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When do Local Operations and Classical
Communication Suffice for Two-Qubit State

Discrimination?
Eric Chitambar, Runyao Duan, Min-Hsiu Hsieh

Abstract

In this paper we consider the conditions under which a given ensemble of two-qubit states can be optimally distinguished
by local operations and classical communication (LOCC). Webegin by completing theperfect distinguishability problem of
two-qubit ensembles - both for separable operations and LOCC - by providing necessary and sufficient conditions for the perfect
discrimination of one pure and one mixed state. Then for the well-known task of minimum error discrimination, it is shownthat
almost all two-qubit ensembles consisting of three pure states cannotbe optimally discriminated using LOCC. This is surprising
considering thatany two pure states can be distinguished optimally by LOCC. Special attention is given to ensembles that lack
entanglement, and we prove an easy sufficient condition for when a set of three product states cannot be optimally distinguished
by LOCC, thus providing new examples of the phenomenon knownas “non-locality without entanglement.” We next consider an
example ofN parties who each share the same state but who are ignorant of its identity. The state is drawn from the rotationally
invariant “trine ensemble,” and we establish a tight connection between theN -copy ensemble and Shor’s “lifted” single-copy
ensemble. For any finiteN , we prove that optimal identification of the states cannot beachieved by LOCC; however asN → ∞,
LOCC can indeed discriminate the states optimally. This is the first result of its kind. Finally, we turn to the task of unambiguous
discrimination and derive new lower bounds on the LOCC inconclusive probability for symmetric states. When applied to the
double trine ensemble, this leads to a rather different distinguishability character than when the minimum-error probability is
considered.

Index Terms

LOCC, state discrimination, nonlocality without entanglement, trine ensembles

I. I NTRODUCTION

The ability to distinguish one physical configuration from another lies at the heart of information theory. When quantum
systems are used for information transmission, messages are encoded into quantum states, and the processing of this information
in a faithful manner requires the encoded states to be distinguishable from one another. Hence, a fundamental topic in quantum
information is the problem ofstate discrimination, which investigates how well ensembles of quantum states can be distinguished
under various physical conditions.

One important operational setting in which questions of distinguishability emerge is the so-called “distant lab” scenario.
Here, some multiparty quantum state is distributed to spatially separated quantum labs, and the various parties use local
measurements combined with classical communication to tryand identify their state. This operational setting is also known
as LOCC (Local Operations and Classical Communication), and the study of LOCC operations has played an important role
in developing our understanding of not only quantum information processing, but also the nature of quantum entanglement
itself. For instance, as demonstrated by the fundamental task of quantum teleportation [1], viewing quantum communication
in the LOCC setting allows us to cleanly separate entangled bits (ebits), qubits, and classical bits as distinct resources that can
be used for transmitting information between different parties. Furthermore, the celebrated tasks of quantum key distribution
[2] and entanglement distillation [3] are all procedures performed within the LOCC paradigm. Yet at the same time, LOCC
operations can be viewed as a more basic concept than quantumentanglement since a multipartite quantum state possesses
entanglement if and only if this state cannot be generated byLOCC operations [4], [5], [6].

As LOCC operations are just a subset of all possible physicaloperations, certain state discrimination tasks become impossible
when the distant-lab constraint is imposed. For instance, it is well-known that a set of quantum states can be perfectly
distinguished if and only if the states are orthogonal. For multi-party states, this statement is still true; however, the measurement
used to discriminate the states may need to be aglobal measurement that coherently acts across all the subsystems. In many
cases, this global measurement cannot be implemented locally, thus making the states indistinguishable by LOCC unlesssome
identification error occurs (examples can be found in Refs. [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]). Sucha limitation
allows for the implementation of important information-theoretic objectives such as data hiding [17], [18] and secretsharing
[19], [20]. For more general sets of states (possibly non-orthogonal), one can quantify their distinguishability using a variety of
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different measures, and in this paper, we consider both theminimum errorguessing probability and themaximum conclusive(or
unambiguous) probability for a given ensemble. Both of these figures of merit are given in terms of some success probability
that has been optimized over all possible measurements. When an LOCC measurement can obtain the same success probability
as the global optimal, then we say that LOCC is able to optimally distinguish the ensemble with respect to the particular figure
of merit, otherwise it cannot. The underlying question studied in this paper is when it’s possible for LOCC to perform optimal
state discrimination.

In general, this question is quite difficult due to the complexity of LOCC: the global communication among the parties
enables the choice of local measurement by one party at one particular round to depend on the measurement outcomes of
all the other parties in previous rounds. It is often helpfulto visualize a general LOCC operation as a tree where each node
indicates a particular choice of local measurement and eachbranch corresponds to a particular sequence of measurement
outcomes. Deciding whether or not a certain discriminationtask is feasible by LOCC therefore amounts to a consideration of
all such possible trees.

Despite its complexity, partial progress has been made in understanding conditions in which LOCC can perform optimal state
discrimination. Most notably is the discovery thatany two orthogonal pure states can be perfectly distinguished using LOCC
[21]. A similar result holds for pairs of non-orthogonal states in which again, LOCC can obtain the optimal discrimination
success probability that is physically possible; this is true for both minimum error discrimination [22] and optimal conclusive
discrimination [23], [24]. This finding is particularly relevant to the current paper since we will show that, in sharp contrast,
almost all triples of two-qubit statescannotbe optimally distinguished by LOCC.

