arxXiv:1210.7515v1 [cs.IT] 28 Oct 2012

Rewriting Codes for Flash Memories

Eitan Yaakobi, Hessam Mahdavifar, Paul H. Siegel, Alexan@edy, Jack K. Wolf,

Abstract—Flash memory is a non-volatile computer mem- entire blocks can be erased. Sublock erasuresare not
ory comprising blocks of cells, wherein each cell can take only time-consuming, but also degrade the physical quality
on g different values or levels While increasing the cell level ¢ o memory. For example, a typical block in a multilevel
is easy, reducing the level of a cell can be accomplished onIyfI h ’ tolerat ’ I bow* f
by erasing an entire block. Since block erasures are highly ash memory C_an olerate only abo or even ewe_r .
undesirable, coding schemes — known agloating codes (or €rasures before it becomes unusable, and as such the dfetim
flash code} and buffer codes— have been designed in order and performance of the memory is highly correlated with
to maximize the number of times that information stored in a the frequency of block erasure operations. Therefore, it is
ga&récnﬁeé?;srﬁéan be written (and re-written) prior to incurri ng 4 importance to design coding schemes that maximize the

An (n,k t), flash code C is a coding scheme for storing number of times |r_1format|_on sto_red m_aflash memory can be
k information bits in n cells in such a way that any se- Written (and re-written) prior to incurring a block erasure
quence of up tot writes can be accommodated without a  Such coding schemes — known #sating codes(or flash
block erasure. The total number of available level transitons codeg and buffer codes— were recently introduced ifJ[1],

0 ol (g1 and he wie Gecanyof C, deined_ {5 ) S thn, several mora paprs o s uboce v

to perfectly utilizing all these transitions. In this paper, we show aPpeared in the literature! [5]. [10]=[12]. [15]. [19]. Ited be
a construction of flash codes with write deficiencyO(gklogk) if ~ pointed out that flash codes and buffer codes can be regarded
q > log, k, and at most O(klog® k) otherwise. as examples of memories with constrained source, which were
An (1,1, t)g buffer code is a coding scheme for storing described in[[12]. Yet another example of such codes are the
a buffer lof. r é-ary symbols such that for any sequence of write-once memory (WOM) code§1[2]I[4]CTL7], that have
symbols it is possible to successfully decode the lastsymbols . .
that were written. We improve upon a previous upper bound on been studied since the early 1980s. In fact, flash codes may be
the maximum number of writes ¢ in the case where there is a regarded as a generalization of WOM-codes. Slightly diffier
single cell to store the buffer. Then, we show how to improve a and yet very related are the rank modulation cofles [L3],.[14]
construction by Jiang et al. that uses multiple cells, where: > 2r.  |n rank modulation, the information is not stored according
the exact cell levels but rather by the cell permutation Whic
Index Terms—Coding theory, flash memories, flash codes, is derived from the ordering of these levels.
buffer codes. An (n,k,t), flash codeC is a coding scheme for storing
k information bits inn flash-memory cells, withg levels
|. INTRODUCTION each, in such a way that any sequence of upt tarites

Flash memories are, by far, the most important type 6&n be accommodated without incurring a block erasure. In
nonvolatile computer memory in use today. Flash devic#ie literature on flash codes,vaite is always a bit-write —

are employed widely in mobile, embedded, and mass-stordhat is, a chang® — 1 or 1 — 0 in the value of one of
applications, and the growth in this sector continues att@ek information bits. Observe that in order to accommodate

staggering pace. such a write, at least one of the cells must transition

A flash memory consists of an array of floating-gaédls from a lower level to a higher level (since a cell's level,
organized intoblocks (a typical block contains abouz?° determined by its charge, can only increase). On the other
cells). The level or “state” of a cell is a function of thehand, the total number of available level transitions:iflash
amount of charge (electrons) trapped within it. rhultilevel cells isn(q—1). Thus, throughout this paper, we characterize
flash cells voltage is quantized tg discrete threshold values;the performance of a flash codgé in terms of its write
consequently the level of each cell can be modeled as @gficiency defined as5(C) = n(q—1) —t. According to the
integer in the rang®, 1, ...,q—1. Nowadays, the parameterforegoing discussiors(C) is a measure of how cloge comes
g itself can range fromy = 2 (the conventional two-state to perfectly utilizing all the available cell-level tratisins:
case) up to = 16 and it can reach even higher valugs [6]exactly one per write. The primary goal in designing flash
The most conspicuous property of flash-storage technologgdes can thus be expressedm@simizing deficiency
is its inherent asymmetry between cell programming (chargeWhat is the smallest possible write deficiency
placement) and cell erasing (charge removal). While addifg(n, k) for an (n,k,t); flash code, and how does it
charge to a single cell is a fast and simple operation, rengpvibehave asymptotically as the code paramekernd n get
charge from a cell is very difficult. In fact, flash technologyarge? The best-known lower bound, due to Jiang, Bohossian,
does not allow a single cell to be erased — rather, on@nd Bruck [9], asserts that
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tions? It appears that the answer to this question deperdbuffer of r /-ary symbols that has to be storedsing-ary

on the relationship betweeh and n. In this paper, we are cells, the goal is to maximize the number of writes
concerned mainly with the case where bdthand n are In Section V1], we formally define buffer codes. Then, we
large, andn is much larger thark (in particular,n > k?). study two extreme cases where the number of cells is either
In SectioV], we consider the case whéré: is a constant. one or very large. For the former case, Jiang et al. gave in [1]
At the other end of the spectrum, the cdse- n has been [10] a construction as well as an upper bound on the number

studied in [12]. of writes. Their construction works fon = 1,/ = 2 and
The first construction of flash codes for lafge/as reported guarantees = % + r — 2 writes. The upper bound stated

by Jiang and Bruck[[10],[[11]. In this construction, tike in [I], [1O] for n = 1 asserts that
information bits are partitioned intan; =k/k’ subsets of

k' bits each (withk’ < 6) while the memory cells are t < V -1 J 4+ [((g—=1) mod (" —1) +1)].
subdivided intorn, > my groups ofn’ cells each. Additional -1

memory cells (calledndex celly are set aside to indicate\We will show how to improve this bound such that fpe ¢,
for each subset ok’ bits which group ofn’ memory cells

is used to store them. The deficiency of the resulting flash t< - +r

codes isO(,/g7). Note that forn > k, the lower bound on Lyare(h)e ’

write deficiency in[(lL) behaves &3(gk), and thus does not vY(hereq) is Euler's o function.

depend om. Consequently, the gap between the Jiang-Bruc If the buffer is binary { = 2) and the number of cells is

gnztrzgtlzzg%]wili tit;emIL(j)ZVhe Tat)oeurnti;ri(t) uld be arbltrarllgignificantly larger than the buffer size then a trivial upper
ge, esp y g ' bound on the number of writesis n(q — 1). Jiang et al.

