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Efficient Capacity Computation and Power
Optimization for Relay Networks

Farzad Parvaresh and Rall Etkin

Abstract—The capacity or approximations to capacity of var- is the Gaussian relay network, which models power limited
ious single-source single-destination relay network mode has transmitters and received signals corrupted by additivitewh
been characterized in terms of the cut-set upper bound. In Gaussian noise.

rinciple, a direct computation of this bound requires evaliatin . . .

Fhe ch)t capacity over (Exponentially many cuts.qWe show thath?e While the capacity of some network models (e.g. wireless
minimum cut capacity of a relay network under some special €rasure and ADT) is well characterized, the capacity of the
assumptions can be cast as a minimization of a submodular Gaussian relay network, even in its simplest form with one
function, and as a result, can be computed efficiently. We use transmitter, one relay, and one receiver, is in general owkn
this result to show that the capacity, or an approximation tothe The best known capacity upper bound is the so-catiaiset
capacity within a constant gap for the Gaussian, wireless asure, .

and Avestimehr-Diggavi-Tse deterministic relay network models Pound A cut © of a network can be considered as a subset
can be computed in polynomial time. We present some empirita Of nodes which includes the source node and excludes the
results showing that computing constant-gap approximatias to  destination node. For this cut, the capachy(?) is defined

the capacity of Gaussian relay networks with around 300 node  gs the maximum rate that information can be transferred form
can be done in order of minutes. the nodes in to the nodes that are not id conditioned on

For Gaussian networks, cut-set capacities are also functis . . o
of the powers assigned to the nodes. We consider a family ofthe fact the information of2“ (the nodes that are not i) is

power optimization problems and show that they can be solved known. The cut-set upper bound is thenimumcut capacity

in polynomial time. In particular, we show that the minimization over all the possible cuts.

of the sum of powers assugn_ed to the “]f’des SUbJECt toda mnmmgm In the Gaussian setting, there are several capacity lower
rate constraint (measured in terms of cut-set bounds) can be 045 pased on different communication schemes, such

computed in polynomial time. We propose an heuristic algothm .
to solve this problem and measure its performance through @S @mplify-and-forward, decode-and-forward, compress-a

simulations on random Gaussian networks. We observe that in forward, quantize-and-forward, etc.| [5].1 [7]._[18]. Retgn
the optimal allocations most of the power is assigned to a sia Avestimehr, et al[[2] made significant progress in the cipac

subset of relays, which suggests that network simplificatittmay  characterization of Gaussian relay networks by showingaha
be possible without excessive performance degradation. guantization and coding communication scheme can achieve a
Index Terms—capacity, network simplification, power alloca- communication rate within a constant gap of the cut-set uppe

tion, relay networks, submodular optimization. bound, where the gap only depends on the number of nodes
in the network (i.e. it is independent of the channel gains
I. INTRODUCTION and power levels). However, the evaluation of the achievabl

communication rate, which is necessary to implement the
~ Relay networks, where one or more source nodes sefidheme, requires the computation of the cut-set bound éor th
information to one or more destination nodes with the hejpanvork. Assuming that for a given cut the cut capacity is
of intermediate nodes acting as relays, are often used eTst to compute, finding the cut-set upper bound can be a
model communication in wireless sensor networks. In sensYallenging problem. For a network with relays there are
networks, sensor nodes have limited power sources and of{@ngigerent cuts and a greedy algorithm needs exponential
require multi-hop communication with the help of intern@ei i in the number of relays to compute the cut-set bound.
nodes to reach the data aggregation centers. To guide thg, yhis work we show that the achievable rate of the scheme
design of these networks it is of interest to characterizg [2] for the Gaussian relay network can be computed in
fundamental comml_mication_limits such as _the_capacitycbvhipolynomial time, and as a result, can be computed efficiently
represents the maximum reliable communication rate. g result is obtained by showing that the cut capacity of a
~ Various communication models for relay networks captuigjny |arge class of networks under the assumption of inde-
in an abstract setting different aspects of practical $yste ,ongent encoding at the nodestiris a submodular function.
The wireless erasure network model (of [8] captures the ff§g, e gpecial case of layered relay networks] [27] showed
of packet losses in the wireless setting. The determinisfi, oquivalent of our submodularity result simultaneoustiy
network model of Avestimehr, Diggavi and Tse (ADT) [4],r conference version of this papér [25]. Submodularity
incorporates broadcast and interference and can be use‘ii)r@perties of conditional entropy (in terms of which cut-

gain insights about communication in more complex models y5cities are expressed) have also been used in[2], [3] to
that incorporate noise. Among these, of special importangg,,ng the cut-capacity of a network in terms of the cut-
F. Parvaresh and R. Etkin are with Hewlett-Packard LabdestoPalo Alto, capacity of the CorreSpondmg unfolded gl&ph
CA 94304, USA. (emails{parvaresh, raul.etkif@hp.com).
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Existing results on minimization of submodular functionsonstraints at the nodes. Since the capacity of the Gaussian
provide algorithms with polynomial running tim@(n°« + relay network is approximately given by the cut-set upper
n%), wherea is the time that it takes to compu#€(Q2) and bound with independent encoding at the nodes, we use this
n is the number of nodes in the netwolk [20]. In additiongut-set bound to characterize data rate in the optimization
there exist possibly faster algorithms without polynontime problems. We show that these optimization problems can be
performance guarantees based on Wolfe’s minimization nosalved in polynomial time and use simulations to get insght
algorithm [12]. In Sectiofi VI, by simulations, we show thagbout some properties of the optimal power allocations for
the cut-set bound for a Gaussian relay network with aroumétworks of various sizes. We observe that optimal power
300 nodes can be computed on a laptop computer in abouwdll@cations assign most of the power to a small subset of
minute using a Matlab package for submodular minimizatiomodes and that setting the power to zero in the remainingsiode
provided in [19]. (i.e. removing these nodes from the network) often resalts i

