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Abstract

Linear precoding is a relatively simple method of MIMO siting that can also be optimal in
certain special cases. This paper is dedicated to high-ShNR/sis of MIMO linear precoding. The
Diversity-Multiplexing Tradeoff (DMT) of a number of linegrecoders is analyzed. Furthermore, since
the diversity at finite rate (also known as the fixed-ratemegicorresponding to multiplexing gain of
zero) does not always follow from the DMT, linear precodersalso analyzed for their diversity at fixed
rates. In several cases, the diversity at multiplexing gdizero is found not to be unique, but rather
to depend on spectral efficiency. The analysis includes #ne-forcing (ZF), regularized ZF, matched
filtering and Wiener filtering precoders. We calculate the DWf ZF precoding under two common
design approaches, namely maximizing the throughput amibnizing the transmit power. It is shown
that regularized ZF (RZF) or Matched filter (MF) suffer fromrar floors for all positive multiplexing
gains. However, in the fixed rate regime, RZF and MF precodictgeve full diversity up to a certain
spectral efficiency and zero diversity at rates above it. Mine regularization parameter in the RZF is
optimized in the MMSE sense, the structure is known as then®i@recoder which in the fixed-rate
regime is shown to have diversity that depends not only onntlmaber of antennas, but also on the

spectral efficiency. The diversity in the presenceboth precoding and equalization is also analyzed.

. INTRODUCTION

Precoding is a preprocessing technique that exploits aiastate information at the transmitter (CSIT)
to match the transmission to the instantaneous channelitmed[1], [2], [3]. Linear and non-linear
precoding designs are available in the literatlte [4]. Bimgrecoding in particular provides a simple and
efficient method to utilize CSIT. Linear precoding has bebawm to be optimal in certain situations
involving partial CSIT [5], [6], however, in many instancég main motivation of linear precoders is to

simplify the MIMO receiver.
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Linear precoders include zero-forcing (ZF), matched filigr(MF), Wiener filtering, and regularized
zero-forcing (RZF). The ZF precoding schemes were extehsstudied in multiuser systems as the ZF
decouples the multiuser channel into independent singge-channels and has been shown to achieve a
large portion of dirty paper coding capacityl [7]. ZF preaaglioften involveschannel inversion, using
the pseudo-inverse of the channel or other generalizedsesd4]. Matched filter (MF) precodingl[8],
similarly to the MF receiver, is interference limited at hi$NR but it outperforms the ZF precoder at
low SNR [4]. The regularized ZF precoder, as the name impli@soduces a regularization parameter
in channel inversion. If the regularization parameter igisely proportional to SNR, the RZF ofi [9] is
identical to the Wiener filter precodin@l[4]. Peel et al. [Airoduce a vector perturbation technique to
reduce the transmit power of the RZF method, showing thahi;nway RZF can operate near channel
capacity.

This paper analyzes the diversity of MIMO linear precodirithver without linear receivers. We show
that a MIMO ZF precoder with a maximum likelihood receiveishrminimal spatial diversity, and that
Wiener precoders produce a diversity that is a complex fanadf spectral efficiency and the number
of transmit and receive antennas. At very low rates, the Wfiggrecoder enjoys a maximal diversity
which is the product of the number of transmit and receiveramas, while at very high rates it achieves
a minimal diversity which is the same as ZF diversity. Thessults are reminiscent of MIMO linear
equalizers[[10], even though in general the behavior of kzpra (receive side) can be very different
from precoders (transmit side) and the analysis does nof &@am one to the other. We also show that
MIMO systems with RZF and MF precoders (together with optimeceivers) exhibit a new kind of
rate-dependent diversity that has not to date been obserwegborted, i.e., they either have full diversity

or zero diversity (error floor) depending on the operatingcsal efficiencyR.

We also provide DMT analysis for all precoders mentionedvab®he fact that DMT and the diversity
under fixed-rate regime require separate analyses has btlighed for MIMO linear equalizers [11],
[10] and is by now a well-understood phenomenon. Essentitde reason is that various fixed rates
(spectral efficiencies) for MIMO precoding result in difily different diversities, whereas DMT analysis
assigns only a single value of diversity to all fixed rates f{gaéd rates correspond to multiplexing gain

zero).

Remark 1: Due to symbolic similarities, it may be tempting to draw thenclusion that ifd(r)
is the diversity at multiplexing gaim, then substituting- = 0 in the same mathematical expression

will give the diversity at multiplexing gain zerd(0). However, despite appearances, there is no solid
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Fig. 1. MIMO with linear precoder

relationship betweer(r) and d(0). The standard DMT arguments are based on the seminal work of
Zheng and Tse [12] whose developments depend criticalljherpositivity of . For example, the proof
of [12, Lemma 5] depends critically anbeing strictly positive.More importantly, the asymptodictage

calculations in[[12, p. 1079] implicitly use > 0 and result in the outage region:

A:{Q:Z(l—ai)+<r}

7

where «; are the exponential order of the channel eigenvalues,N;e= p~ . If we setr = 0 this

expression implies that the outage region is always empgticiwis clearly not true.

Thus, the DMT as calculated by the standard method$s of [18F dmt extend ta- = 0. The DMT
d(r) is sometimes continuous at zero, including e.g. the examples in [12], dmuttinuity atr = 0 does
not always hold. In fact, there are systems wh&K®, the diversity at multiplexing gain zero, is not even
uniquely defined. It is possible for diversity to take mukivalues as a function of ratB. This fact
has been observed and analyzed, e.g.._in [11], [10], [13¢ Whrk in the present paper also produces

several examples of this phenomenon.

This paper is organized as follows. Sectidn Il describesstrstem model. Sectidn]Il provides outage
analysis of many precoded MIMO systems. Secfioh IV provithesDMT analysis. The case of joint
linear transmit and receive filters is discussed in Seétio8acttiori VI provides simulations that illuminate

our results.

1. SYSTEM MODEL

A MIMO system with linear precoding is depicted in FIg. 1. $teystem uses the linear precoder
to manage the interference between the streams in a MIMCersysd avoid a lattice decoder in the
receiver. We consider a flat fading chand&lc CV*M whereM and N are the number of transmit

and receive antennas, respectively. While> N when using linear precoding alone, we have= M
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or M > N when using precoding together with receive-side linearabgation depending on whether
the precoder is designed for the equalized channel or thaliequis designed for the precoded channel
(see Figuré]2). The input-output system model for flat fadifiyyO channel with M transmit andV
receive antennas is given by

y = WHTx + Wn (1)

whereT € CM*5 is the precoder matrixyv € CB*¥ is the receiver side equalizer. The latter may be
set to identity in cases where the receiver does not userlegaalization. The number of information
symbols isB < min(M, N), the transmitted vector is € C 5*!, andn € C V*! is the Gaussian noise

vector. The vectors andn are assumed independent.

We aim to characterize the diversity gaul,R, M, N), as a function of the spectral efficiendy
(bits/sec/Hz) and the number of transmit and receive a@atenrhis requires a Pairwise Error Probability
(PEP) analysis which is not directly tractable. Insteadfiwe the exponential order of outage probability
and then demonstrate that outage and PEP exhibit identipanential orders.

The objective of linear precoding (possibly together wiite&r equalization at the receiver) is to

transform the MIMO channel intmin(M, N) parallel channels that can be described by

where~y; is the SINR at thek-th receiver output an® = min(M, N). Following the notation of[[14],
we define the outage-type quantities
Pout(R, N, M) £ P(I(x;y) < R) 3

dout(R, N, M) & — li_>m 10gPoult(§,M,N)
p—r00 og p

(4)
wherep is the transmitted equivalent SNR.