In [19], a different construction of flash codes was proposeghowed in [[1], [10] how to achieve = (g — 1)(n — 2r +
These codes are based upon representing temory cells Doar_1 writ,es Assume thay = 2 th(jn the number of

as a high-dimensional array, and achieve a write deficie ites is 1 — r and after thei-th write. the buffer is stored
of O(gk?). Crucially, the deficiency of these codes doeBetween cells+1 andi +r. If g > 2, then the cell levels are

not dbeptend rgnn].(2Nevertt;]e_lerz]s_s, :Eereb 'St still a tls'gi?'ﬂcanhsed layer by layer, where first only levels zero and one are
ga}e netwee <Ilt1 ) _dV;'h ICI IS be ejﬂctzu;{ren Y KNOWN ;sed, then one and two, and so on. In the transition from one
eficiency result — and the lower bound Of(4k). Ig%;er to another, first the buffer is copied and stored in e n

In this paper, we present a new construction of flash COdI er and then more writes are allowed. Thus, this constmct
which reduces the gap between the upper and lower boundsatﬂaWS 1 — r writes on the first layer ana

Wri_te defici_ency_ toa fa_ctor that_ imge_lrithmic_in the number writes in all other layers, so the total number of writeg is
of |nforma_t|on bl_tsk. This result |s arnved”at in several stag_esﬂ —rt(g—-2)(n—2r+1)=(q—1)(n—2r+1)+r—1.
As a starting point, we use the “indexed” flash codes _of JiaRfa will show how to improve
and Bruck [11]. In SectidnlV, we develop new encoding ang,,
decoding procedures for such codes that eliminate the reed
index cells in the Jiang-Bruck construction [11]. The wide
ficiency achieved thereby 8(gk?), which coincides with the
main result of[[18]. When the encoding procedure developed i
Sectiol IV reaches its limit, there are still potentiallynmerous
unused cell-level transitions. In SectiohV, we show how to Let us now give a precise definition of flash codes that
take advantage of these transitions in order to accommod#ge introduced in the previous section. We y#g1}* to
even more writes. To this end, we introduce a new indexirgtgnote the set of binary vectors of lengthand refer to the
scheme, which is invoked only after the encoding method Bfements of this set asformation vectors The set of possible
SectioflIV reaches its limit. Thereupon, we extend this idd@vels for each cell is denoted by, = {0,1,...,4—1} and
recursively, throughlog,k] different indexing stages. Thisthought of as a subset of the integers. fHeectors of length

leads to a result, established in Theof@m 4, stating that 7 over A, are calledcell-state vectorsWith this notation,
any flash codeC can be specified in terms of two functions:

Q(gk) < 84(n, k) < O(max{q,log,k} klogk) (2) an encoding mag and a decoding ma. The decoding
map D : A} — {0,1}* indicates for each cell-state vector
for all n > k%, where the upper bound is achieved construg-c A" the corresponding information vector. In turn, the
tively by the flash codes described in Seclidn V. In Sedfidn Véncoding map: {0,1, .. k=1 x AF — AJ U {E} assigns
we present and discuss constructions of flash codes for #ee a@ every indexi and cell-state vectox € A", another cell-
where the number of memory celisis not significantly larger state vectory = £(i,x) such thaty; >x; for all j and
than the number of bit. D(y) differs from D(x) only in the i-th position. If no such
The other type of codes we discuss in this paper are thes Ag’ exists, thenf (i, x) = E indicating that block erasure
buffer codes. Ar(n, , £, t), buffer code is a coding scheme foris required. To bootstrap the encoding process, we assume
storing a buffer ofr ¢-ary symbols such that for any sequencéhat the initial state of ther memory cells is(0,0,...,0).
of t symbol writes, it is possible to successfully decode thdenceforth, iteratively applying the encoding map, we can
lastr symbols that were written without a block erasure. Givetetermine howany sequencef transitions0 — 1 or 1 — 0

— 2r+ 1 more

this construction such that in
ery transition between layers, the buffer is stored cwdiy

if1 the cells and thus is not copied as before. This improves
the number of writes tdg —1)(n —r).

Il. PRELIMINARIES AND FLASH CODESDEFINITION



in the k information bits maps into a sequence of cell-state (Y1, Y2, -, Yn) = (X1,X2,...,Xn);
vectors, eventually terminated by the block erasure. Tdasl$ iy = find_left_cell (Y1, Y2, ..., Yn);
to the following definition. iy = £find_right_cell (Y1, V2, ..., Yn);
if (ip ==0) returnkE;
if (i1 ==1ip) // thereis only one non-full cell
{if(j==2)a=2;
else a=j+2 - (y; (mod 2));

Definition. An (n, k), flash codeC(D, £) guaranteest writes
if for all sequences of up totransitionsO — 1 or 1 — 0 in the
k information bits, the encoding map does not produce the
block erasure symbdt. If so, we say thatC is an(n,k,t), -
code, and define thdeficiency ofC ass(C) = n(q—1) —t. if(yy +a>q-1) returnk;
- ) o ) _ else{y; =y; +a; return; } }
In addition to this definition, we will also use the following yi=vyi +1;
terminology. Given a vector = (x1,x2,...,Xu) OverA,, we Lo L
define itsweightaswt(x) = x1 + x1 + - - - + x, (Where the i (-n==D A ==q-1)
addition is over the integers), and jigrity aswt(x) mod 2. {Ui]- =0; vj, ; =Yy, ,(mod 2);
a=2-vp) +0q - (yis,j(mod 4));
[1l. Two-BIT FLASH CODES
In this section, we present a construction of flash codes that
usesn g-ary cells to storek = 2 bits. In [S], a construction else Y, ;=Y ;+a; }
g-ary
with these parameters was presented and was shown to be
optimal. The construction we present in this section will be The function £ind_left_cell (v, Y2, ..., Ys) finds
proved to be optimal as well and we believe that it is more leftmost cell of level less thap — 1 and if there is
intuitive. not such a cell then it returns + 1. Similarly, the func-
In this construction, the leftmost and rightmost cells eerrtion £ind_right_cell(y,Ya,...,Yyx) finds the right-
spond to the first and second bit, respectively. When ravgiiti most cell of level less thag — 1 and if there is not such a
assume the first bit changes its value, then the leftmost cedlll then it returng). The notationy;. stands for the variable
of level less tham — 1 is increased by one level. Similarly,y; in casej = 1, andy;, if j = 2. The same rule applies
whenever the second bit changes its value, the rightmokst aely;, .. The symbolA stands for the logical operator “and”.
of level less than; — 1 is increased by one level. In generalThe next theorem proves the number of writes this constmcti
the cell-state vector has the following form: guarantees.

if(a<0) Yis ;= Yi_; +4+x;

