
ar
X

iv
:1

21
0.

75
15

v1
 [

cs
.IT

]
28

 O
ct

 2
01

2
1

Rewriting Codes for Flash Memories
Eitan Yaakobi, Hessam Mahdavifar, Paul H. Siegel, Alexander Vardy, Jack K. Wolf,

Abstract—Flash memory is a non-volatile computer mem-
ory comprising blocks of cells, wherein each cell can take
on q different values or levels. While increasing the cell level
is easy, reducing the level of a cell can be accomplished only
by erasing an entire block. Since block erasures are highly
undesirable, coding schemes — known asfloating codes (or
flash codes) and buffer codes— have been designed in order
to maximize the number of times that information stored in a
flash memory can be written (and re-written) prior to incurri ng
a block erasure.

An (n, k, t)q flash code C is a coding scheme for storing
k information bits in n cells in such a way that any se-
quence of up to t writes can be accommodated without a
block erasure. The total number of available level transitions
in n cells is n(q−1), and the write deficiency of C, defined
asδ(C) = n(q−1)− t, is a measure of how close the code comes
to perfectly utilizing all these transitions. In this paper, we show
a construction of flash codes with write deficiencyO(qk log k) if
q > log2 k, and at most O(k log2 k) otherwise.

An (n, r, ℓ, t)q buffer code is a coding scheme for storing
a buffer of r ℓ-ary symbols such that for any sequence oft
symbols it is possible to successfully decode the lastr symbols
that were written. We improve upon a previous upper bound on
the maximum number of writes t in the case where there is a
single cell to store the buffer. Then, we show how to improve a
construction by Jiang et al. that uses multiple cells, wheren > 2r.

Index Terms—Coding theory, flash memories, flash codes,
buffer codes.

I. I NTRODUCTION

Flash memories are, by far, the most important type of
nonvolatile computer memory in use today. Flash devices
are employed widely in mobile, embedded, and mass-storage
applications, and the growth in this sector continues at a
staggering pace.

A flash memory consists of an array of floating-gatecells,
organized intoblocks (a typical block contains about220

cells). The level or “state” of a cell is a function of the
amount of charge (electrons) trapped within it. Inmultilevel
flash cells, voltage is quantized toq discrete threshold values;
consequently the level of each cell can be modeled as an
integer in the range0, 1, . . . , q−1. Nowadays, the parameter
q itself can range fromq = 2 (the conventional two-state
case) up toq = 16 and it can reach even higher values [6].
The most conspicuous property of flash-storage technology
is its inherent asymmetry between cell programming (charge
placement) and cell erasing (charge removal). While adding
charge to a single cell is a fast and simple operation, removing
charge from a cell is very difficult. In fact, flash technology
does not allow a single cell to be erased — rather, only

E. Yaakobi, H. Mahdavifar, P.H. Siegel, A. Vardy, and J.K. Wolf are with the
Department of Electrical and Computer Engineering, University of California
at San Diego, La Jolla, CA 92093, U.S.A. (e-mail:{eyaakobi, hessam, psiegel,
avardy, jwolf}@ucsd.edu).

entire blocks can be erased. Suchblock erasuresare not
only time-consuming, but also degrade the physical quality
of the memory. For example, a typical block in a multilevel
flash memory can tolerate only about104 or even fewer
erasures before it becomes unusable, and as such the lifetime
and performance of the memory is highly correlated with
the frequency of block erasure operations. Therefore, it is
of importance to design coding schemes that maximize the
number of times information stored in a flash memory can be
written (and re-written) prior to incurring a block erasure.

Such coding schemes — known asfloating codes(or flash
codes) and buffer codes— were recently introduced in [1],
[8], [9]. Since then, several more papers on this subject have
appeared in the literature [5], [10]–[12], [15], [19]. It should be
pointed out that flash codes and buffer codes can be regarded
as examples of memories with constrained source, which were
described in [12]. Yet another example of such codes are the
write-once memory (WOM) codes [2], [4], [17], that have
been studied since the early 1980s. In fact, flash codes may be
regarded as a generalization of WOM-codes. Slightly different
and yet very related are the rank modulation codes [13], [14].
In rank modulation, the information is not stored accordingto
the exact cell levels but rather by the cell permutation which
is derived from the ordering of these levels.

An (n, k, t)q flash codeC is a coding scheme for storing
k information bits in n flash-memory cells, withq levels
each, in such a way that any sequence of up tot writes
can be accommodated without incurring a block erasure. In
the literature on flash codes, awrite is always a bit-write —
that is, a change0 → 1 or 1 → 0 in the value of one of
the k information bits. Observe that in order to accommodate
such a write, at least one of then cells must transition
from a lower level to a higher level (since a cell’s level,
determined by its charge, can only increase). On the other
hand, the total number of available level transitions inn flash
cells isn(q−1). Thus, throughout this paper, we characterize
the performance of a flash codeC in terms of its write
deficiency, defined asδ(C) = n(q−1)− t. According to the
foregoing discussion,δ(C) is a measure of how closeC comes
to perfectly utilizing all the available cell-level transitions:
exactly one per write. The primary goal in designing flash
codes can thus be expressed asminimizing deficiency.

What is the smallest possible write deficiency
δq(n, k) for an (n, k, t)q flash code, and how does it
behave asymptotically as the code parametersk and n get
large? The best-known lower bound, due to Jiang, Bohossian,
and Bruck [9], asserts that

δq(n, k) >
1

2

(

q − 1
)

min{n, k−1} (1)

How closely can this bound be approached by code construc-

http://arxiv.org/abs/1210.7515v1

2

tions? It appears that the answer to this question depends
on the relationship betweenk and n. In this paper, we are
concerned mainly with the case where bothk and n are
large, andn is much larger thank (in particular,n > k2).
In Section VI, we consider the case wherek/n is a constant.
At the other end of the spectrum, the casek > n has been
studied in [12].

The first construction of flash codes for largek was reported
by Jiang and Bruck [10], [11]. In this construction, thek
information bits are partitioned intom1 = k/k′ subsets of
k′ bits each (with k′ 6 6) while the memory cells are
subdivided intom2 > m1 groups ofn′ cells each. Additional
memory cells (calledindex cells) are set aside to indicate
for each subset ofk′ bits which group ofn′ memory cells
is used to store them. The deficiency of the resulting flash
codes isO(

√
qn). Note that forn > k, the lower bound on

write deficiency in (1) behaves asΩ(qk), and thus does not
depend onn. Consequently, the gap between the Jiang-Bruck
construction [11] and the lower bound could be arbitrarily
large, especially whenn is much larger thank.

In [19], a different construction of flash codes was proposed.
These codes are based upon representing then memory cells
as a high-dimensional array, and achieve a write deficiency
of O(qk2). Crucially, the deficiency of these codes does
not depend onn. Nevertheless, there is still a significant
gap betweenO(qk2) — which is the best currently known
deficiency result — and the lower bound ofΩ(qk).

In this paper, we present a new construction of flash codes
which reduces the gap between the upper and lower bounds on
write deficiency to a factor that islogarithmic in the number
of information bitsk. This result is arrived at in several stages.
As a starting point, we use the “indexed” flash codes of Jiang
and Bruck [11]. In Section IV, we develop new encoding and
decoding procedures for such codes that eliminate the need for
index cells in the Jiang-Bruck construction [11]. The writede-
ficiency achieved thereby isO(qk2), which coincides with the
main result of [19]. When the encoding procedure developed in
Section IV reaches its limit, there are still potentially numerous
unused cell-level transitions. In Section V, we show how to
take advantage of these transitions in order to accommodate
even more writes. To this end, we introduce a new indexing
scheme, which is invoked only after the encoding method of
Section IV reaches its limit. Thereupon, we extend this idea
recursively, through⌈log2k⌉ different indexing stages. This
leads to a result, established in Theorem 4, stating that

Ω
(

qk
)

6 δq(n, k) 6 O
(

max{q, log2k} k log k
)

(2)

for all n > k2, where the upper bound is achieved construc-
tively by the flash codes described in Section V. In Section VI,
we present and discuss constructions of flash codes for the case
where the number of memory cellsn is not significantly larger
than the number of bitsk.

