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Diversity of MIMO Linear Precoding

Ahmed Hesham Mehana and Aria Nosratinia

Abstract

Linear precoding is a relatively simple method of MIMO signaling that can also be optimal in

certain special cases. This paper is dedicated to high-SNR analysis of MIMO linear precoding. The

Diversity-Multiplexing Tradeoff (DMT) of a number of linear precoders is analyzed. Furthermore, since

the diversity at finite rate (also known as the fixed-rate regime, corresponding to multiplexing gain of

zero) does not always follow from the DMT, linear precoders are also analyzed for their diversity at fixed

rates. In several cases, the diversity at multiplexing gainof zero is found not to be unique, but rather

to depend on spectral efficiency. The analysis includes the zero-forcing (ZF), regularized ZF, matched

filtering and Wiener filtering precoders. We calculate the DMT of ZF precoding under two common

design approaches, namely maximizing the throughput and minimizing the transmit power. It is shown

that regularized ZF (RZF) or Matched filter (MF) suffer from error floors for all positive multiplexing

gains. However, in the fixed rate regime, RZF and MF precodingachieve full diversity up to a certain

spectral efficiency and zero diversity at rates above it. When the regularization parameter in the RZF is

optimized in the MMSE sense, the structure is known as the Wiener precoder which in the fixed-rate

regime is shown to have diversity that depends not only on thenumber of antennas, but also on the

spectral efficiency. The diversity in the presence ofboth precoding and equalization is also analyzed.

I. INTRODUCTION

Precoding is a preprocessing technique that exploits channel-state information at the transmitter (CSIT)

to match the transmission to the instantaneous channel conditions [1], [2], [3]. Linear and non-linear

precoding designs are available in the literature [4]. Linear precoding in particular provides a simple and

efficient method to utilize CSIT. Linear precoding has been shown to be optimal in certain situations

involving partial CSIT [5], [6], however, in many instancesthe main motivation of linear precoders is to

simplify the MIMO receiver.
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Linear precoders include zero-forcing (ZF), matched filtering (MF), Wiener filtering, and regularized

zero-forcing (RZF). The ZF precoding schemes were extensively studied in multiuser systems as the ZF

decouples the multiuser channel into independent single-user channels and has been shown to achieve a

large portion of dirty paper coding capacity [7]. ZF precoding often involveschannel inversion, using

the pseudo-inverse of the channel or other generalized inverses [4]. Matched filter (MF) precoding [8],

similarly to the MF receiver, is interference limited at high SNR but it outperforms the ZF precoder at

low SNR [4]. The regularized ZF precoder, as the name implies, introduces a regularization parameter

in channel inversion. If the regularization parameter is inversely proportional to SNR, the RZF of [9] is

identical to the Wiener filter precoding [4]. Peel et al. [9] introduce a vector perturbation technique to

reduce the transmit power of the RZF method, showing that in this way RZF can operate near channel

capacity.

This paper analyzes the diversity of MIMO linear precoding with or without linear receivers. We show

that a MIMO ZF precoder with a maximum likelihood receiver has minimal spatial diversity, and that

Wiener precoders produce a diversity that is a complex function of spectral efficiency and the number

of transmit and receive antennas. At very low rates, the Wiener precoder enjoys a maximal diversity

which is the product of the number of transmit and receive antennas, while at very high rates it achieves

a minimal diversity which is the same as ZF diversity. These results are reminiscent of MIMO linear

equalizers [10], even though in general the behavior of equalizers (receive side) can be very different

from precoders (transmit side) and the analysis does not carry from one to the other. We also show that

MIMO systems with RZF and MF precoders (together with optimal receivers) exhibit a new kind of

rate-dependent diversity that has not to date been observedor reported, i.e., they either have full diversity

or zero diversity (error floor) depending on the operating spectral efficiencyR.

We also provide DMT analysis for all precoders mentioned above. The fact that DMT and the diversity

under fixed-rate regime require separate analyses has been established for MIMO linear equalizers [11],

[10] and is by now a well-understood phenomenon. Essentially, the reason is that various fixed rates

(spectral efficiencies) for MIMO precoding result in distinctly different diversities, whereas DMT analysis

assigns only a single value of diversity to all fixed rates (all fixed rates correspond to multiplexing gain

zero).

Remark 1: Due to symbolic similarities, it may be tempting to draw the conclusion that ifd(r)

is the diversity at multiplexing gainr, then substitutingr = 0 in the same mathematical expression

will give the diversity at multiplexing gain zerod(0). However, despite appearances, there is no solid
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Fig. 1. MIMO with linear precoder

relationship betweend(r) and d(0). The standard DMT arguments are based on the seminal work of

Zheng and Tse [12] whose developments depend critically on the positivity ofr. For example, the proof

of [12, Lemma 5] depends critically onr being strictly positive.More importantly, the asymptoticoutage

calculations in [12, p. 1079] implicitly user > 0 and result in the outage region:

A = {α :
∑

i

(1− αi)
+ < r}

whereαi are the exponential order of the channel eigenvalues, i.e.,λi = ρ−αi . If we set r = 0 this

expression implies that the outage region is always empty, which is clearly not true.

Thus, the DMT as calculated by the standard methods of [12] does not extend tor = 0. The DMT

d(r) is sometimes continuous at zero, including e.g. the examples in [12], butcontinuity atr = 0 does

not always hold. In fact, there are systems whered(0), the diversity at multiplexing gain zero, is not even

uniquely defined. It is possible for diversity to take multiple values as a function of rateR. This fact

has been observed and analyzed, e.g., in [11], [10], [13]. The work in the present paper also produces

several examples of this phenomenon.

This paper is organized as follows. Section II describes thesystem model. Section III provides outage

analysis of many precoded MIMO systems. Section IV providesthe DMT analysis. The case of joint

linear transmit and receive filters is discussed in Section V. Section VI provides simulations that illuminate

our results.

II. SYSTEM MODEL

A MIMO system with linear precoding is depicted in Fig. 1. This system uses the linear precoder

to manage the interference between the streams in a MIMO system to avoid a lattice decoder in the

receiver. We consider a flat fading channelH ∈ CN×M , whereM andN are the number of transmit

and receive antennas, respectively. WhileM > N when using linear precoding alone, we haveN >M
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or M > N when using precoding together with receive-side linear equalization depending on whether

the precoder is designed for the equalized channel or the equalizer is designed for the precoded channel

(see Figure 2). The input-output system model for flat fadingMIMO channel withM transmit andN

receive antennas is given by

y = WHTx+Wn (1)

whereT ∈ CM×B is the precoder matrix,W ∈ CB×N is the receiver side equalizer. The latter may be

set to identity in cases where the receiver does not use linear equalization. The number of information

symbols isB 6 min(M,N), the transmitted vector isx ∈ C B×1, andn ∈ C N×1 is the Gaussian noise

vector. The vectorsx andn are assumed independent.

We aim to characterize the diversity gain,d(R,M,N), as a function of the spectral efficiencyR

(bits/sec/Hz) and the number of transmit and receive antennas. This requires a Pairwise Error Probability

(PEP) analysis which is not directly tractable. Instead, wefind the exponential order of outage probability

and then demonstrate that outage and PEP exhibit identical exponential orders.

The objective of linear precoding (possibly together with linear equalization at the receiver) is to

transform the MIMO channel intomin(M,N) parallel channels that can be described by

yk =
√
γkxk + nk, k = 1, . . . , B (2)

whereγk is the SINR at thek-th receiver output andB = min(M,N). Following the notation of [14],

we define the outage-type quantities

Pout(R,N,M) , P(I(x;y) < R) (3)

dout(R,N,M) , − lim
ρ→∞

logPout(R,M,N)

log ρ
(4)

whereρ is the transmitted equivalent SNR.

The outage probabilities of MIMO systems under joint spatial encoding is respectively given by [11],

[13]

Pout , P

( B
∑

k=1

log(1 + γk) 6 R

)

(5)

We shall perform outage analysis for different precoders/equalizers as the first step towards deriving the

diversity function. We then provide lower and upper bounds on error probability via outage probabilities.

This two-step approach was first proposed in [12] due to the intractability of the direct PEP analysis for

many MIMO architectures.
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We denote theexponential equality of two functionsf(ρ) andg(ρ) asf(p)
.
= g(p) when

lim
ρ→∞

log f(ρ)

log(ρ)
= lim

ρ→∞
log g(ρ)

log(ρ)

In the following, we shall need to specify various upper and lower bounds or approximations of the

SINR γ, which will give rise to a number of pseudo-SINR variablesγ̂, γ̆, and γ̄.

III. PRECODING DIVERSITY

In this section we analyze a linearly precoded MIMO system whereM ≥ N and the number of data

streamsB is equal toN .

A. Zero-Forcing Precoding

The ZF precoder completely eliminates the interference at the receiver. ZF precoding is well studied

in the literature via performance measures such as throughput and fairness under a total (or per antenna)

power constraint [15, and references therein].

1) Design Method I: One approach to design the ZF precoder is to solve the following problem [4]

T =argmin
T

E
[

||Tx||22
]

(6)

subject toHT = I

The resulting ZF transmit filter is given by

T = βHH(HHH)−1 ∈ C
M×N (7)

whereβ is a scaling factor to satisfy the transmit power constraint, that is [4]

β2tr
(

TTH
)

6 ρ (8)

where we assume that the noise power is one and that the information streams are independent. From (8),

the received SINR per stream is thus given by

γZFP
k =

ρ

tr(HHH)−1
. (9)

Using (5), the outage probability is given by

Pout = P

(

N log
(

1 +
ρ

tr((HHH)−1)

)

6 R

)

(10)
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A direct evaluation of (10) is intractable since the diagonal elements of(HHH)−1 are distributed

according to the inverse-chi-square distribution [16], [11]. We instead bound (10) from below and above

and show that the two bounds match asymptotically.