(q—l,...,q—1,x1-,0,...,0,x]-,q—1,...,q—1), )
Theorem 1. If there aren g-level cells and; is odd, then the

where 0 < x;,x; < q—1. This principle repeats itself coge C(D,5, &£,5) guarantees at least= (n —1)(g — 1) +
until only one cell is left with level less than — 1. Then, Lq—l

. . X . : ' | 45— | writes before erasing.
this cell is used to store two bits according to its residue 2 J g
modulo 4. If this residue is0,1,2,3 then the value of the

bits is (v1,22) = (0,0),(1,0),(0,1),(1,1), respectively. thang — 1, the weight of the cell-state vector increases by one
The (;onstructlon is presenteq fc_;r odd valuesgoénd we on each write. This may change only after at last- 1)(q —

will discuss later how to modify it for even values as welly) yritas Assume that there is only one cell of level less than
In th_e re_malnder_ of the_ paper, these maps are descrlt%lgg 1 afters = (n—1)(g — 1) + k writes, wherek > 0, and
algorithmically, using (C-like) pseudo-code notation. call it the i-th cell. Starting this write, the different residues
Decoding map D,p: The input to this map is a cell-statey, 4,104 of the i-th cell correspond to the four possible two-
vectorx = (x1,xz,...,%,). The output is the correspondingy;t information vector(vy,v;). Therefore, on the-th write,
two-bit information vector(vy, v;). we also need to increase the level of thth cell so it will
correspond to the correct information vector on this wifter

i1 = £ind_left_cell (Y1, V2, ..., Yn) ; all s_ucceeding writes, if the second_ bit qhanges then;-the
cell increases by two levels. If the first bit changes froro

1 then thei-th cell increases by one level and otherwise by
three levels. Therefore, if there awemore writes and, = 0
then thei-th cell increases by at mo2w: levels, and if there
arem more writes and»; = 1 then thei-th cell increases by

Proof: As long as there is more than one cell of level less

ip = find_right_cell (Y1, Y2, ...,Yu);

if (i, ==0) // all cells are full

{v1=g-1@mod 2); v3=[((9-1) (mod 4))/2];}
if (i1 ==1i,) // thereis only one non-full cell

o = Vi (!.md 2); 02 = L(y;y (mod 4))/2]; } at most2m + 1 levels.

if (i '=1y) // there are at least two non-full cells Let us consider all possible valuesiofind the information
{v1=yi (mod 2); vz =y, (mod 2); } vector (v1, ;) on the s-th write in order to calculate the
number of guaranteed writes before erasing. Note that on the
Encoding map &5: The input to this map is a cell-states-th write (v; + v2) = s(mod 2). Furthermore, sincg is
vectorx = (x1,xp,...,X,), and an indexj € {1,2} of the odd, the value of the bit that is written changes from one to
bit that has changed. Its output is either a new cell-statéove zero because it reaches leyel- 1, and thus the other bit has

y = (y1,Y2,.-.,yn) Or the erasure symbd. valuek(mod 2).




1) Assumek(mod 4) = 0, then(vy,v,) = (0,0) and the V. INDEX-LESSINDEXED FLASH CODES

level of thei-th cell does not increase on théh write. Our point of departure is the family of so-calléadexed
Sincevy = 0, afterm writes the cell Increases by atflash codesdue to Jiang and BrucK [L1], that were briefly
most2m levels. Hence, there are at |_€‘%Iz— more described in Sectidh . In this section, we eliminate thednee
writes and the total number of writes is at least for index cells — and, thus, the overhead associated witsethe

11—k _1 cells —in the Jiang-Bruck constructidn [11]. This is acleidv

(n—1)(g—1)+k+1 >m-1)@g-1)+12> . I. This
n=1(@-1)+k+——7—2>m-1)@G-1)+"75= py “encoding’ the indices into the order in which the cell
levels are increased.
2) '(A‘Ssurge]i(l?gi)él)” z L t;'e_n <(Z11’00)2)the_n E)ln’ %)16? As in [11], we partition thez memory cells inton groups of
01,02) = \L, 1) W (01,02) = (L, n' cells each. However, while in [11] the value of is more

th write thei-th cell does not increase its level and after . . .
L . or less arbitrary, in our constructiom’ = k. We henceforth
m writes its level increases by at mast: + 1 levels. If

[
(01,02 = (0, 1) then thei-th cell increases by one Ievelrefer to such groups of’ = k cells asblocks (though they

S . are not related to th@hysical blocksof floating-gate cells
and aftenn writes its level increases by at mast: more . . .
levels. H in both h a2k which comprise the flash memory). We will furthermore use,
evels. Hence, In both cases there are at throughout this paper, the following terminology. We sagtth
more writes. Together we get that the total number of . . . i
» a block isfull if all its cells are at level—1;

writes is at least . . .
q—2—k q—-1 » a block isemptyif all its cells are at level zero;
(n=1)(q—1)+k+ =z (n—-1)(q—1)+ : I
2 2 » a block isactiveif it is neither full nor empty;

3) Assumek(mod 4) = 2, then (vy,v;) = (0,0) and » a block islive if it is not full (either active or empty).
the i-th cell increases by two levels ostth write. Inour construction, each block represeesactly one bitThis
Sincev; = 0, after m more writes the cell increasesimplies that the total number of blocks, given by= |n/k|,
by at most2m levels and hence there are at leagnust be at leask, which in turn impliesn > k2. If n is
|(g—1—(k+2))/2] more writes, wherek > 2. notdivisible byk, the remaining cells are simply left unused.
Therefore, the total number of write is at least Finally, we also assume that eithkeris even org is odd. If
3k 1 this is not the case, we can invoke the same construction with
(n—1)(g—1)+k+ 1 3 >n-1)(g—-1)+ qT k replaced byk + 1 (and the last bit permanently set to zero).
The key idea is that each block is used to encode not only
4) Assumek(mod 4) = 3, then (v1,v2) = (1,0) or the current value of the bit that it represents, but aich of
(01,02) = (0,1). If (v1,v2) = (1,0) then on thes-  thek bits it represents. The value of the bit is simply the parity
th write thei-th cell increases by two levels and aftepf the block. The index of the bit is encoded in tbeder in
m more writes it increases by at mdst: + 1 levels. If - \hich the levels of the cells are increased. For example, if
(v1,02) = (0,1) then thei-th cell increases by threethe block stores theth bit, first the level of the-th cell in the
levels and aftern more writes it increases b}(’ at mosh)|ock is increased fror to g—1 in response to the transitions
2m more levels. Hence there are at le456—" more (—; 1 and1— 0 in the bit value. Then, the same procedure is
writes, wherek > 3. Thus, the total number of writes isapplied to the(i-+1)-st cell, the(i+-2)-nd cell, and so on, with
at least the indicesi +1,i+2,... interpreted cyclically (moduld).

