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Sequential Decentralized Parameter Estimation

under Randomly Observed Fisher Information
Yasin Yilmaz† and Xiaodong Wang†

Abstract

We consider the problem of decentralizedscalar parameter estimationusing wireless sensor networks

with Gaussian noise. Specifically, we propose a novel framework based on level-triggered sampling, a

non-uniform sampling strategy, and sequential estimation. The proposed estimator can be used as an

asymptotically optimal fixed-sample-size decentralized estimator when the observed Fisher information,

i.e., Fisher information without expectation, is deterministic, as an alternative to the one-shot estimators

commonly found in the literature. It can also be used as an asymptotically optimal sequential decentralized

estimator when the observed Fisher information is random. We show that the optimal centralized estimator

under Gaussian noise, which is the maximum likelihood estimator (MLE), is characterized by two

processes, namely the observed Fisher informationUt, and the observed correlationVt. It is noted

that Vt is always random even whenUt is not. In the proposed scheme, each sensor computes its

local random process(es), and sends a single bit to the fusion center (FC) whenever the local random

process(es) pass(es) certain predefined levels. The FC, upon receiving a bit from a sensor, updates its

approximation to the corresponding global random process,and accordingly its estimate. The sequential

estimation process terminates whenUt (or the approximation to it) reaches a target value. We provide

an asymptotic analysis for the proposed estimator and also the one based on conventional uniform-

in-time sampling under both deterministic and randomUt; and determine the conditions under which

they are asymptotically optimal, consistent, and asymptotically unbiased. Analytical results, together

with simulation results, demonstrate the superiority of the proposed estimator based on level-triggered

sampling over the traditional decentralized estimator based on uniform sampling.

Index Terms: Decentralized estimation, level-triggered sampling, observed Fisher information, asymptotic opti-

mality, sequential analysis.
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I. INTRODUCTION

Decentralized parameter estimation is a fundamental signal processing task that can be realized in

wireless sensor networks. Due to the stringent bandwidth and energy requirements imposed by sensors it

is typically performed under the constraints of low bandwidth usage and low communication rate, unlike

centralized estimation. That is to say, sensors need to infrequently communicate to the fusion center

(FC) in an FC-based network (to the neighboring sensors in anad hoc network similarly), consuming

low bandwidth, e.g., sending only a few bits each time.In this paper, we propose a novel sequential

framework based on MLE for decentralized signal amplitude estimation, a scalar parameter estimation

problem.

Signal amplitude estimation for wireless sensor networks was studied in a variety of existing works,

e.g., [1]–[15], considering only the effect of real additive noise. This traditional line of research, from

communications perspective, fails to account for the fading channel effect and the quadrature modulation

techniques, such as quadrature amplitude modulation (QAM), phase-shift keying (PSK), and minimum-

shift keying (MSK), which are the most commonly used techniques in practice. In a typical communica-

tions example, sensors observe complex, i.e., quadratic, signals through fading channels. This motivates

us to study, under a sequential framework, estimating the amplitude of a complex signal under fading

channels, i.e., with complex random scaling coefficients and complex noise. From a general perspective,

our motivation is to sequentially estimate the amplitude ofa complex random signal observed under com-

plex noise. Beside these practical aspects our major motivation in this work is to provide asymptotically

optimal sequential decentralized estimators. The proposed estimators under a novel sequential framework

and their asymptotic performance analysis constitute the main contribution of this work.

The problem of vector parameter estimation was also extensively studied in the literature. For example,

[16]–[22] considered the linear system identification task, where an unknown vector that characterizes

the system to be identified is estimated using a linear model with known regressors, i.e., input to the

system. More specifically, [18]–[22] proposed adaptive estimators which are sequentially updated as new

observations are available. In these adaptive estimators,regressor vectors are random and observed by

sensors at each time, resembling the fading channel gains inour setup. The references [18]–[22] assume

ad hoc sensor networks, whereas [1]–[17] assume FC-based networks. In the latter group of papers,

sensors use either digital or analog transmission to send their observations to the FC, whereas in the

former group only [18] considered a practical transmissionmethod using quantization.

In order to conform to the low bandwidth requirement sensorseither quantize their observations with
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a small number of bits, such as 1 bit, (e.g., [1], [5], [23]) orappropriately pulse-shape their analog

transmissions (e.g., [10], [11], [17]). Quantization witha small number of bits causes the observations

to be recovered in a coarse resolution at the FC, although it is much easier to implement than analog

transmission. Dithering is used in [23] to reduce the bias and improve the consistency of a quantization-

based-estimator. In [14], it is shown that random ditheringcan significantly reduce the Cramer-Rao lower

bound (CRLB) compared to the no dithering case. Moreover, in[24], deterministic dithering is shown

to be optimal in terms of minimizing the CRLB.

In an FC-based network, various types of reporting channelsbetween sensors and the FC have been

analyzed in the literature. For instance, [1]–[5], [12]–[14], [16], [24] assume orthogonal (parallel) error-

free channels; [19]–[22] assume orthogonal error-free infinite-bandwidth channels; [6] assumes orthogonal

non-fading continuous channels; [7], [15], [23] assume orthogonal discrete channels (BSC); [8], [9]

assume non-fading multiple access channel (MAC); and finally [10], [11], [17], [25] assume fading MAC.

In this paper, we will assume orthogonal error-free channels to focus on the proposed novel sequential

framework for decentralized estimation, which is described and analyzed in the following sections. A

common assumption among the existing works is the identically distributed noise or noise with same

statistics, e.g., [1]–[12], [16], [17], [23], [25] except for [3], [4] and [11]. In this paper, we avoid making

such an assumption.

Some of the decentralized estimators proposed in the previous works are universal in the sense that they

do not depend on the probability density function (pdf) of the noise at sensors, e.g., [3], [5], [11], [12].

Here we consider a specific noise pdf, namely the Gaussian noise, and maximum likelihood estimator

(MLE), which is the optimum estimator and corresponds to theleast squares estimator (LSE) in that

case. LSE can be used as a universal estimator under any noisedistribution.

The estimators in [3] and [12] are also independent of the network size and the sensor index, i.e.,

robust to changes in the network size (sensor addition/failure), which is a practically desired feature

for decentralized estimators [13]. Similarly, our estimators are robust in that sense (although different

thresholds are assumed at each sensor as a general case, the derivations and analysis also cover the

specific case of using the same threshold). Most of the estimators in the literature, including the ones in

the references above, except for [3] and [12] as already noted, are not robust in that sense.

All of the references above, except for [14], [18]–[22], perform fixed-sample-size (one-shot) estimation.

However, as stated in [14], it is not possible in fixed-sample-size estimation to further refine the quality of

the estimate before and after the estimation time, unlike the sequential estimation. Moreover, it is natural to

expect that sequential estimators require significantly less number of samples than their fixed-sample-size
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counterparts to achieve the same quality of estimate, as it is known that sequential detection methods, on

average, requires approximately four times less samples than their fixed-sample-size counterparts for the

same level of confidence [26, Page 109]. Hence, in this paper we are interested in sequential decentralized

estimators rather than fixed-sample-size ones. In addition, we will show in the following sections that

sequential estimation is inevitable when the Fisher information observed by sensors is random. We will

also provide optimum stopping time analysis for the proposed sequential estimators.

There are a few works considering the sequential decentralized estimation in the literature, e.g., [14],

[15], [27], [28], in which sensors employ the conventional uniform-in-time samplers to sample and

transmit their local observations. On the other hand, similar to [29], in this paper we will consider

using level-triggered sampling, a non-uniform sampling strategy, which perfectly fits to transmitting

information in decentralized systems as recently shown in [30]–[32]. Level-triggered sampling, eliminating

the need for quantization, naturally outputs 1-bit information, which upon transmission produces a high

quality recovery at the FC with a very fine resolution (even full resolution if sensors observe continuous-

time signals with continuous paths, e.g., Brownian motion). Hence, the level-triggered-sampling-based

information transmission, sending 1 bit per sample, enjoysthe simplicity of digital transmission, and at

the same time it is as powerful as analog transmission producing fine resolution recovery. Furthermore,

it provides censoring of unreliable observations, similarly to [16].

The decentralized estimators in [1], [2], [6], [16] involveiterative procedures for solving convex

optimization problems. It is concluded in [1] that under relaxed bandwidth constraints the simple-minded

quantized sample mean estimator (QSME), in which sensors simply send their quantized observations

to the FC, should be preferred over some more complex estimator. Our level-triggered-sampling-based

estimators are as simple as QSME, and are designed under strict bandwidth constraints.

In this paper, we use the standard notation to denote the types of convergence of random variables, e.g.,
d→,

p→,
a.s.→ and

Ln

→ denote convergence in distribution, convergence in probability, almost sure convergence

and convergence in then-th order moment, respectively. Throughout the paper,E[·] and Var(·) denote

expectation and variance, respectively.We also use the asymptotic notationso(·), O(·), Θ(·), andω(·)
in their standard definition1. Particularly,o(1) represents a term that tends to 0, andO(1) represents a

constant term.

1A quick reminder for the definitions of the notationso(·), O(·), Θ(·), andω(·): f(x) = o (g(x)) if f(x) grows with a lower

rate thang(x); f(x) = O (g(x)) if f(x) grows with a rate that is no larger than the rate ofg(x); f(x) = Θ (g(x)) if f(x)

grows with exactly the same rate asg(x); andf(x) = ω (g(x)) if f(x) grows with a larger rate thang(x).
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The remainder of the paper is organized as follows. We formulate the decentralized estimation problem

and provide the necessary background information in Section II. The optimal centralized estimator and

decentralized estimators that we propose are described in Section III and Section IV, respectively. In

Section V, asymptotic performances of the proposed decentralized estimators are analyzed. Finally, we

give simulation results in Section VI, and conclude the paper in Section VII.

II. PROBLEM FORMULATION AND BACKGROUND

Consider the problem ofestimating a non-random complex parameterx at a central unit, i.e., the fusion

center (FC), via noisy observations collected atK distributed nodes, i.e., sensors. Letykt , t ∈ N, k =

1, . . . ,K, denote the discrete-time noisy sample observed by thek-th sensor at timet, given by

ykt = xhkt + wk
t , (1)

wherex ∈ C is the constant parameter to be estimated,hkt ∈ C is the channel gain, random in general,

and observed by thek-th sensor, andwk
t ∼ Nc(0, σ

2
k) is the complex Gaussian noise assumed to be

independent and identically distributed (i.i.d.) across time and independent but not necessarily identically

distributed across sensors. Accordingly, givenhkt we haveykt ∼ Nc(xh
k
t , σ

2
k), i.e., ykt is conditionally

Gaussian. In the general casehkt is random and assumed to be i.i.d. across time and independent of

wk
t , which corresponds to the fading channels. We will also consider the additive white Gaussian noise

(AWGN) channels, wherehkt is deterministic andhkt = hk, ∀k, t, as a particular case.Throughout the

paper we assume that

(A1) 0 < |ℜ(x)|, |ℑ(x)| < ∞,

(A2) 0 < |hkt | < ∞, ∀k, t,

whereℜ(·) andℑ(·) denote the real and imaginary parts of a complex number. Notethat these are

mild assumptions required for analysis purposes, which do not impose any bounds, but only disregard

some impractical cases. Regarding the channel coefficients{hkt } we only assume (A2), which holds with

probability 1 for all practical AWGN and fading scenarios, hence can be justified almost surely. In other

words, we do not assume any specific distribution for{hkt }.

If sensors transmit their observations in whole by using infinite number of bits, then the FC will have

access to all local observations{ykt }t,k 2, which corresponds to the conventionalcentralizedestimation

problem. However, in practice, due to power and bandwidth constraints, sensors typically sample their

2The subscriptst andk in the set notation denotet ∈ N andk = 1, . . . ,K, respectively.
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observations and transmit only a few bits per sample to the FC. In suchdecentralizedsetup, the FC

can only obtain a summary of local observations based on which it performs estimation. Obviously,

the performance of a decentralized estimator depends on howcomprehensive the summary, that the

FC receives, is. In other words, the sampling and quantization strategies at sensors, and the fusion rule

employed by the FC determine the performance of a decentralized estimator. Since under ideal conditions

(i.e., no sampling and infinite-precision quantization) the decentralized estimator becomes the centralized

one, the optimal performance of the centralized estimator is a benchmark for decentralized estimators.

Hence, we will first analyze the optimal centralized estimator.

Let Hk
t denote the set of channel gains observed at thek-th sensor up to timet, i.e.,Hk

t , {hkτ}τ 3.

Define alsoHt , {Hk
t }k. In this paper, we are interested in an estimator (centralized or decentralized),̂xt,

of x, that is conditionally (and unconditionally) unbiased, i.e.,E[x̂t|Ht] = x, ∀t, henceE[x̂t] = x, and in

minimum time achieves a specified target accuracy in terms ofthe squared error loss, i.e.,(x̂t−x)2 ≤ 1/I.

Sincex is unknown, we need to estimate the true squared error to assess the accuracy of the estimator.