Let λk be the k-th eigenvalue ofHHH . Equation (10) can be written as

Pout = P

(

N log
(

1 +
ρ

∑N
k=1

1
λk

)

6 R

)

which can be bounded as

Pout 6 P

(

N log(1 +
ρ

N
λmin) 6 R

)

(11)

= P

(

λmin 6 N(2
R

N − 1)Rρ−1

)

=̇ P
(

λmin 6 ρ−1
)

. (12)

The marginal distributionf1(λ) of λmin is f1(λ) = cλ(M−N) [17] wherec is a constant, therefore the

bound in (12) can be evaluated [13] yielding:

Pout 6̇ ρ−(M−N+1). (13)

We now proceed with a lower bound on outage. The outage probability in (10) can be bounded:

Pout = P

(

N log(1 +
ρ

tr(HHH)−1
) 6 R

)

> P

(

N log(1 +
ρ

(HHH)−1
kk

) 6 R

)

=̇ P

(

z 6 ρ−1

)

(14)

where we have made a change of variablez = 1
(HHH )−1

kk

.

The random variablez in (14) is distributed according to the chi-square distribution with 2(M−N+1)

degree of freedom, i.e.z ∼ X 22(M−N+1) [16]. Thus the bound in (14) can be evaluated [11] yielding:

Pout >̇ ρ−(M−N+1). (15)

From (13) and (15), we conclude that the diversity of MIMO system using the ZF precoder given

by (6) and joint spatial encoding is

dZFP =M −N + 1. (16)

November 2, 2018 DRAFT
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B. Zero-Forcing Precoding: Design Method II

Notice that the ZF precoder design in (6) minimizes the transmitted power. Another approach for

ZF precoding design allocates unequal power levels across the transmit antennas to optimize some

performance measure. For instance, consider the optimization problem [15]

max
pk,T

f(pk)

subject to HT = diag{√p1, . . . ,
√
pM}

E||Tx||2 6 ρ (17)

wheref(pk) is an arbitrary function of the transmitted powerpk on thek-th antenna.

The optimal solution for (17) (assuming independent transmit signaling) is given by [15, Theorem 1]:

T = HH(HHH)−1diag{√p1, . . . ,
√
pM} (18)

wherepk is obtained by solving

max
pk

f(pk)

subject to
∑

k

pk
[

(HHH)−1
]

kk
6 ρ (19)

In our case, we maximize the throughput, thereforef(pk) =
∑

k log(1 + γZFP
k ). After setting the

derivatives of the appropriate Lagrangian function to zero, the solution of the power allocation problem

in (19) is given by

pk =
ρ+

∑M
k=1(HHH)−1

kk

M(HHH)−1
kk

− 1 (20)

Substituting (20) in (5), the outage probability is given by

Pout = P

( N
∑

k=1

log(
ρ+

∑N
k=1(HHH)−1

kk

M(HHH)−1
kk

) 6 R

)

=̇ P

( N
∑

k=1

log(
ρ

M(HHH)−1
kk

) 6 R

)

(21)

= P

( N
∑

k=1

log(
M(HHH)−1

kk

ρ
) > −R

)

(22)

6 P

(

N log

N
∑

k=1

(
(HHH)−1

kk

ρ
) > −R

)

(23)

= P

( N
∑

k=1

1

ρλk
> 2−

R

N

)

November 2, 2018 DRAFT
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6 P

(

1

ρλmin
>

1

N
2−

R

N

)

.
= P

(

λmin 6 ρ−1

)

(24)

.
= ρ−(M−N+1). (25)

where the exponential equality (21) holds at high SNR, (23) follows from Jensen’s inequality, and the

transition from (24) to (25) again due to the marginal distribution of λmin via the method of [13].

A lower bound on the outage probability can be given as follows. Starting with (21) and using Jensen’s

inequality we have

Pout=̇ P

( N
∑

k=1

log(
ρ

N(HHH)−1
kk

) 6 R

)

> P

(

N log
1

N2

N
∑

k=1

ρ

(HHH)−1
kk

6 R

)

. (26)

The singular value decomposition ofH and the corresponding eigen decomposition ofHHH are given

by

H = UΓVH

HHH = UΛUH

whereU ∈ CN×N andV ∈ CM×M are unitary matrices,Γ ∈ RN×M is a rectangular matrix with non-

negative real diagonal elements and zero off-diagonal elements, andΛ = ΓΓT ∈ RN×N is a diagonal

matrix whose diagonal elements are the eigenvalues ofHHH . Let uk be thek-th column ofUH . We

have

(HHH)−1
kk = uH

k Λ−1uk =

N
∑

l=1

|ukl|2
λl

(27)

whereukl is the (k, l) entry of the matrixU.

The bound in (26) can be rewritten

Pout >̇ P

(

N log
1

N2

N
∑

k=1

1
∑N

l=1
|ukl|2
ρλl

6 R

)

> P

(

N log
1

N2

N
∑

k=1

1
∑N

l=1
|ukl|2
1+ρλl

6 R

)

(28)

We can lower bound the probability in (28) in by observing that the term

1

N

N
∑

k=1

1
∑N

l=1
|ukl|2
1+ρλl

November 2, 2018 DRAFT
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is similar to [13, Eq.(18)], thus the analysis of [13] applies and we obtain

Pout >̇ P

(

λmin 6 ρ−1

)

= ρ−(M−N+1). (29)

Thus, the MIMO ZF precoding with unequal power allocation (19) achieves diversity orderM−N+1.

Recall that the diversity is defined based on the error probability. In Appendix A we provide the pairwise

error probability (PEP) analysis for the zero-forcing and regularized zero-forcing precoded systems and

show that the outage and error probabilities exhibit same diversity.

C. Regularized Zero-Forcing Precoding

In general, direct channel inversion performs poorly due tothe singular value spread of the channel

matrix [9]. One technique often used is to regularize the channel inversion:

T = βHH(HHH + c I)−1 (30)

whereβ is a normalization factor andc is a fixed constant.

Recall

y = HTx+ n = βUΛ(Λ + c I)−1UHx+ n (31)

allowing us to decompose the received waveform at each antenna into signal, interference, and noise

terms:

yk = β

( N
∑

l=1

λl
λl + c

|ukl|2
)

xk +

β

N
∑

i=1,i 6=k

( N
∑

l=1

λl
λl + c

uklu
∗
il

)

xi + nk (32)

where the scaling factorβ is given byβ = 1√
η and

η = tr
[

(HHH + c I)−1HHH(HHH + c I)−1
]

= tr
[

(UΛUH + c I)−1UΛUH(UΛUH + c I)−1
]

= tr
[

U(Λ + c I)−1Λ(Λ + c I)−1UH
]

= tr
[

Λ(Λ + c I)−2
]

=

N
∑

l=1

λl
(λl + c )2

. (33)

The received signal power is given by

PT = E||HTx||2

November 2, 2018 DRAFT
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= E

[

β2tr

(

UΛ(Λ + c I)−1UHxxHU(Λ + c I)−1ΛUH

)]

= E

[

β2tr

(

Λ(Λ + c I)−1UHxxHU(Λ + c I)−1ΛUHU

)]

= β2tr

(

Λ(Λ + c I)−1UHE(xxH )U(Λ + c I)−1Λ

)

=
β2ρ

N
tr
[

(Λ + c I)−2Λ2
]

=
β2ρ

N

N
∑

l=1

λ2l
(λl + c )2

. (34)

where we have usedE(xxH) = ρ
N I.

The SINR is evaluated by computing the signal and interference powers from (32). For a given channel

H, the power of desired and interference signals at thek-th receive antenna are respectively given by

P
(k)
D =

β2ρ

N

( N
∑

l=1

λl
λl + c

|ukl|2
)2

(35)

P
(k)
I =

β2ρ

N

N
∑

i=1,i 6=k

∣

∣

∣

∣

N
∑

l=1

λl
λl + c

uklu
∗
il

∣

∣

∣

∣

2

. (36)

Thus the SINR for thek-th signal stream is given by

γk =
P

(k)
D

P
(k)
I + 1

=

β2ρ
N

(

∑N
l=1

λl

λl+c |ukl|2
)2

β2ρ
N

∑N
i=1,i 6=k

∣

∣

∣

∣

∑N
l=1

λl

λl+c uklu
∗
il

∣

∣

∣

∣

2

+ 1

(37)

(38)

recall η is given by (33).

Defining the exponential order of eigenvaluesλl = ρ−αl in a manner similar to [12],

γk =

(

∑

l
ρ−αl

ρ−αl+c |ukl|2
)2

∑

i 6=k

∣

∣

∣

∣

∑N
l=1

ρ−αl

ρ−αl+c uklu
∗
il

∣

∣

∣

∣

2

+N ρ−1 η

=̇

(

∑

l ρ
−αl |ukl|2

)2

∑

i 6=k

∣

∣

∣

∣

∑N
l=1 uklu

∗
ilρ

−αl

∣

∣

∣

∣

2

+N ρ−1
∑N

l=1 ρ
−αl

(39)

where the asymptotic equality follows because in all termsc dominatesρ−αl , a fact that also implies

η
.
=

∑

l ρ
−αl .
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Multiplying the numerator and denominator of (39) byρ2, we have

γk=̇

(

∑

l ρ
1−αl |ukl|2

)2

∑

i 6=k

∣

∣

∣

∣

∑N
l=1 uklu

∗
ilρ

1−αl

∣

∣

∣

∣

2

+ N
∑N

l=1 ρ
1−αl

. (40)

The sum in the numerator of (40) is, in the SNR exponent, equivalent to:

∑

l

ρ1−αl |ukl|2 .
= ρ1−αmin

∑

l

|ukl|2

= ρ1−αmin (41)

where we use the fact that
∑

l |ukl|2 = 1. Similarly, for the first term in the denominator of (40)

∑

i 6=k

∣

∣

∣

∣

N
∑

l=1

uklu
∗
ilρ

1−αl

∣

∣

∣

∣

2
.
= ρ2−2αmin

∑

i 6=k

∣

∣

∣

∣

N
∑

l=1

uklu
∗
il

∣

∣

∣

∣

2

= ρ2−2αmin

∑

i 6=k

wki (42)

where we definewki ,

∣

∣

∣

∣

∑N
l=1 uklu

∗
il

∣

∣

∣

∣

2

. Notice thatwki ≤ 1.

