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Efficient Capacity Computation and Power
Optimization for Relay Networks

Farzad Parvaresh and Raúl Etkin

Abstract—The capacity or approximations to capacity of var-
ious single-source single-destination relay network models has
been characterized in terms of the cut-set upper bound. In
principle, a direct computation of this bound requires evaluating
the cut capacity over exponentially many cuts. We show that the
minimum cut capacity of a relay network under some special
assumptions can be cast as a minimization of a submodular
function, and as a result, can be computed efficiently. We use
this result to show that the capacity, or an approximation tothe
capacity within a constant gap for the Gaussian, wireless erasure,
and Avestimehr-Diggavi-Tse deterministic relay network models
can be computed in polynomial time. We present some empirical
results showing that computing constant-gap approximations to
the capacity of Gaussian relay networks with around 300 nodes
can be done in order of minutes.

For Gaussian networks, cut-set capacities are also functions
of the powers assigned to the nodes. We consider a family of
power optimization problems and show that they can be solved
in polynomial time. In particular, we show that the minimization
of the sum of powers assigned to the nodes subject to a minimum
rate constraint (measured in terms of cut-set bounds) can be
computed in polynomial time. We propose an heuristic algorithm
to solve this problem and measure its performance through
simulations on random Gaussian networks. We observe that in
the optimal allocations most of the power is assigned to a small
subset of relays, which suggests that network simplification may
be possible without excessive performance degradation.

Index Terms—capacity, network simplification, power alloca-
tion, relay networks, submodular optimization.

I. I NTRODUCTION

Relay networks, where one or more source nodes send
information to one or more destination nodes with the help
of intermediate nodes acting as relays, are often used to
model communication in wireless sensor networks. In sensor
networks, sensor nodes have limited power sources and often
require multi-hop communication with the help of intermediate
nodes to reach the data aggregation centers. To guide the
design of these networks it is of interest to characterize
fundamental communication limits such as the capacity, which
represents the maximum reliable communication rate.

Various communication models for relay networks capture
in an abstract setting different aspects of practical systems.
The wireless erasure network model of [8] captures the effect
of packet losses in the wireless setting. The deterministic
network model of Avestimehr, Diggavi and Tse (ADT) [4]
incorporates broadcast and interference and can be used to
gain insights about communication in more complex models
that incorporate noise. Among these, of special importance
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is the Gaussian relay network, which models power limited
transmitters and received signals corrupted by additive white
Gaussian noise.

While the capacity of some network models (e.g. wireless
erasure and ADT) is well characterized, the capacity of the
Gaussian relay network, even in its simplest form with one
transmitter, one relay, and one receiver, is in general unknown.
The best known capacity upper bound is the so-calledcut-set
bound. A cut Ω of a network can be considered as a subset
of nodes which includes the source node and excludes the
destination node. For this cut, the capacityF (Ω) is defined
as the maximum rate that information can be transferred form
the nodes inΩ to the nodes that are not inΩ conditioned on
the fact the information onΩc (the nodes that are not inΩ) is
known. The cut-set upper bound is theminimumcut capacity
over all the possible cuts.

In the Gaussian setting, there are several capacity lower
bounds based on different communication schemes, such
as amplify-and-forward, decode-and-forward, compress-and-
forward, quantize-and-forward, etc. [5], [7], [18]. Recently,
Avestimehr, et al. [2] made significant progress in the capacity
characterization of Gaussian relay networks by showing that a
quantization and coding communication scheme can achieve a
communication rate within a constant gap of the cut-set upper
bound, where the gap only depends on the number of nodes
in the network (i.e. it is independent of the channel gains
and power levels). However, the evaluation of the achievable
communication rate, which is necessary to implement the
scheme, requires the computation of the cut-set bound for the
network. Assuming that for a given cut the cut capacity is
easy to compute, finding the cut-set upper bound can be a
challenging problem. For a network withn relays there are
2n different cuts and a greedy algorithm needs exponential
time in the number of relays to compute the cut-set bound.

In this work we show that the achievable rate of the scheme
of [2] for the Gaussian relay network can be computed in
polynomial time, and as a result, can be computed efficiently.
This result is obtained by showing that the cut capacity of a
fairly large class of networks under the assumption of inde-
pendent encoding at the nodes inΩ is a submodular function.
For the special case of layered relay networks, [27] showed
the equivalent of our submodularity result simultaneouslywith
our conference version of this paper [25]. Submodularity
properties of conditional entropy (in terms of which cut-
capacities are expressed) have also been used in [2], [3] to
bound the cut-capacity of a network in terms of the cut-
capacity of the corresponding unfolded graph1.

1Please, refer to [2] for the definition of an unfolded graph.
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Existing results on minimization of submodular functions
provide algorithms with polynomial running timeO(n5α +
n6), whereα is the time that it takes to computeF (Ω) and
n is the number of nodes in the network [20]. In addition,
there exist possibly faster algorithms without polynomialtime
performance guarantees based on Wolfe’s minimization norm
algorithm [12]. In Section VI, by simulations, we show that
the cut-set bound for a Gaussian relay network with around
300 nodes can be computed on a laptop computer in about a
minute using a Matlab package for submodular minimization
provided in [19].

