arXiv:1202.1150v2 [cs.IT] 18 Mar 2013
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Abstract—The min-rank of a digraph was shown by Bar- min-rank of a graph (i.e., undirected graph, see Se¢tioorll f
Yossefet al. (2006) to represent the length of an optimal scalar definitions) goes back to Haemers [9]. Min-rank serves as an
linear solution of the corresponding instance of the Index @ding upper bound for the celebrated Shannon capacity of a graph

with Side Information (ICSI) problem. In this work, the grap hs . .
and digraphs of near-extreme min-ranks are characterizedThose [10]. This upper bound, as pointed out by Haemers, although

graphs and digraphs correspond to the ICSI instances having IS usually not as good as the Lovasz bound [11], is sometimes
near-extreme transmission rates when using optimal scaldinear tighter and easier to compute. It was shown by Peelers [12]
index codes. In particular, it is shown that the decision prblem that computing the min-rank of a general graph (that is, the
whether a digraph has min-rank two is NP-complete. By contrat,  \jin_Rank problem) is a hard task. More specifically, Peeters

the same question forgraphs can be answered in polynomial time. L1 . .
Additionally, a new upper bound on the min-rank of a digraph, showed that deciding whether the min-rank of a graph is

the circuit-packing bound, is presented. This bound is often tighter SMaller than or equal to three is an NP-complete problem.

than the previously known bounds. By employing this new boud, The work of Bar-Yosseét al. [5] has stimulated the interest
we present several families of digraphs whose min-ranks cabe in the Min-Rank problem. Exact and heuristic algorithms
found in polynomial time. for finding min-ranks over the binary field of digraphs were
developed in the work of Chaudhry and Sprintsbn| [13]. The
. INTRODUCTION min-ranks of random digraphs are investigated by Haviv

- o : o nd Langbergl[[14]. A dynamic programming approach was
Building communication schemes which allow parumpant%roposed by Berliner and Langbefg]15] to compute min-

to communicate efficiently has always been a challenging yet ks of outerol hs i | Al ti Alqorith
intriguing problem for information theorists. Index Codin ranks ot outerpianar grapns in polynomial time. Algorithms

with Side Information (ICSI) [[1], [[2]) is a communicationto approximate min-ranks of graphs with bounded min-ranks

scheme dealing with broadcast channels in which receivgy‘%retﬁ.tUdied by Chle:mdtac anthavi(\j/ 51.6]' hs that h
have prior side information about the messages to be trans: "1 Paper, we study graphs and digraphs that hiave near-

: . . o extreme min-ranks. In other words, we study ICSI instances
mitted. By using coding and exploiting the knowledge about. . ) . ; :
T . S with n receivers for which optimadcalar linearindex codes
the side information, the sender may significantly reduce o .
. I : ave transmission rates n — 2, n — 1, or n. In particular,
the number of required transmissions compared with the

straightforward approach. As a consequence, the efficienty show that deciding whether a digraph has min-rank two

of communication over this type of broadcast channels colld®’ thebinary field is an NP-complete problem. By contrast,

) . ; . a_graph has min-rank two over any finite field if and only
be dramatically improved. Apart from being a special casg: . L

. . [t is not a complete graph and its complement is bipartite,

of the well-known (non-multicast) Network Coding problem . . e L

a condition which can be verified in polynomial time (see,

(13], [4]), the ICSI problem has also found various poteinti . .
applications on its owns, such as audio- and video—on—ddma(f}Or instance, West [17, p. 495]). Very recently, it was found

daily newspaper delivery, data pushing, and opportunisﬁ Maleki et al. [18] that the same problem for digraph over

wireless networks [([1]712].5],.161, 171, 8)). sufficiently large field can be solved in polynomial time.

In the work of Bar-Yosseét al.[5], the optimal transmission The cha_ractenzanons of graphs a_nd digraphs with near-
extreme min-ranks are summarized in the table below. The

rate of scalar Imear index codes for an ICS mstan(_:e W%?ar mark %” indicates that the result is established in this
neatly characterized by the so-calledn-rank of the side

information digraph (i.e., directed graph, see Seci@nol ¢ Paper. The dagger mark™indicates that the result is proved

definitions) corresponding to that instance. The concept %?Iy for the binary field.
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which values of the min-rank in the range betwdeandn v € V(G), andu # v. If e = {u,v} € £(G) we say thatu
are still easy to verify, and for which values it is hard. Itrtst  andv are adjacent. We also refer toandv as theendpoints
out that for graphs and digraphs, the easy-hard turningtpoiof e.
are different. For graphs, the turning points &reand some A simpledigraphis a pairD = (V(D), £(D)) whereV(D)
value smaller tham — 2 (not exactly known). By contrast, for is the set of vertices oD, and£(D) is a set oforderedpairs
digraphs, the easy-hard turning points ar€proved in this of distinct vertices ofD. We refer to£(D) as the set of arcs
work) andn — 1 (conjectured)Practically, the use of length- (or directed edges) abD. A typical arc of D is of the form
one index codes in wireless communications has already bees- (u,v) wherew € V(D), v € V(D), andu # v. The
proposed (for instance, see CORE [7].I[18]./[20]), due tdrtheverticesu andv are called theendpointsof the arce.
simplicity and efficiency. However, the variety of scenario Simple graphs and digraphs have no loops and no parallel
where an index code of length one is applicable is limitegdges and arcs, respectively. In the scope of this paper, onl
(each client must know all except one message). An indenple graphs and digraphs are considered. Therefore, we
code of length two is obviously the next potential candidatgmply refer to them as graphs and digraphs for succinctness
to be used. The number of vertice$)(D)| is called theorder of D,

In this paper, we also introduce a new upper bound fefhereas the number of ar¢§(D)| is called thesize of D.
the min-rank of a digraph, namely the circuit-packing boundhe complemenof a digraphD, denoted byD, is defined as
which, in certain cases, is far tighter than the clique-covépllows. The vertex set i$)(D) = V(D). The arc set is
bound. This upper bound was first presented by Chaudhry .
al. [21], and was found independently by the authors of this £(D) = {(u,v) : u,v € V(D), u# v, (u,v) ¢ E(D)}.
paper approximately at the same time. i

So far, families of graphs and digraphs whose min-rank¥12logous concepts are also defined for graphs.
are either known or computable in polynomial time are the A digraphD is calledsymmetricif it satisfies the property
followings. For graphs they are odd holes and odd antithat(u,v) € (D) if and only if (v, u) € (D). A symmetric
holes [22], perfect graphs [22], and outerplanar graph [14/19raph can be viewed as a graph, and vice verseowplete
For digraphs they are acyclic digraphg [22]. In this work,d"@Phis a graph that contains all possible edgescomnplete

we point out several new families aligraphsfor which the digraphis a digraph that contains all possible arcs.

circuit-packing bound is tight. For such families of dighap A collection of subsets, V5, ..., V; of a setV” is said to
min-ranks can be found in polynomial time. partition V'if Ui_,V; =V andV; NV; = & for everyi # j.
In the context of index coding, we only study min-rank&" that case{Vi, V5, ..., Vi] is referred to as a partition df,

of digraphs over dinite field F,. However, all of our results, @1dVi’s (i € [k]) are calledparts of the partition. _
except Theoreri V|7, Corollafy M.8, and TheorémlV.2, still A graphg is calledbipartite if V(G) can be partitioned into
hold for anarbitrary field F. This is because the characteristiéV0 Subsetd/ and V" such that for every edggu, v} € £(9),
of the field does not play any role in their proofs. it holds thatu € U andv € V/, or vice versa.