The other type of codes we discuss in this paper are the
buffer codes. An(n, r, ℓ, t)q buffer code is a coding scheme for
storing a buffer ofr ℓ-ary symbols such that for any sequence
of t symbol writes, it is possible to successfully decode the
lastr symbols that were written without a block erasure. Given

a buffer of r ℓ-ary symbols that has to be stored inn q-ary
cells, the goal is to maximize the number of writest.

In Section VII, we formally define buffer codes. Then, we
study two extreme cases where the number of cells is either
one or very large. For the former case, Jiang et al. gave in [1],
[10] a construction as well as an upper bound on the number
of writes. Their construction works forn = 1, ℓ = 2 and
guaranteest =

⌊

q

2r−1

⌋

+ r− 2 writes. The upper bound stated
in [1], [10] for n = 1 asserts that

t 6

⌊

q − 1

ℓr − 1

⌋

· r + ⌊((q − 1) mod (ℓr − 1) + 1)⌋ .

We will show how to improve this bound such that forq > ℓr,

t 6

⌊

q − ℓr

1
r ∑d|rϕ(r

d)ℓ
d

⌋

+ r,

whereϕ is Euler’sϕ function.
If the buffer is binary (ℓ = 2) and the number of cells is

significantly larger than the buffer sizer, then a trivial upper
bound on the number of writest is n(q − 1). Jiang et al.
showed in [1], [10] how to achievet = (q − 1)(n − 2r +
1) + r − 1 writes. Assume thatq = 2, then the number of
writes is n − r and after thei-th write, the buffer is stored
between cellsi + 1 andi + r. If q > 2, then the cell levels are
used layer by layer, where first only levels zero and one are
used, then one and two, and so on. In the transition from one
layer to another, first the buffer is copied and stored in the new
layer and then more writes are allowed. Thus, this construction
allows n − r writes on the first layer andn − 2r + 1 more
writes in all other layers, so the total number of writes ist =
n − r + (q − 2)(n− 2r + 1) = (q − 1)(n − 2r + 1) + r − 1.
We will show how to improve this construction such that in
every transition between layers, the buffer is stored cyclically
in the cells and thus is not copied as before. This improves
the number of writes to(q − 1)(n − r).

II. PRELIMINARIES AND FLASH CODES DEFINITION

Let us now give a precise definition of flash codes that
were introduced in the previous section. We use{0, 1}k to
denote the set of binary vectors of lengthk, and refer to the
elements of this set asinformation vectors. The set of possible
levels for each cell is denoted byAq = {0, 1, . . . , q−1} and
thought of as a subset of the integers. Theqn vectors of length
n over Aq are calledcell-state vectors. With this notation,
any flash codeC can be specified in terms of two functions:
an encoding mapE and a decoding mapD. The decoding
map D : An

q → {0, 1}k indicates for each cell-state vector
x ∈An

q the corresponding information vector. In turn, the
encoding mapE : {0, 1, . . . , k−1}×An

q → An
q ∪ {E} assigns

to every indexi and cell-state vectorx ∈An
q , another cell-

state vectory = E (i, x) such that y j > x j for all j and
D(y) differs fromD(x) only in the i-th position. If no such
y∈An

q exists, thenE (i, x) = E indicating that block erasure
is required. To bootstrap the encoding process, we assume
that the initial state of then memory cells is(0, 0, . . . , 0).
Henceforth, iteratively applying the encoding map, we can
determine howany sequenceof transitions0 → 1 or 1 → 0

3

in the k information bits maps into a sequence of cell-state
vectors, eventually terminated by the block erasure. This leads
to the following definition.

Definition. An (n, k)q flash codeC(D, E) guaranteest writes
if for all sequences of up tot transitions0 → 1 or 1 → 0 in the
k information bits, the encoding mapE does not produce the
block erasure symbolE. If so, we say thatC is an (n, k, t)q

code, and define thedeficiency ofC asδ(C) = n(q−1)− t.

In addition to this definition, we will also use the following
terminology. Given a vectorx = (x1, x2, . . . , xm) overAq, we
define itsweight as wt(x) = x1 + x1 + · · ·+ xm (where the
addition is over the integers), and itsparity aswt(x) mod 2.

III. T WO-BIT FLASH CODES

In this section, we present a construction of flash codes that
usesn q-ary cells to storek = 2 bits. In [9], a construction
with these parameters was presented and was shown to be
optimal. The construction we present in this section will be
proved to be optimal as well and we believe that it is more
intuitive.

In this construction, the leftmost and rightmost cells corre-
spond to the first and second bit, respectively. When rewriting,
assume the first bit changes its value, then the leftmost cell
of level less thanq − 1 is increased by one level. Similarly,
whenever the second bit changes its value, the rightmost cell
of level less thanq − 1 is increased by one level. In general,
the cell-state vector has the following form:

(q − 1, . . . , q − 1, xi, 0, . . . , 0, x j, q − 1, . . . , q − 1),

where 0 < xi, x j 6 q − 1. This principle repeats itself
until only one cell is left with level less thanq − 1. Then,
this cell is used to store two bits according to its residue
modulo 4. If this residue is0, 1, 2, 3 then the value of the
bits is (v1, v2) = (0, 0), (1, 0), (0, 1), (1, 1), respectively.
The construction is presented for odd values ofq and we
will discuss later how to modify it for even values as well.
In the remainder of the paper, these maps are described
algorithmically, using (C-like) pseudo-code notation.
Decoding map D2B : The input to this map is a cell-state
vector x = (x1, x2, . . . , xn). The output is the corresponding
two-bit information vector(v1, v2).

i1 = find_left_cell(y1, y2, . . . , yn);

i2 = find_right_cell(y1, y2, . . . , yn);

if(i2 == 0) // all cells are full
{{ v1 = q - 1(mod 2); v2 = ⌊((q - 1)(mod 4))/2⌋;}}
if (i1 == i2) // there is only one non-full cell
{{ v1 = yi1

(mod 2); v2 = ⌊(yi1
(mod 4))/2⌋;}}

if (i1 != i2) // there are at least two non-full cells
{{ v1 = yi1

(mod 2); v2 = yi2
(mod 2); }}

Encoding map E2B : The input to this map is a cell-state
vector x = (x1, x2, . . . , xn), and an indexj ∈ {1, 2} of the
bit that has changed. Its output is either a new cell-state vector
y = (y1, y2, . . . , yn) or the erasure symbolE.

(y1, y2, . . . , yn) = (x1, x2, . . . , xn);

i1 = find_left_cell(y1, y2, . . . , yn);

i2 = find_right_cell(y1, y2, . . . , yn);

if(i2 == 0) return E;

if (i1 == i2) // there is only one non-full cell
{{ if(j == 2) a = 2;

else a = j + 2·(yi1
(mod 2));

if(yi1
+ a > q - 1) return E;

else {{ yi1
= yi1

+ a;return;}} }}
yi j

= yi j
+ 1;

if ((i2 - i1 == 1) ∧ (yi j
== q - 1))

{{ vi j
= 0; vi3− j

= yi3− j
(mod 2);

a = 2 · v2 + v1 - (yi3− j
(mod 4));

if(a < 0) yi3− j
= yi3− j

+ 4 + x;

else yi3− j
= yi3− j

+ a; }}

The function find_left_cell(y1, y2, . . . , yn) finds
the leftmost cell of level less thanq − 1 and if there is
not such a cell then it returnsn + 1. Similarly, the func-
tion find_right_cell(y1, y2, . . . , yn) finds the right-
most cell of level less thanq − 1 and if there is not such a
cell then it returns0. The notationyi j

stands for the variable
yi1

in case j = 1, and yi2
if j = 2. The same rule applies

to yi3− j
. The symbol∧ stands for the logical operator “and”.