Our results, extend and generalize previous results for thesmall rate loss. Nazaroglu, et al. showed[in| [26] that for
ADT model. This model can be seen as a high signahe special case of th&-relay Gaussian diamond network a
to-noise-ratio (SNR) approximation of the Gaussian modétactionk/(k + 1) of the total capacity can be approximately
incorporating the effects of broadcasting and supermositfi  achieved by using only of the total vV relays. This suggests
signals while de-emphasizing the effects of noise. Amazdrthat the diamond network can be significantly simplified by
et al. [1] showed that the cut-set bound fotag{ereﬂ ADT tolerating a small performance loss. Our results provide a
model can be computed efficiently. They have extended grapimmerical counterpart to the fundamental performance ti®un
flow algorithms such as Ford-Fulkerson’s in a nontrivial waglerived in [26] and suggest that network simplification may
to find the maximum possiblinearly independenfLI) paths also be possible in more general Gaussian relay networks.
in the network. They showed that the capacity of the network We obtain these results by considering a general framework
is equal to the maximum number of (LI) paths and cai compute the cut-set bound. We assign transmit signal ran-
be computed in timeO(M - |E| - C%), where M is the dom variableX; to nodei € V and we assume the probability
maximum number of nodes per lay¢F;| is the total number distribution over the signals(y, Xo,..., X, to be indepen-
of edges andC' is the capacity of the network. Moreoverdent, i.ep(X1, Xa,..., X,) = p1(X1)p2(X2) - - pn(X5). We
they showed that the capacity can be achieved by usiago assign received signal random variablés to each
a very simple one-bit processing at the relay nodes. Latewde. The network is defined by the transition probability
Goemans et al[ [13] showed that the deterministic model fisnction f(Y1,Ys,...,Y,| X1, Xo,..., X,,). We further as-

a special case of a flow model based on linking systemssame that the transition probability function is of the form
combinatorial structure with a tight connection to matsoid f;(Y1|X1,..., Xp) - fn(Ya|X1,..., X,), meaning that the

As a by-product, they obtained the submodularity of the cutceived signals are independent conditioned on the trans-
capacity for layered ADT networks. Using this observatiomitted signals in the network. For such networks we show
they provided various algorithms related to matroid thetory that F'(Q2) = I(YQC;XQIXQC)E is submodular with respect
compute the cut capacity of the layered deterministic model 2. Later we show that for ADT networks, the Gaussian
based on finding intersection or partition of matroids. Bheselay network and the wireless erasure network, we can find
results led to faster algorithms to compute the capacity pf(X;)---p,(X,) such thatming F(©2) becomes equal to
large layered ADT networks. In addition, there has beehe capacity or the capacity within a constant gap. In other
other extensions on improving the running time of the currewords, the min-cut problem for these networks can be cast as
algorithms for computing the capacity of ADT networks| [9]a minimization of a submodular function.

[10], [22], [23]. The paper is organized as follows. In Section 11l we show

In addition to showing that the capacity within a constanhat for specific type of networks the cut valug((?), is a
gap of the Gaussian relay network can be computed in polyrssdomodular function. We then show in Section IV that for
mial time, our results allow us to compute in polynomial timenany wireless network models such as the ADT deterministic
the capacity of the wireless erasure network. Furthermwee, network, Gaussian relay network and wireless erasure metwo
provide a simple proof for the computability in polynomiathe capacity or an approximation to the capacity can be
time of the capacity of the layered and non-layered ADast as a minimization of’(Q). In Section[¥ we study
networks. two power optimization problems and show that they can be

Building on the submodularity of the cut-capacity fosolved efficiently. Finally, in Section VI we describe resul
independent encoding at the nodes, we show that, in theated to solving optimization problems involving subratzd
Gaussian setting, it is possible to efficiently optimizeplogver functions and perform power optimization in various random
allocated to the source and relay nodes. We consider tgenerated networks of different sizes. We start by intratuc
power optimization problems: (i) minimize the total powethe notation used in the rest of the paper.
satisfying a minimum source-destination data rate coimstra
and power constraints at each node; (ii) maximize the seurce Il. NOTATION

destination data rate satisfying total and individual powe Let 1V denote the set of nodes in the network amd its

2l a layered network, the nodes in one layer are only condetethe Cardinality. For any subsetl of nodes we denote by\A

nodes in the next adjacent layer. In particular, there is inectl connection
from source to destination. 3See Sectiofill for a definition of the notatid, Yqe, etc.



or A¢ the set of nodes iV that are not inA. We assume — H(XA[Y v\ auas Xy\4)

