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Multi-User Non-Locality Amplification
Helen Ebbe and Stefan Wolf

Abstract—Non-local correlations are among the most fasci-
nating features of quantum theory from the point of view
of information: Such correlations, although not allowing for
signaling, are unexplainable by pre-shared information. The
correlations have applications in cryptography, communication
complexity, and sit at the very heart of many attempts of
understanding quantum theory — and its limits — in terms of
classical information. In these contexts, the question is crucial
whether such correlations can be amplified or distilled, i.e.,
whether and how weak correlations can be used for generating
(a smaller amount of) stronger. Whereas the question has been
studied quite extensively forbipartite correlations (yielding both
pessimistic and optimistic results), only little is known in the
multi-partite case.

We introduce a general framework of reductions between
multi-party input-output systems. Within this formalism, we
show that a natural n-party generalization of the well-known
Popescu-Rohrlich boxcan be distilled, by an adaptive protocol,
to the algebraic maximum. We use this result further to show that
a much broader class of correlations, includingall purely three-
partite correlations, can be distilled from arbitrarily we ak to
almost maximal strength with partial communication, i.e., using
only a subset of the channels required for the creation of the
same correlation from scratch. Alternatively, this means that ar-
bitrarily weak non-local correlations can have a “communication
value” in the context of the generation of maximal non-locality.

Index Terms—Correlation distillation, information-theoretic
systems, multiparty non-locality, quantum entanglement,quan-
tum theory

I. I NTRODUCTION

ONE of the most mysterious, challenging, but also useful
consequences of quantum theory are non-local correla-

tions: The joint behavior under (different possible) measure-
ments of a quantum system can be unexplainable by pre-
shared (classical) information determining all the outcomes
locally. This result by Bell [3] can be seen as a late reply
to the claim, in 1935, of Einstein, Podolsky, and Rosen [13]
that quantum theory was incomplete and must be augmented
by hidden variables, i.e., classical information predicting all
measurements’ outcomes.1

It has been a prominent open problem why nature does
display non-local behavior, yet no maximal one. More specif-
ically, why can Bell’s inequality be violated, but a perfect
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1Bell’s paradox only persists under the assumption that measurement bases
are chosen freely; at the same time, however, none of thedeterministic
interpretations of quantum physics satisfies with anexplanationneither of
the correlations’ origin nor of their limitations.

Popescu-Rohrlich box[26] cannot be realized [7]? A number
of attempts have been made to single out quantum correlations
among general non-signaling systems: Are quantum correla-
tions the ones that do not collapsecommunication complex-
ity [4], that are of no help fornon-local computation[22], that
respectinformation causality, a principle generalizing the non-
signaling principle to the case of limited communication [24],
or that are locally orthogonal [16], i.e., respect Specker’s
principle that if any pair of questions about a system can
be answered, thenall questions togethercan be answered
simultaneously [6]?

It has turned out that non-local correlations have impor-
tant applications for information processing,e.g., device-
independent cryptography or communication complexity. In
all these contexts, a question of paramount importance is the
one of distillation of non-locality: Given weak correlations,
is it possible to generate stronger ones by local wirings? For
instance, distillation can potentially lead to higher confiden-
tiality levels or to a collapse of communication complexityby
(apparently) weak correlations.

In the two-party scenario, the possibility of distillation
has already been extensively studied and, notably, led to
complementary results adding up to a pretty complete picture:
Whereasisotropic CHSH-type[8] correlations seem undistill-
able [11], the same fails to hold in general [14], [5], [20]. In
fact, certain arbitrarily weak CHSH correlations can even be
distilled up to virtually perfect PR boxes by adaptive protocols.

In the case of three or more parties, much less is known.
It was shown that the straight-forward generalization of the
(non-adaptive) XOR protocol [14] to more parties fails to
distill extremal boxes of the non-signalling polytope to almost-
perfect [21].

The contribution of the present work is as follows: We
introduce a general framework for reductions of systems.
In this model, we show that the natural generalization of
PR boxes ton parties has the property that non-isotropic
faulty versions thereof can be distilled to close-to-perfect by a
multi-party variant of Brunner and Skrzypczyk’s [5] protocol
(Section IV). This result is used to show distillability fora
much larger class of correlations, where the distillation is
supported by partial communication,i.e., a subset of the parties
is allowed to communicate, whereas this communicationalone
is insufficient for generating the target correlation (Section V).
We call this partial communication supported distillationnon-
locality amplification. The result can alternatively be inter-
preted as arbitrarily weak non-local correlations having a
“communication value” in the context of the generation of
almost-perfect systems. In Section VI, the general resultsand
procedures are illustrated with two examples.

http://arxiv.org/abs/1307.7927v1
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II. SYSTEMS, BOXES, AND NON-LOCALITY

A. Systems

Definition 1 (n-Partite System) An n-partite systemis a
conditional distribution

PA1A2···An|X1X2···Xn
, (1)

whereXi is the input andAi is the output variable of theith
party.