The fact that non-LOCC measurements can distinguish certain ensembles better than any LOCC strategy may not be
overly surprising when the ensemble states possess entanglement. This is because entanglement embodies some non-local
property of two or more systems, and thus a global measurement across all systems is needed in general to discriminate among
entangled states (this is essentially at the heart of superdense coding [25]). However, rather surprisingly, certain ensembles exist
consisting of unentangled states that cannot be distinguished optimally using LOCC [26]. This phenomenon is often called
“nonlocality without entanglement,” and it essentially reflects that fact that nonlocality and entanglement are two different
physical properties of multipartite quantum systems. Understanding the difference between the two is an important problem
in quantum information science, and thus a main objective ofthis paper is to study, in particular, LOCC discrimination of
ensembles that lack entanglement.

Summary of Results:The body of this paper begins in Section III with a return to the problem of perfect state discrimination
among two-qubit orthogonal states. While our primary interest is LOCC discrimination, we will also consider discrimination
by the more general class of separable operations (SEP). This problem has been solved for almost all types of ensembles, and
we solve the missing piece of perfect discrimination between one pure state and one mixed state. Interestingly, we find that
SEP is more powerful than LOCC in the sense that certain two-state ensembles are distinguishable by SEP but not LOCC. This
result allows us to later construct in Section IV-B2 examples of one pure product state and one (non-orthogonal) separable
mixed state that cannot be optimally distinguished by LOCC.Thus, we obtain a large class of two-state ensembles which
demonstrate nonlocality without entanglement.

Section IV investigates the problem of minimum-error discrimination between linearly independent states. However, we
prove that this seemingly more general problem actually reduces to the problem of perfect discrimination of orthogonalstates.
This reduction therefore allows us to apply the results of Section IV-A toward the problem of minimum-error discrimination of
non-orthogonal (linearly independent) states. As a result, we obtain in IV-A2 our main result that almost any three states cannot
be optimally distinguished by LOCC. More precisely, if we select a three-state ensemble by randomly choosing our states, then
almost surely will LOCC fail to discriminate them as successfully as a more general global measurement. Sections IV-B1–IV-B3
then restrict attention to ensembles composed of unentangled states. We are able to obtain a simple necessary conditionfor
when three product states cannot be distinguished optimally by LOCC. With this result, new examples of nonlocality without
entanglement can easily be constructed.

In Section IV-B3, we move beyond two-qubit ensembles and consider the optimal discrimination of three symmetricN -qubit
states. The specific ensemble we analyze is theN -copy generalization of the celebrated double trine ensemble [27]. We prove
that for any finiteN , the ensemble cannot be optimally discriminated usingN -party LOCC. However asN → ∞, we give a
protocol that indeed achieves optimal (perfect) discrimination. This is quite different from theN -copy discrimination among
two possible pure states which can always be accomplished optimally by LOCC [28].

Finally, in Section V, we consider the task of unambiguous discrimination by LOCC. We derive new upper bounds on
the LOCC success probability for ensembles of two-qubit symmetric states. With this, simple examples can be found when
LOCC is insufficient for optimal unambiguous discrimination. We again consider the double trine and find that surprisingly,
separable operations and LOCC operations perform equally well in the task of unambiguous discrimination, a completely
different behaviour than when the figure of merit is the minimum error probability [29]. Before getting to all of these results,
we first review some basic definitions and describe essentialconcepts for our investigation.
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II. D EFINITIONS AND NOTATION

Let H = H1⊗ ...⊗HN denote the underlying Hilbert space for anN -partite quantum system. Here,Hk is the local system
of party k having dimensiondk so thatd =

∏N
i=1 di is the total dimension. The set of bounded linear operators acting on

H will be denoted byB(H) and Id is the identity element inB(H). The (one-copy)quantum state discrimination problem
involves the task of correctly identifying a quantum state that is randomly sampled from an ensembleE = {ρi, pi}ni=1, where
ρi ∈ B(H) andpi is the probability of obtainingρi. The “which state” classical information is extracted fromthe sampled state
using a positive operator-valued measure (POVM), which is acollection of positive semidefinite operatorsΠ = {Πi}ni=1 acting
on B(H) such that

∑n
i=1 Πi = Id. The total identification success probability of the POVMΠ is Π(E) :=∑n

i=1 piTr[Πiρi],
and theminimum error probabilityis given by

Perr(E) = min
Π

(1−Π(E)). (1)

Here the minimization is taken over alln-outcome POVMs, and a minimum can indeed be obtained since the set of POVMs
is compact.

For the task of unambiguous discrimination, an extra outcome Π0 is appended to the set of POVMs, and an additional
constraint must be satisfied thatTr[Πiρj ] = 0 wheneveri 6= j. Under this condition, no error will ever be made when guessing
the state; however, the outcome “0” represents an inconclusive outcome and no guess is made on the state’s identity. The
minimum inconclusive probabilityis thus given by the following

Pinc(E) = min
Π

n∑

i=1

Tr[Π0ρi]

s.t. Tr[Πiρj ] = 0 i 6= j > 0. (2)

This time, the minimization is taken over all(n+ 1)-outcome POVMs.
We say the POVMΠ is separable(SEP) if for eachi, Πi

Tr(Πi)
can be expressed as a convex sum of product projectors

|a1〉〈a1| ⊗ ... ⊗ |aN 〉〈aN |, where |ak〉〈ak| ∈ B(Hk). The main interest in studying separable POVMs is that any LOCC
POVM is a separable POVM [26], and therefore SEP offers a useful approximation to LOCC. However, there exists non-
LOCC operations that are nevertheless separable. Since thePOVM elements of SEP contain no entanglement, studying these
non-LOCC separable operations provide one way to understand the subtle difference between entanglement and nonlocality.

A general LOCC POVM is very complex and fortunately we will not need a precise characterization of them [30]. Roughly
speaking an LOCC protocol consists of successive local measurements which can each be described by a set of Kraus operators
{M (k)

λ ⊗ I(k)}λ whereM (k)
λ ∈ B(Hk) and

∑
λ(M

(k)
λ )†M

(k)
λ = Ik. The notation reflects that partyk performs a measurement

while the other parties act trivially. The measurement outcomeλ is announced to all the parties and some other party chooses a
local measurement to perform based on the informationλ; this process continues round after round. For the state discrimination
problem, the parties assign each state to a collection of possible measurement outcome sequences, and they guess the state’s
identity based on this assignment and what they happen to measure.