The outage probabilities of MIMO systems under joint spaiacoding is respectively given by [11],
[13]

B
Poutép<210g(l+7k) < R) (5)
k=1

We shall perform outage analysis for different precodexsiizers as the first step towards deriving the
diversity function. We then provide lower and upper boundsoor probability via outage probabilities.
This two-step approach was first proposed.in [12] due to tlradtability of the direct PEP analysis for

many MIMO architectures.

November 2, 2018 DRAFT



We denote thexponential equality of two functionsf(p) andg(p) as f(p) = g(p) when

p=oo log(p) oo log(p)

i 198 f(p) lim log g(p)

In the following, we shall need to specify various upper amgdr bounds or approximations of the

SINR ~, which will give rise to a number of pseudo-SINR variablgsy, and#.

[1l. PRECODINGDIVERSITY

In this section we analyze a linearly precoded MIMO systeneneti/ > N and the number of data

streamsB is equal toN.

A. Zero-Forcing Precoding

The ZF precoder completely eliminates the interferencdatréceiver. ZF precoding is well studied
in the literature via performance measures such as thraughm fairness under a total (or per antenna)

power constraint [15, and references therein].

1) Design Method I: One approach to design the ZF precoder is to solve the folipyeroblem [[4]
T =arg min E[|| Tx||3] (6)
subject toHT =1
The resulting ZF transmit filter is given by
T = gHY(HHY)! € CM*N @)
where S is a scaling factor to satisfy the transmit power constrahmt is [4]
B2r(TTH) < p (8)

where we assume that the noise power is one and that the atiomstreams are independent. Fr@m (8),

the received SINR per stream is thus given by

ZFP _ p
Using [8), the outage probability is given by
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A direct evaluation of[(1I0) is intractable since the diadoslaments of(HH)~! are distributed
according to the inverse-chi-square distribution [16]][MWe instead bound (10) from below and above

and show that the two bounds match asymptotically.

Let \; be the k-th eigenvalue dIH'. Equation [[ID) can be written as
Pout = P(Nlog (1+ ZNLI) < R)

which can be bounded as

Pout < IP)<J\7 10g(1 + %/\min) < R> (11)
= ]P’()\min < N@v — 1)Rp_1>
= IFD(/\min < p_l)- (12)

The marginal distributiory; (\) of Amin is f1(A) = eA(M=N) [17] wherec is a constant, therefore the

bound in [I2) can be evaluated [13] yielding:
Pout < P_(M_N+1)- (13)
We now proceed with a lower bound on outage. The outage pildipab (L0) can be bounded:

p
FPouu=P| Nlog(1l + ———+—) <
out < og(1+ tI’(HHH)_l) R>

P
>P(Nlogl+ ——) <R
< og( (HHH),;,j) )

= p(=<s) (14)
where we have made a change of variable W
The random variable in (14) is distributed according to the chi-square distituwith 2(M — N +1)
degree of freedom, i.e. ~ X22(M — N +1) [16]. Thus the bound i (14) can be evaluafed [11] yielding:

Pout > P_(M_N+1)- (15)

From [13) and[(15), we conclude that the diversity of MIMO teys using the ZF precoder given
by (6) and joint spatial encoding is
d?FP = M — N 4+ 1. (16)

November 2, 2018 DRAFT



B. Zero-Forcing Precoding: Design Method |1

Notice that the ZF precoder design i (6) minimizes the waEtied power. Another approach for
ZF precoding design allocates unequal power levels acfosstransmit antennas to optimize some

performance measure. For instance, consider the optimizatoblem [15]

max f(pr)
subjectto HT = diag{\/p1, ..., /Dar}
E[|Tx|[* < p (17)

where f(py) is an arbitrary function of the transmitted power on the k-th antenna.

The optimal solution for[(17) (assuming independent trahsignaling) is given by([15, Theorem 1]:

T = HY(HHA?) 'diag{\/p1, - .., VP } (18)

wherepy, is obtained by solving
max  f(p)
Pk

subjectto  pp[(HHT)™'], < p (19)
I

In our case, we maximize the throughput, therefgif@,) = >, log(1l + v,fFP). After setting the

derivatives of the appropriate Lagrangian function to zéne solution of the power allocation problem

in (19) is given by y

_pt > e (HE)
M(HHT),]

Dk -1 (20)

Substituting [(ZD) in[(5), the outage probability is given by

N N H\—1

p+ > e (HHT) >

Pyy=P E 1 <R
o <k:1 S VT TS G

N
N _
Zlog(%) > —R) (22)

<
(

< P(Nlogi%) > —R) (23)
(
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= P()\min < P_1> (24)
- p—(M—N-‘rl)‘ (25)
where the exponential equality (21) holds at high SNR] (28pivs from Jensen’s inequality, and the

transition from [(24) to[(25) again due to the marginal disttion of \,;, via the method of[[13].

A lower bound on the outage probability can be given as falo8tarting with[(2ll) and using Jensen’s
inequality we have

N
: p
f@F:p(E:bg_____fj><zQ
S CUN(HH), ]

N

1 P

> IP’(N log — — < R). (26)
N2 ; (HHH), !
The singular value decomposition Hf and the corresponding eigen decompositio®id ” are given
by
H =Urv#
HH"” = UAU”

whereU € CV*N andV € CM*M gre unitary matriced; € RV*M s a rectangular matrix with non-
negative real diagonal elements and zero off-diagonal etésn andA = I'T” ¢ RV*V is a diagonal
matrix whose diagonal elements are the eigenvaluedHf. Let u; be thek-th column of UY. We
have

|uga |

N
HHD) ! =af A7y, =D S (27)
=1

whereuy; is the (k,1) entry of the matrixU.

The bound in[(Z6) can be rewritten

1 & 1
Pout>P<N10gm W<R>
k=1 =1 p\

p(MiogLS L g (28)
k=1 221=1 T+pA,
We can lower bound the probability ih (28) in by observingttte term
N
1 1

N N Juw|?
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is similar to [13, Eq.(18)], thus the analysis of [13] appliend we obtain
Pout > IP)</\min < p_1> = p_(M_NH)- (29)

Thus, the MIMO ZF precoding with unequal power allocatioB)(4achieves diversity ordev/ — N +1.

Recall that the diversity is defined based on the error pritiyaln Appendix[Alwe provide the pairwise
error probability (PEP) analysis for the zero-forcing aedularized zero-forcing precoded systems and

show that the outage and error probabilities exhibit sanersiity.

C. Regularized Zero-Forcing Precoding

In general, direct channel inversion performs poorly du¢hi singular value spread of the channel

matrix [9]. One technique often used is to regularize thenokhinversion:
T = 3HYHHY 4 cI)! (30)
where 5 is a normalization factor andis a fixed constant.
Recall
y =HTx+n=pAUAA+cI)"'Ux +n (31)

allowing us to decompose the received waveform at each materio signal, interference, and noise

terms:

N N \
I3 Z <Z 5y _ﬁ p uklu;«kl>:ni + ng (32)

where the scaling factaos is given by s = ﬁ and

tr[(HH" + cI)"'"HHY (HH"” + cI)™!]

n

tr[(UAUY + cI)"'UAUY (UAUY + 1) ]

tr[UA + cI)'A(A + cI)~'UH]

N
_ Al
= tr[A(A + cI)72 :E —_—. (33)
[ ( ) ] Py ()\l + 6)2
The received signal power is given by

Pr = E||HTx]||?
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=F [62tr <UA(A +eD)TTUAxHU(A + cI)_lAUH>]

=F [52tr <A(A +c)TTUHxxHU(A + cI)‘lAUHU>]

= G%r (A(A + D) TTUH BT U + cI)—1A>

_ P BYCINC
= PU[(A + cT)72A%] = N ;(Aﬁc)?' (34)
where we have useBl(xx’) = £1.