B. Boxes are Non-Signalling Systems

Definition 2 (Non-Signaling) An n-partite system with con-
ditional probability distributionP (a1a2 · · · an|x1x2 · · ·xn) is
saidnon-signalingif the marginal distribution for each subset
of parties{ak1

, ak2
, ..., akm

} only depends on its correspond-
ing inputs

P (ak1
· · · akm

|x1 · · ·xn) = P (ak1
· · · akm

|xk1
· · ·xkm

) .
(2)

An equivalent condition to Definition 2 can be found in [23],
[1]:

∑

ak

P (a1 · · · ak · · ·an|x1 · · ·xk · · ·xn) =

∑

ak

P (a1 · · · ak · · · an|x1 · · ·x′
k · · ·xn) (3)

for all k ∈ {1, 2, ..., n}, all inputsa1, a2, ..., an, and outputs
x1, x2, ..., xk−1, xk, x

′
k, xk+1, ..., xn.

Definition 3 (n-Partite Box) An n-partite boxis an-partite
system that is non-signaling.

The ranges ofAi andXi, respectively, are arbitrary setsAi

andXi.

C. Multipartite Locality

Of central interest for us aren-partite boxes with the
property that the parties cannot simulate the behavior of the
box without communication but shared randomness only. This
property is callednon-locality.

Definition 4 (Local Box) An n-partite box with input vari-
ablesX1, X2, ..., Xn and output variablesA1, A2, ..., An is
local if

PA1A2···An|X1X2···Xn
=
∑

r∈R

PR(r) · P
r
A1|X1

· · ·P r
An|Xn

(4)

for some random variableR.

Equivalently, there exists a distributionP under which all joint
outputs coexist.

Lemma 1 (Locality means Realism)A boxP is local if and
only if there exists a distribution

P ′
A1,0A1,1···A1,|X1|−1A2,0···A2,|X2|−1···An,0···An,|Xn|−1

(5)

with the property that its marginals satisfy

P ′
A1,i1

···An,in
= PA1···An|X1=i1,...,Xn=in (6)

for any ij ∈ Xj for j ∈ {1, 2, ..., n}.

Proof: We assume thatP ′ exists and define the random
variable

R := A1,0A1,1 · · ·A1,|X1|−1A2,0 · · ·An,0 · · ·An,|Xn|−1 . (7)

Obviously, this random variableR satisfies (4).
Assume thatP is local. In order to see thatP ′ exists, we

define

P ′
A1,0A1,1···An,0An,1

(a1,0a1,1 · · ·an,0an,1) :=

∑

r∈R

PR(r) ·
n
∏

i=1

P r
Ai|Xi

(ai,0, 0) · P
r
Ai|Xi

(ai,1, 1) (8)

and compute the marginals.

Throughout, the remainder of this article, all the rangesAi

andXi are assumed to be{0, 1}.

D. Specific Non-Local Boxes

We define certain classes and specific types ofn-partite
boxes which we will use for our reductions. They are gen-
eralizations of the bipartite boxes studied in [14], [5], [2].

We focus our attention tofull-correlation boxes. Intuitively
speaking, such a box displays correlation only with respectto
the full set of players.

In the following definitions, then-tuple of inputs is denoted
by x = (x1, x2, ..., xn), wherexi ∈ {0, 1}. The n-tuple of
outputs isa = (a1, a2, ..., an), whereai ∈ {0, 1} for all i.

Definition 5 (Full-Correlation Box) An n-partitefull-corre-
lation boxis characterized by the following conditional distri-
bution:

P (a|x) =







1

2n−1

∑

i

ai ≡ f(x) (mod 2)

0 otherwise,
(9)

wheref(x) is a Boolean function of the inputs.

Two special cases of the full-correlation boxes are then-
partite Popescu-Rohrlich boxand theeven-parity box forn
parties.

Definition 6 (n-Partite Popescu-Rohrlich Box) An n-par-
tite Popescu-Rohrlich box(or n-PR box) is characterized by
the following conditional distribution

P PR
n (a|x) =







1

2n−1

⊕

i

ai =
∏

i

xi

0 otherwise.
(10)

Definition 7 (n-Partite Even-Parity Box) An even-parity
box forn partiesis characterized by the following conditional
distribution

P c
n(a|x) =







1

2n−1

⊕

i

ai = 0

0 otherwise.
(11)

Note that the box of Definition 7 islocal. A convex
combination of the boxes of Definitions 6 and 7 is called a
correlated non-local box for n parties.
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Definition 8 (Correlated Non-Local Boxes) The family of
correlated non-local boxes for n partiesis defined by

P PR
n,ε = εP PR

n + (1− ε)P c
n , (12)

where0 ≤ ε ≤ 1.

E. Communication as Systems

In the protocols below, we will not only usen-partite boxes
as resources, but also communication between some of the
parties, i.e., signaling systems. This partial communication
can be seen as a directed graphG with n vertices and
directed edges which correspond to the one-way communi-
cation channel between then parties. We denote the one-way
communication channels withC(G), these channels can be
used once in arbitrary order.

III. A R EDUCTION CALCULUS FOR SYSTEMS

A. Protocols

A protocol is a distributed algorithm that takes the inputs
of the parties and produces outputs for every one. If the
protocol also takes shared systems to produce outputs, it is
called areduction protocol. Its goal can be to simulate some
target systemT , either perfectly or arbitrarily precisely [15].
Assume there aren parties that sharem n-partite systems
S1, S2, ..., Sm and a random variableR. The parties get the
input x = (x1, x2, ..., xn), and finally, they outputa =
(a1, a2, ..., an). During the protocol, the parties are allowed
to apply any classical circuitry to their local parts of the
shared system. Such a circuitry is calledwiring and consists
of choices for the inputs of the boxes and the generation of
the outputs [1], [27].