Our results, extend and generalize previous results for the
ADT model. This model can be seen as a high signal-
to-noise-ratio (SNR) approximation of the Gaussian model,
incorporating the effects of broadcasting and superposition of
signals while de-emphasizing the effects of noise. Amaudruz
et al. [1] showed that the cut-set bound for alayered2 ADT
model can be computed efficiently. They have extended graph
flow algorithms such as Ford-Fulkerson’s in a nontrivial way
to find the maximum possiblelinearly independent(LI) paths
in the network. They showed that the capacity of the network
is equal to the maximum number of (LI) paths and can
be computed in timeO(M · |E| · C5), where M is the
maximum number of nodes per layer,|E| is the total number
of edges andC is the capacity of the network. Moreover,
they showed that the capacity can be achieved by using
a very simple one-bit processing at the relay nodes. Later
Goemans et al. [13] showed that the deterministic model is
a special case of a flow model based on linking systems, a
combinatorial structure with a tight connection to matroids.
As a by-product, they obtained the submodularity of the cut
capacity for layered ADT networks. Using this observation
they provided various algorithms related to matroid theoryto
compute the cut capacity of the layered deterministic model
based on finding intersection or partition of matroids. These
results led to faster algorithms to compute the capacity of
large layered ADT networks. In addition, there has been
other extensions on improving the running time of the current
algorithms for computing the capacity of ADT networks [9],
[10], [22], [23].

In addition to showing that the capacity within a constant
gap of the Gaussian relay network can be computed in polyno-
mial time, our results allow us to compute in polynomial time
the capacity of the wireless erasure network. Furthermore,we
provide a simple proof for the computability in polynomial
time of the capacity of the layered and non-layered ADT
networks.

Building on the submodularity of the cut-capacity for
independent encoding at the nodes, we show that, in the
Gaussian setting, it is possible to efficiently optimize thepower
allocated to the source and relay nodes. We consider two
power optimization problems: (i) minimize the total power
satisfying a minimum source-destination data rate constraint
and power constraints at each node; (ii) maximize the source-
destination data rate satisfying total and individual power

2In a layered network, the nodes in one layer are only connected to the
nodes in the next adjacent layer. In particular, there is no direct connection
from source to destination.

constraints at the nodes. Since the capacity of the Gaussian
relay network is approximately given by the cut-set upper
bound with independent encoding at the nodes, we use this
cut-set bound to characterize data rate in the optimization
problems. We show that these optimization problems can be
solved in polynomial time and use simulations to get insights
about some properties of the optimal power allocations for
networks of various sizes. We observe that optimal power
allocations assign most of the power to a small subset of
nodes and that setting the power to zero in the remaining nodes
(i.e. removing these nodes from the network) often results in
a small rate loss. Nazaroglu, et al. showed in [26] that for
the special case of theN -relay Gaussian diamond network a
fractionk/(k + 1) of the total capacity can be approximately
achieved by using onlyk of the totalN relays. This suggests
that the diamond network can be significantly simplified by
tolerating a small performance loss. Our results provide a
numerical counterpart to the fundamental performance bounds
derived in [26] and suggest that network simplification may
also be possible in more general Gaussian relay networks.

We obtain these results by considering a general framework
to compute the cut-set bound. We assign transmit signal ran-
dom variableXi to nodei ∈ V and we assume the probability
distribution over the signalsX1, X2, . . . , Xn to be indepen-
dent, i.ep(X1, X2, . . . , Xn) = p1(X1)p2(X2) · · · pn(Xn). We
also assign received signal random variablesYi’s to each
node. The network is defined by the transition probability
function f(Y1, Y2, . . . , Yn|X1, X2, . . . , Xn). We further as-
sume that the transition probability function is of the form
f1(Y1|X1, . . . , Xn) · · · fn(Yn|X1, . . . , Xn), meaning that the
received signals are independent conditioned on the trans-
mitted signals in the network. For such networks we show
that F (Ω) = I(YΩc ;XΩ|XΩc)3 is submodular with respect
to Ω. Later we show that for ADT networks, the Gaussian
relay network and the wireless erasure network, we can find
p1(X1) · · · pn(Xn) such thatminΩ F (Ω) becomes equal to
the capacity or the capacity within a constant gap. In other
words, the min-cut problem for these networks can be cast as
a minimization of a submodular function.

The paper is organized as follows. In Section III we show
that for specific type of networks the cut value,F (Ω), is a
submodular function. We then show in Section IV that for
many wireless network models such as the ADT deterministic
network, Gaussian relay network and wireless erasure network
the capacity or an approximation to the capacity can be
cast as a minimization ofF (Ω). In Section V we study
two power optimization problems and show that they can be
solved efficiently. Finally, in Section VI we describe results
related to solving optimization problems involving submodular
functions and perform power optimization in various randomly
generated networks of different sizes. We start by introducing
the notation used in the rest of the paper.

II. N OTATION

Let V denote the set of nodes in the network and|V| its
cardinality. For any subsetA of nodes we denote byV\A

3See Section II for a definition of the notationXΩ, YΩc , etc.
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or Ac the set of nodes inV that are not inA. We assume
V\A ∪ B = V\(A ∪ B). A cut Ω is defined as a subset of
nodes inV . A cut splits the nodes in the network into two
groups, the nodes that are inΩ and the ones that belong to
V\Ω. Random variables are shown in capital letters such asXi

andYi. We use boldface letter for vectors, e.g.x is a constant
vector andX is a random vector. We useXΩ to denote
(Xv1 , Xv2 , . . . , Xv|Ω|

) with vi ∈ Ω. The functionI(X ;Y |Z)
is the mutual information between random variablesX and
Y conditioned on random variableZ. With a slight abuse
of notation we useH(X) to denote either the entropy or
differential entropy of the discrete or continuous random
variableX [6]. By Fp we denote a finite field withp elements.
Finally, all the log(·) functions are in base two.