The SINR is evaluated by computing the signal and interfeggrowers from[(32). For a given channel

H, the power of desired and interference signals atithle receive antenna are respectively given by

k) _ B°p AP 2
P 2 35
¢ N(ZA+\M> (35)
N N N 2
( ) Z uklufl (36)
i=1,2 1
Thus the SINR for thé-th signal stream is given by
k
A
P 1
2
Tp ( Zl 1 Al—i—c |ukl|2>
- . (37)
YL 127£k S ,\+c“kl“zl +1
(38)
recalln is given by [38).
Defining the exponential order of eigenvalugs= p~* in a manner similar to [12],
2
(S trietuon?)
Ve = P)
ik | Tie e ukuh| + N pT!
2
(Zz p= |ukl|2>
= 5 (39)
D itk Sy ukufypet| + N p 3L po

where the asymptotic equality follows because in all termdominatesp=*, a fact that also implies

n=>p
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Multiplying the numerator and denominator 6f139) p%, we have

2
(zl pl—al\ukzﬁ)

D itk S upupt ot 4+ N ploe
The sum in the numerator df (40) is, in the SNR exponent, edgit to:
Do T M g = pt Y fug]
1 !
— pl_amin (41)

where we use the fact that, |ux|? = 1. Similarly, for the first term in the denominator ¢f{40)
N 2 N

Do | Do mipt | = R YOS
ik | 1=1 itk | i=1

_ p2—2o<min Z Wi (42)
i#k

2

2

where we definevy; £ Z{il upuy| . Notice thatwy; < 1.

Using [41) and[(42), the SINR in_(40) is given by

)
(43)

2o N 1 a
pAR0min S g whi + N Y2y plm

If all ay > 1 then the exponents gf are negative and the denominator is dominated by its second

V=

term, which also dominates the numerator. If at least onédhebhy < 1, then the maximum exponent

which corresponds tev,;, dominates each summation. Thus we have:

pro o o > 1Vl
/yk = p]7a111in 2 . (44)
p2~2%min 2(:1}’ 1 wk.Z_N Pl omin otherwise
= i
itk

We now concentrate on the case where there exists at least,ond. We define

ki
therefore in this special case we have:
i\ 2
(p'=o)
2
(N = 1) (p=20) i+ N 1=t

< (46)
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e T 47)

(1>
|

Thus in general

. v
ES o
B (N - 1)//’min

L

(48)
,7
wherev is a new random variable defined as:
Ko I ap >1Vk
V= (49)
1 otherwise
wherer,, = pl=min,

We can now bound the outage probability as follows

N

Pout = P(Zlog(l + ) < R>
k=1

N

Zlog )

(;
(= 2R/N_1>
(

) (50)

>P

I
=

R

P

:umln

where® £ (28/N — 1)(N —1).

The bound in[(50) can be evaluated as follows

]P’( - g@):ﬂ»(

Hmin

< (9|1/ = /ia)IP’(V = Ra) + IP’(

Hmin Hmin

L copp=1). (51)

< @‘1/ = 1)1?’(1/ = 1)

= ]P)(Ra <6 umin)]P’(l/ = lia) —HP’(

Hmin
Notice thatIP(ma <6 umin) = 1 sincek, is vanishing at high SNR an@ and u.,;, are positives. We
now need to comput® (v = ko) andP(v = 1), or equivalentlyP({c; > 1 Vk}) and its complement.

We quote one of the results of [10].

Lemma 1. Let {)\,} denotes the eigenvalues of a Wishart maHiKI ', whereH is an N x M matrix

with i.i.d Gaussian entries, and lef, = l‘fg(? )) If 1,, denotes the number of,, that are greater than
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one, then for any integer < N we have[[10, Section III—AH
P(1a, =s) = o (7 HM=N)s) (52)
Thus settings = N (i.e. all o, > 1) in (52) yields
P(v = ko) =P(1a, = N) = p MV (53)
P(v=1) =0(1) (54)

whereO(1) is a non-zero constant with respecto

Evaluating [(5ll) depends on the valuesafvhich is always real and positive. ® < 1 then we have

IP’(MV. < @> = pMN (55)
becauseﬂ)(uim < ©) =0 as1/umin > 1. On the other hand i® > 1 then
IP’( Y < @> = p~MN | P(L <©)o(1) (56)
Hmin Hmin
= 0(1) (57)

sinceIP’(% < @) is not a function ofp because. is independenp. For the set of rates whei@ > 1,
equation [(B7) implies that the outage probability [in](82nat function of p and thus the diversity is

zero, i.e. the system will have error floor. The set of ratesatbich © > 1 are

This concludes the calculation of a lower bound on the oug@gbability. A similar approach will
yield a corresponding upper bound, as follows. Let
pimase & max gy (59)
A lower bound on the SINR is given as

> ( v (60)

N — 1):umax

3.

L

!Note that[[10] analyzes linear MIMO receiver where it is assd N > M. It can be easily shown that the above Leniha 1

applies for the case considered here whife> N.
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The outage probability is bounded as

N
Pout< P(Zbg(l +4) < R)
k=1

= P<#max < @). (61)

We can evaluatd (61) in a similar way &s](51), establishirag the outage diversity?4" = M N

out

R

if the operating spectral efficienci is less thanRy, = Nlog (5~<), anddf4F = 0 if R > Ry,

This shows that the performance of RZF precoder can be mutér liban that of the conventional ZF

precoder MIMO system whose diversity A — N + 1 independent of rate.

Recall that diversity is the SNR exponent of the probabitifycodeword error. In Appendik]A, we
show that the outage exponent tightly bounds the SNR exparfahe error probability. Thus we have

the following theorem.

Theorem 1: For an M x N MIMO system that utilizes joint spatial encoding and regakd ZF
precoder given by (30), the outage diversityli&’" = M N if the operating spectral efficiendy is less
than Ry, = Nlog (25), andd®?F =0 if R > Ry, .

Remark 2: Ry, is a monotonically decreasing function &f with the asymptotic valuimy o Ri, =
ﬁ ~ 1.44. Overall we havd.44 < Ry, < 2, leading to an easily remembered rule of thumb that applies
to all antenna configurations. Regularized ZF precoderayswexhibit an error floor at spectral efficiencies

above2 b/s/Hz, and enjoy full diversity at spectral efficienciesdwe1.44 b/s/Hz.

D. Matched Filter Precoding

The transmit matched filter (TXxMF) is introduced in [8], [4The TxMF maximizes the signal-to-
interference ratio (SIR) at the receiver and is optimum fightsignal-to-noise-ratio scenariad [4]. The
TXMF is also proposed for non-cooperative cellular wirslegetwork [18]. The TXxMF is derived by
maximizing the ratio between the power of the desired sigmation in the received signal and the
signal power under the transmit power constraint, thatfs [4

E(|x"y]]?)

o 62
B(miP) ©2)

T = arg max
T

subject to:F||Tx||> < p

wherey is the noiseless received signak Tx.
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The solution to[(6R) is given by
T = gHY (63)

[ 1
b= tr(HAH) (64)

We now analyze the diversity for the MIMO system under TxMRgeTreceived signal is given by

with

y = HH”x + n = SUAUx 4 n.

The received signal at thieth antenna

N
Yk = ﬁ(Z/\HukllQ)ﬂ% +
=1
N N
,8 Z < Z )\lukluf1> xX; + ng (65)

i=1,ik > I=1
The SINR atk-th receive antenna is

2
N
% < 211 Al!’dklP)
Tk = 5
N N
B2 R 2oimt ik | 2oim1 MUK

+1

Substitute with the value gf and \; = p~*

2
N
( Do P |Ukl|2>
N 2 N
D i1tk +Np=tY i pre

Observe that[(86) is the same as the SINR of the RZF precodedmsygiven by [(39). Hence the

Yk (66)

N _
2imn P g

analysis in the present case follows closely that of the geitawer bound of the RZF precoder, with
the following result: the system can achieve full diversiylong as the operating rate is less thiap
given in [58). The pairwise error probability analysis isakimilar to that of the RZF precoding system
(given in Appendix“A) which we omit for brevity. Thus we conde that Theorerhl1 applies for the
TXMF precoder.

