentioned asymptotic jump of the fidelity at the quantum

capacity is then from 1 down to 0. of codes. To be precise, this is known aseak conversand
) ) ) o the threshold rate sometimes callegak capacity A strong
_ Index Terms—quantum information, private classical informa- e rsis the statement that for rates above the capacity the
tion, channel coding, strong converse, smooth entropiessrer- ; .
rate trade-off error converges to its maximufinasn — oo.
While the strong converse is not known for the quantum
capacity of any non-trivial channel (however, see the examp
|. INTRODUCTION and remarks below in Sectidnllll), strong converse theorems

L . . . . . have been shown to hold for other types of information
Communication via noisy channels is one of the informatio

Lbnt over memoryless quantum channels, including cldssica
processing tasks by which, following the fundamental wdrk y 9 ' 9

nformati ded into product statés][34],1[56] and f
Shannon[[42], we have learned to quantify information a’_%)orma lon encoded into product states [[34], [56] and for
|

. . ) neral input states (i.e. allowing the possibility of enied
noise. One of the ”?"St |mpprtant mod_els con5|dereq fro ut signal states) over certain classes of quantum chgnne
these early days of mformaupn theory is that of a discre [30]. The strong converse holds also for entanglement-
memoryless channel, for which Shannon gave his famog sisted classical communication over memoryless quantum

single-let_ter_formula for_the capacity (i.e., _the r‘na}(imur@hannels by the Quantum Reverse Shannon Theodrém [4]
communication rate achievable by asymptotically erreefr [9]; the optimal rate is the entanglement-assisted (dta8si

bl(ﬁ: cod|r:g). del i sh h . capacity, denoted’s [6]. Strong converses do not hold by
€ analogous modet In qlg'intum annon theory s tHgfault; certain quantum channels with memory have a weak

memorylesg quantum channkl (fqr_ asymptotically Iarge. capacity but fail the strong converse [16], [21].

integern), given by a completely positive and trace preserving The paper is structured as follows: In‘Sectiﬁh Il we recall

(cptp) map\': L(A") — L(B), with Hilbert spacest’ and B the definition of codes, error criteria and the quantum cigypac

that we assume to be finite dimensional throughout this papgf., in Sectior Tl we discuss the weak converse for the
The quantum capacit)(\) of N is informally defined §,antum capacity and the possibility of strong converses. |

as the maximum rate at which quantum information can ction[TV, we review the concept of degradable channels
and the analysis of Devetak and Shior|[19] of their quantum
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was achieved and highlight open problems. If we have a code with erroK e, this means that we can
use it with the maximally entangled stgte)““" at the input,

II. QUANTUM CHANNEL CAPACITY to get an output state

cc’ _ . s .
For a given channelV : L£(A’) — L(B), we consider 7 = ([d@DoNo&)® = (deDoN)(idw ),
encoding and _dgcoding of quantum_ information, given Byhich is e-close to being maximally entangle@(®, o) < e.
completely positive and trace preserving (cptp) maps This motivates the definition of aantanglement-generating

, , code with errore, which consists of a statp?’C" and a
€:L(C) = L(A), decoding cptp ma@ : L(B) — L(C), such that
D: L(B) = L£(C),

P(@°Y (([d@DoN)p? ) < e
which together form aguantum codeThe idea is that the ) ) ) )
information to be sent is subjected to the overall effectivEN® maximum dimensiofC’| of C' such that there exists an
channelD o N o £ : £(C) — L£(C). For a Hilbert space entanglement-generatllng code fgf" with errore, is denoted
#, we denote by Ng(n,€), or more explicitly, Nz (n, ¢|N). Clearly, N (n,¢) <
NE(TL,E).

Remark Since the purified distancB(®, (id ® Do N )p) =

\/1 —Tr ((id ® Do N)p)® is concave irp, we may always

the set of states and sub-normalized densities, resplgctive assume that the stateon A’C” in an entanglement-generating
There are many ways of defining mathematically the notigi®de is pure, as in _each convex decompositiong tdfere is

that the output is a good approximation of the input, and we rat least one state with an error no larger than that.of ®

fer the reader to the cor_nprehgnswe treatment of Kr.etschman The quantum capacity is now defined as

and Werner[[3[1] for a discussion of all the concomitant ways )

of deflmng the capacity and the proof that asymptoticallg an Q(N) = inf lim inf — log N (n, €).

for vanishing error they are the same. In the present paper we €>0 n—=o0 n

will measure the degree of approximation between states ®ye obtains the same capacity when udimgsup and Ng,

SH)={p>0st.Trp=1},
Sc(H)={p> 0L Trp< 1),

the fidelity, given as see [[31] for a proof of this and the equivalence of other
variations of the definition. On notation: In this papérg
F(p,0) == ||V/pval|, = max[{e[v)], is always the binary logarithm, anep its inverse, the expo-

where the maximization is over all purifications), |¢) of nential function to base. _The nat_ural logarithm is denoted
In z, the natural exponential functiatt.

p and o, respectively [[28], [[53]. This definition extends to
subnormalized density operatgiso € S<(#) by letting A Shannon-style formula for the quantum capacity was first
stated by Lloyd[[3P] and proved rigorously by Shorli[44] and
Fpo)=F(p®(1-Trp),0® (1 -Tro)) Devetak [18]. More precisely, in these papers they prove the
= |vpvo|, + V(1 = Trp)(1 - Tro). direct (achievability) part which together with the earliesult
of Schumacher and Nielsen [40], [41], who showed the same
guantity to be an upper bound (i.e., weak converse), leads to
P(p,0) = m’ and formula for the quantum capacity. We expand upon this weak
converse in the following section.
The formula for the quantum capacity is given in terms of

called thepurified distanceand thegeodesic distanceespec- the coherent information

It can be shown that both

A(p, o) := arccos F(p, o) = arcsin P(p, o),

tively, are metrics onS<(#), cf. [51]. They are obviously I(A)B), = —S(A|B), = S(p®) — S(p"B),

equivalent, and can be shown to be equivalent to the trace

norm distancel[26]: where S(p) = —Trplogp is/ the von Neumann entropy, of
) a statep?? = (id ® N)¢A4 with a “test state”p on AA’.
e =olls < Plp,o) < Vllp = ollr- (1) Namely,

1
i : : QW) = lim —QW(N®"),
In the subsequent definitions, we will consistently use the n—o0 N
purified distance. For instance, the error of a c¢8eD) for with the single-letter expression
N is defined as
QUW) = max {I(A)B),:p=(id@N)s}
P(id,DoNo&):=sup sup P(p,(id®@DoNo&)p). pesiady

c’ scce’ o ..
pesieey) Remark The quantum capacity is known to be non-additive

The maximum dimensionC| of C such that there exists a[50]. So is the single-letter quantity™) () [20], [46], mean-
guantum code folV®™ with error ¢, is denotedN (n,¢), or ing that the regularization above is necessary, at leasiras |
more preciselyV (n, e|\) if we want to refer explicitly to the as we base our capacity formula on the coherent information.
channel. It is not known whether there is a single-letter formula for



Q(N), or even an efficient approximation scheriel [45]. Asetting ofn channel usesN\(®") goes tol exponentially fast

a matter of fact, we do not even know how to characterifer positive rates (meaning = 2% with R > 0). ]

the quantum capacity of the qubit depolarizing channel a . . Lo

function of the noise, the currently best upper bounds beiS’ZE%ample (Ideal channel). Consider the identityids
C

- C?%) — £(C?) on a qubit and an entanglement-generating
g]nodsflvz);lg;)[/ggﬁ [35], the best lower bounds are due t0 Feliye o, ses of itid$™ for a maximally entangled state of

rank d. It is evident that the state shared between sender and

receiver after the transmission is of Schmidt rank”, and

S0 is any state obtained by the receiver's decoding. Heree th
The fact that the coherent information gives an uppételity of the code is upper bounded by

bound on the quantum capacity of general channels has been —

known since Schumacher and Nielsén][40]. They showqgax{|<q>d|¢>| : Schmidt rank off:) at most2"} = \/Z

that for any entanglement generating code with code space d

C, for a channelW : £(A4’) — L(B) with error ¢, using Consequently, as soon as the rate is above the capacity

strong subadditivity together with EqJ(1) and the Fannég(idz) = 1, i.e. d = 2"% for R > 1, the error goes td

inequality, there exists an input test staté4” such that with exponentially fast. [ ]

PP = (daN)9, Remark At this juncture we should point out that for any
(1 —2¢)log|C| < I(A)B), + 1. channelV, and for sufficiently large rate® > Ry, one can
] ] ) ] prove that the error is going td, even exponentially fast.
Applying this to a maximal code fah®" yields, fore < g, (However, we do not call this a strong converse for the chianne
1 1 N 1 unlessR, equals the quantum capacity.)
— QEEQ(I)(N(@ )+ (1—=2e)n’ @ All known proofs of this statement are based on simulation
of the channel by a limited rat&, of the ideal channel, with
unrestricted encodings and decodings, and possibly imgud
some other extra free resource that does not change the
capacity of the ideal channel. This is because the locakpart
f the simulation can be absorbed into a potential transaomss

. ) )
is a constant factor away from the capacity, which is th de for the channel, and the the ideal channel example above
hallmark of a weak converse; it leaves room for a trade-g plies

between communication rate and error, asymptotically. With free entanglement the rate @g(N) = 1Cg(N)

If the quantum capacit®)(N) is zero, Eq.[(R) says some-y,. tanal t-assisted t it _b§ th ¢
thing a bit stronger, namely thadVg(n,e) < O(1), at least e entanglement-assisted quantum capacity, by the Quantu

h U in thi dicl 1 h tat " Reverse Shannon Theorei [4]] [6]] [9]. With free classical
V\i ene < 3. n tis ar 'Ci we cat. su(; a statemepetty o mmunication the rate i®c(N), the entanglement cosif
strong converse.€. a proot amounting to the channel([8]. Both rates are upper bounds@@V), the

. 1 latter even on the two-way classical-communication-tagis

lim sup — log NV < QW ) .

lfgbogp n o8 p(n€) < QN), guantum capacit@)»(N), they are known to be incomparable
at least for erroe below some threshole,. By the preceding (meaning that there are cases where either can be much better
argument, channels with vanishing capacity obey a preffjan the other) and generally not tight. For instance, cinsi

strong converse. A strong converse would require the abd¥&y PPT entanglement-binding channel, for which the first
for all e < 1; cf. [31, Sec. 2.7]. example above shows that the strong converse holds, with

) _ guantum capacityy) = 0. However, both of the mentioned
Here are two simple examples of channels for which thgmylations of the channel guarantee error convergende to

I1l. WEAK AND STRONG CONVERSE

1
—log Ng(n,e) <
n 1

hence the result that for — oo ande — 0, the optimal

rate cannot exceeliin,, Q™ (NV®"), which we know is also

asymptotically achievable, thanks to Lloyd-Shor-Devetak
However, for any non-zero> 0, the upper bound in Ed.](2)

strong converse holds. only at ratesQ g, Ec > 0. Indeed,Qx = 0 if and only if the
Example (PPT entanglement binding channel$). A is channel were constant, atﬁb =0 i.f and only if the channel
such that allp = (id ® N)¢ have positive partial transposeVeére entanglement-breaking [8]. [59]. .