4k _1  This process is illustrated in the following example.
(=D -1)+k+T=—=>m-1-1+1—.
o Example 1. Suppose thak = 4 andg = 3. If a block
In any case, the guaranteed number of writegris-1)(q —  apresents the first bit, then its cell levels will transitisom

1) + {%J ® (0,0,0,0) to (2,2,2,2) in the following order:

For even values of;, the construction is very similar. As

long as there is more than one cell of level Igss1 we follow (0000) — (1000) — (2000) — (2100) — (2200)
the same rules for the encoding. For the decoding, sjned — (2210) — (2220) — (2221) — (2222)
is no longer even, the value of; is the parity of the cells .
1,...,11, wherei; is the leftmost cell of value less— 1. The (?]n the other Ze_md’ f0”r a .b.|0Ck tf(\jat r.eprfasen:)s .the second bit,
value ofv, is the parity of the cells,, i, +1,...,n, where the corresponding cell-writing order is given by:

iy is the rightmost cell of value lesg — 1. If there is only (0000) — (0100) — (0200) — (0210) — (0220)

one cell left, then it represents a value of two bits as before 5 (0221) — (0222) — (1222) — (2222)

according to its residue modulb If the the index of the last
available cell isi then The cell-writing orders for blocks that represent the trardi

. fourth bits are given, respectively, by
o1 = (i =1 +y;)(mod2), (0000) — (0010) — (0020) — (0021) — (0022)
v2 = ((n =) + [(yi(mod4))/2])(mod2). 0 (1022) — (2022) — (2122) — (2222)
Also, the last cell does not reach level-1 so it is always and

possible to distinguish what the last cell is. We omit theded
details as the proof is similar to the case wherie odd. (0000) — (0001) — (0002) — (1002) — (2002)



— (2102) — (2202) — (2212) — (2222) described above is at most

Note that, unless a block is full, it is always possible to (k—l)((k+l)(q—l) - 1) = O(qk?) (3)
determine which cell was written first and, consequently,
which of thek = 4 bits this block represents. Proof. Note that at each instance, at mbsif them blocks

are active. The encoding mafy(i, x) produces the symbol
We now provide a precise specification of @m k), flash E when there are no more empty blocks, and none of the
codeC based upon this idea, in terms of a decoding &P active blocks represents theth bit. In the worst case, this
and an encoding magy. may occur when there ake— 1 active blocks, each using just
Decoding mapDy: The input to this map is a cell-state vectobne cell level. This contributegk — 1) (k(g—1) — 1) unused
x = (x1|xz| - - - |xy), partitioned intom blocks. The outputis cell levels. In addition, there are at mdst- 1 cells that are

the corresponding information vect6og, 1, . . ., vx—1). unused due to the partition inte = |n/k| blocks of exactly
k cells. These contribute at mogt — 1)(g—1) unused cell
(vo, 01, -, 0k-1) = (0,0,...,0); levels. 1
for (j=1; j<m; j=j+1)
if (active(xj)) V. NEARLY OPTIMAL CONSTRUCTION
{i= read_index(x)); v;= parity(x));} It is apparent from the proof of Theor&in2 that the defi-

] _ _ i _ ciency of the flash cod€&(Dy, &), constructed in Sectign]V,
Encoding map &y : The input to this map is a cell-state vectofs gye primarily to the following: when writing stops, there

x = (x1]x] - - - [x), partitioned intom blocks ofk cells, and 5y remain potentially large amount of unused cell levete T
an indexi of the bit that has changed. Its output is either Rey idea developed in this section isdontinue writingafter
cell-state vectoty = (y,[y,|---[y,,) or the erasure symbol i encoding mag, produces the erasure symtilutilizing

E. those cell levels that are left unused By. Obviously, it is
_ . not possible to continue writing using the same encoding and

(yllyz! o \y@) = (xl“xz“ v ) decoding maps. However, it may be possible to do so if, at
for (j=1; j<m; j=j+1) , the point whené, produces the erasure symtflwe switch
if (active(x;) A (read_index(xj) == 1)) to a different encoding proceduresay £;. In fact, this idea
{write(y;); break;} can be applied iteratively: oncg€, reaches its limit, we will
if (j==m+1) // active block not found transition to another encoding mdp, then yet another map
for (j=1; j<m; j=j+1) &3, and so on.
if (empty (x;)) {write_new(i, ;)i break; } Assuming thak = 0 (mod 4), here is one way to continue
if (j==m+1) // noempty blocks remain writing after the encoding mag, has been exhausted. When
returnE; &p produces the erasure symliglwe say that thérst stageof

encoding is over and transition to teecond stageas follows.
To complete the specification of the flash cdd€D,, £y), First, we re-examine the cell-state vector (x1|x3] - - - |xm)
let us elaborate upon all the functions used in the pseude-cand re-partition it int@®m = 2 |n/k| blocks ofk/2 cells each.
above. The functioractive (x), respectivelyempty (x), Most of these smaller blocks will already be full, but we may
simply determines whether the given block is active, reipec find somem; of them that are either empty or active (live).
ely empty. The functioparity (x) computes the parity of Observe thatr; < 2(k— 1) since at the end of the first stage,
x, defined in Sectidnlll. Note that the parity of a full blockhere are at most — 1 active blocks ofk cells, and each of
is always zero (sincé&(q—1) is even, by assumption). Thethem produces at most two live (non-full) blocksiof2 cells.
function read_index (x) computes the bit-index encoded If m1 > k, we can continue writing as follows. Once again,
in an active blockx = (xo,x1,...,x¢_1). This can be each of then; blocks will represent exactly one bit; as before,
done as follows. Find all the zero cells im Note that the value of this bit is determined by the parity of the blo&k.
these cells always form one cyclically contiguous run, sgart of the transition from the first stage to the second stage
Xj,Xj11,---,Xjr (Where the indices are moduld. Then the we record the current information vectary, vy, ..., vx_1) in
index of the corresponding bit is= j+ r+ 1 (modk). If the firstk of the m live blocks, sayxq,xy, ..., x;. To this
there are no zeros i, there must be exactly one cell, say end, wheneveparity (x;) # v;_1, we increase the level of
whose level is strictly less thap-1. In this case, the bit-index one of the cells inx; by one; otherwise, we leave as is.
isi = j+1 (modk). The functionwrite (y) proceeds Since the blocks now havi/2 cells rather thark cells,
along similar lines. Find the single cyclically contiguoust is no longer possible to encode in each blagkich of
run of zeros in(yo, Y1, .-, Yxk—1), S&YYj, Yj+1,---, Yj+r- If the k information bits it represents. Therefore, we set aside
yj-—1<4—1, increasey; ; by one; otherwise sef; = 1. for this purpose2(k—1)[log,(k+2)] index cells(that are
If there are no zeros iny, find the unique celly; such that not used during the first stage). These cells are partitioned
yj<q—1 and increase its level by one. Finally, the functiointo 2(k—1) blocks of 1 = [log_(k+2)] cells each, which
write_new (i, y) simply setsy; = 1. we call index blocks Henceforth, it will be convenient to
refer to the blocks ok/2 cells asparity blocks in order to
Theorem 2. The write deficiency of the flash cod®& Dy, £y) distinguish them from the index blocks. Initially, the first



index blocksuy, uy, . .., u; are set so that; = i (in the base- parity blocks, ofk/2 cells each, an®(k—1) index blocks.
g number system), which reflects the fact that the informatidrhe output is the information vectdvg, v1, ..., vx_1).