Definition 9 (Adaptive Protocol) In an adaptive protocol,
every Partyi gets the inputxi and acts as follows: Partyi
inputsfj(xi, R, bi1 , bi2 , ..., bij−1

) to the shared systemSij for
all j ∈ {1, 2, ...,m}, where the indexij depends onxi, R,
and the former output bitsbi1 , bi2 , ..., bij−1

. The systemSij

outputsbij to party i. The final output of Partyi is given by
the functionfxi(R, b1, b2, ..., bm).

Definition 10 (Non-Adaptive Protocol) In a non-adaptive
protocol, every Partyi gets the inputxi and acts as follows:
Party i inputs fj(xi, R) to the shared systemSj for all j ∈
{1, 2, ...,m}. The systemSj outputsbj to party i. The final
output of Partyi is given by the functionfxi(R, b1, b2, ..., bm).

In contrast to adaptive protocols, no input of a system
depends on the output of another one in a non-adaptive
protocol.

B. Resources Inequalities

In the following, we useresources inequalitiesas introduced
in [9], [10], [19]. They are used to express whether some
resource can be simulated by other resources plus shared
randomness. Assume we have two systemsR and R′. We
write

R � R′ (13)

if there exists a protocol that simulatesR′ usingR and shared
randomness.

Clearly, if (13) holds, then there also exists a protocol that
simulatesR′ using arbitrarily many copies ofR (k copies ofR
is written asR⊗k), an arbitrary other resourceR′′, and shared
randomness

{R⊗k, R′′} � R′ , (14)

wherek ∈ N ∪ {∞}.
We write

R �∗ R′ (15)

if there exists a protocol that simulatesR′ using arbitrary many
copies ofR and shared randomness. IfR′ can be simulated
arbitrarily precisely with a small number of copies ofR then
we write

R →∗ R′ . (16)

C. Examples of Reductions

With this notation, we are able to rephrase some well-known
results. Obviously,

∅ � P (17)

if and only if P is local.
From the definition of correlated non-local boxes forn

parties, we know that such a box is a convex combination
of the even-parity boxP c

n and then-PR boxP PR
n . Since the

even parity box is local,∅ � P c
n and, therefore,

P PR
n,ε′ � P PR

n,ε for all 0 ≤ ε ≤ ε′ ≤ 1 . (18)

In a Section IV, we see that for every0 < ε < 1 existsε′ > ε
such that

P PR
n,ε

⊗2
� P PR

n,ε′ , (19)

and for all0 < ε < 1

P PR
n,ε →

∗ P PR
n . (20)

IV. M ULTI -PARTY NON-LOCALITY DISTILLATION

Non-locality distillation protocols are executed byn par-
ties without communication. The protocol simulates a binary
input/output system by classical (local) operations on non-
local boxes [14]. The goal is to use weak non-local boxes
for simulating stronger ones. Since these protocols only use a
given set of boxes and local operations that can be simulated
by shared randomness, we can describe the result of the non-
locality distillation as a resources inequality: Assume that the
distillation protocol uses as resources the boxesP1, P2, ..., Pn,
wheren ∈ N ∪ {∞}, to simulate the boxP . Therefore, we
get the resources inequality

{P1, P2, ..., Pn} � P . (21)

Brunner and Skrzypczyk [5] proposed an adaptive protocol
for two parties that distills non-locality in the asymptotic
limit: All correlated non-local boxes are distilled arbitrarily
closely to the (maximally non-local) PR box. In the notation
of resources inequalities, we could describe this kind of
distillation as

P PR
2,ε

⊗2
� P PR

2,ε′ (22)
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and
P PR
2,ε →

∗ P PR
2 , (23)

where0 < ε < 1 andε′ = ε/2 · (3 − ε) > ε. We extend this
to all n-partite PR boxes in Protocol 1 and Theorem 1.

Protocol 1 (Generalized BS Protocol forn-PR Boxes) All
n parties share two boxes, where we denote byxi the value
that the ith party inputs to the first box and byyi the value
that theith party inputs to the second box. The output bit of
the first box for theith party isai, and the output bit of the
second box isbi. The n parties proceed as follows:yi = xiāi
and they output, finally,ci = ai ⊕ bi (see also Fig. 1).

x1 x2 xn

x1 x2 xn

a1 a2 an

x1ā1 x2ā2 xnān

b1 b2 bn

c1 c2 cn

ci = ai ⊕ bi

Figure 1. Generalized BS Protocol forn-PR boxes

Theorem 1 Protocol 1 distills two copies of an arbitrary box
P PR
n,ε with 0 < ε < 1 to ann-partite correlated non-local box

P PR
n,ε′ with ε′ > ε.

P PR
n,ε

⊗2
� P PR

n,ε′ . (24)

In the asymptotic limit of many copies, Protocol 1 distills any
P PR
n,ε with ε > 0 to a box arbitrarily closely to then-PR box

P PR
n,ε →

∗ P PR
n . (25)

In the language of distillation, we say that in the asymptotic
case of many copies, anyP PR

n,ε with ε > 0 can be distilled
arbitrarily closely to then-PR box. This shows that also in
the multipartite case, non-locality can be distilled.