The paper is organized as follows. Basic notation and” subgraphof a graphg is a graph whose vertex sét
definitions are presented in Sectiéi 1. The ICSI problef @ subset of that of and whose edge set is a subset of
is formulated in Sectiof JIl. SectioR ]V is devoted to thdhat of G restricted to the vertices il. Let V' be a subset of
characterizations of graphs and digraphs of near-extreine nvertices inV(g). The subgraph of inducedby V' is a graph
ranks. We prove the hardness of the Min-Rank problem féhose vertex set i¥’, and edge set i${u,v}: u eV, v e
digraphs in SectiofiV. The circuit-packing bound is estafls {u,v} € £(G)}. We refer to such a graph as amuced
lished in Sectiofi ¥l. Finally, some interesting open pramge Subgraphof G. A subgraph and induced subgraph of a digraph

are proposed in Sectidn VII. can be defined in a similar manner.
A path in a graphG is a sequence of distinct vertices
(v1,v2,...,v,), such thafvs,vsy1} € E(G) forall s € [r—1].
Il. NOTATION AND DEFINITIONS A directed pathin a digraphD is a sequence of distinct
Let [n] denote the set of integer§l,2,...,n}. Let F, vertices(vy,va,...,v.), such that(vs,vey1) € E(D), for all

denote the finite field of; elements and®; = F, \ {0}. s¢€[r—1].
The supportof a vectoru € Fy is defined to be the set A circuit in a digraphD is a sequence of pairwise distinct
supgu) = {i € [n] : u; # 0}. For ann x k matrix M, vertices
let M; denote theth row of M. For a setf C [n], let M g C = (vi,va,...,00),
denote theE| x k sub-matrix of M formed by rows ofM
which are indexed by the elements Bf For any matrixM  where (vs,vs41) € E(D) for all s € [r — 1] and (v, v1) €
overF,, we denote byank, (M) the rank ofM overF, (or &(D) as well. A digraph is calledcyclic if it contains no
the ¢g-rank of M). We usee; to denote the unit vector, which circuits.
has a one at théh position, and zeros elsewhere. A graph is calledconnectedf there is a path from each

A simple graphis a pairG = (V(G),£(G)) whereV(G) is vertex in the graph to every other vertex. Thennected
the set of vertices of and&(G) is a set ofunorderedpairs of component®f a graph are its maximal connected subgraphs.
distinct vertices ofG. We refer to£(G) as the set oédgesof Similarly, a digraph is calledstrongly connectedf there is
G. A typical edge ofG is of the form{u, v} whereu € V(G), a directed path from each vertex in the graph to every other



its maximal strongly connected subgraphs. T+ T3
If (u,v) is an arc in a digraptD, thenwv is called anout- Ty + T5

neighborof » in D. The set of out-neighbors of a vertex \_/

in a digraphD is denoted byNZ (u). We simply useNo (u)

vertex. Thestrongly connected componerag a digraph are @ 21 + o
\—~
N

whenever there is no potential confusion. We also denote byrequestazl )

N9 (u) the set of neighbors of in a graphG, namely, the set OWNST5 fvexs?;f@

of vertices adjacent ta in G. requests:s requests: requestsy 5
An independent seih a graphg is a set of vertices off ownszs ownszl,;?fwns%

with no edges connecting any two of them. An independent _ )

set inG of largest cardinality is called maximum independent Fig. 1: Example of an ICSI instance

setin G. The cardinality of such a maximum independent set
is referred to as thindependence numberf G, denoted by ~ On the one handS can satisfy the demands from all
a(G). We also usen(D) to denote the size of a maximumreceivers simultaneously in a straightforward way by broad
acyclic induced subgraph of a digrafh for the following casting all five messages’s, i € [5]. This naive solution costs
reason. For a symmetric digrafh o (D) is equal to the size fivetransmissions. On the other hand, a smarter solutioi$ for
of a maximum independent set is regarded as a graph. is to broadcashreepacketsr; +xa, 2 +z3, andrs+xs. This

A clique of a graph is a set of vertices that induces iQdex cod_e is of length three. The_decod_ing process goes as
complete subgraph of that graph.clique coverof a graph is follows. Sl_nceRl already knowse,, it obtainsz; by adding
a set of cliques that partition its vertex setmfinimum clique %2 t0 the first packet; + z»:
coverof a graph is a clique cover with the minimum number x1 = a2 + (1 + 22).
of cliques. The number of cliques in such a minimum cliqu
cover of a graph is called the clique cover number of th
graph. Similar concepts are defined for digraphs. We denc@b
by cc(G) the clique cover number of a graghandcc(D) the
cligue cover number of a digra.

imilarly, Ry obtainszy = x5 + (22 + 23); R3 obtainszs =
+ (z1 +x2) + (22 +.I'3)' R, obtainszy = x5 + (x4 +x5);
obtainszs = x4 + (24 + x5).

Each instance of the ICSI problem can be described by the
so-calledside information digraph5]. Givenn and &;, i €
[n], theside information digraplD = (V(G), £(D)) is defined

I1l. THE INDEX CODING WITH SIDE INFORMATION as follows. The vertex séf(D) = {u1,us, ..., u,}. The edge
PROBLEM set€(D) = Ujepn{ (ui,uj) + j € X;}. Sometimes we simply
take V(D) = [n] and&(D) = Ui {(i,4) : j € X;}. If Diis

a symmetric digraph, we can regafdas a graph, and refer
to D as theside information graph

The side information digraph that describes the ICSI in-
tance |n Exampl@]l is depicted in FId. 2. Here we choose

The ICSI problem is formulated as follows. Suppose a
senderS wants to send a vectat = (z1,x2,. .., 2, ), Where

€ Fg for all ¢ € [n], to n receiversRy, Ra, ..., R,. Each
R, possesses some prior side information, consisting of t
blocksz;, j € X; C [n], and is interested in receiving a smgle
block x;. The sendelS broadcasts a codeword(x) € Fy,
where k. is some positive integer, that enables each receiver
R; to recoverr; based on its side information. Such a mapping
¢ IF;” — [y is called anindex code We refer tot as the
block lengthand s as thelengthof the index code. The ratio
k/t is called thetransmission rateof the index code. The
objective ofS is to find anoptimalindex code, that is, an index
code which has the minimum transmission rate. The index
code is calledinear if € is a linear mapping, andonlinear
otherwise. The index code is callsdalarif ¢t = 1 andvector
if ¢ > 1. The length and the transmission rate of a scalar index
code ¢ = 1) are identical.

Fig. 2: The corresponding side information digraph (Eig. 1)

Definition 1.2 ([9]). Let D = (V(D),&(D)) be a digraph
Example 1ll.1. Consider the following ICSI instance (FIg. 1).of ordern, whereV(D) = {uy,uz, ..., un}.
There are five receivers.(= 5). We only consider scalar index 1) A matrix M = (m,, . ) € Frxn (whose rows and
. . . . Ui, Uj

codes in this example. Suppose thate I, i € [5], are five columns are labeled by the elementsgD)) is said to
messages available frof\ For eachi € [5], the receiverR; fit D if
requestse; and owns certain messages as a priori. We have

Moy uj 7£ 0, 1= Js

Mo, u; :Oa Z?’éjv (uivuj) ¢E(D)

here X, = {2}, &2 = {3}, &5 = {1,4}, X» = {5}, and
Xs ={2,4}.



2) Themin-rankof D overlF, is defined to be Theorem 111.4 ([9], [5], [22], [24]). For any digraphD we

minrky(D) £ min {rank, (M) : M & F**" and M fits D} . Nave

D) < D) < 1,D) < minrk, (D) < D).
Since a graph can be viewed as a symmetric digraph, the above (D) < B4(D) < B4(L, D) s minrky (D) < ce(D)

definitions also apply to a graph. The same inequalities hold for graphs.

. . - ) ) IV. DIGRAPHS OFNEAR-EXTREME MIN-RANKS
For instance, the two matrices in Figl 3 fit the digraph S fth | d bel tolkd H
D depicted in Fig[R. The matrid, has2-rank three. By ome of the results presented below are folklore. However,

Definition (L2, minrks(D) < 3. By Theorem[IlL# stated we include their proofs for completeness.
below, asa(D) = 3, we deduce thatninrky(D) > 3. Thus,

minrks(D) = 3 and M achieves the min-rank. A. (Strongly) Connected Components and Min-Ranks

Lemma IV.1 (Folklore) LetG = (V(G),£(G)) be a graph.
Suppose that;, Gs, ..., G, are subgraphs ofj that satisfy

1 1.0 0 0 110 0 0 the following conditions
01100 01100 1) The setsV(G;), i € [k], partition V(G);
My=]00 11 0f Mo=(1 01 00 2) There is no edge of the forfu, v} whereu € V(G;)
000 11 000 11 andv € V(G;) for i # j.
01 0 01 0 00 11 Then
(@) A matrix of 2-rank four (b) A matrix of 2-rank three

k
minrk,(G) = minrk,(G;).
Fig. 3: Two matrices that fiD (Fig.[2) «(9) ; (61

In particular, the above equality holds §1, G-, ..., G, are
Observe that the index code presented in Exarnplé 1ll.1 4§ connected components 6f

obtained by taking the dot products af with the first, the .