Using (41) and (42), the SINR in (40) is given by

γk=̇

(

ρ1−αmin

)2

ρ2−2αmin
∑

i 6=k wki + N
∑N

l=1 ρ
1−αl

. (43)

If all αℓ > 1 then the exponents ofρ are negative and the denominator is dominated by its second

term, which also dominates the numerator. If at least one of the αℓ ≤ 1, then the maximum exponent

which corresponds toαmin dominates each summation. Thus we have:

γk
.
=



















ρ1−αmin αl > 1 ∀l
(

ρ1−αmin

)2

ρ2−2αmin
∑N

i=1
i 6=k

wki+N ρ1−αmin
otherwise

(44)

We now concentrate on the case where there exists at least oneαℓ ≤ 1. We define

µmin , min
k,i
k 6=i

wki (45)

therefore in this special case we have:

γk6̇

(

ρ1−αmin
)2

(N − 1)
(

ρ1−αmin

)2
µmin +N ρ1−αmin

(46)
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.
=

1

(N − 1)µmin
(47)

, γ̄

Thus in general

γk 6̇
ν

(N − 1)µmin
(48)

, γ̄

whereν is a new random variable defined as:

ν =











κα if αk > 1 ∀k

1 otherwise
(49)

whereκα , ρ1−αmin .

We can now bound the outage probability as follows

Pout = P

( N
∑

k=1

log(1 + γk) 6 R

)

>̇ P

( N
∑

k=1

log(1 + γ̄) 6 R

)

= P

(

ν

(N − 1)µmin
6 2R/N − 1

)

= P

(

ν

µmin
6 Θ

)

(50)

whereΘ , (2R/N − 1)(N − 1).

The bound in (50) can be evaluated as follows

P

(

ν

µmin
6 Θ

)

= P
( ν

µmin
6 Θ

∣

∣ν = κα
)

P
(

ν = κα
)

+ P
( ν

µmin
6 Θ

∣

∣ν = 1
)

P
(

ν = 1
)

= P
(

κα 6 Θ µmin

)

P
(

ν = κα
)

+ P
( 1

µmin
6 Θ

)

P
(

ν = 1
)

. (51)

Notice thatP
(

κα 6 Θ µmin

) .
= 1 sinceκα is vanishing at high SNR andΘ andµmin are positives. We

now need to computeP
(

ν = κα
)

andP
(

ν = 1
)

, or equivalentlyP
({

αk > 1 ∀k
})

and its complement.

We quote one of the results of [10].

Lemma 1: Let {λn} denotes the eigenvalues of a Wishart matrixHHH , whereH is anN×M matrix

with i.i.d Gaussian entries, and letαn = − log(λn)
log(ρ) . If 1αn

denotes the number ofαn that are greater than

November 2, 2018 DRAFT
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one, then for any integers 6 N we have [10, Section III-A]1

P
(

1αn
= s

) .
= ρ−(s2+(M−N)s). (52)

Thus settings = N (i.e. all αn > 1) in (52) yields

P
(

ν = κα
)

= P
(

1αn
= N

) .
= ρ−MN (53)

P
(

ν = 1
) .
= O(1) (54)

whereO(1) is a non-zero constant with respect toρ.

Evaluating (51) depends on the values ofΘ which is always real and positive. IfΘ < 1 then we have

P

(

ν

µmin
6 Θ

)

.
= ρ−MN (55)

becauseP
(

1
µmin

6 Θ
)

= 0 as1/µmin > 1. On the other hand ifΘ > 1 then

P

(

ν

µmin
6 Θ

)

.
= ρ−MN + P

( 1

µmin
6 Θ

)

O(1) (56)

.
= O(1) (57)

sinceP
(

1
µ 6 Θ

)

is not a function ofρ becauseµ is independentρ. For the set of rates whereΘ > 1,

equation (57) implies that the outage probability in (82) isnot function ofρ and thus the diversity is

zero, i.e. the system will have error floor. The set of rates for which Θ > 1 are

R > N log
( N

N − 1

)

, Rth. (58)

This concludes the calculation of a lower bound on the outageprobability. A similar approach will

yield a corresponding upper bound, as follows. Let

µmax , max
k 6=i

|ukl′u∗il′ |2 (59)

A lower bound on the SINR is given as

γk >̇
ν

(N − 1)µmax
(60)

, γ̂.

1Note that [10] analyzes linear MIMO receiver where it is assumedN > M . It can be easily shown that the above Lemma 1

applies for the case considered here whereM > N .

November 2, 2018 DRAFT



14

The outage probability is bounded as

Pout 6̇ P

( N
∑

k=1

log(1 + γ̂) 6 R

)

= P

(

ν

µmax
6 Θ

)

. (61)

We can evaluate (61) in a similar way as (51), establishing that the outage diversitydRZF
out = MN

if the operating spectral efficiencyR is less thanRth = N log ( N
N−1), and dRZF

out = 0 if R > Rth.

This shows that the performance of RZF precoder can be much better than that of the conventional ZF

precoder MIMO system whose diversity isM −N + 1 independent of rate.

Recall that diversity is the SNR exponent of the probabilityof codeword error. In Appendix A, we

show that the outage exponent tightly bounds the SNR exponent of the error probability. Thus we have

the following theorem.

Theorem 1: For anM × N MIMO system that utilizes joint spatial encoding and regularized ZF

precoder given by (30), the outage diversity isdRZF =MN if the operating spectral efficiencyR is less

thanRth = N log ( N
N−1 ), anddRZF = 0 if R > Rth .

Remark 2: Rth is a monotonically decreasing function ofN with the asymptotic valuelimN→∞Rth =

1
ln 2 ≈ 1.44. Overall we have1.44 ≤ Rth ≤ 2, leading to an easily remembered rule of thumb that applies

to all antenna configurations. Regularized ZF precoders always exhibit an error floor at spectral efficiencies

above2 b/s/Hz, and enjoy full diversity at spectral efficiencies below 1.44 b/s/Hz.

D. Matched Filter Precoding

The transmit matched filter (TxMF) is introduced in [8], [4].The TxMF maximizes the signal-to-

interference ratio (SIR) at the receiver and is optimum for high signal-to-noise-ratio scenarios [4]. The

TXMF is also proposed for non-cooperative cellular wireless network [18]. The TxMF is derived by

maximizing the ratio between the power of the desired signalportion in the received signal and the

signal power under the transmit power constraint, that is [4]

T =argmax
T

E
(

||xH ỹ||2
)

E
(

||n||2
) (62)

subject to:E||Tx||2 6 ρ

whereỹ is the noiseless received signalỹ = Tx.
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The solution to (62) is given by

T = βHH (63)

with

β =

√

1

tr(HHH)
. (64)

We now analyze the diversity for the MIMO system under TxMF. The received signal is given by

y = HHHx+ n = βUΛUHx+ n.

The received signal at thek-th antenna

yk = β

( N
∑

l=1

λl|ukl|2
)

xk +

β

N
∑

i=1,i 6=k

( N
∑

l=1

λluklu
∗
il

)

xi + nk (65)

The SINR atk-th receive antenna is

γk =

β2 ρ
N

(

∑N
l=1 λl|ukl|2

)2

β2 ρ
N

∑N
i=1,i 6=k

∣

∣

∣

∣

∑N
l=1 λluklu

∗
il

∣

∣

∣

∣

2

+ 1

Substitute with the value ofβ andλl = ρ−αl

γk =

(

∑N
l=1 ρ

−αl |ukl|2
)2

∑N
i=1,i 6=k

∣

∣

∣

∣

∑N
l=1 ρ

−αluklu
∗
il

∣

∣

∣

∣

2

+N ρ−1
∑N

l=1 ρ
−αl

(66)

Observe that (66) is the same as the SINR of the RZF precoded system given by (39). Hence the

analysis in the present case follows closely that of the outage lower bound of the RZF precoder, with

the following result: the system can achieve full diversityas long as the operating rate is less thanRth

given in (58). The pairwise error probability analysis is also similar to that of the RZF precoding system

(given in Appendix A) which we omit for brevity. Thus we conclude that Theorem 1 applies for the

TxMF precoder.

E. Wiener Filter Precoding

The transmit Wiener filter TxWF minimizes the weighted MSE function.

{T, β} =argmin
T,βE

(

||x− β−1ỹ||2
)
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subject toE
(

||Tx
∣

∣|2) 6 ρ. (67)

Solving (67) yields

T = βF−1HH (68)

with

F =

(

HHH+
N

ρ
I

)

β =

√

1

tr(F−2HHH)
(69)

whereβ can be interpreted as the optimum gain for the combined precoder and channel [4].

Notice that the TxWF precoding function is similar to that ofthe MMSE equalizer [19]. Indeed the

SINR of both systems are equivalent. To see this, we first compute the SINR for the precodedH ∈ CM×N

(with M > N ) MIMO channel

γk =
ρ β
N |(T H)kk|2

ρ β
N

∑N
i 6=k |(T H)ki|2 + 1

(70)

=
ρ
N |(T H)kk|2

ρ
N

∑N
i 6=k |(T H)ki|2 + tr(F−2HHH)

(71)

where we have used the independence of the transmitted signal to compute (70).