III. SUBMODULARITY OF CUT-SET FUNCTION

Submodularity arises in many combinatorial optimization
problems and large body of research has been developed
on minimizing or maximizing submodular functions under
various constraints.

A submodular functionf : 2V → R is defined as a function
over subsets ofV with diminishing marginal returns, i.e. if
A,B ⊆ V with A ⊆ B and anyv ∈ V\B,

f(A ∪ v)− f(A) > f(B ∪ v)− f(B).

The theorem below establishes the submodularity of the
cut capacity function of a general relay network under some
special assumptions. This theorem will be used in Section IV
to prove that the capacity or an approximation to the capacity
of various specific relay network models can be computed by
minimizing a submodular function.

Theorem 1. Consider a network consisting of nodes inV .
Each node sends a messageXi, i ∈ V and receivesYi, i ∈
V . If the messages are independentp(X1, X2, . . . , X|V|) =
p1(X1)p2(X2) · · · p|V|(X|V|) and conditioned on the sent mes-
sages the received messages are independent, then the function

F (A) = I(XA;YV\A|XV\A) , A ⊆ V

is submodular.

Proof: To show thatF (A) is submodular we show that
F (A ∪ a) − F (A) is monotonically non-increasing inA for
a /∈ A.

F (A∪a) = I(XA∪a;YV\A∪a|XV\A∪a)

(a)
=H(XA∪a|XV\A∪a)−H(XA∪a|YV\A∪a,XV\A∪a)

(b)
=H(XA) +H(Xa|XA)−H(Xa|YV\A∪a,XV\A∪a)

−H(XA|Xa,YV\A∪a,XV\A∪a)

=H(XA) +H(Xa|XA)−H(Xa|YV\A∪a,XV\A∪a)

−H(XA|YV\A∪a,XV\A)

where (a) is the definition of mutual information and (b) is
from the chain rule for the entropy function. Therefore,

F (A∪a)− F (A)

=H(Xa|XA)−H(Xa|YV\A∪a,XV\A∪a)

−H(XA|YV\A∪a,XV\A)

+H(XA|YV\A∪a, Ya,XV\A)

=H(Xa|XA)−H(Xa|YV\A∪a,XV\A∪a)

− I(XA;Ya|YV\A∪a,XV\A)

=H(Xa|XA)−H(Xa|YV\A∪a,XV\A∪a)

−H(Ya|YV\A∪a,XV\A)

+H(Ya|XA,YV\A∪a,XV\A)

= H(Xa|XA)
︸ ︷︷ ︸

non-increasing inA

− H(Xa|YV\A∪a,XV\A)
︸ ︷︷ ︸

nondecreasing inA

−H(Ya|YV\A∪a,XV\A)
︸ ︷︷ ︸

nondecreasing inA

+H(Ya|XV)

where the last equality follows becauseYa is independent of
YV\A∪a conditioned onXV . So,F (A ∪ a) − F (A) is non-
increasing inA and thusF (A) is submodular.

In the following example we show that if the signals
at the nodes are correlated thenF (A) is not necessarily a
submodular function.
Example. Consider a symmetric Gaussian diamond network
with two relays such that the channel gains from source to
relays are equal to one and from relays to destination are equal
to three. LettingXs,Xr1 , andXr2 be the signals transmitted
at the source and relay nodes, then the received signals at
relays and destination are given by





Yr1

Yr2

Yd



 =





1 0 0
1 0 0
0 3 3









Xs

Xr1

Xr2



+





Zr1

Zr2

Zd





whereZr1 ,Zr2 ,Zd are i.i.d.N (0, 1). For this example, we
set the probability distribution ofXs,Xr1 ,Xr2 to be jointly
Gaussian with zero mean and covariance matrix

Σ =





1 0 0
0 1 ρ
0 ρ 1



 .

Finally, consider the setsA = {s, r1} and B = {s, r2}.
Figure 1 shows how the functionF (A) + F (B) − F (A ∪
B) − F (A ∩ B) varies for different values of the corre-
lation coefficient (betweenXr1 and Xr2) ρ ∈ [0, 1]. We
see thatF (A) + F (B) can be greater than or less than
F (A∪B)+F (A∩B) depending on the value ofρ. It follows
that in generalF (·) is not a submodular or a supermodular
function when the there is correlation among the signals at
the nodes.

IV. W IRELESS NETWORK MODELS

In this section, by applying the result of Theorem 1, we
show that the capacity or an approximation to the capacity for
the ADT deterministic network, Gaussian relay network, and
wireless erasure network can be cast as a minimization of a
submodular function.
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Fig. 1. F (A)+F (B)−F (A∪B)−F (A∩B) as a function of the correlation
coefficientρ. In general,F (·) is neither submodular or supermodular when
the signals are correlated.

A. Deterministic model (ADT)

We start by briefly describing the network model of [4]4. In
this model, each link from nodei to nodej has an associated
non-negative integer gainnij . Each nodei ∈ V transmits a
signal Xi and receives a signalYi, both in Fq

p where q =
maxi,j nij . At any given time, the received signal at nodej
is given by

Yj =
∑

i∈V\{d}

Sq−nijXi (1)

whered is the destination node, the shifting matrixS is given
by

S =










0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0










and the sums and products are inFp.
For a given cutΩ of the network, whereΩ includes the

source node and excludes the destination node, we can stack
together the input vectorsXi, i ∈ Ω and output vectors
Yi, i ∈ Ωc, and define a transition matrixΛΩ that gives the
input-output relationship of these vectors according to (1). It
is shown in [2] that the capacity of the deterministic network
is equal tominΩ rank(ΛΩ). We show next in Theorem 2
that rank(ΛΩ) is submodular, and hence the capacity can be
computed by minimizing a submodular function.