For most of this paper, we will only consider two-qubit systems. In such small dimensions, problems of distinguishability
become tractable, yet there is still enough degrees of freedom for interesting phenomenon to emerge. A general2 ⊗ 2 pure
state|ψ〉 can be uniquely represented by the2×2 matrixψ given by|ψ〉 = I⊗ψ|Ψ+〉, where|Ψ+〉 is the maximally entangled
state|Ψ+〉 =

√
1/2(|00〉+ |11〉). One measure of the entanglement possessed by|ψ〉 is its concurrence, which is defined by

C(ψ) = | det(ψ)| [31].
The entanglement of2⊗ 2 states has an additional feature of being completely detectable by the positive partial transpose

(PPT) criterion. For a bipartite matrixM , we letMΓ denote its partial transpose, which is defined by performingthe transpose
operation on Bob’s system alone with respect to some fixed basis. A two-qubit density matrix is separable (i.e. does not possess
entanglement) if and only if its partial transpose has no negative eigenvalues [32].

A useful fact about two-qubit ensembles is that for any threeorthogonal states, there exists a unique state orthogonal to all
three. Thus, for a given state|Φ〉, we will let {|Φ〉}⊥ denote the orthogonal complement of|Φ〉. Another important property
of two-qubit spaces is given by the first of the following two technical lemmas. Both of these will be used heavily in Section
III, and they each refer to “antiparallel” eigenvalues, which are any two complex eigenvaluesz1 and z2 related byz1 = az2
for some negative real numbera.

Lemma 1. SupposeS is a two-dimensional subspace such that the subspace projector PS is separable. ThenS has an
orthonormal product basis. Furthermore, if|ψ〉 and |Φ〉 are any two entangled orthogonal states inS⊥, then (i)ψΦ−1 have
two anti-parallel eigenvalues, and (ii)C(ψ) = C(Φ).

Proof: As PS is separable of rank two, it can be written asPS = x|ab〉〈ab|+ y|cd〉〈cd|, wherex, y are positive numbers
and|ab〉, |cd〉 are two linearly independent product states spanningS [33]. This linear independence ensures that the operators

{|ab〉〈ab|, |ab〉〈cd|, |cd〉〈ab|, |cd〉〈cd|}
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are also linearly independent. Therefore, the conditionP 2
S = PS implies that|ab〉 and |cd〉 are orthonormal. To prove the final

assertion, note that whenS has an orthonormal product basis, so doesS⊥. EitherS⊥ only contains product states, in which case
the lemma is trivially satisfied, or any two entangled orthogonal states inS⊥ will take the form|ψ〉 = cos θ|01〉+eiϕ sin θ|10〉
and|Φ〉 = − sin θ|01〉+eiϕ cos θ|10〉. It can immediately be seen that these states have the same concurrence. Finally, a simple
calculation reveals that the eigenvalues ofψΦ−1 are− tan θ andcot θ, which satisfies part (i) of the lemma.

Lemma 2 (Duanet al. [34]). Let |ψ〉 and |Φ〉 be bipartite entangled pure states withλ ≥ 0. Thenρ(λ) = |ψ〉〈ψ| + λ|Φ〉〈Φ|
is separable if and only if (i)ψΦ−1 has two antiparallel eigenvalues and (ii)λ = C(ψ)/C(Φ).

Proof: See Ref. [34].

III. C OMPLETING THE2⊗ 2 PERFECTDISCRIMINATION PICTURE

We begin by providing a full solution to the perfect distinguishability problem of two-qubit ensembles, both for separable
operations and LOCC. Note that this problem has been heavilystudied, so much of our work here will be a recollection of
previously known results. However, we do provide simpler necessary and sufficient conditions for some occasions that are
easier to use than those previous results. As perfect distinguishability requires orthogonality of the states, there are only a few
possible types of ensembles to consider. Specifically, we can classify the ensembles{ρi}ni=1 according to the ranks of their
states, and so any ensemble of two-qubit states that can be perfectly distinguished belongs to one of the following classes:
{1, 1}, {1, 1, 1}, {1, 1, 1, 1}, {1, 2}, {1, 3}, {1, 1, 2} and {2, 2}. For instance, any ensemble of the type{1, 1, 2} consists of
three orthogonal states with respective ranks1, 1, and2.

In principle, the LOCC problem has been completely solved bythe following lemma from Ref. [15]. In it, the notation
Sch⊥(ρ) denotes the minimal number of orthogonal product states whose linear span contains the support ofρ.

Proposition 3 ([15]). A set of orthogonal two-qubit states{ρ1, ...ρn} can be perfectly distinguished using LOCC if and only
if

n∑

i=1

Sch⊥(ρi) ≤ 4.

The goal of this section is to reformulate this lemma in a moretransparent form for each class of two-qubit ensembles.
Additionally, we would like to compare this with the conditions needed for perfect discrimination by SEP. This latter question
has been solved, either explicitly or implicitly, in Ref. [34] for all cases except the{1, 2} ensemble, i.e ensemble of one pure
state and one rank two mixed state. For completion, we will quickly review the LOCC and SEP discrimination conditions
class-by-class and then end with a treatment of the{1, 2} case, since this is the previously missing piece in the perfect
distinguishability picture. Proofs are given for the caseswhich may not have been explicitly addressed before.