(PPT), then any entanglement generating code for a maximall

entangled state of Schmidt rank denoted®,, using any IV. DEGRADABLE AND ANTI-DEGRADABLE CHANNELS
numbern of channel uses and even arbitrary classical com-By the Stinespring dilation theorem, any channel can be
munication on the side, can only generate a PPT state betwedefined by an isometric embeddiig : A — B ® FE

the communicating parties. Twirling by the symmetriés) U  followed by a partial trace over the environment system
of the maximally entangled state does not change the fideli# such thatN(p) = TrgUpUT. Tracing over B rather
between the resulting state and the maximally entanglee. stdhan £ we obtain the corresponding complementary channel,

But the resulting isotropic state N¢(p) :=Tr gUpUT.
1 As we are interested in the channel’s behaviour, we will
p=pPa+(1- P)ﬁ(l —®q) without loss of generality assume from now on tiats cho-

o I . sen to be of minimal dimension (which makésunique up to
IS St'lll PPT, and it is WeII-k_nown that this ;:an qnly _hOId fohisometries orE). Furthermore, sincd/ is the complementary
p < g [36]. l.e, the error is at leas{/1 — 3, which in the  channel ofA’¢, we may equally reduce the dimension Bf



if needed; this can equivalently be described as finding titee latter by[[S¥],[[58]; both of these bounds are stricthgé
subspaceB C B that contains all supports of al(p) for thanQ(Z,) for p € (0,1)\ {3}. [ |

p A .
i}?t]f)spar?g Ciléwvi\:]hlj\? ;Ss :I;a;:t ti?]e isr:igo((gt)mg subspace of The identity between the channel¥A’) — L(FE) and
. g bping ) L(A") — L(E') (defined by conjugating by’ U and tracing

A channelV is calleddegradabiléf it can be degraded to its , ; ; .
complementary channel, i.e. if there exists a cptp ovdsuch over E'F" and I F", respectively) is expressed by the equation

that A/ = Mo . Introducing the Stinespring dilation g§1 PAE = pAE ()
by an isometry¥’ : B — F ® E’, the channel output system S ) _
B can be mapped to the composite systBfie F such that modulo the implicit isomorphism betwednandE’. This was
the channel taking!’ to E is the same as the channel takin@nough for Devetak and Shar [19] to prove that for degradable
A’ to E' (with an isomorphism betweel and E' fixed once channels the coherent information is additive; see &ls¢ [14
and for all). We may also assunfeto be minimal. The above Sec. A.2]. The crucial point in their argument is that the
information process is illustrated in Figl 1. coherent information can be rewritten as a conditionalagytr

If the complementary channel is degra_dable, i.eNif= I(A)B), = S(F|E)y. (4)
M o N¢ for some cptp map, we call anti-degradable A ,
channel that is both degradable and anti-degradable isdcallThen, based on the observation that the st@f@ on the
symmetric[49]. r.h.s. is a linear function of the input stagg' = Tr 40,

and using strong subadditivity, one gets subadditivity hadf t

E coherent information of a product channel, hence additivit

Al U B Q™). Below we give an alternative account of the reasoning
B Vv P leading to Eq.[(®), which while being more complicated than
those cited, has the benefit of suggesting an extension to min
|9) entropies (Sectioi V). For the class of degradable channels

it is also known that the quantum capacity equals the private
capacity [47] — see Sectidn VI below.

o) ) DenotingSWAP g/ the swap unitary between systerfi's

4 andE’, i.e. SWAP|u)|v) = |v)|u) (always modulo the implicit
Fig. 1. Schematic of a degradable quantum channel, withrpetistates 1d€Ntification of £ with £7), we have the following statement

betweenA’ and the referenced, the channel output and environment statestrengthening Eq[13):
o and the state) shared betweem, F' and the two copies of the original
environment,E and E’.

Lemma 1 Consider a degradable channgf with Stinespring
dilation U : A’ — B ® E. Then there exists a degrading map
0/\r/l with Stinespring dilatiorV/ : B — F® E’ (not necessarily
with minimal dimensionF|) and a unitary X on F, which
may be chosen as an involution (iE2 = 1), such that

(XF ® SWAP ) VU = VU.

Example Many interesting channels are degradable, f
instance the erasure channel

&y L(A) — LIAD Clx)),
pr— (1 —q)p® ql*)x|, , , ,
In particular, for arbitrary state vector |¢)44 and
for 0 < g < i;for £ < ¢ <1 itis anti-degradable. |p)AFEE" .= (1@ VU)|¢),
Isotropically depolarizing channels are in general not
degradable, but for sufficiently large noise, they are known

to be anti-degradablel[5], [35], [49]. Proof: Start with an arbitrary dilatio : B — Fy® E’

A very broad class of degradable channels_are so-call&pan arbitrary mapM,, and define the following isometry
Hadamard channels [29], also known as generalized de@asw ‘A EE'FC

channels, the simplest of which is

(1a ® Xp ® SWAP g0 ) |[p) AT EE = |y)AFEE

1
W= —(VoU ®|0)¢ + SWAP g VoU @ [1)9),
2,1 £(C2) —s L£(C?), \/5( U ®10) e VoU ® [1)%)
p+— (1 =p)p+pZpZ, with a qubit systenty. Let F = F,®G and X := 1p, ® X¢,

with the Pauli Z matrix. This is a channel for which theWhereX is the Paulio,, unitary onG. Evidently,

quantum capacity is knowr)(Z,) =1 — H(p,1 — p) [19], W = (SWAPgp @ Xp)W,
[36]. On the other hand, the simulation arguments discussed ) )
in Section[Il do not yield the strong converse. Indeed@Nd @lso, sinceV' is degradable,

Qr(Z,) =1-3H(p,1-p) and Te g pWeWT = Ne(p).

Ec(2p) > Ec((1 = p)@* +p®7) Hence, the Stinespring dilatiori§ and 1V are equivalent; to
i " 1 be precise, there exists an isometfy: B — E’F such that
=H(5+vel-p)), W =VU, and we getVU = (SWAPgp @ Xp)VU. m



The following reasoning uses the chain rule identitwith the reduced state“C = Tr g )4 5C.
S(AB|C) = S(B|C) + S(A|BC) of the conditional von
Neumann entropy, but no explicit expansion of any cond#tionDefinition 5 (Smooth min- and max-entropy) Let ¢ > 0
entropy as a difference of two entropies. Consider a genesied pap € S(AB). The e-smooth min-entropy of4 con-
input statep?4’ to A" and its associated*2Z andy4FEE . ditioned onB is defined as
Now, by invariance of the conditional entropy(A|B) =
S(AB) — S(B) under local unitaries and the duality identity
S(A|B) = —S(A|C) with respect to a pure state ohBC,
combined with the above lemma,

I(4)B), = ~S(A[B),

Hiin(AB), = max Huio(A1B)y.

wherep’ ~, p meansP(p’, p) < e for p’ € S<(AB).
Similarly,

Hrenax(A|B)¢ = pI,Illelp HmaX(A|B)P,

= —S(A|FE)y

= S(F|E') — S(AF|E') = —Hpin(A]C)y,

= S(F|E") + S(AF|E) with a purificationy € S(ABC) of p.

= S(F|E") + S(AF|E"). All min- and max-entropies, smoothed or not, are invariant

) . under local unitaries and local isometries.
This shows thatS(AF|E) = 0, and we obtain Eq[{4).