Proof: We introduce the notationA ⊲ B, which means
that the first box in Protocol 1 acts likeA and the second one
like B. The initial two-box state of Protocol 1 is given by

P PR
n,ε ⊲ P

PR
n,ε = ε2P PR

n ⊲ P PR
n

+ ε (1− ε)
(

P PR
n ⊲ P c

n + P c
n ⊲ P PR

n

)

+ (1− ε)2P c
n ⊲ P c

n . (26)

We apply Protocol 1 and get the following relations:P PR
n ⊲

P PR
n ≡ P PR

n (i.e., P PR
n is a fixpoint),P PR

n ⊲ P c
n ≡ P PR

n , P c
n ⊲

P PR
n ≡ 21−nP PR

n +
(

1− 21−n
)

P c
n, andP c

n ⊲ P c
n ≡ P c

n.
After the application of Protocol 1, we get the final box,

which is

P PR
n,ε′ =

ε

2n−1

(

2n−1 + 1− ε
)

P PR
n

+
(

1−
ε

2n−1

(

2n−1 + 1− ε
)

)

P c
n . (27)

Hence,ε′ = ε/2n−1 ·
(

2n−1 + 1− ε
)

. We show thatε′ > ε
for all 0 < ε < 1, therefore, the protocol takes any correlated
non-local boxP PR

n,ε to a stronger boxP PR
n,ε′ .

We show that in the asymptotic regime of many copies, any
P PR
n,ε with 0 < ε < 1 can be distilled arbitrarily closely to the

n-PR box. We are starting with2m copies of the boxP PR
n,ε and

get, finally, the boxP PR
n,εm

, where

Tn(ε) =
ε

2n−1

(

2n−1 + 1− ε
)

, (28)

εm = Tn(εm−1) , and ε0 := ε . (29)

The fixed points of this map areε = 0 and ε = 1. To
analyze the stability of these two fixed points we calculate the
eigenvalues of the Jacobian (since the map is one-dimensional,
the Jacobian is a real value and not a matrix). For the box
P c
n (ε = 0), we find dTn/dε|ε=0 = 1 + 1/2n−1 > 1,

so this box is repulsive. For the other boxP PR
n we find

dTn/dε|ε=1 = 1+1/2n−1−1/2n−2 < 1; the box is attractive.

V. M ULTI -PARTY NON-LOCALITY AMPLIFICATION

The generalized BS protocol can be used to obtain non-
locality amplification protocols for full-correlation boxes,
where the use of communication is allowed to some of the
parties. We allow a subset of the parties to use one-way
communication channels (as often as required). We show that
we are able to amplify a general class of full-correlation boxes
arbitrarily closely to the maximum with such protocols.

A. Construction of Full-Correlation Boxes

Lemma 2 If f is a Boolean function of the input elements
x1, x2, ..., xn, then it can be written as

f(x1, ..., xn) =
⊕

I∈I

(

aI ·
∧

i∈I

xi

)

, (30)

whereI = P ({1, 2, ..., n}) and aI ∈ {0, 1} for all I ∈ I.

Hence, it is obvious that the full-correlation box associated
to the Boolean functionf can be constructed by

∑

I∈I aI n-
PR boxes. Indeed, for everyaI = 1, ann-PR box is needed,
where theith party inputsxi if i ∈ I, and otherwise he
inputs 1. Then, the box will outputbIi . In the end, every
party outputsci =

⊕

I∈I, aI=1
bIi . For an example, see Fig. 2.

Note that then-PR boxes belonging toaI where|I| ≤ 1 are
local and can be simulated by local operations and shared
randomness.

We already know that alln-partite full-correlation boxes
can be simulated byn-partite PR boxes. We define the set of
all n-PR boxes that are needed to simulate the full-correlation
box: Let

J := {I ∈ I | aI = 1 and |I| ≥ 2} . (31)

This set can be partitioned into pairwise disjoint subsets
{J1, J2, ..., JnJ } such that allA ∈ Ji and B ∈ Jj fulfill
A ∩ B = ∅ for all i 6= j. We define the maximal num-
ber of such subsets asnJ and denote this partition as the
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3-PR Box 3-PR Box3-PR Box1⊕ xy ⊕ xz

yx z

ba c

y zx

b = b1 ⊕ b2 ⊕ b3

c = c1 ⊕ c2 ⊕ c3a = a1 ⊕ a2 ⊕ a3

y 11

b2 b3b1

1 z1

c2 c3c1

x x1

a2 a3a1

Figure 2. Construction of the1⊕ xy ⊕ xz-Box

empty-overlap partition ofJ . We define, for allI ∈ J ,
mI := |I \

⋃

J∈J\I J |, i.e., the number of variables that only
appear in the non-local box corresponding toI ∈ J .