Case{1, 1} [21]: LOCC (hence SEP) distinguishability is always possible.
Cases{1, 1, 1, 1}, {1, 3}, {1, 1, 2} [9], [34]: LOCC and SEP distinguishability are both possible if and only if (iff) all the

pure states are product states.
Proof: The {1, 1, 1, 1} case is solved in Ref. [9] for LOCC and in Ref. [34] for SEP.

For the{1, 3} case, let|ψ〉 be the pure state in the ensemble. The necessity of|ψ〉 being product state follows from the
fact that the SEP POVM element1 detecting|ψ〉 must be the projector|ψ〉〈ψ|. Conversely, when|ψ〉 = |a〉|b〉, a perfect LOCC
discrimination scheme consists of Alice and Bob measuring in the respective bases{|a〉, |a〉} and{|b〉, |b〉}.

For the{1, 1, 2} case, we denote the pure states by|ψ1〉 and |ψ2〉, and as before, the POVM detecting each of these states
must be|ψ1〉〈ψ1| and |ψ2〉〈ψ2| respectively. Hence, for a SEP POVM, we must have that|ψ1〉 and |ψ2〉 are both product
states. The POVM elementΠρ detecting the mixed stateρ must be a separable projector onto the support ofρ. Thus, by
Lemma 1,Πρ = |x〉〈x| + |y〉〈y| for orthonormal product states|x〉 and |y〉. But sinceρ is orthogonal to|ψ1〉 and |ψ2〉, the
set{|ψ1〉, |ψ2〉, |x〉, |y〉} consisting of orthogonal product states can only be of the form {|a〉|b〉, |a〉|b〉, |a〉|b〉, |b〉|b〉}. Hence, a
perfect LOCC discrimination scheme again consists of Aliceand Bob measuring in the respective bases{|a〉, |a〉} and{|b〉, |b〉}.

Case{2, 2}: SEP and LOCC distinguishability are both possible iff the projectors onto the supports of each of the mixed
states are separable.

Proof: The argument uses Lemma 1 and follows analogously to the case{1, 1, 2}.
Case{1, 1, 1} ([9], [34]: LOCC distinguishability is possible iff two of the three states are product states. For SEP, let

{|ψi〉}3i=1 denote the ensemble of three orthogonal states and|Φ〉 the state orthogonal to all of them. Then the|ψi〉 are perfectly
distinguishable by separable operations iff: (i)ψkΦ

−1 has two antiparallel eigenvalues for each entangled stateψi, and (ii)∑3
i=1 C(ψi) = C(Φ).

Proof: The LOCC condition is given in Ref. [9] while the SEP criterion is proven in Ref. [34]. Examples of ensembles
are presented in Ref. [34] that satisfy the SEP distinguishability conditions but not the LOCC conditions. Thus, SEP is strictly
more powerful than LOCC for two-qubit state discrimination.

1This implies the necessity for perfect LOCC discrimination.
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Case{1, 2}: Let |ψ〉 be orthogonal to a rank-two stateρ with |Φ〉 being orthogonal to both. Then|ψ〉 andρ are perfectly
distinguishable by SEP iff either|ψ〉 is a product state, or the two conditions hold: (i) the matrixψΦ−1 has two antiparallel
eigenvalues and (ii)C(ψ) ≤ C(Φ). In particular, whenΦ is a maximally entangled state, any such|ψ〉 and ρ are perfectly
distinguishable by SEP. For LOCC, the states are perfectly distinguishable iff either|ψ〉 is a product state, or condition (i) is
satisfied and equality holds for condition (ii).

Proof: We first consider LOCC. Suppose that|ψ〉 is entangled and|ψ〉 andρ are perfectly distinguishable. ThenSch⊥(ψ) =
2 and Proposition 3 requires thatSch⊥(ρ) = 2. Hence, the assumption of Lemma 1 is satisfied on the support of ρ, and thus
conditions (i) and (ii) are satisfied, with the latter being an equality. Conversely, if the two conditions hold withC(ψ) =
C(Φ) > 0, then Lemma 2 combined with Lemma 1 implies that the support of ρ has an orthogonal product basis. Thus
Sch⊥(ψ) + Sch⊥(ρ) ≤ 4 and so LOCC discrimination is possible. On the other hand, if|ψ〉 is a product state, a perfect
discrimination protocol follows as in the{1, 3} case.

Moving to SEP, suppose that the two states can be perfectly distinguished by separable POVM{E, I−E}. From Theorem
1 of [34], we know that the operatorE must have the form:E = |ψ〉〈ψ| + λ|Φ〉〈Φ|, whereλ ≤ 1. Then invoking Lemma 2
directly gives the two conditions. Conversely, whenever wehave|ψ〉 and|Φ〉 satisfying (i) and (ii), we can construct a separable
operationE = |ψ〉〈ψ|+λ|Φ〉〈Φ|, whereλ = C(ψ)/C(Φ), according to Lemma 2. It is not difficult to see that{E, I−E} can
perfectly distinguish the state|ψ〉 andρ. One final step is to verify thatI−E is also separable. AsE is a separable non-negative
operator with rank two, it can be decomposed intoE = x|ab〉〈ab|+ y|cd〉〈cd|, wherex, y are positive numbers and|ab〉, |cd〉
are two product states [33]. Next, observe thatE andEΓ are equivalent up to a local unitary of formIA ⊗ UB. The unitary
UB can be defined throughUB|b〉 = |b∗〉 andUB|d〉 = eiθ|d∗〉, where|b∗〉 and |d∗〉 are complex conjugate defined according
to any fixed orthonormal basis. That such aUB exists follows from the preservation of inner product:|〈b|d〉| = |〈b∗|d∗〉|. So
we see that the partial transpose ofI − E is locally equivalent toI − E itself and hence must be non-negative. And in the
2⊗ 2 case, PPT ofI− E implies its separability.