Lemma 6 (Monotonicity) For a statep € S(ABC) and any
V. PRETTY STRONG CONVERSE €>0,

Theorem 2 Let N : £L(A) — L£(B) be a degradable channel

with finite quantum systemd and B. Then, there exists a Hiin (A|BC) < Hipin(A[B),
constantu such that for errore < - and every integen, H{ . (A|BC) < Hf . (A|B).
log N (n,¢) < log Ng(n, ) Since every cptp map can be written as an isometry followed

by a partial trace, this means that for evepye S(AB) and

< nQOWN) + /nln% cptp map7 : L(B) — L(C),

1 HE. (AIB), < HE. (AIC) im0,
+ 3|A|210gn—|— 5+ 510g_7 émn( | )P = renm( | )(d®T)p
A Hmax(A|B)P < Hmax(A|C)(id®T)p'

SnQ(l)(N)—i-O(\/nlogn), -

where\ = § (% —e). The following relations generalize the well-known chain
. _ _ o _ rule identity S(AB|C) = S(B|C) + S(A|BC) for the von
Together with the direct part (achievability proved inl[18]Neumann entropy, albeit for min- and max-entropies it turns
[32], [44]) we thus get: into one of a set of inequalities. There are eight versions of

it [54], of which we cite only the two we are going to use.
Corollary 3 For a degradable channeV, the quantum ca-

pacity is given by Lemma 7 (Chain rules [24], [54]) Let ¢,6 > 0, n > 0.
Q) = lim 1 log N(n, €) Then, with respect to a stajec S(ABC),
" HEE2F(AB|C) < Hiou(BIC) + Hiyuu(AIBO)
= lim —log Ng(n,e), 9 (5)
n—oo N + 1og —
n

forany0 < e < iz Compared to the original definition this is
simpler as we do not need to varyand there is convergenceand

rather than reference tdim inf or lim sup. [ ] HE . (AB|C) > H;;in(B|0) + H§1§§5+2"(A|BO)

The proof of this theorem will rely on the calculus of — 3log 32 6)
min- and max-entropies, of which we will briefly review the n
necessary definitions and properties; we refer the readgtfjo ]

for more detalils.
Lemma 8 (Proposition 5.5 in [51]) Let p € S(AB) and

Definition 4 (Min- and max-entropy) For pAf € S<(AB), «, > 0 such thata + 8 < 5. Then,
the min-entropy ofd conditioned onB is defined as

. : 1

HERY(A|B), < HP(A|B), +log —5——. (7

Humin(A|B), = max max{\ e R: p8 <27 @ oP}. min’ (A1B)y < Himail(A]B), + log cos?(a + ) %

oBE
o ’ ) Fore, 0 > 0, e+ < 1 this can be relaxed to the simpler form
With a purification|))4B¢ of p, we define )
<. < H® _—
Hmax(A|B)p - _Hmin(A|C)¢Aca Hmln(AlB)P — Hmax(A|B)P + lOg 1 — (E ¥+ 5)2 (8)



] Turning to the first term in Eq.[(11), we note that it
is evaluated onp™"F" = yerNEn (p(n))yien g jinear
Lemma 9 (Dupuis [23]) Let p € S(AB) and0 < ¢ < 1. function of the input densitp™ = Tr ;¢ € S(A™). By
Then, slight abuse of notation we henceforth write

HY!=<"(A|B), < Ht..(A|B),, 9
e ( | )p R mm( | )p ( ) HI)I\lax(Fn|E/n)p(") = Hri\lax(Fn|Eln)’¢‘

which can be rewritten and relaxed into the form _ _ ) )
Now, if we knew that the maximum of this max-entropy is

4 p—
Hpo(AB), < HY " (AlB), attained on a tensor power staf&@) = p®", then we would be
L1 (10) . ; ; . S
< H 3% (A|B) done, by |mmed|tatel_y applying the asymptotlc equ_lpamltl
-oomm property (AEP) for min- and max-entropies (Proposifioh. 13)
for0 <o <1. B A priori, however, the state(™ is arbitrary (note that it
Proof of Theoreni]2: Consider an entanglement gen_eventually comes d|re<_:tly from the optimal code W!th which
we started our reasoning), so we need to work a little more.

eration code forlog Ng(n,¢) ebits of errore for the chan- - ; : )
nel A", As observed in conjunction with the definitions TO this end we shall exploit the permutation covariance ef th

N(n,¢) < Ng(n,¢) and w.l.o.g. the input stat@g:f"" to the channel; for any permutation € S,,, acting naturally on an
entanglement-generating code is pure (see Remark in gecfigPartite system, we have

P

M) . Similar to Fig.[1, write i FEN" ot — y@n pren (mpMrtyvien,
) APE = (Lo U®)|g), and sincerFE)" = 7" @ 72" and by the local unitary
|¢>AEanE" — (1® V® 1)®n)|(p>_ invariance of the min- and max-entropies, we get
By definition, there exists a decoding cptp map : Hpo(FME'™) y) = Hpor (F™[E™™) 1 oy et

ﬁ_(Bn) — L(4), such tha_t” = (id® Do N)¢ has purified At this point we can use a restricted concavity property ef th
distance< ¢ from the maximally entangled state; ;,. Note max-entropy, LemmB&_10 below, and get

that |A| = |A’| = Ng(n,e). Hence, by definition of the . .
max-entropy and using its monotonicity under cptp maps H o (FME™) oy < HNY2(F"|E' )zm)
(Lemmatd), < H B (B e,

log Nip(n, €) for the permutation invariant state

(13)

< _H;ax(Av'AV/)U
< _Hrenax(A|Bn)<P —(n) 1 (n)_+
o A F) P = 2 mo
The latter, by the duality relation (Definitidd 5), is equal t

He .. (A|E™), which relates the coding performance directl
to the decoupling principle (cf._[22]). But we shall not ubatt
route and instead invoke the chain rule [Leminha 7, Eb. (5”1

with n =\ =1 ( 1 ) to continue

1\vz €
log Np(n,e) < H)

max

where we have also invoked Lemida 9, Hqgl(10), in the second
Ynequality in [13).

It is well-known that such permutation-invariant states, ar
several meaningful senses, approximated by convex combi
nations of tensor power states; such a statement is known as
(finite) de Finetti theorem, and here we use it in the form of

n /m
(FIE™) (11) the Post-Selection Lemm{g3] (Lemmal L2 belowf}

~ n 2

= HEGM AF™E™) + log 15 ) < plAP )

Let us deal with the second term here first: Using duality,
invoking Lemmd 8, Eq[{7) witly = § = arcsin(e+3)) < 7,
we get w® = /dcr o®n,

_H5+3)\(AVF71|E/”) _ Hsina(AVFn|En)

max min

ar\‘/\%ere on the right we have the universal de Finetti state

for a certain universal measure on states S(A). Without
loss of generality, by Carathéodory’s Theorem, it may be

< Hine(AF"|E™) + log
¢ assumed to be supported dd < n24° points, hence we

1
max 0s2(20)

o 1 .
= HSY(AF™|E'™) 4+ 2log ———— may write
using the symmetry of the pure state with respect to wl™ = Zpﬂ?n-
swappingE" and E'", as expressed in Lemnfa 1. We find i=1
that Now we claim that
€ An n 1 —Lx2 n n —l>\2n7‘A‘2 n n
—Hy (AR |E )Slogm Hop ™ (FP[E™) oy < Hyp 10 (F"|E"™ )y (14)
1 1 (12)

=log < log — 1We point out that it is also possible to do this using RennErponential
)\)2 - 2 de Finetti Theorem[[39], which requires a little more careetaploy, but

1-2 ( yields bounds quite similar to the ones obtained in the fdhg.

i
V2



Indeed, lety’ be such thaP(p’, (™) <1-4§ := 1-41X% le., of a maximally entangled state, yielding an arbitrarilygear
by the post-selection inequality and the operator monoityni smooth min-entropy.

of the square root, However, in Sections VIl an@_VIIl we will discuss other
potential approaches, which might work because they use all
1—-(1-0)2<F(,p"™) = H\/?\/ ™ the available structure. [ ]
1

Here are the lemmas needed in the above proof; they are

11412 / (n . )
<AV . proved in the appendix.
thus It is known that the max-entropfma<(A|B), is concave
P w(")) > p-blaP \/m S \/m in the statep 4 g [52], but this does not extend to the smoothed

version. However, the following statement holds.

> Ao
. ) ( : Lemma 10 Letp € S(AB) be a state and consider the state
with & = gdn~ 4" Hence, from Eqs.[(13) and_{14).tamily pA2 = (U; ® V;)p(U; @ Vi)', with unitariesU; on A
Lemmal[8, Eq.[(B), and Lemnialll below (with the finiteangv; on B, and probabilitiesp;; defines := 3. pip;. Then,
support decomposition @), e ’
R . ISR . 327’L|A|2 Hrenax(A|B)ﬁ > Hrenax(A|B)P'
Hipose (F"|[E"7) py < Hitix (F™E™) o +log A2 Lemma 11 For an ensemble{p;, p;}}1, of statesp; €
S(AB) with probabilitiesp;, let p = . pip;. Then, for any
0<e<,

L2y lar’?
< max HZ3% "  (F"|E™),en
peES(A)

+ 3|A*logn + 6 + log % Hpax(AlB)5 < max Hiax (Al B)y; +log M.

(15) Lemma 12 (Post-Selection Technique _[13]for a Hilbert
Putting Egs.[(111),[(12) an@(1L5) together, we arrive at spaceH of dimensioni, denote bySym" (#) the subspace of
PO . permutation-invariant states if®™. Then, for every statp
log Ng(n,€) < max Hixx (FME'™) en supported orSym" (H),
PES(A)
1 n _
+ 3|A]*logn + 5+ 5log T p= "d/dY/) [OXYE™ = Poymn (30),

Note that the optimization ovep is indeed a maximum With the uniform (i.e., unitarily invariant) probability easure
since the smooth max-entropy is a continuous function of tH¢ On pure states oft{, and — by Schur's Lemma — the
state. The last step of the proof is an appeal to the quant@fRI€ctor Psyi»(3) onto the symmetric subspace.

asymptotic equipartition property (Proposition 13), If p is a state on®®™ invariant under conjugation by
permutationsp = wpr' for all 7 € S, then the above can

1214l N [ 6anlAP : : PR P
Hr?}ai (F"|E™) on < nS(FIE"), + p\/nln 6 7;2 7 be applied to its purification iffym" (H ® H'), giving
d? mn
and we are done. m p=n /dUU ;

Remark The errori2 is precisely that achieved asymptotwith a universal probability measurés on S(H). ]
ically by a single 50%_50%. erasure chanpellacting on theFinally we state a simplified version of the asymptotic
code space, and of other suitable symmetric (|.¢., dethdagquipartiiion property for min- and max-entropies, giving
and anti-degradable) channels. We draw attention to thte fac ) ’

. . usIefuI bounds for every:
that in the proof we encounter a symmetric state, up to a loca
unitary, )4*"*#"*#""  which can indeed be interpreted as theroposition 13 (Min- and max-entropy AEP [38], [51])
joint state between inputF™), output (£") and environment | et p € S(H45) and0 < ¢ < 1. Then,
(E'™) of a suitable test state with a symmetric channel’s

1 1
Stinespring dilation. N nli_)rr;o —H i (A"|B") pon = 7111—{20 —Hf (A" B™) pon
We need to bound its min-entropl,t3* (AF™ | E™), but if " _ S(A|Jg)
= o

€> LQ then the overall smoothing parameter is strictly larger . o
than that, and without any additional structure of the state ~ More precisely, for a purificationy) € ABC' of p, denote
cannot upper bound the quantity further: Indeed, note tiet tex = log||(¥™)~'||, where the inverse is the generalized
symmetry we were using is consistent with an arbitrarilgéar inverse (restricted to the support), fot = B, C. Then, for
entangled state passing through a single 50%-50% eras@Y&rymn.

channel of sufficiently large input dimension, so )
_ - .- Hpin(A"|B") 2 nS(A|B) — (pp + pe)y/nin =, (16)
AEE' _ PVAE () B 4 PVAE |\ E
) \/§| ) ]) ﬁl Y 1)

/ 2
anax(An|Bn) < nS(A|B)+(:uB+MC) nln_v (17)
The smoothing by more tham‘3 allows us to get rid of the o _ _ €
erasure output o and pick out the successful generatio@nd similar opposite bounds via Lemia 8.