The next theorem proves the number of writes this construction
guarantees.

Theorem 1. If there aren q-level cells andq is odd, then the
code C(D2B, E2B) guarantees at leastt = (n − 1)(q − 1) +
⌊

q−1
2

⌋

writes before erasing.

Proof: As long as there is more than one cell of level less
thanq− 1, the weight of the cell-state vector increases by one
on each write. This may change only after at least(n− 1)(q−
1) writes. Assume that there is only one cell of level less than
q − 1 after s = (n − 1)(q − 1) + k writes, wherek > 0, and
call it the i-th cell. Starting this write, the different residues
modulo4 of the i-th cell correspond to the four possible two-
bit information vector(v1, v2). Therefore, on thes-th write,
we also need to increase the level of thei-th cell so it will
correspond to the correct information vector on this write.For
all succeeding writes, if the second bit changes then thei-th
cell increases by two levels. If the first bit changes from0 to
1 then thei-th cell increases by one level and otherwise by
three levels. Therefore, if there arem more writes andv1 = 0
then thei-th cell increases by at most2m levels, and if there
arem more writes andv1 = 1 then thei-th cell increases by
at most2m + 1 levels.

Let us consider all possible values ofk and the information
vector (v1, v2) on the s-th write in order to calculate the
number of guaranteed writes before erasing. Note that on the
s-th write (v1 + v2) ≡ s(mod 2). Furthermore, sinceq is
odd, the value of the bit that is written changes from one to
zero because it reaches levelq − 1, and thus the other bit has
valuek(mod 2).

4

1) Assumek(mod 4) = 0, then(v1, v2) = (0, 0) and the
level of thei-th cell does not increase on thes-th write.
Since v1 = 0, after m writes the cell increases by at
most 2m levels. Hence, there are at leastq−1−k

2 more
writes and the total number of writes is at least

(n − 1)(q − 1) + k +
q − 1 − k

2
> (n − 1)(q − 1) +

q − 1

2
.

2) Assumek(mod 4) = 1, then (v1, v2) = (1, 0) or
(v1, v2) = (0, 1). If (v1, v2) = (1, 0) then on thes-
th write thei-th cell does not increase its level and after
m writes its level increases by at most2m + 1 levels. If
(v1, v2) = (0, 1) then thei-th cell increases by one level
and afterm writes its level increases by at most2m more
levels. Hence, in both cases there are at leastq−2−k

2
more writes. Together we get that the total number of
writes is at least
(n − 1)(q − 1) + k +

q − 2 − k

2
> (n − 1)(q − 1) +

q − 1

2
.

3) Assumek(mod 4) = 2, then (v1, v2) = (0, 0) and
the i-th cell increases by two levels ons-th write.
Since v1 = 0, after m more writes the cell increases
by at most 2m levels and hence there are at least
⌊(q − 1 − (k + 2))/2⌋ more writes, wherek > 2.
Therefore, the total number of write is at least

(n − 1)(q − 1) + k +
q − 3 − k

2
> (n − 1)(q − 1) +

q − 1

2
.

4) Assumek(mod 4) = 3, then (v1, v2) = (1, 0) or
(v1, v2) = (0, 1). If (v1, v2) = (1, 0) then on thes-
th write the i-th cell increases by two levels and after
m more writes it increases by at most2m + 1 levels. If
(v1, v2) = (0, 1) then thei-th cell increases by three
levels and afterm more writes it increases by at most
2m more levels. Hence there are at leastq−4−k

2 more
writes, wherek > 3. Thus, the total number of writes is
at least

(n − 1)(q − 1) + k +
q − 4 − k

2
> (n − 1)(q − 1) +

q − 1

2
.

In any case, the guaranteed number of writes is(n − 1)(q −
1) +

⌊

q−1
2

⌋

.
For even values ofq, the construction is very similar. As

long as there is more than one cell of level lessq− 1 we follow
the same rules for the encoding. For the decoding, sinceq − 1
is no longer even, the value ofv1 is the parity of the cells
1, . . . , i1, wherei1 is the leftmost cell of value lessq− 1. The
value of v2 is the parity of the cellsi2 , i2 + 1, . . . , n, where
i2 is the rightmost cell of value lessq − 1. If there is only
one cell left, then it represents a value of two bits as before
according to its residue modulo4. If the the index of the last
available cell isi then

v1 = (i − 1 + yi)(mod2),

v2 = ((n − i) + ⌊(yi(mod4))/2⌋)(mod2).

Also, the last cell does not reach levelq − 1 so it is always
possible to distinguish what the last cell is. We omit the tedious
details as the proof is similar to the case whereq is odd.

IV. I NDEX-LESS INDEXED FLASH CODES

Our point of departure is the family of so-calledindexed
flash codes, due to Jiang and Bruck [11], that were briefly
described in Section I. In this section, we eliminate the need
for index cells — and, thus, the overhead associated with these
cells — in the Jiang-Bruck construction [11]. This is achieved
by “encoding” the indices into the order in which the cell
levels are increased.

As in [11], we partition then memory cells intom groups of
n′ cells each. However, while in [11] the value ofn′ is more
or less arbitrary, in our constructionn′ = k. We henceforth
refer to such groups ofn′ = k cells asblocks (though they
are not related to thephysical blocksof floating-gate cells
which comprise the flash memory). We will furthermore use,
throughout this paper, the following terminology. We say that:

◮ a block isfull if all its cells are at levelq−1;
◮ a block isemptyif all its cells are at level zero;
◮ a block isactive if it is neither full nor empty;
◮ a block is live if it is not full (either active or empty).

In our construction, each block representsexactly one bit. This
implies that the total number of blocks, given bym = ⌊n/k⌋,
must be at leastk, which in turn impliesn > k2. If n is
not divisible byk, the remaining cells are simply left unused.
Finally, we also assume that eitherk is even orq is odd. If
this is not the case, we can invoke the same construction with
k replaced byk + 1 (and the last bit permanently set to zero).

The key idea is that each block is used to encode not only
the current value of the bit that it represents, but alsowhichof
thek bits it represents. The value of the bit is simply the parity
of the block. The index of the bit is encoded in theorder in
which the levels of thek cells are increased. For example, if
the block stores thei-th bit, first the level of thei-th cell in the
block is increased from0 to q−1 in response to the transitions
0 → 1 and1 → 0 in the bit value. Then, the same procedure is
applied to the(i+1)-st cell, the(i+2)-nd cell, and so on, with
the indicesi + 1, i+ 2, . . . interpreted cyclically (modulok).
This process is illustrated in the following example.

Example 1. Suppose thatk = 4 and q = 3. If a block
represents the first bit, then its cell levels will transition from
(0, 0, 0, 0) to (2, 2, 2, 2) in the following order:

(0000) → (1000) → (2000) → (2100) → (2200)

→ (2210) → (2220) → (2221) → (2222)

On the other hand, for a block that represents the second bit,
the corresponding cell-writing order is given by:

(0000) → (0100) → (0200) → (0210) → (0220)

→ (0221) → (0222) → (1222) → (2222)

The cell-writing orders for blocks that represent the thirdand
fourth bits are given, respectively, by

(0000) → (0010) → (0020) → (0021) → (0022)

→ (1022) → (2022) → (2122) → (2222)

and

(0000) → (0001) → (0002) → (1002) → (2002)

5

→ (2102) → (2202) → (2212) → (2222)

Note that, unless a block is full, it is always possible to
determine which cell was written first and, consequently,
which of thek = 4 bits this block represents.