VNAUB = V\(AUB). A cut Q is defined as a subset of + H(X 4 Y\ avar Yar Xy 4)
nodes inV. A cut splits the nodes in the network into two CH(X,[XA) — H(X.|Y X )
groups, the nodes that are §h and the ones that belong to al 4 al T\ AUa, AV\AUa

Y\ Q. Random variables are shown in capital letters suck.as — I(Xa; Yo Y\ aUas Xy\a)
andY;. We use boldface letter for vectors, exgis a constant =H(X,|X4) = H(Xa| Y\ aua> X0\ aUa)
vector andX is a random vector. We usX to denote — H(Ya[Yy\ ava, X1 4)

(X Xogs oo oy Xujg ) With v; € Q. The function! (X;Y[Z) FH(Y) XA, Y X )

is the mutual information between random variab/ésand al 4> TV\AUa, AV\A

Y conditioned on random variablg. With a slight abuse = H(Xq|X4) — H(Xa|Yy\aua: Xy\4)
of notation we useH (X) to denote either the entropy or non-increasing i nondecreasing int

differential entropy of the discrete or continuous random
variableX [6]. By F,, we denote a finite field witp elements. = HYalYy\ 400, Xo\a) +H (Ya|Xy)
Finally, all thelog(-) functions are in base two. nondecreasing in

I1l. SUBMODULARITY OF CUT-SET FUNCTION where the last equality follows becausg is independent of
Submodularity arises in many combinatorial optimizatioR[V\AU“_ Cohit'ongdthogvja S.O’ F(E:l Ug) I_ F(4)is no:—
problems and large body of research has been develof)%?{easmg n a}n usk(A) is submodular. _ )

In the following example we show that if the signals

on minimizing or maximizing submodular functions under v '
various constraints. at the nodes are correlated théi{A) is not necessarily a

A submodular functiorf : 2¥ — R is defined as a function Submodular function. _ o
over subsets ol with diminishing marginal returnsi.e. if Example. Consider a symmetric Gaussian diamond network

A,BCV with A C B and anyv € V\B, with two relays such that the channel gains from source to
B B relays are equal to one and from relays to destination aralequ
f(AUv) = f(A) = f(BUv) — f(B). to three. LettingX,, X,.,, andX,., be the signals transmitted

ﬁé the source and relay nodes, then the received signals at

The theorem below establishes the submodularity of t S )
Slays and destination are given by

cut capacity function of a general relay network under son
special assumptions. This theorem will be used in Seéfidn IV

to prove that the capacity or an approximation to the capacit " Lo Xs Zr,
. P T2 = 1.0 0 XT] + ZT2

of various specific relay network models can be computed by
Y, 0 3 3 X,, Z4

minimizing a submodular function.

Theorem 1. Consider a network consisting of nodeslh whereZ, ,Z,,,Z, are i.i.d. N'(0,1). For this example, we
Each node sends a messade,: € V and receivesy;,i € set the probability distribution oX;, X,,,X,, to be jointly
V. If the messages are independenf;, X»,...,X|y) = Gaussian with zero mean and covariance matrix
p1(X1)p2(X2) - - ppy(X}y)) and conditioned on the sent mes-
sages the received messages are independent, then thiefunct 5 (1) 00
F(A) = I(Xa; Yy alXya) , ACY 0 p 1
's submodular. Finally, consider the setsl = {s,m1} and B = {s,r2}.
Proof: To show thatF'(A) is submodular we show thatFigure[1 shows how the functiof’(A) + F(B) — F(A U
F(AUa)— F(A) is monotonically non-increasing il for B) — F(A N B) varies for different values of the corre-
a¢ A. lation coefficient (betweerX,, and X,,) p € [0,1]. We
_ see thatF(A) + F(B) can be greater than or less than
F(AUa) = I(X aua; Y\ aual X\ aua) F(AUB)+ F(AN B) depending on the value gf It follows
(é)H(XAUalxv\AUa) — H(X aua| Y\ AUa» X1\ AUa) that i_n generalF'(-) is not a submodular or a supermodular
) function when the there is correlation among the signals at
=H(Xa) + H(Xa|Xa) = H(Xa|Yv\ auas Xv\aua)  the nodes.
— H(XA|Xa, Y\ auas X\ Aua)
:H(XA) + H(Xale) - H(XalYV\AUm XV\AUa)
— H(Xa|Yv\ aua> Xy\4)

where (a) is the definition of mutual information and (b) is In this section, by applying the result of Theofgm1, we

from the chain rule for the entropy function. Therefore, ~ show that the capacity or an approximation to the capacity fo
the ADT deterministic network, Gaussian relay network, and

F(AUa) — F(A) wireless erasure network can be cast as a minimization of a
=H(X,|Xa) = H(Xa| Y\ aua> X9\ AUa) submodular function.

IV. WIRELESS NETWORK MODELS
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Fig. 1. F(A)+F(B)—F(AUB)—F(ANB) as a function of the correlation

coefficient p. In general,F'(-) is neither submodular or supermodular whe

the signals are correlated.