In general, the mean squared error (MSE),E
[
(x̂t − x)2

]
= Var(x̂t), is used to estimate the true squared

error. In this paper, we will use the conditional variance, Var(x̂t|Ht), in the presence of an ancillary

statisticHt [33]. Note that Var(x̂t) = E [Var(x̂t|Ht)], and whenever Var(x̂t|Ht) itself is available, there

is no need to use its mean. Hence the conditional variance is abetter (in fact the best [34]) estimate of

the true squared error than the unconditional variance. Thus, we aim to find the conditionally unbiased

estimator,x̂t, that satisfies the following inequality,

Var
(
x̂T |HT

)
≤ 1

I , (2)

whereT , given in (3), is the minimum time for any conditionally unbiased estimator to achieve the target

accuracy1/I.

The Cramer-Rao lower bound (CRLB), defined using the Fisher informationIt, provides the minimum

variance for an unbiased estimator ofx at time t, i.e., Var(x̂t) ≥ CRLB = 1/It [26, pp. 171]. GivenHt,

we can define the conditional Fisher information,Ict , and accordingly the conditional CRLB,1/Ict , as in

[35]. Then, similarly we have Var(x̂t|Ht) ≥ 1/Ict . Assuming a conditionally efficient estimator, which

achieves Var
(
x̂t|Ht

)
= 1/Ict ,∀t, from (2) the optimal estimation time (stopping time)T is given by

T , min{t ∈ N : Ict ≥ I}, (3)

as in [36].

3We use the subscriptτ in the set notation to denoteτ = 1, . . . , t.
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Note that the conditional problem has stricter constraintsthan the unconditional problem. Conditional

unbiasedness implies unconditional unbiasedness, but notvice versa. Moreover, imposing the condition

in (2) we want to satisfy the target accuracy at each realization, which is a stricter requirement than its

unconditional counterpart Var(x̂T ) ≤ 1
I aiming to satisfy the target accuracy only on average. We will

next analyze the conditional MLE, which will be shown to be conditionally unbiased and efficient, as

the optimal centralized estimator.

III. O PTIMAL CENTRALIZED ESTIMATOR

In the centralized setup under fading channels, thek-th sensor transmits both{ykt }t and{hkt }t to the

FC by using infinite number of bits, hence both{ykt }t,k and{hkt }t,k are available to the FC. Note that

under fading channels{ykt |hkt }t (across time) are independent, but not identically distributed (i.n.i.d.),

and similarly {ykt |hkt }k (across sensors) are i.n.i.d.. Under AWGN channels{ykt }k are i.n.i.d. (across

sensors), but{ykt }t are i.i.d. (across time).

Hence, in general, due to the independence across sensors and time, the conditional log-likelihoodLt

of the global observations up to timet, {ykτ }τ,k, is given by

Lt =

K∑

k=1

Lk
t =

K∑

k=1

t∑

τ=1

lkτ where lkτ , −|ykτ − xhkτ |2
σ2
k

− log πσ2
k (4)

is the conditional log-likelihood of a single observationykτ givenhkτ . The conditional score function for

the real part ofx, St ,
d

dxr
Lt, is then written as

St =
2

σ2
k

K∑

k=1

t∑

τ=1

[

ℜ((hkτ )∗ykτ )− xr|hkτ |2
]

, (5)

wherexr , ℜ(x) and (·)∗ denotes the complex conjugate of a complex number. Next, we write the

conditional observed Fisher information forxr, Ut , − d
dxr

St, as

Ut =

K∑

k=1

Uk
t =

K∑

k=1

t∑

τ=1

2|hkτ |2
σ2
k

. (6)

The conditional MLE,x̂r,t, maximizesLt, hence we haveSt(x̂r,t) = 0. From (5), x̂r,t is then given

by

x̂r,t =

∑K
k=1

∑t
τ=1

2ℜ((hk
τ )

∗yk
τ )

σ2
k

∑K
k=1

∑t
τ=1

2|hk
τ |2

σ2
k

=
Vt

Ut
(7)

where Vt ,

K∑

k=1

t∑

τ=1

2ℜ((hkτ )∗ykτ )
σ2
k

=

K∑

k=1

V k
t . (8)
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Similarly, the conditional MLE for the imaginary part ofx is written as x̂i,t = V̄t

Ut
where V̄t ,

∑K
k=1

∑t
τ=1

2ℑ((hk
τ )

∗yk
τ )

σ2
k

. Since the estimators for the real and imaginary parts are ofthe same form,

all the discussions and analyses performed in the remainderof the paper hold for both. Therefore, we

will henceforth consider only the real part estimator without the subscript.

We can rewrite (5) asSt = Vt − xUt. Dividing both sides byUt and using (7) we get

x̂t = x+
St

Ut
. (9)

Writing (8) explicitly asVt =
∑K

k=1

∑t
τ=1

2(ℜ(yk
τ )ℜ(hk

τ )+ℑ(yk
τ )ℑ(hk

τ ))
σ2
k

, and noting thatℜ(ykτ ) ∼ N (xℜ(hkτ ), σ
2
k

2 ),

ℑ(ykτ ) ∼ N (xℑ(hkτ ), σ
2
k

2 ) given hkτ , we haveVt ∼ N (xUt, Ut), and thusSt ∼ N (0, Ut) given Ht.

Therefore, from (9) we have

x̂t|Ht ∼ N (x, 1/Ut). (10)

From the definition of the Fisher information,It , E[S2
t ] = E[Ut], we write the conditional Fisher

information as

Ict = E
[
Ut|Ht

]
= Ut =

K∑

k=1

t∑

τ=1

2|hkτ |2
σ2
k

. (11)

Hence, we have the following result for the conditional MLE.

Lemma 1. Assuming (A2) the conditional MLE,x̂t, given in(7), is conditionally unbiased, i.e.,E [x̂t|Ht] =

x, consistent, i.e.,̂xt
p→ x givenHt as t → ∞, and efficient, i.e.,Var (x̂t|Ht) = 1/Ict , ∀t.

Proof: The proof is given in Appendix A.

Note that in the particular case of AWGN channels, where we have hkτ = hk, ∀τ , all results obtained

conditional onHt until now, including Lemma 1, are valid only in their unconditional forms sincehk, ∀k,

is deterministic and known. Hence, in this case the Fisher information,It =
∑K

k=1
2t|hk|2
σ2
k

, is deterministic.

Consequently, the optimal stopping time,T , defined in (3), is also deterministic and given by

T = tI =







I
∑K

k=1
2|hk|2
σ2
k







(12)

where⌈·⌉ is the ceiling operator. Hence, we have the following corollary.

Corollary 1. The fixed-sample-size MLÊxtI , which has a variance of1/ItI (cf. Lemma 1), is the optimal

centralized estimator under AWGN channels in terms of the objective in (2).

Under fading channels, however, the conditional Fisher information Ict in (11), and accordingly the

optimal stopping timeT in (3) are random. Hence in this case, we consider a sequential conditional
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MLE, (T , x̂T ). In [37, pp. 96], for non-i.i.d. observations, the use of CRLB was extended to sequential

estimators. We can further extend it to sequential conditional estimators as stated in the following lemma

without proof.

Lemma 2. The conditional variance of a sequential estimator(T , x̂T ) that is conditionally unbiased,

i.e., E [x̂T |HT ] = x, and with a random stopping timeT , is lower bounded by the conditional CRLB,

i.e.,

Var(x̂T |HT ) ≥
1

IcT
. (13)

Then, we can write the following corollary for the fading case.

Corollary 2. The sequential MLE(T , x̂T ), having a conditional variance of1/IcT , is the optimal

centralized estimator under fading channels in terms of theobjective in(2).

Proof: It suffices to show thatE
[
(x̂T − x)2|HT

]
= 1/IcT . Note that we can write

∞∑

t=0

E
[
(x̂t − x)21{t=T }|Ht

]
=

∞∑

t=0

E
[
(x̂t − x)2|Ht

]
1{t=T },

where1{·} is the indicator function, sinceUt depends only onHt and havingIct = Ut from (11) the

event{T = t} is deterministic givenHt [cf. (3)]. From Lemma 1, we haveE
[
(x̂t − x)2|Ht

]
= 1/Ict ,

hence

E
[
(x̂T − x)2|HT

]
=

∞∑

t=0

1

Ict
1{t=T } =

1

IcT
,

which concludes the proof.

Note that we were able to obtain the optimal sequential estimator, that achieves the conditional

sequential CRLB, since our stopping timeT depends only on the channels, i.e.,Ht, but not on the

observations{ykt }. In general, for a stopping time that also depends on the observations it was shown in

[38] that the sequential CRLB is not attainable under any distribution except for Bernoulli distribution.

In the following section, following the optimal centralized estimators in Corollary 1 and Corollary 2,

we will propose decentralized estimators based on either the level-triggered sampling or the traditional

uniform-in-time sampling. And in Section V, we will analyzethe conditions under which the decentralized

estimators given in Section IV achieve asymptotic unbiasedness, consistency and asymptotic optimality.

IV. D ECENTRALIZED ESTIMATORS

In this section, we will develop decentralized estimators,(T̃ , x̃T̃ ), by imitating the optimal centralized

estimators given in the previous section. We will start withthe case of AWGN channels, and then continue

October 17, 2018 DRAFT
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with the general case of fading channels.

A. AWGN Channels

Note that the optimal centralized estimator is computed using bothUt andVt [cf. (7)], whereas the

optimal stopping time is determined using onlyUt [cf. (3) and (11)]. In this case, since we havehkτ =

hk, ∀τ , from (6), Ut =
∑K

k=1
2t|hk|2
σ2
k

is deterministic, and thus can be known by the FC beforehand.

Hence, the optimal stopping timẽT is deterministic and given by (12). In other words, under AWGN

channels the fixed-sample-size decentralized estimatorx̃tI is of interest. In a decentralized system,Vt

given in (8) is a random process unlikeUt, and thus is not readily available to the FC. From Corollary

1, and (7), we see thatVtI is a sufficient statistic for optimally estimatingx, hence sensors should report

{V k
tI}k to the FC. This can be done either sequentially or once at the optimal stopping time,tI , using

the same number of bits in total on average.

The sequential approach, by its nature, has a number of advantages in practice over the fixed-time

approach. Firstly, in the sequential approach, early estimates before the stopping time, i.e.,{x̃t : t < tI},

are available, although they are not as accurate as the final estimatex̃tI . This is a useful feature especially

whentI is large. Secondly, in the sequential approach, each sensorsends several small messages to the

FC until tI , requiring significantly less bandwidth than sending a single large message at timetI in the

fixed-time approach. Moreover, in the fixed-time approach there is a possibility of congestion at the FC

due to the burst of bits received at timetI .

In this paper, following the sequential approach we proposea decentralized MLE based on level-

triggered sampling, which we call LT-DMLE. Note that LT-DMLE is still a fixed-sample-size estimator

despite the fact that it sequentially reports{V k
tI}k to the FC. We will describe first the conventional

decentralized MLE (DMLE) following the fixed-time approach, and then LT-DMLE.

1) DMLE: Each sensork following the fixed-time approach, at timetI , quantizesV k
tI into Ṽ k

tI using

a traditional mid-riser uniform quantizer with the step size tIφk

2Rk−1 , and transmitsRk bits to the FC.

The parameterφk is selected such thatP
(
|V k

tI | > tIφk

)
is sufficiently small so thatE

[
|Ṽ k

tI − V k
tI |
]
<

tIφk

2Rk
. Specifically, the interval[−tIφk, tIφk] is uniformly partitioned into2Rk subintervals, and for each

subinterval its mid value is used as the quantization level.The V k
tI values that are out of the interval

[−tIφk, tIφk] are mapped to the closest quantization level, i.e., the values satisfyingV k
tI > tIφk and

V k
tI < −tIφk are quantized as̃V k

tI = tIφk
2Rk−1
2Rk

and Ṽ k
tI = −tIφk

2Rk−1
2Rk

, respectively.

The FC, upon receivingRk bits from each sensor at timetI , recoversṼ k
tI , k = 1, . . . ,K, and then
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computes

ṼtI =

K∑

k=1

Ṽ k
tI . (14)

Finally, similar to (7) the estimate

x̃tI =
ṼtI

UtI

(15)

is formed4.

2) LT-DMLE: For LT-DMLE, following the sequential approach, we proposethat each sensork, via

level-triggered sampling, informs the FC whenever considerable change occurs in its local processV k
t . The

level-triggered sampling is a simple form of event-triggered sampling, in which sampling (communication)

times{tkn,V }n 5 are not deterministic, but rather dynamically determined by the random processV k
t , i.e.,

tkn,V , min{t > tkn−1,V : V k
t − V k

tkn−1,V
6∈ (−dk, dk)}, n ∈ N, tk0,V = 0. (16)

The threshold parameterdk is a constant known by both sensork and the FC.

At each sampling timetkn,V , sensork transmitsrV bits, bkn,1b
k
n,2 . . . b

k
n,rV , to the FC. The first bit,bkn,1,

indicates the threshold crossed (eitherdk or −dk) by the incremental processvkn , V k
tkn,V

− V k
tkn−1,V

, i.e.,

bkn,1 = sign(vkn). (17)

The remaining(rV − 1) bits, bkn,2 . . . b
k
n,rV , are used to quantize the over(under)shootqkn , |vkn| − dk into

q̃kn. At each sampling timetkn,V , the overshoot valueqkn cannot exceed the magnitude of the last sample

2
σ2
k

∣
∣ℜ((yktkn)

∗hktkn)
∣
∣ in the incremental processvkn =

∑tkn,V

τ=tkn−1,V +1
2ℜ((yk

τ )
∗hk

τ )
σ2
k

. Hence, the interval[0, φk] is

uniformly divided into2rV −1 subintervals using again a mid-riser quantizer with the step size φk

2rV −1 . Here

the parameterφk is determined such thatP(qkn > φk) is sufficiently small so thatE
[
|q̃kn − qkn|

]
< φk

2rV
.