We now provide a precise specification of an(n, k)q flash
codeC based upon this idea, in terms of a decoding mapD0

and an encoding mapE0.
Decoding mapD0 : The input to this map is a cell-state vector
x = (x1|x2| · · · |xm), partitioned intom blocks. The output is
the corresponding information vector(v0, v1, . . . , vk−1).

(v0, v1, . . . , vk−1) = (0, 0, . . . , 0);

for (j = 1; j 6 m; j = j+ 1)
if (active(x j))

{{ i = read_index(x j); vi = parity(x j); }}

Encoding mapE0 : The input to this map is a cell-state vector
x = (x1|x2| · · · |xm), partitioned intom blocks ofk cells, and
an indexi of the bit that has changed. Its output is either a
cell-state vectory = (y1|y2| · · · |ym) or the erasure symbol
E.

(y1|y2| · · · |ym) = (x1|x2| · · · |xm);

for (j = 1; j 6 m; j = j+ 1)
if (active(x j) ∧ (read_index(x j)== i))

{{ write(y j); break; }}
if (j == m + 1) // active block not found
for (j = 1; j 6 m; j = j+ 1)
if (empty(x j)) {{ write_new(i,y j); break;}}
if (j == m + 1) // no empty blocks remain
return E;

To complete the specification of the flash codeC(D0, E0),
let us elaborate upon all the functions used in the pseudo-code
above. The functionactive(x), respectivelyempty(x),
simply determines whether the given block is active, respectiv-
ely empty. The functionparity(x) computes the parity of
x, defined in Section II. Note that the parity of a full block
is always zero (sincek(q−1) is even, by assumption). The
function read_index(x) computes the bit-index encoded
in an active blockx = (x0, x1, . . . , xk−1). This can be
done as follows. Find all the zero cells inx. Note that
these cells always form one cyclically contiguous run, say
x j, x j+1, . . . , x j+r (where the indices are modulok). Then the
index of the corresponding bit isi = j + r + 1 (modk). If
there are no zeros inx, there must be exactly one cell, sayx j,
whose level is strictly less thanq−1. In this case, the bit-index
is i = j + 1 (modk). The functionwrite(y) proceeds
along similar lines. Find the single cyclically contiguous
run of zeros in(y0, y1, . . . , yk−1), say y j, y j+1, . . . , y j+r. If
y j−1 < q−1, increasey j−1 by one; otherwise sety j = 1.
If there are no zeros iny, find the unique celly j such that
y j < q−1 and increase its level by one. Finally, the function
write_new(i,y) simply setsyi = 1.

Theorem 2.The write deficiency of the flash codeC(D0, E0)

described above is at most

(k − 1)
(

(k + 1)(q−1) − 1
)

= O
(

qk2
)

(3)

Proof.Note that at each instance, at mostk of them blocks
are active. The encoding mapE0(i, x) produces the symbol
E when there are no more empty blocks, and none of the
active blocks represents thei-th bit. In the worst case, this
may occur when there arek − 1 active blocks, each using just
one cell level. This contributes(k − 1)

(

k(q−1)− 1
)

unused
cell levels. In addition, there are at mostk − 1 cells that are
unused due to the partition intom = ⌊n/k⌋ blocks of exactly
k cells. These contribute at most(k − 1)(q−1) unused cell
levels.

V. NEARLY OPTIMAL CONSTRUCTION

It is apparent from the proof of Theorem 2 that the defi-
ciency of the flash codeC(D0, E0), constructed in Section IV,
is due primarily to the following: when writing stops, there
may remain potentially large amount of unused cell levels. The
key idea developed in this section is tocontinue writingafter
the encoding mapE0 produces the erasure symbolE, utilizing
those cell levels that are left unused byE0. Obviously, it is
not possible to continue writing using the same encoding and
decoding maps. However, it may be possible to do so if, at
the point whenE0 produces the erasure symbolE, we switch
to a different encoding procedure, say E1. In fact, this idea
can be applied iteratively: onceE1 reaches its limit, we will
transition to another encoding mapE2, then yet another map
E3, and so on.

Assuming thatk ≡ 0 (mod 4), here is one way to continue
writing after the encoding mapE0 has been exhausted. When
E0 produces the erasure symbolE, we say that thefirst stageof
encoding is over and transition to thesecond stage, as follows.
First, we re-examine the cell-state vectorx = (x1|x2| · · · |xm)
and re-partition it into2m = 2 ⌊n/k⌋ blocks ofk/2 cells each.
Most of these smaller blocks will already be full, but we may
find somem1 of them that are either empty or active (live).
Observe thatm1 6 2(k− 1) since at the end of the first stage,
there are at mostk − 1 active blocks ofk cells, and each of
them produces at most two live (non-full) blocks ofk/2 cells.

If m1> k, we can continue writing as follows. Once again,
each of them1 blocks will represent exactly one bit; as before,
the value of this bit is determined by the parity of the block.As
part of the transition from the first stage to the second stage,
we record the current information vector(v0, v1, . . . , vk−1) in
the first k of the m1 live blocks, sayx1, x2, . . . , xk. To this
end, wheneverparity(xi) 6= vi−1, we increase the level of
one of the cells inxi by one; otherwise, we leavexi as is.

Since the blocks now havek/2 cells rather thank cells,
it is no longer possible to encode in each blockwhich of
the k information bits it represents. Therefore, we set aside
for this purpose2(k−1)⌈logq(k+2)⌉ index cells (that are
not used during the first stage). These cells are partitioned
into 2(k−1) blocks of µ = ⌈logq(k+2)⌉ cells each, which
we call index blocks. Henceforth, it will be convenient to
refer to the blocks ofk/2 cells asparity blocks, in order to
distinguish them from the index blocks. Initially, the firstk

6

index blocksu1, u2, . . . , uk are set so thatui = i (in the base-
q number system), which reflects the fact that the information
bits v0, v1, . . . , vk−1 are stored (in that order) in the firstk
live parity blocks. The nextm1 − k index blocks are set to
(0, 0, . . . , 0), thereby indicating that the corresponding (live)
parity blocks are available to store information bits. The last
2(k−1) − m1 index blocks are set to(q−1, q−1, . . . , q−1)
to indicate that the corresponding parity blocks are full (in
fact, nonexistent). Finally, it is possible that in the process
of enforcingparity(xi)= vi−1 for the first k live parity
blocks, some of these blocks become full (this happens iff
wt(xi) = (k/2)(q−1) − 1 and vi = 0 at the end of
the first stage, sincek/2 is even by assumption). To ac-
count for this fact, we set the corresponding index blocks to
(q−1, q−1, . . . , q−1). This completes the transition from the
first stage to the second stage, which is invoked when the
encoding mapE0 produces the erasure symbolE.

Let us now summarize the foregoing discussion by giving
a concise algorithmic description of the transition procedure.

Transition procedure T1 : Partition the memory into2 ⌊n/k⌋
parity blocks of k/2 cells, and identify them1 6 2(k−1)
parity blocks x1, x2, . . . , xm1 that are not full. If m1 < k,
output the erasure symbolE and terminate. Otherwise, set the
2(k−1) index blocksu1, u2, . . . , u2k−2 as follows:

ui =

i for i = 1, 2, . . . , k

0 for i = k + 1, k+ 2, . . . , m1

qµ − 1 for i = m1+1, m1+2, . . . , 2k − 2
(4)

whereµ = ⌈logq(k+2)⌉ is the number of cells in each index
block, then record the information vector(v0, v1, . . . , vk−1)
in the first k live parity blocksx1 , x2, . . . , xk, as follows:

for (i = 1; i 6 k; i = i + 1)
if (parity(xi) 6= vi−1)

{{ increment(xi); if (full(xi)) ui = qµ − 1;}}

The functionfull(x) determines whether the given blockx

(which could be a parity block or an index block) is full. The
functionincrement(x) increases by one the level of a cell
(does not matter which) in the given live block.