second, and the forth rows @f,. These three rows actually ~ Preof: The proof follows directly from the fact that a
span the row space d¥/. This index code has length threemat”_x fits G if ar_1d or_1|y if it is a block diagonal matrix (re—_
which equalsranks(M-). According to Theoreri I3, this labeling the vertices if necessary) and the block sub-wesri

index code is an optimal scalar linear index code dvefor fit the corresponding subgrapbsss, i € [k]. u
the ICSI instance described in ExampleTIl.1. Lemma IV.2 (Folklore) LetD — (V(D), £(D)) be a digraph.
Theorem 111.3 (5], [23]). The length of an optimal scalar !f P1: D2, ..., Dy, are all strongly connected componentsaf

linear index code oveF, for the ICSI instance described by"e"

k
D is minrk, (D). minrk, (D) = Z minrky(D;).
i=1
Let ,4(t,D) denote the length of an optimakctor index Proof: Suppose thav; is the set of vertices that induces

code of block lengtht overF, for an ICSI instance describedD;, i € [k]. Then{V;},c forms a partition ofV(D). By
by a digraphD. Note that we do not require the index codetelabeling the vertices oD if necessary, we may assume
to be linear. Aloret al. [24] defined thebroadcast rate3,(D) without loss of generality that for every< j

of the corresponding ICSI instance to he, . 5,(t, D)/t 1) v < v wheneveru € V; andv € V;

(see also Blasiakt al. [25]) [l . In words, the broadcast rate 2) There are no arcs of the for(w, ) whereu € V; and

is the average minimum communication cost per symbol in v € V.

each blockz; (for long blocks). The reciprocal of,(D) |f M) is a minimum-rank matrix that fit®; (i € [k]) then
is also referred to as theapacity (over IF;) of the ICSI the diagonal block matri® whose diagonal blocks arfef
instance described b (see Lan_gbe_r_g and Sprlnt_scn [26]) clearly fits D. Moreover,
Theoren{[.4 demonstrates an intuitive fact that in termis o N .
transmission rates, vector (nonlinear) index codes areast | (4) -
’ . . L rank,(M) = rank, (M) = minrk, (D;).
as good as scalar (nonlinear) index codes, which in turntare a o(M) ; al ) ; «(Di)
least as good as scalar linear index codes. The last ingguali _ . . .
in this theorem is called thelique-covering boundor min- Henceminrk, (D) Skzi:1 minrky(D;). It remains to show
ranks. that minrk, (D) > > 7, minrky(D;). Suppose that the matrix
M fits D. By the assumptions oW;’s (: € [k]) stated at the
L . _ beginning of the proofM must be an upper-triangular block
" In [24] and [2\>]_, the authors on!y cc_)n;lder the case 2, and_ thergfore matrix, as shown in Fi(j:]4. If we HW(Z) be the sub-matrix of
ey use the notation8; and 3, which is independent of the field size. In .
our notations, this will correspond 18, (t, D) and B(D). At the moment, M formed by the rows and columns indexed by the elements
it is not clear whether the field sizgplays any significant role with respect of V;, then M(Z) fits D; and hence,
to the value ofg3,. For example, in this work, the analysis of min-rank for
the caseg = 2 andq > 2 is different (thus, the result in Sectign 1V-C only

k k
applies tog = 2). Therefore, in the sequel we use the subseripd ensure rank, (M) > Z rankg (M(i)) > Z minrkg (D;).
the consistence of the notation throughout the work. i—1 i1



Vi Vo Vs Vi1 Vi digraph. Recall that &-coloring of a graplg = (V(G), £(G))

Vv 0 is a mappingp : V(G) — [k] which satisfies the condition that
1M * e o(u) # ¢(v) whenever{u,v} € £(G). We often refer tap(u)
as thecolor of w. If there exists a-coloring of G, then we
Vo 0 |p®@ e o o say thatG is k-colorable.
Definition IV.5. Let D = (V(D),&(D)) be a digraph. Afair
Vs 0 0 |M® k-coloring of D is a mappings : V(D) — [k] that satisfies
the following conditions:
(C1) If (u,v) € E(D) theno(u) # ¢(v);
® ® ® ¢ ® (C2) For each vertex of D, it holds that¢(v) = ¢(w) for
: : : °. : all out-neighbore) andw of w.
If there exists a faik-coloring of D, we say that we caocolor
D fairly by k colors, or, D is fairly k-colorable
Vi1 |0 0 0 R A We refer to the condition (C2) as tf@irnessof the coloring,
since this condition guarantees that all out-neighborsache
Vi 0 0 0 o oo 0 |p®| vertex share the same color.

Lemma IV.6. A digraphD = (V(D),&(D)) is fairly 3-
colorable if and only if there exists a partition of(D) into
three subsets, B, andC that satisfy the following conditions
1) For everyu € A: either No(u) C B or No(u) C C;
Thus, minrk, (D) > ™% minrk, (D;). - 2) For everyu € B: either No(u) C A or No(u) C C;
minrky (D) 2 32—y minrk, (D) 3) For everyu € C: either No(u) C A or No(u) C B.
These two lemmas suggest that it is sufficient to study pyoof: If D is fairly 3-colorable, let4, B, andC' respec-

the min-ranks of connected graphs and strongly conneciggl)y pe the sets of vertices @ that share the same color.
digraphs, respectively. Then clearly4, B, andC partition V(D). Moreover, since all

out-neighbors of each vertex must have the same color, the
B. Digraphs of Min-Rank One three conditions above are obviously satisfied. Convergely

Proposition IV.3 (Folklore) Let D = (V(D),&(D)) be a those conditions are satisfied, thgn V(D) — [3], defined
digraph. Thenminrk,(D) = 1 if and only if D is a complete by

Fig. 4: Matrix M that fitsD

digraph. The same statement holds for a graph. I, ued
Proof: SupposeD is a digraph of orden. If minrk, (D) = pu) =42, ueB,
1, by the definition of min-rank there exists anx n matrix 3, ued
M = (my,,) of g-rank one that fitD. Then the rows oV 5 4 fair 3-coloring of D. -

must be scalar multiples of each other. Moreovey,,, # 0

for all u € V(D). Hencem,,, # 0 for all uw € V(D) and all Theorem IV.7. Let D = (V(D),E(D)) be a digraph. Then
v € V(D). Therefore,(u,v) € £(D) for all u # v, u € V(D) minrky(D) < 2 if and only if D, the complement oD, is

andv € V(D). In other wordsD is a complete digraph. fairly 3-colorable.
Conversely, suppose th@ is a complete digraph. The#,
the n x n all-one matrix, fitsD and minrk,(J) = 1, which Proof. o
implies thatminrk,(D) = 1. The same arguments hold for’"e ONLY IF direction: . o
graphs. m By the definition of min-rankminrky(D) < 2 implies the

existence of am x n binary matrix M of 2-rank at most two
Corollary IV.4. LetD = (V(D),&(D)) be a digraph. Then that fitsD. There must be some two rows 8f that span its

B,(D) = 1if and only if D is a complete digraph. The sameentire row space. Without loss of generality, suppose tiet t
statement holds for a graph. are the first two rows oM, namely,M; and M, (these two

_ rows might be linearly dependentifiinrke (D) < 2). Let A,
Proof: Supposef, (D) = L Then by Th_eorenhﬂm, B, andC be disjoint subsets of (D) such that
a(D) = 1. Therefore,D is a complete digraph. Con-
versely, if D is a complete digraph then by Propositlon 1V.3, supp(M 1) = AU B, supp(M5) = BUC.
minrk, (D) = 1. Again by Theoren [ILK5,(D) = 1. [
Hence,