Note that ifV k
t were a continuous-time process with continuous paths, e.g., Brownian motion, then it

would exactly hit the thresholds, i.e., no overshoot would occur, and thus no quantization bits would be

needed, i.e.,rV = 1. The threshold parameterdk is determined so that thek-th sensor, up to timetI ,

transmits on averageRk bits to the FC, i.e., communicates to the FC on averageRk

rV
times.

The FC, upon receiving the bitsbkn,1b
k
n,2 . . . b

k
n,rV from the sensork at timetkn,V , recovers the quantized

value ofvkn by computing

ṽkn , bkn,1(dk + q̃kn). (18)

4DMLE corresponds to the quantized sample mean estimator (QSME) in [1].

5The subscriptn in the set notation denotesn ∈ N.
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Then, it sequentially sums up{ṽkn}n,k, at the sampling (communication) times{tkn,V }n,k to obtain an

approximationṼt to the sufficient statisticVt, i.e.,

Ṽt ,

K∑

k=1

Nk
t∑

n=1

ṽkn =

K∑

k=1

Ṽ k
t , (19)

whereNk
t is the number of messages that the FC receives from the sensork aboutV k

t up to time t.

During the times the FC receives no message, i.e.,t 6∈ {tkn,V }n,k, Ṽt is kept constant. ReplacingVt with

Ṽt in (7) the following decentralized estimator,

x̃t =
Ṽt

Ut
, (20)

is obtained at the FC. Finally, the scheme stops at timeT̃ = tI [cf. (12)] after computing the final

estimatex̃tI =
ṼtI

UtI

.

B. Fading Channels

Under fading channels,Ut is random, hence sensors should report both{V k
t }k and{Uk

t }k to the FC.

In this case, only the sequential approach can be used to report {Uk
t }k to the FC since the stopping

(optimal estimation) time,T , is random. A straightforward way to sequentially report{Uk
t }k is to use

a conventional uniform-in-time sampler followed by a quantizer. Alternatively, level-triggered sampling

can be employed, which has certain advantages over the uniform-in-time sampling, as will be shown

in Section V. On the other hand,{V k
t }k, as in the AWGN case, can be reported to the FC either

sequentially or once at timeT , when the process stops. Hence, we propose two sequential decentralized

MLEs based on level-triggered sampling, and two based on uniform sampling. In the first group of

estimators,{Uk
t }k are sequentially reported, but{V k

t }k are reported once at timeT , hence the names

LT-sDMLE (level-triggered sampling based sequential DMLE) and U-sDMLE (uniform sampling based

sequential DMLE) are used. In the second group, both{Uk
t }k and{V k

t }k are sequentially reported, hence

we name the estimators LT-dsDMLE (level-triggered sampling based doubly sequential DMLE) and U-

dsDMLE (uniform sampling based doubly sequential DMLE). Wenext explain these four estimators in

detail.

1) LT-sDMLE: In LT-sDMLE, sensors sample only{Uk
t }k via level-triggered sampling at the following

sampling times,

tkn,U , min{t > tkn−1,U : Uk
t − Uk

tkn−1,U
≥ ek}, n ∈ N, tk0,U = 0, (21)

where the thresholdek is a constant chosen by the designer and made available to theFC and sensork.

Note that in (21) we use a single threshold different from (16) sinceUk
t , given in (6), is a nondecreasing
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process. Define the incremental processukn , Uk
tkn,U

− Uk
tkn−1,U

. At each sampling timetkn,U , sensork

transmitsrU bits to the FC, all of which are used to quantize the overshootpkn , ukn− ek into p̃kn using a

mid-riser uniform quantizer with the step sizeθk2rU
, similar to LT-DMLE. In this case, we do not need to

allocate a sign bit. The overshootpkn is bounded by the last sample
2
∣
∣hk

tk
n,U

∣
∣
2

σ2
k

in the incremental process

ukn =
∑tkn,U

τ=tkn−1,U+1
2|hk

τ |2
σ2
k

. Specifically, each sensork uniformly partitions the interval[0, θk] into 2rU

subintervals, whereθk is selected such thatP(pkn > θk) is sufficiently small so thatE
[
|p̃kn−pkn|

]
< θk

2rU+1 ;

and then at each sampling timetkn,U determines the quantization level forpkn and transmits its index to

the FC usingrU bits. When the scheme is terminated by the FC at the random stopping time T̃ , each

sensork, as in DMLE, by using a mid-riser uniform quantizer with stepsize T̃ φk

2Rk−1 andRk bits quantizes

V k
T̃ into Ṽ k

T̃ , which is then transmitted to the FC. The parameterφk is selected such thatP(|V k
T̃ | > T̃ φk)

is sufficiently small so thatE
[
|Ṽ k

T̃ − V k
T̃ | | HT̃

]
< T̃ φk

2Rk
.

The FC, upon receiving therU bits at timetkn,U , similar to (18) computes

ũkn , ek + p̃kn. (22)

Then, similar to (19) it also computes

Ũt ,

K∑

k=1

Mk
t∑

n=1

ũkn =

K∑

k=1

Ũk
t , (23)

whereMk
t is the number of messages that the FC receives from sensork aboutUk

t up to time t. The

scheme is terminated at the stopping time,T̃ [cf. (3), (11)], given by

T̃ = min{t ∈ N : Ũt ≥ I}. (24)

Finally, the FC, as in DMLE, upon receivingRk bits from each sensor at timẽT , recoversṼ k
T̃ , ∀k, and

computesṼT̃ =
∑K

k=1 Ṽ
k
T̃ , as well as the estimatẽxT̃ = ṼT̃

ŨT̃

.

2) LT-dsDMLE: In LT-dsDMLE, there are two different sets of sampling times, namely{tkn,U}n,k and

{tkn,V }n,k. Each sensork, as in LT-sDMLE, at timetkn,U [cf. (21)] quantizespkn into p̃kn, and transmits

rU bits to the FC until the stopping timeT . Similarly, each sensork, as in LT-DMLE, at timetkn,V [cf.

(16)] quantizesvkn into ṽkn, and transmitsrV bits to the FC until the stopping timeT . The quantization

parameterφk is selected such thatP(qkn > φk) is sufficiently small so thatE
[
|q̃kn − qkn| | Hk

tkn,V

]
< φk

2rV
.

The FC computes̃ukn at time tkn,U as in (22), and̃vkn at time tkn,V as in (18). Then, it obtains̃Ut and

Ṽt as in (23) and (19), respectively. Next, similar to (20) the following estimator,

x̃t =
Ṽt

Ũt

, (25)

is formed. Finally, the FC terminates the process at timeT̃ , given by (24), immediately after the final
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estimatex̃T̃ = ṼT̃

ŨT̃

is computed.

3) U-sDMLE: In U-sDMLE, each sensork uniformly samples{Uk
t }k with periodTU , i.e., at times

{mTU}m∈N. Specifically, it computes the incremental processukmTU
, Uk

mTU
− Uk

(m−1)TU
at timemTU .

Using a mid-riser quantizer with the step sizeTUθk
2rU

it uniformly divides the interval[0, TUθk] into

2rU subintervals. Then, at timemTU , it quantizesukmTU
into ũkmTU

, and transmits the corresponding

quantization level index to the FC usingrU bits. Hereθk is selected such thatP(ukmTU
> TUθk) is

sufficiently small so thatE
[
|ũkmTU

− ukmTU
|
]
< TUθk

2rU+1 . When the process stops at timẽT , each sensork,

as in LT-sDMLE, quantizesV k
T̃ into Ṽ k

T̃ usingRk bits, and then transmits the quantization bits to the

FC.

The FC, at timemTU , computes̃ukmTU
using the receivedrU bits. Then, similar to (23), it computes

Ũt ,

K∑

k=1

Mt∑

m=1

ũkmTU
, (26)

whereMt = ⌊t/TU ⌋ is the number of sampling (communication) times, until timet, for {Uk
t }k, and

⌊·⌋ is the floor operator. At timẽT , given in (24), the FC, as in DMLE and LT-sDMLE, terminates the

process; recovers̃V k
T̃ upon receivingRk bits; and finally computes̃VT̃ and the estimatẽxT̃ = ṼT̃

ŨT̃

.

4) U-dsDMLE: We also have two sets of sampling times in U-dsDMLE, for{Uk
t }k and{V k

t }k, that

are uniform in time with periodsTU andTV , respectively, i.e.,{mTU}m and{mTV }m. At time mTU ,

as in U-sDMLE, each sensork computesukmTU
; quantizes it intõukmTU

usingrU bits; and transmits the

quantization bits to the FC. Similarly, at timemTV , each sensork computes the incremental process

vkmTV
, V k

mTV
− V k

(m−1)TV
and quantizes it intõvkmTV

using a mid-riser quantizer with the step size
TV φk

2rV −1 . In particular, the interval(−TV φk, TV φk) is uniformly divided into2rV subintervals, whereφk

is determined such thatP(|vkmTV
| > TV φk) is sufficiently small so thatE

[
|ṽkmTV

− vkmTV
| | Hk

mTV

]
<

TV φk

2rV
. Finally, each sensork at each sampling timemTV transmits the index of the quantization level

corresponding tõvkmTV
to the FC usingrV bits.

The FC, as in U-sDMLE, computes̃ukmTU
at timemTU , and alsoŨt given by (26). Similarly, at time

mTV , it computes̃vkmTV
using the receivedrV bits. Next, similar to (19), it computes

Ṽt ,

K∑

k=1

Nt∑

m=1

ṽkmTV
, (27)

whereNt = ⌊t/TV ⌋ is the numbers of sampling times, until timet, for {V k
t }k. Using the approximations

in (26) and (27), the estimator̃xt is computed as in (25), at timet. The stopping time of the scheme is

given by (24).
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V. PERFORMANCEANALYSIS

In this section, we will derive the conditions under which the decentralized estimators outlined in

the previous section are,as I → ∞ and givenHT̃ , asymptotically unbiased, i.e.,E[x̃T̃ |HT̃ ] → x,

consistent, i.e.,̃xT̃
p→ x, and asymptotically optimal. An estimatorx̃t is said to be asymptotically optimal

if
√
It(x̃t − x) converges in distribution to a standard Gaussian random variable, i.e.,

√
It(x̃t − x)

d→
N (0, 1), as t → ∞ [26, pp. 185]. In our case, we let the target Fisher information I → ∞, thus for

asymptotic optimality we need to show that
√

IcT̃ (x̃T̃ − x)
d→ N (0, 1), (28)

givenHT̃ . Note that asymptotic optimality, which is related to the probability distribution, does not imply

asymptotic efficiency, i.e.,E[(x̃T̃ − x)2|HT̃ ] → 1/IcT̃ , which is related to the second moment.

A. AWGN Channels

The following theorem gives the conditions under which DMLE, following the fixed-time approach,

is asymptotically unbiased, consistent, and asymptotically optimal.

Theorem 1. Assuming (A2)the decentralized estimator DMLE, given in Section IV-A is,as I → ∞,

asymptotically unbiased, i.e.,E[x̃tI − x] → 0, and consistent, i.e.,̃xtI
p→ x, if Rk → ∞ at any rate,∀k.

It is also asymptotically optimal, i.e.,
√

ItI (x̃tI − x)
d→ N (0, 1), if Rk → ∞ at a faster rate thanlog I,

i.e., Rk = ω(log I), ∀k.

Proof: The proof can be found in Appendix B.

Now, we proceed to analyze LT-DMLE, that follows the sequential approach to report{V k
t }k, but

is still a fixed-sample-size estimator. The next two theorems give the conditions for LT-DMLE to be

asymptotically unbiased, consistent, and asymptoticallyoptimal.

Theorem 2. Consider the decentralized estimator LT-DMLE, given in Section IV-A. It is, asI → ∞ and

under (A2), asymptotically unbiased, i.e.,E[x̃tI − x] → 0, and consistent, i.e.,̃xtI
p→ x, if dk → ∞ at a

slower rate thanI, i.e., dk = o(I), ∀k.

Proof: The proof is presented in Appendix C.

Theorem 3. Assuming (A1) and (A2)the decentralized estimator LT-DMLE, given in Section IV-A,

is, as I → ∞, asymptotically optimal, i.e.,
√

ItI (x̃tI − x)
d→ N (0, 1), if dk = o(

√
I) and rV =

ω(log(
√
I/dk)), ∀k.
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Proof: The proof is provided in Appendix D.