bits vy, v1,...,vr_1 are stored (in that order) in the firkt
live parity blocks. The nextn; —k index blocks are set to (vo,v1,...,vk1)=(0,0,...,0);
(0, 00) thereby ?ndicating that .the corrgspo_nding (ve)| gor (=j=1; j<2m; j=j+1)
parity blocks are available to store information bits. Thst|

2(k—1) — m; index blocks are set tog—1,9—1,...,4—1) if (full(x;)) continue; //skip full blocks
to indicate that the corresponding parity blocks are full (i while (full(uy)) (={(+1; //skip full blocks
fact, nonexistent). Finally, it is possible that in the mss b=y =l+1; ]

of enforcingparity (x;) = v;,_; for the firstk live parity } if (i #0) v = parity (x));

blocks, some of these blocks become full (this happens ifl
wt(x;) = (k/2)(q—1) —1 andv; = 0 at the end of

the first stage, sincé/2 is even by assumption). To ac-§
count for this fact, we set the corresponding index blocks zih information bit. If such a block is found, it is incremedt

—1,9—1,...,9—1). This completes the transition from the e . ; .

f(i‘gst stz:lge to tge s?acond stagz which is invoked when tﬁgd checked to see if itis full (in which case the correspogdi

encoding magf, produces the er’asure symtil index block is set tg* — 1). If not, another live parity block
0

. . . . .. is allocated to represent theth information bit. If no more
Let us now summarize the foregoing discussion by giving parity blocks are available

a concise algorithmic description of the transition praced the erasure symbdl is returned.

Transition procedure 77 : Partition the memory int@ |n/k| Encoding map & : The input to this map is a cell-state
parity blocks ofk/2 cells, and identify then; < 2(k—1) Vectorx = (x1|x2] - - [xo|| 21 [uz] - - - [uzk—2), partitioned
parity blocksx1,xy, ..., %y, that are not full. Ifm; < k, into 2m parity blocks and(k—1) index blocks, and an index

output the erasure symbBland terminate. Otherwise, set thé Of the information bit that changed. Its output is either a

Given an index of the bit that has changed, the encoding map
first tries to find an active parity block that represents the

2(k—1) index blocksuy, us, ..., uy_, as follows: cell-state vectoty = (y;[y,| - [y, || w3 [u3] - - - |uy_,) or
the symbolE.
i fori=1,2,...,k
=140 fori=k+1,k+2,...,m (4) (Wilyal - [yam) = (xalx2] - - |x2m);
gt —1 fori=my+1,m+2,...,2k—2 (|| - - |y o) = (m|ua] - - [upk_n);

wherep = [log, (k+2)] is the number of cells in each index f°r (b=j=1; j<2m; j=j+1)

block, then record the information vectooy, v1, ..., vk 1) if (full(x;)) continue;
in the firstk live parity blocksxy, xo, ..., xi, as follows: while (full (uy)) {=(+1;
if (uy==i+1)

for (i=1;i<k; i=i+1)
if (parity (x;) # v;_1)
{increment (x;); if (full(x;)) u;=g*—1;}

increment(yﬂ;
if (Full(y)) wy=q"—1;

break;

The functionfull (x) determines whether the given blogk else (=/(+1;
(which could be a parity block or an index block) is full. The }
functionincrement (x) increases by one the level of a cell if (j==2m+1) // active block not found
(does not matter which) in the given live block. for ({=j=1; j<2m; j=j+1)

During second-stage encoding and decoding, we will need if (£full(x;)) continue;
to figure out for each active parity block which of the k while (full (uy)) (=/(+1;
information bits it represents. To this end, we will have talfi if (u,==0) )

and read the index bloak thatcorrespondgo x. How exactly
is the correspondence between parity blocks and index block
established? Note that, upon the completion of the tramsiti

u2=i—+1;
if(parity(xj)#zy)increment(yﬂ;

procedureTy, there is the same number of live parity blocks if (full(y;) uy=q"—1;
and live index blocks; moreover, thgth live index block } break;
corresponds to thgth live parity block, for allj. The encoding else (=(+1;

procedure will make sure that this correspondence is preger }

throughout the second stage: whenever a parity block become| if (j==2m-+1) // nomore available live blocks

full, it will make the corresponding index block full as well return E;
We are now ready to present the encoding and decoding maps

which are, again, specified in C-like pseudo-code notation. Note that when the second encoding stage terminates, there

Decoding mapD; : The input to this map is a cell-state vectoare at mosk — 1 parity blocks that are not full, comprising at

x = (x1|x2] -+ |xom | w1|uz| - - - |uok_»), partitioned into2m  mostk(k —1)/2 cells (at mosk(k —1)(g—1)/2 cell-levels).




Once the map®; and&; are understood, it becomes cleabinary rather than in the bagenumber system. This allows
that the same approach can be applied iteratively. Thetiegul index blocks that correspond to successive encoding stages
flash codeC* will proceed, sequentially, through differ- be “stacked on top of each other” in the same memory cells.
ent encoding stage§), £1, ..., &1, Wheres = [log, k]. In  Specifically, the encoding stagg will use only cell levelsd
describing this code, we shall assume for the sake of siityplicand1 to record the indices in its index blocks. Once this stage
thatk is a power of two, that i& = 2°. If not, the same code is over, the index information recorded duriffg and & is
can be used to sto > k information bits, of which the last no longer relevant, and the level afl the 2(k — 1)u’ cells
2° — k are set to zero. Note that this will not change the ordar the 2(k — 1) index blocks can be raised th Thereafter,
of the resulting write deficiency. providedq > 3, the transition procedur@, and the encoding

To accommodate the encoding ma&hsés, ..., 1, we set map & can use cell leveld and 2 to record the relevant
aside foreach map batch o2(k — 1) index blocks, with each index information in thesame memory cellProceeding in
index block consisting oft = [log,(k+2)] cells. The transi- this manner, we can accommodate upgte- 1 batches of
tion procedure], which bridges between the encoding mapisdex blocks in2(k — 1)u’ memory cells. We shall refer to
&1 andé&, (for somer € {2,3,...,s—1}) is identical to the this indexing scheme astacked binary indexingnd denote
transition procedurd, except for the following differences: the resulting flash code b§’.