VI. PRETTY STRONG CONVERSE averaged error and privacy to essentially the same worst-

FOR THE PRIVATE CAPACITY case notions at the expense of loosing a constant fraction

In this section we show that the argument in the previo@ the messages (hence no rate loss asymptotically) we use
section can be augmented to yield a pretty strong converse Aiswede’s observation [2] on how randomization in the

the private capacity. encoding can turrseveral average errors into only slightly
We start by reviewing the basic definitions, which we ada{0rs€ worst-case errors. .
from Renes and Renner [37]: Arivate classical coddor ~ For & code with messages= 1,..., M and joint cq-state

a channel\V" : £(A) — L£(B) consists of a family of after decoding,

signal statep, € S(4’) (z = 1,..., M), and a decoding ape 1 5
measurement (POVM)D,)M  ie.D, >0, D, = 1. Vi > Plyla)|a)zl @ ly)yl @ ok,
The latter can also be viewed as a cptp Miap£(B) — X. _ i

Postulating a uniform distribution on the messagethe code consider the reduced states

gives rise to the following averaged ccqg-state of inputpatit 1
and environment; ptP = i > P(yla)|x)x| @ [y)yl,
Yy
—~ 1 —~
xXg _ 1 X o4\ X T N 1
= Trp(Vp. V) (D;®1E), _
o 57 2 [Hal LK O T VoV (et o = Yl @ oF.

encoding all correlations between legal users and eavegdro With error and privacy are defined as above
of the system. Therror of the code is defined in terms of the '
purified distance as ap 1

e=p (" 57 X leel @l

1 ~ ~
P <M > lakel* & |x><x|X,aXX> "

1
(L s vangon ) =P (g ikl ).
= — —_— r x T . x
M p
” where P = /1 — F? is the purified distance, a short calcula-

Its privacy is defined as tion shows that

min P (% > lakel* @ ﬁ%”) F <pAB, = > lael |x><a:|> - > VPGl = A

pES(E)
1 ’ F | pF L g lz) x| @ o | = L g F(pf o%) = F,

pES(E)

We will now encode messagesinto uniform distributions on
pairwise disjoint setd(,,, C [M] = {1, ..., M} of cardinality
k, withm =1,..., N such thatk vV < M.

For a given channelN, we denote the largest/ such that
there exists a private classical code with er¢cand privacy
8, by M(n,e,6). The (weak) private capacitpf A is then

X We will draw the elements of(y, ..., Ky randomly and

defined as without replacement from/]. We then use Azuma'’s inequal-
P(N) = i?f lim inf 1 log M(n, e, 5). ity to bound the probability that for a givem andn > 0
€,6>0 n—oo N 1

It was determined i [12]/ 18], and lik@ it is only known as a i Z VP(x|z) < Fy =,
regularized characterization in genefall[48]. By the m@moyg z€Km
of entanglement, we know thaP(N) > Q(N) (see the Or 1
Remark below), but in general this inequality is strict. - Z F(pE oP) < Fy — .

However for degradable channels, it was proved by k z€K o,

Smith [47] that the private capacify(\) equals the quantum namel
capacityQ(N) = Q(N), and is hence given by a simple,,
single-letter formula.

Y each of these events has probability at most

—2kn" 3], [17]. The input-output-environment state of the

new code for the messages=1,..., N is

Remark The way we defined the code and the error above 1 1 o =

(as an average) is really that of a secret key generatiéh™ 77 Z % Z P(ylz)|m)m| @ [m \m'| @ p;; .

code, analogous to the entanglement-generating codein th mm! - 2E€Kom,y €Ky

previous section. _ _ o _Note thatP(m|m) > + > ., P(z|z), and by concavity of
This (long) remark is about an alternative definition withy,e square root, m

worst case errors and privacy over individual messages. In-

T N 1
deed, such a notion is stronger and will imply error and VP(m|m) > = VP (z|z).
privacy as we defined them above. To go conversely from k zezK:m



Likewise, the state of the eavesdropper for messages channel, giving rise to an averaged cqqg-state betweererefer

% ZmeKm pE, and by concavity of the fidelity, X, output B™ and environmenf;™:
1 1 XB"E™ __ 1 X n n
F(i 3 o) 2] 5 ruren PE = S el @ U U
€K, €K, r

l.e., this message will have individual errgre’ and individual The “trivial” converse shows that
privacy < ¢’ for these “goodm, where it is straightforward
to work out thate’ < e (1 + %) andd’ < § (1 + 3%). In other
words, by choosing) = a - min(e?, §%) we can make the new
error and privacy arbitrarily close to the original paraemst

Now, we can findK1, ..., K such that a fractiorr 1 —p
of the K,,, are “good”, throw away the “badin and we are
left with the code we want: it ha®” > (1—p)N = 52M >
;—kM messages, if we choode such thatp < 1/2, which
holds fork > 12“7‘2*.

In summary, we can get a code with randomized encodi
and individual errok’ < (1+ a)e and individual privacy’ <
(1 + a)o for each message, and losing a constant amount@fuax(X[B")
information compared to the original code we started from. Now we can purify p = Traxe
Indeed the number of bits encoded diminishes by at most introducing a dummy systen#l, to hold the purifications

pA0A™ of the signal stateg, and a coherent copy’ of

1 1 1 1 :
2log — < 2log — +4log — + 4log —. X:
n a € 1 )
m ) = > 1) ¥ )Y (Lo @U™)|g,) 204

VM
By definition, every entanglement-generating code of error
¢’ gives rise to a private classical (secret key generatiodg coto which we then also apply the Stinespring dilation of the
of error and privacy’, and with M = |C| messages. Thus,degrading map:
M(n,€',€) > Ng(n,€e') > N(n,€).

IOgM < ngn(X|En) - Hrenax

(X|B"),

cf. Renes and Renner [37], whose argument we briefly repeat
here since they used trace norm rather than purified distance
According to the definition of privacy given above, the reglic
statepXE" is within purified distance of a product state of
the form 3 3 |z)z| ® pP", henceH?, (X |E™) > log M.
Likewise, there exists a decoding cptp mBp £(B") — X
ﬁHCh that(id ® D)pXB" is within e purified distance from
the perfectly correlated statg >° |z)z|¥ ® |z)z|¥, hence
< 0.

XB"E™ XX'AgB"E™
1

|¢>XX/E"LF"E" = (Ixx' ® Ve @ Lgn)|p)

1 / m
Theorem 14 Let N : £(A) — £(B) be a degradable channel = /it > )N )Y (Ixx @ (VO)®")|de) 04
with finite quantum system4 and B. Then, for errore and z
privacy § such thate 4 26 < % (e.g.e =6 < ﬁ ~ .2357),
and every integen,

64nlAl? logM < H’. (X|E") — HE,, . (X|E™F")
log M(n, ¢,6) < nQM (V) + “\/ﬁ = H (X|E™) — H o (X|E™F™)
S H"n (Fn|El7l) . He+26+5n(Fn|E/nX) (18)

max max

With respect toy, we thus have

1
+ 3|A]*logn +9 + 111og —,
n

< QW) +0 (Vnlogn)
where we have used the degradability property of the channel
wheren = %( 1 25)_ in the second line, and in the third line the chain rule,

2
+4log —,
Ui

1
V2 LemmalY, in its two manifestations EqE] (5) aht (6). Indeed,
Together with the direct part (achievability proved [in1[12] 9
[18]) we thus get: Ht(AB|C) < Hly (A|C) + Hi o (BJAC) + log —
n
Corollary 15 For a degradable channeV, the private ca- I
pacity is given by HE(AB|C) > H},, (B|C) + HEH2+21(A| BO)
1 2
o —3log —,
PN) = nl;ngo - log M (n,€,0), 2
for anye, § > 0 such thate + 2§ < % B which we employ with the identifications™ = A, X = B,

E'™ = C, and withk = ¢ + 36.

Proof: Consider a code faN®" with M = M(n,e,5) ~ Choosing; = g (% —e- 25) ensures that’ := e +20 +
messages, that has ereoand isé-private: message (chosen 57 = -~ — 5 < -1, and we can bound the second term
uniformly) is encoded as, € S(A’") and sent through the on the right hand side of Eq_{118) as before, in the proof of
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Theoren{P: With the choice of phase’® = 1, it is straightforward to
verify that SWAP g VU = VU.