Now consider a MIMO channelH2 = HT ∈ CN×M . The MMSE equalizer for this channel is given

by

We = (HH
2 H2 +

N

ρ
I)−1HH

2 . (72)

The received SINR for that system is given by

γMMSE
k =

ρ
N |(We H2)kk|2

ρ
N

∑N
i 6=k |(We H2)ki|2 + tr(WeWe)

. (73)

SinceWe H2 = TWFPH and tr(WeWe) = tr(F−2HHH), we conclude thatγMMSE
k = γWFP

k .

Hence the diversity analysis of [10], [13] for the MIMO MMSE receiver applies for the MIMO Wiener

precoding system. It is shown in [10] that this diversity is afunction of rateR and number of transmit

and receive antennas. We thus conclude the following.

Lemma 2: Consider a channelH ∈ CM×N the diversity of the MIMO system under Wiener filter

precoding is given by

dWFP = ⌈N2−
R

N ⌉2 + (M −N)⌈N2−
R

N ⌉ (74)
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where(·)+ = max(·, 0) and⌈·⌉.

Remark 3: It is commonly stated that MMSE and ZF operators “converge” at high SNR. The devel-

opments in this paper as well as [11] serve to show that although not false, this comment is essentially

fruitless because the performance of MMSE and ZF at high SNR are very different. This apparent

incongruity is explained in the broadest sense as follows: Even though the MMSE coefficients converge to

ZF coefficients asρ→ ∞, the high sensitivity of logarithm of errors (especially atlow error probabilities)

to coefficients is such that the convergence of MMSE to ZF coefficients is not fast enough for the logarithm

of respective errors to converge.

IV. D IVERSITY-MULTIPLEXING TRADEOFF IN PRECODING

For increasing sequence of SNRs, consider a corresponding sequence of codebooksC(ρ), designed at

increasing ratesR(ρ) and yielding average error probabilitiesPe(ρ). Then define

r = lim
ρ→∞

R(ρ)

log ρ

d = − lim
ρ→∞

log Pe(ρ)

log ρ
.

For eachr the corresponding diversityd(r) is defined (with a slight abuse of notation) as the supremum

of the diversities over all possible codebook sequencesC(ρ).

From the viewpoint of definitions, the traditional notion ofdiversity can be considered a special case

of the DMT by settingr = 0. However, from the viewpoint of analysis, the approximations needed in

DMT calculation make use ofR(ρ) being astrictly increasing function, while for diversity analysisR

is constant (not strictly increasing function ofρ). Thus, although sometimes DMT analysis may produce

results that are luckily consistent with diversity analysis2 (r = 0), in other cases one may not be so

lucky and the DMT analysis may produce results that are inconsistent with diversity analysis. Certain

equalizers and precoders fall into the latter category. In the following, we calculate the DMT of the

various precoders considered up to this point.

1) ZF Precoding: Recall that two ZF precoding designs have been considered. For the ZF precoder

minimizing power, given by (7), the outage upper bound in (11) can be written as

Pout 6 P
(

λmin 6 ρ(
r

N
−1)

)

(75)

.
= ρ−(M−N+1)(1− r

N
) (76)

2E.g. the point-to-point MIMO channel with ML decoding.
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where we substituteR = r log ρ to obtain (75), and equation (76) follows in a manner identical to the

procedure that led to (13).

Similarly the outage lower bound (14) can be written as

Pout > P
(

z 6 ρ(
r

N
−1)

)

.
= ρ−(M−N+1)(1− r

N
). (77)

From (76) and (77) we conclude

dZFP (r) = (M −N + 1)
(

1− r

N

)+
. (78)

The DMT of the ZF precoder maximizing the throughput, given by (18), is obtained in an essentially

similar manner to the above, therefore the discussion is omitted in the interest of brevity.

2) Regularized ZF Precoding: We begin by producing an outage lower bound. To do so, we start

by the bound on the SINR of each streamk obtained in (44), and further bound it by discarding some

positive terms in the denominator.

γ̄k =

(

ρ1−αmin
)2

∑

i 6=k

∣

∣uklu
∗
il ρ

1−αmin

∣

∣

2
+Nρ1−αmin

6



















(

ρ1−αmin

)2

ρ2(1−αmin)

∣

∣ukl′u
∗

2l′

∣

∣

2

+Nρ1−αmin

k = 1
(

ρ1−αmin

)2

ρ2(1−αmin)

∣

∣ukl′u
∗

1l′

∣

∣

2

+Nρ1−αmin

k > 1

.
=











1
|ukl′u

∗

2l′
|2 k = 1

1
|ukl′u

∗

1l′
|2 k > 1

We can now bound the outage probability

Pout = P

( N
∑

k=1

log(1 + γk) 6 R

)

>̇ P

( N
∑

k=1

log(1 + γ̄k) 6 R

)

> P

(

N log

N
∑

k=1

1

NMs
(1 + γ̄k) 6 R

)

(79)

.
= P

( N
∑

k=1

1

NMs
(1 + γ̄k) 6 ρ

r

N

)

(80)
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.
= P

( N
∑

k=1

1

N
(1 + γ̄k) 6 ρ

r

N

)

(81)

.
= P

( N
∑

k=1

γ̄k 6 ρ
r

N

)

>̇ P

(

ν

|ukl′u∗2l′ |2
+

N
∑

k=2

ν

|ukl′u∗1l′ |2
6 ρ

r

N

)

. (82)

where we have used the Specht bound in (79) in a manner similarto [10]. Equation (80) and (81) follow

similarly to [10, Section III-B]

For notational convenience define

ψ
△
=

1

|ukl′u∗2l′ |2
+

N
∑

k=2

1

|ukl′u∗1l′ |2
.

Then the bound in (82) can be evaluated as follows:

P

(

νψ 6 ρ
r

N

)

= P
(

νψ 6 ρ
r

N

∣

∣ν = 0
)

P
(

ν = 0
)

+ P
(

νψ 6 ρ
r

N

∣

∣ν = 1
)

P
(

ν = 1
)

= P
(

0 6 ρ
r

N

)

P
(

ν = 0
)

+ P
(

ψ 6 ρ
r

N

)

P
(

ν = 1
)

.
= ρ−MN + P

(

ψ 6 ρ
r

N

)

O(1). (83)

> ρ−MN +O(1) (84)

= O(1) (85)

where (83) follows from Lemma 1, and (84) is true as long asP
(

ψ 6 ρ
r

N

)

= O(1), the proof of which

is relegated to Appendix B.

Since the outage lower bound (84) is not a function ofρ, the system will always have an error floor.

In other words the DMT is given by

dRZFP (r) = 0 0 < r ≤ B (86)

We saw earlier that in the fixed-rate regime RZF precoding enjoys full diversity for spectral efficiencies

below a certain threshold, but it now appears that DMT shows only zero diversity. DMT is not capable

of predicting the complex behavior atr = 0 because the DMT framework only assigns a single value

diversity to all distinct spectral efficiencies atr = 0. A similar behavior was observed and analyzed for

the MMSE MIMO receiver [11], [13], [10].
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Linear
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Fig. 2. MIMO with linear precoder with receive-side equalization

3) Matched Filter Precoding: The DMT of the MIMO system with TxMF is the same as the DMT

given by (86) due to the similarity in the outage analysis (see Section III-D). We omit the details for

brevity.

4) Wiener Filter Precoding: Since the the received SINR of the MIMO system using TxWF precoding

is the same as that of MIMO MMSE receiver, we conclude from [13] that the DMT for the TxWF

precoding system is

dWFP (r) = (M −N + 1)
(

1− r

N

)+
. (87)

Similarly to the MIMO MMSE receiver [13], [10], we observe that DMT for the MIMO system with

TxWF does not always predict the diversity in the fixed rate regime given by (74).

V. EQUALIZATION FOR L INEARLY PRECODEDTRANSMISSION

The objective of a precoded transmitter is to separate the data streams at the receiver. In other words,

linear precoding is a method of interference management at the transmitter. In general, precoded systems

do not require interference management at the receiver, however, once a transmitter is designed and

standardized (as precoders have been), some standards-compliant receivers may opt to further equalize

the precoded channel (see Figure 2). This section analyzes the equalization of precoded transmissions.

When the transmit and receive filters can be designed jointlyand from scratch, singular value decom-

position becomes an attractive option whose diversity has been analyzed in [20]. The distinction of the

systems analyzed in this section is that the precoders can beused with or without the receive filters,

while with the SVD solution neither the transmit nor the receive filters can operate without each other.

A snapshot of some of the results of this section is as follows. It is shown that equalization at the

receiver can alleviate the error floor that was observed in matched filter precoding as well as regularized
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ZF precoding. It is shown that MMSE equalization does not affect the diversity of Wiener filter precoding,

but ZF equalization does indeed affect the diversity of Wiener filter precoding in a negative way.

Recall that in the system model given in Section II we have defined the precoder and equalizer matrices

T ∈ CM×B andW ∈ CB×N , respectively, whereB is the number of information symbols not to exceed

min(M,N). In most wireless systems, the equalizer at the receiver is designed to equalize the compound

channel (HT) composed of the precoder and the channel (rather than designing the precoder for the

equalized channel (WH) although it is possible). In such case we haveM > N and we setB = N .

A. ZF Equalizer

The ZF equalizer is analyzed when operating together with various precoders, as follows.

1) Wiener Filter Precoding: The TxWF precoder is given by

T = β

(

HHH+
N

ρ
I

)−1

HH

= βHH

(

HHH +
N

ρ
IN

)−1

(88)

where (88) follows from [21, Fact 2.16.16]3. The scalar coefficientβ is given in (69) and, similar to (33),

it can be written asβ = 1/
√
η

η = tr
[

Λ(Λ +Nρ−1 I)−2
]

=

N
∑

l=1

λl
(λl +Nρ−1 )2

The ZF equalizer for the precoder and the channel is given by

WZF = (HH
H)−1

H
H (89)

The composite channelH is given by

H = HT.