During second-stage encoding and decoding, we will need
to figure out for each active parity blockx which of the k
information bits it represents. To this end, we will have to find
and read the index blocku thatcorrespondsto x. How exactly
is the correspondence between parity blocks and index blocks
established? Note that, upon the completion of the transition
procedureT1, there is the same number of live parity blocks
and live index blocks; moreover, thej-th live index block
corresponds to thej-th live parity block, for all j. The encoding
procedure will make sure that this correspondence is preserved
throughout the second stage: whenever a parity block becomes
full, it will make the corresponding index block full as well.

We are now ready to present the encoding and decoding maps
which are, again, specified in C-like pseudo-code notation.

Decoding mapD1 : The input to this map is a cell-state vector
x = (x1|x2| · · · |x2m|| u1|u2| · · · |u2k−2), partitioned into2m

parity blocks, ofk/2 cells each, and2(k−1) index blocks.
The output is the information vector(v0, v1, . . . , vk−1).

(v0, v1, . . . , vk−1) = (0, 0, . . . , 0);

for (ℓ = j = 1; j 6 2m; j = j+ 1)
{{

if (full(x j)) continue; //skip full blocks
while (full(uℓ)) ℓ = ℓ+ 1;//skip full blocks
i = uℓ; ℓ = ℓ+ 1;
if (i 6= 0) vi−1 = parity(x j);}}

Given an indexi of the bit that has changed, the encoding map
E1 first tries to find an active parity blockx that represents the
i-th information bit. If such a block is found, it is incremented
and checked to see if it is full (in which case the corresponding
index block is set toqµ − 1). If not, another live parity block
is allocated to represent thei-th information bit. If no more
live parity blocks are available,

the erasure symbolE is returned.

Encoding map E1 : The input to this map is a cell-state
vector x = (x1|x2| · · · |x2m|| u1|u2| · · · |u2k−2), partitioned
into 2m parity blocks and2(k−1) index blocks, and an index
i of the information bit that changed. Its output is either a
cell-state vectory = (y1|y2| · · · |y2m|| u′

1|u′
2| · · · |u′

2k−2) or
the symbolE.

(y1|y2| · · · |y2m) = (x1|x2| · · · |x2m);

(u′
1|u′

2| · · · |u′
2k−2) = (u1|u2| · · · |u2k−2);

for (ℓ = j = 1; j 6 2m; j = j+ 1)
{{

if (full(x j)) continue;

while (full(uℓ)) ℓ = ℓ+ 1;
if (uℓ == i + 1)
{{

increment(y j);

if(full(y j)) u
′
ℓ = qµ − 1;

break;
}}
else ℓ = ℓ+ 1;

}}
if (j == 2m + 1) // active block not found
for (ℓ = j = 1; j 6 2m; j = j+ 1)
{{

if (full(x j)) continue;

while (full(uℓ)) ℓ = ℓ+ 1;
if (uℓ == 0)
{{

u′
ℓ = i + 1;
if (parity(x j) 6= vi)increment(y j);

if (full(y j)) u′
ℓ = qµ − 1;

break;
}}
else ℓ = ℓ+ 1;

}}
if (j == 2m + 1) // no more available live blocks
return E;

Note that when the second encoding stage terminates, there
are at mostk − 1 parity blocks that are not full, comprising at
mostk(k − 1)/2 cells (at mostk(k − 1)(q−1)/2 cell-levels).

7

Once the mapsD1 andE1 are understood, it becomes clear
that the same approach can be applied iteratively. The resulting
flash codeC∗ will proceed, sequentially, throughs differ-
ent encoding stagesE0, E1, . . . , Es−1, wheres = ⌈log2 k⌉. In
describing this code, we shall assume for the sake of simplicity
that k is a power of two, that isk = 2s. If not, the same code
can be used to store2s > k information bits, of which the last
2s − k are set to zero. Note that this will not change the order
of the resulting write deficiency.

To accommodate the encoding mapsE1, E2, . . . , Es−1, we set
aside foreach mapa batch of2(k− 1) index blocks, with each
index block consisting ofµ = ⌈logq(k+2)⌉ cells. The transi-
tion procedureTr which bridges between the encoding maps
Er−1 andEr (for somer∈ {2, 3, . . . , s−1}) is identical to the
transition procedureT1, except for the following differences:

D1. The r-th batch of index blocks is used; and
D2. The parity blocks consist ofk/2r cells each.

In addition toD1 andD2, the decoding/encoding mapsDr and
Er differ from D1 andE1 in that “2m” should be replaced by
“2rm” throughout, wherem stands for⌊n/k⌋ as before. There
are no other differences.

Theorem 3. For s= ⌈log2k⌉, the write deficiency
of the flash code C∗ defined by the sequence of
decoding/encoding maps D0, D1, . . . , Ds−1 and
Eo, E1, . . . , Es−1 is O

(

qk log2k/log q
)

.

Proof. We consider the worst-case scenario for the number
of cell levels that are either unused or “wasted” in the overall
encoding procedure. As before, there are at mostk − 1 cells
that are unused due to the partition into⌊n/k⌋ blocks, of ex-
actly k cells each, at the very first encoding stage. These cells
contribute at most(q−1)(k − 1) unused cell levels. The index
blocks for thes − 1 encoding mapsE1, E2, . . . , Es−1 contain
2(k − 1)(s − 1)µ cells altogether, thereby wasting at most

2(q− 1)(k − 1)(s− 1)⌈logq(k+2)⌉ = O

(

qk log2k

log q

)

(5)

cell levels. In each of thes− 1 transition procedures, the situ-
ationparity(xi) 6= vi−1 can occur at mostk times, and each
time it occurs a single cell level is wasted. Finally, as in Theo-
rem 2, when the encoding processEo, E1, . . . , Es−1 terminates
there are at mostk − 1 parity blocks that are not full and, in
the worst case, each of them uses just one cell level. However,
now these parity blocks contain only⌈k/2s−1⌉ = 2 cells each,
and thus contribute at most(k− 1)(2q− 3) unused cell levels.
Putting all of this together, we find that at most

(q−1)(k−1)
(

2(s−1)⌈logq(k+2)⌉ + 3
)

+ k(s−1) (6)

cell levels are wasted or left unused. Clearly, this expression is
dominated by (5), and thus bounded byO

(

qk log2k/log q
)

.

For large q, the upper bound ofO
(

qk log2k/log q
)

on
the deficiency of our scheme can be improved by using
a more efficient “packaging” of index blocks in the flash
memory. As before, we allocate a batch of2(k − 1) index
blocks to each encoding stage exceptE0. But now, every
index block will occupyµ′ = ⌈log2(k+2)⌉ cells rather than
µ = ⌈logq(k+2)⌉ cells, and the indices will be written in

binary rather than in the base-q number system. This allows
index blocks that correspond to successive encoding stagesto
be “stacked on top of each other” in the same memory cells.
Specifically, the encoding stageE1 will use only cell levels0
and1 to record the indices in its index blocks. Once this stage
is over, the index information recorded duringT1 and E1 is
no longer relevant, and the level ofall the 2(k − 1)µ′ cells
in the 2(k − 1) index blocks can be raised to1. Thereafter,
providedq > 3, the transition procedureT2 and the encoding
map E2 can use cell levels1 and 2 to record the relevant
index information in thesame memory cells. Proceeding in
this manner, we can accommodate up toq − 1 batches of
index blocks in2(k − 1)µ′ memory cells. We shall refer to
this indexing scheme asstacked binary indexingand denote
the resulting flash code byC′.

Theorem 4.The write deficiency of the flash codeC′ defined
by the sequence of decoding/encoding mapsD0, D1, . . . , Ds−1

andEo, E1, . . . , Es−1 that use stacked binary indexing is at most
O(qk log k) if q > log2 k, and at mostO(k log2 k) otherwise.