Proposition 1. Assume anm × n matrix A over Fp. LetN

be the subspaceN
def
=

{
x ∈ Fn

p | Ax = 0
}

, and letG be the
set of cosets ofN in Fn

p . Pick x̂i to be an element in theith
coset ofN for i = 1, 2, . . . , |G |, and setyi = Ax̂i. Notice that
yi 6= yj if i 6= j. Now, if we choosex uniformly at random
from elements ofFn

p with probability1/|Fn
p |, then the mapping

4Please, refer [4] for a more complete description of the model and its
motivation.

Ax mapsx to {y1,y2, . . . ,y|G |} uniformly at random with
probability1/|G |. In addition, the cosets ofN form a partition
of Fn

p into pn/|N | sets. Also rank(A)+ logp(|N |) = n. Thus,
logp |G | = rank(A).

Theorem 2. For a deterministic model, given a cutΩ assume
ΛΩ is the transition matrix form nodes inΩ to nodes inΩc.
SetD(Ω) = rank(ΛΩ), thenD(Ω) is submodular.

Remark 1. A special case of Theorem 2 forlayered ADT
networks was proved in earlier works [13], [23].

Proof: In the network, assume nodei sendsbi sym-
bols xi,1, xi,2, . . . , xi,bi with xi,j ∈ Fp. We assumexi,j ’s
drawn i.i.d. with uniform probability distribution overFp,
i.e. p(xi,j = q) = 1/|Fp| for all q ∈ Fp. From the
definition of transition matrix,ΛΩ, if we assume for the cut
Ω, s = (s1, s2, . . . , sk)

t symbols are being sent from nodes
in Ω andr = (r1, r2, . . . , rℓ)

t symbols are being received by
nodes inΩc thenr = ΛΩs. Then we can write

I(XΩ;YΩc |XΩc) =H(YΩc |XΩc)−H(YΩc |XΩ,XΩc)

(a)
=H(YΩc |XΩc)

=H(ΛΩs|XΩc)

(b)
= logp |G | = rank(ΛΩ)

whereG is the set of cosets ofN whereN = {s : ΛΩs = 0}.
Equality (a) is becauseYΩc is a deterministic function ofXΩ

and (b) is the result of Proposition 1 and the fact thes has
uniform probability distribution.

Notice that for the independent probability distribution
on the sources the received signals are independent con-
ditioned on transmitted signals so, based on Theorem 1,
I(XΩ;YΩc |XΩc) which is equal toD(Ω) is submodular.

B. Gaussian relay network

The Gaussian network model captures the effects of broad-
casting, superposition and noise of power constrained wireless
networks. In this model, at any time index (which we omit)
the received signal at nodej ∈ V\{s} is given by

Yj =
∑

i∈V\{d}

hijXi +Nj (2)

whereXi ∈ C is the transmitted signal at nodei, subject to
an average power constraintE(|Xi|

2) 6 1, hij ∈ C is the
channel gain from nodei to nodej, andNj ∈ CN (0, 1) is
additive white circularly symmetric complex Gaussian noise,
independent for differentj.

It has been show in [21, Theorem 2.1] that using lattice
codes for transmission and quantization at the relays, all rates
R between source{s} and destination{d} satisfying

R 6 min
Ω

I(XΩ;YΩc |XΩc)− |V| (3)

can be achieved, whereΩ is a source-destination cut of the
network andXΩ = {Xi, i ∈ Ω} are i.i.d. CN (0, 1). In
addition, the restriction to i.i.d. Gaussian input distributions is
within |V| bits/s/Hz of the cut-set upper bound [2]. Therefore
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the rate achieved using lattice codes in the above result is
within 2|V| bits/s/Hz of the capacity of the network.

The following corollary is an immediate consequence of
Theorem 1.

Corollary 1. The functionF (Ω) = I(XΩ;YΩc |XΩc) with the
elements ofXΩ being i.i.d.CN (0, 1) is submodular.

Due to Corollary 1 the minimization in (3) is the minimiza-
tion of a submodular function and the resulting optimal value
is within 2|V| of the capacity of the network.5.

C. Wireless erasure network

In [8] the authors introduce a special class of wireless
networks, called wireless erasure networks. In these networks,
a directed graphG = (V , E) defines the interconnections
between nodes. To model the broadcast effect of wireless
networks, the signals on all outgoing arcs of any given node
are equal to each other. There is no interference among
multiple arcs arriving at a given node in this model, and the
signals on the various arcs are erased independently of each
other. We assume binary transmitted signals at each node, i.e.
Xi ∈ {0, 1}, i ∈ V\{d}, but all the results can be extended to
models with larger input alphabets. It has been shown in [8]
that the capacity of the network is

C = min
Ω

F (Ω) = min
Ω

∑

i∈Ω



1−
∏

j∈Ωc

ǫij



 (4)

whereǫij is the probability of erasure when nodei is sending
information to nodej. We show in the following theorem that
F (Ω) is submodular.

Theorem 3. The functionF (Ω) =
∑

i∈Ω

(

1−
∏

j∈Ωc ǫij

)

equalsI(XΩ;YΩc |XΩc) whereXi are i.i.d.∼ Bernoulli(1/2)
for i ∈ Ω. Therefore,F (Ω) is submodular.