€ n| o/ mn €
—Hp o (F"ETX) < —H However, since the output of an erasure channel has no

max m

1
(FME"X) + 2log —
i (F"] ) +2log 2

, 1 coherences between the erasure symbol and the unerased part
= Hipo (F"[E" X" Ag) + 210%% there is considerable freedom in choosing the dilationé bot
, 1 of the channel and of the degrading map. For some of them
< Hypoo (F"[E"XT) + 2log o~ there is no unitaryX» as in Lemmdll, for some the unitary
, 177 is non-trivial. Indeed, we can see this by varyingin the
=Hf  (F'|E'"X)+2log o dilation U above, most choices of which leave no symmetry
g Xr, but fore!® = —1 we can choos&r = 2[x)(x| — 1. &

where we have used Lemrh 8, then the duality between min- o ] -
and max-entropy, then the monotonicity (Lenima 6) and final@mple  (Schur multiplier channels)Given a positive

the exchange symmetry betwe&nand X’ as well as between semidefiniten x n-matrix S > 0 with diagonal entries
E and E'. As this means Si = 1 one can define a cptp mafs on n x n-matrices

by Schur/Hadamard multiplication of the inpptoy S:

/ 1
_Hr;ax F" ElnX)Slog_v . RV N
(" 2n Ns:ipr— polS, i.e. Ns(|i)j]) = Sijli)Jj]-
we have by plugging this into Ed. (1.8), It is well-known thatS can be viewed as Gram matrix of
n 1 i ey |on):
log M(n,e,8) < H_(F"|E™) +3+9log -, unit vectors|), ..., [¢n)
. ! Sij = (wslei),
and the rest of the argument is as in the proof of Thedrem 2 , , i .
[cf. Eq. (IB)]: suggesting a Stinespring dilation
el 39nlAP U i) > [0)B]gi) 2.
H)(F"|E™) < HFEY (F"[E™) o) + log ~—— o
n It gives rise to the complementary channel
12,1412 n S
< max HE% (F™"E™) on N5 (1EX]) = di51ei Xl
14
) 1 so we can choos#/§ itself as degrading map and essentially
+ 3|A[" logn + 6 + log —, U as its dilationV” (with F taking the place o3, and E’ that
: . f E).
invoking the quantum AEP for the max-entropy (Proposf2 Th)us
tion[13). [ '

VU : [i) — [i) i) Pl 0i) ™,

VIlI. STRONG CONVERSE FOR SYMMETRIC CHANNELS  which is evidently invariant und&s§WAP g5 since the output

IMPLIES IT FOR DEGRADABLE CHANNELS state restricted t&&E’, Tr pVUpUV'T, is supported on the
The main result of this section, Theorem] 19, is valifymmetric subspace & @ E'. u
for degradable channels satisfying the following techhnicRemark We do not know whether all degradable channels
condition. are of type I, not having found a counterexample so far. From

the examples given above it is clear however that the dilatio
Definition 16 We say that a degradable chanu€lis of type {7 and v required for a proof that a given channel is type
| (for invariancg if one can choose a Stinespring dilatiéh | have to be constructed carefully. The next lemma shows
of it, and a Stinespring dilatio” of a degrading channeM,  that for any degradable channel we can construct one that is

SUC)h that the unitary(» in LemmdL is a global phase (hencgnformation theoretically equivalent, and which is of typdas
+1). lLe.,

(Lr @ SWAPpp )UV = £UV. Lemma 17 For every degradable channeV : £(4') —

Example (Erasure channels)The qubit erasure channel  £(B), the channel

E4(p) = (1= q)p @ ql){x| N=NearP: L(A) = L(B @ By),
Bo
with erasure probabilityy < 3 has as its complementary p—=N(p) T,
channelf; = &,; as degrading map servég with ¢t = 112 which attaches to the output 8f a qubit systemB, in the
(augmented by the identity ojs)(x|). maximally mixed state, is degradable of type I.

We can guess an isometric dilation &f, ~ _ .
Proof: Clearly, N¢ = N¢® 70, with a qubit systenE,

U o) — V1 —qlo)?[4)F + e al%)Ple) ", so the new channel is also degradable.
and likewise for the degrading map, Choose a Stinespring isometfy of NV and V' of the
, degrading mapM according to Lemma&l1, so that we have
Voi|x) — |*>F|*>E a unitary involutionX z with

|6) — VI = t$)" ) + Vi) (@) (Xr ® SWAPpp VU = VU.
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Xp can have only the two eigenvaluesl, so decompose that every statey)AFEE" = V7|¢), for |¢) € AA’ can be
F = F, & F_ into the respective eigenspaces with projectorsgritten asW|¢) € GEE' for a suitable test stat&) € GG,
P, andP_, respectively. Of course alS$WWAP g+ has eigen- up to a (state-dependent) isomet@ G — AF:

values +1, the corresponding eigenspaces being known as , - ,

symmetric and anti-symmetric subspace, denotesyas’ (E) [)AFEE = (W @ W)|¢)°.

and A?(E), respectively.

The above invariance o U under left multiplication by
Xr®SWAPg g is equivalently expressed by saying thét/
mapsA’ into the +1-eigenspace o r ® SWAP g/, which
is

Proof: By definition, |10) 4" FE" ¢ G @ E ® E', s0 we
may denote it as welkyy)“F# . Choose a purificatiopy) ¢
of y§ with G’ ~ G, so that there exists an isomei#y : G’ —
EE' with
F, ®Sym2(E) & F_ ® AX(E). LR W))9Y = [¢ho) 977 .

In this picture we see whyXr is necessary: it is therelt is easy to see thdf’ has the required symmetry property:
to undo a possible phase efl induced bySWAP Lz (on  sinceSWAP g |10)FEE" = +|1)0)CEE' it follows that (1®
A?(E)), by applying the same phase once morefon We SWAP 5/ W)[x)¢ = £(1®@ W)|x)¢%, and sincdy) has
can also see how to write down dNiIationstand a degrading maximal Schmidt rank§WAP g W = W follows.
map that avoid this problem: Firdl] : A’ — (B®By)®(E® Now, let |¢)A4" be an arbitrary input test state and

Ey) with |)AFEE" — VJ|¢). Then,
Bo Eg _
016) = W]e)°* o (L) 9 = (Voryfod e 1) e

is a dilation of \V. Secondly, we define a degrading map bgnd thus
writing down directly an isometric dilatio’’ : B ® By <

F® (E' ® E)): |)AFEE’ (\/¢_A %471 21F © ]]_EE/> o) AFEE
Ve 0\ . F—E) _
V()P [1)7) = (1p © CZF7E) ((VIg) b)), _ < VIR e 1EE/) o) AFEE
where

C7F—Eo — PL®1p,+ P-® Zp, _ <\/W /1/)641;71 . W) |X>GGI.

is a controlled-Z using thé’. subspaces to trigger.a on the
qubit £, (which we identify with By). Finally, sincex“ = ¢/¢'"" has support or, there exists a

It is easy to check thaflr xV - VT defines a bone fide & € S(G) and an isometryi¥’ : G < AF such that
degrading map for\/. But it is also of type I, as it can be

confirmed by direct calculation that ( [)AF /¢104F71 ® 10’) |X>GG’

EoE}
VU|¢) = (Py @ Lpp)VU|d) @ (M) = (Wﬁ\/x—c* ® 1G’) )

V2 _

j01) — |10_>>E0E6 = (W @ 1)[§)9“.

V2 In total, [/)AFEE" = (W @ W)[¢)PC’, which is what we
Since the left hand factor in the first line is M® Sym*(E), wanted to prove. [ |
while the analogous term in the second line isfiw A2(E),

the entire expression lies il ® Sym?(EEy), hence under the
simultaneous swafEy <> E'E}, Theorem 19 Let A/ : L(A) — L(B) be a degradable chan-

SO nel, which w.l.o.g. we assume to be of type | (by Lerma 17).
SWAPgg,:pm, VU = VU, Denote its environment by and the associated symmetric
and we are done. m channel byM, with Stinespring dilationV : G — E ® E’ _
o from Lemmd18. The obeys the strong converse for its
Degradable channels of typg | are intimately related Ehantum capacity, itM does (note that by the no-cloning
symmetric channels, as shown in the next lemma. argumentQ(M) = 0). More precisely, there exists a constant
ch such that

+ (P- @ 1gp)VU|p) ® (

Lemma 18 Let ' be a degradable channel of type I, an

choose a Stinespring dilatiobi as well as a dilationV of a ) 64nlAl?
degrading map, according to Lemrph 1, sty = +1. log Ng(n,e[N) <nQ"(N) + py/nln 2

For any test statd¢,) € AA’ of maximal Schmidt rank, 1
let 1) FFE" = VU|po)*4 and denote the supporting +810gx+0(10g”)
subspace ofy§'" by G. Flog Np(n, 1 — A[M),

Then there is a symmetric chann@l with Stinepring

isometryW : G/ — E @ E’ (i.e. SWAPgp W = £W) such with A = =<,
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Proof: We follow the initial steps of the proof of Theo-with some non-decreasing continuous functj{e) of ¢ such

rem[2, until the bound that f(0) = 0, then there exists a similar functigric) such
R N that for \V,
1OgNE(na€) < Hmax(Fn|E/n)_Hren—;x (AFn|E/n)+1og_7 1
A2 limsup = log Ng(n,1 —27*|N) < QW (N) + g(c).
h Il entropies are with respect to the stae'Z" " £"" noe
where a P l—e b ' In other words, if the error of\l converges ta exponen-
Now we choose\ = ~==. . o
: .5 . lly for positive rates, then the error ¢f converges tal
The first term is treated in the exact same way as we dti'g . (1)
there. giving exponentially for rates exceedir@'") (N). [ |
' e Remark The type | channel constructed in the proof of
H)_(FPE™) < max Hrﬁizn—\ ‘(F"IE’")pm Lemmd1Y is such that the compositibiv of the Stinespring
peES(A) dilations and of channel and degrading channel, actually ma
+3|A2 logn + 6 + 1Ogi2 the input spaced’ isometrically into F @ Sym*(E) ¢ F ®
A E® FE’, so thatXp = 1.
) 64nlAl? Looking at Lemmd_ 118, we see that the symmetric channel
<n@VN) + pynin 2 constructed there has a dilatighi : G — Sym?*(E) ¢ EQF/,

which is a restriction at the input of the “universal” symmet
channelS : £(Sym?(E)) — L(FE) with the trivial Stinespring
where we have used the quantum AEP (Propositidn 13) on(tt,'gat'on 9 ,
more. Sym“(FE) - EQ E'.

