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Abstract—The min-rank of a digraph was shown by Bar-
Yossefet al. (2006) to represent the length of an optimal scalar
linear solution of the corresponding instance of the Index Coding
with Side Information (ICSI) problem. In this work, the grap hs
and digraphs of near-extreme min-ranks are characterized.Those
graphs and digraphs correspond to the ICSI instances having
near-extreme transmission rates when using optimal scalarlinear
index codes. In particular, it is shown that the decision problem
whether a digraph has min-rank two is NP-complete. By contrast,
the same question forgraphs can be answered in polynomial time.

Additionally, a new upper bound on the min-rank of a digraph,
the circuit-packing bound, is presented. This bound is often tighter
than the previously known bounds. By employing this new bound,
we present several families of digraphs whose min-ranks canbe
found in polynomial time.

I. I NTRODUCTION

Building communication schemes which allow participants
to communicate efficiently has always been a challenging yet
intriguing problem for information theorists. Index Coding
with Side Information (ICSI) ([1], [2]) is a communication
scheme dealing with broadcast channels in which receivers
have prior side information about the messages to be trans-
mitted. By using coding and exploiting the knowledge about
the side information, the sender may significantly reduce
the number of required transmissions compared with the
straightforward approach. As a consequence, the efficiency
of communication over this type of broadcast channels could
be dramatically improved. Apart from being a special case
of the well-known (non-multicast) Network Coding problem
([3], [4]), the ICSI problem has also found various potential
applications on its owns, such as audio- and video-on-demand,
daily newspaper delivery, data pushing, and opportunistic
wireless networks ([1], [2], [5], [6], [7], [8]).

In the work of Bar-Yossefet al.[5], the optimal transmission
rate of scalar linear index codes for an ICSI instance was
neatly characterized by the so-calledmin-rank of the side
information digraph (i.e., directed graph, see Section II for
definitions) corresponding to that instance. The concept of
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min-rank of a graph (i.e., undirected graph, see Section II for
definitions) goes back to Haemers [9]. Min-rank serves as an
upper bound for the celebrated Shannon capacity of a graph
[10]. This upper bound, as pointed out by Haemers, although
is usually not as good as the Lovász bound [11], is sometimes
tighter and easier to compute. It was shown by Peeters [12]
that computing the min-rank of a general graph (that is, the
Min-Rank problem) is a hard task. More specifically, Peeters
showed that deciding whether the min-rank of a graph is
smaller than or equal to three is an NP-complete problem.

The work of Bar-Yossefet al. [5] has stimulated the interest
in the Min-Rank problem. Exact and heuristic algorithms
for finding min-ranks over the binary field of digraphs were
developed in the work of Chaudhry and Sprintson [13]. The
min-ranks of random digraphs are investigated by Haviv
and Langberg [14]. A dynamic programming approach was
proposed by Berliner and Langberg [15] to compute min-
ranks of outerplanar graphs in polynomial time. Algorithms
to approximate min-ranks of graphs with bounded min-ranks
were studied by Chlamtac and Haviv [16].

In this paper, we study graphs and digraphs that have near-
extreme min-ranks. In other words, we study ICSI instances
with n receivers for which optimalscalar linear index codes
have transmission rates2, n − 2, n − 1, or n. In particular,
we show that deciding whether a digraph has min-rank two
over thebinary field is an NP-complete problem. By contrast,
a graph has min-rank two over any finite field if and only
it is not a complete graph and its complement is bipartite,
a condition which can be verified in polynomial time (see,
for instance, West [17, p. 495]). Very recently, it was found
by Maleki et al. [18] that the same problem for digraph over
sufficiently large field can be solved in polynomial time.

The characterizations of graphs and digraphs with near-
extreme min-ranks are summarized in the table below. The
star mark “∗” indicates that the result is established in this
paper. The dagger mark “†” indicates that the result is proved
only for the binary field.

Min-Rank GraphG DigraphD

1 G is complete (trivial) D is complete (trivial)

2
G is not complete andG is 2-
colorable ([12])

D is not complete
and D is fairly 3-
colorable∗†

n− 2
G (connected) has a maximum
matching of size two and does not
containF (Fig. 6) as a subgraph∗

unknown

n− 1 G (connected) is a star graph∗ unknown
n G has no edges (trivial) D has no circuits∗

The near-extreme cases are of significant interest from both
theoretical and practical points of view. It is known that the
Min-Rank Problem is NP-hard [12] (minrkq(G) = 3 is hard
to verify). Theoretically, it is desirable to further understand,
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which values of the min-rank in the range between1 andn
are still easy to verify, and for which values it is hard. It turns
out that for graphs and digraphs, the easy-hard turning points
are different. For graphs, the turning points are3 and some
value smaller thann−2 (not exactly known). By contrast, for
digraphs, the easy-hard turning points are2 (proved in this
work) andn− 1 (conjectured).Practically, the use of length-
one index codes in wireless communications has already been
proposed (for instance, see COPE [7], [19], [20]), due to their
simplicity and efficiency. However, the variety of scenarios
where an index code of length one is applicable is limited
(each client must know all except one message). An index
code of length two is obviously the next potential candidate
to be used.

In this paper, we also introduce a new upper bound for
the min-rank of a digraph, namely the circuit-packing bound,
which, in certain cases, is far tighter than the clique-cover
bound. This upper bound was first presented by Chaudhryet
al. [21], and was found independently by the authors of this
paper approximately at the same time.

So far, families of graphs and digraphs whose min-ranks
are either known or computable in polynomial time are the
followings. For graphs, they are odd holes and odd anti-
holes [22], perfect graphs [22], and outerplanar graphs [15].
For digraphs, they are acyclic digraphs [22]. In this work,
we point out several new families ofdigraphsfor which the
circuit-packing bound is tight. For such families of digraphs,
min-ranks can be found in polynomial time.

In the context of index coding, we only study min-ranks
of digraphs over afinite field Fq. However, all of our results,
except Theorem IV.7, Corollary IV.8, and Theorem V.2, still
hold for anarbitrary field F. This is because the characteristic
of the field does not play any role in their proofs.

The paper is organized as follows. Basic notation and
definitions are presented in Section II. The ICSI problem
is formulated in Section III. Section IV is devoted to the
characterizations of graphs and digraphs of near-extreme min-
ranks. We prove the hardness of the Min-Rank problem for
digraphs in Section V. The circuit-packing bound is estab-
lished in Section VI. Finally, some interesting open problems
are proposed in Section VII.

II. N OTATION AND DEFINITIONS

Let [n] denote the set of integers{1, 2, . . . , n}. Let Fq

denote the finite field ofq elements andF∗
q = Fq \ {0}.

The support of a vectoru ∈ Fn
q is defined to be the set

supp(u) = {i ∈ [n] : ui 6= 0}. For ann × k matrix M ,
let M i denote theith row of M . For a setE ⊆ [n], let ME

denote the|E| × k sub-matrix ofM formed by rows ofM
which are indexed by the elements ofE. For any matrixM
overFq, we denote byrankq(M) the rank ofM overFq (or
the q-rank of M ). We useei to denote the unit vector, which
has a one at theith position, and zeros elsewhere.

A simple graph is a pairG = (V(G), E(G)) whereV(G) is
the set of vertices ofG andE(G) is a set ofunorderedpairs of
distinct vertices ofG. We refer toE(G) as the set ofedgesof
G. A typical edge ofG is of the form{u, v} whereu ∈ V(G),

v ∈ V(G), andu 6= v. If e = {u, v} ∈ E(G) we say thatu
andv are adjacent. We also refer tou andv as theendpoints
of e.

A simpledigraph is a pairD = (V(D), E(D)) whereV(D)
is the set of vertices ofD, andE(D) is a set oforderedpairs
of distinct vertices ofD. We refer toE(D) as the set of arcs
(or directed edges) ofD. A typical arc of D is of the form
e = (u, v) whereu ∈ V(D), v ∈ V(D), and u 6= v. The
verticesu andv are called theendpointsof the arce.

Simple graphs and digraphs have no loops and no parallel
edges and arcs, respectively. In the scope of this paper, only
simple graphs and digraphs are considered. Therefore, we
simply refer to them as graphs and digraphs for succinctness.

The number of vertices|V(D)| is called theorder of D,
whereas the number of arcs|E(D)| is called thesize of D.
The complementof a digraphD, denoted byD, is defined as
follows. The vertex set isV(D) = V(D). The arc set is

E(D) =
{

(u, v) : u, v ∈ V(D), u 6= v, (u, v) /∈ E(D)
}

.

Analogous concepts are also defined for graphs.
A digraphD is calledsymmetricif it satisfies the property

that (u, v) ∈ E(D) if and only if (v, u) ∈ E(D). A symmetric
digraph can be viewed as a graph, and vice versa. Acomplete
graph is a graph that contains all possible edges. Acomplete
digraph is a digraph that contains all possible arcs.