Finally, if |Φ〉 is a maximally entangled state, then its2 × 2 matrix representationΦ is equal to some2 × 2 unitary U :
Φ = U . Notice that

Tr[ψΦ−1] = Tr[U †ψ] = 2〈Φ|ψ〉 = 0,

we can conclude thatψΦ−1 would have two antiparallel eigenvalues since|ψ〉 is entangled. Furthermore, sinceC(Φ) = 1, the
maximal possible value for concurrence, ii) holds. This completes our proof.

IV. M INIMUM ERROR DISCRIMINATION

A. General Linearly Independent Ensembles

We begin our discussion by recalling some general facts about minimum error discrimination. For an ensemble{ρi, pi}ni=1,
a POVM {Πi}ni=1 is optimal in minimum error discrimination if and only ifΛ − pjρj ≥ 0 for all ρj , in which the operator
Λ :=

∑n
i=1 piΠiρi is hermitian [35], [36], [37]. Since

∑n
i=1 Πi = I, we have

0 = Tr[Λ− Λ] =
n∑

j=1

Tr[Πj(Λ − pjρj)] =
n∑

j=1

Tr[(Λ− pjρj)Πj ]. (3)

As Λ− pjρj ≥ 0 and

Tr[Πj(Λ− pjρj)] = Tr[(Λ − pjρj)Πj ]

= Tr[Π
1/2
j (Λ− pjρj)Π

1/2
j ] ≥ 0,

we, in fact, must have
Πj(Λ− pjρj) = (Λ− pjρj)Πj = 0. (4)

Using these fundamental properties of the optimal POVM we next generalize a result given in Ref. [29], which itself is
based on work by Mochon [38]. This proposition offers the keytool used throughout most of this section.

Proposition 4. Let E = {ρi, pi}ni=1 be an ensemble of linearly independent states; i.e. for spectral decompositionsρi =∑ri
j=1 λij |ψij〉〈ψij |, the |ψij〉 are linearly independent. LetS be the subspace spanned by the|ψij〉, and let Popt be the

optimal minimum error probability in discrimination. Thenthere exists a unique decomposition ofS = S1 ⊕ S2 ⊕ ... ⊕ Sn

with Si having dimensionri such that a POVM can obtainPopt on E if and only if it can perfectly distinguish the normalized
subspace projectors1r1ΥS1

, 1
r2
ΥS2

,..., 1rnΥSn
.

Proof: Our argument proceeds like the one in Ref. [29]. As the|ψij〉 are linearly independent, there exists a set of dual
vectors|ψ̃ij〉 such that〈ψ̃ij |ψkℓ〉 = δikδjℓ. Let {Πi}ni=1 obtainPopt on E . TakingΥS to be the projector ontoS and defining
Π̂j = ΥSΠjΥS , it is obvious that the POVM{Π̂j, I−ΥS}nj=1 is also optimal forE . Thus theΠ̂j satisfy

Π̂j(Λ̂− pjρj) = (Λ̂− pjρj)Π̂j = 0, (5)
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where Λ̂ = ΥSΛΥS. We next observe that the vectors{Π̂j |ψjk〉}rjk=1 are linearly independent for eachj. For suppose
that

∑rj
k=1 αkΠ̂j |ψjk〉 = 0 for some nonzeroαk. Then we could contract both sides ofΛ̂ − pjρj ≥ 0 with the vector

|ϕj〉 =
∑rj

k=1
αk

pjλjk
|ψ̃jk〉 to obtain

0 ≤ 〈ϕj |
(
Λ̂− pj

∑rj

k=1
λjk |ψjk〉〈ψjk |

)
|ϕj〉 = −

n∑

k=1

|αk|2
pjλjk

.

Hence, the space spanned by{Π̂j |ψjk〉}rjk=1 has dimensionrj . Now, applyingΠ̂j(Λ̂− pjρj) = 0 in Eq. (5) to |ψ̃ik〉 gives

Π̂j(piλikΠ̂i|ψik〉) = δijpiλikΠ̂i|ψik〉. (6)

Thus, for every1 ≤ k ≤ ri, the element̂Πi|ψik〉 lies in the kernel of̂Πj for i 6= j, while Π̂i|ψik〉 is an eigenvector of̂Πj with
eigenvalue +1 wheni = j. Thus,Π̂i must be the projector ontoSi, the ri-dimensional subspace spanned by{Π̂i|ψik〉}rik=1.
Additionally, we have that̂ΠiΠ̂j = δijΠ̂i. Clearly then for the original POVM{Πi}ni=1 we haveTr[ 1

rj
ΥSj

Πi] = δij , where

ΥSj
:= Π̂j is the projector ontoSj . Hence, the POVM can perfectly distinguish the normalized subspace projectors1rj ΥSj

.

Conversely, if a POVM{Σi}ni=1 perfectly distinguishes{ 1
rj
ΥSj

}nj=1, then we must haveΥSΣiΥS := Σ̂i = ΥSi
, which means

that the{Σi}ni=1 obtainsPopt on E .
To prove uniqueness, suppose that{Π̂i}ni=1 and {Π̂′

i}ni=1 are two optimal POVMs on the subspaceS. Then any convex
combination{λΠ̂i+(1−λ)Π̂′

i}ni=1 will also be optimal. But as shown above, optimality requires thatΠ̂i, Π̂′
i andλΠ̂i+(1−λ)Π̂′

i

are projectors onto someri-dimensional subspace ofS. This is possible only if̂Πi = Π̂′
i.