A. Deterministic model (ADT)
We start by briefly describing the network model 0&4!]1

this model, each link from nodgeto node; has an associated

non-negative integer gain;;. Each node € V transmits a
signal X; and receives a signd’;, both inF? whereq =
max; j ;. At any given time, the received signal at nogle
is given by
Y= Y SITX,
ieV\{d}

(1)

whered is the destination node, the shifting mat8xs given
by

0 0 0 0
1 0 0 0
s—|0 1 o 0
0 -~ 0 1 0

and the sums and products arelip
For a given cut2 of the network, where? includes the

source node and excludes the destination node, we can stack

together the input vectorX,;,i € € and output vectors
Y;,i € Q°, and define a transition matriXq, that gives the
input-output relationship of these vectors accordinddp Itl

Ax mapsx to {y1,y2,...,¥«} uniformly at random with
probability 1/|¢|. In addition, the cosets df’ form a partition
of Fyy into p" /| N sets. Also rank4) + log,(|\]) = n. Thus,
log, |9| = rank(A).

Theorem 2. For a deterministic model, given a c assume
Aq is the transition matrix form nodes ifi to nodes inQ°.
SetD(Q)) = rank(Aq), thenD(Q) is submodular.

Remark 1. A special case of Theoréh?2 fémyered ADT
networks was proved in earlier works [13], [23].

Proof: In the network, assume node sendsb; sym-
bols x; 1,22, ..., 25, With 2;; € F,. We assumer; ;'s
drawn i.i.d. with uniform probability distribution oveF,,
ie. p(z;; = q) = 1/|F,| for all ¢ € F,. From the
definition of transition matrixAq, if we assume for the cut
Q, s = (s1,82,...,5:)" symbols are being sent from nodes
in Q andr = (ry,79,...,7¢)" Symbols are being received by

fodes inQ)¢ thenr = Ags. Then we can write

I(X0;Yqe|Xqe) =H(Yqe|Xqe) — H(Y e | Xa, Xa-)

a

—~
=

H(YQC |XQC)

b
Diog, |9 = rank Aq)

where¥ is the set of cosets 0¥ where A = {s: Ags = 0}.
Equality (a) is becaus¥ . is a deterministic function oK,
and (b) is the result of Propositibh 1 and the fact thhas
uniform probability distribution.

Notice that for the independent probability distribution
on the sources the received signals are independent con-
ditioned on transmitted signals so, based on Thebiem1,
I(Xq; Yac|Xqe) which is equal toD(2) is submodular. B

B. Gaussian relay network

The Gaussian network model captures the effects of broad-
casting, superposition and noise of power constrainedegse
networks. In this model, at any time index (which we omit)
the received signal at nodec V\{s} is given by
Y; = Z hij Xi + N; 2)
1€V\{d}

where X; € C is the transmitted signal at node subject to

. > ;
is shown in [2] that the capacity of the deterministic netor®" 8verage power constraifi(|X;|") < 1, h;; € C is the

is equal tomingrankAg). We show next in Theorerfl

o channel gain from nodé to nodej, and N; € CN(0,1) is

that ranKAg) is submodular, and hence the capacity can felditive white circularly symmetric complex Gaussian rois

computed by minimizing a submodular function.

Proposition 1. Assume ann x n matrix A overF,. Let \/
be the subspaca’ &' {x e F} | Ax =0}, and let¥ be the
set of cosets ol in Fy. Pick x; to be an element in théh
cosetofV fori=1,2,...,]¥|, and sety; = Ax;. Notice that
yvi # y; if i # j. Now, if we choose uniformly at random
from elements df}; with probability1/|F}|, then the mapping

4Please, refer[[4] for a more complete description of the rhade its
motivation.

independent for different.

It has been show in_[21, Theorem 2.1] that using lattice
codes for transmission and quantization at the relaysatdbr
R between sourcés} and destinatioqd} satisfying

R g HSHI(XQ;YQC|XQC) — |V| (3)
can be achieved, wher@ is a source-destination cut of the
network andXq, = {X;,i € Q} are ii.d.CN(0,1). In
addition, the restriction to i.i.d. Gaussian input diatitibns is

within |V bits/s/Hz of the cut-set upper bound [2]. Therefore



the rate achieved using lattice codes in the above resultVi® used in (a) the independence amoXigand the channel

within 2|V| bits/s/Hz of the capacity of the network. erasures, in (b) the fact that féf; ~ Bernoulli(1/2),H (X;) =
The following corollary is an immediate consequence df, and in (c) the fact that foX,; ~ Bernoulli(1/2), H (X;|Y; =

Theoreni L. e,j € Q°) =1 and for independent erasures we hay¥; =

Corollary 1. The functionF'(Q2) = I(Xq; Yo |Xq-) with the ter;jti“ﬂf;) = HJ’SQC Zj .I TheorerfL]L can be applied to con(:ude
elements oKX, being i.i.d.CN (0, 1) is submodular. at (&) is submodular.