A collection of subsetsV1, V2, . . . , Vk of a setV is said to
partition V if ∪k

i=1Vi = V andVi ∩ Vj = ∅ for every i 6= j.
In that case,[V1, V2, . . . , Vk] is referred to as a partition ofV ,
andVi’s (i ∈ [k]) are calledparts of the partition.

A graphG is calledbipartite if V(G) can be partitioned into
two subsetsU andV such that for every edge{u, v} ∈ E(G),
it holds thatu ∈ U andv ∈ V , or vice versa.

A subgraphof a graphG is a graph whose vertex setV
is a subset of that ofG and whose edge set is a subset of
that ofG restricted to the vertices inV . Let V be a subset of
vertices inV(G). The subgraph ofG inducedby V is a graph
whose vertex set isV , and edge set is{{u, v} : u ∈ V, v ∈
V, {u, v} ∈ E(G)}. We refer to such a graph as aninduced
subgraphof G. A subgraph and induced subgraph of a digraph
can be defined in a similar manner.

A path in a graphG is a sequence of distinct vertices
(v1, v2, . . . , vr), such that{vs, vs+1} ∈ E(G) for all s ∈ [r−1].
A directed pathin a digraphD is a sequence of distinct
vertices(v1, v2, . . . , vr), such that(vs, vs+1) ∈ E(D), for all
s ∈ [r − 1].

A circuit in a digraphD is a sequence of pairwise distinct
vertices

C = (v1, v2, . . . , vr),

where (vs, vs+1) ∈ E(D) for all s ∈ [r − 1] and (vr , v1) ∈
E(D) as well. A digraph is calledacyclic if it contains no
circuits.

A graph is calledconnectedif there is a path from each
vertex in the graph to every other vertex. Theconnected
componentsof a graph are its maximal connected subgraphs.
Similarly, a digraph is calledstrongly connectedif there is
a directed path from each vertex in the graph to every other
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vertex. Thestrongly connected componentsof a digraph are
its maximal strongly connected subgraphs.

If (u, v) is an arc in a digraphD, thenv is called anout-
neighborof u in D. The set of out-neighbors of a vertexu
in a digraphD is denoted byND

O (u). We simply useNO(u)
whenever there is no potential confusion. We also denote by
NG(u) the set of neighbors ofu in a graphG, namely, the set
of vertices adjacent tou in G.

An independent setin a graphG is a set of vertices ofG
with no edges connecting any two of them. An independent
set inG of largest cardinality is called amaximum independent
set in G. The cardinality of such a maximum independent set
is referred to as theindependence numberof G, denoted by
α(G). We also useα(D) to denote the size of a maximum
acyclic induced subgraph of a digraphD for the following
reason. For a symmetric digraphD, α(D) is equal to the size
of a maximum independent set ifD is regarded as a graph.

A clique of a graph is a set of vertices that induces a
complete subgraph of that graph. Aclique coverof a graph is
a set of cliques that partition its vertex set. Aminimum clique
coverof a graph is a clique cover with the minimum number
of cliques. The number of cliques in such a minimum clique
cover of a graph is called the clique cover number of that
graph. Similar concepts are defined for digraphs. We denote
by cc(G) the clique cover number of a graphG andcc(D) the
clique cover number of a digraphD.

III. T HE INDEX CODING WITH SIDE INFORMATION

PROBLEM

The ICSI problem is formulated as follows. Suppose a
senderS wants to send a vectorx = (x1, x2, . . . , xn), where
xi ∈ Ft

q for all i ∈ [n], to n receiversR1, R2, . . . , Rn. Each
Ri possesses some prior side information, consisting of the
blocksxj , j ∈ Xi ( [n], and is interested in receiving a single
block xi. The senderS broadcasts a codewordE(x) ∈ Fκ

q ,
whereκ is some positive integer, that enables each receiver
Ri to recoverxi based on its side information. Such a mapping
E : Fnt

q → Fκ
q is called anindex code. We refer tot as the

block lengthandκ as thelengthof the index code. The ratio
κ/t is called thetransmission rateof the index code. The
objective ofS is to find anoptimalindex code, that is, an index
code which has the minimum transmission rate. The index
code is calledlinear if E is a linear mapping, andnonlinear
otherwise. The index code is calledscalar if t = 1 andvector
if t > 1. The length and the transmission rate of a scalar index
code (t = 1) are identical.

Example III.1. Consider the following ICSI instance (Fig. 1).
There are five receivers (n = 5). We only consider scalar index
codes in this example. Suppose thatxi ∈ F2, i ∈ [5], are five
messages available fromS. For eachi ∈ [5], the receiverRi

requestsxi and owns certain messages as a priori. We have
hereX1 = {2}, X2 = {3}, X3 = {1, 4}, X4 = {5}, and
X5 = {2, 4}.

S

R1

R2 R3
R4

R5

requestsx1
ownsx2

requestsx2
ownsx3

requestsx3
ownsx1, x4

requestsx4
ownsx5

requestsx5
ownsx2, x4

x1 + x2

x2 + x3

x4 + x5

Fig. 1: Example of an ICSI instance

On the one hand,S can satisfy the demands from all
receivers simultaneously in a straightforward way by broad-
casting all five messagesxi’s, i ∈ [5]. This naı̈ve solution costs
five transmissions. On the other hand, a smarter solution forS
is to broadcastthreepacketsx1+x2, x2+x3, andx4+x5. This
index code is of length three. The decoding process goes as
follows. SinceR1 already knowsx2, it obtainsx1 by adding
x2 to the first packetx1 + x2:

x1 = x2 + (x1 + x2).

Similarly, R2 obtainsx2 = x3 + (x2 + x3); R3 obtainsx3 =
x1 +(x1 + x2) + (x2 + x3); R4 obtainsx4 = x5 +(x4 + x5);
R5 obtainsx5 = x4 + (x4 + x5).

Each instance of the ICSI problem can be described by the
so-calledside information digraph[5]. Given n andXi, i ∈
[n], theside information digraphD = (V(G), E(D)) is defined
as follows. The vertex setV(D) = {u1, u2, . . . , un}. The edge
setE(D) = ∪i∈[n]

{

(ui, uj) : j ∈ Xi

}

. Sometimes we simply
takeV(D) = [n] andE(D) = ∪i∈[n]

{

(i, j) : j ∈ Xi

}

. If D is
a symmetric digraph, we can regardD as a graph, and refer
to D as theside information graph.

The side information digraph that describes the ICSI in-
stance in Example III.1 is depicted in Fig. 2. Here we choose
V(D) = [5].

1

2

34

5

Fig. 2: The corresponding side information digraph (Fig. 1)

Definition III.2 ([9]). Let D =
(

V(D), E(D)
)

be a digraph
of ordern, whereV(D) = {u1, u2, . . . , un}.

1) A matrix M = (mui,uj
) ∈ Fn×n

q (whose rows and
columns are labeled by the elements ofV(D)) is said to
fit D if

{

mui,uj
6= 0, i = j,

mui,uj
= 0, i 6= j, (ui, uj) /∈ E(D).
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2) Themin-rankof D overFq is defined to be

minrkq(D)
△

= min
{

rankq(M ) : M ∈ Fn×n
q andM fits D

}

.

Since a graph can be viewed as a symmetric digraph, the above
definitions also apply to a graph.

For instance, the two matrices in Fig. 3 fit the digraph
D depicted in Fig. 2. The matrixM2 has2-rank three. By
Definition III.2, minrk2(D) ≤ 3. By Theorem III.4 stated
below, asα(D) = 3, we deduce thatminrk2(D) ≥ 3. Thus,
minrk2(D) = 3 andM2 achieves the min-rank.

M1 =













1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 1 0 0 1













(a) A matrix of 2-rank four

M 2 =













1 1 0 0 0
0 1 1 0 0
1 0 1 0 0
0 0 0 1 1
0 0 0 1 1













(b) A matrix of 2-rank three

Fig. 3: Two matrices that fitD (Fig. 2)

Observe that the index code presented in Example III.1 is
obtained by taking the dot products ofx with the first, the
second, and the forth rows ofM2. These three rows actually
span the row space ofM2. This index code has length three,
which equalsrank2(M 2). According to Theorem III.3, this
index code is an optimal scalar linear index code overF2 for
the ICSI instance described in Example III.1.

Theorem III.3 ([5], [23]). The length of an optimal scalar
linear index code overFq for the ICSI instance described by
D is minrkq(D).

Let βq(t,D) denote the length of an optimalvector index
code of block lengtht overFq for an ICSI instance described
by a digraphD. Note that we do not require the index codes
to be linear. Alonet al. [24] defined thebroadcast rateβq(D)
of the corresponding ICSI instance to belimt→∞ βq(t,D)/t
(see also Blasiaket al. [25]) 1 . In words, the broadcast rate
is the average minimum communication cost per symbol in
each blockxi (for long blocks). The reciprocal ofβq(D)
is also referred to as thecapacity (over Fq) of the ICSI
instance described byD (see Langberg and Sprintson [26]).
Theorem III.4 demonstrates an intuitive fact that in terms of
transmission rates, vector (nonlinear) index codes are at least
as good as scalar (nonlinear) index codes, which in turn are at
least as good as scalar linear index codes. The last inequality
in this theorem is called theclique-covering boundfor min-
ranks.