1) Conditions of LOCC Optimality for Two-Qubit Pure States:We now apply Proposition 4 to the LOCC discrimination
of two-qubit pure ensembles{|ψi〉, pi}ni=1. As we only consider linearly independent ensembles, obviously n ≤ 4. In the pure
state case, the subspace projectorsΥSi

correspond to an orthonormal basis{|φi〉}ni=1 for the space spanned by the|ψi〉. Thus,
any LOCC POVMΠi optimally distinguishes the|ψi〉 if and only if it can perfectly distinguish the|φi〉. However for two-qubit
ensembles, the conditions for perfect discrimination among orthogonal states have already been proven by Walgate and Hardy
[9]. We thus obtain the following.

Proposition 5. Consider an ensemble of linearly independent two-qubit states{|ψi〉, pi}ni=1. If n = 3, then an LOCC protocol
can optimally discriminate the ensemble (in the minimum error sense) if and only if the states{|φi〉}ni=1 corresponding to the
projectorsΥSi

= |φi〉〈φi| described by Proposition 4 contain at least two product states. Ifn = 4, then all of the|φi〉 must
be product states.

Equivalently, forn = 3 (resp.n = 4) LOCC feasibility requires the decompositionS = S1 ⊕ .. ⊕ Sn of Proposition 4 to
consist of at least two (resp. four) tensor product subspaces. Applying this result is still rather difficult since thereappears to
be no easy method for determining whether or not the optimal POVM projectors|φi〉〈φi| have product state form. However,
product POVMs belong to the more general class of separable POVMs, and for two-qubit systems, separability is captured by
the PPT condition: a two-qubit positive operatorM is separable if and only ifMΓ ≥ 0, whereΓ denotes the partial transpose
operation [32]. Since we know that the optimal POVM is a unique rank one projective measurement, and the only PPT rank
one projectors are product projectors, we thus obtain the following.

Proposition 6. Let {|ψi〉, pi}ni=1 an ensemble of linearly independent two-qubit states andΥS the projector on the subspace
spanned by the|ψi〉. Then the ensemble can be optimally distinguished by LOCC ifand only if the following semi-definite
program is feasible: LetΛ =

∑n
j=1 pjΠj |ψj〉〈ψj |, ∀i = 1, 2, · · · , n

Λ− pi|ψi〉〈ψi| ≥ 0,

subject to

Πi ≥ 0 andΛ† = Λ;

In addition, if n = 3 :

(ΥSΠλΥS)
Γ ≥ 0 for at least twoλ ∈ {1, 2, 3}.

if n = 4 :

(ΥSΠλΥS)
Γ ≥ 0 for all λ ∈ {1, 2, 3, 4}.

2) LOCC is Not Optimal for Almost All Pure Three-State Ensembles: Proposition 6 at least makes it a computable task
to decide whether or not LOCC can achieve the optimal minimumerror discrimination probability. Nevertheless, we can use
a randomized argument to show that for general instances, the SDP of Proposition 6 is not feasible. More precisely, if we
randomly choose a two-qubit ensemble consisting of at leastthree states, almost surely there will be no LOCC protocol that
optimally discriminates them.
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We begin by fixing an algorithm for generating a random two-qubit ensemble of three pure states. The first step consists of
choosing a triple(p1, p2, p3) from the uniformly distributed probability simplex. We thus assume that some distribution has
been chosen and is fixed. The protocol then consists of three independent samplings fromU(2 ⊗ 2), the two-qubit unitary
group, according to the uniform and unitarily invariant Haar distribution onU(2 ⊗ 2) [39]. Applying each of these unitaries
to the state|00〉 generates an ensembleE of three two-qubit states. Hence, the probability that a randomly chosen ensemble
belongs to some (measurable) family of ensemblesτ is P (τ) =

∫
1τ (E)dE , where1 is the indicator function. GivenE ,

we add one additional randomization step: another unitaryU is randomly chosen fromU(2 ⊗ 2) and applied toE . In other
words, we transformE → UE , whereUE is the ensemble obtained by applyingU to each element inE . In summary, letting
UE := {UE : U ∈ U(2 ⊗ 2)}, our random ensemble is generated by first choosingE and then choosing a randomUE ∈ UE .
Unitary invariance of the Haar measure ensures thatUE has been uniformly selected among all possible ensembles ofthree
states:

P (τ) =

∫
1τ (E)dE =

∫ ∫
1τ (E)dEdU

=

∫ ∫
1U†τ (E)dEdU

=

∫ ∫
1τ (UE)dUdE , (7)

where the third equality follows fromP (τ) = P (U †τ).
The purpose of the extra randomization step is seen by the following lemma, which essentially reduces the problem of

randomly choosing an ensemble to randomly choosing three orthogonal states.

Lemma 7. Let B be the collection of all triples(|φ1〉, |φ2〉, |φ3〉) of pairwise orthonormal two-qubit states. For each linearly
independent ensembleE of three states, there is a bijection∆ : UE → B such that(∆(UE))3i=1 gives the optimal measurement
basis for distinguishing the ensembleUE .

Proof: For E = {|ψi〉, pi}3i=1, Proposition 4 ensures the existence of states(|φi〉)3i=1 =: ∆(E) ∈ B that form an optimal
detection basis. From the condition

∑3
i=1 pi|φi〉〈φi|ψi〉〈ψi| − pk|ψk〉〈ψk| ≥ 0, we see that the optimal measurement basis for

UE is given by the sequence(U |φi〉)3i=1, which is∆(UE) ∈ B. Since(U |φi〉)3i=1 = (V |φi〉)3i=1 iff V †U is the identity, the
mapping∆ is injective. Conversely, any element(|φ′i〉)3i=1 in B can be related to∆(E) = (|φi〉)3i=1 by a unitaryV , and so
the measurement basis given by(|φ′i〉)3i=1 is optimal for the ensembleV E ∈ UE . Hence,∆ is surjective.