Proof: For i.i.d. Xi ∼ Bernoulli(1/2), we can write

I(XΩ;YΩc |XΩc)

=H(XΩ|XΩc)−H(XΩ|YΩc ,XΩc)

(a)
=

∑

i∈Ω

(H(Xi)−H(Xi|YΩc))

(b)
=

∑

i∈Ω

(1−H(Xi|YΩc))

=
∑

i∈Ω

(

1−

∑

yj∈{1,0,e},j∈Ωc

H(Xi|Yj = yj , j ∈ Ωc)p(Yj = yj , j ∈ Ωc)
)

=
∑

i∈Ω

(

1−H(Xi|Yj = e, j ∈ Ωc)p(Yj = e, j ∈ Ωc)
)

(c)
=

∑

i∈Ω



1−
∏

j∈Ωc

ǫij



 .

5Notice thatI(XΩ;YΩc |XΩc) = log det(I + HH†) whereH is the
matrix of channel gains from nodes inΩ to nodes inΩc and H† is the
conjugate transpose ofH. Therefore, it is easy to compute the capacity of
each cut.

We used in (a) the independence amongXi and the channel
erasures, in (b) the fact that forXi ∼ Bernoulli(1/2),H(Xi) =
1, and in (c) the fact that forXi ∼ Bernoulli(1/2),H(Xi|Yj =
e, j ∈ Ωc) = 1 and for independent erasures we havep(Yj =
e, j ∈ Ωc) =

∏

j∈Ωc ǫij . Theorem1 can be applied to conclude
thatF (Ω) is submodular.

V. POWER OPTIMIZATION

In the previous section, for the Gaussian relay network
model, we consideredfixed power assignmentsto the different
nodes in the network, and have shown that a constant gap
approximation to the capacity can be efficiently computed.
In many applications it is of interest to allocate the nodes’
transmission powers to optimize a given objective. For ex-
ample, in a network where the nodes are battery powered, it
may be of interest to maximize the network lifetime while
satisfying a baseline quality of service. Alternatively, it may
be desirable to maximize the network throughput for a given
total power budget. This total power budget may arise due to,
e.g., a maximum system weight constraint which is dominated
by the battery weight, or a total system cost, which may be
heavily influenced by the cost of the batteries. Power allocation
optimization may also naturally arise in situations where the
channel gains, while known to all the nodes, slowly vary over
time. In this case, it may be desirable to optimally allocate
power for the current channel condition.

As before, we characterize communication rates in terms
of cut-set capacities. We consider a model where the cut-set
capacities are functions of the cuts and powers assigned to the
nodes in the network:F (Ω,p) : V ×R|V| → R, and we focus
on the Gaussian model where this function depends explicitly
on the power assignment,

F (Ω,p) = I(XΩ;YΩc |XΩc) = log det(I +HΩPΩH
†
Ω) (5)

whereHΩ is the matrix of channel gains from nodes inΩ to
nodes inΩc, H† is the conjugate transpose ofH , andPΩ is
a diagonal matrix where the diagonal elements are the powers
of the nodes inΩ.

We will show in Lemma 1 below that in the Gaussian case
F (Ω,p) is a concave function ofp. While the results of this
section are stated and proved for the Gaussian model, we
conjecture that similar results should hold for other models
in which F (Ω,p) is a concave function ofp.

For Gaussian relay networks, we show that the following
optimization problem can be solved in polynomial time,

minimize
R,P,p

µ1R+ µ2P

subject to R 6 F (Ω ∪ {s},p) for all Ω ⊆ V\{d}

0 6 p 6 pmax

|V|
∑

i=1

pi 6 P

R0 6 R, P 6 Ptot (6)

for fixed constantsµ1, µ2, R0, pmax andPtot. In the rest of
the section, we denote the feasible set of the optimization (6)
by K.
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We use the Ellipsoid method [14], [15] to show that the
optimization (6) can be solved efficiently. We will use the
following definitions and result. The reader is referred to [15]
for more details.

Definition 1 (Polynomial computability). A family of opti-
mization programs is polynomially computable if:
(i) for any instance of the program and any pointx in

the domain, the objective and its subgradient can be
computed in polynomial time in the size of the instance.

(ii) for a given measure of infeasibility Infeas(·), it should
be possible to determine if Infeas(x) 6 ε in polynomial
time, and when this inequality is not satisfied, it should
be possible to find in polynomial time a vectorc such
that

cTx > cTy, ∀y : Infeas(y) 6 ε.

Definition 2 (Polynomial growth). A family of optimization
programs has polynomial growth if the objectives and the
infeasibility measures as functions of pointsx in the domain
grow polynomially with‖x‖1.

Definition 3 (Polynomial boundedness of feasible sets). A
family of optimization programs has polynomially bounded
feasible sets if the feasible set of an instance of the program
is contained in an Euclidean ball centered at the origin with
radius that grows at most polynomially with the size of the
instance.

Proposition 2 ([15, Theorem 5.3.1]). Let P be a family
of convex optimization programs equipped with infeasibility
measure Infeas(·). Assume that the family is polynomially
computable with polynomial growth and with polynomially
bounded feasible sets. ThenP is polynomially solvable.

In order to use Proposition 2 we need to check that the
optimization (6) is a convex program. Since the objective
function is linear, we only need to check that the feasible
setK is convex.

Lemma 1. The feasible setK is a convex set.

Proof: First we show that the functionF (Ω,p) =
log det(I +HΩPΩH

†
Ω) is concave inp where0 6 p for any

cut Ω ⊆ V . For any two vectorsp1,p2 > 0 andγ ∈ [0, 1] we
can write

γF (Ω,p1) + (1− γ)F (Ω,p2)

= γ log det(I +HΩP1H
†
Ω)

+ (1− γ) log det(I +HΩP2H
†
Ω)

(a)

6 log det(γ(I +HΩP1H
†
Ω)

+ (1− γ)(I +HΩP2H
†
Ω))

= log det(I +HΩ(γP1 + (1− γ)P2)H
†
Ω)

where P1 (P2) is a diagonal matrix where the diagonal
elements are the elements ofp1 (p2) that belong toΩ
(respectively), and (a) follows from the concavity oflog detX ,
for X ≻ 0 [24].