1In [24] and [25], the authors only consider the caseq = 2, and therefore
they use the notationsβt and β, which is independent of the field size. In
our notations, this will correspond toβ2(t,D) andβ2(D). At the moment,
it is not clear whether the field sizeq plays any significant role with respect
to the value ofβq . For example, in this work, the analysis of min-rank for
the casesq = 2 andq > 2 is different (thus, the result in Section IV-C only
applies toq = 2). Therefore, in the sequel we use the subscriptq to ensure
the consistence of the notation throughout the work.

Theorem III.4 ([9], [5], [22], [24]). For any digraphD we
have

α(D) ≤ βq(D) ≤ βq(1,D) ≤ minrkq(D) ≤ cc(D).

The same inequalities hold for graphs.

IV. D IGRAPHS OFNEAR-EXTREME M IN-RANKS

Some of the results presented below are folklore. However,
we include their proofs for completeness.

A. (Strongly) Connected Components and Min-Ranks

Lemma IV.1 (Folklore). Let G = (V(G), E(G)) be a graph.
Suppose thatG1,G2, . . . ,Gk are subgraphs ofG that satisfy
the following conditions

1) The setsV(Gi), i ∈ [k], partition V(G);
2) There is no edge of the form{u, v} whereu ∈ V(Gi)

and v ∈ V(Gj) for i 6= j.
Then

minrkq(G) =
k

∑

i=1

minrkq(Gi).

In particular, the above equality holds ifG1,G2, . . . ,Gk are
all connected components ofG.

Proof: The proof follows directly from the fact that a
matrix fits G if and only if it is a block diagonal matrix (re-
labeling the vertices if necessary) and the block sub-matrices
fit the corresponding subgraphsGi’s, i ∈ [k].

Lemma IV.2 (Folklore). LetD = (V(D), E(D)) be a digraph.
If D1,D2, . . . ,Dk are all strongly connected components ofD,
then

minrkq(D) =

k
∑

i=1

minrkq(Di).

Proof: Suppose thatVi is the set of vertices that induces
Di, i ∈ [k]. Then {Vi}i∈[k] forms a partition ofV(D). By
relabeling the vertices ofD if necessary, we may assume
without loss of generality that for everyi < j

1) u < v wheneveru ∈ Vi andv ∈ Vj ;
2) There are no arcs of the form(v, u) whereu ∈ Vi and

v ∈ Vj .
If M

(i) is a minimum-rank matrix that fitsDi (i ∈ [k]) then
the diagonal block matrixM whose diagonal blocks areM (i)

clearly fitsD. Moreover,

rankq(M ) =

k
∑

i=1

rankq(M
(i)) =

k
∑

i=1

minrkq(Di).

Henceminrkq(D) ≤
∑k

i=1 minrkq(Di). It remains to show
thatminrkq(D) ≥

∑k

i=1 minrkq(Di). Suppose that the matrix
M fits D. By the assumptions onVi’s (i ∈ [k]) stated at the
beginning of the proof,M must be an upper-triangular block
matrix, as shown in Fig. 4. If we letM (i) be the sub-matrix of
M formed by the rows and columns indexed by the elements
of Vi, thenM (i) fits Di and hence,

rankq(M ) ≥
k
∑

i=1

rankq(M
(i)) ≥

k
∑

i=1

minrkq(Di).
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0

0 0

0 0 0

0 0 0 0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b b

b b b

b b b

b b b

V1 V2 V3 Vk−1 Vk

V1

V2

V3

Vk−1

Vk

M
(1)

M
(2)

M
(3)

M
(k−1)

M
(k)

Fig. 4: Matrix M that fitsD

Thus,minrkq(D) ≥
∑k

i=1 minrkq(Di).

These two lemmas suggest that it is sufficient to study
the min-ranks of connected graphs and strongly connected
digraphs, respectively.

B. Digraphs of Min-Rank One

Proposition IV.3 (Folklore). Let D = (V(D), E(D)) be a
digraph. Thenminrkq(D) = 1 if and only ifD is a complete
digraph. The same statement holds for a graph.

Proof: SupposeD is a digraph of ordern. If minrkq(D) =
1, by the definition of min-rank there exists ann × n matrix
M = (mu,v) of q-rank one that fitsD. Then the rows ofM
must be scalar multiples of each other. Moreover,mu,u 6= 0
for all u ∈ V(D). Hencemu,v 6= 0 for all u ∈ V(D) and all
v ∈ V(D). Therefore,(u, v) ∈ E(D) for all u 6= v, u ∈ V(D)
andv ∈ V(D). In other words,D is a complete digraph.

Conversely, suppose thatD is a complete digraph. ThenJ ,
the n × n all-one matrix, fitsD andminrkq(J) = 1, which
implies thatminrkq(D) = 1. The same arguments hold for
graphs.

Corollary IV.4. Let D = (V(D), E(D)) be a digraph. Then
βq(D) = 1 if and only ifD is a complete digraph. The same
statement holds for a graph.

Proof: Supposeβq(D) = 1. Then by Theorem III.4,
α(D) = 1. Therefore,D is a complete digraph. Con-
versely, ifD is a complete digraph then by Proposition IV.3,
minrkq(D) = 1. Again by Theorem III.4,βq(D) = 1.

C. Digraphs of Min-Rank Two

In this section, only thebinary alphabet is considered. We
first introduce the following concept of afair coloring of a

digraph. Recall that ak-coloring of a graphG = (V(G), E(G))
is a mappingφ : V(G) → [k] which satisfies the condition that
φ(u) 6= φ(v) whenever{u, v} ∈ E(G). We often refer toφ(u)
as thecolor of u. If there exists ak-coloring of G, then we
say thatG is k-colorable.

Definition IV.5. Let D = (V(D), E(D)) be a digraph. Afair
k-coloring of D is a mappingφ : V(D) → [k] that satisfies
the following conditions:

(C1) If (u, v) ∈ E(D) thenφ(u) 6= φ(v);
(C2) For each vertexu of D, it holds thatφ(v) = φ(ω) for

all out-neighborsv andω of u.

If there exists a fairk-coloring ofD, we say that we cancolor
D fairly by k colors, or, D is fairly k-colorable.

We refer to the condition (C2) as thefairnessof the coloring,
since this condition guarantees that all out-neighbors of each
vertex share the same color.

Lemma IV.6. A digraph D = (V(D), E(D)) is fairly 3-
colorable if and only if there exists a partition ofV(D) into
three subsetsA, B, andC that satisfy the following conditions

1) For everyu ∈ A: either NO(u) ⊆ B or NO(u) ⊆ C;
2) For everyu ∈ B: either NO(u) ⊆ A or NO(u) ⊆ C;
3) For everyu ∈ C: either NO(u) ⊆ A or NO(u) ⊆ B.

Proof: If D is fairly 3-colorable, letA, B, andC respec-
tively be the sets of vertices ofD that share the same color.
Then clearlyA, B, andC partitionV(D). Moreover, since all
out-neighbors of each vertex must have the same color, the
three conditions above are obviously satisfied. Conversely, if
those conditions are satisfied, thenφ : V(D) → [3], defined
by

φ(u) =











1, u ∈ A

2, u ∈ B

3, u ∈ C

,

is a fair 3-coloring ofD.

Theorem IV.7. Let D = (V(D), E(D)) be a digraph. Then
minrk2(D) ≤ 2 if and only if D, the complement ofD, is
fairly 3-colorable.

Proof:
The ONLY IF direction:
By the definition of min-rank,minrk2(D) ≤ 2 implies the
existence of ann×n binary matrixM of 2-rank at most two
that fitsD. There must be some two rows ofM that span its
entire row space. Without loss of generality, suppose that they
are the first two rows ofM , namely,M1 andM2 (these two
rows might be linearly dependent ifminrk2(D) < 2). Let A,
B, andC be disjoint subsets ofV(D) such that

supp(M1) = A ∪B, supp(M2) = B ∪ C.

Hence,
supp(M 1) ∩ supp(M 2) = B.

Since the binary alphabet is considered and the matrixM has
no zero rows, for everyu ∈ V(D), one of the following must
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hold: (1)Mu = M1; (2) Mu = M2; (3) Mu = M1+M2.
Hence for everyu ∈ V(D)

u ∈ supp(Mu) ⊆ A ∪B ∪C.