Due to Corollary]l the minimization ifi{3) is the minimiza- V. POWER OPTIMIZATION
tion of a submodular function and the resulting optimal ealu

is within 2[V| of the capacity of the netwolk. In the previous section, for the Gaussian relay network

model, we considerefixed power assignments the different
nodes in the network, and have shown that a constant gap
) . ) approximation to the capacity can be efficiently computed.
In [8] the authors introduce a special class of wirelesy many applications it is of interest to allocate the nodes’
netv_vorks, called wireless erasure.networks.. In these rrki_a/,vo transmission powers to optimize a given objective. For ex-
a directed graptg = (V,€) defines the interconnections, e “in a network where the nodes are battery powered, it
between nodes. To model the broadcast effect of wirelegsy pe of interest to maximize the network lifetime while
networks, the signals on all outgomg arcs of any given nogﬁtisfying a baseline quality of service. Alternativelypmay
are _equal o ea_lc_h other. There IS N0 m_terference aMOR desirable to maximize the network throughput for a given
multiple arcs arriving at a given node in this model, and t tal power budget. This total power budget may arise due to,
signals on the various arcs are erased independently of eg&!ﬂ’ a maximum system weight constraint which is dominated
other. We assume binary transmitted signals at each n@de,gy the battery weight, or a total system cost, which may be
Xi € {0,1},4 € V\{d}, but all the results can be extended Qo jly influenced by the cost of the batteries. Power afiona
models with Ia_rger Input alphabe_ts. It has been shown lin [ébtimization may also naturally arise in situations whéere t
that the capacity of the network is channel gains, while known to all the nodes, slowly vary over
time. In this case, it may be desirable to optimally allocate
C = min F(Q) = InQinZ 11— e (4) power for the current channel condition.
i€Q jeqe As before, we characterize communication rates in terms
wheree,; is the probability of erasure when nodés sending of cut-set capacities. We consider a model where the cut-set

information to nodej. We show in the following theorem thatcapacities are functions of the cuts and powers assignétto t
F(Q) is submodular. nodes in the networkF (2, p) : V x RVl — R, and we focus

on the Gaussian model where this function depends explicitl
Theorem 3. The functionF'(2) = > . (1 —ILjcq- € on the power assignment,

equalsl (Xq; Y- |Xqc) whereX; are i.i.d. ~ Bernoulli(1/2) _ ) _ i
for i € Q. Therefore,F(Q2) is submodular. F($,p) = I(Xo; Yar[Xa-) = logdet(I + HoPoHg) (5)

C. Wireless erasure network

where Hg, is the matrix of channel gains from nodesS{nto

Proof: For i.i.d. X; ~ Bernoulli(1/2), we can write ; ) : .
(1/2) nodes inQ¢, H' is the conjugate transpose &f, and P, is

I(Xq;Y e[ Xe) a diagonal matrix where the diagonal elements are the powers
=H(Xq|Xqc) — HXa|Ya-, Xa-) of the nodes irf2. . .
() We will show in Lemmall below that in the Gaussian case
= Z (H(Xi) — H(X:[Ya-)) F(Q,p) is a concave function op. While the results of this
i€Q section are stated and proved for the Gaussian model, we
® Z (1—H(X;|Yq:)) conjecture that similar results should hold for other medel
Py in which F(Q2,p) is a concave function op.
72 (1_ For Gaussian relay networks, we show that the following
o “~ optimization problem can be solved in polynomial time,
> H(X|Y; =y;,j € Q)p(Y; =y;.j € QC)) minimize  p1 R+ p2P
vi €{1.0.c} g0 subjectto R < F(QU {s},p) for all @ C V\{d}
=3 (1= HOGIY; = e, € 09p(Y = e, € 9)) 0< P < Puuus
ieQ W
c 7 < P
Oy (1Tl w). 2
ieQ jEQe Ry <R, P Py (6)

SNotice that/(Xq; Yoe|Xqe) = logdet(I + HH') where H is the  for fixed constant R and P.... In the rest of
matrix of channel gains from nodes @ to nodes inQ2° and H' is the #11, 42, 110, Pmax tot-

conjugate transpose dff. Therefore, it is easy to compute the capacity ofhe section, we denote the feasible set of the optimiza@)n (
each cut. y K



We use the Ellipsoid method [14], [15] to show that th&Ve will show that#'(2) is a convex set by showing that for
optimization [6) can be solved efficiently. We will use thany~ € [0, 1] the vectory(R1, P1,p1)+(1—7)(Rz, P2, p2) is
following definitions and result. The reader is referredI8][ also in€(£2). Notice thatR; < F(Q2, p1) andRs < F (2, p2)

for more details. if and only if (Ry, P1,p1) € €(Q2) and(Rz, Py, p2) € € (Q).
Definition 1 (Polynomial computability) A family of opti- Therefore
mization programs is polynomially computable if: YRy + (1 = v)Ry < YF(Q,p1) + (1 — 7)F(Q, p2)
(i) for any instance of the program and any poirtin (a)
the domain, the objective and its subgradient can be < F(,9p1 + (1 —7)p2)

computed in polynomial time in the size of the instance, . . .
(i) for a given measure of infeasibility Infeag it should Where(a) is due to the fact thak'(2, p) is a concave function

. Lo ; . with respect top. Thus, % (Q2) is a convex set for ang C V.
be possible to determine if Infgag < ¢ in polynomial : - _
time, and when this inequality is not satisfied, it should Itis easy to check that the se®, = {(1, P,p) : 0 S p <

H ] H H H pmax}a 3”2:{(R,P,p)ZpZ§P}, t@Zﬁ‘:{(RaPap):
t)heatpossmle to find in polynomial time a vectorsuch Ro < R}, and 2, — {(R, P,p) : P < Py} are also convex

sets, and, as a resul, = Nocy\ (¢} G (QU{s})NZ1N PN
P3N P, is a convex set. [ |
Definition 2 (Polynomial growth) A family of optimization  Having proved that[{6) is a convex program, in order to
programs has polynomial growth if the objectives and these Proposition2 we need to check that the conditions of
infeasibility measures as functions of poistsn the domain Definitions[1,[2, and13 are satisfied. Part (i) of Definition
grow polynomially with||x||;. @ follows from the linearity of the objective in[](6). For