C. Digraphs of Min-Rank Two supp(M 1) Nsupp(M2) = B.

In this section, only thévinary alphabet is considered. WeSince the binary alphabet is considered and the matfihas
first introduce the following concept of fair coloring of a no zero rows, for every. € V(D), one of the following must



hold: )M, = M.; Q) M, = M,; (3) M, = M1+ M,. almost alternating(2m + 1)-cycle ¢n > 1) is defined as
Hence for everyu € V(D) follows. Its vertex set consists of all integers betweem
and m, inclusive, and there is an edge froimto ; if and
u € supp(My) CAUBUC. only if j —4 € {m,m + 1}. Based on this characterization,
This implies thatA U BU C = V(D). a polynomial time algorithm to recognize a digraphwith
Suppose thatu € A. Then eitherM, = M; or (D) = 2 was also derived in[[25]. Hence, the question
M, = M + M,. The former condition holds if and only if whether an optimaector nonlinearindex code of lengttwo
supp(M ) = AUB, which in turns implies thatu,v) € £(D) exists for an ICSI instance described by a digraph can be
for all v € AUB\ {u}. In other words(u,v) ¢ £(D) for all answered in polynomial time. Facalar linear index code,
v € AUB. HereD = (V(D), (D)) is the complement ob. the same question turns out to be hard. We prove later in
The latter condition holds if and only #upp(M,) = AUC, SectionlY that the decision problem whetheinrk; (D) = 2
which implies that(u,v) ¢ £(D) for all v € AU C. In is NP-complete.
summary, for every, € A we have
1) (u,v) ¢ E(D), for all v € A;
2) Either (u,v) ¢ E(D) for all v € B, or (u,v) ¢ (D)
for all v € C;
In other words, for everyu € A, either NF(u) C B or
NZ(u) C C. Analogous conditions hold for every € B
and for everyu € C as well. Therefore, by LemnfaIV.@) Definition IV.9. A matchingin a graph is a set of edges
is fairly 3-colorable. without common vertices. Anaximum matching a matching
The IF direction: that contains the largest possible number of edges. The&umb
Suppose now thab is fairly 3-colorable. It suffices to find an of edges in a maximum matching & is denoted bynm(G).
n x n binary matrix M of rank at most two that fit9. By
LemmdllV.6, there exists a partition ¥{D) into three subsets ¢ following upper bound on min-rank, so-called the
A, B, andC that satisfy the following three conditions maximum-matching bounds a weakened version of the
1) For everyu € A: either N5 (u) C B or Np(u) € C;  clique-covering bound (see Theor&m11.4).
2) For everyu € B: either N5 (u) C A or NF(u) C C;
3) For everyu € C eitherNg(u) CAor N?(u) C B. Proposition V.10 (Maximum-matching bound)For any
We construct am x n matrix M = (m,,.,) as follows. For graphg of ordern, it holds thatminrk,(G) < n — mm(g).

D. Digraphs of Min-Ranks Equal to Their Orders

To tacklegraphsof min-ranks almost equal to their orders

(Section1V-D,[TV-E,[TV-B), we employ the concept ofiaxi-
mum matchingrom graph theory.

eachu € A, if N5 (u) C B then let Proof: As the set of vertices off can be covered by
mm(G) cliques of size two (the edges in a maximum matching)
1, veAuC . ) I .
Moy = . andn — 2mm(G) cliques of size one (the remaining vertices
0, veB that are not covered by the edges in the matching), by
Otherwise, ifNOf(u) C C then let Theoren{1IL.4, the proof follows. [ |
1, ve AUB Graphsg that satisfya(G) = n—mm(G) are called Koenig-
Muy,v = 0. vecC : Egervary graphs_ [27]. It was proved therein that there is a

polynomial time algorithm to recognize a Koenig-Egervary
Foru € B andu € C, M, can be constructed analogouslygraph G and subsequently finghm(G). By Theorem[IIL4
It is obvious thatM fits D. Moreover, each row o\l can and Propositiof IV.1I0, iG is a Koenig-Egervary graph then
always be written as a linear combination of the two binamyinrk,(G) = n — mm(G). Moreover,minrk,(G) can be found
vectors whose supports arkU B and B U C, respectively. in polynomial time. The graphs that satisfy the conditions
Therefore ranks (M) < 2. The proof is complete. B stated in Proposition 1V.11, Propositidn V|17, and Theo-

) _ ) ~rem[IV.19 are all Koenig-Egervary graphs (see their proofs)
The following corollary characterizes the digraphs of min- N
rank two overF. Proposition V.11 (Folklore). Let G be a graph of order

n. Then minrk,(G) = n if and only if mm(G) = 0 (or
Corollary IV.8. A digraph D has min-rank two oveif, if equivalently,G has no edges).
and only if D is fairly 3-colorable andD is not a complete

digraph. Proof: If G has no edges, a matrix fitg if and only if

it is a diagonal matrix, whose entries on the main diagonal

are all nonzero. The-rank of such a matrix is. Therefore,
For a graphg, it was provgd by Blasialet al. [25] that minrk,(G) = n.

P2(G) = 2 if and only if G is bipartite andG is not  Suppose for contradiction thatinrk,(G) = n andG con-

a complete graph. A characterization of digragswith  tains some edge. Thenm(G) > 1 and we haveninrk,(G) <

B2(D) = 2 was also obtained therein. More specifically, i, — 1, according to the maximum-matching bound. We obtain
was shown thai;(D) = 2 if and only if D does not contain g contradiction. m

a subgraph isomorphic to ammost alternating cycleThe



Proposition IV.12. Let D be a digraph of ordern. Then Now let D’ be a maximum acyclic induced subgraph®fof

minrk, (D) = n if and only if D is acyclic. ordera(D). SinceD’ is acyclic, by Proposition V.12 we have
Proof: Equivalently, we show thaminrk, (D) < n —1 if minrk, (D) > minrk,(D') = [V(D')| = (D).
and only if D has a circuit.
Suppose thatD has a circuit. Then by the circuit- u
packing bound established in Section MI-A, we deduce that ) )
minrky(D) < n — 1. Corollary IV.15. For a digraph D, 3,(P) = |V(D)| if and

Conversely, suppose thatinrk,(D) < n — 1. Then there Only if D is acyclic. For a graphg, 5,(G) = [V(¢)] if and
exists a matrixV/ fitting D whose rows are linearly dependentOnly if G has no edges.

In other words,> ., a;M; = 0 for some nonemEJty subset Proof: Supposes,(D) = |[V(D)|. By Theorem[IIL4,
I € V(D) and for somew; € Iy, i € I. Let D’ be the minrk (D) = [V(D)|. Therefore,D is acyclic according to

subgraph ofD induced by the vertices ifi and M’ the sub- Propositio IV.I2. Conversely, ib is acyclic theng, (D) >
matrix of M restricted to the rows and columns indexed bM(D) = [V(D)|. Similar arguments hold for graphs. m

the elements of . Obviously M’ fits D’. We show that there

exists a circuit inD’. Since)_,_; a;M; = 0, each column of _ _

M’ has at least two nonzero entries. Therefore, for each verfex Graphs of Min-Ranks One Less Than Their Orders

v of D', there exists another vertexof D’ such that(u, v) In this section, we consider (undirected) graphs. The eorre
is an arc inD’. Starting from an arbitrary vertex; of D’ sponding case for digraphs is open. For a connected gfaph
and applying this property recursively, we obtain a seqaenef order at least two, it is easy to see than(G) = 1 if and

of vertices inD’ only if it is a star graph which is defined as follows.

V1,02, ey Usy Vs ly - - - Definition 1V.16. A graphG = (V(G),£(G)) is called astar

where(v,, 1, v,) is an arc inD’ for everys > 1. SinceD’ has ?r::f)g('fg)lli(g{?u’i?} f’m:j Ethszg)e('{sﬁ}é vertexe V(G) such

a finite number of vertices, there must be a point when a vertex
appears twice in the above sequence for the first time. This
vertex, together with the other vertices lying betweens t
occurrences, form a circuit insid®’, which is also a circuit
insideD. [ |

The existence of a circuit in a digraph can be detected by
using a depth-first search, the time complexity of which is
linear in the size of the digraph. Hence, as a consequence of Fig. 5: A star graph
Propositiod IV.1P, the decision problem whether a digragé h
min-rank equal to its order can be solved in polynomial time. |t is straightforward to see that ifim(G) = 1 thena(G) =

-1, [ t h.
Remark IV.13. The second direction in the proof of Propo-n asg s a star grap

sition [VI2 has a shorter proof as follows. Suppose thRroposition IV.17. LetG be a connected graph of order>
minrk,(D) < n — 1 but D is acyclic. Thenminrk,(D) > 2. Thenminrk,(G) = n — 1 if and only if mm(G) = 1 (or
a(D) = n, by Theoren IIL.#. That is a contradiction. Howevergquivalently,G is a star graph).