E. Wener Filter Precoding

The transmit Wiener filter TXWF minimizes the weighted MSEdtion.
{T, 3} =argming s E(|lx — 87'3|[*)
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subject toE (|| Tx|*) < p. (67)

Solving (67) yields
T = pF~'HY (68)

with
F = <HHH + EI)
p

1

b=\ vFarm

(69)

where 3 can be interpreted as the optimum gain for the combined pexcand channel [4].

Notice that the TXWF precoding function is similar to thattbé MMSE equalizer [19]. Indeed the
SINR of both systems are equivalent. To see this, we first cteihe SINR for the precoddd € CM*N
(with M > N) MIMO channel

28)(T H)j 2
50 i (T H)pif2 + 1
- —— FI(T I;I)klc|2 S 71)
~ 2izk (T H)gi|> + tr(FH"H)

where we have used the independence of the transmitted signampute [(7D).

Y = (70)

Now consider a MIMO channdil, = H” ¢ CV*M, The MMSE equalizer for this channel is given

by

N
W, = (H{H, + —1)"'HL. (72)
P
The received SINR for that system is given by
L£1(We Ha)pl?
,Yé\/IMSE _ N|( 2)kk| (73)

& 2 | (We Ha)pf2 + tr(We W)
Since W, Hy = Ty ppH and t{W,.W,) = tr(F~2HYH), we conclude that/M5E = AVI'P,
Hence the diversity analysis of [10], [13] for the MIMO MMSEaeiver applies for the MIMO Wiener
precoding system. It is shown in [10] that this diversity ifuaction of rateR and number of transmit

and receive antennas. We thus conclude the following.

Lemma 2: Consider a channdl ¢ CM*N the diversity of the MIMO system under Wiener filter
precoding is given by
dVFP — [N2=% )2+ (M — N)[N2~~] (74)
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where ()T = max(-,0) and [-].

Remark 3: It is commonly stated that MMSE and ZF operators “convergefiigh SNR. The devel-
opments in this paper as well as [11] serve to show that ajhaot false, this comment is essentially
fruitless because the performance of MMSE and ZF at high SKRvary different. This apparent
incongruity is explained in the broadest sense as followenEhough the MMSE coefficients converge to
ZF coefficients ap — oo, the high sensitivity of logarithm of errors (especiallyy@aw error probabilities)
to coefficients is such that the convergence of MMSE to ZFfaments is not fast enough for the logarithm

of respective errors to converge.

IV. DIVERSITY-MULTIPLEXING TRADEOFF IN PRECODING

For increasing sequence of SNRs, consider a correspondimgerce of codebookyp), designed at

increasing ratef?(p) and yielding average error probabilitié%(p). Then define

r = lim M
p—oo log p

For eachr the corresponding diversiy(r) is defined (with a slight abuse of notation) as the supremum

of the diversities over all possible codebook sequeitggs.

From the viewpoint of definitions, the traditional notion difersity can be considered a special case
of the DMT by settingr = 0. However, from the viewpoint of analysis, the approximasioneeded in
DMT calculation make use oR(p) being astrictly increasing function, while for diversity analysis
is constant (not strictly increasing function f. Thus, although sometimes DMT analysis may produce
results that are luckily consistent with diversity anadysir = 0), in other cases one may not be so
lucky and the DMT analysis may produce results that are isistent with diversity analysis. Certain
equalizers and precoders fall into the latter category.hin following, we calculate the DMT of the

various precoders considered up to this point.

1) ZF Precoding: Recall that two ZF precoding designs have been considemdthE ZF precoder
minimizing power, given by[{7), the outage upper boundin) (@dn be written as

Pyt < P(Amin < p(ﬁ_l)) (75)
- p—(M—N-l-l)(l—%) (76)

2E.g. the point-to-point MIMO channel with ML decoding.
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where we substitutd? = r log p to obtain [75), and equatioh (76) follows in a manner ideattio the

procedure that led td (13).

Similarly the outage lower boun@{[L4) can be written as

Pout = IP)(Z < p(#_l))

= - (M=N+1)(1-%)

From [76) and[(7Z7) we conclude

d?FP(r) = (M = N +1)(1 — %)*.

(77)

(78)

The DMT of the ZF precoder maximizing the throughput, given(®8), is obtained in an essentially

similar manner to the above, therefore the discussion istednin the interest of brevity.

2) Regularized ZF Precoding: We begin by producing an outage lower bound. To do so, we start

by the bound on the SINR of each streanobtained in[(44), and further bound it by discarding some

positive terms in the denominator.

Y =

(pl_amin)2
Zi;,gk |uklujl p]‘_amin 2

(pome)’

2
p2(—emin) |ukl/u;“ | +Np'—min

(p-om)’

N

2
L pz(lfoémin) |ukl/u’{1/| J,-Np]*o‘min

- |uklzu21,\2
L k
T3 >1
L |uklzull,\2

We can now bound the outage probability

November 2, 2018

N
Poyt= P(Zlog(l + %) < R)
k=1

N
SP( ) log(l+7k) < R>
k=1

k=1

k>1

(79)

(80)
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M= 11

“

%(1 + k) < p;> (81)

= P( Y < P%>
k=1
v al v
>P<7*+ v <pfv>. (82)
Junrugy |2 g Juker gy |2

where we have used the Specht boundin (79) in a manner simifdf]. Equation[(80) and (81) follow
similarly to [10, Section 111-B]

For notational convenience define

A 1 AR

| 2

P .
ukpusy|* = fugrugy 2

Then the bound in{82) can be evaluated as follows:

= p MN L P(y < p¥) O(1). (83)
}p_MN—I—O(l) (84)
= 0(1) (85)

where [8B) follows from Lemm@l 1, and (84) is true as longPés < p%) = O(1), the proof of which
is relegated to AppendixIB.

Since the outage lower bourld {84) is not a functiorpothe system will always have an error floor.

In other words the DMT is given by
d?IP(ry=0 0<r<B (86)

We saw earlier that in the fixed-rate regime RZF precodingyenjull diversity for spectral efficiencies
below a certain threshold, but it now appears that DMT shomg pero diversity. DMT is not capable
of predicting the complex behavior at= 0 because the DMT framework only assigns a single value
diversity to all distinct spectral efficiencies at= 0. A similar behavior was observed and analyzed for
the MMSE MIMO receiver([11],[[183],[10].

November 2, 2018 DRAFT



20

T =
DeMux/ > Linear Y H = i >
. . Linear
FEC Symbol . Precoder : . R . MUX FEC Decoder
mapper —_— ., . .
. I | .
i I
S -

Fig. 2. MIMO with linear precoder with receive-side equatinn

3) Matched Filter Precoding: The DMT of the MIMO system with TXMF is the same as the DMT
given by [86) due to the similarity in the outage analysie (Sectior1lI-D). We omit the details for
brevity.

4) Wener Filter Precoding: Since the the received SINR of the MIMO system using TxWF pdétg
is the same as that of MIMO MMSE receiver, we conclude from] [ttt the DMT for the TxWF
precoding system is

dVFP(r)y = (M~ N +1)(1 - %)*. (87)

Similarly to the MIMO MMSE receiver [13],[[10], we observeahDMT for the MIMO system with
TXWF does not always predict the diversity in the fixed ragime given by [(74).

V. EQUALIZATION FOR LINEARLY PRECODED TRANSMISSION

The objective of a precoded transmitter is to separate tkee steeams at the receiver. In other words,
linear precoding is a method of interference managemeihieatransmitter. In general, precoded systems
do not require interference management at the receivergvewonce a transmitter is designed and
standardized (as precoders have been), some standarg@fiasdmeceivers may opt to further equalize

the precoded channel (see Figlie 2). This section analjeesdualization of precoded transmissions.