Note that there are two sources of discrepancy in the sequential estimator based on level-triggered

sampling, LT-DMLE. One source is the discrepancy in the messages, i.e., overshoot quantization error,

represented by the first terms inside the parentheses in (33)and (36). The other source is the missing

statistics at the FC, between the last sampling times of the sensors and the stopping time, represented

by the second terms inside the parentheses in (33) and (36). Having the sampling threshold,dk → ∞,

as I → ∞, de-emphasizes the first source since the number of messagesdecreases, and so does the

accumulation of the overshoot quantization error. However, having dk → ∞ emphasizes the second

source since the sampling intervals increase, and so do the missing statistics within the incomplete

sampling intervals. Therefore, while havingdk → ∞, ∀k, as fast as possible is practically desired since

it corresponds to asymptotically low communication rates,there is a trade-off in determining its rate as can

be seen in (33) and (36). Its rate is upper bounded byI, and
√
I for asymptotic unbiasedness/consistency

(Thm. 2), and asymptotic optimality (Thm. 3), respectively.

On the other hand, we want the number of bits,rV , to be as small as possible since it corresponds to

low bandwidth usage. To ensure asymptotic unbiasedness/consistency we can keeprV constant, whereas

to ensure asymptotic optimality there is a lower bound,log(
√
I/dk), on its rate (Thm. 3). However,

note that having the rate ofdk arbitrarily close to
√
I, which is the most practically desired choice for

asymptotic optimality, we can have the rate ofrV arbitrarily slow. The bandwidth usage in DMLE is

determined byRk since it is the number of bits transmitted at timetI .

It is well known that the energy consumption in sensors is mostly due to the data transmission. Hence,

the number of transmitted bitsRk by sensork in DMLE should be as small as possible to meet the

energy constraint. However, in Theorem 1 it is lower-bounded by the conditionsRk → ∞ at any rate

andRk = ω(log I) for asymptotic unbiasedness/consistency and asymptotic optimality, respectively. Note

from Section IV-A2 thatRk is also the average number of transmitted bits by sensork until the stopping

time in LT-DMLE, i.e., Rk = E[Nk
tI ] rV . Since the transmitted messages,{ṽkn}n, are i.i.d.,Nk

t is a

renewal process. By the elementary renewal theorem we have
E[Nk

tI
]

tI
→ 1

E[tk1,V ]
as tI → ∞, i.e., as

I → ∞, where it is known thattI = Θ(I) from (12) and (A2); andE[tk1,V ] = Θ(dk) from the proof

of Theorem 3. Therefore, for LT-DMLE we writeRk = Θ
(
IrV
dk

)

as I → ∞. Using Theorem 2 and

Theorem 3 we obtain the conditions onRk in LT-DMLE as Rk → ∞ at any rate andRk = ω(
√
I) for

asymptotic unbiasedness/consistency and asymptotic optimality, respectively.

We showed that for DMLERk represents both the energy and bandwidth consumptions of sensork,

whereas for LT-DMLERk and rV represent the energy and bandwidth consumptions, respectively. In
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Energy Bandwidth

DMLE

(Thm. 1)

AU&C: E ∼= O(1)

AO: E ∼= Θ(log I)
AU&C: B̄ ∼= O(1)

AO: B̄ ∼= Θ(log I)

LT-DMLE

(Thm. 2 & 3)

AU&C: E ∼= O(1)

AO: E ∼= Θ(
√
I)

AU&C: B = O(1)

AO: B ∼= O(1)

AU&C: asymptotic unbiasedness and consistency, AO: asymptotic optimality

TABLE I

PRACTICAL IMPLICATIONS OF THEOREMS1–3.

Table I, using Theorems 1, 2 and 3 we present the slowest (achievable or almost achievable) growth

rates for energy and bandwidth usages to ensure asymptotic unbiasedness/consistency and asymptotic

optimality. The symbols= and∼= are used to denote achievable and almost achievable rates, respectively.

We also use the bar symbol to express the fact that the bandwidth usage in DMLE is already (non-

asymptotically) high compared to that in LT-DMLE. It is clearly seen in Table I that in terms of

bandwidth usage the sequential approach, i.e., LT-DMLE, has a big advantage over the fixed-time

approach, i.e., DMLE. As the target accuracy level gets finer, i.e., I → ∞, LT-DMLE using level-

triggered sampling with a low constant bandwidth usage, i.e., constant and smallrV , achieves asymptotic

unbiasedness and consistency. Furthermore, it can achieveasymptotic optimality by increasing its low

bandwidth usage at an arbitrarily slow rate. Whereas, the bandwidth usage of the conventional estimator

DMLE, which is even non-asymptotically high, needs to grow slowly and as fast aslog I for asymptotic

unbiasedness/consistency and asymptotic optimality, respectively. The growth rates in energy usage are

similar except for asymptotic optimality, where DMLE consumes asymptotically less energy than LT-

DMLE
(
log I vs.

√
I
)
. We should note also that LT-DMLE has a number of advantages in practice over

DMLE, as discussed in Section IV-A.

B. Fading Channels

Under fading channels,{ykt |hkt }t,k are independent, but not identically distributed across sensors and

time. Hence, in our derivations for the counting processes such astk1,V andNk
T̃ , and the related processes

we cannot use the regular renewal theory identities, including Wald’s identity. Another challenge in this

case is that the stopping time,T̃ , is random. In this section, we will first analyze the estimators LT-sDMLE

and LT-dsDMLE based on level-triggered sampling, in the first four theorems, and then the estimators

U-sDMLE and U-dsDMLE based on uniform sampling, in the last two theorems. Before proceeding to

the theorems, we present a number of technical lemmas. From now on, Ē[·] will denote the conditional
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expectation givenHk
t , e.g.,Ē[V k

t ] = E[V k
t |Hk

t ], or Ht, e.g.,Ē[Vt] = E[Vt|Ht].

Lemma 3. For LT-sDMLE and LT-dsDMLE, the stopping time,T̃ , under (A2) asI → ∞, tends to

infinity at the same rate asI, i.e., T̃ = Θ(I) if ek either remains constant or tends to infinity such that

ek = O(I), ∀k. And for U-sDMLE and U-dsDMLE,̃T = Θ(I) if TU = O(I).

Proof: The proof is given in Appendix E.

Note that in the above lemma the condition for LT-sDMLE and LT-dsDMLE readsek = O(I) except

ek → 0 for somek. The excluded condition is not of practical importance since it is practically desired

that ek → ∞ or ek = O(1) for low communication rates. Hence, for practical purposeswe can rephrase

the condition asek = O(I). Let us now analyze, in the following lemma, the asymptotic growth rate of

the discrepancy between the global processUt, and its approximatioñUt.

Lemma 4. For LT-sDMLE and LT-dsDMLE withrU = O(1), under (A2) asI → ∞, |UT̃ − ŨT̃ | = o(I)
if ek → ∞ such thatek = o(I), ∀k. And for U-sDMLE and U-dsDMLE,|UT̃ − ŨT̃ | = o(I) if rU → ∞
at any rate.

Proof: The proof can be found in Appendix F.

In the last lemma, we will analyze the asymptotic growth rateof the expected conditional score function

in absolute value.

Lemma 5. For LT-sDMLE and LT-dsDMLE,under (A2)as I → ∞, Ē[|ST̃ |] = o(I) if ek = o(I2) such

that ek 6= o(1), ∀k. And for U-sDMLE and U-dsDMLE,̄E[|ST̃ |] = o(I) if TU = o(I2).

Proof: The proof is presented in Appendix G.

For the same reason stated below Lemma 3 we can paraphrase thecondition for LT-sDMLE and LT-

dsDMLE in Lemma 5 asek = o(I2) for practical purposes. Now, we proceed to analyze the singly

sequential estimator, LT-sDMLE.

Theorem 4. Consider the sequential decentralized estimator LT-sDMLE, given in Section IV-B1.Assum-

ing (A1) and (A2)it is, as I → ∞, asymptotically unbiased, i.e.,̄E[x̃T̃ − x] → 0, and consistent, i.e.,

x̃T̃
p→ x, if Rk → ∞ at any rate, andek → ∞ at a slower rate thanI, i.e., ek = o(I), ∀k.

Proof: The proof is provided in Appendix H.

Theorem 5. The sequential decentralized estimator LT-sDMLE, given inSection IV-B1, is,under (A1)
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and (A2), asI → ∞, asymptotically optimal, i.e.,
√

IcT̃ (x̃T̃ −x)
d→ N (0, 1), if Rk → ∞ at a faster rate

than log I, i.e.,Rk = ω(log I), ek → ∞ such thatek = o(
√
I), and rU = ω(log(

√
I/ek)), ∀k.

Proof: The proof is given in Appendix I.

Next, we analyze LT-dsDMLE, in which, in addition tõUT̃ , ṼT̃ is also sequentially transmitted, as

opposed to LT-sDMLE.

Theorem 6. Consider the sequential decentralized estimator LT-dsDMLE, given in Section IV-B2.Under

(A1) and (A2)it is, asI → ∞, asymptotically unbiased, i.e.,Ē[x̃T̃ −x] → 0, and consistent, i.e.,̃xT̃
p→ x,

if dk → ∞, and ek → ∞ at slower rates thanI, i.e., dk = o(I) and ek = o(I), ∀k.

Proof: The proof can be found in Appendix J.

Theorem 7. With (A1) and (A2)the sequential decentralized estimator LT-dsDMLE, given in Section

IV-B2, is, asI → ∞, asymptotically optimal, i.e.,
√

IcT̃ (x̃T̃ − x)
d→ N (0, 1), if dk = o(

√
I), rV =

ω(log(
√
I/dk)), ek → ∞ such thatek = o(

√
I), and rU = ω(log(

√
I/ek)), ∀k.

Proof: The proof is presented in Appendix K.

Finally, in the following two theorems, we analyze U-sDMLE and U-dsDMLE, that are based on the

conventional uniform sampling.

Theorem 8. Assuming (A1) and (A2)the sequential decentralized estimator U-sDMLE, given in Section

IV-B3 is, asI → ∞, asymptotically unbiased, i.e.,̄E[x̃T̃ − x] → 0, and consistent, i.e.,̃xT̃
p→ x, if

rU → ∞ at any rate,TU = O(I), andRk → ∞ at any rate. Moreover, it is asymptotically optimal, i.e.,
√

IcT̃ (x̃T̃ − x)
d→ N (0, 1), if rU = ω(log I), TU = o(I), andRk = ω(log I).

Proof: The proof is provided in Appendix L.

Theorem 9. With (A1) and (A2)the sequential decentralized estimator U-dsDMLE, given inSection

IV-B4 is, asI → ∞, asymptotically unbiased, i.e.,̄E[x̃T̃ − x] → 0, and consistent, i.e.,̃xT̃
p→ x, if

rU → ∞ and rV → ∞ at any rate, andTU = O(I), TV = o(I). Moreover, it is asymptotically optimal,

i.e.,
√

IcT̃ (x̃T̃ − x)
d→ N (0, 1), if rU = ω(log I), rV = ω(log I), TU = O(I), andTV = o(

√
I).

Proof: The proof is given in Appendix M.

In order to make fair comparisons between the level-triggered-sampling-based estimators and the

uniform-sampling-based estimators, we make the average message rates equal. Specifically, in the uniform-
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Energy Bandwidth

LT-sDMLE

(Thm. 4 & 5)

AU&C: E ∼= O(1)

AO: E ∼= Θ(
√
I)

AU&C: B̄ ∼= O(1)

AO: B̄ ∼= Θ(log I)

LT-dsDMLE

(Thm. 6 & 7)

AU&C: E ∼= O(1)

AO: E ∼= Θ(
√
I)

AU&C: B = O(1)

AO: B ∼= O(1)

U-sDMLE

(Thm. 8)

AU&C: E ∼= O(1)

AO: E ∼= Θ(log I)
AU&C: B̄ ∼= O(1)

AO: B̄ ∼= Θ(log I)

U-dsDMLE

(Thm. 9)

AU&C: E ∼= O(1)

AO: E ∼= Θ(
√
I log I)

AU&C: B ∼= O(1)

AO: B ∼= Θ(log I)

AU&C: asymptotic unbiasedness and consistency, AO: asymptotic optimality

TABLE II

PRACTICAL IMPLICATIONS OF THEOREMS4–9.

sampling-based estimators the average message rates areK
TU

and K
TV

since the FC receivesK messages

everyTU andTV units of time, respectively. For the level-triggered-sampling-based estimators, we are

interested in computing the limitslimt→∞
Nt

t and limt→∞
Mt

t as the average message rates, whereNt

andMt denote the numbers of messages received by the FC until timet for Vt andUt, respectively.

From [31, Eq. (40)], we can writelimt→∞
Nt

t =
∑K

k=1
1

E[tk1,V ]
and limt→∞

Mt

t =
∑K

k=1
1

E[tk1,U ]
. Hence,

we select the thresholds{dk} and{ek} so that
∑K

k=1
1

E[tk1,V ]
= K

TV
and

∑K
k=1

1
E[tk1,U ]

= K
TU

, respectively.