This implies thatA ∪B ∪ C = V(D).
Suppose thatu ∈ A. Then either Mu = M1 or

Mu = M 1 +M2. The former condition holds if and only if
supp(Mu) = A∪B, which in turns implies that(u, v) ∈ E(D)
for all v ∈ A∪B \ {u}. In other words,(u, v) /∈ E(D) for all
v ∈ A∪B. HereD = (V(D), E(D)) is the complement ofD.
The latter condition holds if and only ifsupp(Mu) = A∪C,
which implies that(u, v) /∈ E(D) for all v ∈ A ∪ C. In
summary, for everyu ∈ A we have

1) (u, v) /∈ E(D), for all v ∈ A;
2) Either (u, v) /∈ E(D) for all v ∈ B, or (u, v) /∈ E(D)

for all v ∈ C;
In other words, for everyu ∈ A, either ND

O (u) ⊆ B or
ND

O (u) ⊆ C. Analogous conditions hold for everyu ∈ B
and for everyu ∈ C as well. Therefore, by Lemma IV.6,D
is fairly 3-colorable.
The IF direction:
Suppose now thatD is fairly 3-colorable. It suffices to find an
n × n binary matrixM of rank at most two that fitsD. By
Lemma IV.6, there exists a partition ofV(D) into three subsets
A, B, andC that satisfy the following three conditions

1) For everyu ∈ A: eitherND
O (u) ⊆ B or ND

O (u) ⊆ C;
2) For everyu ∈ B: eitherND

O (u) ⊆ A or ND
O (u) ⊆ C;

3) For everyu ∈ C: eitherND
O (u) ⊆ A or ND

O (u) ⊆ B.
We construct ann × n matrix M = (mu,v) as follows. For
eachu ∈ A, if ND

O (u) ⊆ B then let

mu,v =

{

1, v ∈ A ∪ C

0, v ∈ B
.

Otherwise, ifND
O (u) ⊆ C then let

mu,v =

{

1, v ∈ A ∪B

0, v ∈ C
.

For u ∈ B andu ∈ C, Mu can be constructed analogously.
It is obvious thatM fits D. Moreover, each row ofM can
always be written as a linear combination of the two binary
vectors whose supports areA ∪ B andB ∪ C, respectively.
Therefore,rank2(M ) ≤ 2. The proof is complete.

The following corollary characterizes the digraphs of min-
rank two overF2.

Corollary IV.8. A digraph D has min-rank two overF2 if
and only ifD is fairly 3-colorable andD is not a complete
digraph.

For a graphG, it was proved by Blasiaket al. [25] that
β2(G) = 2 if and only if G is bipartite andG is not
a complete graph. A characterization of digraphsD with
β2(D) = 2 was also obtained therein. More specifically, it
was shown thatβ2(D) = 2 if and only if D does not contain
a subgraph isomorphic to analmost alternating cycle. The

almost alternating(2m + 1)-cycle (m ≥ 1) is defined as
follows. Its vertex set consists of all integers between−m
and m, inclusive, and there is an edge fromi to j if and
only if j − i ∈ {m,m + 1}. Based on this characterization,
a polynomial time algorithm to recognize a digraphD with
β2(D) = 2 was also derived in [25]. Hence, the question
whether an optimalvector nonlinearindex code of lengthtwo
exists for an ICSI instance described by a digraph can be
answered in polynomial time. Forscalar linear index code,
the same question turns out to be hard. We prove later in
Section V that the decision problem whetherminrk2(D) = 2
is NP-complete.

D. Digraphs of Min-Ranks Equal to Their Orders

To tacklegraphsof min-ranks almost equal to their orders
(Section IV-D, IV-E, IV-F), we employ the concept ofmaxi-
mum matchingfrom graph theory.

Definition IV.9. A matching in a graph is a set of edges
without common vertices. Amaximum matchingis a matching
that contains the largest possible number of edges. The number
of edges in a maximum matching inG is denoted bymm(G).

The following upper bound on min-rank, so-called the
maximum-matching bound, is a weakened version of the
clique-covering bound (see Theorem III.4).

Proposition IV.10 (Maximum-matching bound). For any
graphG of ordern, it holds thatminrkq(G) ≤ n−mm(G).

Proof: As the set of vertices ofG can be covered by
mm(G) cliques of size two (the edges in a maximum matching)
andn − 2mm(G) cliques of size one (the remaining vertices
that are not covered by the edges in the matching), by
Theorem III.4, the proof follows.

GraphsG that satisfyα(G) = n−mm(G) are called Koenig-
Egervary graphs [27]. It was proved therein that there is a
polynomial time algorithm to recognize a Koenig-Egervary
graph G and subsequently findmm(G). By Theorem III.4
and Proposition IV.10, ifG is a Koenig-Egervary graph then
minrkq(G) = n−mm(G). Moreover,minrkq(G) can be found
in polynomial time. The graphs that satisfy the conditions
stated in Proposition IV.11, Proposition IV.17, and Theo-
rem IV.19 are all Koenig-Egervary graphs (see their proofs).

Proposition IV.11 (Folklore). Let G be a graph of order
n. Then minrkq(G) = n if and only if mm(G) = 0 (or
equivalently,G has no edges).

Proof: If G has no edges, a matrix fitsG if and only if
it is a diagonal matrix, whose entries on the main diagonal
are all nonzero. Theq-rank of such a matrix isn. Therefore,
minrkq(G) = n.

Suppose for contradiction thatminrkq(G) = n andG con-
tains some edge. Thenmm(G) ≥ 1 and we haveminrkq(G) ≤
n− 1, according to the maximum-matching bound. We obtain
a contradiction.
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Proposition IV.12. Let D be a digraph of ordern. Then
minrkq(D) = n if and only ifD is acyclic.

Proof: Equivalently, we show thatminrkq(D) ≤ n− 1 if
and only ifD has a circuit.

Suppose thatD has a circuit. Then by the circuit-
packing bound established in Section VI-A, we deduce that
minrkq(D) ≤ n− 1.

Conversely, suppose thatminrkq(D) ≤ n − 1. Then there
exists a matrixM fitting D whose rows are linearly dependent.
In other words,

∑

i∈I αiM i = 0 for some nonempty subset
I ⊆ V(D) and for someαi ∈ F∗

q , i ∈ I. Let D′ be the
subgraph ofD induced by the vertices inI andM ′ the sub-
matrix of M restricted to the rows and columns indexed by
the elements ofI. ObviouslyM ′ fits D′. We show that there
exists a circuit inD′. Since

∑

i∈I αiM
′
i = 0, each column of

M
′ has at least two nonzero entries. Therefore, for each vertex

v of D′, there exists another vertexu of D′ such that(u, v)
is an arc inD′. Starting from an arbitrary vertexv1 of D′

and applying this property recursively, we obtain a sequence
of vertices inD′

v1, v2, . . . , vs, vs+1, . . . ,

where(vs+1, vs) is an arc inD′ for everys ≥ 1. SinceD′ has
a finite number of vertices, there must be a point when a vertex
appears twice in the above sequence for the first time. This
vertex, together with the other vertices lying between its two
occurrences, form a circuit insideD′, which is also a circuit
insideD.

The existence of a circuit in a digraph can be detected by
using a depth-first search, the time complexity of which is
linear in the size of the digraph. Hence, as a consequence of
Proposition IV.12, the decision problem whether a digraph has
min-rank equal to its order can be solved in polynomial time.

Remark IV.13. The second direction in the proof of Propo-
sition IV.12 has a shorter proof as follows. Suppose that
minrkq(D) ≤ n − 1 but D is acyclic. Thenminrkq(D) ≥
α(D) = n, by Theorem III.4. That is a contradiction. However,
the original proof of Proposition IV.12 provides us with a
simple and direct proof of the inequalityα(D) ≤ minrkq(D)
(see Corollary IV.14). This inequality for digraphs was proved
indirectly via the use ofβq(1,D) by Bar-Yossefet al. [22].
In such an indirect proof, either arguments from Information
Theory are invoked [22, Theorem 7] or the corresponding
confusion graph is considered [22, Lemma 37].

Corollary IV.14. For a digraphD we have

α(D) ≤ minrkq(D).

Proof: First note that ifD′ is an induced subgraph of
D then minrkq(D′) ≤ minrkq(D). Indeed, supposeM is a
matrix that fitsD and has rank equal to the min-rank ofD.
Then the sub-matrixM ′ of M restricted to the rows and
columns indexed by the vertices inV(D′) is a matrix that fits
D′. Then

minrkq(D
′) ≤ rankq(M

′) ≤ rankq(M) = minrkq(D).

Now let D′ be a maximum acyclic induced subgraph ofD of
orderα(D). SinceD′ is acyclic, by Proposition IV.12 we have

minrkq(D) ≥ minrkq(D
′) = |V(D′)| = α(D).

Corollary IV.15. For a digraphD, βq(D) = |V(D)| if and
only if D is acyclic. For a graphG, βq(G) = |V(G)| if and
only if G has no edges.

Proof: Supposeβq(D) = |V(D)|. By Theorem III.4,
minrkq(D) = |V(D)|. Therefore,D is acyclic according to
Proposition IV.12. Conversely, ifD is acyclic thenβq(D) ≥
α(D) = |V(D)|. Similar arguments hold for graphs.

E. Graphs of Min-Ranks One Less Than Their Orders

In this section, we consider (undirected) graphs. The corre-
sponding case for digraphs is open. For a connected graphG
of order at least two, it is easy to see thatmm(G) = 1 if and
only if it is a star graph, which is defined as follows.