Proof.With stacked binary indexing, the number of cell le-
vels wasted in all the2(k− 1)(s− 1) index blocks is at most

2(q − 1)(k − 1)

⌈

s − 1

q − 1

⌉

⌈log2(k+2)⌉ (7)

Although for most values ofk andq this is strictly less than (5),
all the other terms in (6) are still dominated by (7).

Remark. If we need to storek symbols, rather than bits,
over an alphabet of sizeℓ > 2, the same flash code can
still be used, with an appropriate interface. With the linear
WOM-code of [17], theℓ-ary symbols can be represented
using ℓ− 1 bits in such a way that any symbol change
corresponds to a single bit transition. The flash codeC′ can
be now applied as is, and the resulting write deficiency is
O
(

max{q, log2kℓ} kℓ log kℓ
)

.

VI. FLASH CODES OFCONSTANT RATE

All of our results so far pertain to the case wheren > k2. In
this section, we briefly examine the situation where bothk and
n are large, whilek/n = R for some constantR < 1. Observe
that write deficiencyδ(C) = n(q−1)− t is not an appropriate
figure of merit in this situation: a trivial code that guarantees
t = 0 writes achieves write deficiencyn(q−1) = k(q−1)/R,
which is within a constant factor2/R from the lower bound (1).
Thus we will state our results in terms of the guaranteed num-
ber of writest rather than the write deficiencyδ(C).

If q = 2, we can easily guaranteeΩ(n/ log k) writes as fol-
lows: partition then cells into blocks of size⌈log2k⌉ and each
time an information bit changes, record its index in the next
available block. Forq > 2, the same method guarantees about
⌊n/ logqk⌋ = Ω(n log q/ log k) writes, but we can do better.

Let us partition then cells into two groups: theindex group
consisting ofn − k cells and theparity groupconsisting ofk
cells. The index group is then subdivided intom = ⌊(n−k)/s⌋
blocks, each consisting ofs = ⌈log2k⌉ cells. The writing
proceeds inq− 1 phases. During the first phase, every time an
information bit changes, its index is recorded in binary (using

8

cell levels0 and1) in the next available index block. Afterm
writes, the first phase is over. We then copy thek information
bits into thek cells of the parity group, and raise the level
of all cells in the index group to1. The second phase can
now proceed using cell levels1 and2, and recording changes
in information bits relative to the values stored in the parity
group. At the end of the second phase, the current values of
the k bits are recorded in the parity cells using levels1 and
2, and so on. This simple coding scheme achieves

m(q − 1) =
n(q−1)(1 − R)

log2 k
= Ω

(

nq

log k

)

(8)

writes (where the middle expression ignores ceilings/floors by
assuming thatk is a power of two and thatn − k is divisible
by log2 k). If q is odd andR > 0.415, we can do a little better
by using the ternary number system (cell levels0, 1, 2) in both
the index group and the parity group. In this case, the size of
the parity group is⌈k/ log23⌉ cells and1− R in (8) can be re-
placed by(log23−R)/2. Finally, for all R > 0.755 andq− 1
divisible by three, the quaternary alphabet is optimal, leading
to a factor of(2 −R)/3 rather than1 − R in (8).

VII. B UFFER CODES

Buffer codes were first presented by Bohossian et al. in [1].
In this family of codes, a buffer ofr symbols has to be stored
in n flash memoryq-ary cells. After each write, the lastr
symbols that were written have to be recovered by the cell-
state vector. The goal is to maximizet, the number of write
symbols that the code guarantees without incurring a block
erasure. In [1], [10], an upper bound and a construction are
presented for the case where the buffer is stored in a single cell.
It is also shown how to store a buffer where,n, the number
of cells satisfiesn > 2r.

A. Buffer Codes Definition

We refer to the set of vectors in{0, . . . , ℓ− 1}r as buffer
vectors. Similarly to a flash code, a buffer codeC is also
specified by an encoding mapE and a decoding mapD. The
decoding mapD : An

q → {0, . . . , ℓ − 1}r assigns for each
cell-state vectorx ∈An

q its buffer vectorD(x). Theencoding
map E : {0, . . . , ℓ− 1}×An

q → An
q ∪ {E} specifies for every

symbol a ∈ {0, . . . , ℓ − 1} and cell-state vectorx∈An
q ,

another cell-state vectory = E (a, x) such thaty j > x j for
all 1 6 j 6 n, (D(y))1 = a and for 2 6 i 6 r,
(D(y))i = (D(x))i−1. In case such ay∈An

q does not exist,
thenE (i, x) = E.

Definition. An (n, r, ℓ, t)q buffer codeC(D, E) guaranteest
writesif for all sequences of up tot symbol writes, the encoding
mapE does not produce the block erasure symbolE.

B. Single-Cell Buffer Codes

In this section, we discuss the case where there is a single
cell (n = 1) to store the buffer. A construction for this scenario
where a binary buffer (ℓ = 2) is stored was given in [1],
[10]. This construction guarantees at leastt =

⌊

q

2r−1

⌋

+ r − 2

writes before a block erasure. An upper bound was given as
well, which asserts that for every buffer code with one cell,
the number of writest has to satisfy

t 6

⌊

q − 1

ℓr − 1

⌋

· r + ⌊((q − 1) mod (ℓr − 1) + 1)⌋ .

Let us show here another upper bound for such codes.

Theorem 5.For any(1, r, ℓ, t)q buffer codeC such thatq > ℓr,

t 6

⌊

q − ℓr

1
r ∑d|rϕ(r

d)ℓ
d

⌋

+ r,

whereϕ is Euler’sϕ function.

Proof: Let C(D, E) be a (1, r, ℓ, t)q buffer code. After
i > 1 writes, for eachv ∈ {0, 1, . . . , ℓ− 1}r, let

Si(v) = {x | there is a sequence ofj 6 i symbol

writes ending in levelx andD(x) = v},

mi(v) = maxx∈Si(v){x} is the maximum cell level that is
possible to reach afteri symbol writes such thatD(mi(v)) =
v, and

Mi = ∑
v∈{0,...,ℓ−1}r

|Si(v)|.

Clearly, for all i 6 t, Mi 6 q− 1. After r writes, it is possible
to reach any of theℓr different buffer vectors and thusMr >

ℓr − 1.
Let Gℓ,r be the r-th order ℓ-ary de Bruijn graph [3]. Its

vertex set isVℓ,r = {0, 1, . . . , ℓ − 1}r and its edge set is
Eℓ,r. Let v1 , v2 ∈ {0, 1, . . . , ℓ− 1}r be two different buffer
states. Note that if(v1, v2) ∈ Eℓ,r and mi(v1) > mi(v2)
then mi+1(v2) > mi(v2) and therefore, the value ofMi+1

increases by at least one level for every such an edge. In the
de Bruijn graph, every cycle has at least one edge(v1, v2) ∈
Eℓ,r such thatmi(v1) > mi(v2). Therefore, the number of
new unused levels is at least the number of disjoint vertex
cycles inGℓ,r. This number is known to be1r ∑d|rϕ(r

d)ℓ
d [7],

[16], and therefore

t 6

⌊

q − ℓr

1
r ∑d|rϕ(r

d)ℓ
d

⌋

+ r.

Lemma 6.The bound in Theorem5 improves the bound in [1]
for q > ℓr. That is,
⌊

q − ℓr

1
r ∑d|rϕ(r

d)ℓ
d

⌋

+ r

6

⌊

q − 1

ℓr − 1

⌋

· r +
⌊

logℓ

(

((q − 1) mod (ℓr − 1)) + 1
)⌋

.