The received signal is given by

y = WZFHTx+WZFn. (90)

The filtered noisẽn = WZFn is is a complex Gaussian vector with zero-mean and covariance matrix

Rñ given by

Rñ = [HH
H]−1

3Let A ∈ C
n×m andB ∈ C

m×n then (In + AB)−1
A = A(Im + BA)−1. This fact can be proved via Matrix Inversion

Lemma.
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=
[

(HHH +Nρ−1 I)−1(HHH)2(HHH +Nρ−1 I)−1
]−1

=
[

UΛ(Λ +Nρ−1 I)−1UHUΛ(Λ +Nρ−1 I)−1UH
]−1

=
[

UΛ2(Λ +Nρ−1 I)−2UH
]−1

where we have used the eigen decompositionHHH = UΛUH . The noise variance of the output stream

k is therefore

Rñ(k, k) =

N
∑

l=1

(

λl +Nρ−1

λl

)2

|ukl|2 (91)

where (91) follows in a similar manner as (27). We can computethe signal-to-noise ratio of the ZF filter

output:

γk =
ρ β2

N Rñ(k, k)

=
ρ/N

∑N
j=1

λj

(λj+Nρ−1 )2
∑N

l=1

(λl+Nρ−1

λl

)2|ukl|2
. (92)

Due to the complexity of (92) we proceed to bound the outage from above and below. The upper

bound on outage is calculated as follows. Since|ukl| 6 1,

γk >
ρ/N

∑N
j=1

λj

(λj+Nρ−1 )2
∑N

l=1

(λl+Nρ−1

λl

)2 (93)

=
1/N

∑N
j=1

ρ1−αj

(ρ1−αj+N )2

∑N
l=1

(ρ1−αl+N
ρ1−αl

)2
(94)

, γ̂. (95)

where we have substitutedλl = ρ−αl in (94). Thus the outage probability is bounded as

Pout = P

( N
∑

k=1

log(1 + γk) 6 R

)

6 P

( N
∑

k=1

log(1 + γ̂) 6 R

)

= P

(

γ̂ 6 2
R

N − 1

)

(96)

Similarly to the previous analysis, we examine the SINR bound γ̂ for different values ofαl. Define the

setB = {l | αl > 1} and the event

L = {|B| = N} (97)

we have

Pout 6 P

(

γ̂ 6 2
R

N − 1

)
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= P

(

γ̂ 6 2
R

N − 1
∣

∣L
)

P(L) + P

(

γ̂ 6 2
R

N − 1
∣

∣L̄
)

P(L̄) (98)

6 P

(

γ̂ 6 2
R

N − 1
∣

∣L
)

+ P

(

γ̂ 6 2
R

N − 1
∣

∣L̄
)

. (99)

To calculate the first term in (99), we evaluateγ̂ whenαl > 1 ∀l

γ̂
.
=

1/N
∑N

j=1 ρ
1−αj

∑N
l=1

1
ρ2(1−αl)

(100)

>̇
1/N

∑N
l=1

1
ρ2(1−αl)

(101)

.
=

1

N
ρ2(1−αmax) =

1

N
ρ2λ2min (102)

where (100) follows becauseρ1−αl +N
.
= N , (101) follows because

∑N
j=1 ρ

1−αj 6̇1, and (102) follows

because the sum in (101) is asymptotically dominated by the largest component.

We continue to bound the first term in (99)

P

(

γ̂ 6 2
R

N − 1
∣

∣L
)

6̇ P

(

1

N
ρ2λ2min 6 2

R

N

)

.
= P

(

λmin 6 ρ−1

)

(103)

.
= ρ−(M−N+1) (104)

where (103) is the same as (12) , hence (104) follows.

To calculate the second term in (99), we evaluateγ̂ when one or moreαl 6 1. Consider the the two

summations in the denominator of (94). The first one can be asymptotically evaluated as

N
∑

j=1

ρ1−αj

(ρ1−αj +N )2
.
=

∑

αj<1

1

ρ1−αj
+

∑

αj>1

ρ1−αj

.
=











ρ−(1−αmax) |L̄| = N

max(ρ−1+α′

, ρ1−α′′

) 6̇ ρ−(1−αmax) 1 6 |L̄| < N

(105)

whereα′ = maxαj<1 αj andα′′ = minαj>1 αj and (105) follows becausemin(ρ−1+α′

, ρ1−α′′

) 6̇ ρ−(1−αmax).

The second summation in the denominator of (94) can be evaluated as follows

N
∑

l=1

(

ρ1−αl +N

ρ1−αl

)2
.
=

∑

αl<1

1 +
∑

αl>1

1

ρ2(1−αl)

.
=











1 |L̄| = N

ρ−2(1−αmax) 1 6 |L̄| < N

(106)
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We now use (105) and (106) to boundγ̂

γ̂>̇











ρ1−αmax = ρλmin |L̄| = N

ρ2−2αmax = ρ3λ3min 1 6 |L̄| < N

, γ̄ (107)

We thus have

Pout 6 P

(

γ̂ 6 2
R

N − 1

∣

∣

∣

∣

L̄
)

6 P

(

γ̄ 6 2
R

N − 1

∣

∣

∣

∣

L̄
)

< P

(

γ̄ 6 2
R

N − 1

∣

∣

∣

∣

|B| = 0

)

+ P

(

γ̄ 6 2
R

N − 1

∣

∣

∣

∣

0 < |B| < N

)

.
= P

(

λmin 6 ρ−1
)

+ P
(

λ3min 6 ρ−3
)

.
= P

(

λmin 6 ρ−1
)

.
= ρ−(M−N+1). (108)

This concludes the calculation of outage upper bound. We nowproceed with the outage lower bound.

Define the eventP = {|akl| > ǫ ∀ k, l} whereakl is the (k, l) entry of the unitary matrixU (c.f.

equation (27)). Define

γ̆ =
1/N

∑N
j=1

ρ1−αj

(ρ1−αj+N )2

∑N
l=1

(ρ1−αl+N
ρ1−αl

)2
ǫ

(109)

Notice thatγ̆ > γ because|akl| > ǫ ∀ k, l.

The outage probability is bounded as

Pout = P

( N
∑

k=1

log(1 + γk) 6 R

)

> P

( N
∑

k=1

log(1 + γk) 6 R

∣

∣

∣

∣

P
)

P(P)

> P

( N
∑

k=1

log(1 + γ̆) 6 R

)

P(P) (110)

= P

(

γ̆ 6 2
R

N − 1

)

P(P) (111)
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The probabilityP(P) = O(1), i.e. non-zero constant with respect toρ. The proof is similar to the one

in [13, Appendix A] and omitted here for brevity. We thus have

Pout >̇ P

(

γ̂ 6 2
R

N − 1

)

= P

(

γ̂ 6 2
R

N − 1

∣

∣

∣

∣

L
)

P(L)P
(

γ̂ 6 2
R

N − 1

∣

∣

∣

∣

L̄
)

P
(

L̄
)

> P

(

γ̂ 6 2
R

N − 1

∣

∣

∣

∣

L̄
)

P(L̄)

.
= P

(

γ̂ 6 2
R

N − 1

∣

∣

∣

∣

L̄
)

(112)

where (112) holds sinceP(L̄) .= O(1) as given by (54).

We further bound the outage probability by boundingγ̂ as follows. Once again consider the two

summations in the denominator of (109). For the first summation of (109), we have

N
∑

j=1

ρ1−αj

(ρ1−αj +N )2
.
=

∑

αj<1

1

ρ1−αj
+

∑

αj>1

ρ1−αj

.
=











ρ−(1−αmax) |L̄| = N

max(ρ−1+α′

, ρ1−α′′

) >̇ ρ1−αmax 1 6 |L̄| < N

(113)

where the bound in the second line (113) is true because

∑

αj<1

1

ρ1−αj
+

∑

αj>1

ρ1−αj >
∑

αj>1

ρ1−αj
.
= ρ1−αmax

Using (105) and (113) to bound̂γ Substituting back in (109) gives:

γ̆6̇











ρ1−αmax = ρλmin |L̄| = N

ρ1−αmax = ρλmin 1 6 |L̄| < N

, ˘̆γ (114)

Thus the outage bound in (112) can be then evaluated as we did for the upper bound

Pout 6 P

(

γ̂ > 2
R

N − 1

∣

∣

∣

∣

L̄
)

6 P

(

˘̆γ 6 2
R

N − 1

∣

∣

∣

∣

L̄
)

< P

(

˘̆γ 6 2
R

N − 1

∣

∣

∣

∣

|B| = 0

)

P
(

|B| = 0
)

+

P

(

˘̆γ 6 2
R

N − 1

∣

∣

∣

∣

L̄, 0 < |B̄| < N

)

P
(

|L̄| < N
)
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.
= P

(

λmin 6 ρ−1
)

O(1) + P
(

λmin 6 ρ−1
)

O(1) (115)

.
= P

(

λmin 6 ρ−1
)

.
= ρ−(M−N+1). (116)

where (115) follows as a direct result of Lemma 1. From (108) and (116), we conclude that the diversity

of MIMO system using TxWF precoder and ZF equalizer is

dWFP−ZF =M −N + 1.

2) Regularized Zero Forcing Precoding: The ZF equalizer is given by (89) where the composite

channelH = HT. The received signal to noise ratio of thek-th output symbol of the ZF filter as

γk =
ρ β2

N Rñ(k, k)

=
ρ/N

∑N
j=1

λj

(λj+N )2
∑N

l=1

(

λl+N
λl

)2|ukl|2
. (117)

The process of obtaining lower and upper bound has many similarities with the developments of

Section V-A1, therefore we omit many of the steps in the interest of brevity by referring to the previous

developments.