Next, consider the setC (Ω) = {(R,P,p) : R 6 F (Ω,p)}.
Choose two vectors(R1, P1,p1) and (R2, P2,p2) in C (Ω).

We will show thatC (Ω) is a convex set by showing that for
anyγ ∈ [0, 1] the vectorγ(R1, P1,p1)+(1−γ)(R2, P2,p2) is
also inC (Ω). Notice thatR1 6 F (Ω,p1) andR2 6 F (Ω,p2)
if and only if (R1, P1,p1) ∈ C (Ω) and(R2, P2,p2) ∈ C (Ω).
Therefore

γR1 + (1− γ)R2 6 γF (Ω,p1) + (1− γ)F (Ω,p2)

(a)

6 F (Ω, γp1 + (1− γ)p2)

where(a) is due to the fact thatF (Ω,p) is a concave function
with respect top. Thus,C (Ω) is a convex set for anyΩ ⊆ V .

It is easy to check that the setsP1 = {(R,P,p) : 0 6 p 6

pmax}, P2 = {(R,P,p) :
∑

pi 6 P}, P3 = {(R,P,p) :
R0 6 R}, andP4 = {(R,P,p) : P 6 Ptot} are also convex
sets, and, as a result,K = ∩Ω⊆V\{d}C (Ω∪{s})∩P1∩P2∩
P3 ∩P4 is a convex set.

Having proved that (6) is a convex program, in order to
use Proposition 2 we need to check that the conditions of
Definitions 1, 2, and 3 are satisfied. Part (i) of Definition
1 follows from the linearity of the objective in (6). For
part (ii) of Definition 1 we specify an infeasibility measure
Infeas(·) : R|V|+2 → R as follows6:

Infeas((R,P,p)) =max

{

0,−p,p− pmax, R0 −R,P − Ptot

|V|
∑

i=1

pi − P,R − min
Ω∈V\{d}

F (Ω ∪ {s},p)

}

(7)

The conditions of part (ii) of Definition 1 are verified in the
following theorem.

Theorem 4. For a given vector(R,P,p) ∈ R|V|+2 and any
ε > 0 we can either (a) determine in polynomial time if
Infeas((R,P,p)) 6 ε and if not (b) find in polynomial time a
vectorc ∈ R|V|+2, such that for every(R′, P ′,p′) satisfying
Infeas((R′, P ′,p′)) 6 ε, cT (R′, P ′,p′) < cT (R,P,p).

Proof: Part (a) requires checking that each of the ar-
guments of themax of (7) is smaller than or equal toε in
polynomial time. The first six terms are linear functions and
can be easily computed. The last term can be compared to
ε by performing a minimization of a submodular function,
which as was shown in Section IV-B, can also be computed
in polynomial time.

We focus on condition (b). In this case Infeas((R,P,p)) >
ε, meaning that at least one of the arguments of themax of
(7) is larger thanε. We consider each case separately.

If −pi > ε we setc = −ei+2 whereei has a one in the
ith position and zeros everywhere else, which can be easily
checked to satisfy the condition of part (b).

Similarly, for the casespi − pmax,i > ε, R0 − R > ε,
P − Ptot > ε and

∑|V|
i=1 pi − P we setc = ei+2, c = −e1,

c = e2, c = (0,−1, 1, . . . , 1) respectively.
For the last case, letΩ∗ = argminΩ∈V\{d} F (Ω ∪ {s},p).

We haveR−F (Ω∗∪{s},p) > ε. Since the functionF (Ω∗,p)

6With a slight abuse of notation we usemax on vector quantities by taking
the maximum over the components of the vector.
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is continuous and differentiable with respect top, and the set
C̃ (Ω∗, ε) = {(R,P,p) : R 6 F (Ω∗,p)+ε} is convex (which
can be shown as in the proof of Lemma 1), then the vector
c = (1, 0,−∇pF (Ω∗,p)) is the normal to a hyperplane that
separates(R,P,p) from the setC̃ (Ω∗, ε). In other words,
for all (R′, P ′,p′) ∈ C (Ω∗) we have cT (R′, P ′,p′) <
cT (R,P,p). Noting that{(R′, P ′,p′) : Infeas((R′, P ′,p′)) 6
ε} ⊆ C̃ (Ω∗, ε), we conclude that part (b) holds in this case
as well.

Having proved these preliminary results, we are ready to
prove the main result of this section.

Theorem 5. The optimization in (6) can be solved in polyno-
mial time on the size of the problem.

Proof: The proof uses Proposition 2, which requires
verifying the convexity of the problem together with the
conditions of polynomial computability, polynomial growth,
and polynomial boundedness of the feasible set. Convexity
was proved in Lemma 1, while polynomial computability was
shown in Theorem 4. Polynomial growth follows from the fact
that F (Ω,p) is the log of a polynomial onp with degree at
most |V|, while the objective and remaining terms that define
the infeasibility measure are linear on(R,P,p). Finally, to
check that feasible set if polynomially bounded, we note that
the feasible set is a subset of the hypercube

{(R,P,p) : 0 6 (R,P,p) 6 (Rmax, Ptot,pmax)}

whereRmax = minΩ∈V\{d} F (Ω∪{s},pmax). It follows that
the feasible set is contained in the Euclidean ball centered
at the origin with radius‖(Rmax, Ptot,pmax)‖2, which can
be easily checked to grow polynomially on the size of the
problem.