When the transmit and receive filters can be designed joanty from scratch, singular value decom-
position becomes an attractive option whose diversity fentanalyzed in [20]. The distinction of the
systems analyzed in this section is that the precoders camsé@ with or without the receive filters,

while with the SVD solution neither the transmit nor the reedilters can operate without each other.

A snapshot of some of the results of this section is as folldivess shown that equalization at the

receiver can alleviate the error floor that was observed itcieal filter precoding as well as regularized
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ZF precoding. It is shown that MMSE equalization does nacfthe diversity of Wiener filter precoding,

but ZF equalization does indeed affect the diversity of Wrefilter precoding in a negative way.

Recall that in the system model given in Secfidn Il we havengefithe precoder and equalizer matrices
T ¢ CM*B andW ¢ CB*N, respectively, wherd is the number of information symbols not to exceed
min(M, N). In most wireless systems, the equalizer at the receivezsgyded to equalize the compound
channel HT) composed of the precoder and the channel (rather thanrdegighe precoder for the

equalized channeWH) although it is possible). In such case we hade> N and we setB = N.

A. ZF Equalizer

The ZF equalizer is analyzed when operating together witfloua precoders, as follows.

1) Wener Filter Precoding: The TXWF precoder is given by
-1
T = /3<HHH + %I) HY
N —1
— gH" <HHH + —IN> (83)
P

where [[88) follows from[[211, Fact 2.16.1B]The scalar coefficient is given in [69) and, similar td (33),
it can be written agl = 1/,/1

The ZF equalizer for the precoder and the channel is given by
Wyp = (HYH)"'HY (89)

The composite channél is given by

The received signal is given by

y=WzrHTx + Wzpn. (90)

The filtered noiseh = W pn is is a complex Gaussian vector with zero-mean and covariaratrix

R; given by

R; = [HYH]™?

Let A € C™*™ andB € C™*" then (I, + AB)"'A = A(L,, + BA)'. This fact can be proved via Matrix Inversion

Lemma.
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(HHY + Np~' 1) (HED2HAY + Np' D))

[UAA + Np ' T)"'UTUAA + Np ') U]}

[UA2(A + NptT)~2UM] !

where we have used the eigen decomposil” = UAUY. The noise variance of the output stream

k is therefore

N N
Falib) =3 (2 1)
where [91) follows in a similar manner das [27). We can comgheesignal-to-noise ratio of the ZF filter
output:
T
N Rj(k, k)

- pIN . (92)

N NN
Zj 1 O;+Np1)? +Np Zl 1(#) |up|?

Due to the complexity of[(92) we proceed to bound the outagenfabove and below. The upper

bound on outage is calculated as follows. Siheg| < 1

p/N
Tk > N N+N 2 (93)
Zj 1()\+Np le(+lp )
1/N
oy i ()’ -
Jj=1 (pl ‘1:+N =1\ pT—x
= (95)

where we have substituted = p~* in (@4). Thus the outage probability is bounded as

N
Pout = P(Zlog(l + k) < R)
k=1
N
P(Zlog(l +4) < R>
k=1

:P(&gﬁ—l) (96)

Similarly to the previous analysis, we examine the SINR labfirfor different values oty;. Define the

setB = {l | oy > 1} and the event
L£=1{|B| =N} (97)

we have
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P(@ 2N—1\£> )+P<@<2§—1|£>P(c)

gIP’(fy <2v — 1\£> +]P’<ﬁ/ <2V — 1\Z>.

To calculate the first term in_(99), we evaludtevhena; > 1 Vi
1/N
Z;'V:I P N, ﬁ
5 1/N
Sl e

L 21— ma)
Np

v =

23

(98)

(99)

(100)

(101)

(102)

where [10D) follows becaugé —* + N = N, (101) follows becaus§:§v:1 p'~ <1, and [I0R) follows

because the sum i (101) is asymptotically dominated byahgest component.

We continue to bound the first term in_{99)
IP’(V <2V — 1|£>< IP< PPN < %>
= IFD<)\min < P_1>

= - (M=N+1)

where [10B) is the same ds{12) , herice (104) follows.

(103)

(104)

To calculate the second term in {99), we evaluawhen one or morey < 1. Consider the the two

summations in the denominator 6f {94). The first one can benpttically evaluated as

N 1—o;
M DI L D M

j= Oéj<1 a;>1

p—(l—a’max) |Z| =

max(p~ 1T pl=e") L pmUmame) 1 L|L] < N

wherea’ = max,, <1 aj anda” = min,, 1 «; and [105) follows becausein(p=1+", pl=¢") <

The second summation in the denominator[of (94) can be eealwes follows

N 1_0”—|—N
S (Y ey ey

=1 <1 a;>1 P
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p_(l_amax) .

(106)
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We now use[(105) and_(1D6) to bound

Pl = pAmin L] =N

R}
\'&

PP 20max — p?’/\f’nm 1<|L|< N

gl (107)

We thus have

Amin < P~ ) + P(Ai’un = _3)

- p—(M—N-i-l). (108)

This concludes the calculation of outage upper bound. We proseed with the outage lower bound.

Define the even® = {|ay;| > ¢ Vk,I} whereay; is the (k,1) entry of the unitary matrixJ (c.f.
equation[(2l7)). Define

. N
T &N Pl i+ N2
Z] 1 (pl °¢J+N Zl 1( pl= ) €

Notice thaty > v becauséay;| > ¢ Vk,I.

(109)

The outage probability is bounded as
N
Pout= P(Zlog(l + ) < R)
k=1

N
>P( ) log(l+ ) < R‘P) P(P)
k=1

(

> P(ilog(l 1 H) < R> P(P) (110)
-
(

< ow — 1) P(P) (111)
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The probabilityP(P) = O(1), i.e. non-zero constant with respecttoThe proof is similar to the one

in [13, Appendix A] and omitted here for brevity. We thus have

Pou> P(?y <2V — 1)

= ]P’<’y <2V —1 E> (112)

where [(11PR) holds sincB(L) = O(1) as given by[(54).

We further bound the outage probability by boundifigas follows. Once again consider the two

summations in the denominator 6f (109). For the first sunmonatif (109), we have
N

P D I = I
= 0@ - — + p —Qj
1—a; 2 1—a;
jzl (p “ + N) Cl(]‘<1 p “ Cl(]‘>1
pr 1 emas) L] =N
= (113)
max(p~ 1+, pl=@") > plmme 1 |L| < N
where the bound in the second line (IL13) is true because
1 Ca, N
Q’j<1 Q’j>1 Oéj>1
Using [10%) and[(113) to bounid Substituting back in((109) gives:
o - pl_amax = pPAmin ‘E‘ =N
<
ptmmax = pA\pon 1< |L] < N
25 (114)

Thus the outage bound i (1112) can be then evaluated as weditld upper bound
Pout < P<& >N —1 £>

g]P(%gﬁ—lc‘)

5 <2v —1||B| = 0>IP’(|B| =0)+
<§Y < oW — 1‘5,0 <|B| < N)]P’(\E\ <N)
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= P(Amin < o 1) O(1) + P(Amin < p~H)O(1) (115)
= ]P)()\min < p_l)
- p—(M—N-i-l). (116)

where [115) follows as a direct result of Lemfda 1. From [108) &.16), we conclude that the diversity
of MIMO system using TXWF precoder and ZF equalizer is

dWFP ZF - M — N+1

2) Regularized Zero Forcing Precoding: The ZF equalizer is given by (89) where the composite

channelH = HT. The received signal to noise ratio of theh output symbol of the ZF filter as
__rb
"= N Ra(k, k)
p/N
= ) (117)
N N N . 2
Y vy Dot () Pl

The process of obtaining lower and upper bound has manyagitigs with the developments of

Section V-Al, therefore we omit many of the steps in the egenf brevity by referring to the previous

developments.

We begin with the outage upper bound, which is developed iraaner similar to[(96).