Definition IV.16. A graphG = (V(G), E(G)) is called astar
graph if |V(G)| ≥ 2 and there exists a vertexv ∈ V(G) such
that E(G) =

{

{u, v} : u ∈ V(G) \ {v}
}

.

b b

b
b

b

b

Fig. 5: A star graph

It is straightforward to see that ifmm(G) = 1 thenα(G) =
n− 1, asG is a star graph.

Proposition IV.17. Let G be a connected graph of ordern ≥
2. Thenminrkq(G) = n − 1 if and only if mm(G) = 1 (or
equivalently,G is a star graph).

Proof: We first suppose thatminrkq(G) = n − 1. By
the maximum-matching bound,n − 1 = minrkq(G) ≤ n −
mm(G). Therefore,mm(G) ≤ 1. However, asminrkq(G) 6= n,
by Proposition IV.11 we havemm(G) 6= 0. Hence,mm(G) =
1.

Conversely, assume thatmm(G) = 1. By the maximum-
matching bound,minrkq(G) ≤ n − 1. By Theorem III.4,
minrkq(G) ≥ α(G) = n− 1. Thus,minrkq(G) = n− 1.

Corollary IV.18. Let G be a connected graph of ordern ≥ 2.
Thenβq(G) = n − 1 if and only if mm(G) = 1 (G is a star
graph).

Proof: Supposeβq(G) = n−1. Then eitherminrkq(G) =
n − 1 or minrkq(G) = n. However, by Proposition IV.11,
minrkq(G) = n implies thatG has no edge. As a consequence,
βq(G) ≥ α(G) = n, which contradicts our assumption. Hence,
minrkq(G) = n−1. According to Proposition IV.17,mm(G) =
1.
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Conversely, suppose thatmm(G) = 1. According to Propo-
sition IV.17, we have

n− 1 = α(G) ≤ βq(G) ≤ minrkq(G) = n− 1.

Hence,βq(G) = n− 1.

F. Graphs of Min-Ranks Two Less Than Their Orders

In this section, we consider (undirected) graphs. The corre-
sponding case for digraphs is open. Here we also employ the
matching language to characterize graphs of min-ranks two
less than their orders.

Theorem IV.19. SupposeG is a connected graph of order
n ≥ 6. Thenminrkq(G) = n − 2 if and only if mm(G) = 2
and G does not contain a subgraph isomorphic to the graph
F depicted in Fig. 6.

Fig. 6: The forbidden subgraphF

The proof of this theorem appears in Appendix.

Corollary IV.20. If mm(G) = 2 and G contains a subgraph
isomorphic toF (Fig. 6) thenminrkq(G) = |V(G)| − 3.

Proof: SupposeF ′ (Fig. 7) is a subgraph ofG that is
isomorphic toF .

a

b c d

f

g

Fig. 7: The subgraphF ′

As G does not have a matching of size three, each of the
verticesc, f , and g is not adjacent to any vertex inV(G) \
V(F ′). Moreover, no pairs of vertices inV(G) \ V(F ′) are
adjacent for the same reason. Therefore,{c, f, g} ∪ (V(G) \
V(F ′)) is an independent set of size|V(G)| − 3 in G. Hence,
minrkq(G) ≥ α(G) ≥ |V(G)| − 3. As mm(G) = 2, by the
maximum-matching bound,minrkq(G) ≤ |V(G)| − 2. As G
containsF ′, which is isomorphic toF , by Theorem IV.19,
minrkq(G) 6= |V(G)| − 2. Thus,minrkq(G) = |V(G)| − 3.

Corollary IV.21. Theorem IV.19 holds verbatim if we replace
minrkq(·) by βq(·).

Proof: Suppose thatβq(G) = n − 2. Thenminrkq(G) ∈
{n−2, n−1, n}. By Proposition IV.11, Proposition IV.17, and
their corollaries, forκ ∈ {n − 1, n}, minrkq(G) = κ if and
only if βq(G) = κ. Therefore,minrkq(G) = n− 2. According
to Theorem IV.19,mm(G) = 2 and G does not contain a
subgraph isomorphic toF .

Conversely, as shown in the proof of Theorem IV.19 (the IF
direction),α(G) = minrkq(G) = n − 2. Therefore,βq(G) =
n− 2 by Theorem III.4.

V. THE HARDNESS OF THEM IN-RANK PROBLEM FOR

DIGRAPHS

In this section, we first prove that it is an NP-complete
problem to decide whether a given digraph is fairlyk-colorable
(see Definition IV.5), for any givenk ≥ 3. The hardness of
this problem, by Lemma IV.3 and Corollary IV.8, leads to the
hardness of the decision problem whether a given digraph has
min-rank two overF2. The fairk-coloring problem is defined
formally as follows.

Problem: FAIR k-COLORING
Input: A digraphD, an integerk
Output: True if D is fairly k-colorable, False otherwise

Theorem V.1. The fair k-coloring problem is NP-complete
for k ≥ 3.

Proof: This problem is obviously in NP, as the algorithm
can guess a candidate for the fair coloring and verify that
the candidate is indeed a fair coloring in polynomial time.
For NP-hardness, we reduce thek-coloring problem to the
fair k-coloring problem. Recall that thek-coloring problem
is the decision problem whether a given graph isk-colorable.
Suppose thatG = (V(G), E(G)) is an arbitrary graph. We aim
to build a digraphD = (V(D), E(D)) so thatG is k-colorable
if and only if D is fairly k-colorable. Suppose thatV(G) = [n].
For each vertexi ∈ [n], we build the following gadget, which
is a digraphDi = (Vi, Ei). The vertex set ofDi is

Vi = {i} ∪
{

ωi,j : j ∈ NG(i)
}

,

whereωi,j are newly introduced vertices. We refer toωi,j as
a clone (in Di) of the vertexj ∈ [n]. The arc set ofDi is

Ei =
{

(ωi,j , i) : j ∈ NG(i)
}

.

Let NG(i) = {i1, i2, . . . , ini
}. ThenDi can be drawn as in

Fig. 8.

b b b

i

ωi,i1 ωi,i2
ωi,ini

Fig. 8: GadgetDi for each vertexi of G

Additionally, we also introduce n new vertices
p1, p2, . . . , pn. The digraphD = (V(D), E(D)) is built
as follows. The vertex set ofD is

V(D) =
(

∪n
i=1 Vi

)

∪ {p1, p2, . . . , pn}.

Let

Qi =
{

(pi, i)
}

∪
{

(pi, ωi′,i) : i′ ∈ [n], i ∈ NG(i′)
}

be the set consisting of(pi, i) and the arcs that connectpi and
all the clonesωi′,i of i. The arc set ofD is then defined to be

E(D) =
(

∪n
i=1 Ei

)

∪
(

∪n
i=1 Qi

)

.
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1

2

3

Fig. 9: An example of the graphG

For example, ifG is the graph in Fig. 9, thenD is the
digraph in Fig. 10.

1

ω1,2 ω2,1ω1,3 ω3,1

p1 p2 p3

2 3

Fig. 10: The digraphD built from the graphG in Fig. 9

Our goal now is to show thatG is k-colorable if and only
if D is fairly k-colorable.

Suppose thatG is k-colorable andφG : [n] → [k] is a k-
coloring of G. We consider the mappingφD : V(D) → [k]
defined as follows

1) For everyi ∈ [n], φD(i)
△

= φG(i);
2) If i ∈ NG(i′) thenφD(ωi′,i)

△

= φD(i) = φG(i), in other
words, clones ofi have the same color asi;

3) For everyi ∈ [n], φD(pi) can be chosen arbitrarily, as
long as it is different fromφD(i).

We claim thatφD is a fairk-coloring forD. We first verify
the condition (C1) (see Definition IV.5). It is straightforward
from the definition ofφD that the endpoints of each of the arcs
of the forms(pi, i) for i ∈ [n], and(pi, ωi′,i) for i ∈ NG(i′),
have different colors. It remains to check ifi and ωi,j for
j ∈ NG(i) have different colors. On the one hand,ωi,j is a
clone ofj, and hence has the same color asj. In other words,

φD(ωi,j) = φD(j) = φG(j).

On the other hand, sincej ∈ NG(i), we obtain that

φG(j) 6= φG(i) = φD(i).

Therefore,φD(ωi,j) 6= φD(i) for all i ∈ [n] and j ∈ NG(i).
Thus, (C1) is satisfied.

We now check if (C2) (see Definition IV.5) is also satisfied.
The out-neighbors ofpi arei and its clonesωi′,i (i ∈ NG(i′)).
These vertices have the same color inD, namelyφG(i), by
the definition ofφD. Thus (C2) is also satisfied. ThereforeφD

is a fair k-coloring ofD.