the original proof of Propositioh V.12 provides us with a Proof: We first suppose thaminrk,(G) = n — 1. By
simple and direct proof of the inequality(D) < minrk, (D) the maxirﬁum-matching bound, — 1 :qminrk ©) < 'n -
(see Corollary TV.T4). This inequality for digraphs was yed mm(G). Thereforemm(G) < 1. However, aSnir?rkq(g_ L,

A ; )
indirectly via the use of3,(1,D) by Bar-Yossefet al. [22]. itio TV 1] -
In such an indirect proof, either arguments from Im‘ormz:utiotfy Propositio LIl we havenm(G) # 0. Hence.mm(G) =

Theory are invoked[[22, Theorem 7] or the corresponding

confusion graph is considered [22, Lemma 37]. Conversely, assume thaim(G) = 1. By the maximum-

matching boundminrk,(G) < n — 1. By Theorem[IL4,
minrke(G) > a(G) = n — 1. Thus,minrk,(G) =n—1. N
Corollary IV.14. For a digraphD we have

: Corollary IV.18. LetG be a connected graph of order> 2.
(D) < minrky (D). Thenj,(G) = n —1if and only if mm(G) =1 (G is a star

Proof: First note that ifD’ is an induced subgraph ofgraph).
. p ) .
D then minrky(D’) < minrky(D). Indeed, supposd] is a Proof: Supposes, (G) — n— 1. Then eitheminrk, (G) —

matrix that fitsD and has rank equal to the min-rank Df . 7 o
Then the sub-matrixV’ of M restricted to the rows and’’ . Lor m'nrk‘Z(g? = n. However, by Propositiof V11,
minrky(G) = n implies thatG has no edge. As a consequence,

. . S . .
columns indexed by the vertices I(D’) is a matrix that fits 8,(G) > a(G) = n, which contradicts our assumption. Hence,

/
D’. Then minrk, (G) = n—1. According to Proposition IV.Imm(G) =
minrk, (D) < rank,(M') < rank,(M) = minrk,(D). 1.



Conversely, suppose thatm(G) = 1. According to Propo- V. THE HARDNESS OF THEMIN-RANK PROBLEM FOR

sition[IV.14, we have DIGRAPHS
. In this section, we first prove that it is an NP-complete
—-1= < < k =n-—1.
" a(G) = 54(G) = minrky(9) =n problem to decide whether a given digraph is faittgolorable
Hence,3,(G) =n — 1. m (see Definitio_IV.b), for any givet > 3. The hardness of

this problem, by Lemm@aTVI3 and Corollafy 1V.8, leads to the

. : hardness of the decision problem whether a given digraph has
F. Graphs of Min-Ranks Two Less Than Their Orders min-rank two ovefFs. The fair k-coloring problem is defined

In this section, we consider (undirected) graphs. The eori@rmally as follows.
sponding case for digraphs is open. Here we also employ the
matching language to characterize graphs of min-ranks twa
less than their orders. Problem FAIR k-COLORING
_ Input A digraphD, an integerk
Theorem IV.19. Supposey is a connected graph of order | output True if D is fairly k-colorable, False otherwis
n > 6. Thenminrk,(G) = n — 2 if and only if mm(G) = 2
and G does not contain a subgraph isomorphic to the graph
F depicted in Fig[B. Theorem V.1. The fair k-coloring problem is NP-complete

for k > 3.

Proof: This problem is obviously in NP, as the algorithm
can guess a candidate for the fair coloring and verify that

_ ) the candidate is indeed a fair coloring in polynomial time.
Fig. 6: The forbidden subgraph For NP-hardness, we reduce thecoloring problem to the
fair k-coloring problem. Recall that th&-coloring problem
is the decision problem whether a given graplt-isolorable.
Suppose thag = (V(G),£(G)) is an arbitrary graph. We aim
Corollary 1V.20. If mm(G) = 2 and G contains a subgraph to build a digraptD = (V(D), £(D)) so thatg is k-colorable
isomorphic toF (Fig. [6) thenminrk,(G) = |V(G)| — 3. if and only if D is fairly k-colorable. Suppose th®{(G) = [n].
For each vertex € [n], we build the following gadget, which
is a digraphD; = (V;, &;). The vertex set oD; is

Vi={i}U{w;;: je N9},

(1]

The proof of this theorem appears in Appendix.

Proof: SupposeF’ (Fig.[?) is a subgraph of that is
isomorphic toF'.

a f . .
wherew; ; are newly introduced vertices. We referdg; as

b ¢ d aclone(in D;) of the vertexj € [n]. The arc set oD; is

9 N .
Fig. 7: The subgrapt” & ={(wiji): jENI(D)}.

ig. 7: The subgra

g arep Let N9(i) = {iy1,i2,...,in,}. ThenD; can be drawn as in
Fig.[8.

As G does not have a matching of size three, each of the
verticesc, f, andg is not adjacent to any vertex iR(G) \
V(F’). Moreover, no pairs of vertices iw(G) \ V(F’) are
adjacent for the same reason. Therefdre.f,g} U (V(G) \
V(F")) is an independent set of siZ¥(G)| — 3 in G. Hence,
minrk,(G) > a(G) > |V(G)| — 3. As mm(G) = 2, by the
maximum-matching boundninrk,(G) < [V(G)| — 2. As G
contains F’, which is isomorphic toF, by Theoren 1V.ID, Fig. 8: GadgetD; for each vertex of G
minrky(G) # [V(G)| — 2. Thus,minrk,(G) = [V(G)|—3. ®

Corollary IV.21. Theoreni IV.I9 holds verbatim if we replace Additionally, we also introduce n new vertices

minrkg(-) by B4 (") p1,ps,-..,pn. The digraphD = (V(D),£(D)) is built
Proof: Suppose thag,(G) = n — 2. Thenminrk,(G) € @s follows. The vertex set dP is
{n—2,n—1,n}. By Propositioi IV.11, Propositidn V.17, and V(D) = (U Vi) U{p1,p2,- -, D}

their corollaries, forx € {n — 1,n}, minrky,(G) = « if and
only if 8,(G) = x. Thereforeminrk,(G) = n — 2. According
to Theorem IV.1ID,mm(G) = 2 and G does not contain a Q; = {(pi,i)} U{(ps,wirs): i €[n], i € N9(i')}
subgraph isomorphic t@".

Conversely, as shown in the proof of Theolem 1V.19 (the |
direction), «(G) = minrky(G) = n — 2. Therefore,3,(G) =
n — 2 by TheoreniTIL4. | EMD) = (UL, &)U (UL, Q)).

Let

Ee the set consisting @p;, ¢) and the arcs that connegtand
all the clonesu, ; of i. The arc set oD is then defined to be



Conversely, suppose thatp : V(D) — [k] is a fair k-
coloring of D. Condition (C2) guarantees that all clones of
i have the same color as namely, ¢p(wir ;) = ¢p(i) If
i € N9(i"). Therefore, by (C1), if{i,j} € £(G), that is,

j € N9(i), then

¢p (i) # dp(wi;) = ¢p(4)-

Hence, if we defineg : [n] — [k] by ¢g(i) = ¢p (i) for all
For example, ifG is the graph in Figl9, the is the ; c ], then it is ak-coloring of G. Thusg is k-colorable.
digraph in Fig[ID. Finally, notice that the order oP is a polynomial with
respect to the order ofj. More specifically, |V(D)| =
21V(G)|+2|E(G)] and|E(D)| = |V(G)| +4|£(G)|. Moreover,
building D from G, and also obtaining a coloring @f from
a coloring ofD, can be done in polynomial time with respect
to the order ofG. Since thek-coloring problem § > 3) is
NP-hard [28], we conclude that the faircoloring problem is
also NP-hard. ]

Fig. 9: An example of the grapt

According to Theoreni_VI1 and the work by Blasiak
al. [25] (see the discussion after Corolldry 1V.8), we obtain
the following.

Theorem V.2. Let D be an arbitrary digraph. Then the
decision problem whetheminrke(D) = 2 is NP-complete.

Fig. 10: The digraptD built from the graphg in Fig.[@  However, the decision problem whethgs(D) = 2 can be
solved in polynomial time.