— . : part (ii) of Definition[1 we specify an infeasibility measure
Definition 3 (Polynomial boundedness of feasible set&) Infeag.) : RIV¥2 5 R as follow:

family of optimization programs has polynomially bounded
feasible sets if the feasible set of an instance of the pragr

is contained in an Euclidean ball centered at the origin with"€a%(/t: I p)) = max {O’ ~P:P ~ Pmax; flo = I, P = Pior
radius that grows at most polynomially with the size of the v

instance. :

- . .Zpi _P’R_szergl\?d}F(QU{S}’p)}
Proposition 2 ([15, Theorem 5.3.1]) Let P be a family i=1 )
of convex optimization programs equipped with infeadipili
measure Infeds). Assume that the family is polynomially The conditions of part (ii) of Definitiohl1 are verified in the
computable with polynomial growth and with polynomiallyollowing theorem.
bounded feasible sets. Th&éhis polynomially solvable.

c’x > cly,Vy : Infeagy) < e.

Theorem 4. For a given vector(R, P,p) € RIVI*2 and any

In order to use Propositigh2 we need to check that the> 0 we can either (a) determine in polynomial time if
optimization [) is a convex program. Since the objectivafeag(R, P,p)) < ¢ and if not (b) find in polynomial time a
function is linear, we only need to check that the feasiblgectorc € RIVI+2, such that for everyR’, P',p') satisfying
setKk is convex. Infeag (R, P',p’)) <&, I (R, P',p') < (R, P,p).

Lemma 1. The feasible seX is a convex set. Proof: Part (a) requires checking that each of the ar-
guments of themax of (7) is smaller than or equal te in
polynomial time. The first six terms are linear functions and
can be easily computed. The last term can be compared to
¢ by performing a minimization of a submodular function,
which as was shown in Sectign TV¥-B, can also be computed
YF(Q,p1) + (1 —9)F(Q, p2) in polynomial time.

= ylogdet(I + HoPyHY) We f0(_:us on condition (b). In this case Infé@s, P, p)) >
€, meaning that at least one of the arguments ofithe of
(@) is larger thare. We consider each case separately.

Proof: First we show that the functiorF(Q,p) =
log det(I + HQPQHJZ) is concave inp where0 < p for any
cut ) C V. For any two vectorp,, p2 > 0 and~ € [0,1] we
can write

+ (1 —7)logdet(I + Ho Py H{))

(@) If —p; > ¢ we setc = —e;,» Wheree; has a one in the
< logdet(y(I + Ho P H] bi i+2 i e .
og det(y(I + Ho Py Q)T i" position and zeros everywhere else, which can be easily
+ (1 =7 + HoP2Hy)) checked to satisfy the condition of part (b).
=logdet(I + Ho(vP, + (1 — 7)132)]{;2) Similarly, for the ﬁ}&llsegoi — Pmax,i > €, Ro — R > ¢,
. . . . — Pt > ¢ andzizlpi — P we setc = €42, C = —€q,
where P, (P,) is a diagonal matrix where the dlagonaf;D: es c=(0,—1,1,...,1) respectively.

elements are the elements ¢f (p2) that belong toQ
(respectively), and (a) follows from the concavitylog det X,
for X > 0 [24].

Next, consider the se&f’(?) = {(R, P,p) : R < F(Q,p)}.
Choose two vector$Ry, Pi,p1) and (R, Po, p2) in €(Q).

For the last case, l60* = arg mingey\ 14y F(Q2U {s},p).
We haveR— F(Q*U{s}, p) > e. Since the functioF' (Q*, p)

Swith a slight abuse of notation we useax on vector quantities by taking
the maximum over the components of the vector.



is continuous and differentiable with respectgpand the set Proof: The corollary follows from Theorefi 5 by setting

€ (Q*,e) ={(R,P,p): R< F(Q*,p)+¢c} is convex (which puy = —1,u2 =0andRy = 0. |
can be shown as in the proof of Lemina 1), then the vector

c = (1,0,-VpF(Q", p)) is the normal to a hyperplane that VI. ALGORITHMS AND SIMULATIONS
separateg R, P, p) from the set@’({)*,). In other words,  |n this section we study different algorithms and and previd

for all (R',P',p’) € %(Q") we havec”(R',P',p') < simulation results regarding submodular function miniian
c’(R, P, p). Noting that{(R', P, p') : Infeag(R’, P, p')) < and power allocation problems. In the first subsection we
e} C €(Q2",¢), we conclude that part (b) holds in this casgyok at minimum norm algorithm for submodular function
as well. o ®  minimization and we show that this algorithm can find the
Having proved these preliminary results, we are ready iproximation to capacity of layered Gaussian relay nets/or
prove the main result of this section. with more that 300 nodes in a couple of minutes. In the

Theorem 5. The optimization in[{6) can be solved in po|ynosecond subsection we propose a heuristic algorithm to find
mial time on the size of the problem. the optimum power allocation for Gaussian relay networks.