Conversely, suppose thatφD : V(D) → [k] is a fair k-
coloring of D. Condition (C2) guarantees that all clones of
i have the same color asi, namely,φD(ωi′,i) = φD(i) if
i ∈ NG(i′). Therefore, by (C1), if{i, j} ∈ E(G), that is,
j ∈ NG(i), then

φD(i) 6= φD(ωi,j) = φD(j).

Hence, if we defineφG : [n] → [k] by φG(i) = φD(i) for all
i ∈ [n], then it is ak-coloring of G. ThusG is k-colorable.

Finally, notice that the order ofD is a polynomial with
respect to the order ofG. More specifically, |V(D)| =
2|V(G)|+2|E(G)| and |E(D)| = |V(G)|+4|E(G)|. Moreover,
building D from G, and also obtaining a coloring ofG from
a coloring ofD, can be done in polynomial time with respect
to the order ofG. Since thek-coloring problem (k ≥ 3) is
NP-hard [28], we conclude that the fairk-coloring problem is
also NP-hard.

According to Theorem V.1 and the work by Blasiaket
al. [25] (see the discussion after Corollary IV.8), we obtain
the following.

Theorem V.2. Let D be an arbitrary digraph. Then the
decision problem whetherminrk2(D) = 2 is NP-complete.
However, the decision problem whetherβ2(D) = 2 can be
solved in polynomial time.

Recall that by contrast, for a graphG, it was observed by
Peeters [12] thatG has min-rank two if and only ifG is a
bipartite graph andG is not a complete graph, which can
be verified in polynomial time (see, for instance, West [17,
p. 495]). Note that a graph is bipartite if and only if it
is 2-colorable. This fact can also be derived by applying
Theorem IV.7 to the digraph obtained fromG by replacing
each edge ofG by two arcs of opposite directions.

VI. C IRCUIT-PACKING BOUND

In this section we introduce a new upper bound for the min-
rank of a digraph. This bound reveals some new families of
digraphs whose min-ranks are computable in polynomial time.

A. The Bound

Let ν0(D) be thecircuit packing numberof D, namely, the
maximum number of vertex-disjoint circuits inD. Below, we
establish an upper bound on min-ranks of digraphs, which uses
the circuit packing number. This bound was first presented by
Chaudhryet al. in [21], and was obtained independently by
the authors of this paper approximately at the same time.

Proposition VI.1 (Circuit-packing bound). The following
holds for every digraphD of ordern:

minrkq(D) ≤ n− ν0(D).

Proof: SupposeD containsν0(D) vertex-disjoint circuits
C1, C2, . . . , Cν0(D), where

Ci =
(

ui,1, ui,2, . . . , ui,ni

)

, i ∈ [ν0(D)], 2 ≤ ni ≤ n.
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LetV(Ci) = {ui,1, ui,2, . . . , ui,ni
} (i ∈ [ν0(D)]). We construct

a matrixM fitting D as follows. Let

A
△

= V(D) \ ∪i∈[ν0(D)]V(Ci).

For v ∈ A let M v = ev. For i ∈ [ν0(D)] ands ∈ [ni− 1], let

Mui,s
= eui,s

− eui,s+1
,

and let
Mui,ni

= eui,1
− eui,ni

.

Clearly,M fits D. Moreover, as

Mui,ni
=

ni−1
∑

s=1

Mui,s
,

we have
rankq

(

MV(Ci)

)

≤ ni − 1

for all i ∈ [ν0(D)]. SinceV(Ci)’s, i ∈ [ν0(D)], are pairwise
disjoint, we have

rankq(M ) ≤

ν0(D)
∑

i=1

rankq
(

MV(Ci)

)

+ rankq (MA)

≤

ν0(D)
∑

i=1

(ni − 1) +



n−

ν0(D)
∑

i=1

ni





= n− ν0(D).

Thus,minrkq(D) ≤ n− ν0(D).

Whereas for graphs the clique-cover bound is the best
known bound, for digraphs that are not symmetric, this is
not the case. The worst scenario for the clique-cover bound
is when the digraph has no two arcs of opposite directions.
For such a digraph, this bound becomes trivial, as the size of
the smallest clique cover is equal to the order of the digraph.
The following example emphasizes the fact that for certain
digraphs, the circuit-packing bound can besignificantly tighter
than the clique-cover bound.

Example VI.2. Let Dk be the digraph of ordern = 3k
depicted in Fig. 11. As there are no arcs of opposite direc-
tions, all cliques inDk are of cardinality one. Therefore,
the clique-cover bound givesminrkq(Dk) ≤ 3k. On the
other hand, asDk containsk vertex-disjoint circuits, namely
Ci = (3i + 1, 3i + 2, 3i + 3) for i = 0, 1, . . . , k − 1, the
circuit-packing bound yieldsminrkq(Dk) ≤ 2k = 3k−k. The
gap between the two bounds is one third of the order of the
digraph.

B. Digraphs Attaining Circuit-Packing Bound

In this subsection, we present several new examples of
families of digraphs that attain the circuit-packing bound.

A feedback vertex (arc, respectively) setof D is a set of
vertices (arcs, respectively) whose removal destroys all circuits
in D. Let τ0(D) (τ1(D), respectively) denote theminimum size
of a feedback vertex (arc, respectively) set ofD. Then it is
clear thatα(D) = n− τ0(D).

Corollary VI.3. If ν0(D) = τ0(D) then

minrkq(D) = n− ν0(D) = n− τ0(D). (1)

Proof: By Corollary IV.14 and Proposition VI.1 we have

n− τ0(D) ≤ minrkq(D) ≤ n− ν0(D).

Hence, the proof follows.

WhenD satisfiesν0(D) = τ0(D), we say thatD satisfies
the min-max vertex equality. In that case, the circuit-packing
bound is tight. Similarly, letν1(D) denote the maximum
number of arc-disjoint circuits inD. We say thatD satisfies
the min-max arc equalityif ν1(D) = τ1(D).

The first example of digraphs for which the circuit-packing
bound is tight is thefully reducible flow digraphs[29]. A
flow digraph is a digraph that contains a special vertex called
root, from which any vertex is reachable by a directed path. A
fully reducible flow digraph is a flow digraph that satisfies the
property that every circuitC in the digraph has a unique vertex
vC such that every directed path from the root to a vertex ofC
must containvC . Interestingly, it was proved by Shamir [30]
that there is alinear timealgorithm to findν0(D) (= τ0(D))
for a fully reducible flow digraphD. As a consequence, the
min-rank of a fully reducible flow digraph (recognizable in
polynomial time with respect to its size [31]) can be calculated
in linear time with respect to its size.

The second example of digraphs that satisfy the min-max
vertex equality is theconnectively reducible digraphs[32].
This family of digraphs actually generalizes both the family
of fully reducible flow digraphs and the family ofcyclically
reducible digraphs[33]. A polynomial time algorithm was
provided by Szwarcfiter [32] to recognize a member of this
family and subsequently find a maximum set of vertex-disjoint
circuits as well as a minimum feedback vertex set. Therefore,
by Corollary VI.3, (1) holds for a connectively reducible
digraphD. Moreover,minrkq(D) can be found in polynomial
time.

The third example of digraphs for which the circuit-packing
bound is tight is the digraphs thatpack [34]. A digraph packs
if the min-max vertex equality holds for all of its subgraphs.
The digraphs in this family are exactly ones that have no minor
isomorphic to an odd double circuit orF7, a special digraph of
order7 (interested readers may refer to [34] for more details,
also for a structural characterization of this family of digraphs).
For instance,strongly planar digraphs [34] belong to this
family. As far as we know, there are no known polynomial
time algorithms to find a minimum feedback vertex set of a
digraph that packs.

The other examples of digraphs for which the circuit-
packing bound is tight are theline digraphsof planar digraphs,
of fully reducible flow digraphs, and of (special) Eulerian
digraphs [35].

Definition VI.4. Let D = (V(D), E(D)) be a digraph. Then
the digraphL = (V(L), E(L)) with V(L) = E(D) and

E(L) =
{

(e, e′) : e = (u, v) ∈ E(D), e′ = (v, w) ∈ E(D)
}

,
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Fig. 11: Example where the circuit-packing bound is tighterthan the clique-cover bound
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Fig. 12: Example of a digraph and its line digraph

is called theline digraphof D. We denote the line digraph of
D by L(D). The digraphD is called aroot digraphof L(D).

Lemma VI.5. ν0(L(D)) = ν1(D).

Proof:

1) ν0(L(D)) ≥ ν1(D). It suffices to show that the existence
of a set of arc-disjoint circuits inD implies the existence
of a set of vertex-disjoint circuits of the same size
in L(D). Let {C1, C2, . . . , Ck} be a set of arc-disjoint
circuits in D, whereCi = (vi,1, vi,2, . . . , vi,ri), ri ≥ 2,
i ∈ [k]. Let ei,j = (vi,j , vi,j+1), for i ∈ [k] and
j ∈ [ri−1]. Moreover, letei,ri = (vi,ri , vi,1) for i ∈ [k].
Let C′

i = (ei,1, ei,2, . . . , ei,ri) for i ∈ [k]. Then C′
i is

also a circuit inL(D) for every i ∈ [k]. Moreover, as
the circuitsC1, C2, . . . , Ck share no common edges inD,
we deduce thatC′

1, C
′
2, . . . , C

′
k share no common vertices

in L(D). Therefore, they form a set ofk vertex-disjoint
circuits inL(D).