The second term can be upper bounded To prove a full strong converse for all degradable channels,
by Theoreni 10 it is thus enough to show the strong converse

for the channelsS, for arbitrarily large dimensionF|. More

= H;ff’\(G"IE”)(]]@W)@n‘Q precisely,|E| = 2| A||B| is enough for all degradable channels
with given input and output spaces and B. ]

1
+3|A|21ogn+6—|—1ogﬁ,

—HEPBMNAFME™) = HEPBAAFME™),,

max min

1
<log Ng(n, e+ 4A|M) + 4log %
. o ] ) ) VIIl. A SEMIDEFINITE PROGRAMMING APPROACH TO THE
using duality in the first equation and Lemma 18 in the second, i N-ENTROPY OF MULTIPLY SYMMETRIC STATES

- AFTLETLE/TL . n
fo rewrite the statgy) (Up to an isometnG™ < In the proof of TheoremJ2 we came across a term

n H G"G'" RN ,
AF™) as if a test Statgt) had gone throughi””. The —H¢ . (AF™|E'™), ¢ being larger than the coding error we

mequghty in the third line is by ProposdeIZO below. \p]/ant to analyze. Similarly, in the proof of Theoréni 14 we had
Putting these bounds together yields the statement of t_?{g (F"|E™X)

max
theorem. u In both cases, assuming w.l.o.g. that the chankelis

The following result is essentially a version of the oneof type | (Lemmal1l) and using Lemnial18, we may view
shot decoupling proof of entanglement-distillation anadmm both expressions as Hy,,.(G"|E'") = Hf;,,(G"|E™), with
quantum coding, adapted so that the error is composed ofegpect to an input-output joint state of a symmetric channe
smoothing and a random coding component; its proof ca(®”. Lemmal[I8 also informs us that (or a trivial
be found in the appendix. Note that it gives an essentiamodification of M) has a Stinespring dilatiod/” : G —
matching lower bound to the upper bound we used in the préafm®(E) C E ® E'; in fact, w.l.o.g.G = Sym*(E) but we
of Theoreni®. It allows us to assess one of the max-entropy}l not use this.
terms we encountered there in a new light. Now, in the proofs of Theoreni$ 2 ahdl 14 we only made use

of the fact thatM®” is symmetric with respect to exchanging

Proposition 20 (Cf. Buscemi/Datta [11] & Datta/Hsieh [I5])the entire output with the entire environmer11t system. This
let U : A < B ® E be the Stinespring dilation of symmetry was enough to show that fer < - this term
a quantum channel\V’ and |¢) € AA’ a state vector, can bounded by a constant; we also remarked that for larger

1) = (L& U)|¢) € ABC. Then, given; > 0 and e > 0, ¢’ this kind o_f argument cannot be applied.
there exists an entanglement-generating codeNforcreating However, it is obvious that the channel has much more

a maximally entangled state of rankwith error < 7, -+ e, structure, which we ought to exploit. Indeed, it is symmet-
where N ric with respect to exchanging the output and environment

; 1 systems of any subset of theinstances ofM while leaving
d= {exp (Hmin(A|E)w — 4log E)J : the others in place, i.e. for anfc [n],

®I
. SWAPSL W™ = Wen,
Remark We gave the very precise form of the bounds above . . .
. : o : and so the joint state of input, output and environment,
to emphasize that if the strong converse holds in its exmnien| JGEME™ (1 @ W)En|5) 6" 6" satisfies similarl
form for M, in the sense that for every error rate- 0, ¥ o ' y
SwAP%IE/anETLE/TI _ ,L/JGTLE"E/TL

n n m (19)
= T SWAPL,,

1
limsup — log Ng(n,1 —27"|M) < f(c),
n

n—oo
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for all subsets!. In fact, by using a standard discretization argument one
The semidefinite programming (SDP) formulation for thean prove that for an arbitrary non-stationary memoryless
smoothed min-entropy is given by (cf._[54]) channelV; ® --- ® N,,, where eachV; : L(A) — L(B) is
) o degradable, and sufficiently small error, the obviouslyrdefi
=min Tro™  s.t. log N(n,¢), log Ng(n,e¢) and log M(n,e,d) are asymptoti-
PG E"ET 50 Ty p <1, cally >0, QM (N;) + o(n) — cf. [1] and [55] for analo-
Tepp > 1 — 2 5. gous stgtements for classical and classical-quantum elgnn
P o s respectively.
p <17 @0 . Most channels of course are not degradable (or anti-
By duality theory (cf.[54]) this value is equal to the dualBD degradable). For practically all these others we do not have

’
27He (G71|En)

min

given by any approach to obtain a strong or even just a pretty strong
R, converse. One might speculate that other channels with addi

2 Ml GIFY) — max 6r — s sit. tive coherent information, hence with a single-letter ciya
r, s>0, XGE" > 0, formula, are also amenable to our method. But already the ver

attractive-looking class afonjugate degradablehannels([10]
o poses new difficulties.
Tren X <17 . A related but different question is whether tagmmetric

Note that we get an upper bound diic, (G"|E™) from side channell—_assis_ted guantum capaciy (N) [49], which
every dual feasible point (a triple, s, X). The problem is has an additive smgle_-letter fgrmula, obeys.a p_retty gron
to construct such a dual feasible point for each pure statdverse. Note_that since afb'”‘?“y symmet(r)|c S|d0e—cHanne
GG E"E™ \ith the symmetries(19) and eadh> 0, such are permitted, including arbitrarily large 50/()-504) erasur
that5r — s > 2-2(/%). Since so far we were unable to ﬁndchannels, the strong converse cannot hold for this capacity

such a construction, we leave the problem at this point to t;ﬁgﬁe even mﬁmtg .rateb|s ac(:jh|evatt;]Ie W'th erf%r. Ciur p(;gsent.
attention of the reader. echniques, requiring bounds on the various system dirarssi

of the channel, do not to apply, and we seem to need new ideas.

Tz/]GnEnE/n S XGnEn ® 1E/n + Sﬂ’

IX. CONCLUSION Note on related work. In [43], Sharma and Warsi show

For degradable quantum channels, whose quantum ahdt one may formulate upper bounds on the fidelity of codes
private capacities are known to be given by the singledlettm terms of the rate and so-called generalized divergences.
maximization of the coherent information (which is thenoalsTheir approach doesn't appear to be related to ours, but it
additive on the class of all degradable channels), we hageconceivable that it may lead to proofs of strong converses
shown how to use the powerful min- and max-entropy calcultisr certain channels’ quantum capacity. This however seems
to derive bounds on the optimal quantum and private classita presuppose that channel parameters derived from these
rate, for every finite blocklength. These bounds improve ondivergences have strong additivity properties, which caly o
the well-known weak converse in that they give asymptdiicalhold for channels with additive coherent information.
the capacity as soon as the error (parametrized by the mlirifie More precisely, the upper bound on the fidelity contained
distance) is small enough: fap this was % the error of in [43, Thm. 1] is of no direct use, much as the trivial first
a 50%-50% erasure channel, fBrwe could getﬁ. Since steps in the proofs of our Theoreims 2 and 14. The reason is
this says equivalently that the minimum attainable errargs that the bound explicitly depends on the code, via the joint
from 0 to at least some threshold as the coding rate increagggut-output state. The only hope at this point is to control
above the capacity, we speak of a “pretty strong” convertige maximum of said bound over all such input-output states.
(halfway between a weak and a proper strong converse). It is natural to expect that an important step might be to show

We have shown furthermore that it is enough to provethat the maximum is attained on product states. Crucially,
strong converse for certain universal symmetric (degriedaithe nature of the maximum bound is not addressed_in [43].
and anti-degradable) channels, namely those whose Stilestead it is shown for the quantum erasure channel, that
spring dilation is the embedding ¢fym?(E) into £ @ E’ the bound, evaluated on the input-output state correspgndi
as a subspace; then the strong converse would follow for il maximally mixed input (which is indeed a tensor power),
degradable channels. To deal with these symmetric chgnnéicreases exponentially.
and more generally with states exhibitingfold exchange  This is the meaning of [43, Thm. 3], as one can discover
symmetry between output and environment systems, we dissm the calculation following its statement. Literallywaever,
cussed briefly a semidefinite programming (SDP) approadhsays “The strong converse holds for the quantum erasure
The viability of this approach stems from the fact that boundhannel for the maximally entangled channel inputs”, which
ing the relevant min-entropy can be cast as a dual SDRight lead an unsuspecting reader to believe that indeed the
and so upper bounds may be obtained by any single dg#long converse is proved there, albeit perhaps with some re
feasible point. We have not been able to carry this part sfriction that is left vague. The concluding paragraph umfo
the programme through yet. nately repeats this claim in the stronger words “To sumneariz

Note that the proofs use the quantum AEP, but this doear results, we have given an exponential upper bound on
not mean that these results are restricted to i.i.d. channghe reliability of quantum information transmission”, afife
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then apply our bound to yield the first known example for Now, by definition of the smooth min-entropy, its exponen-
exponential decay of reliability at rates above the cagdoit tial is give by the following optimization:
guantum information tr_ansmjssion”. Nothing coulq be ferth B (GNCY) 1= 9~ Hiun (AICY),
from the truth; not a single instance of exponential decay of ¢ .
fidelity above the capacity has been shown within the approac =minTro“" st.
of [43]. This is because the dependencecof the maximum pACY <14 @ oCY,
bound in [43, Thm. 1] is not generally understood for any ~ ~
. - . S p>0, Trp <1,
code family large enough to include capacity achieving sode Aoy _
Indeed, claims such as the ones quoted above, would nec- F(e*Y ) = VeVl = V1 - €.