Proof: Note that

1

r ∑
d|r

ϕ
(r

d

)

ℓd
>

ℓr + ℓϕ (r)

r
,

9

and therefore
⌊

q − ℓr

1
r ∑d|rϕ(r

d)ℓ
d

⌋

+ r 6

⌊

q − ℓr

ℓr+ℓϕ(r)
r

⌋

+ r

=

⌊

q − ℓr

ℓr + ℓϕ(r)
· r

⌋

+ r =

⌊

q + ℓϕ(r)

ℓr + ℓϕ(r)
· r

⌋

.

If we denoteq − 1 = x(ℓr − 1) + y, where0 6 y 6 ℓr − 1,
then

⌊

q − ℓr

1
r ∑d|rϕ(r

d)ℓ
d

⌋

+ r 6

⌊

q + ℓϕ(r)

ℓr + ℓϕ(r)
· r

⌋

=

⌊

x(ℓr − 1) + y + 1 + ℓϕ(r)

ℓr + ℓϕ(r)
· r

⌋

=

⌊

x(ℓr + ℓϕ(r))− x + y + 1 − (x − 1)ℓϕ(r)

ℓr + ℓϕ(r)
· r

⌋

= xr +

⌊−x + y + 1 − (x − 1)ℓϕ(r)

ℓr + ℓϕ(r)
· r

⌋

6 xr +

⌊

(y + 1)r

ℓr

⌋

.

Let us show that(y+1)r
ℓr 6 logℓ(y+ 1). That is, we show that

(y + 1) > ℓ
(y+1)r

ℓr or
(

(y + 1)
1

y+1

)ℓr

> ℓr.

The function f (x) = x
1
x is monotonically decreasing for

x > 1 and sincey 6 ℓr − 1, we get
(

(y + 1)
1

y+1

)ℓr

>

(

(ℓr)
1
ℓr

)ℓr

= ℓr.

Putting these together we get
⌊

q − ℓr

1
r ∑d|rϕ(r

d)ℓ
d

⌋

+ r 6 xr +

⌊

(y + 1)r

ℓr

⌋

6 xr + ⌊logℓ(y + 1)⌋

=

⌊

q − 1

ℓr − 1

⌋

· r +
⌊

logℓ

(

((q − 1) mod (ℓr − 1)) + 1
)⌋

.

C. Multiple-Cells Buffer Codes

In [1], [10], a buffer code construction is given forℓ = 2 and
arbitrary n, q, r, wheren > 2r. This construction guarantees
t = (q − 1)(n − 2r + 1) + r − 1 writes. In this section,
we show how to improve this construction such that the
guaranteed number of writes ist = (q − 1)(n − r).

In the case whereq = 2, the construction in [1], [10]
guaranteesn− r writes. The encoding procedure is performed
in such a way that afteri writes, 1 6 i 6 n − r, the buffer
is located between the(i + 1)-st and(i + r)-th cells, where
the first bit of the buffer memory is stored in the(i + r)-th
cell and the last bit is stored in the(i + 1)-st cell. If q > 2,
then the construction uses a “layer by layer” approach. That
is, first the layer of levels0 and 1 is used, then the layer of
levels 1 and 2 is used, and so on. In the transition from the

layer of levelsi − 1 and i to the layer of levelsi and i + 1,
all the cells are first reset to leveli and the buffer is written
in the new layer of levelsi and i + 1. Then, it is possible to
continue writing in this layer. Basically, on each layer, itis
possible to writen − r times. However, when a new layer is
used, then first the buffer from the previous layer is copied
and then it is written in the new layer. Hence, it is possible
to have only(n − 2r + 1) more writes in the new layer and
thus the total number of writes is

n − r + (q − 2)(n − 2r + 1) = (q − 1)(n− 2r + 1) + r − 1.

The transition between these consecutive layers is not
performed efficiently and our improvement here shows how it
is possible to writen− r times on each layer such that the total
number of writes ist = (q − 1)(n− r). We first demonstrate
how the construction works by the following example.

Example 2. In this example, we show how the last construc-
tion works for n = 11, q = 3, ℓ = 2 and r = 4, so the
number of writes is2 · (11 − 4) = 14. The sequence of bits
to be written is1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0 and the writes
are performed as follows. The underlined cells represent the
cells that store the buffer on each write.

Written Bit Buffer State Cell State Vector

(0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
1 (0, 0, 0, 1) (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
1 (0, 0, 1, 1) (0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0)
0 (0, 1, 1, 0) (1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0)
0 (1, 1, 0, 0) (1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0)
1 (1, 0, 0, 1) (1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0)
0 (0, 0, 1, 0) (1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0)
0 (0, 1, 0, 0) (1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0)
1 (1, 0, 0, 1) (1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 0)
1 (0, 0, 1, 1) (1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 0)
1 (0, 1, 1, 1) (1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 0)
0 (1, 1, 1, 0) (2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1)
1 (1, 1, 0, 1) (2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1)
1 (1, 0, 1, 1) (2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1)
0 (0, 1, 1, 0) (2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1)

Now we are ready to present the construction by specifying
its encoding and decoding maps specification.
Decoding map Dbuf : The input to this map is a cell-state
vector x = (x1, x2, . . . , xn). The output is the corresponding
information buffer vector(v1, v2, . . . , vr).

m = max(x1, x2, . . . , xn);

nm = find_repeat(m, x1, x2, . . . , xn);

if(nm > r)
for(i = 1; i 6 r; i = i + 1)

vi = xr+nm−i+1 - m;

else {{
for(i = 1; i 6 nm; i = i + 1)

vi = xr+nm−i+1 - m;

for(i = nm + 1; i 6 r; i = i + 1)
vi = xn+nm−i+1 - (m - 1);}}

10

The function max(x1, x2, . . . , xn) simply returns the
maximum value of the cellsx1, x2, . . . , xn. The function
find_repeat(m, x1, x2, . . . , xn) returns the number of
times the valuem repeats in the cellsx1, x2, . . . , xn. If the
value ofnm is at leastr then the buffer is stored between the
(nm + 1)-st and(nm + r)-th cells, and the buffer values are
calculated by subtractingm from the value of each cell. If the
value of nm is less thanr then the buffer is stored cyclically
in two cell groups: the lastr − nm cells and thenm cells in
locationsr+ 1, . . . , r+nm. In the first group, the buffer values
are given by subtractingm − 1 from the cells’ value and in
the second group by subtractingm from the cells’ value.
Encoding map Ebuf : The input to this map is a cell-state
vector x = (x1, x2, . . . , xn), and a new bitb. Its output is
either a cell-state vectory = (y1, y2, . . . , yn) or the erasure
symbolE.

(y1, y2, . . . , yn) = (x1, x2, . . . , xn);

m = max(x1, x2, . . . , xn);

nm = find_repeat(m, x1, x2, . . . , xn);

if(m == 0) {{ // if this is the first write
if(b == 1) yr+1 = 1;

else y1 = 1; }}
if(nm == n - r) {{ // first write in this layer
for(i = 1; i 6 n - r + 1; i = i + 1)

yi = m;

if(b == 1) yr+1 = m + 1;

else y1 = m + 1; }}
if(nm < n - r) {{ // not the first write in this layer

yr+nm+1 = yr+nm+1 + b;

if(b == 0)
for(i = 1; i 6 nm + r; i = i + 1)
if(yi == m - 1) {{

yr+nm+1 = yr+nm+1 + 1; break; }} }}
if(nm 6 r - 1) // one of firstr − 1 writes in this layer

yn−r+1+nm = m - 1;

On the first write, according to the bit valueb, the first or
the (r + 1)-st cell changes its value to one. On the first write
on each layer, the firstn − r + 1 cells are increased to level
m, and then the first or the(r + 1)-st cell is increased by one
level, according to the bit valueb. For all other writes, if the
value if b is one then we simply increase the(r + nm + 1)-st
cell by one level, and otherwise we increase the first cell of
level m − 1 by one level. Finally, if it is one of the firstr − 1
writes in each level, then we need to update the last cell that
stores the buffer to levelm − 1 since it no longer stores the
buffer and thus its level has to be updated.