Proof: The proof uses Propositibh2, which requirei submodular function minimization
verifying the convexity of the problem together with the - .
conditions of polynomial computability, polynomial grdwt One approactj to _solve the subquular m|n|m|zat|on_ prob-
and polynomial boundedness of the feasible set. Convexi due to Lovasz is based axtensionof the set function
was proved in Lemm@l 1, while polynomial computability waé : 2° — R to a convex functiory : [0,1]” — R that
shown in Theoreifl4. Polynomial growth follows from the fackgrees withf on the vertices of the hypercut{@ 1M1, with
that F(Q, p) is thelog of a polynomial onp with degree at & guarantee thatin,cy f(A) is equal tominy g(x) for
most|V|, while the objective and remaining terms that defin® < [0,1]V. In this section we assume the normalization
the infeasibility measure are linear @i, P, p). Finally, to f(0) =0. . _ . _
check that feasible set if polynomially bounded, we note tha 1he Lovasz extension of anyset functionf can be defined

the feasible set is a subset of the hypercube as follows. For a giverx € [0,1]/V! order the elements of
V such thatz(v1) > x(v2) = -+ = x(vn), Wherex(v;) is
{(R,P,p) : 0 < (R,P,p) < (Rmax, Prot, Pmax) } the v;th element of the vectox. Set\g = 1 — z(vy), \; =

where Riax = mingey (g3 F(QU {5}, Pmax)- It follows that x(v;) — 2(vit1), Ap = x(vy), and

the feasible set is contained in the Euclidean ball centered def —

at the origin with radiug|(Rmax, Prot, Pmax)||2, Which can 9(x) = Z/\if({vla”%---a”i})-

be easily checked to grow polynomially on the size of the =1

problem. m Definely =0 € R” and1y,, 4,, .., a@s ann dimensional

The general optimization problefl (6) can be specialized ¥gctor such that the coordinates v,, ..., v; are equal to one
a power minimization with a minimum rate constraint, an@nd all the other coordinates are equal to zero. Then, it is
to a rate maximization with a total power constraint. BotRasy to see thak = 31" Nilyy, .0} » 2o i = 1
problems can be solved in polynomial time, as stated in tA&d A; > 0. So, x is a unique linear convex combination
following corollaries to Theorefd 5. of some vertices of the hypercube aggk) is linear convex
) o combination of values of on those vertices.
Corollary 2. The following power minimization problem can - a ey result is that iff is submodular its Lovasz extension

be solved in polynomial time. g is a convex function[[14],[T11]. In addition, finding the

V| minimum of the submodular functiorf over subsets ol
minimize Zpi is equivalent to finding the minimum of the convex function
P i=1 g in the hypercubg0, 1]/VI. The optimization can be done in
subjectto Ry < F(QU {s},p) for all Q@ C V\{d} polynomial time using Ellipsoid algorithm [14].

8) There are other algorithms with faster running time to solve
the submodular minimization problem [16], [17], [20]. To
Proof: The corollary follows from Theorefii5 by settingthe best of our knowledge, the running time of the fastest

=0, 2 =1, Py = S prai. B algorithm is in the order ofD(n°a + n®), wherea is the

cEime that the algorithms takes to compuyfted) for any subset

A C VY [20]. For ADT networks, Gaussian relay networks, and

erasure networksy is the time to compute: the rank efx n

0 <P < Pumax-

Corollary 3. The following rate maximization can be solve
in polynomial time.

maximize R matrices, the determinant efx n matrices, and equatiohl(4),
R.p respectively.
subjectto 0 < R < F( U{s},p) for all @ C V\{d} However, for networks of large size, a complexity of
v O(n°a + n%) may still be computationally cumbersome.
Zpi < Pot As a result, in these cases it is desirable to have faster
i=1 algorithms. Recently, Fujishing [11][ [12] showed that the

0 < p < Pumax (9) minimization of any submodular function can be cast as a
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Our proposed algorithm, Algorithrh] 1 (see pseudo-code
below), is based on the cutting plane methads [24] in convex
optimization. The optimization in({8) contains exponelhtia
many constraints of the form

Ro < F(QU {s},p) for @ C V\{d}. (11)

10"

In Algorithm [I we first find the min-cut corresponding to
assigning maximum power to all nodes in the network:

time (sec)

=
=)
T

Q1 = argminy ey (g3 F(Q U {s}, Prax)-

Then, we modify the optimization ink8) by replacing the
constraint[(Ill) with

Ry < F( U {s},p).

number of nodes The resulting convex program can be easily solved since it
contains few constraints.
Fig. 2. Running time of minimum norm algorithm for a layereduSsian After optimization we letp* be the optimum power allo-
relay network. Each layer has four nodes. . ' .
cation for the current set of constraints and set

. L Q; = argminycyn (g3 F(QQU {s}, p7).
minimum norm optimization over the base polytope fif ) ) ]
By = Prn{x| ¥,y 2(i) = f(V)}, where We iteratively add the constraint

} RO <F(Qiu{s}7p)

VACY: Y a(i) < £(A)

~ to our set of constraints, and solve the optimization agaia.
1€

p; {x eR"
stop if the new constraint is already in the set of constsaint

and the corresponding minimum norm optimization is

Algorithm 1 Power minimization

Input: Channel gain matrix, desired rateR, vector of
Letting x* be the solution of this minimization, the sdt —  NOdes’ power constraingSmasx. _