2) ν0(L(D)) ≤ ν1(D). It suffices to show that the existence
of a set of vertex-disjoint circuits inL(D) implies the
existence of a set of arc-disjoint circuits of the same size
in D. Let {C′

1, C
′
2, . . . , C

′
k} be a set of vertex-disjoint

circuits in L(D), whereC′
i = {ei,1, ei,2, . . . , ei,ri} for

i ∈ [k]. Suppose thatei,j = (vi,j , vi,j+1) ∈ E(D) for
i ∈ [k] and j ∈ [ri], wherevi,j and vi,j+1 are vertices
of D. Thenvi,ri+1 ≡ vi,1 for i ∈ [k]. For eachi ∈ [k],
consider the sequence of (possibly repeated) vertices

vi,1, vi,2, . . . , vi,ri+1.

Since vi,1 ≡ vi,ri+1 and (vi,j , vi,j+1) ∈ E(D) for all
j ∈ [ri], there existj0 andj1 such that

• 1 ≤ j0 < j1 ≤ ri;
• vi,j0 ≡ vi,j1+1;
• vi,j0 , vi,j0+1, . . . , vi,j1 are distinct.

Then Ci = (vi,j0 , vi,j0+1, . . . , vi,j1 ) is a circuit in D.
Since the circuitsC′

1, C
′
2, . . . , C

′
k share no common ver-

tices inL(D), we obtain that the circuitsC1, C2, . . . , Ck
share no common edges inD.

Lemma VI.6. τ0(L(D)) = τ1(D).

Proof: Let F = {e1, e2, . . . , ek}, whereei ∈ E(D) for
i ∈ [k], be an arbitrary set of arcs ofD. We can also viewF
as a set of vertices ofL(D). It suffices to show thatF is a
feedback arc set ofD if and only if F is a feedback vertex
set ofL(D), for every such setF .

Let D−F be the digraph obtained fromD by removing all
arcs inF . Let L(D)− F be the digraph obtained fromL(D)
by removing all vertices inF . ThenL(D)− F = L(D − F ).
As shown in the proof of Lemma VI.5, the existence of a
circuit in D − F would result in the existence of a circuit in
L(D− F ) and vice versa. Therefore,D− F is acyclic if and
only if L(D)−F is acyclic. Thus,F is a feedback arc set of
D if and only if F is a feedback vertex set ofL(D).

Proposition VI.7. LetD be a digraph. Ifν1(D) = τ1(D) then
ν0(L(D)) = τ0(L(D)) and

minrkq(L(D)) = |E(D)| − ν1(D).

Proof: Suppose thatν1(D) = τ1(D). By Lemma VI.5 and
Lemma VI.6,ν0(L(D)) = τ0(L(D)). Therefore, by applying
Corollary VI.3 toL(D) we obtain

minrkq(L(D)) = |V(L(D))| − ν0(L(D)) = |E(D)| − ν1(D).

Definition VI.8. A digraph that can be drawn on a plane in
such a way that its (arcs) edges intersect only at their endpoints
is calledplanar.

It is known that the min-max arc equality is satisfied for
planar digraphs [36], for fully reducible flow digraphs [37],
and for a special family of Eulerian digraphs [35]. Therefore,
by Proposition VI.7, the min-max vertex equality is satisfied
for the line digraphs of the members of these families. In
summary, we have the following.

Corollary VI.9. The circuit-packing bound is tight for the fol-
lowing families of digraphs: connectively reducible digraphs,
digraphs that pack, line digraphs of planar digraphs, line
digraphs of fully reducible flow digraphs, and line digraphs
of special Eulerian digraphs.

Consider the ICSI instances described by digraphsD with
minrkq(D) = α(D). By Theorem III.4,minrkq(D) = βq(D).
Hence, for such instances,scalar linear index codes are as
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good asvector nonlinearindex codes, in terms of transmission
rates. Thus, for the ICSI instances described by families of
digraphs listed in Corollary VI.9, scalar linear index codes
achieve the best possible transmission rates. Previously,only
perfect graphs and acyclic digraphs were known to have this
property [22].

Definition VI.10. A digraph is calledpartially planar if all
of its strongly connected components are planar.

Since the strongly connected components of a planar di-
graph are also planar, a planar digraph is partially planar.
However, the converse is not always true, as shown in Fig. 13.
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Fig. 13: A partially planar digraph that is not planar

Proposition VI.11. There is a polynomial time algorithm to
recognize the line digraph of a partially planar digraph and
subsequently determine its min-rank.

Proof:

1) Recognition Phase:
There is a one-to-one correspondence between the set of
strongly connected components of order at least two of
D and the set of strongly connected components ofL(D)
in the following sense. IfDi’s, i ∈ [k], are all strongly
connected components ofD each of which contains at
least two vertices, thenL(Di)’s, i ∈ [k], are all strongly
connected components ofL(D). Therefore, to determine
whether a given digraphL is the line digraph of a
partially planar digraph, it suffices to determine whether
each of its strongly connected componentsLi (i ∈ [k])
is the line digraph of a planar digraph. Note also that we
can find all strongly connected components of a digraph
in time linear in the number of edges [38].
For eachi ∈ [k], employing a polynomial time algo-
rithm, we can determine whetherLi is a line digraph of
a digraph [39]. If the answer is YES, then the algorithm
also outputs a digraphD′

i, which is a root digraph ofLi

and is strongly connected.
SupposeL = L(D), whereD is a digraph. Moreover,
let Li = L(Di), whereDi’s, i ∈ [k], are all strongly
connected components ofD of order at least two. By
[40, Theorem 3],D′

i and Di are actually isomorphic,

i ∈ [k]. Hence, to complete the Recognition Phase, one
needs to test the planarity ofD′

i for every i ∈ [k]. It is
well known that this task can be done in time linear in
the size ofD [41]. Thus, the Recognition Phase can be
done in polynomial time.

2) Min-Rank Computation Phase:
Upon the completion of the Recognition Phase, if it is
confirmed thatL is indeed the line digraph of a partially
planar digraph, then the second phase is executed to
computeminrkq(L). We show that this phase can also
be done in polynomial time. Indeed, by Lemma IV.2,
it suffices to show thatminrkq(Li) for i ∈ [k] can be
found in polynomial time.
On the one hand, sinceD′

i (which is isomorphic to
Di) is planar, as shown by Lucchesi and Younger [36],
ν1(D′

i) = τ1(D′
i). Therefore, by Proposition VI.7,

minrkq(Li) = |E(D′
i)| − ν1(D

′
i).

On the other hand,ν1(D′
i) can be computed in polyno-

mial time [42]. Thereforeminrkq(Li) for eachi ∈ [k]
can be computed in polynomial time. Thus,minrkq(L)
can be found in polynomial time.

In summary, we have the following.

Corollary VI.12. There are polynomial time algorithms to
recognize a member and subsequently determine the min-rank
of that member of the following families of digraphs: connec-
tively reducible digraphs (which includes fully reducibleflow
digraphs and cyclically reducible digraphs), and line digraphs
of partially planar digraphs.

VII. C ONCLUSION AND OPEN PROBLEMS

We have characterized the ICSI instances whose optimal
scalar linear index codes have near-extreme transmission rates.
Except for one case, these ICSI instances are also those that
have near-extremevector nonlineartransmission rates. We
have also introduced an upper bound on min-ranks of digraphs.
Based on this bound, we have discovered several new families
of digraphs whose min-ranks can be found in polynomial time.

We state below a couple of interesting open problems for
future research.

Open Problem I: Examine the hardness of the decision
problem whether a given digraph has min-rank two over a
nonbinaryfield Fq.

Open Problem II: Examine the hardness of the problem of
finding βq(D) for a given digraphD.

Open Problem III: Find new families of digraphs whose min-
ranks can be found in polynomial time.
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IX. A PPENDIX

Proof of Theorem IV.19: For the ONLY IF direction,
suppose thatminrkq(G) = n− 2. By the maximum-matching
bound, n − 2 ≤ n − mm(G). Hence mm(G) ≤ 2. As
mm(G) ∈ {0, 1} and |V(G)| ≥ 6 imply that eitherG has
no edges (minrkq(G) = n > n − 2) or G is a star graph
(minrkq(G) = n − 1 > n − 2), we deduce thatmm(G) = 2.
Moreover, as the graphF has min-rankthree less than its
order,G should not contain any subgraph isomorphic toF .
Indeed, suppose for otherwise thatF ′ is a subgraph ofG and
F ′ is isomorphic toF .