The average number of bits transmitted by sensork until the stopping time represents the energy

consumption and is given byRk = E[Nk
T̃ ]rV andRk,U = E[Mk

T̃ ]rU . It was shown in Section V-A that

Rk = Θ
(
IrV
dk

)

as I → ∞. Here in a similar fashion, using Lemma 3, we can verify the former for

LT-dsDMLE and also show thatRk,U = Θ
(
IrU
ek

)

asI → ∞ for LT-sDMLE and LT-dsDMLE. On the

other hand,Nk
T̃ =

⌊
T̃
TV

⌋

for U-dsDMLE, andMk
T̃ = T̃

TU
for U-sDMLE and U-dsDMLE. Using again

Lemma 3, asI → ∞, we write Rk = Θ
(
IrV
TV

)

for U-dsDMLE, andRk,U = Θ
(
IrU
TU

)

for U-sDMLE

and U-dsDMLE.

In Table II, using Theorems 4–9 we show the slowest (almost) achievable growth rates for the

total energy and bandwidth consumptions to ensure asymptotic unbiasedness/consistency and asymptotic

optimality. The total energy and bandwidth consumed at sensor k is the summation of those consumed

for the local processesUk
t andV k

t . It is seen in the first two rows of Table II that LT-sDMLE, which is

a mixture of the sequential and fixed-time approaches, neverconsumes lees energy and bandwidth than

LT-dsDMLE, which solely follows the sequential approach. Although the singly sequential U-sDMLE

asymptotically consumes less energy than the doubly sequential U-dsDMLE, it is not a practical choice

due to its non-asymptotical high bandwidth usage (cf. the last two rows of Table II). Considering the
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(non-asymptotical) low bandwidth usage and the other practical advantages (cf. Section IV-A) of the

sequential approach over the fixed-time approach, LT-dsDMLE and U-dsDMLE are in practice preferable

to LT-sDMLE and U-sDMLE, respectively.

We will focus on comparing the doubly sequential schemes LT-dsDMLE and U-dsDMLE due to the

reasons stated above. LT-dsDMLE achieves asymptotic unbiasedness and consistency by keeping its

bandwidth usage constant and increasing its energy usage atan arbitrarily slow rate, whereas U-dsDMLE

needs to increase both its bandwidth and energy usages at arbitrarily slow rates. The superiority of

the level-triggered-sampling-based LT-dsDMLE over the uniform-sampling-based U-dsDMLE is more

obvious in achieving asymptotic optimality. As seen in the second and fourth rows of Table II, for

asymptotic optimality LT-dsDMLE needs to consume significantly less energy and bandwidth than U-

dsDMLE needs, i.e.,Θ(
√
I) vs. Θ(

√
I log I) andO(1) vs. Θ(log I).

This is because increasing the average sampling intervalsTU and TV , i.e., increasing the sampling

thresholdsdk andek in LT-dsDMLE, without increasingrU andrV , the numbers of transmitted bits per

sample, does help to improve the asymptotic performance of LT-dsDMLE. However, it does not help in

U-dsDMLE.

The underlying reason for this fundamental difference is that the quantization errors in LT-dsDMLE,

based on level-triggered sampling, are bounded constants that do not depend on the average sampling

intervals. Hence, they become negligible compared to the messages̃vkn and ũkn, given by (18) and (22),

respectively, as the average sampling intervals tend to infinity, i.e., the thresholdsdk and ek tend to

infinity. On the other hand, in U-dsDMLE, based on uniform sampling, the quantization subintervals,

and thus the quantization errors gets larger as the samplingperiodsTU and TV tend to infinity with

constantrU andrV . As a result, the level-triggered-sampling-based LT-dsDMLE is in practice preferable

to the uniform-sampling-based U-dsDMLE since it asymptotically requires considerably less energy and

bandwidth than its competitor does.

VI. SIMULATION RESULTS

The asymptotic performances of the proposed decentralizedestimators were analyzed in Section V. In

this section, we provide simulation results to compare their non-asymptotic performances. Throughout

the section, we userV = rU = 1 to illustrate the case of most practical interest, i.e., to conform to the

low bandwidth usage requirement in decentralized systems.The thresholds{dk} and{ek} are determined

to satisfy the given average sampling intervalsTV andTU , respectively. The quantization parametersφk

andθk are set as the 99-th percentiles of
∣
∣
∣
2ℜ((yk

τ )
∗hk

τ )
σ2
k

∣
∣
∣ and 2|hk

τ |2
σ2
k

, respectively.
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For the AWGN case, our performance metric is the mean squarederror (MSE), i.e.,E[(x̃tI − x)2].

And we plot it against four common parameters of both the centralized and the decentralized estimators,

namely the stopping timetI , known to be deterministic; the number of sensorsK; the signal-to-noise

ratio (SNR) of the channel SNRk = |hk|2
σ2
k

; and the bounding constant of the parameter to be estimated,

i.e., X where |x| < X . Note thatX represents the uncertainty level inx, and affects the value ofφk,

which defines the quantization intervals forV k
tI in DMLE and qkn in LT-DMLE.

On the other hand, for the fading case we use the expected stopping timeE[T̃ ], as the performance

metric. Rayleigh fading channel gains are used in the simulations, i.e.,ℜ(hkt ),ℑ(hkt ) ∼ N (0, σ2
h/2).We

plot E[T̃ ] against MSE,K, SNRk = σ2
h

σ2
k

, andX .

A. AWGN Channels

FixedK, SNRk, andX , varying tI : Firstly, we setK = 5, SNRk = 1 (0 dB) ∀k, X = 5, and vary

I = 25×2m wherem = 0, . . . , 5. Then, from (12) we havetI =
⌈

I
2 K SNR

⌉

= 3, 5, 10, 20, 40, 80. We also

increase the average sampling intervalTV as the stopping time increases to meet the low communication

rate requirement, i.e.,TV = E[tkn,V ] = 2 × 1.4m, ∀k. Recalling thatTV = Θ(dk) (cf. the proof of

Theorem 6), we see that the rate ofTV complies with Theorem 3, and also Theorem 1 (cf. the discussion

at the end of Section V-A). In other words, the rate ofTV (resp.dk,∀k), which is 1.4, is smaller than

but close to the rate of
√
I, which is

√
2. We keep the number of communication bits constant (rV = 1)

in accordance with Theorem 1 and Theorem 3. Hence, we maximize the performances of DMLE and

LT-DMLE while conforming to the low communication rate and low bandwidth usage requirements.

In Fig. 1, it is seen that with short stopping times (up totI = 20) LT-DMLE, following the sequential

approach based on level-triggered sampling, performs significantly better than DMLE, that follows the

fixed-time approach. However, when the stopping time becomes longer, DMLE outperforms LT-DMLE,

and even reaches the optimal centralized estimation performance attI = 80. This is due to the fact that

the number of bits DMLE uses to quantizeV k
tI , i.e.,Rk = E[Nk

tI ] rV , increases as the stopping timetI

increases since the average number of messages transmittedin LT-DMLE until tI , i.e.,E[Nk
tI ], increases

with increasingtI . Accordingly, aftertI = 80, Rk becomes large enough thatV k
tI is fully recovered

at the FC, i.e.,Ṽ k
tI = V k

tI . In other words, the decentralized DMLE becomes the optimalcentralized

estimator. As pointed out in Section IV-A, DMLE does not meetthe low bandwidth usage requirement,

whereas LT-DMLE conforms to it by sending only1 bit in each sampling instant. Furthermore, DMLE

provides no early estimates, whereas LT-DMLE does.

Fixed tI , SNRk, andX , varyingK: Secondly, we settI = 15, TV = 5, SNRk = 0 dB, ∀k, X = 5,
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tI

M
S
E

Fig. 1. Mean squared error (MSE), i.e.,E[(x̃tI
− x)2], vs. the stopping (estimation) time, i.e.,tI , for the optimal centralized

estimator, DMLE, and LT-DMLE withrV = 1.

M
S
E

M
S
E

KK

rV = 1 rV = 2

(a) (b)

Fig. 2. Mean squared error (MSE), i.e.,E[(x̃tI
−x)2], vs. the number of sensors, i.e.,K, for the optimal centralized estimator,

DMLE, and LT-DMLE with (a) rV = 1, (b) rV = 2.

and varyK = 2, . . . , 10. We plot the MSE vs.K with rV = 1 and rV = 2 in Fig. 2–a and Fig. 2–b,

respectively. WithrV = 1, the case of most practical interest, it is seen that the optimal centralized

estimator has an MSE decaying with rate1/K, but DMLE and LT-DMLE, the latter being superior, have

MSEs decaying with rates slower than1/K. The quantization error (resp. overshoot) problem caused

October 17, 2018 DRAFT



24

M
S
E

SNR (dB)

Fig. 3. Mean squared error (MSE), i.e.,E[(x̃tI
− x)2], vs. SNR, i.e.,|hk|2

σ2
k

, for the optimal centralized estimator, DMLE, and

LT-DMLE with rV = 1.

by small number of bits prevents DMLE (resp. LT-DMLE) from fully benefiting the increasing number

of sensors. However, whenrV = 2, the MSE of both schemes seem to decay with rate1/K, as shown

in Fig. 2–b. In this case, DMLE, consuming high bandwidth at time tI , attains the performance of the

optimal centralized estimator.

Fixed tI , K, andX , varying SNRk: Thirdly, we settI = 15, TV = 5, K = 5, X = 5, and vary

SNRk = −20,−10, . . . , 30 dB, ∀k. In Fig. 3, it is seen that the MSEs of DMLE and LT-DMLE decay

with decreasing rates as SNR increases, and even that of DMLEstops decreasing after SNR= 10 dB.

This is because the quantities to be transmitted to the FC, i.e.,V k
tI in DMLE and vkn in LT-DMLE, take

larger values as SNR increases. As a result, the quantization errors in DMLE with constantRk grows

considerably, causing the improvement in the MSE performance to diminish. LT-DMLE is less affected

by this phenomenon since via1 bit a significant part ofvkn, i.e., ṽkn = bkn,1dk [cf. (18)], is transmitted in

any case although the overshoot,qkn, grows with increasing SNR. Consequently, at high SNR LT-DMLE

significantly outperforms DMLE.

Fixed tI , K, and SNRk, varyingX : Lastly, we settI = 15, TV = 5, K = 5, SNRk = 0 dB, ∀k,

and varyX = 5
√
10m wherem = −2, . . . , 2. It is seen in Fig. 4 that the performance of the optimal

centralized estimator is not affected by the increase in theuncertainty inx since no quantization takes

place, i.e., all local observations are available to the FC.On the other hand, those of DMLE and LT-

DMLE, using constant number of bits, are deeply affected since quantization errors and overshoots grow
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M
S
E

X

Fig. 4. Mean squared error (MSE), i.e.,E[(x̃tI
− x)2], vs. the bounding constant ofx, i.e., X , for the optimal centralized

estimator, DMLE, and LT-DMLE withrV = 1.

with the increasingX , respectively. In LT-DMLE, with small values ofX , e.g.,X = 0.5, the overshoot,

qkn, is negligible compared to the magnitude of the transmittedvalue, |ṽkn| = dk, hence we observe a

performance close to the optimal one, and much better than that of DMLE. However, asX increases,

afterX = 5, qkn dominates|vkn| = dk+qkn, i.e.,qkn ≫ dk, and thus the performance of LT-DMLE diverges

from the optimal performance, and stays close to that of DMLE, which also diverges.

B. Fading Channels

Recall that under fading channels the sensork needs to transmit two random processes, namely,Uk
t

andV k
t . The former should be sequentially transmitted since it determines the stopping time. Hence, we

have two options to transmitUk
t , namely, the conventional uniform sampler followed by a quantizer and

the level-triggered sampler. On the other hand, we have three options forV k
t as it can also be transmitted

non-sequentially (at once) at the stopping time.

FixedK, SNRk, andX , varying MSE: As in the AWGN case, we setK = 5, SNRk = 0dB, ∀k,

X = 5, and varyI = 25 × 2m, TV = E[tkn,V ] = 2 × 1.4m, ∀k wherem = 0, . . . , 5. We also set

TU = TV .

In this subsection, we compare the proposed decentralized estimators also with the sequential version
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E
[T̃
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Centralized
LT−dsDMLE
LT−sDMLE
U−dsDMLE
U−sDMLE
Obs−MLE

Fig. 5. Average stopping time, i.e.,E[T̃ ], vs. MSE, i.e.,E[(x̃tI
−x)2], for the optimal centralized estimator, the four decentralized

estimators withrU = rV = 1, and the sequential version of the scheme in [1].

of the estimator in [1]6, in which the FC computes MLE using the one-bit quantized representations of

sensor observations. Here we simulate the sequential version of that estimator where each sensork, at

each timet, transmits the one-bit representations ofℜ(ykt ), ℑ(ykt ), ℜ(hkt ), andℑ(hkt ) [cf. (1)] until the

stopping time given in (24). Then, the FC computes MLE as

x̂t =
2σ

θ
Φ−1

(
Nt

2Kt

)

, (29)

whereσ is the variance of Gaussian noise at all sensors;±θ/2 are the common quantization levels for

{hkt }; Φ(·) is the standard Gaussian cdf;K is the number of sensors; andNt is the number of times the

FC receives a pair(ŷ, ĥ) such thatŷ
ĥ
> 0 until time t. Note that this setup corresponds torU = rV = 2

andTU = TV = 1, meaning that in this scheme sensors transmit more frequently more bits. Hence, the

comparison between the proposed decentralized estimatorsand the observation-based MLE (Obs-MLE)

in (29) is in fact highly unfair in favor of the latter. Nevertheless, as shown in Fig. 5 the proposed doubly

sequential level-triggered-sampling-based estimator (LT-dsDMLE) considerably outperforms Obs-MLE.