essarily have to involve a bound on all conceivable quam”§i‘nce<pACY is invariant under phase unitaries & we may

codes, for largen, which seems difficult, to_ say the_le‘"‘Stassume w.l.o.g. that both and ¢ have the same property,
But the only code thaf [43, Thm. 3] covers is the trivial oneg they may be assumed to be classicalyan

of using the entire input bandwidth, not encoding at all. To

analyze it, however, one hardly needs the machinery degdlop A = aipC @il
in [43]; the reader may wish to convince her-/himself that i

everynoisy channel exhibits exponential decay of fidelity for oCY — Z 0 ® Jiil,
this code. p

whereg; > 0, >, ¢; = 1 andp; € S<(AC); furthermores; >
ACKNOWLEDGMENTS 0. With these notations, the objective function in the above
optimization isTr Y = Y. ¢;Trof, the first constraint is
We thank Mario Berta and Marco Tomamichel for discusequivalent top/'® < 14 ® o€ for all i, and
sions on strong converses in the context of quantum data com-
. o . o : ACY = _ — AC ~AC
pression with side information, Robert Konig and Steplani Fg p) = val%FW’i 07 )-
Wehner for illuminating comments on strong converses, and i
Renato Renner and Frédéric Dupuis for sharing with us mamius, observing that theéA¢ are related ta){!¢ = Tr gy
of their insights regarding min-, max- and other entropieby local unitaries, we have
In particular, we gratefully acknowledge Frédéric Dugui
i X _ ACYN _ AC
permission to use his result on the comparison between (p )_manQiq)Si(wi ) s.t.

smooth max- and min-entropy (Lemia 9); and Robert Konig's ¢

suggestion of the name “pretty strong converse”, as well as Z VPidi /1 — 2> /1_ 2
the PPT example in Sectidnllll. Normand Beaudry and Mark P

Wilde, as well as the anonymous r_ef_erees, k|r_1dly suggested _ mianifl)ei( {‘C) st

several improvements over a the original preprint version. ;

Yovhian/l-¢=Vi-¢,

H tth fs of | i It where the variables arg ande;.
ere we present the proofs of several auxiliary results usedNOW’ Cauchy-Schwarz inequality says

in the proof of the main result, which would have broken the

flow of the text. ZM /1_6? < \/Zpl /1_6?\/2% /1—512.

Proof of Lemma_110: Define the auxiliary state

APPENDIX

Hence the constraint implies thaf. ¢;1/1 — €2 > 1—¢* and

—ABX . A N> >

P =D il @ il we get e i
K3

b (AY) > mi D, (A st
so that the average of the becomesp?? = Tr xp*B¥. (p77) 2 mmqu (Y1)

Choosing purificationg*Z¢, we can consider the following ' . )
purification of pABX: un/l —e2>1-¢.
A

@) BOXY =3 palwa) BN i) For eachi, ®,({¢) = Tro€ with 0 < p; < 1 ® o,
: Trp; <1, andF (1%, p;) > /1 — €. Thus, formingw :=
Then, using monotonicity (Lemnid 6) and duality, 2. 4pi € S(AC) andg = 3, gi0 > 0, we haveTrw <1,
w<1®c and
HE (A B)yas > HE, (A|BX)anx
max max 20 AC ~y > ) 2> 2 —
— —HG(AlCY),, GO PGS 2 ) aylogzl-d Vi@

observingpACY = 3. pip A @ |ii|Y . wheree < €v/2.
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This gives eventually as advertised. ]

D (M) > (1Y), Proof of Proposition 13: To get bounds valid for all
n, we use well-known tail estimates for sums of independent

S0 going back to EqL(20), we arrive at random variables due to Hoeffding [17]. Namely, consider th

Hiox (A|1B)p = —Hyin (AICY), discrete random variabl® with minimum non-zero probabil-
> H€ (A|C’)¢1 ity ming Px(x) —:27F and let = L(X) — —10gPX(X),
= H¢ mmA C such that0 < L < yp with probability 1, andEL = H(P).
= Mo (A1O), Then, for i.i.d. realizations(;, X, ..., X,, of X, and associ-
2 Hﬁlf;(A|O)p, ated L;, Hoeffding's inequality states
and we are done. - »
Proof of Lemma_11: Fix purificationsyA2¢ of the p;, {ZL > nH(P) + A\/—} e

so thatp can be purified as (21)
{ZL <nH(P)—Avn }

M
|w>ABCCO _ Z \/p_i|1/1i>ABC|i>CO
=t We can use these bounds to construct typical projectors for
We use the following characterization of smooth max; state,©", p € S(H), in the usual way. Lep = 3. A, |z)z|

entropies (cf.[[51]): be a diagonalization, so that, can be interpreted as a
9H i (AIB) o — min ITr 4Zi|| sit. probability distribution on the:. Define two projectors
F(i, ;) > V1 — €2, P = Y Ja")a"| with
Ul < ZAP 2 1°. aneTHA,

Fix optimal |¢;) € ABC, such that(y;|1)) = F(;, ;) > LA n '
V1 —¢2, andZ; > 0. Let A = max; || Tr 4 Z;|| and define Tyon = 2" =10 2 Z—log)\m <nS(p)+Avny,

i

|/ yABCCo . Z\/EW yABC |;)Co and
PA = " ¥z™| with
so that e ZA " X"
z”GTA@m
F(y,9") = (Y[¢) Zpl (Wil > V1— e
T/\Tg% =<2 =x1... 1y Z—log)\mi >nS(p) — Avn .
Furthermore, using Hayashi’s pinching inequality|[27B][$ g
the second line, By Eq. (22),
M
o _2a2
W'l = " sl @ i Tep® PRA > 1—e o7,
ij=1 _aa2
M Trp®”P N> 1—e T,
ABC 1O
<MY paim T @ LKl
; wherey = log [[p~ .
< Z Mp; ZAB @ 1€ @ 160 Now, for a pure tripartite statg)) € ABC, let A > 0 and
e L consider the projectors
= ZAB X 1000 P+ — PJ,»A#B

)

l.e.,v’ and Z are feasible fop, and the objective function _ _BAMC
P = P@m .

value

Defining [¥’) := (14 ® Pi ® P5)|y)®", clearly we have

ITr aZ]| = | T A Z;

(W)= = (| (14 @ P @ P )[)*"

SZMPiHTYAZiH > 1 96287

< M) >Vi-e,

gives an upper bound <4157 Thus we can conclude
A|B); <log A +log M

= mameaX(A|B)pi + log M, " gAY < gnS(AB) FAReVA( A" P}).

for A = /In 2. By definition

max(
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On the other hand, we just need to rescﬁ’@ by its trace,  Substituting Hmin(A|E), = H, (A|E), and using
o= P+ P# to get an eligible state in the definition ofEq. (23) with the triangle inequality for the purified distan
mln(A|B) Note thatTr P, < 2m9(»)+Auzvn hence we get
gATB" 9 nSAIB)FAGs tne)Vi (14" @ ¢ B P((P ®id)y*, (P ®id)(t4 ® ¢7))

< 4 2  T(HL(AIE)y—logd) _. 5
thus showing n

3 Equivalently, inserting the definition O;Q andtg:
H . (A|B) > nS(A|B + \/nln—.

The upper bound ol (A|B) follows by the duality of the ~
min- and max-entropies, as well as that of the conditional vo - /dQ H\/tQUJQE \/TQ ® pF

Neumann entropyS(A|B) = —S(A|C). ~
= /dQ\/tQF(wQEﬁQ ® ¢").

Q on A, write Since finally, by the concavity of the square root,

A
t/| |(Q®1L|¢ABE L /tQlvo)*PE, /dQ\/ggﬂ/thQ:l,

where /I is the normalisation of the left hand side and

|¢Q>ABE is a state. Our goa| is to show that we can f|nl::hls Implles that there eXlSt@ in the prEVIOUS Integral with
Q@ such thatwAE is close to a product state. To be preC|seF(¢Q ,TQ® ") > V142, which is precisely EqL[(22)m
the claim is that there exists € S<(E) and @ such that

1

Proof of Propositiori_200: For a d-dimensional projector

~ B _ ( H'. (A|E)y,— logd) Lemma 21 (Berta [7]) Let |¢) € ABC be a state vector.
P, @ ¢™) <n+271 (22) Picking a d-dimensional projecto) uniformly (i.e. from the
Then, using the familiar decoupling argument, there is @ cptnitarily invariant measurelQ), we have
map D acting onB such that / 1Al
dQ ’

Qe Qe 1) — 179 @¢p*
1

. . . < 2—§(Hmin(A|E)—logd)
where®g¢ is a maximally entangled state. Choosing - ’

with the maximally mixed state, = 1Q € S(A) on the
160)™ 1= VIldtg(Q Do) y & = qQ € S4)

support of@. ]
as the input state, so that;@ABE = (L® U)|pg), com-
pletes the entanglement generating code. Chookigg < REFERENCES

mm(A|E)w 410g guarantees that its error is nte [1] R. Ahlswede. Beitrage zur Shannonschen Informatiwemtie im Falle
To prove Eq.[(2R), Choose‘:ﬁe S<(ABE) with P(p, 1) < nichtstationarer KanaleZ. Wahrscheinlichkeitstheorie Verw. Get0

nandH . (A|E)y = Hmin(A|E),. Consider the cptp map (1968), 1-42.
[2] R. Ahlswede. Elimination of correlation in random codes arbitrarily

P([d @ D)4B, dog) <n+277 (00 (AIB)y —log d)

mll’l

A varying channelsZ. Wahrscheinlichkeitstheorie Verw. Ge#t4 (1978),
Pio— [l s el s aord
[8] K. Azuma. Weighted sums of certain dependent randomalies.
where|Q) are orthogonal labels of a dummy system. By the[ Tohoku Mathematical ,J19 (1967), 357-367.