We take two full-correlation boxes. The first is given by

P1(a1 · · · ak2
|x1 · · ·xk2

) =







1

2k2−1

k2
⊕

i=1

ai = g1(x1, ..., xk2
)

0 otherwise,
(32)

whereg1 is a Boolean function which depends on all of its
input variables, andk2 < n. The second box is defined as

P2(bk1
· · · bn|xk1

· · ·xn) =











1

2n−k1

n
⊕

i=k1

bi =
k3
∏

i=k1

xi

0 otherwise,
(33)

where0 < k1 < k2 < k3 ≤ n. We construct ann-partite full-
correlation box with these two boxes by taking the XOR of
the two outputsai andbi if Party i participates at both boxes,
otherwise the party outputsai or bi:

ci =











ai i ∈ {1, 2, ..., k1 − 1}

ai ⊕ bi i ∈ {k1, k1 + 1, ..., k2}

bi i ∈ {k2 + 1, k2 + 2, ..., n}.

(34)

Lemma 3 Box (34) is equal (i.e., the joint probabilities are
equal) to the full-correlation box defined by

P (c|x) =











1

2n−1

n
⊕

i=1

ci = g1(x1, ..., xk2
)⊕

k3
∏

i=k1

xi

0 otherwise.
(35)

Proof: The statement follows directly from the property
of the full-correlation box that the set of outputs of any subset
of n − 1 parties (or smaller) is completely random [2], and
the property that the XOR conserves randomness in case of
independence.

Theorem 2 (Construction of a Full-Correlation Box) Let
P f be the full-correlation box associated to the Boolean
function f , and let f be written as in Lemma 2. Iff
fulfills nJ = 1, then there exist subsets of parties such that
the full-correlation box can be simulated with generalized
PR boxes shared between the parties of a subset with the
condition that the number of PR boxes in that some parties
inputs all the time a constants is at most one.

Proof: We replace full-correlation boxes withaI = 1 for
|I| ≤ 1 by the full-correlation box withaI = 0 for |I| ≤ 1,

and all otheraI for all I ∈ I \ {∅} keep their values (i.e., we
ignore thetrivial part of the box). We can do this by taking
the XOR of the original box and the local box withaI = 1
for |I| ≤ 1. To get our original box back in the end, we take
again the XOR of the modified box and the local box.

We replace the boxes step by step. In the first step, we are
beginning with an-PR box with the associated setI. To that
end, we are looking for anothern-PR box with associated setJ
such thatI∩J 6= ∅ (this is possible because of the assumption
made). Because of Lemma 3, we are able to replace these two
boxes by two smaller boxes: We substitute the first box by an
|I \ J |-PR box with inputsI. The second box is substituted
by an (n − |I|)-box, where we inputJ and for the parties
{1, 2, ..., n} \ (I ∪ J), we input 1.

Assume that we have, in this way, replaced somen-PR
boxes by new boxes. Let there be a furthern-PR box which
is not yet replaced, and whose input elements intersect with
the input elements of the new box. We are making the same
steps as before to replace these two boxes. In the end, we
have replaced alln-PR boxes by a new box with the claimed
properties.

B. Imperfect Full-Correlation Boxes

Assume we have a non-local full-correlation boxP f asso-
ciated to the Boolean functionf and a local full-correlation
box P fl associated to the Boolean function

fl =
⊕

I∈I\J
aI=1

∧

i∈I

xi , (36)

whereJ and theai’s are with respect to the functionf . This
box corresponds to the trivial part of the full-correlationbox
P f .

The imperfect boxP f
ε is defined as the convex combination

of these two boxes,

P f
ε = εP f + (1− ε)P fl , (37)

where0 < ε < 1.
We define the XOR of boxes:

Definition 11 (XOR of boxes) Let P and P ′ be two n-
partite boxes that output(a1, a2, ..., an), resp.(b1, b2, ..., bn),
for the input (x1, x2, ..., xn). The XOR of the two boxes
P andP ′, i.e., P ⊕ P ′, is ann-partite boxP ∗ with output
(a1 ⊕ b1, a2 ⊕ b2, ..., an ⊕ bn) for the input(x1, x2, ..., xn).

Definition 12 (XOR∗ of boxes) Let P1 and P2 be two n-
partite full correlation boxes, andPi,ε = εP1 + (1 − ε)P c

for i ∈ {1, 2}. TheXOR∗ of P1,ε andP2,ε, i.e., P1,ε⊕∗P2,ε,
is definded by

Pi,ε ⊕
∗ Pj,ε := εPi ⊕ Pj + (1− ε)P c ⊕ P c

= εPi ⊕ Pj + (1− ε)P c . (38)

We can assume without loss of generality thatP fl is the
even-parity box (fl = 0, if this is not the case redefineP f

new =
P f ⊕ P fl , P fl

new = P fl ⊕ P fl , andP f
ε,new = P f

ε ⊕ P fl ). Note
that the boxP f can be written as the XOR of generalized
n-PR boxesP1, P2,..., Pm as seen in Section V-A

P f = P1 ⊕ P2 ⊕ · · · ⊕ Pm . (39)



6

For that reason,P f
ε can be rewritten as

P f
ε = P1,ε ⊕

∗ P2,ε ⊕
∗ · · · ⊕∗ Pm,ε , (40)

where Pi,ε = εPi + (1 − ε)P c for all i ∈ {1, 2, ...,m}.
That means we can simulate the boxP f

ε with imperfect full-
correlation boxes that all work correctly at the same time or
all work incorrectly at the same time.