Our goal now is to show thag is k-colorable if and only ~ Recall that by contrast, for a gragh it was observed by
if D is fairly k-colorable. Peeters[[12] thaty has min-rank two if and only iG is a
Suppose thag is k-colorable andpg : [n] — [k] is ak- Pipartite graph andj is not a complete graph, which can

coloring of G. We consider the mappingp : V(D) — [k] be verified in polynomial time (see, for instance, West| [17,
defined as follows p. 495]). Note that a graph is bipartite if and only if it

_ NS . is 2-colorable. This fact can also be derived by applying
;) :;o.r e\ﬁgyz'/e t[ﬁ] ¢p() = ¢gé(l)’ N b (i) in oth TheoremIVY to the digraph obtained frogh by replacing
) Ifi e NP(i') thengp (wir i) = dp(i) = ¢g(i), in other oy edge of by two arcs of opposite directions.
words, clones of have the same color as

3) For everyi € [n], ¢p(p;) can be chosen arbitrarily, as
long as it is different fromsp (). VI. CIRCUIT-PACKING BOUND

We claim thatep is a fair k-coloring for D. We first verify In this section we introduce a new upper bound for the min-
the condition (C1) (see Definitidn I¥.5). It is straightfoawd ank of a digraph. This bound reveals some new families of
from the definition of¢p that the endpoints of each of the arcéligraphs whose min-ranks are computable in polynomial.time
of the forms(p;, i) for i € [n], and (p;,wy ;) for i € N9(i'),
have different colors. It remains to checkiifand w; ; for A. The Bound
j € N9(i) have different colors. On the one hand,; is a

clone of j, and hence has the same colorjain other words, Let (D) be thecircuit packing numbeof D, namely, the

maximum number of vertex-disjoint circuits . Below, we

op(wiy) = dp(j) = dg (). establish an upper bound on min-ranks of digraphs, which use
’ the circuit packing number. This bound was first presented by
On the other hand, sincee N9(i), we obtain that Chaudhryet al. in [21], and was obtained independently by

the authors of this paper approximately at the same time.

¢ () # dg (i) = ¢p(i). o o _ .
Proposition VI.1 (Circuit-packing bound) The following

Therefore,¢p(wi ;) # ¢p(i) for all i € [n] andj € N9(i). holds for every digraptD of order n:
Thus, (C1) is satisfied.

We now check if (C2) (see Definitidn I\.5) is also satisfied. minrky(D) < n — vo(D).
The out ne!ghbors ob; are: and its clones; ; (i € N _(Z/))‘ Proof: SupposeD containsyy (D) vertex-disjoint circuits
These vertices have the same colorZim namely ¢¢ (i), by C1.Co c where
the definition ofpp. Thus (C2) is also satisfied. Therefatg P2 to(D)
is a fair k-coloring of D. Ci= (uin,ui2,- .. Uim,), i € [L(D)], 2< n; < n.
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LetV(Ci) = {wi1, iz, Uin, ; (@ € [1o(D)]). We construct Corollary VI.3. If vo(D) = 70(D) then
a matrix M fitting D as follows. Let

AZV(D)\ Usewo (0 V(Ci).
Forv e Alet M, = e,. Fori € [1p(D)] ands € [n; — 1], let
My,, =€y, —€u s n—10(D) < minrky(D) < n —vo(D).

7,5

minrky (D) = n — 1v9(D) =n — 10(D). 1)

Proof: By Corollary[IV.14 and Proposition VIl1 we have

and let Hence, the proof follows. ]
Mui,ni =€u;y — Cuyp, -
When D satisfiesvy (D) = 79(D), we say thatD satisfies

Clearly, M fits D. Moreover, as the min-max vertex equalityin that case, the circuit-packing

ni—1 bound is tight. Similarly, letv; (D) denote the maximum
M., = Z M,, ., number of arc-disjoint circuits irD. We say thatD satisfies
s=1 the min-max arc equalityf v1(D) = 71 (D).
we have The first example of digraphs for which the circuit-packing
rankg (My(c,)) <n;—1 bound is tight is thefully reducible flow digraphd29]. A

flow digraph is a digraph that contains a special vertex dalle
root, from which any vertex is reachable by a directed path. A
fully reducible flow digraph is a flow digraph that satisfies th

for all i € [1y(D)]. SinceV(C;)'s, i € [vo(D)], are pairwise
disjoint, we have

vo(D) property that every circuif in the digraph has a unique vertex
rank, (M) < Z rank, (My(c,)) + ranky (M 4) ve such that every directed path from the root to a verte® of
i=1 must containuve. Interestingly, it was proved by Shamir [30]
vo(D) vo(D) that there is dinear time algorithm to findvy (D) (= 70(D))
< Z (ni=1)+ | n- Z n; for a fully reducible flow digraphD. As a consequence, the
i=1 i=1 min-rank of a fully reducible flow digraph (recognizable in

=n —15(D). polynomial time with respect to its size [31]) can be calteda
in linear time with respect to its size.
The second example of digraphs that satisfy the min-max

Whereas for graphs the clique-cover bound is the pagrtex equality is theconnectively reducible digraphf82].

known bound, for digraphs that are not symmetric, this i‘ghis family of digraphs actually generalizes both the famil

not the case. The worst scenario for the clique-cover bouﬂ[jfu"y reducible flow digraphs and the family afyclically

is when the digraph has no two arcs of opposite directior{s.duciIOIe digraphs[33]. A polynomial time algorithm was

For such a digraph, this bound becomes trivial, as the sizepJPVided by Szwarcfiter [32] to recognize a member of this

the smallest clique cover is equal to the order of the digrapfﬁ'm"y and subsequent]y_flnd a maximum set of vertex-dijoin
@rcuﬂs as well as a minimum feedback vertex set. Therefore

The following example emphasizes the fact that for certa] ; ;
digraphs, the circuit-packing bound candignificantly tighter y Corollary VL3, ﬂ)_ holds for a connectlyely reduc!ble
digraphD. Moreover,minrk, (D) can be found in polynomial

than the clique-cover bound. .
time.

Example VI.2. Let D, be the digraph of orden = 3k The third example of digraphs for which the circuit-packing
depicted in Fig[ZIL. As there are no arcs of opposite diregound is tight is the digraphs thaaick[34]. A digraph packs
tions, all cliques inD, are of cardinality one. Therefore,if the min-max vertex equality holds for all of its subgraphs
the clique-cover bound givesinrk,(D;) < 3k. On the The digraphs in this family are exactly ones that have no mino
other hand, a®;, containsk vertex-disjoint circuits, namely isomorphic to an odd double circuit &%, a special digraph of
Ci = (3i+1,3i+2,3i +3) fori = 0,1,...,k — 1, the order7 (interested readers may refer to [34] for more details,
circuit-packing bound yieldsinrk, (D) < 2k = 3k —k. The also for a structural characterization of this family of dighs).

gap between the two bounds is one third of the order of tfi@r instance,strongly planar digraphs [[34] belong to this
digraph. family. As far as we know, there are no known polynomial

time algorithms to find a minimum feedback vertex set of a
digraph that packs.

_ ) The other examples of digraphs for which the circuit-
In this subsection, we present several new examples ercking bound is tight are thime digraphsof planar digraphs,

families of digraphs that attain the circuit-packing bound of fully reducible flow digraphs, and of (special) Eulerian
A feedback vertex (arc, respectively) s#tD is a set of digraphs [35].

vertices (arcs, respectively) whose removal destroysrallits

in D. Let7o(D) (m1(D), respectively) denote thainimum size pefinition VI.4. Let D — (V(D), (D)) be a digraph. Then

of a feedback vertex (arc, respectively) setTaf Then it is the digraphc = (V(£), £(L£)) with V(£) = £(D) and
clear thata(D) = n — 79(D).