Next, we prove the correctness of the construction.

Lemma 7.After s = x(n − r) + y, where1 6 y 6 n − r, the
maximum cell level isx + 1 and there arey cells in levelx + 1.

Proof: According to the encoding mapEbuf, the maximum
cell level increases everyn − r writes, on the(i(n − r) +
1)-st write, for 0 6 i 6 q − 2. Therefore, afters writes,
the maximum cell value isx =

⌈

s
n−r

⌉

. If y = 1 then the
maximum cell value isx + 1 and we can see that exactly

one cell changes its value tox + 1. For all other writes, the
maximum cell value does not change and exactly one cell
changes its value to the maximum cell value which isx + 1.

Theorem 8. The buffer codeC(Dbuf, Ebuf) stores the buffer
successfully and guaranteest = (q − 1)(n − r) writes.

Proof: According to Lemma 7, aftert = (q − 1)(n − r)
writes the maximum cell level does not reach levelq and hence
there is no need to erase the block of cells. We prove the
correctness of the encoding and decoding maps to store the
correct value of the buffer by induction on the number of
writes s. This is done by proving that for all1 6 s 6 t,
such thats = x(n − r) + y, where 1 6 y 6 n − r, the
buffer (v1, . . . , vr) is calculated successfully according to the
decoding rules of the decoding map:

1) If y > r then for1 6 i 6 r, vi = xr+y−i+1 − m.
2) If y < r then for 1 6 i 6 y, vi = xr+y−i+1 − m and

for y + 1 6 i 6 r, vi = xr+y−i+1 − (m − 1).

It is straightforward to verify that after the first write the
memory successfully stores the buffer. Assume the assertion
is correct after thes-th write, where1 6 s = x(n − r) + y 6

t − 1, 1 6 y 6 n − r. Assume that the new bit to be written
to the buffer on the(s + 1)-st write is b and let us consider
the following cases:

1) If y = n− r, then on the(s+ 1)-st write in the encoding
map the value ofnm is n − r. Thus the firstn − r + 1
cells change their value tom = x, the values of the last
r− 1 cells do not change, and ifb = 1 thenyr+1 = m+
1, and otherwisey1 = m + 1. Therefore, the new value
of the buffer is also given according to the decoding
rules.

2) If y < n − r, then nm = y < n − r, and the value of
the (r + nm + 1)-st cell increases byb so the buffer is
shifted one place to the right and it stores its updated
value. If b = 0, then we increase the firstnm + 1 cells
by one level. Note thatnm = y and there are exactlyy
cells with the maximum value so we can always find a
cell of value less thanm and increase the value tom.
Then, the buffer is again stored according to the above
decoding rules.

VIII. C ONCLUSION

Rewriting codes for flash memories are important as they
can increase the lifetime of the memory. Examples of such
codes are flash codes [9] and buffer codes [1]. A signif-
icant contribution in this paper is an efficient construction
of flash codes that support the storage of any number of
bits. We show that the write deficiency order of the code is
O(k log k · max{log2 k, q}), which is an improvement upon
the write deficiency order of the equivalent constructions
in [10], [11], [19]. The upper bound in [9] on the guaranteed
number of writes implies that the order of the lower bound on
the deficiency isO(kq). Therefore, there is a gap, which we
believe can be reduced, between the write deficiency orders

11

of our construction and the lower bound. For buffer codes, we
showed how to improve an upper bound on the number of
writes in the case where one cell is used to store the buffer.
If there are multiple cells, we showed a construction that
improves upon the one presented in [1], [10].

REFERENCES

[1] V. Bohossian, A. Jiang, and J. Bruck, “Buffer coding for asymmetric
multilevel memory,” inProc. IEEE Int. Symp. Inf. Theory, Nice, France,
June 2007, pp. 1186–1190

[2] G.D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-
once memories,”IEEE Trans. Inf. Theory, vol. 32, no. 5, pp. 697–700,
Sep. 1986.

[3] N.G. de Bruijn, “A combinatorial problem,” inProc. K. Ned. Akad. Wet.
Ser. A, vol. 49, 1946, pp. 758–764.

[4] A. Fiat and A. Shamir, “Generalized write-once memories,” IEEE Trans.
Inf. Theory, vol. 30, pp. 470–480, Sep. 1984.

[5] H. Finucane, Z. Liu, and M. Mitzenmacher, “Designing floating codes
for expected performance,” inProc. 46th Ann. Allerton Conf. Commun.,
Contr. Comput., Monticello, IL, Sep. 2008, pp. 1389–1396.

[6] E. Gal and S. Toledo, “Algorithms and data structures forflash memo-
ries,” ACM Computing Surveys, vol. 37, pp. 138–163, June 2005.

[7] S.W. Golomb,Shift Register Sequences, revised edition, Aegean Park
Press, Laguna Hills, CA, 1982.

[8] A. Jiang, “On the generalization of error-correcting WOM codes,” in
Proc. IEEE Int. Symp. Inf. Theory, Nice, France, June 2007, pp. 1391–
1395.

[9] A. Jiang, V. Bohossian, and J. Bruck, “Floating codes forjoint informa-
tion storage in write asymmetric memories,” inProc. IEEE Int. Symp.
Inf. Theory, Nice, France, June 2007, pp. 1166–1170.

[10] A. Jiang, V. Bohossian, and J. Bruck, “Rewriting codes for joint informa-
tion storage in flash memories,”IEEE Trans. Inf. Theory, vol. 56, no. 10,
pp. 5300–5313, Oct. 2010.

[11] A. Jiang and J. Bruck, “Joint coding for flash memory storage,” inProc.
IEEE Int. Symp. Inf. Theory, Toronto, Canada, July 2008, pp. 1741–1745.

[12] A. Jiang, M. Landberg, M. Schwartz, and J. Bruck, “Universal rewriting
in constrained memories,” inProc. IEEE Int. Symp. Inf. Theory, Seoul,
Korea, Jul. 2009, pp. 1219–1223.

[13] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,”IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2659–2673,
Oct. 2010.

[14] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank modulation scheme,”IEEE Trans. Inf. Theory, vol. 56,
no. 5, pp. 2112–2120, May 2010.

[15] H. Mahdavifar, P.H. Siegel, A. Vardy, J.K. Wolf, and E. Yaakobi, “A
nearly optimal construction of flash codes,” inProc. IEEE Int. Symp.
Inf. Theory, Seoul, Korea, Jul. 2009, pp. 1239–1243.

[16] J. Mykkeltveit, “A proof of Golomb’s conjecture for thede Bruijn
graph”, Journal of Combinatorial Theory (B), vol. 13, pp. 40–45, 1972.

[17] R.L. Rivest and A. Shamir, “How to reuse a write-once memory,” Inf.
Contr., vol. 55, no. 1–3, pp. 1–19, Dec. 1982.

[18] E. Yaakobi, P.H. Siegel, and J.K. Wolf, “Buffer codes for multi-level flash
memory,” presented at theIEEE Int. Symp. Inf. Theory, poster session,
Toronto, Canada, July 2008.

[19] E. Yaakobi, A. Vardy, P.H. Siegel, and J.K. Wolf, “Multidimensional flash
codes,” in Proc. 46th Ann. Allerton Conf. Commun., Contr. Comput.,
Monticello, IL, Sep. 2008, pp. 392–399.

	I Introduction
	II Preliminaries and Flash Codes Definition
	III Two-Bit Flash Codes
	IV Index-less Indexed Flash Codes
	V Nearly Optimal Construction
	VI Flash Codes of Constant Rate
	VII Buffer Codes
	VII-A Buffer Codes Definition
	VII-B Single-Cell Buffer Codes
	VII-C Multiple-Cells Buffer Codes

	VIII Conclusion
	References