This is because the MSE of Obs-MLE decreases very slowly as the average stopping time increases, e.g.,

MSE= 0.3470, 0.3059, 0.3039, 0.3019, 0.3007, 0.2990 in Fig. 5.

6In [16], censoring is used with this estimator to decrease the energy and bandwidth consumption. Hence, the simulated

estimator also corresponds to the uncensored version of theestimator in [16], whose MSE performance is obviously lower than

its uncensored counterpart.
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In Fig. 5, an important observation is the poor performance of U-dsDMLE, which uses uniform

sampling to transmitV k
t . This is because the local incremental processvkmTV

, which forms them-th

message from the sensork, can take both negative and positive values, and withrV = 1 it cannot be

accurately quantized. On the other hand, in LT-dsDMLErV = 1 suffices to represent the local processvkn

well enough at the random sampling timetkn,V [cf. (16)]. As a result, the doubly sequential LT-dsDMLE

based on level-triggered sampling significantly outperforms the doubly sequential U-dsDMLE based on

uniform sampling, which are of special interest to us as onlythe doubly sequential schemes enable low

bandwidth usage.

The singly sequential schemes LT-sDMLE and U-sDMLE, using much higher bandwidth than their

doubly sequential counterparts LT-dsDMLE and U-dsDMLE, improve their performance and outperform

LT-dsDMLE after some point as the target MSE gets smaller. This is expected since LT-sDMLE and

U-sDMLE use more and more bits (i.e., consume higher and higher bandwidth) to transmitV k
T̃ as the

stopping timeT̃ grows. Hence, in fact, the comparison between the singly sequential schemes and the

doubly sequential schemes is not completely fair. Note thathere in the fading case, the performances of

LT-sDMLE and U-sDMLE do not converge to that of the optimal centralized scheme (unlike DMLE in

Fig. 1) sinceUk
t is sequentially transmitted with a constant number of bits,rU = 1.

At moderate and high MSE values, we observe a compatibility problem in LT-sDMLE since a con-

ventional quantizer is used to transmitV k
T̃ , whereasUk

T̃ is transmitted via level-triggered sampling. We

observe such a problem since the decentralized estimates inthis paper are computed as the ratio ofṼt to

Ũt, and whenŨt andṼt are computed via different methods (i.e., one via a conventional quantizer and the

other via level-triggered sampling), quantization errorsin Ũt andṼt are of different orders of magnitude.

Therefore, U-sDMLE, using conventional quantizers in transmitting bothV k
T̃ andUk

T̃ (although the latter

is sequentially transmitted), performs better than LT-sDMLE at moderate and high MSE values. However,

at low MSE values the singly sequential schemes practicallytransmitV k
T̃ exactly (as the number of bits

Rk gets larger), eliminating the compatibility problem in LT-sDMLE, and thus LT-sDMLE outperforms

U-sDMLE, demonstrating the superiority of level-triggered sampling over uniform sampling in another

way.

Fixed MSE, SNRk, andX , varyingK: Henceforth, for the sake of clarity and brevity, we will only

consider the doubly sequential estimators, LT-dsDMLE and U-dsDMLE, since the singly sequential

estimators, LT-sDMLE and U-sDMLE, violate the low bandwidth usage requirement. Next we set MSE=

10−2, SNRk = 0dB, ∀k, X = 5, and varyK = 2, . . . , 10. To make the MSEs of the optimal

centralized estimator, LT-dsDMLE and U-dsDMLE equal to thetarget value, the target Fisher infor-
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K

E
[T̃

I]

Fig. 6. Average stopping time, i.e.,E[T̃ ], vs. the number of sensors, i.e.,K, for the optimal centralized estimator, LT-dsDMLE,

and U-dsDMLE withrU = 1, rV = 2.

mation and the average sampling intervals, for each scheme,are determined asI = 25 × 2s, and

TU = TV = E[tkn,V ] = 2× 1.4s, ∀k wheres ∈ R. Note that for each schemes takes different values in

general. We will userU = 1, as before, butrV = 2 from now on to enable U-dsDMLE to achieve the

target MSE (see Fig. 5).

As shown in Fig. 6, the average stopping time of the centralized scheme decays with a rate close to

1/K, whereas those of LT-dsDMLE and U-dsDMLE, the former being faster, are slower than1/K for

the same reason as in the AWGN case. Recall that in the AWGN case rV = 2 was sufficient for the

decentralized schemes to enjoy the increasing sensor diversity completely (see Fig. 2-b). However, here

under fading channelsrV = 2, together withrU = 1, does not suffice to alleviate the quantization error

problem to fully exploit the increasing sensor diversity.

Fixed MSE,K, andX , varying SNRk: We setK = 5, and vary SNRk = −20,−10, . . . , 20 dB, ∀k.

It is seen in Fig. 7 that the average stopping times of the centralized estimator, LT-dsDMLE and U-

dsDMLE decrease with the increasing SNR, as expected, but the rates of LT-dsDMLE and U-dsDMLE

slow down for the same reason as in the AWGN case. The quantities to be transmitted become larger

as SNR increases, hence with constantrU and rV the quantization errors and overshoots get larger,

slowing down the performance improvement. We observe that the average stopping time of U-dsDMLE

is likely to stop decreasing after20 dB, whereas that of LT-dsDMLE continues to decrease since the rate

of increase of the overshoots in this case is slower than thatof the quantization errors in U-dsDMLE,
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E
[T̃

I]

Fig. 7. Average stopping time, i.e.,E[T̃ ], vs. SNR, i.e.,E[|h
k
t |

2]

σ2
k

, for the optimal centralized estimator, LT-dsDMLE, and

U-dsDMLE with rU = 1, rV = 2.

demonstrating another advantage of LT-dsDMLE over U-dsDMLE. Specifically, U-dsDMLE quantizes

ukmTU
∈ [0, TUθk] and vkmTV

∈ [−TV φk, TV φk] whereφk increases with the increasing SNR. On the

other hand, the overshoots in LT-dsDMLE are confined to[0, θk] or [0, φk] with a high probability (cf.

Section IV).

Fixed MSE,K, and SNRk, varyingX : Lastly, we varyX = 5
√
10m wherem = −2, . . . , 2, setting

the other parameters to the same values used in the previous subsections. Fig. 8 shows that the average

stopping times of the decentralized schemes diverge from that of the centralized scheme asX increases

since the overshoots and the quantization errors grow with increasingX in LT-dsDMLE and U-dsDMLE,

respectively, as described in the AWGN case. In particular,we observe that increasingX causesφk to

grow, hence as explained in the previous subsection the quantization errors in U-dsDMLE grow much

faster than the overshoots in LT-dsDMLE asX increases. Accordingly, U-dsDMLE diverges much quicker

than LT-dsDMLE, as shown in Fig. 8.

VII. C ONCLUSION

We have proposed and rigorously analyzed a new decentralized estimation framework based on a non-

uniform sampling technique, namely level-triggered sampling. Level-triggered sampling, eliminating the

need for quantization, produces a single bit, and thus provides an efficient way of information transmission

in decentralized systems. It is used in the proposed estimator to effectively report local observations at

October 17, 2018 DRAFT



30

E
[T̃

I]

X

Fig. 8. Average stopping time, i.e.,E[T̃ ], vs. the bounding constant ofx, i.e., X , for the optimal centralized estimator,

LT-dsDMLE, and U-dsDMLE withrU = 1, rV = 2.

sensors to a fusion center (FC). Messages received from sensors are combined at the FC to compute

approximation(s) to global random process(es) that characterize(s) the centralized maximum likelihood

estimator (MLE), shown to be optimal. Performing an asymptotic analysis we have determined sufficient

conditions under which the proposed estimator and the decentralized estimator based on conventional

uniform sampling are asymptotically unbiased, consistentand asymptotically optimal. In particular, it

is sufficient for the proposed estimator to have average communication (sampling) intervals tending

to infinity at rates lower than specific upper bounds, and transmit a constant number of bits at each

communication time. On the other hand, for the scheme based on uniform sampling the number of

bits transmitted at each communication time has to tend to infinity at rates faster than specific lower

bounds, regardless of the average communication intervals. For low bandwidth and energy usage it is

practically desired to have the number of bits as small as possible, and the average communication

intervals as large as possible. In that aspect, the analytical results clearly demonstrates the superiority of

the proposed scheme over the conventional scheme. Simulation results further demonstrate the superior

non-asymptotic performance of the proposed scheme based onlevel-triggered sampling under different

conditions.In a future work we plan to consider the case of noisy transmission channels between sensors

and the FC, as in [32], which studies the decentralized detection problem.
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APPENDIX A: PROOF OFLEMMA 1

From (10) it is seen that̂xt is conditionally unbiased. Consistency and efficiency follow from (10)

and (11). We haveE[(x̂t − x)2|Ht] = Var(x̂t|Ht) = 1/Ut = 1/Ict , i.e., efficiency. If we haveUt
a.s.→

∞, i.e., P(limt→∞
∑K

k=1

∑t
τ=1

2|hk
τ |2

σ2
k

= ∞) = 1, then x̂t
L2

→ x implying x̂t
p→ x given Ht, i.e.,

consistency. IfP(limt→∞
∑K

k=1

∑t
τ=1

2|hk
τ |2

σ2
k

= ∞) 6= 1, then there exists someM < ∞ such that

P(limt→∞
∑K

k=1

∑t
τ=1

2|hk
τ |2

σ2
k

< M) 6= 0. Hence, it suffices to show thatP(limt→∞
∑K

k=1

∑t
τ=1

2|hk
τ |2

σ2
k

<

M) = 0, ∀M < ∞. Note that

P

(

lim
t→∞

K∑

k=1

t∑

τ=1

2|hkτ |2
σ2
k

< M

)

≤ lim
t→∞

P

(
K∑

k=1

t∑

τ=1

2|hkτ |2
σ2
k

< M

)

= lim
t→∞

P

(

exp

(

−
K∑

k=1

t∑

τ=1

2|hkτ |2
σ2
k

)

> exp(−M)

)

≤ lim
t→∞

(

E

[

exp
(

−∑K
k=1

2|hk
1 |2

σ2
k

)])t

exp(−M)
,

where the last inequality follows from Markov’s inequalityand the fact that
{
∑K

k=1
2|hk

t |2
σ2
k

}

t
are i.i.d..

Now, since
∑K

k=1
2|hk

1 |2
σ2
k

> 0 from (A2), exp(−∑K
k=1

2|hk
1 |2

σ2
k

) < 1 andE[exp(−∑K
k=1

2|hk
1 |2

σ2
k

)] < 1. Hence,

limt→∞(E[exp(−∑K
k=1

2|hk
1 |2

σ2
k

)])t = 0, concluding the proof.

APPENDIX B: PROOF OFTHEOREM 1

To prove the first part of the theorem it is sufficient to show that x̃tI
L1

→ x, i.e.,E[|x̃tI −x|] → 0, since

x̃tI
L1

→ x implies bothx̃tI
p→ x, andE[x̃tI−x] → 0. Since we haveE[|x̃tI−x|] = E[|x̃tI−x̂tI+x̂tI−x|] ≤

E[|x̃tI − x̂tI |] + E[|x̂tI − x|], andE[|x̂tI − x|] → 0 implied by x̂tI
L2

→ x from Lemma 1, we only need to

show thatE[|x̃tI − x̂tI |] → 0. Using (7) and (15) we write|x̃tI − x̂tI | =
|ṼtI

−VtI
|

UtI

asUtI ≥ 0 [cf. (6)].

From (8) and (14) taking the expectations of both sides we have

E
[
|x̃tI − x̂tI |

]
≤
∑K

k=1 E
[
|Ṽ k

tI − V k
tI |
]

UtI

. (30)

The quantizer in DMLE is designed so thatE
[
|Ṽ k

tI − V k
tI |
]
< tIφk

2Rk
= Θ(tI)

2Rk
. We also haveUtI =

tI
∑K

k=1
2|hk|2
σ2
k

= Θ(tI) as it is assumed in (A2) that0 < |hk|2 < ∞, ∀k. Hence, using (30) we write

E
[
|x̃tI − x̂tI |

]
<

K∑

k=1

O(1)

2Rk
, (31)

where it is sufficient to haveRk → ∞, ∀k, at any rate for asymptotic unbiasedness and consistency.

For asymptotic optimality, note thatItI = UtI , and we can write
√

UtI (x̃tI − x) =
√

UtI (x̃tI −
x̂tI )+

√
UtI (x̂tI −x). From (10) we have

√
UtI (x̂tI −x) ∼ N (0, 1). Hence, it is sufficient to show that
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√
UtI (x̃tI − x̂tI ) → 0 asI → ∞. From (31), ifRk = ω(logUtI ), ∀k, then

√
UtIE

[
|x̃tI − x̂tI |

]
→ 0,

and thus from Markov’s inequality
√

UtI |x̃tI − x̂tI | → 0, which implies
√

UtI (x̃tI − x̂tI) → 0. We have

from (12) thatI ≤ UtI ≤ I +
∑K

k=1
2|hk|2
σ2
k

, implying thatUtI = I + O(1) due to (A2), and hence the

result in Theorem 1 follows.