Theorem 3 (Construction of an Imperfect F.-C. Box) Let
0 < ε < 1, let P f be a full-correlation box associated to the
Boolean functionf , let f be written as in Lemma 2, and let
P f
ε be defined as above. Iff fulfills nJ = 1, then there exists

subsets of parties such that the boxP f
ε can be simulated with

imperfect generalized PR-boxes shared between the partiesof
a subset with the condition that the number of imperfect PR
boxes in that some parties inputs all the time a constants is
at most one. If all these imperfect generalized PR boxes work
at the same time correctly and at the same time incorrectly
then the simulation is equivalent to the boxP f

ε .

Proof: The proof is similar to the proof of Theorem 2.

C. Protocols Based on Partial Communication

Assume we have ann-partite full-correlation boxP f that
is to be simulated by one-way communication channels and
shared randomness. The question is: How many one-way
communication channels do we need for simulating ann-
partite full-correlation box? Theorem 4 answers this question.

Theorem 4 (Number of Communication Channels)Let f
be the Boolean function associated to ann-partite full-
correlation boxP f , and let f be defined as in Lemma 2.
The numberNscratch

comm of one-way communication channels to
simulate the full-correlation box from scratch is

Nscratch
comm =

∣

∣

∣

∣

∣

⋃

I∈J

I

∣

∣

∣

∣

∣

− nJ . (41)

Proof: We first prove the statement fornJ = 1 by
induction. We ignore the local part of the Boolean functionf
(i.e., the terms of single variables) and start with the case when
the functionf depends on two variables. The case|J | = 2
is equivalent to a PR box. From [25], we know that it can
be simulated by one one-way communication channel. Now,
we assume that the claim is true for|J | ≤ n. Assume further
that we have a function with|J | = n + 1 that still fulfills
the assumption. We substitute1 for xi, wherexi is the input
which is an element of a minimal number of elements ofJ .
This new function also fulfills the assumption of the theorem.
We also know that|J | = n and, therefore, we needn − 1
communication channels to simulate the associated box. We
combine all thesen function values into one variable. The
original function can be written with two variables. Therefore,
we are back at the case|J | = 2. Together, we needn one-
way communication channels for simulating a function with
|J | = n+ 1.

Assume nownJ > 1. We write the original full-correlation
box as a combination ofnJ other non-local full-correlation

boxes and at most one local full-correlation box (that can
be simulated by shared randomness). Each of these boxes
belongs to one of the sets of the empty-overlap partition
{J1, J2, ..., JnJ } of J . The full-correlation box that belongs
to Ji is defined by the function

fi (x1, x2, ..., xn) =
⊕

J∈Ji

∧

j∈J

xj . (42)

From the first part of the proof, we know that we need
∣

∣

⋃

J∈Ji
J
∣

∣ − 1 communication channels to simulate this box
from scratch. Thus, we need to simulate all thenJ n-partite
non-local full-correlation boxes, for which we need

Nscratch
comm =

∣

∣

∣

∣

∣

⋃

I∈J

I

∣

∣

∣

∣

∣

− nJ (43)

communication channels.
From Theorem 4, we know that all parties that belong to one

of the sets of the empty-overlap partition ofJ , sayJi, have
to communicate directly or indirectly to one of these parties.
Corollary 1 follows from this property.

Corollary 1 Let f be the Boolean function associated to an
n-partite full-correlation boxP f , and letf be defined as in
Lemma 2. Then

C(G) � P f , (44)

whereG is a directed graph withn vertices and the property
that for every setJi, i.e., a set of the empty-overlap partition
of J , there exists a vertexv ∈

(
⋃

J∈Ji
J
)

such that from every
other vertexw ∈

(
⋃

J∈Ji
J
)

, there exists a path tov for all
i ∈ {1, 2, ..., nJ }.

D. Protocol Based on Brunner/Skrypczyk-Protocol that Allows
Partial Communication

We have seen protocols that only use copies of some given
boxes or partial communication. Now we study a combination
of them.

Theorems 5 and 6 state that a general class of full-
correlation boxes can be simulated by (distillation) protocols
and classical one-way communication channels. The number
of these one-way channels is then smaller than the number of
one-way communication channels we need if we do not apply
a distillation protocol,i.e., operate from scratch. More specif-
ically, there exists a minimal set of one-way communication
channels that simulates such a full-correlation box, but only a
subset of these channels is used to simulate the box using a
(distillation) protocol.

Assume we have the non-local full-correlation boxP f

associated to the Boolean functionf . Let the boxesP fl

andP f
ε be defined as in Section V-B. We show that the boxP f

ε

can be distilled arbitrarily closely to the full-correlation box
P f using partial communication if it fulfills certain conditions.

Theorem 5 (Distillation with Communication I) Let 0 <
ε < 1, let P f be a full-correlation box associated to the
Boolean functionf , let f be written as in Lemma 2, and let
the boxP f

ε be defined as in Section V-B . Iff fulfills nJ = 1,
then the numberNdistill

comm of one-way communication channels
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required for distilling the boxP f
ε up to the full-correlation

boxP f with using the generalized BS protocol is

Ndistill
comm ≤







n− 1−max
I∈J

(mI) max
I∈J

(mI) 6= n

0 max
I∈J

(mI) = n.
(45)

Proof: Here, we replace full-correlation boxes withaI =
1 for |I| ≤ 1 by the full-correlation box withaI = 0 for
|I| ≤ 1, and the otheraI , for all I ∈ I\{∅}, keep their values.
We do the same with the imperfect full-correlation boxP f

ε .
We can do this by taking the XOR of the original box and the
local box with aI = 1 for |I| ≤ 1. To get our original box
back in the end, we take again the XOR of the modified box
and the local box.