D1. The r-th_batch of index_ bIOCkSriS used; and Theorem 4. The write deficiency of the flash cod& defined
D2 The parity blocks con5|st_d<f/ 2 cell_s each. by the sequence of decoding/encoding mMBpsD+, ..., Ds_1
In addition toD1 andD2, the decoding/encoding maps and  ande,, &, ..., E_4 that use stacked binary indexing is at most

&, differ from Dy and &, in that "2m” should be replaced by O (gklog k) if g > log, k, and at mos® (klog® k) otherwise.
“2"m” throughout, wheren stands for|n/k| as before. There
are no other differences. Proof. With stacked binary indexing, the number of cell le-

) . vels wasted in all th@(k — 1) (s — 1) index blocks is at most
Theorem3. For s=[log,k|, the write deficiency

of the flash code C* defined by the sequence of 2(g—1)(k—1) F — 1-‘ [og, (k+2)] @)
decoding/encoding maps Dy, D1,...,Ds 1 and g—1 2

; 2
Eo, &1, -+, Es-1 18 O(qklogk/log q). Although for most values df andg this is strictly less thari{5),

Proof. We consider the worst-case scenario for the numb@ the other terms ir[{6) are still dominated By (M.

of cell levels that are either unused or “wasted” in the oVerg&yemark. If we need to storek symbols rather than bits,

encoding procedure. As before,_ _ther_e are at mostl cells  5yer an alphabet of sizé > 2, the same flash code can
that are unused due to the partition irjto/k | blocks, of x- & he ysed, with an appropriate interface. With the linea
actly{c cells each, at the very first encoding stage. Thgse C M-code of [I7], thef-ary symbols can be represented
contribute at mosfg—1)(k — 1) unused cell levels. The '”dexusing /-1 bits in such a way that any symbol change

blocks for thes —1 encoding maps’, &, ..., &-1 contain - ¢orresponds to a single bit transition. The flash c@decan
2(k—=1)(s — 1) cells altogether, thereby wasting at most pe now applied as is, and the resulting write deficiency is

kloe?k O(max{q,log,kl} kllogkl).
200~ 1)k~ 1)(s - 1) logy +2)] = O REE) ) (maxg, logok} k log k)

cell levels. In each of the — 1 transition procedures, the situ-
ationparity (x;) # v;_1 can occur at most times, and each
time it occurs a single cell level is wasted. Finally, as iredh

rem2, when the encoding procegs &1, ..., Es_1 terminates

there are at most — 1 parity blocks that are not full and, in
the worst case, each of them uses just one cell level. Howe
now these parity blocks contain onft/2°~1] = 2 cells each,

and thus contribute at mogt — 1)(29 — 3) unused cell levels.
Putting all of this together, we find that at most

VI. FLASH CODES OFCONSTANT RATE

All of our results so far pertain to the case where: k2. In
this section, we briefly examine the situation where bdotimd
n are large, whilé/n = R for some constarR < 1. Observe
that write deficiency(C) = n(g—1) — t is notan appropriate
JLgrure of merit in this situation: a trivial code that guareed
t = 0 writes achieves write deficieney(g—1) = k(q—1)/R,
which is within a constant fact@;/ R from the lower bound{1).
Thus we will state our results in terms of the guaranteed num-
ber of writest rather than the write deficienay(C).
(g—1)(k—1) (2(5_1) [10gq(k+2)1 4 3) + k(s—1) (6) If ¢ = 2, we can easily guarant&e(n/logk) writes as fol-

) .. lows: partition then cells into blocks of siz¢log,k| and each

cell levels are wasted or left unused. Clearly, this expoess  {je an information bit changes, record its index in the next

dominated by[{F), and thus bounded@ygklog’k/logq)- B ayajlable block. Foy > 2, the same method guarantees about
For large g, the upper bound o (gklog®k/logq) on [n/log k] = Q(nlogq/log k) writes, but we can do better.
the deficiency of our scheme can be improved by usingLet us partition the: cells into two groups: thendex group
a more efficient “packaging” of index blocks in the flasttonsisting ofn — k cells and theparity group consisting ofk
memory. As before, we allocate a batch 2k — 1) index cells. The index group is then subdivided imto= | (n—k) /s |
blocks to each encoding stage exceft But now, every blocks, each consisting of = [log,k]| cells. The writing
index block will occupyu’ = [log,(k+2)] cells rather than proceeds inj — 1 phases. During the first phase, every time an
u= [logq(k+2)] cells, and the indices will be written ininformation bit changes, its index is recorded in binanjirigs



cell levels0 and1) in the next available index block. After  writes before a block erasure. An upper bound was given as
writes, the first phase is over. We then copy thieformation well, which asserts that for every buffer code with one cell,
bits into thek cells of the parity group, and raise the levethe number of writeg has to satisfy

of all cells in the index group td. The second phase can 1

now proceed using cell levelsand2, and recording changes < V _ J r+[((g—=1) mod (/" —1)+1)].

in information bits relative to the values stored in the fpari r—1

group. At the end of the second phase, the current values| ek us show here another upper bound for such codes.
the k bits are recorded in the parity cells using levélsind

2, and so on. This simple coding scheme achieves Theorem 5.For any(1,r, £, t), buffer codeC such that > ¢,
n(g—1)(1—R n
mig—1) = M-DUZR) I )<k ) _ Q(—1 qk) ®) -1
ng Og t § 177651 + r,
writes (where the middle expression ignores ceilings/8duyr 7 2dlr o (3)

assuming thak is a power of two and that — k is divisible whereg is Euler’se function.

by log, k). If g is odd andR > 0.415, we can do a little better

by using the ternary number system (cell lev@l$, 2) in both Proof: Let C(D, &) be a(1,r,¢,t), buffer code. After
the index group and the parity group. In this case, the sizeiof 1 writes, for eachwv € {0,1,...,¢—1}", let

the parity group i§k/log,3] cells andl — R in (8) can be re- ) .

placed by(log,3 — R)/Z.ZFinaIIy, forallR > 0.755andg —1  Si(v) = {x | there is a sequence gf< i symbol

divisible by three, the quaternary alphabet is optimaldieg writes ending in levek andD(x) = v},

to a factor of(2 — R)/3 rather thanl — R in (8).
( )/ ® mi(v) = max,cg,,){x} is the maximum cell level that is

possible to reach aftérsymbol writes such thab (m;(v)) =

v, and
Buffer codes were first presented by Bohossian et al.lin [1]. M — 1S:(v)]
[ 1 .