Putting it all together, for a fixed distribution(p1, p2, p3), let L be the set of all two-qubit linearly independent ensembles
that can be perfectly distinguished by LOCC. Since the subset of all linearly dependent ensembles has measure0, it suffices
to only consider the probability of randomly choosing an ensemble belonging toL. We haveP (L) =

∫ ∫
1L(UE)dUdE , and

by Proposition 5 and the previous Lemma,
∫
1L(UE)dU is precisely the probability of randomly choosing an orthonormal

triple (|φ1〉, |φ2〉, |φ3〉) such that at least two of them are product states. This occurswith probability zero, and thus we prove
the following.

Theorem 8. Three randomly chosen two-qubit pure states almost surely cannot be discriminated optimally by LOCC.

B. Discrimination of Ensembles that Lack Entanglement

It is especially interesting to consider ensembles that do not possess any entanglement. When each of the states are product
states, one might naively suppose that the ensemble also lacks any sort of nonlocality, and thus LOCC should be able to
achieve optimal discrimination. However, this intuition turns out to be incorrect as there exists product state ensembles that
cannot be optimally distinguished by LOCC [26]. Below, we use Proposition 4 to prove new instances of nonlocality without
entanglement in two-qubit systems.

1) Three States:First we turn to ensembles of three product states. The following provides a necessary condition for optimal
discrimination by LOCC.

Theorem 9. Suppose that{|ψλ〉 := |αλ〉|βλ〉, pλ}3λ=1 (pλ > 0) is some linearly independent two-qubit product state ensemble
that spans{|Φ〉}⊥. Let λmin(Φ) denote the smallest squared Schmidt coefficient of|Φ〉. If

p2iλ
2
min(Φ) > p2j |〈ψi|ψj〉|2 + p2k|〈ψi|ψk〉|2

for every choice ofi, j, k such that{i, j, k} = {1, 2, 3}, then the ensemble cannot be distinguished optimally (in the minimum
error sense) with LOCC.

Proof: Following Proposition 2, if there exists an LOCC protocol that obtains optimality, then we have that|φj〉 and|φk〉
are product states for somej 6= k ∈ {1, 2, 3}. It is then easy to show [34] thatC(φi) = C(Φ), whereC(φi) is the concurrence
of |φi〉 [31]. SinceΦ andφi have the same concurrence, they also have the same Schmidt coefficients. Optimality requires

∑

λ=j,k

pλ|φλ〉〈φλ|ψλ〉〈ψλ|+ pi|φi〉〈φi|ψi〉〈ψi| ≥ pi|ψi〉〈ψi|.
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Contracting both sides by|ψi〉 gives
∑

λ=j,k

pλ〈ψi|φλ〉〈φλ|ψλ〉〈ψλ|ψi〉 ≥ pi(1− |〈ψi|φi〉|2). (8)

Applying the Cauchy-Schwarz inequality on the LHS of (8) gives
∣∣∣∣∣∣

∑

λ=j,k

pλ〈ψi|φλ〉〈φλ|ψλ〉〈ψλ|ψi〉

∣∣∣∣∣∣

≤
√∑

λ=j,k

|〈ψi|φλ〉|2
√∑

λ=j,k

p2λ|〈ψi|ψλ〉|2

=
√
1− |〈ψi|φi〉|2

√∑

λ=j,k

p2λ|〈ψi|ψλ〉|2

≤
√∑

λ=j,k

p2λ|〈ψi|ψλ〉|2. (9)

Hence, Eqs. (8)-(9) give
√∑

λ=j,k

p2λ|〈ψi|ψλ〉|2 ≥ pi
(
1− |〈ψi|φi〉|2

)

≥ piλmin(Φ) (10)

where the second inequality follows from the fact that|ψi〉 is a product state and therefore its overlap with|φi〉 can be no
greater than the largest Schmidt coefficient of|φi〉. This gives the desired necessary condition for LOCC discrimination.

Theorem 9 is very useful for constructing ensembles that demonstrate “non-locality without entanglement”. Despite consisting
of product states, ensembles satisfying the condition of Theorem 9 possess some non-local aspect since LOCC is insufficient
for optimal discrimination. Furthermore, we can obtain examples in which separable operations attain optimal discrimination
but LOCC cannot. For this, we rely on the fact that, as mentioned in Section III three states can be perfectly distinguished
by separable operations iff their concurrence sums to the concurrence of their common orthogonal complement state. Hence,
separable operations become strictly more powerful than LOCC for distinguishing a set of product states|ψi〉 that satisfy
Theorem 9 while their corresponding detection states|φi〉 satisfy

∑3
i=1 C(φi) = C(Φ).

An important example of such an ensemble is the so-called “double trine” ensemble [27], which is given by a uniform
distribution of the states|ψi〉 = |si〉 ⊗ |si〉 for i = 0, 1, 2 where

|s0〉 = |0〉,

|s1〉 = −1

2
|0〉 −

√
3

2
|1〉,

|s2〉 = −1

2
|0〉+

√
3

2
|1〉. (11)

The inability for LOCC to optimally discriminte the double trine states follows from Theorem 9 and the fact that|〈ψi|ψj〉|2 =
1/16, while λ2min(Φ) = 1/4. Thus,1/4 > 1/8. On the other hand, it can be easily computed [27], [40], [29]that the detection
states|φi〉 each have a concurrence of1/3. Since the maximally entangled singlet state lies orthogonal to each of the|ψi〉,
we indeed have

∑3
i=1 C(φi) = C(Φ) = 1. Hence, a separable POVM can optimally discriminate the double trine ensemble.

In Ref. [29], an even stronger result was proven that a finite gap exists between the best achievable LOCC success probability
and the optimal probability achievable byanyphysically implementable LOCC operation. In Section IV-B3, we generalize the
double trine ensemble to itsN -copy form.