We assume that the replacement is made according to
Theorem 3. We have replaced the original correlatedn-partite
boxes in such a way that the correlated box with constant
input does not correspond to the original correlatedn-partite
box belonging to the largestmI . This is possible since we
can replace this box first. We are now able to isolate the
box belonging to the largestmI . Therefore, we allow all
parties that appear at least twice as well as the parties that
input all the time a constant to communicate their inputs and
outputs to a party that also has an input for the isolated box.
We have isolated the correlated multipartite box belonging
to the largestmI , and we are able to apply the generalized
BS protocol to this box. All the other correlated boxes that
appear in the abstraction of Theorem 3 can be simulated by
the communication of the parties and shared randomness. So
we will needmaxI∈J (mI) one-way-communication channels
less than if we started from scratch.

The following is a corollary of Theorem 5:

Corollary 2 Let 0 < ε < 1, let P f be a full-correlation box
associated to the Boolean functionf , let f be written as in
Lemma 2, and letI be the set of the inputs of the box that
belongs to the largestmI . If f fulfills nJ = 1, then

{P f
ε , C(G)} →∗ P f , (46)

where the boxP f
ε is defined as in Section V-B andG is a

directed graph withn vertices with the property that there
exists a vertexv ∈

(
⋃

J∈J J
)

∩ I such that from every vertex
w ∈ ({1, 2, ..., n} \ I) ∪

(
⋃

J∈J J
)

, there exists a path tov.

Corollary 3 Let 0 < ε < 1, let P f be a full-correlation box
associated to the Booelan functionf , and letf be written as
in Lemma 2. IfnJ = 1 andmaxI∈J (mI) > n − |

⋃

I∈J I |,
then

Ndistill
comm < Nscratch

comm , (47)

where Ndistill
comm is the number of one-way communication

channels needed for distilling the boxP f
ε that is defined as in

Section V-B.

Proof: The statement follows from Theorems 4 and 5.

Theorem 6 (Distillation with Communication II) Let 0 <
ε < 1, let P f be a full-correlation box associated to the
Boolean functionf , let f be written as in Lemma 2, and let

the boxP f
ε be defined as in Section V-B. If

max
I∈J

(mI) > n−

∣

∣

∣

∣

∣

⋃

I∈J

I

∣

∣

∣

∣

∣

, (48)

and nJ = 1, then there exists a graphG with Nscratch
comm

directed edges and a proper subgraphG′ ⊂ G withNdistill
comm di-

rected edges such thatC(G) � P f and{P f
ε , C(G′)} →∗ P f .

Proof: The statement follows from Theorems 4 and 5,
and Corollary 1.

All extremal three-partite full-correlation boxes of the non-
signalling polytope fulfill the conditions of Corollary 6. For
more parties, it is unknown how many extremal boxes also
fulfill the condition.

VI. EXAMPLES

A. Example of an Amplifiable System

In this example, we simulate the following full-correlation
box:

P 1(a|x) =







1

23

4
⊕

i=1

ai = x1x2x3 ⊕ x3x4 ⊕ x1

0 otherwise.
(49)

Therefore, we determine first the above-defined sets and
constants. LetI = P({1, 2, 3, 4}). From Lemma 2, we know
that all aI = 1 for I ∈ {{1, 2, 3}, {3, 4}, {1}}, and otherwise
aI = 0. This means that the given full-correlation box can
be simulated by three 4-PR boxes with some constant inputs,
where one of these boxes is local (see Fig. 3 a)). We are also
able to determine the setJ of non-localn-PR boxes that are
required to simulate the full-correlation box:

J = {{1, 2, 3}, {3, 4}} (50)

Both of these non-local 4-PR boxes can be obtained from the
original box by taking the XOR of the original box and the
local 4-PR box when every party inputs his bits except for
the parties that input the constant 1 to the 4-PR box, they
input 0 in both boxes. If we apply Theorem 5 (i), then we
know that the non-local part of the original full-correlation
box can be simulated by two connectedn-PR boxes with no
constant input (see Fig. 3 b)).

Since there is only one set in the empty-overlap partition
of J , nJ = 1. Therefore, the number of required one-way
communication channels for simulating the full-correlation
box can be calculated according to Theorem 4:

Nscratch
comm =

∣

∣

∣

∣

∣

⋃

I∈J

I

∣

∣

∣

∣

∣

− 1 = 3 . (51)

One of the graphs that charaterizes the one-way communi-
cation channels isG = (V,E) with V = {1, 2, 3, 4, 5} and
E = {(4, 3), (3, 2), (2, 1)}. That leads to

C(G) � P 1 . (52)
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4-PR Box 4-PR Box4-PR Box

ai = a1

i ⊕ a2

i ⊕ a3

i

local

x1 x2 x3 x4

a1 a2 a3 a4

1 1 x3 x4

a2

1 a2

2 a2

3 a2

4

x1 x2 x3 1

a1

1 a1

2 a1

3 a1

4

111x1

a3

4a3

3a3

2a3

1

(a)