In this family of codes, a buffer of symbols has to be stored
in n flash memoryg-ary cells. After each write, the last
symbols that were written have to be recovered by the cefllearly, for alli < t, M; < g — 1. After r writes, it is possible
state vector. The goal is to maximizethe number of write to reach any of thé” different buffer vectors and thus{, >
symbols that the code guarantees without incurring a bloék— 1.
erasure. In[]1],[T10], an upper bound and a construction areLet G;, be ther-th order f-ary de Bruijn graph[[3]. Its
presented for the case where the buffer is stored in a siegjle cvertex set isV,, = {0,1,...,/ — 1} and its edge set is
It is also shown how to store a buffer where,the number &¢,. Let vy, v2 € {0,1,...,£ —1}" be two different buffer
of cells satisfies: > 2r. states. Note that i{vy,v2) € &, andm;(v1) > m;(v2)
thenm;1(vy) > m;(vy) and therefore, the value d¥l;.
A. Buffer Codes Definition increa;gs by at least one level for every such an edge. In the
) de Bruijn graph, every cycle has at least one efiggv,) €

We refer to the set of vectors if0,..., £ —1}" asbuffer ¢ gych thatm;(v1) > m;(vy). Therefore, the number of

vectors Similarly to a flash code, a buffer codg is also ey ynused levels is at least the number of disjoint vertex

specified by an encoding mapand a decoding map. The cycles inG, . This number is known to bé zd‘,go(g)éd [,
decoding mapD : Ay — {0,..., £ —1}" assigns for each [1g] and therefore

cell-state vector € A" its buffer vectorD(x). Theencoding

map&: {0,..., ¢ — 1} x Ay — A7 U {E} specifies for every [ < qg—1" iy
symbola € {0,...,¢ — 1} and cell-state vectox € A", S 1 Zd|r@(§)£d )
another cell-state vectoy = £(a,x) such thaty; > x; for !

VIl. BUFFERCODES

ve{0,...0—1}"

al 1 < j < n (Dly))y = aand for2 < i < 7, u
(D(y))i = (D(x));—1. In case such y € Aj does not exist,
then&(i, x) = E. Lemma 6. The bound in Theoreld improves the bound i [1]

forq > (¢". Thatis,
Definition. An (n,r,(,t), buffer codeC(D, £) guaranteest
writesif for all sequences of up tosymbol writes, the encoding q—=0 +r
mapé& does not produce the block erasure syntbol % Ydlr p(5)0t

-1 r
B. Single-Cell Buffer Codes < Dr - 1J -7+ [log, (((9—1) mod (¢ 1)) +1)].

In this section, we discuss the case where there is a single
cell (n = 1) to store the buffer. A construction for this scenario
where a binary buffer/ = 2) is stored was given in[1], 1 (1) s 0+ L (r)
[1Q]. This construction guarantees at least {%J +r—2 r Z ¢\ - r

Proof: Note that

7

dlr



and therefore

q_ﬂ J \‘q_ng
S R A . B
1 rypd 0r+Leo(r
LWW 220
etoln |

- Mii&i(r) 'rJ T D’MW)

layer of levelsi — 1 andi to the layer of levels andi + 1,

all the cells are first reset to levéland the buffer is written

in the new layer of levelg andi + 1. Then, it is possible to
continue writing in this layer. Basically, on each layer,st
possible to writen — r times. However, when a new layer is
used, then first the buffer from the previous layer is copied

and then it is written in the new layer. Hence, it is possible

If we denoteg —1 = x(¢"—1) +y, where0 <y < " —1,

then
g0 pr(r) J
Dsare(pit ] S [ te0)
_{ (E’—l)+y+1+£<p 7J

(

o+ Lo(r
:{x(fr—i-f(p())—x-i—y-i-l—x 1)¢ () J
0+ Lo(r)
B —x+y+1—(x—1)lep(r)
- { T+l 'rJ
L xr+ {(y;l)rJ .

Let us show thaf%l)’ <log,(y+1). That is, we show that

(y+1) = %

ner (g -2)(n—2r+1) =

number of writes ig = (g —
how the construction works by the following example.

(9—

to have only(n — 2r + 1) more writes in the new layer and
thus the total number of writes is

(n—2r+1)+r—1.

The transition between these consecutive layers is not
performed efficiently and our improvement here shows how it
is possible to writer — r times on each layer such that the total
1)(n —r). We first demonstrate

Example 2. In this example, we show how the last construc-
tion works forn = 11,9 = 3,/ = 2 andr = 4, so the
number of writes i - (11 — 4) = 14. The sequence of bits
to be written isl, 1,0,0,1,0,0,1,1,1,0,1, 1,0 and the writes
nro- ) are performed as follows. The underlined cells represeat th
cells that store the buffer on each write.

| Written Bit | Buffer State]

Cell State Vector

ér
(7)) >

1. . .
xi is monotonically decreasing for
—1, we get

The function f(x)
x > 1 and sincey

((y+1)y1+1)ér > ((F)z—lr)ﬁ =/

Putting these together we get

J +r<xr+ LMJ

</

FYar (e a

< xr+ |log,(y+1)]
TSy

(0,0,0,0) | (0,0,0,0,0,0,0,0,0,0,0)
1 (0,0,0,1) | (0,0,0,0,1,0,0,0,0,0,0)
1 (0,0,1,1) | (0,0,0,0,1,1,0,0,0,0,0)
0 (0,1,1,0) | (1,0,0,0,1,1,0,0,0,0,0)
0 (1,1,0,0) | (1,1,0,0,1,1,0,0,0,0,0)
1 (1,0,0,1) | (1,1,0,0,1,1,0,0,1,0,0)
0 (0,0,1,0) | (1,1,1,0,1,1,0,0,1,0,0)
0 (0,1,0,0) | (1,1,1,1,1,1,0,0,1,0,0)
1 (1,0,0,1) | (1,1,1,1,2,1,1,1,1,0,0)
1 (0,0,1,1) | (1,1,1,1,2,2,1,1,1,0,0)
1 (0,1,1,1) | (1,1,1,1,2,2,2,1,1,1,0)
0 (1,1,1,0) | (2,1,1,1,2,2,2,1,1,1,1)
1 (1,1,0,1) | (2,1,1,1,2,2,2,1,2,1,1)
1 (1,0,1,1) | (2,1,1,1,2,2,2,1,2,2,1)
0 (0,1,1,0) | (2,1,1,1,2,2,2,1,2,2,1)

C. Multiple-Cells Buffer Codes

In [1], [ZQ], a buffer code construction is given fore= 2 an
arb|traryn q,r, wheren > 2r. This construction guarantees

t = (g—1)(n—2r+1)+r—1 writes. In this section, information buffer vector(vl,vz, ..,

we show how to improve this construction such that the
guaranteed number of writes fis= (g — 1)(n —r).