We begin with the outage upper bound, which is developed in a manner similar to (96).

Pout = P

( N
∑

k=1

log(1 + γk) 6 R

)

6 P

( N
∑

k=1

log(1 + γ̂) 6 R

)

= P

(

γ̂ 6 2
R

N − 1

)

(118)

where

γ̂ =
ρ/N

∑N
j=1

λj

(λj+N )2
∑N

l=1

(

λl+N
λl

)2

=
ρ/N

∑N
j=1

ρ−αj

(ρ−αj+N )2

∑N
l=1

(ρ−αl+N
ρ−αl

)2

.
=

ρ/N
∑N

j=1 ρ
−αj

∑N
l=1 ρ

2αl

(119)

>̇
ρ/N

∑N
l=1 ρ

2αl
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.
=

ρ/N

ρ2αmax
. (120)

Thus the outage in (118) can be bounded as

Pout 6 P

(

γ̂ 6 2
R

N − 1

)

6̇ P

(

ρ/N

ρ2αmax
6 2

R

N − 1

)

.
= P(λmin 6 ρ−0.5)

.
= ρ−

1

2
(M−N+1). (121)

We now turn to the lower bound, which is obtained in the same manner as (112):

Pout = P

( N
∑

k=1

log(1 + γk) 6 R

)

>̇ P

( N
∑

k=1

log(1 + γ̆) 6 R

)

= P

(

γ̆ 6 2
R

N − 1

)

(122)

where

γ̆ =
ρ/N

∑N
j=1

λj

(λj+N )2
∑N

l=1

(

λl+N
λl

)2
ǫ

=
ρ/N

∑N
j=1

ρ−αj

(ρ−αj+N )2

∑N
l=1

(ρ−αl+N
ρ−αl

)2
ǫ

.
=

ρ/N
∑N

j=1 ρ
−αj

∑N
l=1 ǫρ

2αl

6
ρ/N

ρ−αj
∑N

l=1 ǫρ
2αl

for arbitrary j

.
=

ρ/N

ǫ ρ−αjρ2αmax

=
ρ/Nλ2min

ǫ λj

, ˘̆γ. (123)

Let C1 = (2
R

N − 1) ǫN , C2 = C1ξ whereξ is a fixed positive constant (independent ofρ), we have

Pout >̇ P

(

γ̆ 6 2
R

N − 1

)
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>̇ P

(

˘̆γ 6 2
R

N − 1

)

>̇ P

(

ρλ2min

λj
6 C1

)

> P

(

ρλ2min

λj
6 C1

∣

∣

∣

∣

λj > ξ

)

P
(

λj > ξ
)

> P

(

ρλ2min 6 C2

)

P
(

λj > ξ
)

.
= P

(

ρλ2min 6 C2

)

. (124)

The exponential inequality (124) holds becauseP
(

λj > ξ
)

= O(1), as proved in Appendix C. We thus

conclude:

dRZFP−ZF =
1

2
(M −N + 1).

Remark 4: We note that the diversity of regularized zero-forcing precoder together with a zero-forcing

equalizer can be fractional. To our knowledge this is the first instance of fractional diversity uncovered

in the literature.

3) Matched Filter Precoding: In this case, the composite channel is

H = HT = βHHH .

The noise correlation matrix is given by

Rñ = [HH
H]−1 =

1

β2
[(HHH)2]−1 =

1

β2
(UΛ2UH)−1.

Thus

Rñ(k, k) =
1

β2

B
∑

l=1

1

λ2l
|ukl|2 (125)

The precoder normalization factorβ = 1/
√
η, whereη is given by

η = tr
[

HHH ] =

N
∑

l=1

λl

The signal to noise ratio of thek-th symbol of the ZF filter is

γk =
ρ

N Rñ(k, k)

=
ρ/N

∑N
j=1 λj

∑N
l=1

1
λ2
l
|ukl|2

. (126)

Notice that the SINRγk in (126) is similar to the SINRγk of the RZF precoding system with ZF

equalizer given by (117). The only difference is the termλk+N which, when applying the transformation
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of λk = ρ−αk , has no effect on the diversity analysis as detailed in the previous section. We then conclude

that the diversity of the MIMO system applying MF precoder and ZF equalizer is the same as the diversity

of the RZF precoder with ZF equalizer. Thus:

dMFP−ZF =
1

2
(M −N + 1). (127)

B. MMSE equalizer

The MMSE equalizer has better performance compared to ZF andis therefore widely popular. We

investigate the diversity of MIMO systems that deploy different precoders at the transmitter and MMSE

equalizer at the receiver.

1) MFTx Precoding: The MFTx precoder,TMFP , is given by (63). The MMSE equalizer for the

precoded channel is given by

WMMSE =

[

H
H
H+Nρ−1I

]−1

H
H (128)

whereH = HTMFP = βMFPHHH andβMFP is given by (64).

The SINR at the output of the MMSE filter is given by [19]

γk =
ρ

N
hk

[

I+
ρ

N
HkH

H
k

]−1

hk

=
1

[

I+ ρ
NHHH

]−1

kk

− 1 (129)

whereHk is a submatrix ofH obtained by removing thek-th column,hk.

The diversity analysis of the precoded system uses some results from the un-precoded MMSE MIMO

equalizers [10], which we quote in the following lemma.

Lemma 3: consider a quasi-static Rayleigh fading MIMO channelH̄ ∈ CM×N (M > N ), the outage

probability of the MMSE receiver satisfies

Pout
.
= P

(

tr(I+
ρ

N
H̄HH̄)−1 > N2−

R

N

)

(130)

= P

( N
∑

k=1

1

1 + ρ
N λ

′
k

> N2−
R

N

)

(131)

.
= ρ−dMMSE

(132)

where{λ′k} are the eigenvalues of̄H anddMMSE is given by (74).
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Substitutingλ′k = ρ−α′

k , we have

1

1 + ρ
N λ

′
k

.
=











ρα
′

k−1 α′
k < 1

1 α′
k > 1

(133)

thus the term 1
1+ρλ′

k/N
is either zero or one at high SNR, and therefore to characterize the sum in (131)

at high SNR we count the number of ones, or equivalently the number ofα′
k > 1. Hence the outage

probability reduces to [10]

Pout
.
= P

(

∑

α′

k>1

1 =
⌈

N2−
R

N

⌉

)

. (134)

Now we apply the matched filter precoder. Similarly to (130),the outage portability is given by

Pout
.
= P

(

tr(I+
ρ

N
HH

H)−1 > N2−
R

N

)

(135)

= P

( N
∑

k=1

1

1 + ρ
Nηλ

2
k

> N2−
R

N

)

(136)

where we have usedHHH = 1
η (HHH)2 = 1

ηUΛ2UH to obtain (136),and{λk} are the eigenvalues of

the Wishart matrixHHH . The scaling factorη = tr(HHH) =
∑N

l=1 λl.

We begin with a hypothetical precoder whose transmit power is not normalized, i.e.,η = 1. The outage

probability of this un-normalized precoder is similar to that of the MMSE receiver with no precoding at

the transmitter, as given in (132), except that the eigenvalues are now squared. Thus similarly to (133),

we have the exponential inequality

1

1 + ρ
N λ

2
k

.
=











ρ2αk−1 αk < 0.5

1 αk > 0.5

. (137)

The analysis of [10] then follows and we have

d =
1

2

(

⌈N2−
R

N ⌉2 + (M −N)⌈M2−
R

N ⌉
)

. (138)

We conclude that the un-normalized matched filter precodingwith MMSE receiver results in50%

diversity loss compared to MMSE receiver with no transmit precoding.

For the normalized precoder, we begin with the outage probability in (136). Assumeα1 > α2 · · · > αN ,

the sum term in (136) is given by

N
∑

k=1

1

1 + ρ
Nηλ

2
k

=

N
∑

k=1

η

η + ρ
N λ

2
k
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=

N
∑

k=1

∑

l ρ
−αl

∑

l ρ
−αl + ρ

N ρ
−2αk

.
=

N
∑

k=1

ρ−αN

ρ−αN + ρ1−2αk
. (139)

where we have used the fact that the
∑

l ρ
−αk is dominated by the maximum element at high SNR.

It is easy to see that the terms of (139) are either one or zero at high SNR, depending on whether

ρ−αN asymptotically dominatesρ1−2αk or vice versa. These two cases are delineated with the threshold

αk ≶ 0.5max(1 , αN + 1), or, considering thatαN is positive,αk ≶ 0.5(αN + 1). Thus at high SNR,

the outage probability is evaluated by counting the ones

Pout
.
= P

( N
∑

k=1

1

1 + ρ
Nηλ

2
k

> N2−
R

N

)

.
= P

(

∑

αk>0.5 (αN+1)

1 > N2−
R

N

)

.
= P

(

∑

αk>0.5 (αN+1)

1 = L

)

(140)

where L =
⌈

N2−
R

N

⌉

. The conversion from inequality to equality in equation (140) follows from

arguments developed in [10, Section III-A] .