2-PR Box 4-PR Box3-PR Box

ai = a1

i ⊕ a2

i ⊕ a3

i

local

x1 x2 x3 x4

a1 a2 a3 a4

x4x3

a1

4a2

3

x1 x2

a1

1 a1

2 a1

3

111x1

a3

4a3

3a3

2a3

1

(b)

original Box 4-PR Box

ai = a1

i ⊕ a2

i

local

x1 x2 x3 x4

a1 a2 a3 a4

x1 1 1 1

a2

1 a2

2 a2

3 a2

4

0x3x2x1

a1

4a1

3a1

2a1

1

(c)

Figure 3. (a) Simulating the full-correlation box with three 4-PR boxes. (b) Simulation of the full-correlation box with generalized PR boxes without a
constant input and a local box. (c) How to simulate the 3-PR box with the original full-correlation box and a local box.

Obviously, this box is not local. We define the trivial part
of this full-correlation box

PL(a|x) =







1

23

4
⊕

i=1

ai = x1

0 otherwise.
(53)

We start with the second part of the example, where we
show in detail how we take a box from the familyPε =
εP+(1−ε)PL, where0 < ε < 1, to the boxP (a|x). For that,
we determine first which of the parties have to communicate.
Therefore, we calculate the number of parties that only belong
to one of the non-local 4-PR boxes:m{1,2,3} = 2 and
m{3,4} = 1. This means that we isolate the box that belongs
to the 4-PR box with three arbitrary inputs. This can be done
in the same way as before: We input(x1, x2, x3, 0) to Pε

and the local box and take the XOR of its outputs. Then,
we use a one-way communication channel from Party 4 to 3.
This corresponds to a graphG′ = (V ′, E′) with V ′ = V
and E′ = {(4, 3)}, which means we need one one-way
communication channel. Remember that the communication
channel can be used as often as required. Hence, we are able
to simulate perfectly the other 2-PR boxes, and the imperfect
3-PR box can be isolated by communicating the inputs and
outputs of the 2-PR box to Party 3 (see Fig. 3 c)). We have
isolated the boxPPR

3,ε that is known to be asymptotically
distillable up toPPR

3 by the generalized BS protocol. In this
way, we are able to take the boxPε to the full-correlation box
in the beginning. This results in the resources inequality

PL⊗∞
⊗ C(G′) � P 1 . (54)

We get thatG′ is a proper subgraph ofG and the number of
one-way communication channels that is needed for this kind
of protocol isNdistill

comm = 1, i.e., less thanNscratch
comm = 3.

B. Example of a Non-Amplifiable System

In this example we simulate the following full-correlation
box:

P 2(a|x) =







1

25

6
⊕

i=1

ai = f(x1, x2, ..., x6)

0 otherwise,
(55)

wheref(x1, x2, ..., x6) = x1x2 ⊕ x2x3 ⊕ x4x5x6 ⊕ x5.
Let I = P({1, 2, 3, 4, 5, 6}). From Lemma 2 we know

that all aI = 1 for I ∈ {{1, 2}, {2, 3}, {4, 5, 6}, {5}}, and
otherwiseaI = 0. This means that the given full-correlation
box can be simulated by four 6-PR boxes with some constant
inputs, where one of these boxes is local. We are also able to
assign the setJ of non-localn-PR boxes that are needed to
simulate the full-correlation box:

J = {{1, 2}, {2, 3}, {4, 5, 6}} . (56)

Each of these three non-local 6-PR boxes can be obtained from
the original box by taking the XOR of the original box and the
local 5-PR box when every party inputs its bits except for the
parties that input the constant 1 to the 5-PR box, they input 0
in both boxes.

Since we knowJ , we can determine the empty-overlap
partition {J1, J2}, where J1 = {{1, 2}, {2, 3}} and J2 =
{{4, 5, 6}}. Therefore,nJ = 2 and the number of required
one-way communication channels for simulating the full-
correlation box can be calculated according to Theorem 4:

Nscratch
comm =

∣

∣

∣

∣

∣

⋃

I∈J

I

∣

∣

∣

∣

∣

− nJ = 4 . (57)

One of the graphs that charaterizes the one-way communi-
cation channels isG = (V,E) with V = {1, 2, 3, 4, 5, 6} and
E = {(1, 2), (2, 3), (4, 5), (5, 6)}. That leads us to

C(G) � P 2 . (58)
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SincenJ 6= 1, Theorem 5 does not apply.

VII. C ONCLUSION

We have studied the problem of non-locality distillation in
the multi-partite setting. We have found, first, that arbitrarily
weakly non-local non-isotropic approximations to the natural
generalization of a PR box ton parties are distillable by an
adaptation of a protocol for two parties. Second, this can be
applied to showing that a much more general class of extremal
correlations, includingall purely three-partite correlations, can
be amplified to usingpartial communication requring only
a subset of directed pairwise channels than as compared to
the case when weak systems can be used. In this context,
weak non-locality, hence, manages to replace communication
between a subset of parties. It remains a challenging open
problem to understand, classify, and apply multi-party non-
locality systematically. It seems that for certain tasks (such as
randomness amplification [17], [18]), multi-party non-locality
outperforms bipartite correlations.
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