{vi : 2*(v;) < 0} is the solution tomin, f(A). Whether Output: Min-cut, Power assignmemt* that achieves approx-
the above optimization problem can be solved in polynomial imate to ratelz with minimum sum of powers.

time is an open problem. However empirical studies| [12] ¢« {},p <0

have shown that this algorithm has comparable or even faste_ﬂ* < mingcy (q} F(QU{s}, Pmax)

running times than the other algorithms with polynomialgim if £ < F(Q2" U {s}, pmax) then

minimize ||x||2, subject tox € By. (10)

performance guarantees. while Q* ¢ ¢ and F'(Q* U {s},p*) < R do

In our specific setting, for layered Gaussian relay networks C 7 U {}
of size up to around00 nodes with 4 nodes per layer, we p" mlnzpi
were able to find the approximate capacity (El. (3)) in order subject to:
of minutes (see Figurid 2). In order to solve the minimization RS FQU{s},p)forall Qe@
(I0) we used the Matlab package provided[in| [19]. 0 < P < Pmax

OF minglgy\{d} F(Q @] {S}, p*)
_ end while

B. Power allocation return Q* U {s}, p*

In Sectiol Y we have shown that the Ellipsoid method can €lse
be used to solve the optimization il (8) in polynomial time. ~ Print  The constraints are infeasible.
While in theory this result shows that the optimization[@ (8 €nd if
is tractable, in practice the Ellipsoid method has a number
of shortcomings that limit its usability. On the one hand the Since in each iteration the algorithm adds a new constraint
running time of the Ellipsoid method can be large compared the constraint set and the number of constraint§ih (11) is
to alternative algorithms, and on the other hand, for hidginite, the algorithm is guaranteed to find the optimum power
dimensional problems it has shown numerical instability. lin a finite number of iterations, which can be exponential.
this section, we propose a heuristic algorithm to solve theWe used simulations to test the performance of the algo-
optimization in [8) and show that this algorithm converges tithm for networks of varying size: ranging from 10 to 40.
the right solution. While the running time can be exponénti&or eachn, we generated 300 random networks with channels
on the network size, we show through simulations that tlains drawn i.i.d. using aVv(0,1) distribution. We set the
algorithm often converges within a time proportional to thdesired transmission rat&, = 4 in (8) and set a maximum
network size. power constraint in each node Q... = 100. The results are
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Fig. 4. Running time in seconds of the power optimization igoithm[d.

For the special case of the diamond relay network wth
shown in Figure§1316, where the the vertical bars represggfays, [26] shows that a fractiob/(k + 1) of the network
+1 standard deviation around the mean computed over f@@pacity can be approximately achieved by using @mglays.
300 random networks. In our setting of a general Gaussian relay network and sum-

Figure[3 shows the number of iterations of Algorithm 1 agower minimization, we are interested in investigating thiee
a function of the number of nodes in the network. We see thgis possible to remove a large fraction of the nodes from the
the number of iterations grows(n*/?) with the number of network without significantly affecting its performance.
nodes. In order to determine which nodes to remove from the

In Figure[4, we present the simulation time as a function ektwork, we solve the sum-power minimization and compare
the network size. We observe a running time that grows slowie optimal power allocatiop; of each node to a threshold
thanO(n®). The figure also shows that the power optimizatiof,,. All relays with pf < Py, are removed from the network.
of networks of 40 nodes completes in less than two hours st .4 be the set of nodes with; > P,;,. We optimize the
an Intel Xeon quad core CPU running at 2.33 GHz. power allocation for the network with node det} U4 U{d}

The minimum sum of powers to approximately achievand determine whether the problem is feasible Rgr= 4. If
R,y = 4 for networks of different size is presented in Figlite the problem is infeasible, we enlarg€& by adding more relay
with a blue solid line. Interestingly, the plot shows thae thnodes in decreasing order pf, until the problem becomes
minimum power concentrates around the mean. In additideasible.
the figure shows diminishing returns in total power savings Figure [5 shows in the red dashed curve the resulting
resulting from increasing the network size. minimum sum of powers obtained by settiRg, = 1. Figurd 6
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shows the corresponding size of the sét. We observe in [17] S.lwata and J.B. Orlin, “A simple combinatorial algbri for submod-

Figure[® that the number of nodes with allocated powger

exceedingP;;, = 1 (possibly including more relays to make
the problem feasible) remains fairly constant as the size of
the networkn increases. This means that most of the powé&®!

is allocated to a small subset of the nodes.

; . [2
Removing the remaining nodes from the network and opti-

mizing the power allocation again over the resulting siffigadi

network results in the minimum total power plotted in Fig
ure[3. This figure shows that even though the number of nodes
in the simplified network remains approximately constant as

. ) . 422l
n increases, the total power required to approximately &ehi

Ry = 4 decreases witm. This is due to the fact that larger

n allows to choose the best relays for the simplified network3l
There is some performance loss in terms of total power due
to network simplification but this loss may be compensatggh]
by power savings arising from turning off some of the relays,

While we have not modeled the power consumption of the”
clocks, CPU and other subsystems required to keep a relay
active, in practice they may become comparable to the pow!
consumed by radio transmissions. This makes network sim-

plification very useful in practice.
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