Therefore, the outage probability is asymptotically evaluated by:

Pout
.
=

∫

S+

P(α) dα (141)

whereP(α) is the joint distribution of the orderedα1 > · · · > αN and the region of integration is defined

asS+ = S ∩ RN+, whereS is given as follows:

• If L = N , then we seek the probability thatαk >
1
2 (αN + 1) for k = 1, . . . , N , which implies

αN ∈ (1,∞). Thus the integration region can be tightly represented as:

S =
{

αN > 1 , min
1≤k<N

αk > 0.5(αN + 1)
}

• If L < N , then we seek the joint probability thatαk >
1
2(αN + 1) for k = 1, . . . , L andαk ≤

1
2 (αN +1) for k = L+1, . . . , N , implying αN ∈ (0, 1). Thus the region of integration is represented

as:

S =
{

αN < 1 , min
1<k≤L

αk > 0.5(αN + 1) , max
L<k<N

αk < 0.5(αN + 1)
}

November 2, 2018 DRAFT



32

Using methods similar to [12] and [10, Eq (18) - (20)], exponential equality relations can be used to

reduce the integrand to the following:

P out
.
=

∫

S+

∏

k

ρ−(2k−1+M−N)αk d(α) (142)

First we considerL = N . The probability expression is evaluated by simply taking the integral over all

variables exceptαN , and then taking an integral overαN .

P out
.
=

∫ ∞

αN=1
ρ−(2N−1+M−N)αN

×
N−1
∏

k=1

ρ−(2k−1+M−N)(0.5+0.5αN )d(α) (143)

.
=

N
∏

k=1

ρ−(2k−1+M−N)

= ρ
∑

N
k=1 −(2k−1+M−N) (144)

= ρ−MN . (145)

WhenL < N , we repeat the same integration strategy.

Pout
.
=

∫ 1

αN=0
ρ−(2N−1+M−N)αN

×
N
∏

l=L+1

(

1− ρ−(2l−1+M−N)(0.5+0.5αN )

)

×
L
∏

k=1

ρ−(2k−1+M−N)(0.5+0.5αN )d(α) (146)

.
=

∫ 1

αN=0
ρ−(2N−1+M−N)αN

×
L
∏

k=1

ρ−(2k−1+M−N)(0.5+0.5αN )d(α) (147)

.
=

L
∏

k=1

ρ−
1

2
(2k−1+M−N)

= ρ
∑L

k=1 − 1

2
(2k−1+M−N)

= ρ−
1

2
(L2+(M−N)L) (148)

In deriving (146) and (147) we have used
∫ b
a ρ

−ckαkd(αk)
.
= ρ−ack [10]. Equations (145) and (148) show

that the system exhibits two distinct diversity behaviors based on whetherL = ⌈N2−
R

N ⌉ < N . We can
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solve to find the boundary of the two regionsR = N log N
N−1 . To summarize:

dMFP−MMSE =










1
2

(

⌈N2−
R

N ⌉2 + (M −N)⌈M2−
R

N ⌉
)

R > N log N
N−1

MN otherwise
. (149)

Remark 5: The outcome is interesting for its practical implications:An MMSE receiver working with

matched-filter precoding will suffer a significant diversity loss compared to an MMSE receiver without

precoding, except for very low rates corresponding toR < N log N
N−1 , where the combination of MMSE

receiver with matched filter precoding has exactly the same diversity as the MMSE receiver alone.

Remark 6: Recall thatR = N log N
N−1 is exactly the same threshold below which matched filter

precoding (without receiver-side equalization) achievesfull diversity.

2) WFTx Precoding: Using the Wiener filter precoding at the receiver results in the composite channel

H = HT = βHHH(HHH + ρ−1NI)−1.

Using the eigen decompositionHHH = UΛUH , it can be shown that

H
H
H = β2U(Λ + ρ−1NI)−2Λ2UH (150)

Similar to the case of MF precoder with MMSE receiver, the outage probability of WF precoder with

MMSE receiver is given by (c.f. (135))

Pout
.
= P

(

tr(I+
ρ

N
HH

H)−1 > N2−
R

N

)

= P

( N
∑

k=1

1

1 + ρ
Nη λ̂k

> N2−
R

N

)

(151)

where{λ̂k} are the eigenvalues ofHHH andη is the scale factor. Using (150),{λ̂k} are given by

λ̂k =
λ2k

(λk + ρ−1N)2
, k = 1, . . . , N (152)

The scale factorη is calculated as in (33)

η =

N
∑

l=1

λl
(λl + ρ−1N )2

.

Thus the outage probability can be written as

Pout
.
= P

( N
∑

k=1

γk > N2−
R

N

)

(153)
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where

γk ,
1

1 + ρ
Nη λ̂k

=
ρ−1η

ρ−1η + 1
N λ̂k

=
ρ−1η

ρ−1η + υk

where we defineυk = 1
N λ̂k. We now proceed to express bothρ−1η and υk in terms of {αk}, the

exponential orders of{λk}.

ρ−1η =

N
∑

l=1

ρ−1λl
(ρ−1λl +N )2

=

N
∑

l=1

ρ1−αl

(ρ1−αl +N )2

.
=

∑

αl>1

ρ1−αl +
∑

αl<1

ραl−1 (154)

observe that all the terms in (154) have negative exponent. Using (152),

υk =
1

N

ρ−2αk

(ρ−αk + ρ−1N)2

=
1

N

ρ2(1−αk)

(ρ1−αk +N)2

.
=











1 αk < 1

ρ2(1−αk) αk > 1

. (155)

From (154) and (155), we see that whenαk < 1 thenυk + ρ−1η
.
= υk

.
= 1. On the other hand, when

αk > 1 then

υk + ρ−1η
.
= ρ2(1−αk) +

∑

αl>1

ρ1−αl +
∑

αl<1

ραl−1

= ρ2(1−αk) + ρ1−αk +
∑

αl>1
l 6=k

ρ1−αl +
∑

αl<1
l 6=k

ραl−1

.
= ρ1−αk +

∑

αl>1
l 6=k

ρ1−αl +
∑

αl<1
l 6=k

ραl−1 (156)

.
= ρ−1η (157)

where (156) follows becauseαk > 1. Thus we have

γk =
ρ−1η

ρ−1η + υk

.
=











ρ−1η αk < 1

1 αk > 1

(158)

andρ−1η has negative exponent thus vanishes at high SNR.

Observe that (158) is similar to (133) which corresponds to the case of the MMSE-only system (i.e.

with no precoding). Thus substituting (158) in the outage probability (153) and repeating the same analysis
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of the MMSE-only system as in [10], we conclude that the diversity of the MMSE receiver when using

WFTx precoding is the same as the diversity of the MMSE receiver with no linear precoding, which is

given by (74).

3) RZF Precoding: Using the Regularized Zero Forcing precoding at the receiver results in the

composite channel

H = HT = βHHH(HHH + c I)−1.

wherec is a fixed constant,β = 1/η andη is given by (33)

η =

N
∑

l=1

λl
(λl + c )2

=

N
∑

l=1

ρ−αl

(ρ−αl + c )2
. (159)

Similar to (151), the outage probability of RZF precoder with MMSE receiver is given by

Pout
.
= P

( N
∑

k=1

γk > N2−
R

N

)

and

γk ,
η

η + ρ
N λ̄k

where{λ̄k} are the eigenvalues ofHHH given by

λ̄k =
λ2k

(λk + c)2
=

ρ−2αk

(ρ−αk + c)2
, k = 1, . . . , N (160)

Notice that at high SNR we have

η
.
=

N
∑

l=1

ρ−αl

c2

λ̄k
.
=
ρ−2αk

c2
.

Thus the SINR is given by (c.f. (139))

γk
.
=

∑N
l=1 ρ

−αl

∑N
l=1 ρ

−αl + ρ−2αk

.
=

ρ−αN

ρ−αN + ρ1−2αk
,

k = 1, . . . , N

which are the same terms as in (139), implying that the outageprobability of the MMSE receiver working

with the regularized zero-forcing precoder is asymptotically the same as the outage probability of the

MMSE receiver working with the matched filter precoder. Thismeans:

dRZFP−MMSE = dMFP−MMSE.
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Fig. 3. Outage probability of the ZF and Wiener filtering precoded MIMO 2× 2 system for rates (left to right):R = 1.9, 2.5,

and3 b/s/Hz.
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Fig. 4. Wiener precoded3× 3 MIMO system.

=











1
2

(

⌈N2−
R

N ⌉2 + (M −N)⌈M2−
R

N ⌉
)

R > N log N
N−1

MN otherwise
(161)
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Fig. 5. MF and regularized ZF precoded2× 2 MIMO system for rates (left to right):R = 1.9, 2.5, and4 b/s/Hz.
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Fig. 6. MIMO system with matched filtering precoding and ZF equalization for rates (left to right):R = 1, 2, and4 b/s/Hz.

VI. SIMULATION RESULTS

This section produces numerical results for the outage probabilities of ZF, regularized ZF (RZF),

matched filter (MF) and Wiener precoding systems. Figure 3 shows the outage probabilities of the ZF

and Wiener-filter precoded2 × 2 MIMO systems. The diversity in the case of the ZF case is the same

as the one predicted by the DMT. In the case of Wiener precoding, the diversity is the same as the

one predicted by the DMT for high rate (R) values and it departs from the DMT for low rate values.
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Fig. 7. Outage probability of MIMO system with Wiener filtering precoding and ZF equalization for rates (left to right):

R = 1, 2, and4 b/s/Hz.
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Fig. 8. 2X2 MIMO system with Wiener filtering precoding and MMSE equalization for rates (left to right):R = 1.5, 3, and

4 b/s/Hz.

A complete diversity characterization is given by (74) which is similar to that of the MMSE MIMO

equalizer [10]. Figure 4 shows outage probabilities for a3 × 3 MIMO system with Wiener precoding.

The diversity for the ratesR = 1.5, 4, and5 b/s/Hz is9, 4 and1 respectively. Figure 5 shows an error floor

for the regularized ZF and matched filtering precoded2× 2 system at high rates. However we observe

that the maximum diversity is achieved for any rateR < 2 (c.f. Equation (58)). Figure 6 shows outage
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Fig. 9. 3X3 MIMO system with Wiener filtering precoding and MMSE equalization for rates (left to right):R = 1.5, 4, and

5 b/s/Hz.
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Fig. 10. 2X2 MIMO system with MF precoding and MMSE equalization system for rates (left to right):R = 1.5, 2.5, and3

b/s/Hz.

probabilities for a2× 2 and a3× 3 MIMO system with matched filter precoding and ZF equalization.