. . . 4] C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor and Antér. The
contractiveness of the purified distance, we have quantum reverse Shannon theorem and resource tradeo§srfolating

. AE . AE quantum channels. arXiv[quant-ph]:0912.5537 (2009).
P((P ® 1d)‘p ’(P ® 1d)1/) ) <1 (23) [5] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin and W. K. Weos.
Mixed-state entanglement and quantum error correctitys. Rev. A
We also havef dQ tq = 1. 54, 5 (1996), 3824-3851.
Now, Lemmd 2L below tells us [6] V. H. Bennett, P. W. Shor, J. A. Smolin, A. V. Thapliyal. Bnglement-
. Assisted Capacity of a Quantum Channel and the Reverse &mann
|(P®Rid)p?F —(Poid)(Ta®¢?) |, < 272 Hmin(AlE)—load), Theorem.IEEE Trans. Inf. Theory48, 10 (2002), 2637—2655.
[7] M. Berta. Single-shot Quantum State MerginBiploma thesis, ETH
noting Zurich (2009); arXiv[quant-ph]:0912.4495.
[8] M. Berta, F. G. S. L. Brandao, M. Christandl and S. Wehr&mtan-

. E E lement Cost of Quantum Channel&EE Trans. Inf. Theory59, 10
(P@id)(ta ® ¢™) = /dQTQ ® ¢~ ® QXA ?2013)’ 6779—679%. y

—(QeDy AFQeL) - ®e”

o [9] M. Berta, M. Christandl and R. Renner. The Quantum Rev&isannon
and that the trace norm on the left hand side is Theorem based on One-Shot Information The@gymmun. Math. Phys.
[10] K. Bradler, N. Duitil, P. Hayden and A. Muhammad. Corgtey degrad-

ability and the quantum capacity of cloning channdisMath. Phys.

By Eq. (1), the trace norm bound implies [11] F. Buscemi and N. Datta. The quantum capacity of chanmeth
arbitrarily correlated noisdEEE Trans. Inf. Theory56 (2010), 1447—

306 (2011), 579-615.
A
/ Q |A]
! 51 (2010), 072201.
P((P2id)p"?, (Poid)(Ta®p?)) < 271 (Hnn(AlE),~logd), 1460.



[12] N. Cai, A. Winter and R. W. Yeung. Quantum Privacy and Quen
Wiretap ChannelsProblems Inf. Transm40, 4 (2004), 318-336

M. Christandl, R. Konig and R. Renner. Postselecti@thhique for
Quantum Channels with Applications to Quantum Cryptogyajpthys.
Rev. Lett. 102 (2009), 020504.

T. Cubitt, M.-B. Ruskai and G. Smith. The structure ofgdelable
quantum channelsl. Math. Phys.49 (2008), 102104.

N. Datta and M.-H. Hsieh. The apex of the family tree obtpcols:
Optimal rates and resource inequalitieNew J. Phys. 13 (2011),
093042; arXiv[quant-ph]:1103.1135.

N. Datta, M. Mosonyi, M.-H. Hsieh and F. Brandao. Sgaronverses for
classical information transmission and hypothesis tgst@mXiv[quant-
ph]:1106.3089 (2011).

A. Dembo and O. ZeitouniLarge Deviations: Techniques and Appli-
cations 2nd edition. Applications of Mathematics, vol. 38, Speng
Verlag, Berlin Heidelberg, 1998.

I. Devetak. The private classical capacity and quantapacity of a
quantum channelEEE Trans. Inf. Theory51 (2005), 44-55.

|. Devetak and P. W. Shor. The capacity of a quantum cblafor
simultaneous transmission of classical and quantum irdtam. Comm.
Math. Phys. 256 (2005), 287-303.

D. P. DiVincenzo, P. W. Shor and J. A. Smolin. Quantunasutel
capacity of very noisy channel®hys. Rev. A57, 2 (1998), 830-839.
T. Dorlas and C. Morgan. The invalidity of a strong capador
a gquantum channel with memor2hys. Rev. A84 (2011), 042318;
arXiv[quant-ph]:1108.4282.

F. Dupuis. The decoupling approach to quantum information theor
PhD thesis, Universite de Montréal (2009); arXiviquahi:1004.1641.
F. Dupuis. private communication (January 2013).

F. Dupuis, M. Berta, J. Wullschleger and R. Renner. Tkeodpling
theorem. arXiv[quant-ph]:1012.6044 (2010).

J. Fern and K. B. Whaley. Lower bounds on the nonzero agpaf
Pauli channelsPhys. Rev. A78 (2008), 062335.

C. A. Fuchs and J. van de Graaf. Cryptographic Distigability
Measures for Quantum-Mechanical Staté<EE Trans. Inf. Theory45
(2999), 1216-1227.

M. Hayashi. Optimal sequence of POVMs in the sense dhSteemma
in quantum hypothesis testing. Phys. A: Math. Gen.35, 5 (2002),
10759-10773; arXiv:quant-ph/0107004.

R. Jozsa. Fidelity for mixed quantum statds.Mod. Opt, 41 (1994),
2315-2323.

C. King, K. Matsumoto, M. Nathanson and M.-B. Ruskaioerties of
Conjugate Channels with Applications to Additivity and Mplicativity.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

Markov Proc. Rel. Fieldsl3 (2007), 391-423; arXiv:quant-ph/0509126.

[30] R. Konig and S. Wehner. A strong converse for classitannel coding
using entangled input®hys. Rev. Lett103 (2009), 070504.

D. Kretschmann and R. F. Wernefema con variazioni quantum
channel capacityNew J. Phys.6 (2004), 6.

S. Lloyd. Capacity of the noisy quantum channBhys. Rev. A55

(1997), 1613-1622.

[31]
[32]

[33]
pothesis TestinglEEE Trans. Inf. Theory 50 (2004), 1368-1372;
arXiv.quant-ph/0110125.

T. Ogawa and H. Nagaoka. Strong converse to the quantuannel
coding theoremIEEE Trans. Inf. Theory45 (1999), 2486—2489.

Y. Ouyang. Upper bounds on the quantum capacity of sooantym
channels using the coherent information of other chaneel§v[quant-
ph]:1106.2337, 2011.

E. M. Rains. A Semidefinite Program for Distillable Emnggement|EEE
Trans. Inf. Theory47 (2001), 2921-2933.

J. M. Renes and R. Renner. Noisy channel coding via gyieanplifica-
tion and information reconciliationEEE Trans. Inf. Theory57 (2011),
7377-7385.

R. Renner.Security of Quantum Key DistributiorPhD thesis, ETH
Zurich (2005); arXiv:quant-ph/0512258.

R. Renner. Symmetry of large physical systems impliedependence
of subsystemsNature Physics3 (2007), 645-649.

B. Schumacher. Sending entanglement through noisgtgoachannels.
Phys. Rev. A54 (1996), 2614-2628.

B. Schumacher and M. A. Nielsen, Quantum data procgsaird error
correction.Phys. Rev. A54 (1996), 2629—2635.

C. E. Shannon. A Mathematical Theory of CommunicatiBell Syst.
Tech. J, 27 (1948), 379-423 & 623-656.

N. Sharma and N. A. Warsi. Fundamental bound on the hiétia of
quantum information transmissioRhys. Rev. Lett110(2013), 080501.

[34]

[35]

[36]

[37]

(38]
[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]
(53]

54]

[55]

[56]
[57]
[58]

[59]

T. Ogawa and M. Hayashi. On Error Exponents in Quantum Hy

17

P. W. Shor. The quantum channel capacity and coherdatniation.
Lecture notes, MSRI Workshop on Quantum Computation, Sam-Fr
cisco, November 2002.

P. W. Shor. Capacities of quantum channels and how totfiedh. Math.
Program. Ser. B97 (2003), 311-335.

P. W. Shor and J. A. Smolin. Quantum Error-Correctingd€o Need
Not Completely Reveal the Error Syndrome. arXiv.quanB8pbA006
(1996).

G. Smith. The private classical capacity with a symimedide channel
and its application to quantum cryptograpi8hys. Rev. A78 (2008),
022306.

G. Smith, J. M. Renes and J. A. Smolin. Structured Codgdve the
Bennett-Brassard-84 Quantum Key Rafhys. Rev. Lett.100 (2008),
170502.

G. Smith, J. A. Smolin and A. Winter. The Quantum Capadi¥ith
Symmetric Side Channel$EEE Trans. Inf. Theory54 (2008), 4208—
4217.

G. Smith and J. Yard. Quantum communication with zeapacity
channels.Science 321 (2008), 1812-1815; arXiv:0807.4935.

M. Tomamichel. A framework for non-asymptotic quantum informa-
tion theory PhD thesis, Department of Physics, ETH Zirich (2011).
arXiv[quant-ph]:1203.2142.

M. Tomamichel, R. Colbeck, and R. Renner. Duality betwesmooth
min- and max-entropie$EEE Trans. Inf. Theory56 (2010), 4674—-4681.
A. Uhimann. The “Transition Probability” in the Statgp&e of ax-
Algebra.Rep. Math. Phys9 (1976), 273-279.

A. Vitanov, F. Dupuis, M. Tomamichel and R. Renner. ChRiules for
Smooth Min- and Max-Entropie$EEE Trans. Inf. Theory59, 5 (2013),
2603-2612.

A. Winter. Coding Theorems of Quantum Information TheoBhD
thesis, Department of Mathematics, Universitat Bielkfe]1999).
arXiv.quant-ph/9907077.

A. Winter. Coding theorem and strong converse for quanthannels.
IEEE Trans. Inf. Theory45 (1999), 2481-2485.

W. K. Wootters. Entanglement of Formation of an ArhiyrsState of
Two Qubits.Phys. Rev. Lett80, 10 (1998), 2245-2248.

G. Vidal, W. Dur and 1. J. Cirac. Entanglement Cost op#&itite Mixed
States.Phys. Rev. Lett89 (2002), 027901.

D. Yang, M. Horodecki, R. Horodecki and B. Synak-Radtkeeversibil-
ity for All Bound Entangled Stateshys. Rev. Lett95 (2005), 190501.


http://arxiv.org/abs/quant-ph/0107004
http://arxiv.org/abs/quant-ph/0509126
http://arxiv.org/abs/quant-ph/0110125
http://arxiv.org/abs/quant-ph/0512258
http://arxiv.org/abs/quant-ph/9604006
http://arxiv.org/abs/0807.4935
http://arxiv.org/abs/quant-ph/9907077

	I Introduction
	II Quantum channel capacity
	III Weak and strong converse
	IV Degradable and anti-degradable channels
	V Pretty strong converse
	VI Pretty strong converse for the private capacity
	VII Strong converse for symmetric channels implies it for degradable channels
	VIII A semidefinite programming approach to the min-entropy of multiply symmetric states
	IX Conclusion
	Appendix
	References