APPENDIX C: PROOF OFTHEOREM 2

As stated in the proof of Theorem 1, it is sufficient to show that E[|x̃tI − x̂tI |] → 0. Note from (8) that

V k
tI =

∑Nk
tI

n=1 v
k
n+

∑tI
τ=tk

Nk
tI

,V
+1

2ℜ((yk
τ )

∗hk
τ )

σ2
k

, and from (19) that̃V k
tI =

∑Nk
tI

n=1 ṽ
k
n. Thus, following (30) we

have

|x̃tI − x̂tI | ≤
∑K

k=1

∑Nk
tI

n=1 |ṽkn − vkn|
UtI

+

∑K
k=1

∣
∣
∣
∑tI

τ=tk
Nk

tI
,V

+1
2ℜ((yk

τ )
∗hk)

σ2
k

∣
∣
∣

UtI

, (32)

where in the second term of the right hand-side we can write
∣
∣
∣
∑tI

τ=tk
Nk

tI
,V

+1
2ℜ((yk

τ )
∗hk)

σ2
k

∣
∣
∣ < dk since it is

known that no sampling occurs between the last sampling time, tkNk
tI

,V , and the stopping time,tI . Taking

the expectations of both sides in (32) and noting thatUtI = tI
∑K

k=1
2|hk|2
σ2
k

in the AWGN case, we write

E[|x̃tI − x̂tI |] <
1

∑K
k=1

2|hk|2
σ2
k

( K∑

k=1

E[
∑Nk

tI

n=1 |ṽkn − vkn|]
tI

+

K∑

k=1

dk
tI

)

, (33)

where the term outside the parentheses isO(1) as I → ∞ due to (A2). In the first term inside the

parentheses,|ṽkn − vkn| is the quantization error in absolute value of then-th message from sensork.

Noting thatvkn =
∑tkn,V

τ=tkn−1,V +1
2ℜ((yk

τ )
∗hk)

σ2
k

, we see that|ṽkn − vkn| depends only on the observations in

then-th intersampling period, i.e.,{ykτ }, τ ∈ (tkn−1,V , t
k
n,V ], and thus{|ṽkn − vkn|}n are i.i.d.. Hence, the

term
∑Nk

tI

n=1 |ṽkn − vkn| in (33) is a renewal reward process. Note from (12) and (A2) that tI = Θ(I), i.e.,

tI → ∞ asI → ∞. Hence, from [39, Theorem 3.6.1] we have

E[
∑Nk

tI

n=1 |ṽkn − vkn|]
tI

→ E[|ṽk1 − vk1 |]
E[tk1,V ]

(34)

asI → ∞, whereE[tk1,V ] is the average sampling interval of sensork. Then, it is sufficient to show that

E[|ṽk1 − vk1 |]
E[tk1,V ]

→ 0, and
dk
tI

→ 0, ∀k, (35)

asI → ∞. If dk → ∞ such thatdk = o(I), i.e., dk = o(tI), ∀k, then both conditions in (35) will be

satisfied sinceE[|ṽk1 − vk1 |] = E[|q̃k1 − qk1 |] < φk

2rV
= O(1) for rV = O(1) as a result of the quantizer

design in LT-DMLE, andE[tk1,V ] → ∞ asdk → ∞ [cf. (16)] as shown in Appendix D, concluding the

proof.
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APPENDIX D: PROOF OFTHEOREM 3

As stated in the proof of Theorem 1, it is sufficient to show that
√

UtI (x̃tI − x̂tI ) → 0 asI → ∞. If

we show that
√

UtIE[|x̃tI −x̂tI |] → 0, then from Markov’s inequality we will have
√

UtI |x̃tI −x̂tI | → 0,

which implies
√

UtI (x̃tI − x̂tI ) → 0. From (33) and the discussion following it, we can write

√

UtIE[|x̃tI − x̂tI |] < O(1)
( K∑

k=1

E[|ṽk1 − vk1 |]
√

UtI

E[tk1,V ]
+

K∑

k=1

dk

Θ(
√

UtI )

)

(36)

asI → ∞. Since
{

2ℜ((yk
τ )

∗hk)
σ2
k

}

τ
are i.i.d., using Wald’s identity we can writeE[vk1 ] = E[tk1,V ]E

[
2ℜ((yk

1 )
∗hk)

σ2
k

]

.

SinceE
[
2ℜ((yk

1 )
∗hk)

σ2
k

]

= 2x
σ2
k

|hk|2, from (A1) and (A2) it isO(1). At each sampling time,vkn either crosses

dk or −dk, hence its expectation is given byE[vk1 ] = (1−αk)(dk+E[qk1 |vk1 ≥ dk])+αk(−dk−E[qk1 |vk1 ≤
−dk]) = (1 − 2αk)dk + E[qk1 ], where αk , P(vkn ≤ −dk), and qk1 is the overshoot bounded by

2
σ2
k

∣
∣ℜ((yktk1 )

∗hk)
∣
∣ (cf. Section IV-A2).We have

E
[
|ℜ((ykt )∗hk)|

]
≤ |x||hk|2 + E

[
|ℜ(wk

1 )|
]
|ℜ(hk)|+ E

[
|ℑ(wk

1)|
]
|ℑ(hk)|, (37)

whereE
[
|ℜ(wk

1)|
]
= E

[
|ℑ(wk

1)|
]
= σk√

π
, henceE[qk1 ] = O(1) from (A1) and (A2). Therefore, we have

E[vk1 ] = Θ(dk) andE[tk1,V ] = Θ(dk). Note thatE[|ṽk1 − vk1 |] = E[|q̃k1 − qk1 |] < φk

2rV
from the quantizer

design in LT-DMLE.Accordingly, we rewrite (36) as

√

UtIE[|x̃tI − x̂tI |] < O(1)
( K∑

k=1

Θ(
√

UtI/dk)

2rV
+

K∑

k=1

dk

Θ(
√

UtI )

)

, (38)

which concludes the proof sinceUtI = I +O(1) as shown in the proof of Theorem 1.

APPENDIX E: PROOF OFLEMMA 3

We start with the level-triggered sampling based estimators, and continue with the uniform sampling

based ones.Since the quantized overshootp̃kn is between the smallest and largest quantization levels, the

quantized incremental processũkn lies in the interval[ek +
θk

2rU+1 , ek + θk
2rU+1−1
2rU+1 ]. Note thatŨT̃ cannot

exceed the target Fisher information,I, by more than
∑K

k=1(ek + θk
2rU+1−1
2rU+1 ), in which case all sensors

transmit their largest possible messages at the stopping time. Hence, we write

I ≤
K∑

k=1

Mk

T̃∑

n=1

ũkn < I +

K∑

k=1

(

ek + θk
2rU+1 − 1

2rU+1

)

, (39)
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followed by

I
T̃

<

K∑

k=1

(

ek + θk
2rU+1 − 1

2rU+1

)
Mk

T̃
T̃

,

and
I +

∑K
k=1

(

ek + θk
2rU+1−1
2rU+1

)

T̃
>

K∑

k=1

ek
Mk

T̃
T̃

.

(40)

Since from (24)T̃ → ∞ asI → ∞, we have
Mk

T̃

T̃ → 1
E[tk1,U ]

by the the strong law of large numbers for

renewal processes [39, Proposition 3.3.1]. Using (A2) we can show thatE[tk1,U ] = Θ(ek) in the same

way it was shown in the proof of Theorem 3 thatE[tk1,V ] = Θ(dk). Hence, asI → ∞ we rewrite (40) as

T̃
I >

1

O(1) +
∑K

k=1
O(1)
Θ(ek)

,

and
T̃

I +
∑K

k=1 ek +O(1)
< O(1),

(41)

from which it is seen that̃T = Θ(I) if either ek = O(1) or ek → ∞ with ek = O(I), concluding the

proof for LT-sDMLE and LT-dsDMLE.

Note that, for U-sDMLE and U-dsDMLE, when the scheme stops attime T̃ , the overshoot over

I is upper bounded by the sum of the largest quantization levels
∑K

k=1 TUθk
2rU+1−1
2rU+1 of {ũkmTU

}k,

corresponding to the worst case scenario in whichŨ(MT̃ −1)TU
is just belowI, and all sensors transmit

the largest message possible at timeT̃ . Here,MT̃ = T̃ /TU is the number of sampling times until̃T .

Hence, similar to (39) we write

I ≤
K∑

k=1

MT̃∑

m=1

ũkmTU
< I +

K∑

k=1

TUθk
2rU+1 − 1

2rU+1
. (42)

Since TUθk
2rU+1 < ũkmTU

< TUθk
2rU+1−1
2rU+1 , we have

I
TU
∑K

k=1 θk

2rU+1

2rU+1 − 1
< MT̃ <

I 2rU+1

TU
∑K

k=1 θk
+ 2rU+1 − 1, (43)

and thus
I

∑K
k=1 θk

2rU+1

2rU+1 − 1
< T̃ <

I 2rU+1

∑K
k=1 θk

+ TU (2
rU+1 − 1). (44)

Hence,T̃ = Θ(I) if TU = O(I), concluding the proof.

APPENDIX F: PROOF OFLEMMA 4

We present the proofs first for LT-sDMLE and LT-dsDMLE, and then for U-sDMLE and U-dsDMLE.

Note that we haveUk
T̃ =

∑Mk

T̃

n=1 u
k
n+

∑T̃
τ=tk

Mk

T̃
,U

+1
2|hk

τ |2
σ2
k

, and from (23) that̃Uk
T̃ =

∑Mk

T̃

n=1 ũ
k
n. Hence, we
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write

|UT̃ − ŨT̃ | ≤
K∑

k=1

( Mk

T̃∑

n=1

|ũkn − ukn|+
T̃∑

τ=tk
Mk

T̃
,U

+1

2|hkτ |2
σ2
k

)

, (45)

where
∑T̃

τ=tk
Mk

T̃
,U

+1
2|hk

τ |2
σ2
k

< ek since no sampling occurs betweentk
Mk

T̃
,U

and T̃ . Similar to (34) using

[39, Theorem 3.6.1] we can write
∑Mk

T̃
n=1 |ũk

n−uk
n|

T̃ → E[|ũk
1−uk

1 |]
E[tk1,U ]

since T̃ → ∞ asI → ∞ from (24). We

haveE[|ũk1 − uk1 |] < θk
2rU+1 = O(1) due to the quantizer design, andE[tk1,U ] = Θ(ek) from the proof of

Lemma 3. Hence, asI → ∞ (45) becomes

|UT̃ − ŨT̃ |
I <

K∑

k=1

(

T̃ O(1)

I Θ(ek)
+

ek
I

)

, (46)

where if ek → ∞ such thatek = o(I), T̃ = Θ(I) as shown in Appendix E, and the right hand-side

tends to zero.

For U-sDMLE and U-dsDMLE, similar to (45) we write

|ŨT̃ − UT̃ | ≤
K∑

k=1

MT̃∑

m=1

|ũkmTU
− ukmTU

|, (47)

where we lack the term representing the missing informationat the FC between the last sampling time and

the stopping time, e.g., the second term in (45), sinceT̃ = MT̃ TU . It follows by the strong law of large

numbers that
∑M

T̃
m=1 |ũk

mTU
−uk

mTU
|

MT̃

→ E[|ũkTU
− ukTU

|] as T̃ → ∞, i.e., I → ∞. Note thatE[|ũkTU
− ukTU

|] <
TUθk
2rU+1 due to the quantizer design andMT̃ = T̃

TU
, hence asI → ∞ using (47) we write

|ŨT̃ − UT̃ |
I <

T̃
I

K∑

k=1

θk
2rU+1

, (48)

where withTU = O(I) (e.g., constantTU ) T = Θ(I) from Lemma 3, and|ŨT̃ −UT̃ | = o(I) if rU → ∞,

concluding the proof.

APPENDIX G: PROOF OFLEMMA 5

We again start with the level-triggered-sampling-based estimators, then continue with the uniform-

sampling-based ones. Using the Cauchy-Schwarz inequalitywe write

Ē[|ST̃ |]
I ≤

√

Ē[S2
T̃ ]

I =

√

Ē[UT̃ ]

I

<

√

ŨT̃ +
∑K

k=1

∑Mk

T̃

n=1 |ũkn − ukn|+
∑K

k=1 ek
I2

, (49)

where we used (45) and the facts thatĒ[UT̃ ] = UT̃ [cf. (11) and (24)] and
∑T̃

τ=tk
Mk

T̃
,U

+1
2|hk

τ |2
σ2
k

< ek

(cf. Appendix F) to write (49).We showed in the proof of Lemma 3 that̃UT̃ is bounded byI +
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∑K
k=1

(

ek + θk
2rU+1−1
2rU+1

)

. Since
∑K

k=1

∑Mk

T̃

n=1 |ũkn − ukn| < T̃ ∑K
k=1

O(1)
Θ(ek)

(cf. Appendix F), asI → ∞,

(49) becomes

Ē[|ST̃ |]
I <

√
√
√
√

∑K
k=1 2ek
I2

+
T̃
I2

K∑

k=1

O(1)

Θ(ek)
. (50)

From (41),T̃ < Θ(I +
∑K

k=1 ek). Using this upper bound for̃T in (50) we see that the second term on

the right hand-side tends to zero provided that1
Iek → 0,∀k, i.e., 1

ek
= o(I),∀k, and

∑
K

k=1 ek
I2ek

→ 0,∀k,

i.e.,
∑

K

k=1 ek
ek

= o(I2),∀k. Sinceek = o(I2),∀k due to the first term on the right hand-side of (50), these

conditions are met ifek 6= o(1), concluding the first part of the proof.