N
Poyt = P(ZIOg(l + %) < R)
k=1
N
P(Zlog(l +4) < R>
k=1

:p<@<21’3 —1> (118)
where
5= p/N
- — : >
Z] 1 Zl 1 (A;:N)
_ /N
- N p1+N 2
Z] 1 J+N Zl 1( p*‘j; )
N
= N _/;/. N 20 (119)
D i1 PN Dy PP
s _PIN p/N
Zl_ 20(1
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N
=0 /N (120)
p A ax

Thus the outage if_(118) can be bounded as

(121)

We now turn to the lower bound, which is obtained in the samaneaas[(112):

N
Pout = P(Zlog(l + ) < R)
k=1

N
> P(Zlog(l + %) < R>
k=1

:P(ﬁ@

z|m

- 1) (122)

where

5= p/N
Zj’vzl (/\;;7]]\7)2 YL ()\ZALZN)QE
p/N
SR S gy RIES L
N pIN
Zj’vﬂ P Y epP
p/N
DT

p/N
€ p—aj p2amax

p/N)‘I2nm

6)\]'

for arbitrary j

s

\'Q((

(123)

LetCy = (2% —1)eN, Cy = C1€ where¢ is a fixed positive constant (independent)f we have

Pouw > P(ﬁ <2V — 1)
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= P(mfnin < C2>. (124)

The exponential inequality (IP4) holds becal{e\; > ¢) = O(1), as proved in AppendiXIC. We thus
conclude:
JRZFP—ZF _ %(M N1

Remark 4: We note that the diversity of regularized zero-forcing pider together with a zero-forcing
equalizer can be fractional. To our knowledge this is the firstance of fractional diversity uncovered

in the literature.

3) Matched Filter Precoding: In this case, the composite channel is
H=HT = sJHH",

The noise correlation matrix is given by

Ry = [H"H] ™" = % [(HHY)?] ™! = % (UAPUH) L
Thus
11,
Ra(k, k) = 25 > 55wl (125)
=1 "

The precoder normalization factgr= 1/,/7, wheren is given by
N
n=t[HH] =) ")
=1

The signal to noise ratio of thie-th symbol of the ZF filter is

- 14
= N RA(k, k)

p/N
= =5 /N - > (126)
2 =1 2= A—g\ukl’

Notice that the SINRy; in (I28) is similar to the SINRy; of the RZF precoding system with ZF
equalizer given by (117). The only difference is the teym+- N which, when applying the transformation
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of Ay = p~%, has no effect on the diversity analysis as detailed in theipus section. We then conclude
that the diversity of the MIMO system applying MF precoded &t equalizer is the same as the diversity
of the RZF precoder with ZF equalizer. Thus:

1
qMEP=2F 5 (M =N +1). (127)

B. MMSE equalizer

The MMSE equalizer has better performance compared to ZFisatiterefore widely popular. We
investigate the diversity of MIMO systems that deploy diffet precoders at the transmitter and MMSE

equalizer at the receiver.

1) MFTx Precoding: The MFTx precoderT y,rp , is given by [68). The MMSE equalizer for the

precoded channel is given by
-1
Wunmse = [HHH + NP_II} HY (128)

whereH = HT yrp = Sy rpHHY and gy rp is given by [64).

The SINR at the output of the MMSE filter is given by [19]

-1
Ye = %hk |:I + %Hka} hk

_ 1 1 (129)

-1
[I n %HHH]

kk
whereH, is a submatrix ofHl obtained by removing thé-th column,hy.

The diversity analysis of the precoded system uses somésé&mm the un-precoded MMSE MIMO

equalizers[[10], which we quote in the following lemma.

Lemma 3: consider a quasi-static Rayleigh fading MIMO chanEek CM*¥ (M > N), the outage
probability of the MMSE receiver satisfies

Py = ]P’(tr(l + %ﬁH H) ™' > N2_53> (130)
Yoo
= ——— >N —%> (131)
<kZ:1 L+ A,
- p_dMMSE (132)

where{),} are the eigenvalues @t andd™**% is given by [74).
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Substituting)}, = p~, we have

1 pa;c—l O/ <1
TN ’ (133)
N7k 1 ap >1
thus the termm is either zero or one at high SNR, and therefore to charaetéhie sum in[(131)
at high SNR we count the number of ones, or equivalently thabmar of o, > 1. Hence the outage

probability reduces ta [10]

Pout = < d 1= ) (134)

ap>1

Now we apply the matched filter precoder. Similarly fo (130 outage portability is given by

P = P(tr(I + NHHH )~ Nz—%> (135)

al 1
:P(ZW /N2_'> (136)

where we have useHH = %(HHH) = %UA2UH to obtain [I36),and \;} are the eigenvalues of
the Wishart matrixHH" . The scaling factor) = tr(HH) = SV A,

We begin with a hypothetical precoder whose transmit poweot normalized, i.ep = 1. The outage
probability of this un-normalized precoder is similar tathlof the MMSE receiver with no precoding at
the transmitter, as given in_(1132), except that the eigeiesmbre now squared. Thus similarly fo (1133),

we have the exponential inequality

20, —1
1 P ap < 0.5
T BN | (137)
N7k 1 ap > 0.5
The analysis of[[10] then follows and we have
1 R R
:§<[N2‘Nl2+(M—N)[M2‘N1>. (138)

We conclude that the un-normalized matched filter precodwty MMSE receiver results ir50%

diversity loss compared to MMSE receiver with no transméqading.

For the normalized precoder, we begin with the outage pribtyaib (L36). Assumen; > as -+ > ap,

the sum term in[(136) is given by
N N

1 7
2T EN AN
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N
_ Z Zz P
- —Q —20%
k=1 + e
N o
= Z . (139)
—QaN 1 2C|{]c
=1 " e
where we have used the fact that the p~** is dominated by the maximum element at high SNR.
It is easy to see that the terms &f (139) are either one or zetoga SNR, depending on whether
p~ N asymptotically dominateg' 2%+ or vice versa. These two cases are delineated with the thicesh
< 0.5max(1, an + 1), or, considering thatvy is positive,a;, < 0.5(an + 1). Thus at high SNR,

the outage probability is evaluated by counting the ones

) al 1 R
Pout:IP) 21‘1‘—]\7 /\2 /N2 N
n

i]P’( > 1;]\[21’3)

ar>0.5 (an+1)

iIP)< > 1:L> (140)

Olk>05(OlN+1)
where L = [NQ‘%] The conversion from inequality to equality in equatidn (l4ollows from

arguments developed ih [10, Section IlI-A] .

Therefore, the outage probability is asymptotically easdal by:

Py = /S+ Pla) da (141)

whereP(«) is the joint distribution of the ordered; > - -- > a, and the region of integration is defined

asSt = SNRN*, wheresS is given as follows:
o If L = N, then we seek the probability thaf, > %(aN +1) for £k = 1,..., N, which implies
an € (1,00). Thus the integration region can be tightly represented as:
S = {aN >1, 1ér}€1<nNak > 0.5(an + 1)}

o If L < N, then we seek the joint probability that, > %(aN +1)fork=1,...,L anda <
%(a]\m-l) fork=L+1,...,N,implyingay € (0,1). Thus the region of integration is represented
as:

S={an<1, min, o > 0.5(ay +1), max ay < 0.5(any +1)}
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Using methods similar td [12] and [10, Eq (18) - (20)], expotied equality relations can be used to

reduce the integrand to the following:

Po= [ TLo @100 d(a) (142)
S+ A

First we considel, = N. The probability expression is evaluated by simply taking integral over all

variables exceptvy, and then taking an integral ovety.

0o
Py = / p—(2N—1+M—N)aN
o

v=1
N—-1
« H p~CE=THM=N)(0.5+0.50%) () (143)
k=1
N
- Hp—(Zk—l—i—M—N)
k=1
_ pz;j:l —(2k—14+M—N) (144)
~MN (145)

=p
When L < N, we repeat the same integration strategy.