Thus, minrky (D) < n — vy(D). [ |

B. Digraphs Attaining Circuit-Packing Bound

L) ={(e,€): e=(u,v) € ED), ' = (v,w) € (D)},
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ﬁ’\ r\/@i\
~
2 &) )—) W, 3k

Fig. 11: Example where the circuit-packing bound is tightem the clique-cover bound

tices in£(D), we obtain that the circuit§;,Cs, ..., Cx
share no common edges

€1 €4
O—O ]
' Lemma VI.6. 70(L(D)) = 71 (D).
€2 €3 | l Proof: Let F' = {e1,ea,...,¢ex}, Wheree; € (D) for
@ @ i € [k], be an arbitrary set of arcs @. We can also viewr’
. o as a set of vertices of (D). It suffices to show thaf’ is a
(@) A digraphD  (b) The line digraph’(D) feedback arc set o if and only if ' is a feedback vertex

Fig. 12: Example of a digraph and its line digraph ~ set of £(D), for every such sef".
Let D — F be the digraph obtained fro® by removing all

arcs inF. Let L(D) — F be the digraph obtained fromi(D)

is called theline digraphof D. We denote the line digraph of BY removing all vertices inf’. Then£(D) — F' = L(D — F).
D by £(D). The digraphD is called aroot digraphof £(D). As shown in the proof of LemmaVI5, the existence of a

circuit in D — F would result in the existence of a circuit in

Lemma VI.5. vo(£(D)) = 11 (D). L(D — F) and vice versa. Therefor@ — F' is acyclic if and

1)

2)

only if £L(D) — F'is acyclic. Thus,F' is a feedback arc set of
Proof: D if and only if I is a feedback vertex set @f(D). [ |

vo(L(D)) > 11 (D). It suffices to show that the existence N )
of a set of arc-disjoint circuits i implies the existence Proposition VI.7. LetD be a digraph. If; (D) = 71 (D) then

of a set of vertex-disjoint circuits of the same siz&(£(DP)) =70(£(D)) and

in L(D). Let {C1,Cs,...,Cr} be a set of arc-disjoint minrky(L£(D)) = |E(D)| — (D).
circuits in D, whereC; = (vi,1,vi2,..., Vi), Ti > 2,
i € [k]. Let e;; = (vij,vij41), for i € [k] and Proof: Suppose that; (D) = 1 (D). By Lemmd VL5 and

j € [ri—1]. Moreover, lete; ., = (vir,,v;1) fori € [k]. LemmalVL8,vo(L(D)) = 70(L(D)). Therefore, by applying
Let C/ = (ei1,€in,-..,¢€ir,) for i € [k]. Thenc! is Corollary[VL3 to £(D) we obtain

also a circuit in£(D) for everyi € [k]. Moreover, as . _ _ _ _

the circuitsC, Ca, .(. . ?Ck share no co[nlmon edgestn minrky (£(D)) = V(L(D))| = o(£(P)) = [E(D)] =1 (D).
we deduce thati,Cs, . .., C;. share no common vertices u
in £(D). Therefore, they form a set aéf vertex-disjoint
circuits in £(D).

vo(L(D)) < v1(D). It suffices to show that the existenc
of a set of vertex-disjoint circuits it (D) implies the

existence of a set of arc-disjoint circuits of the same size ) o o
in D. Let {C],C},....C,} be a set of vertex-disjoint It iS known that the min-max arc equality is satisfied for

circuits in £(D), whereC! = {e;1,€i2,...,eir,} for planar digraphs [36], for fully reducible flow digraphs [37]
i € [K]. Suppose that, , i (’Uijlvi j;l) c 5&{)) for and for a special family of Eulerian digraphs [35]. Therefor
i € [k] andj € [r;], wherev, ; and Di.jﬂ are vertices by Propositior VL.V, the min-max vertex equality is satidfie
of D. Thenv, . .1 = v; 1 for ic []. For eachi € k], for the line digraphs of the members of these families. In

consider the sequence of (possibly repeated) verticessummary, we have the following.

Definition VI.8. A digraph that can be drawn on a plane in
such a way that its (arcs) edges intersect only at their antipo
8s called planar.

Corollary VI.9. The circuit-packing bound is tight for the fol-

lowing families of digraphs: connectively reducible dighe,

Sincew;1 = vip41 and (v j,vi541) € (D) for all - digraphs that pack, line digraphs of planar digraphs, line

J € [ri], there existjo andj; such that digraphs of fully reducible flow digraphs, and line digraphs
o 1<jo<iji<ri of special Eulerian digraphs.

Ui,la vi,?a s avi,T73+1-

* Vijo = Vigji+1

* VijosVijot1s-- - Vi, are distinct. Consider the ICSI instances described by digraphsith
ThenC; = (vijy,Vijo+1,---,Vij,) IS @ circuit inD.  minrky (D) = (D). By Theoren{IlL.4,minrk,(D) = B4(D).
Since the circuit€],C5, ..., C;, share no common ver- Hence, for such instancescalar linear index codes are as
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good asvector nonlinealindex codes, in terms of transmission i1 € [k]. Hence, to complete the Recognition Phase, one
rates. Thus, for the ICSI instances described by families of needs to test the planarity @ for everyi € [k]. It is

digraphs listed in Corollary V119, scalar linear index cede well known that this task can be done in time linear in
achieve the best possible transmission rates. Previowsly, the size ofD [41]. Thus, the Recognition Phase can be
perfect graphs and acyclic digraphs were known to have this done in polynomial time.
property [22]. 2) Min-Rank Computation Phase:

Upon the completion of the Recognition Phase, if it is
Definition VI.10. A digraph is calledpartially planar if all confirmed that is indeed the line digraph of a partially
of its strongly connected components are planar. planar digraph, then the second phase is executed to

computeminrky(£). We show that this phase can also

Since the strongly connected components of a planar di- be done in polynomial time. Indeed, by Lemina IV.2,
graph are also planar, a planar digraph is partially planar. it suffices to show thainrk,(Z;) for i € [k] can be
However, the converse is not always true, as shown inFig. 13. found in polynomial time.

The first component

On the one hand, sinc®; (which is isomorphic to
D;) is planar, as shown by Lucchesi and Younger [36],
v1(D}) = m1(D)). Therefore, by Propositidn V1.7,

minrky (L;) = [€(D))| — vi(Dy).

On the other handy; (D;) can be computed in polyno-
mial time [42]. Thereforeminrk,(L;) for eachi € [k]
can be computed in polynomial time. Thusinrk, (L)
can be found in polynomial time.

Jusuodwod puodss ayL

In summary, we have the following.

. - Corollary VI.12. There are polynomial time algorithms to
Fig. 13: A partially planar digraph that is not planar recognize a member and subsequently determine the min-rank
of that member of the following families of digraphs: connec
tively reducible digraphs (which includes fully reducitilew

Proposition VI.11. There is a polynomial time algorithm to digraphs and cyclically reducible digraphs), and line dighs
recognize the line digraph of a partially planar digraph and®f partially planar digraphs.
subsequently determine its min-rank.

1) Recognition Phase:

Proof: VII. CONCLUSION AND OPEN PROBLEMS
' We have characterized the ICSI instances whose optimal

. carmlar linear index codes have near-extreme transmissies. r
There is a one-to-one correspondence between the seL.o

cept for one case, these ICSI instances are also those that
strongly connected components of order at least two 9 : s
ave near-extremeector nonlineartransmission rates. We
D and the set of strongly connected components(@)

) . e have also introduced an upper bound on min-ranks of digraphs
in the following sense. I1D;’s, i € [k], are all strongly : : -

: . Based on this bound, we have discovered several new families
connected components @f each of which contains at

least two vertices, theli(D;)'s, i € [], are all strongly of digraphs whose min-ranks can be found in polynomial time.

connected components 6{D). Therefore, to determine We state below a couple of interesting open problems for
. . / . . future research.
whether a given digrapiC is the line digraph of a

partially planar digraph, it suffices to determine Whethe(spen Problem I: Examine the hardness of the decision

each of its strongly connected componefits(i € [k]) . . )

is the line digraph of a planar digraph. Note also [th]at V\%roblfam w_hether a given digraph has min-rank two over a
can find all strongly connected components of a digrapr}?nbmaryﬂeld Fq.
in time linear in the number of edges [38].

For eachi € [k], employing a polynomial time algo-
rithm, we can determine whethés; is a line digraph of
a digraph([39]. If the answer is YES, then the algorith
also outputs a digrap®;, which is a root digraph of;
and is strongly connected.

SupposeL = L(D), whereD is a digraph. Moreover,
let £; = L(D;), whereD;’s, i € [k], are all strongly
connected components @ of order at least two. By  The authors wish to thank M. Langberg for providing the
[40, Theorem 3],D; and D; are actually isomorphic, preprints [14], [15].

Open Problem II: Examine the hardness of the problem of
finding 8,(D) for a given digraptD.

na)pen Problem lll: Find new families of digraphs whose min-
ranks can be found in polynomial time.
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This implies thatminrk,(G) < n —3 < n — 2, which is
impossible.