For U-sDMLE and U-dsDMLE, similar to (49) we write

Ē[|ST̃ |]
I ≤

√

ŨT̃ + |ŨT̃ − UT̃ |
I2

<

√

TU

I2
O(1) +

T̃
I2

O(1), (51)

which follows from (42) and (48). IfTU = o(I2), we conclude that̃T = o(I2) from (44), and accordingly

the right hand-side of (51) tends to zero asI → ∞.

APPENDIX H: PROOF OFTHEOREM 4

As in Theorem 1 and Theorem 2, we will show convergence in mean, i.e, Ē[|x̃T̃ − x|] → 0, to prove

the theorem. Note that we can writẽxT̃ − x as

x̃T̃ − x =
UT̃
ŨT̃

(

ṼT̃
UT̃

− ŨT̃
UT̃

x

)

. (52)

Now, as we did before in Theorem 1 and Theorem 2, we add and subtract x̂T̃ inside the parentheses, i.e.,

x̃T̃ − x = UT̃

ŨT̃

(
ṼT̃

UT̃

− x̂T̃ + x̂T̃ − ŨT̃

UT̃

x
)

. Replace the first̂xT̃ with VT̃

UT̃

, and the second one withx+ ST̃

UT̃

.

After distributing UT̃

ŨT̃

through the parentheses, and taking the absolute value and the expectation of both

sides we get

Ē
[
|x̃T̃ − x|

]
≤ Ē

[
|ṼT̃ − VT̃ |

]

I +
|UT̃ − ŨT̃ |

I |x|+ Ē
[
|ST̃ |

]

I , (53)

since ŨT̃ ≥ I. If ek → ∞ such thatek = o(I), ∀k, the second term on the right hand-side of (53)

tends to zero, following from Lemma 4 and (A1), and similarly, the last term tends to zero, following

from Lemma 5.For the first term we writeĒ[|ṼT̃ −VT̃ |]
I ≤∑K

k=1
T̃ φk

I2Rk
due to the quantizer design. Since

T̃ = Θ(I) from Lemma 3, the first term on the right hand-side of (53) tends to zero ifRk → ∞,∀k, at

any rate asI → ∞, concluding the proof.
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APPENDIX I: PROOF OFTHEOREM 5

SinceIcT̃ = UT̃ , from the proof of Theorem 4 we can write

√
UT̃ (x̃T̃ − x) =

UT̃
ŨT̃

(

ṼT̃ − VT̃
√

UT̃
+

UT̃ − ŨT̃
√

UT̃
x+

ST̃
√

UT̃

)

. (54)

Note from Section III that ST̃√
UT̃

∼ N (0, 1). Hence, it is sufficient to show thatUT̃

ŨT̃

→ 1, ṼT̃ −VT̃√
UT̃

→ 0,

and UT̃ −ŨT̃√
UT̃

→ 0 asI → ∞. It is shown in (39) thatI ≤ ŨT̃ < I +
∑K

k=1

(

ek + θk
2rU+1−1
2rU+1

)

. For UT̃ ,

from (45) and the discussion after it we can write

ŨT̃ −
K∑

k=1

( Mk

T̃∑

n=1

|ũkn − ukn|+ ek

)

< UT̃ < ŨT̃ +

K∑

k=1

( Mk

T̃∑

n=1

|ũkn − ukn|+ ek

)

, (55)

where, by [39, Theorem 3.6.1],
∑Mk

T̃
n=1 |ũk

n−uk
n|

T̃ → E[|ũk
1−uk

1 |]
E[tk1,U ]

< θk
Θ(ek)2rU+1 asI → ∞. Using the lower and

upper bounds for̃UT̃ and the fact that̃T = Θ(I) from Appendix E, asI → ∞, we can write

I −∑K
k=1

[

ek +Θ
(

I
ek

)]

I +
∑K

k=1 ek +O(1)
︸ ︷︷ ︸

1−
∑

K
k=1[Θ(ek)+Θ( I

ek
)]+O(1)

I+
∑

K
k=1

ek+O(1)

<
UT̃
ŨT̃

<
I +

∑K
k=1

[

Θ(ek) + Θ
(

I
ek

)]

+O(1)

I
︸ ︷︷ ︸

1+

∑
K
k=1[Θ(ek)+Θ( I

ek
)]+O(1)

I

, (56)

henceUT̃

ŨT̃

→ 1 if ek → ∞ such thatek = o(I). From the quantizer design we haveĒ[|ṼT̃ − VT̃ |] <
∑K

k=1
T̃ φk

2Rk
, hence by (55)

Ē[|ṼT̃ − VT̃ |]
√

UT̃
<

K∑

k=1

T̃ φk

2Rk

√

I −∑K
k=1

(
∑Mk

T̃

n=1 |ũkn − ukn|+ ek

)
. (57)

With ek → ∞ such thatek = o(I), asI → ∞, (57) becomesĒ[|ṼT̃ −VT̃ |]√
UT̃

<
∑K

k=1
Θ(

√
I)

2Rk
since

∑Mk

T̃

n=1 |ũkn−

ukn| < Θ
( T̃
ek

)
and T̃ = Θ(I). Thus, Ē[|ṼT̃ −VT̃ |]√

UT̃

→ 0 if Rk = ω(log I), implying, by Markov’s inequality,

|ṼT̃ −VT̃ |√
UT̃

→ 0, which in turn impliesṼT̃ −VT̃√
UT̃

→ 0. Similarly, from (45) and the discussion after it we see

that |UT̃ −ŨT̃ |√
UT̃

< Θ(
√
I/ek)

2rU+1 +
∑K

k=1
ek√
I , hence it tends to zero ifek = o(

√
I) andrU = ω(log(

√
I/ek)), ∀k,

concluding the proof.

APPENDIX J: PROOF OFTHEOREM 6

LT-dsDMLE differs from LT-sDMLE only in the transmission of̃VT̃ , hence the proof of Theorem 4 up

to and including (53) applies here. Moreover, as in Theorem 4, if ek → ∞ such thatek = o(I), ∀k, we

have |UT̃ −ŨT̃ |
I → 0, and Ē[|ST̃ |]

I → 0 from Lemma 4 and Lemma 5, respectively. ForĒ[|ṼT̃ −VT̃ |]
I , following
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(33), asI → ∞, we write

Ē
[
|ṼT̃ − VT̃ |

]

I <

K∑

k=1

Ē

[∑Nk

T̃

n=1 |ṽkn − vkn|
Nk

T̃

Nk
T̃
I

]

+

K∑

k=1

dk
I . (58)

Since{|ṽkn − vkn|} are independent and non-negative random variables, from [40, Lemma 2] we write
∑Nk

T̃
n=1 |ṽk

n−vk
n|

Nk

T̃

→
∑Nk

T̃
n=1 Ē[|ṽk

n−vk
n|]

Nk

T̃

< φk

2rV
asNk

T̃ → ∞, i.e., asI → ∞, the inequality being true due to

the quantizer design. Using the elementary renewal theoremfor non-identically distributed variables [40,

Theorem 2] we can write
Ē[Nk

T̃
]

T̃ → Nk

T̃

∑Nk

T̃
n=1 Ē[s

k
n]

, whereskn , tkn,V − tkn−1,V is the n-th inter-sampling

interval. Now consider a new sampling process{s̄kn} with the observation
∣
∣
∣
2ℜ((yk

t )
∗hk

t )
σ2
k

∣
∣
∣ at time t instead

of 2ℜ((yk
t )

∗hk
t )

σ2
k

[cf. (16)], and the thresholddk. Note thatskn ≥ s̄kn,∀n, k. By again [40, Theorem 2]

we have Ē[s̄kn]
dk

→ s̄kn
∑s̄kn

τ=1
2

σ2
k

Ē[|ℜ((yk
t )∗h

k
t )|]

as dk → ∞, where Ē
[
|ℜ((ykt )∗hkt )|

]
= O(1) by (37). Hence,

Ē[s̄kn] = Θ(dk) and
Ē[Nk

T̃
]

T̃ < Θ
(

1
dk

)

. With ek → ∞ such thatek = o(I),∀k, from Lemma 3,T̃ = Θ(I),
thus the right hand-side of (58) tends to zero ifdk → ∞ such thatdk = o(I),∀k, concluding the proof.

APPENDIX K: PROOF OFTHEOREM 7

The proof follows that of Theorem 5, except for the part showing ṼT̃ −VT̃√
UT̃

→ 0 since LT-dsDMLE

differs from LT-sDMLE only in the transmission of̃VT̃ . From Appendix J, we haveĒ[|ṼT̃ −VT̃ |]√
I → 0

if dk = o(
√
I) and rV = ω(log(

√
I/dk)), implying, by Markov’s inequality,|ṼT̃ −VT̃ |√

I → 0, and thus
ṼT̃ −VT̃√

I → 0. We conclude the proof noting from (56) thatUT̃ = Θ(I) whenek → ∞ such thatek = o(I).

APPENDIX L: PROOF OFTHEOREM 8

The first part of the proof follows from the proof of Theorem 4,which uses Lemma 3, Lemma 4 and

Lemma 5. To show asymptotic optimality, we start with (54). Similar to Theorem 5, we will first show

that UT̃

ŨT̃

→ 1. From (42), (47) and (48), asI → ∞,we can write

1− TU O(1) + T̃ O(1)
2rU+1

I + TU O(1)
<

UT̃
ŨT̃

< 1 +
TU O(1) + T̃ O(1)

2rU+1

I , (59)

where withTU = o(I), from Lemma 3,T̃ = Θ(I) and UT̃

ŨT̃

→ 1 if rU → ∞ at any rate. Now, we need

to show thatṼT̃ −VT̃√
UT̃

→ 0, andUT̃ −ŨT̃√
UT̃

→ 0. Similar to (57) we can show thatĒ[|ṼT̃ −VT̃ |]√
UT̃

<
∑K

k=1
Θ(

√
I)

2Rk
,

hence Ē[|ṼT̃ −VT̃ |]√
UT̃

→ 0 if Rk = ω(log I), which implies ṼT̃ −VT̃√
UT̃

→ 0 by Markov’s inequality. Finally,

using (48) we show that|UT̃ −ŨT̃ |√
UT̃

→ 0, and thusUT̃ −ŨT̃√
UT̃

→ 0 if rU = ω(log I).
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APPENDIX M: PROOF OFTHEOREM 9

Since U-dsDMLE differs from U-sDMLE in only the transmission of V k
T̃ , the proof follows that of

Theorem 8 except for the part showing
Ē

[
|ṼT̃ −VT̃ |

]

I → 0 and ṼT̃ −VT̃√
UT̃

→ 0. Similar to (58), we write

Ē
[
|ṼT̃ − VT̃ |

]

I ≤
∑K

k=1 Ē

[
∑NT̃

m=1 |ṽkmTV
− vkmTV

|
]

I +

∑K
k=1 Ē

[
∑T̃

τ=NT̃ TV +1

∣
∣ 2ℜ((yk

τ )
∗hk

τ )
σ2
k

∣
∣

]

I , (60)

where Ē

[
∑T̃

τ=NT̃ TV +1

∣
∣2ℜ((yk

τ )
∗hk

τ )
σ2
k

∣
∣

]

< TV Ē

[∣
∣ 2ℜ((yk

τ )
∗hk

τ )
σ2
k

∣
∣

]

= Θ(TV ) since T̃ − NT̃ TV < TV , and

Ē
[
|ℜ((ykτ )∗hkτ )|

]
= O(1) by (37). From the law of large numbers for i.n.i.d. and non-negative random

variables [40, Lemma 2] we write
∑N

T̃
m=1 |ṽk

mTV
−vk

mTV
|

NT̃

→
∑N

T̃
n=1 Ē[|ṽk

TV
−vk

TV
|]

NT̃

< TV φk

2rV
due to the quantizer

design, asT̃ → ∞, i.e., I → ∞. Note that T̃
TV

≥ NT̃ , thus we havēE
[
∑NT̃

m=1 |ṽkmTV
− vkmTV

|
]

< T̃ φk

2rV

asI → ∞. Then, asI → ∞, (60) becomes

Ē
[
|ṼT̃ − VT̃ |

]

I <
T̃
I

∑K
k=1 φk

2rV
+

Θ(TV )

I , (61)

where with TU = O(I), from Lemma 3,T̃ = Θ(I), and thus the right hand-side tends to zero if

TV = o(I) and rV → ∞ at any rate. Similarly,
Ē

[
|ṼT̃ −VT̃ |

]

√
I → 0 if rV = ω(log I) andTV = o(

√
I).

We conclude the proof noting from (59) thatUT̃ = Θ(I) and
Ē

[
|ṼT̃ −VT̃ |

]

√
I → 0 implies ṼT̃ −VT̃√

I → 0 by

Markov’s inequality.
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