1
- —(2N—-1+M—-N
Pout —/ P ( o
OCNIO

N
X H (1_p—(2l—1+M—N)(0.5+0.5aN)>

l=L+1
L
« p—(2k—1+M—N)(0.5+0.5aN)d(a) (146)
k=1
1
B / ) (@N=1+M—N)ax
an=0
L
> p—(2k—1+M—N)(O.5+O.5aN)d(a) (147)

x>
ey

L
- H 3 CR=1+M=N)
k=1

_ Tl ek

— p—%(L2+(M—N)L) (148)

In deriving [146) and (147) we have us§§p‘ckakd(ak) = p~%* [10]. Equations[(145) and (I18) show
that the system exhibits two distinct diversity behavioasdd on whethef, = [N2‘%1 < N. We can
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solve to find the boundary of the two regioRs= N log % To summarize:

d]\/[FP—J\/[MSE —

L(IN2=~)% + (M — N)[M2~~7) R>Nlog%' (149)

MN otherwise
Remark 5: The outcome is interesting for its practical implicatioAst MMSE receiver working with
matched-filter precoding will suffer a significant diveysioss compared to an MMSE receiver without
precoding, except for very low rates correspondingter N log % where the combination of MMSE
receiver with matched filter precoding has exactly the saiversity as the MMSE receiver alone.
Remark 6: Recall thatR = Nlog% is exactly the same threshold below which matched filter

precoding (without receiver-side equalization) achigfuisdiversity.

2) WFTx Precoding: Using the Wiener filter precoding at the receiver resulthisnd¢omposite channel
H =HT = sHH" (HH" + )~ NT)~L.
Using the eigen decompositiddH = UAU", it can be shown that
H7H = 2U(A + p~'NI)"2A2UH (150)

Similar to the case of MF precoder with MMSE receiver, theagetprobability of WF precoder with
MMSE receiver is given by (c.f[{135))

Pout = P(tr(I n %JHIHH)—1 > N2—53>

:P(i% >N2—%> (151)

1 1+ Nin)‘k
where{);} are the eigenvalues @/’ H and1 is the scale factor. Using (I60)),.} are given by

. 2
Ne=——F __ k=1,...,N 152
SNPTEEI g 2
The scale factor is calculated as i (33)
N
Al
n=) ~ T N3
; (AN +p7IN)?
Thus the outage probability can be written as

R

N
Py = P(Zyk > N2‘F> (153)
k=1
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where

s Lty
1+ Nin)‘k p_17] + %)\k P‘177 + vg

Yk

where we definev, = %S\k. We now proceed to express bophr!n and v, in terms of {ay}, the
exponential orders of\; }.

—O!

N _ N
:Zw:; = ozl_i_N

=S e ¥ et (154)

a>1 a;<1
observe that all the terms ih_(154) have negative exponesihgf152),
1 p 20
FT N 1IN
1 p2-an)
TN AN
1 ap <1
= . (155)
pP=ar) g > 1

From [154) and[{185), we see that whep < 1 thenvy, + p~'n = v;, = 1. On the other hand, when

ap > 1 then

Uk+p—ln:p2(l—0ék) + Z pl—al + Z pal—l

o>1 o<1
_p2(1 Oék 1 — Qg + Zpl (6%} + Zpal 1
oar>1 o<1
1k 1k
- pl—ak + Z pl—al + Z pal—l (156)
o;>1 o<1
1%k 1k
=p'n (157)

where [156) follows because, > 1. Thus we have

-1 -1 1
PN C)epn oo <
P Uk 1 o > 1

and p~'n has negative exponent thus vanishes at high SNR.

Observe that (138) is similar t6_(1133) which correspondshto dase of the MMSE-only system (i.e.
with no precoding). Thus substitutig (158) in the outagsbpbility (153) and repeating the same analysis
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of the MMSE-only system as in_[10], we conclude that the diitgrof the MMSE receiver when using

WFTx precoding is the same as the diversity of the MMSE remeivith no linear precoding, which is
given by (74).

3) RZF Precoding: Using the Regularized Zero Forcing precoding at the receigsults in the
composite channel
H =HT = sgHH? (HH + ¢1)~!

wherec is a fixed constant? = 1/5 andn is given by [3B8)

—oy

N
p
lz:; )\l + c)? Z (p~> +c¢)? (159)

=1

Similar to (151), the outage probability of RZF precoderhmiMSE receiver is given by

Pout = < Z Ve = N)

and
a1
M= n+ %)\k
where{),} are the eigenvalues & H given by
_ )\2 —2ak
A= —k P k=1,....N (160)

it~ (o +
Notice that at high SNR we have

N
Thus the SINR is given by (c.f(1B9))
Ve = NZZA_/le_aZ_ = p_aN1_2a ’
domg PO pTRek pTON A piTE
k=1,...,N

which are the same terms as(in (1139), implying that the oupagieability of the MMSE receiver working
with the regularized zero-forcing precoder is asymptdiicihe same as the outage probability of the

MMSE receiver working with the matched filter precoder. Thisans:

dRZFP—MJ\/[SE — d]\/[FP—J\/[MSE
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T T
—&— ZF precoding
Wiener filter precoding

15 20

SNR

25 30

Fig. 3. Outage probability of the ZF and Wiener filtering ppded MIMO 2 x 2 system for rates (left to right)k = 1.9, 2.5,

and 3 b/s/Hz.
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S(IN27~)2+ (M — N)[M2™%]) R> Nlog+~5
= (161)
MN otherwise
DRAFT

November 2, 2018



10 E N T T
4'blsiHz
107 J
2.5.b/s/Hz

< 10°F s
=)
[
S
=}
o
5 3
o 107k 1.5 bis/Hz 4

10k J

—6— Matched Filter precoding
Regularized ZF precoding
1075 L L L L Il
0 5 10 15 20 25 30

Fig. 5. MF and regularized ZF precoded< 2 MIMO system for rates (left to right)R = 1.9, 2.5, and4 b/s/Hz.
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Fig. 6. MIMO system with matched filtering precoding and ZRri&igation for rates (left to right)R = 1,2, and4 b/s/Hz.

VI. SIMULATION RESULTS

37

This section produces numerical results for the outage ghitites of ZF, regularized ZF (RZF),

matched filter (MF) and Wiener precoding systems. Figure &vshthe outage probabilities of the ZF
and Wiener-filter precode?l x 2 MIMO systems. The diversity in the case of the ZF case is timeesa
as the one predicted by the DMT. In the case of Wiener pregodime diversity is the same as the

one predicted by the DMT for high rate?) values and it departs from the DMT for low rate values.
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Fig. 7.
R =1,2, and4 b/s/Hz.

Fig. 8.
4 b/s/Hz.
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38

Outage probability of MIMO system with Wiener filteg precoding and ZF equalization for rates (left to right):

10 15 20 25
SNR

30 35

40

2X2 MIMO system with Wiener filtering precoding and NB# equalization for rates (left to rightR = 1.5, 3, and

A complete diversity characterization is given lyy1(74) whis similar to that of the MMSE MIMO
equalizer [[10]. Figurél4 shows outage probabilities fd & 3 MIMO system with Wiener precoding.
The diversity for the rateR = 1.5, 4, and5 b/s/Hz is9, 4 and1 respectively. Figurel5 shows an error floor
for the regularized ZF and matched filtering precoded 2 system at high rates. However we observe

that the maximum diversity is achieved for any rdte< 2 (c.f. Equation[(5B)). Figurel6 shows outage
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30

2X2 MIMO system with MF precoding and MMSE equaliaatsystem for rates (left to right)? = 1.5, 2.5, and 3

probabilities for a2 x 2 and a3 x 3 MIMO system with matched filter precoding and ZF equalizatio
The observed diversity values are consistent with Eq.](1Rigure[T shows outage probabilities for a

2 x 2 and a3 x 3 MIMO system with Wiener filter precoding and ZF equalizatiéigure[8 and Figurgl9

show outage probabilities forzax 2 and a3 x 3 MIMO system, respectively, with Wiener filter precoding

and MMSE equalization. The diversity for tf%ex 3 system is the same as the diversity of the Wiener
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filtering precoding-only (c.f. Figurgl 4).