We now turn to the IF direction. Suppose thain(G) = 2
and G does not contain any subgraph isomorphicFtoThen
by the maximum-matching boundhinrk,(G) < n — 2. As
a(G) < minrky(G), it suffices to show that(G) = n — 2.

Let {a,b} and {c,d} be the two edges of a maximum
matchingM in G. Let U = {a,b,c,d} andV = V(G) \ U.
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As G has at least six vertices, suppose that {f,g,...}, There are three candidates for an independent pair, namely
wheref # g. SinceM is a maximum matchind/ must be an {a,c}, {a,d}, and {b,d}. All of these three pairs fail to be
independent set ig. The idea is to show that we can alwaysn independent pair only if at least one of the pdisb},

find two nonadjacent vertices ii that are not adjacent to any{a, d}, and{c, d} has both vertices adjacent to some vertices
vertex in V. Such two vertices can be addedloto obtain in V. We show below that this scenario cannot happen.

an independent set of size— 2, which establishes the proof. 1) Assume that both andb are adjacent to some vertices
We refer to such a pair of vertices as ialependent pair in V. Suppose without loss of generality thatand

For disjoint subset$ and.J of V(G), let
a b c d

sg(I,J)=|{{i,j}: i€l jeJ, {ij} €&G)}| Q:—?—f—°
| |
Based on how the vertices [if are connected to each other, St !
we consider the following five cases. Note that we only v !
consider non-isomorphic configurations. } g‘
Case Lisg({a,b}, {¢c,d}) = 0. Fig. 15: Sub-case 1
a b f are adjacent. Then the same argument as in Case 1

other vertex inV. On the one hand, &8 is connected,
g must be adjacent to some vertexih On the other
hand, asnm(G) = 2, g should not be adjacent to any
vertex amonga, b, and d. Moreover,g and ¢ cannot

; ) be adjacent, for otherwisg would contain a subgraph
Flg. 14: Case 1 isomorphic toF (see Figl[Ib). We obtain a contradiction.
) Assume that both andd are adjacent to some vertices

in V. Suppose without loss of generality thatand f

c d
—r A — establishes that must be adjacent tg but not to any
|
1
1
é
)

There are four candidates for an independent pair, namely2
{a,c}, {a,d}, {b,c}, {b,d}. All of these pairs fail to be an

independent pair if and only if either bothandb are adjacent a b c d

to some vertices i/ or bothc andd are adjacent to some =

vertices inV. We show that either case never happens, by AN e

contradiction. \\ e
Suppose botlx andb are adjacent to some vertices n v ’ .

(The case when both and d are adjacent to some vertices S g

in V is investigated analogously.) Without loss of generality,
assume that and f are adjacent. Theh must be adjacent
to f but not to any other vertex iW. Indeed, ifb is adjacent
to h € V, h # f, then the set of three edgés, f}, {b, h},
and{c, d} form a matching of size three, which is impossible
sincemm(G) = 2. Similarly, a should not be adjacent to any
other vertex inV rather thanf.

As G is connected,f must be adjacent to either or d. 3)
Without loss of generality, suppogeand ¢ are adjacent. On
the one hand, sinc€ is connectedg must be adjacent to
some vertex irl/. On the other hand; cannot be adjacent to
any vertex inU, as

Fig. 16: Sub-case 2

are adjacent. As there are no matchings of size three in
g, d is adjacent tof but not to any other vertex ii.
Also, g is not adjacent to any vertex ti. However, this
would imply thatg is an isolated vertex of/, which is
impossible agj is connected.

Assume that both andd are adjacent to some vertices
in V. This sub-case is completely similar to the first
sub-case.

Case 3:s5g({a, b}, {c,d}) = 2 and the two edges that connect
) ) {a,b} and {c,d} share one common vertex. Without loss of
« if g anda are adjacent, thefa, g}, {b, f}, and{c,d}  generality suppose that these two edges{are} and {b, d}.

form a matching of size three, which is impossible; There are two candidates for an independent pair, namely
- if g andb are adjacent, thefia, f}, {b,9}, and{c,d} {4 ¢} and{a,d}. It suffices to show that is not adjacent to
form a matching of size three, which is impossible; any vertex inV’ and either or d is not adjacent to any vertex
« if g andc are adjacent, theg has a subgraph isomorphicj,, 1.
to F' (see FigLTH), which is impossible; Suppose that: is adjacent to a vertex, say, in V. As
- if g andd are adjacent, thefia, b}, {c, f}, and{d,g} mm(G) = 2, we deduce thay is not adjacent to any vertex
form a matching of size three, which is impossible.  amongp, ¢, andd. Also, sinceG does not contain a subgraph
We obtain a contradiction. isomorphic toF', we deduce that cannot be adjacent to
(see Fig[1l7). Hence is an isolated vertex ofj, which is
Case 2:sg({a,b},{c,d}) = 1. Without loss of generality, impossible agj is connected.
suppose tha{b, ¢} is the only edge that connec{s, b} and Now suppose that bothandd are adjacent to some vertices
{e,d}. in V. Without loss of generality, suppose thais adjacent to



15

Case 5:s¢({a,b},{c,d}) = 3. Without loss of generality,
a b d suppose thafa, d}, {b, c}, and{b,d} are the edges that con-

~ nect{a,b} and{c, d}. The only candidate for an independent
VUl pair is{a, c}. We prove by contradiction that bothandc are
AN RN not adjacent to any vertex ilf. By symmetry, it suffices to
» e verify this property for only one of them.
f 9 Suppose that is adjacent to some vertex ivi. Let a be
Fig. 17 adjacent tof.

f. Then sincemm(G) = 2, d must be adjacent tg but not a d

\ 4 // f g
\voo. .
7 Fig. 20: Case 5
‘2N
°
f 9 As mm(G) = 2 and G is connectedg must be adjacent
Fig. 18 to a. However, G now contains a subgraph whose edge

set consists of {b,c}, {b,d},{c,d},{b,a},{a, f},{a, g},

. . which is isomorphic taF' (see Fi . This contradicts our
to any other vertex if/. Also, g cannot be adjacent to anyassumption P ( 9L20)

vertex amongz, ¢, andd for the same reason. Moreover, as
G does not contain a subgraph isomorphicifpwe deduce Case 6:s5({a, b}, {c,d}) = 4. In this case, the subgraph of

that ¢ is not adjacent td (see Fig[IB). (Indeed, if and b induced bvia.b.c.db | let h
are adjacent, then the following subgraphdfis isomorphic G induced by{a,b,c,d} is a complete graph.

to F: its vertex set is{a,b,c,d, f, g}, and its edge set is
{{e.d}. {d, 1}, {e. 1Y, {e,b}, {b.a}. (0.9} }) Therefore.g is . A ;
an isolated vertex off. We obtain a contradiction. ‘v ’

Case 4:sg({a, b}, {c,d}) = 2 and the two edges that connect
{a,b} and{c, d} share no common vertices. Suppose, without

loss of generality, that these two edges &sed} and {b, c}. ; g°
There are two candidates for an independent pair, namely )
{a, c} and{b, d}. Both of these pairs fail to be an independent Fig. 21: Case 6

pair if and only if at least one of the four paifs, b}, {a, d},
{e,b}, and{c, d} has both vertices adjacent to some vertices As G is connected, bothf and g must be adjacent to
in V. By symmetry, it suffices to show that the scenario whegpme vertices inU. If f and g are adjacent to the same
botha andb are adjacent to some verticeslinnever happens. vertex in U, then G contains a subgraph isomorphic to
Suppose now that andb are adjacent to some vertices inf» Which contradicts our assumption. For instance, if both
V. f and g are adjacent ta, then this subgraph has vertex
set {a,b,c,d, f,g} and edge set consisting of the edges

{b,c},{c,d},{b,d},{b,a},{a, f},{a,g}. It is also easy to
a A d verify that if f andg are adjacent to different vertices U,
thengG contains a matching of size three. This contradicts our

* assumption thatnm(G) = 2. Thus, Case 6 never happerm.

\
\
\

I
I
I
% °

f g
Fig. 19: Case 4

Suppose thatz and f are adjacent. The condition that
mm(G) = 2 forcesb to be adjacent tof but not to any
other vertex inV. That condition also implies that must be
an isolated vertex i, which is impossible a§ is connected.
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