In the case wherg = 2, the construction in[]1],[10]
guaranteeg — r writes. The encoding procedure is performed
in such a way that after writes, 1 < i < n —r, the buffer
is located between th& + 1)-st and (i + r)-th cells, where
the first bit of the buffer memory is stored in ti{é+ r)-th
cell and the last bit is stored in theé + 1)-st cell. If g > 2,
then the construction uses a “layer by layer” approach. That
is, first the layer of level$) and1 is used, then the layer of
levels1 and?2 is used, and so on. In the transition from the

Now we are ready to present the construction by specifying
its encoding and decoding maps specification.
g Decoding map Dyi: The input to this map is a cell-state
Jectorx = (x1,x2,..

x). The output is the corresponding

vy).

m=max (X1, Xp,...
ny = £find_repeat (m, x1,x7,...

if(ny, =71)
for(i=1; i<

/xn)i

r;yi=i+1)

Ui = Xpppy—it1 — M

else{
for(i=1; i<

N i=1+1)

Ui = Xptpy—i+1 = 15

for(i=n, +1; i<

r;i=i+1)

Vi = Xpqn,—iv1— (m=1);}

/xn)i
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The function max (xq,x»,...,x,) sSimply returns the one cell changes its value to+ 1. For all other writes, the
maximum value of the cellscq, xo, ..., x,. The function maximum cell value does not change and exactly one cell
find_repeat (m,x1,x2,...,X,;) returns the number of changes its value to the maximum cell value whichris 1.
times the valuen repeats in the cellsq, xo, ..., x,. If the [ |
value ofn,, is at leastr then the buffer is stored between the
(nm + 1)-st and(n,, + r)-th cells, and the buffer values areTheorem 8. The buffer codeC(Dpyr, Epuf) Stores the buffer
calculated by subtracting from the value of each cell. If the successfully and guarantees: (q — 1)(n — r) writes.
value ofny, is less tharr then the buffer is stored cyclically
in two cell groups: the last — 1,, cells and then,, cells in Proof: According to Lemma&l7, after = (g —1)(n —r)
locationsr + 1, . .., ¥ + 1. In the first group, the buffer valuesWrites the maximum cell level does not reach leyahd hence
are given by subtracting: — 1 from the cells’ value and in there is no need to erase the block of cells. We prove the
the second group by subtracting from the cells’ value. correctness of the encoding and decoding maps to store the
Encoding map Epyr: The input to this map is a cell-stateCorrect value of the buffer by induction on the number of
vector x = (x1,%s,...,%,), and a new bith. Its output is Writes s. This is done by proving that for all < s < ¢,
either a cell-state vectoy = (y1, v, ...,yn) Or the erasure Such thats = x(n —r) +y, wherel < y < n—r, the

symbol E. buffer (vy, ..., v,) is calculated successfully according to the
decoding rules of the decoding map:
(Y1, Y2, -, Yn) = (X1,X2,...,Xn) ; 1) Ify>rthenforl <i<r, v; =Xy jp1—m.
m=max (X1, X2,...,Xn) ; 2) If y <rthenforl <i<y, v =X,y iy —m and
ny, = £ind_repeat (m, x1,X2,...,Xy) ; for v+ 1<i<r v = Xyy—it1— (m "~ 1)'

if(m==0) { // ifthisis the first write

) It is straightforward to verify that after the first write the
if(b==1) yy41=1;

memory successfully stores the buffer. Assume the assertio

else y1=1; } is correct after the-th write, wherel <s=x(n—r)+y <
if (nu==n-r) { // firstwrite in this layer t—1,1 <y <n—r. Assume that the new bit to be written
for(i=1l;i<n-r+1;i=i+1) to the buffer on the(s + 1)-st write isb and let us consider
Yi=nm; the following cases:

if(b==1) ypp1=m+1;

1) If y = n—r,thenonth 1)-st write in the encodin
else y1=m+1; } ) fy=n—r ds+1)-stwritei ing

map the value ofi,, is n — r. Thus the firstn —r + 1

if (nu <n-r) { // notthe first write in this layer cells change their value ta = x, the values of the last
Yrany+1 = Yring+1 + 0; r—1 cells do not change, andif= 1 theny,,; = m+
if(b==0) 1, and otherwise/; = m + 1. Therefore, the new value
for(i=1;i<ny+r;i=i+1) of the buffer is also given according to the decoding
if(yi==m-1){ rules.
Yrtnmt1 = Yrang+1 + 1; break; }} 2) If y < n—r, thenn, = y < n—r, and the value of
if(n, <r-1) // one offirstr — 1 writes in this laye the (v + n,, + 1)-st cell increases by so the buffer is
Yn—rglgn, =m=1; shifted one place to the right and it stores its updated
value. If b = 0, then we increase the firgt, + 1 cells
On the first write, according to the bit valie the first or by one level. Note that,, = y and there are exactly
the (r + 1)-st cell changes its value to one. On the first write ~ Cells with the maximum value so we can always find a
on each layer, the first —r + 1 cells are increased to level cell of value less tham: and increase the value ta.
m, and then the first or ther + 1)-st cell is increased by one Then, the buffer is again stored according to the above
level, according to the bit valuk For all other writes, if the decoding rules.
value if b is one then we simply increase the+ n,, + 1)-st [
cell by one level, and otherwise we increase the first cell of
level m — 1 by one level. Finally, if it is one of the first— 1 VIIl. CONCLUSION

writes in each level, then we need to update the last cell thatR

i X ewriting codes for flash memories are important as the
stores the buffer to levekr — 1 since it no longer stores the 9 b y

buffer and thus its level has to be updated can increase the lifetime of the memory. Examples of such
: . codes are flash code5][9] and buffer codes [1]. A signif-
Next, we prove the correctness of the construction. . G : . - .
icant contribution in this paper is an efficient constructio
of flash codes that support the storage of any number of
bits. We show that the write deficiency order of the code is
O(klogk - max{log, k, q}), which is an improvement upon
Proof: According to the encoding mafy,s, the maximum the write deficiency order of the equivalent constructions
cell level increases every — r writes, on the(i(n — r) + in [10], [11], [2S]. The upper bound i [9] on the guaranteed
1)-st write, for0 < i < g — 2. Therefore, afters writes, number of writes implies that the order of the lower bound on
the maximum cell value i = [--]. If y = 1 then the the deficiency isO(kq). Therefore, there is a gap, which we
maximum cell value isx + 1 and we can see that exactlybelieve can be reduced, between the write deficiency orders

Lemma7.Afters = x(n —r) +y, wherel < y < n—r, the
maximum cell level isc 4- 1 and there arg cells in level 4 1.



of our construction and the lower bound. For buffer codes, we
showed how to improve an upper bound on the number of

writes in the case where one cell is used to store the buffer.

If there are multiple cells, we showed a construction that
improves upon the one presented[inh [L].][10].
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