Figure[10 shows the outage probability oRa« 2 MIMO system with matched filter precoding and
MMSE equalization, which is consistent with EQ. (149). Weogblot the outage probability of the MMSE

MIMO equalizer (without any precoding) for comparison.

VIlI. CONCLUSION

Linear precoders provide a simple and efficient processang, have been shown to be optimal in
some scenarios [5][6]/[7]. This paper studies the higiRSberformance of linear precoders. It is
shown that the zero-forcing precoder under two common degigproaches, maximizing the throughput
and minimizing the transmit power, achieves the same DMhatdf MIMO systems with ZF equalizer.
When a regularized ZF (RZF) precoder (for a fixed regulaioraterm that is independent of the signal-
to-noise ratio) or matched filter (MF) precoder is used, weeh#r) = 0 for all , implying an error
floor under all conditions. It is also shown that in the fixetereegime RZF and MF precoding achieve
full diversity up to a certain spectral efficiency, while aglmer spectral efficiencies they produce an error
floor. If the regularization parameter in the RZF is optintize the MMSE sense, the RZF precoded
MIMO system exhibits a complex rate-dependent behavigpalticular, the diversity of this system (also
known as Wiener filter precoding) is characterizeddf®) = [N2‘%12 + (M —N) (NQ‘%l where M
and N are the number of transmit and receive antennas. This isdime ©ehavior observed in linear
MMSE MIMO receivers [[10]. Various results for the diversity the presence oboth precoding and

equalization have also been obtained.

APPENDIX
A. Pairwise error Probability (PEP) Analysis

In this section we perform PEP analysis for the the zeroifigr¢ZF) and the regularized ZF (RZF)
precoding systems. The presented analysis can be easfigded to all other precoding systems. The
basic strategy is to show the SNR exponent of outage pratyabiunds the SNR exponent of PEP from
both sides The PEP analysis follows from [14],][10], with efat attention to the system model given
by Equation|[(IL).

The lower bound immediately follows from_[14, Lemma 3] by @goizing that although it was

developed for SISO block equalization, nowhere in its dgwelent does it depend on the number of
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receive antennas, therefore we can directly use it for ogpqses:

Perr 2 Pout- (162)

The upper bound on PEP for the ZF/RZF precoding systemsvexcis developed using the union
bound. Denote the channel outage eventbgnd the error event by,. The PEP is given by
Perr = P(E|O) Pout + P(E,O)

< Pout + P(E> O) (163)
In order to show thaf’,,; dominates the right hand side 6f (163), it is shown'in [10} tha probability
P(E,0) can be bounded as follows using the union bound

. —pN_

P(E,0) < 2Mfe =0 g pMN (164)

wherel is the codeword length andf (k) is the variance of the interference plus noise signah the
k-th receive strearB. The proof of [14] does not depend on the codeword length étin bpper and lower

PEP bounds. The bound are tight and were confirmed by sirootafor outage and error probabilities.

We now show that a similar proof holds for regularized zenwihg (RZFP). Recall that the outage
probability of the RZFP can be upper bounded byl (61)

v

Pout<P( <®)épb

out

(165)
Hmax

We will use P, to further bound[{163). MoreoveP(E,O) can be upper bounded by bounding the

o

noise variancer2 (k) in (164)

On

2(k)=Pr+ P, < Pr+1 (166)

where we have used the noise powey = 1, and bound the interference power by the total received
power Pr. We will first consider the case of RZF precoding since the @d<ZF precoding can be easily
deduced from RZF by substituting setting the regularizafparameter: = 0. For the RZF precoding
system we use th&r given by [34) which can be simplified in a way similar to earbections

N
B%p A
P :_E N
T N & (N+c)?

4 [14] analyzes linear receivers sois the k-th output filtered interference plus noise signals. By swtmgnassumption all

the equalizer outputs have equal noise variance.
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N
e Mo
le\il Al N ()\1—1—0)2

()\L+C)2 l:1

T &N a1 AT “o 2

iy e N o o)

1 p 94

- — _p Zamm

p min N

1
— Npl_amin. (167)

Using the union bound (164),

| 2Bl i <

P(E,0) < (168)
ofle=% Qmin > 1

Since the exponential function dominates polynomials weeha

. ooet
plincgo p_MN _0
and
) e’
o35 o =0
which in turns gives
P(E,0) < p~ N, (169)

Using [16%) and((189), the PEP given ly (1163) is bounded as
Perr< Pout + P(Eaé)
< P(?ut + p_MN
= Pobut

= pdou, (170)

therefored > d,,; which concludes the proof for the RZF system.

For the ZF precoding system, it can be directly shown thatrélai proof holds for both ZF precoding

designs.
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B. Proof of Eq. (84)

Recall that N
1 1

+
upus,* = gy,

P =

>

All terms of ¢ the common factow. Thus we have

T,Z):%l/)b
1
Tp—
T Jug ?
1 1 1 1 1
wb:< i + + +---+—>. (171)
lusy |2 Jugp > Jugp? uar [? lun|?

Observe that all the terms af, are distinct except for the first two.
We now bound the probabilit () < p~).
P(y <p¥) > P(¢ < p¥ [ ¢ <) Py < 0)
> P(e < p¥) i < )
= P <ec) (172)
Using vy = 1,1, we can further bound (172)
P(y < ¢) =P(vaths < )
> P(vathy < ¢ [tha < 2) P(1q < ¢2)
> P(cathy < ¢) P(thg < c2).
We thus have
P(¢ <pv) 2 P(gy <) P( < c2) (173)

andd = ¢/cs.

We now evaluate the two probabilities in the right hand sifle(®73). The first probabilimP)(qﬁb <
c’) = O(1). The proof easily follows from_[13, Appendix A] with the olbrsation that this proof holds
even when the two first elements ¢f are the same. The second probability), < ¢;) is evaluated as

follows. Letq = |uy;|2. We use the following distributions from1[9, Appendix A]

fl=N-1)1-9"? 0<qg<1
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then

—(1- Ly (174)

Observing that[(174) is not a function pfconcludes the proof.

C. Proof of P(\; > &) = O(1) for any [

Define a Wishart matri®W using the Gaussian matrid.

HHY” M >N
W = .

H'H NN

Let n = max(M, N) andm = min(M, N). The matrixW is m x m random non-negative definite
that has real, non-negative eigenvalues with> - -- > \,,,0. The joint density of the ordered eigenvalues
is [17]

f) = H A o (175)

1<j

Thus the marginal distribution of; is given by [17]

Ia() = / / FA) dXa..

=—sz PN e
1=1

where

ol 2
Or+1(A) = [m} LZ A, k=0,...,m—1

where L™ (z) = Letam A (e=mzn=mHR) (with Lo = 1) is the associated Laguerre polynomial of

orderk.

We now computeP(\; > §),

ij (N)ZATT e N,

1 (N)ZAT e NN,

SIH SIH

9=/
A
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— [T L emean
¢ mn—m)" :

_ 1 < . e—)\l/\;’L—m _

m(n —m)!
e niﬂn(n ~1)...(n—k+ 1)A"—m—k> h (176)
k=1 3
- m(n 1— m)! (e—ffn—m +
et nj%m —1)...(n—k+ 1)k (177)
k=1

where [176) follows from[22, Section 2.32]. The right haimesof Equation[(177) is a non-zero constant

bounded away from zero. This concludes the proof.
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