The general optimization problem (6) can be specialized to
a power minimization with a minimum rate constraint, and
to a rate maximization with a total power constraint. Both
problems can be solved in polynomial time, as stated in the
following corollaries to Theorem 5.

Corollary 2. The following power minimization problem can
be solved in polynomial time.

minimize
p

|V|
∑

i=1

pi

subject to R0 6 F (Ω ∪ {s},p) for all Ω ⊆ V\{d}

0 6 p 6 pmax. (8)

Proof: The corollary follows from Theorem5 by setting
µ1 = 0, µ2 = 1, Ptot =

∑|V|
i=1 pmax,i.

Corollary 3. The following rate maximization can be solved
in polynomial time.

maximize
R,p

R

subject to 0 6 R 6 F (Ω ∪ {s},p) for all Ω ⊆ V\{d}
|V|
∑

i=1

pi 6 Ptot

0 6 p 6 pmax (9)

Proof: The corollary follows from Theorem5 by setting
µ1 = −1, µ2 = 0 andR0 = 0.

VI. A LGORITHMS AND SIMULATIONS

In this section we study different algorithms and and provide
simulation results regarding submodular function minimization
and power allocation problems. In the first subsection we
look at minimum norm algorithm for submodular function
minimization and we show that this algorithm can find the
approximation to capacity of layered Gaussian relay networks
with more that 300 nodes in a couple of minutes. In the
second subsection we propose a heuristic algorithm to find
the optimum power allocation for Gaussian relay networks.

A. submodular function minimization

One approach to solve the submodular minimization prob-
lem due to Lovász is based onextensionof the set function
f : 2V → R to a convex functiong : [0, 1]|V| → R that
agrees withf on the vertices of the hypercube[0, 1]|V|, with
a guarantee thatminA⊆V f(A) is equal tominx g(x) for
x ∈ [0, 1]|V|. In this section we assume the normalization
f(∅) = 0.

The Lovász extensiong of anyset functionf can be defined
as follows. For a givenx ∈ [0, 1]|V| order the elements of
V such thatx(v1) > x(v2) > · · · > x(vn), wherex(vi) is
the vith element of the vectorx. Setλ0 = 1 − x(v1), λi =
x(vi)− x(vi+1), λn = x(vn), and

g(x)
def
=

n∑

i=1

λif({v1, v2, . . . , vi}).

Define 1∅ = 0 ∈ Rn and 1{v1,v2,...,vi} as ann dimensional
vector such that the coordinatesv1, v2, . . . , vi are equal to one
and all the other coordinates are equal to zero. Then, it is
easy to see thatx =

∑n
i=0 λi1{v1,v2,...,vi} ,

∑n
i=0 λi = 1

and λi > 0. So, x is a unique linear convex combination
of some vertices of the hypercube andg(x) is linear convex
combination of values off on those vertices.

A key result is that iff is submodular its Lovász extension
g is a convex function [14], [11]. In addition, finding the
minimum of the submodular functionf over subsets ofV
is equivalent to finding the minimum of the convex function
g in the hypercube[0, 1]|V|. The optimization can be done in
polynomial time using Ellipsoid algorithm [14].

There are other algorithms with faster running time to solve
the submodular minimization problem [16], [17], [20]. To
the best of our knowledge, the running time of the fastest
algorithm is in the order ofO(n5α + n6), whereα is the
time that the algorithms takes to computef(A) for any subset
A ⊆ V [20]. For ADT networks, Gaussian relay networks, and
erasure networks,α is the time to compute: the rank ofn×n
matrices, the determinant ofn×n matrices, and equation (4),
respectively.

However, for networks of large size, a complexity of
O(n5α + n6) may still be computationally cumbersome.
As a result, in these cases it is desirable to have faster
algorithms. Recently, Fujishing [11], [12] showed that the
minimization of any submodular function can be cast as a
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Fig. 2. Running time of minimum norm algorithm for a layered Gaussian
relay network. Each layer has four nodes.

minimum norm optimization over the base polytope off ,
Bf = Pf ∩ {x |

∑

i∈V x(i) = f(V)}, where

Pf
def
=

{

x ∈ R
n
∣
∣
∣ ∀A ⊆ V :

∑

i∈A

x(i) 6 f(A)

}

and the corresponding minimum norm optimization is

minimize ||x||2, subject tox ∈ Bf . (10)

Letting x∗ be the solution of this minimization, the setA∗ =
{vi : x∗(vi) < 0} is the solution tominA f(A). Whether
the above optimization problem can be solved in polynomial
time is an open problem. However empirical studies [12]
have shown that this algorithm has comparable or even faster
running times than the other algorithms with polynomial time
performance guarantees.

In our specific setting, for layered Gaussian relay networks
of size up to around300 nodes with 4 nodes per layer, we
were able to find the approximate capacity (cf. (3)) in order
of minutes (see Figure 2). In order to solve the minimization
(10) we used the Matlab package provided in [19].

B. Power allocation

In Section V we have shown that the Ellipsoid method can
be used to solve the optimization in (8) in polynomial time.
While in theory this result shows that the optimization in (8)
is tractable, in practice the Ellipsoid method has a number
of shortcomings that limit its usability. On the one hand the
running time of the Ellipsoid method can be large compared
to alternative algorithms, and on the other hand, for high
dimensional problems it has shown numerical instability. In
this section, we propose a heuristic algorithm to solve the
optimization in (8) and show that this algorithm converges to
the right solution. While the running time can be exponential
on the network size, we show through simulations that the
algorithm often converges within a time proportional to the
network size.