Consider the following block diagonal matrixM with two
blocks B1 and B2. The first blockB1, a 6 × 6 matrix,
corresponds to the rows and columns labeled by the vertices in
F ′. Moreover, we chooseB1 so that it hasq-rank three. This
is possible sinceF ′ is isomorphic toF andminrkq(F ) = 3.
(Note that3 = α(F ) ≤ minrkq(F ) ≤ cc(F ) = 3 implies that
minrkq(F ) = 3.) The second blockB2 is chosen to be an
(n− 6)× (n− 6) identity matrix. It corresponds to the rows
and columns labeled by the vertices inV(G) \ V(F ′). Then
M fits G and moreover,

rankq(M ) = rankq(B1) + rankq(B2)

= 3 + (n− 6)

= n− 3.

This implies thatminrkq(G) ≤ n − 3 < n − 2, which is
impossible.

We now turn to the IF direction. Suppose thatmm(G) = 2
andG does not contain any subgraph isomorphic toF . Then
by the maximum-matching bound,minrkq(G) ≤ n − 2. As
α(G) ≤ minrkq(G), it suffices to show thatα(G) = n− 2.

Let {a, b} and {c, d} be the two edges of a maximum
matchingM in G. Let U = {a, b, c, d} andV = V(G) \ U .
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As G has at least six vertices, suppose thatV = {f, g, . . .},
wheref 6= g. SinceM is a maximum matching,V must be an
independent set inG. The idea is to show that we can always
find two nonadjacent vertices inU that are not adjacent to any
vertex inV . Such two vertices can be added toV to obtain
an independent set of sizen− 2, which establishes the proof.
We refer to such a pair of vertices as anindependent pair.

For disjoint subsetsI andJ of V(G), let

sG(I, J) =
∣

∣

{

{i, j} : i ∈ I, j ∈ J, {i, j} ∈ E(G)
}∣

∣.

Based on how the vertices inU are connected to each other,
we consider the following five cases. Note that we only
consider non-isomorphic configurations.

Case 1:sG({a, b}, {c, d}) = 0.

a b c d

f g

Fig. 14: Case 1

There are four candidates for an independent pair, namely
{a, c}, {a, d}, {b, c}, {b, d}. All of these pairs fail to be an
independent pair if and only if either botha andb are adjacent
to some vertices inV or both c and d are adjacent to some
vertices inV . We show that either case never happens, by
contradiction.

Suppose botha and b are adjacent to some vertices inV .
(The case when bothc and d are adjacent to some vertices
in V is investigated analogously.) Without loss of generality,
assume thata and f are adjacent. Thenb must be adjacent
to f but not to any other vertex inV . Indeed, ifb is adjacent
to h ∈ V , h 6= f , then the set of three edges{a, f}, {b, h},
and{c, d} form a matching of size three, which is impossible
sincemm(G) = 2. Similarly, a should not be adjacent to any
other vertex inV rather thanf .

As G is connected,f must be adjacent to eitherc or d.
Without loss of generality, supposef and c are adjacent. On
the one hand, sinceG is connected,g must be adjacent to
some vertex inU . On the other hand,g cannot be adjacent to
any vertex inU , as

• if g and a are adjacent, then{a, g}, {b, f}, and {c, d}
form a matching of size three, which is impossible;

• if g and b are adjacent, then{a, f}, {b, g}, and {c, d}
form a matching of size three, which is impossible;

• if g andc are adjacent, thenG has a subgraph isomorphic
to F (see Fig. 14), which is impossible;

• if g and d are adjacent, then{a, b}, {c, f}, and {d, g}
form a matching of size three, which is impossible.

We obtain a contradiction.

Case 2: sG({a, b}, {c, d}) = 1. Without loss of generality,
suppose that{b, c} is the only edge that connects{a, b} and
{c, d}.

There are three candidates for an independent pair, namely
{a, c}, {a, d}, and {b, d}. All of these three pairs fail to be
an independent pair only if at least one of the pairs{a, b},
{a, d}, and{c, d} has both vertices adjacent to some vertices
in V . We show below that this scenario cannot happen.

1) Assume that botha andb are adjacent to some vertices
in V . Suppose without loss of generality thata and

a b c d

f g

Fig. 15: Sub-case 1

f are adjacent. Then the same argument as in Case 1
establishes thatb must be adjacent tof but not to any
other vertex inV . On the one hand, asG is connected,
g must be adjacent to some vertex inU . On the other
hand, asmm(G) = 2, g should not be adjacent to any
vertex amonga, b, and d. Moreover,g and c cannot
be adjacent, for otherwiseG would contain a subgraph
isomorphic toF (see Fig. 15). We obtain a contradiction.

2) Assume that botha andd are adjacent to some vertices
in V . Suppose without loss of generality thata and f

a b c d

f g
b

Fig. 16: Sub-case 2

are adjacent. As there are no matchings of size three in
G, d is adjacent tof but not to any other vertex inV .
Also, g is not adjacent to any vertex inU . However, this
would imply thatg is an isolated vertex ofG, which is
impossible asG is connected.

3) Assume that bothc andd are adjacent to some vertices
in V . This sub-case is completely similar to the first
sub-case.

Case 3:sG({a, b}, {c, d}) = 2 and the two edges that connect
{a, b} and {c, d} share one common vertex. Without loss of
generality suppose that these two edges are{b, c} and{b, d}.

There are two candidates for an independent pair, namely
{a, c} and{a, d}. It suffices to show thata is not adjacent to
any vertex inV and eitherc or d is not adjacent to any vertex
in V .

Suppose thata is adjacent to a vertex, sayf , in V . As
mm(G) = 2, we deduce thatg is not adjacent to any vertex
amongb, c, andd. Also, sinceG does not contain a subgraph
isomorphic toF , we deduce thatg cannot be adjacent toa
(see Fig. 17). Henceg is an isolated vertex ofG, which is
impossible asG is connected.

Now suppose that bothc andd are adjacent to some vertices
in V . Without loss of generality, suppose thatc is adjacent to
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a b c d

f g
bb

Fig. 17

f . Then sincemm(G) = 2, d must be adjacent tof but not

a b c d

f g
bb

Fig. 18

to any other vertex inV . Also, g cannot be adjacent to any
vertex amonga, c, andd for the same reason. Moreover, as
G does not contain a subgraph isomorphic toF , we deduce
that g is not adjacent tob (see Fig. 18). (Indeed, ifg and b
are adjacent, then the following subgraph ofG is isomorphic
to F : its vertex set is{a, b, c, d, f, g}, and its edge set is
{

{c, d}, {d, f}, {c, f}, {c, b}, {b, a}, {b, g}
}

.) Therefore,g is
an isolated vertex ofG. We obtain a contradiction.

Case 4:sG({a, b}, {c, d}) = 2 and the two edges that connect
{a, b} and{c, d} share no common vertices. Suppose, without
loss of generality, that these two edges are{a, d} and{b, c}.

There are two candidates for an independent pair, namely
{a, c} and{b, d}. Both of these pairs fail to be an independent
pair if and only if at least one of the four pairs{a, b}, {a, d},
{c, b}, and{c, d} has both vertices adjacent to some vertices
in V . By symmetry, it suffices to show that the scenario when
botha andb are adjacent to some vertices inV never happens.

Suppose now thata and b are adjacent to some vertices in
V .

a b c d

f g
bb

Fig. 19: Case 4

Suppose thata and f are adjacent. The condition that
mm(G) = 2 forces b to be adjacent tof but not to any
other vertex inV . That condition also implies thatg must be
an isolated vertex inG, which is impossible asG is connected.

Case 5: sG({a, b}, {c, d}) = 3. Without loss of generality,
suppose that{a, d}, {b, c}, and{b, d} are the edges that con-
nect{a, b} and{c, d}. The only candidate for an independent
pair is{a, c}. We prove by contradiction that botha andc are
not adjacent to any vertex inV . By symmetry, it suffices to
verify this property for only one of them.

Suppose thata is adjacent to some vertex inV . Let a be
adjacent tof .

a b c d

f g
bb

Fig. 20: Case 5

As mm(G) = 2 and G is connected,g must be adjacent
to a. However, G now contains a subgraph whose edge
set consists of {b, c}, {b, d}, {c, d}, {b, a}, {a, f}, {a, g},
which is isomorphic toF (see Fig. 20). This contradicts our
assumption.

Case 6:sG({a, b}, {c, d}) = 4. In this case, the subgraph of
G induced by{a, b, c, d} is a complete graph.

a b c d

f g
bb

Fig. 21: Case 6

As G is connected, bothf and g must be adjacent to
some vertices inU . If f and g are adjacent to the same
vertex in U , then G contains a subgraph isomorphic to
F , which contradicts our assumption. For instance, if both
f and g are adjacent toa, then this subgraph has vertex
set {a, b, c, d, f, g} and edge set consisting of the edges
{b, c}, {c, d}, {b, d}, {b, a}, {a, f}, {a, g}. It is also easy to
verify that if f andg are adjacent to different vertices inU ,
thenG contains a matching of size three. This contradicts our
assumption thatmm(G) = 2. Thus, Case 6 never happens.
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