The observed diversity values are consistent with Eq. (127). Figure 7 shows outage probabilities for a

2×2 and a3×3 MIMO system with Wiener filter precoding and ZF equalization. Figure 8 and Figure 9

show outage probabilities for a2×2 and a3×3 MIMO system, respectively, with Wiener filter precoding

and MMSE equalization. The diversity for the3 × 3 system is the same as the diversity of the Wiener
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filtering precoding-only (c.f. Figure 4).

Figure 10 shows the outage probability of a2 × 2 MIMO system with matched filter precoding and

MMSE equalization, which is consistent with Eq. (149). We also plot the outage probability of the MMSE

MIMO equalizer (without any precoding) for comparison.

VII. C ONCLUSION

Linear precoders provide a simple and efficient processing,and have been shown to be optimal in

some scenarios [5], [6], [7]. This paper studies the high-SNR performance of linear precoders. It is

shown that the zero-forcing precoder under two common design approaches, maximizing the throughput

and minimizing the transmit power, achieves the same DMT as that of MIMO systems with ZF equalizer.

When a regularized ZF (RZF) precoder (for a fixed regularization term that is independent of the signal-

to-noise ratio) or matched filter (MF) precoder is used, we have d(r) = 0 for all r, implying an error

floor under all conditions. It is also shown that in the fixed rate regime RZF and MF precoding achieve

full diversity up to a certain spectral efficiency, while at higher spectral efficiencies they produce an error

floor. If the regularization parameter in the RZF is optimized in the MMSE sense, the RZF precoded

MIMO system exhibits a complex rate-dependent behavior. Inparticular, the diversity of this system (also

known as Wiener filter precoding) is characterized byd(R) = ⌈N2−
R

N ⌉2 + (M −N)⌈N2−
R

N ⌉ whereM

andN are the number of transmit and receive antennas. This is the same behavior observed in linear

MMSE MIMO receivers [10]. Various results for the diversityin the presence ofboth precoding and

equalization have also been obtained.

APPENDIX

A. Pairwise error Probability (PEP) Analysis

In this section we perform PEP analysis for the the zero-forcing (ZF) and the regularized ZF (RZF)

precoding systems. The presented analysis can be easily extended to all other precoding systems. The

basic strategy is to show the SNR exponent of outage probability bounds the SNR exponent of PEP from

both sides The PEP analysis follows from [14], [10], with careful attention to the system model given

by Equation (1).

The lower bound immediately follows from [14, Lemma 3] by recognizing that although it was

developed for SISO block equalization, nowhere in its development does it depend on the number of
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receive antennas, therefore we can directly use it for our purposes:

Perr >̇ Pout. (162)

The upper bound on PEP for the ZF/RZF precoding systems receiver is developed using the union

bound. Denote the channel outage event byO and the error event byE. The PEP is given by

Perr = P (E|O) Pout + P (E, Ō)

6 Pout + P (E, Ō). (163)

In order to show thatPout dominates the right hand side of (163), it is shown in [10] that the probability

P (E, Ō) can be bounded as follows using the union bound

P(E, Ō) 6̇ 2Rle
− ρ/N

σ2
ñ

(k) 6̇ ρ−MN (164)

wherel is the codeword length andσ2
ñ
(k) is the variance of the interference plus noise signalñ in the

k-th receive stream4. The proof of [14] does not depend on the codeword length for both upper and lower

PEP bounds. The bound are tight and were confirmed by simulations for outage and error probabilities.

We now show that a similar proof holds for regularized zero-forcing (RZFP). Recall that the outage

probability of the RZFP can be upper bounded by (61)

Pout 6 P
( ν

µmax
6 Θ

)

, P b
out (165)

We will useP b
out to further bound (163). MoreoverP (E, Ō) can be upper bounded by bounding the

noise varianceσ2
ñ
(k) in (164)

σ2
ñ
(k) = PI + Pn < PT + 1 (166)

where we have used the noise powerPn = 1, and bound the interference power by the total received

powerPT . We will first consider the case of RZF precoding since the case of ZF precoding can be easily

deduced from RZF by substituting setting the regularization parameterc = 0. For the RZF precoding

system we use thePT given by (34) which can be simplified in a way similar to earlier sections

PT =
β2ρ

N

N
∑

l=1

λ2l
(λl + c )2

4 [14] analyzes linear receivers sõn is thek-th output filtered interference plus noise signals. By symmetry assumption all

the equalizer outputs have equal noise variance.
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=
1

∑N
l=1

λl

(λl+c )2

ρ

N

N
∑

l=1

λ2l
(λl + c )2

=
1

∑N
l=1

ρ−αl

(ρ−αl+c )2

ρ

N

N
∑

l=1

ρ−2 αl

(ρ−αl + c )2

.
=

1

ρ−αmin

ρ

N
ρ−2 αmin

=
1

N
ρ1−αmin . (167)

Using the union bound (164),

P (E, Ō) 6̇











2Rle−ραmin αmin < 1

2Rle−
ρ

N αmin > 1

(168)

Since the exponential function dominates polynomials we have

lim
ρ→∞

e−ραmin

ρ−MN
= 0

and

lim
ρ→∞

e−ρ

ρ−MN
= 0

which in turns gives

P (E, Ō) 6̇ ρ−MN . (169)

Using (165) and (169), the PEP given by (163) is bounded as

Perr 6̇ Pout + P (E, Ō)

6̇ P b
out + ρ−MN

.
= P b

out

= ρ−dout . (170)

therefored > dout which concludes the proof for the RZF system.

For the ZF precoding system, it can be directly shown that a similar proof holds for both ZF precoding

designs.
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B. Proof of Eq. (84)

Recall that

ψ ,
1

|u1l′u∗2l′ |2
+

N
∑

k=2

1

|ukl′u∗1l′ |2
.

All terms of ψ the common factor 1
|u1l′ |2 . Thus we have

ψ = ψaψb

ψa =
1

|u1l′ |2

ψb =

(

1

|u∗2l′ |2
+

1

|u2l′ |2
+

1

|u3l′ |2
+

1

|u4l′ |2
+ · · ·+ 1

|uNl′ |2
)

. (171)

Observe that all the terms ofψb are distinct except for the first two.

We now bound the probabilityP
(

ψ 6 ρ
r

N

)

.

P
(

ψ 6 ρ
r

N

)

> P
(

ψ 6 ρ
r

N | ψ < c
)

P(ψ < c)

> P
(

c 6 ρ
r

N

)

P(ψ < c)

.
= P(ψ < c) (172)

Usingψ = ψaψb we can further bound (172)

P(ψ < c) = P(ψaψb < c)

> P
(

ψaψb 6 c
∣

∣ψa < c2
)

P(ψa < c2)

> P
(

c2ψb 6 c
)

P(ψa < c2).

We thus have

P
(

ψ 6 ρ
r

N

)

> P
(

ψb 6 c′
)

P(ψa < c2) (173)

andc′ = c/c2.

We now evaluate the two probabilities in the right hand side of (173). The first probabilityP
(

ψb 6

c′
)

= O(1). The proof easily follows from [13, Appendix A] with the observation that this proof holds

even when the two first elements ofψb are the same. The second probabilityP(ψa < c2) is evaluated as

follows. Let q = |u1l′ |2. We use the following distributions from [9, Appendix A]

f(q) = (N − 1)(1 − q)N−2, 0 6 q 6 1
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then

P(ψb < c2) = P(q >
1

c2
)

=

∫ 1

1

c2

f(q) dq

= (1− 1

c2
)N−2 (174)

Observing that (174) is not a function ofρ concludes the proof.

C. Proof of P
(

λl > ξ
)

= O(1) for any l

Define a Wishart matrixW using the Gaussian matrixH.

W =











HHH M > N

HHH N 6 N

.

Let n = max(M,N) andm = min(M,N). The matrixW is m ×m random non-negative definite

that has real, non-negative eigenvalues withλ1 > · · · > λm0. The joint density of the ordered eigenvalues

is [17]

f(λ) = K−1
m,ne

−∑
i λi

∏

i

λn−m
i

∏

i<j

(λi − λj)
2. (175)

Thus the marginal distribution ofλl is given by [17]

fλl
(λl) =

∫

. . .

∫

f(λ) dλ2 . . . dλm

=
1

m

m
∑

i=1

ϕi(λl)
2λn−m

l e−λ1

where

ϕk+1(λ) =

[

k!

(k + n−m)!

]1/2

Ln−m
k (λ), k = 0, . . . ,m− 1

whereLn−m
k (x) = 1

k!e
xxm−n dk

dxk (e−xxn−m+k) (with L0 = 1) is the associated Laguerre polynomial of

orderk.

We now computeP
(

λl > ξ
)

,

P
(

λl > ξ
)

=

∫ ∞

ξ

1

m

m
∑

i=1

ϕi(λl)
2λn−m

1 e−λldλl

>
∫ ∞

ξ

1

m
ϕ1(λl)

2λn−m
l e−λldλl
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=

∫ ∞

ξ

1

m(n−m)!
λn−m
l e−λldλl

=
1

m(n−m)!

(

− e−λlλn−m
l −

e−λl

n−m
∑

k=1

n(n− 1) . . . (n− k + 1)λn−m−k

)∣

∣

∣

∣

∞

ξ

(176)

=
1

m(n−m)!

(

e−ξξn−m +

e−ξ
n−m
∑

k=1

n(n− 1) . . . (n− k + 1)ξn−m−k
)

(177)

where (176) follows from [22, Section 2.32]. The right hand side of Equation (177) is a non-zero constant

bounded away from zero. This concludes the proof.
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