Our proposed algorithm, Algorithm 1 (see pseudo-code
below), is based on the cutting plane methods [24] in convex
optimization. The optimization in (8) contains exponentially
many constraints of the form

R0 6 F (Ω ∪ {s},p) for Ω ⊆ V\{d}. (11)

In Algorithm 1 we first find the min-cut corresponding to
assigning maximum power to all nodes in the network:

Ω1 = argminΩ⊆V\{d}F (Ω ∪ {s},pmax).

Then, we modify the optimization in (8) by replacing the
constraint (11) with

R0 6 F (Ω1 ∪ {s},p).

The resulting convex program can be easily solved since it
contains few constraints.

After optimization, we letp∗ be the optimum power allo-
cation for the current set of constraints and set

Ωi = argminΩ⊆V\{d}F (Ω ∪ {s},p∗).

We iteratively add the constraint

R0 6 F (Ωi ∪ {s},p)

to our set of constraints, and solve the optimization again.We
stop if the new constraint is already in the set of constraints.

Algorithm 1 Power minimization
Input: Channel gain matrixH , desired rateR, vector of

nodes’ power constraintspmax.
Output: Min-cut, Power assignmentp∗ that achieves approx-

imate to rateR with minimum sum of powers.
C ← {}, p∗ ← 0
Ω∗ ← minΩ⊆V\{d} F (Ω ∪ {s},pmax)
if R 6 F (Ω∗ ∪ {s},pmax) then

while Ω∗ /∈ C andF (Ω∗ ∪ {s},p∗) < R do
C ← C ∪ {Ω∗}
p∗ ← min

∑
pi

subject to:
R 6 F (Ω ∪ {s},p) for all Ω ∈ C

0 6 p 6 pmax

Ω∗ ← minΩ⊆V\{d} F (Ω ∪ {s},p∗)
end while
return Ω∗ ∪ {s}, p∗

else
print The constraints are infeasible.

end if

Since in each iteration the algorithm adds a new constraint
to the constraint set and the number of constraints in (11) is
finite, the algorithm is guaranteed to find the optimum power
in a finite number of iterations, which can be exponential.

We used simulations to test the performance of the algo-
rithm for networks of varying sizen ranging from 10 to 40.
For eachn, we generated 300 random networks with channels
gains drawn i.i.d. using aN (0, 1) distribution. We set the
desired transmission rateR0 = 4 in (8) and set a maximum
power constraint in each node topmax = 100. The results are
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Fig. 4. Running time in seconds of the power optimization in Algorithm 1.

shown in Figures 3–6, where the the vertical bars represent
±1 standard deviation around the mean computed over the
300 random networks.

Figure 3 shows the number of iterations of Algorithm 1 as
a function of the number of nodes in the network. We see that
the number of iterations growsO(n3/2) with the number of
nodes.

In Figure 4, we present the simulation time as a function of
the network size. We observe a running time that grows slower
thanO(n6). The figure also shows that the power optimization
of networks of 40 nodes completes in less than two hours on
an Intel Xeon quad core CPU running at 2.33 GHz.

The minimum sum of powers to approximately achieve
R0 = 4 for networks of different size is presented in Figure 5
with a blue solid line. Interestingly, the plot shows that the
minimum power concentrates around the mean. In addition,
the figure shows diminishing returns in total power savings
resulting from increasing the network size.
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Fig. 5. Minimum sum of powers for optimization (8) whenR0 = 4 and the
network is generated randomly as described in the paper.
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Fig. 6. Number of nodes in the simplified network.

For the special case of the diamond relay network withN
relays, [26] shows that a fractionk/(k + 1) of the network
capacity can be approximately achieved by using onlyk relays.
In our setting of a general Gaussian relay network and sum-
power minimization, we are interested in investigating whether
it is possible to remove a large fraction of the nodes from the
network without significantly affecting its performance.

In order to determine which nodes to remove from the
network, we solve the sum-power minimization and compare
the optimal power allocationp∗i of each nodei to a threshold
Pth. All relays with p∗i < Pth are removed from the network.
Let N be the set of nodes withp∗i > Pth. We optimize the
power allocation for the network with node set{s}∪N ∪{d}
and determine whether the problem is feasible forR0 = 4. If
the problem is infeasible, we enlargeN by adding more relay
nodes in decreasing order ofp∗i , until the problem becomes
feasible.

Figure 5 shows in the red dashed curve the resulting
minimum sum of powers obtained by settingPth = 1. Figure 6
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shows the corresponding size of the setN . We observe in
Figure 6 that the number of nodes with allocated powerp∗i
exceedingPth = 1 (possibly including more relays to make
the problem feasible) remains fairly constant as the size of
the networkn increases. This means that most of the power
is allocated to a small subset of the nodes.

Removing the remaining nodes from the network and opti-
mizing the power allocation again over the resulting simplified
network results in the minimum total power plotted in Fig-
ure 5. This figure shows that even though the number of nodes
in the simplified network remains approximately constant as
n increases, the total power required to approximately achieve
R0 = 4 decreases withn. This is due to the fact that larger
n allows to choose the best relays for the simplified network.
There is some performance loss in terms of total power due
to network simplification but this loss may be compensated
by power savings arising from turning off some of the relays.
While we have not modeled the power consumption of the
clocks, CPU and other subsystems required to keep a relay
active, in practice they may become comparable to the power
consumed by radio transmissions. This makes network sim-
plification very useful in practice.
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