2) Discrimination of One Pure Product State and One Rank Two Separable State:In this section, we apply Proposition 4
to a mixed state discrimination problem. Consider the following orthonormal basis{|Ψ−〉, |Ψ+〉, |s+(θ)〉, |s−(θ)〉} where

|Ψ±〉 =
√
1/2(|01〉 ± |10〉),

|s+(θ)〉 = cos θ|00〉+ sin θ|11〉,
|s−(θ)〉 = − sin θ|00〉+ cos θ|11〉 (12)

for 0 ≤ θ ≤ π/2. The task is to optimally distinguish the following two states:

|ψ〉〈ψ| = |00〉〈00|,

ρ(θ) =
1

1 + sin 2θ
(|s+(θ)〉〈s+(θ)| + sin 2θ|Ψ+〉〈Ψ+|). (13)
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The concurrence of|s±(θ)〉 is 1 + sin 2θ, and so by Lemma 2,ρ(θ) is separable for any choice ofθ. We note that

ρ(π/4) =
1

2
(|++〉〈++ |+ | − −〉〈− − |), (14)

and the states reduce to the pair studied in Ref. [41].

Lemma 10. For 0 < θ < π/2, the states|00〉 andρ(θ) given with arbitrary a priori probability can be distinguished optimally
by SEP but not by LOCC.

Proof: We first use Proposition 4, to translate the problem into one of perfect discrimination between orthogonal states.
We can easily decompose the hermitian operatorp1ρ(θ)− p2|00〉〈00| into its positive and negative eigenspaces:

p1ρ(θ) − p2|00〉〈00| = a|Ψ+〉〈Ψ+|+ b|s+(θ̄)〉〈s+(θ̄)| − c|s−(θ̄)〉〈s−(θ̄)|
for positive numbersa, b, c and withθ̄ 6= 0, π/2, since0 < θ < π/2 (an explict formula for̄θ can be computed but is irrelevant
for our purpose). Optimal discrimination of|00〉 andρ(θ) thus amounts to perfect discrimination of the state|s−(θ̄)〉 and the
normalized projector12Υ, whereΥ = |Ψ+〉〈Ψ+| + |s+(θ̄)〉〈s+(θ̄)|. We have thatC(s−(θ̄)) < 1 which, by case{1, 2} of
Section III, implies that SEP achieves perfect discrimination but LOCC does not.

To our knowledge, this is the first time a pair of states have been shown to be optimally distinguishable, in the minimum
error sense, by SEP but not LOCC. Ref. [41] shows a distinguishability gap for|00〉 and the mixed state given by Eq. (14),
but with respect to a special type of unambiguous discrimination measure.

3) N -Copy Trine Ensemble:Consider the equiprobable ensemble ofN -qubit states2 {|ψi〉}2i=0 with |ψi〉 = (U i|0〉)⊗N ,
where

U = −e2πi/N
(

1/2 −
√

3/4√
3/4 1/2

)
.

Note that

U2 = e4πi/N
(

−1/2 −
√

3/4√
3/4 −1/2

)
,

and so the global phase ofU is chosen such that(U⊗N )3 = I. Also, we have〈ψi|ψj〉 = (−1/2)N for i 6= j.
We want to show that these states cannot be optimally distinguished usingN -party LOCC. To accomplish this, we will map

these three states to an ensemble of qutrit states known as the “lifted” trine ensemble [42]:

|L0(α)〉 =
√
1− α|0〉+

√
α|2〉

|L1(α)〉 =
√
1− α(− 1

2 |0〉 −
√
3
2 |1〉) +

√
α|2〉

|L2(α)〉 =
√
1− α(− 1

2 |0〉+
√
3
2 |1〉) +

√
α|2〉.

The value ofα is known as the “lifting angle” of the ensemble.

Lemma 11. For any fixedN , there is an isomorphic mappingϕ : |ψi〉 = (U i|0〉)⊗N → |Li(α)〉 with

α =
1

3

(
1− (−1

2
)N−1

)
,

for i = 0, 1, 2.

Proof: To construct this equivalence, first let

|z〉 = (3κ)−1/2
2∑

i=0

|ψi〉 (15)

whereκ is a normalization constant that will be given later. This defines our “axis” of rotation similar to|2〉 in the lifted trine.
Using the symmetry we have that

〈ψi|z〉 = (3κ)−1/2
2∑

j=0

〈ψ0|(U j)⊗N |ψ0〉

= (3κ)−1/2(1 + 2(−1/2)N),

whereκ = 1− (−1/2)N−1 is defined so that〈z|z〉 = (3κ)−1[3(1 + 2(−1/2)N)] = 1. We also have〈ψi|z〉 =
√
κ/3. We next

define

|ωi〉 :=
|ψi〉 − |z〉〈z|ψi〉√

1− κ/3

2WhenN = 2, it corresponds to the double trine ensemble given in (11).
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so that〈ψi|ωi〉 =
√
1− κ/3. Therefore,

|ψi〉 =
√
1− κ/3|ωi〉+

√
κ/3|z〉.

We have

〈ωi|ωj〉 =
〈ψi|ψj〉 − 〈ψi|z〉〈z|ψj〉

1− κ/3

=
(−1/2)N − κ/3

1− κ/3
= −1/2.

The {|ωi〉} satisfy the important property that
∑2

i=0 |ωi〉 = 0, and thus they constitute a linearly dependent set. We can then
establish an isomorphic mappingϕ by |ωi〉 ↔ U i|0〉 and |z〉 ↔ |2〉. As a result, theN -copy trine states can be identified with
the lifted trine states|ψi〉 ↔ |Li(α)〉 with lifting angleα = κ/3 = 1/3(1− (−1/2)N−1).

Theorem 12. For any finiteN , {|ψi〉}2i=0 cannot be optimally distinguished by LOCC.

Proof: Via the isomorphismϕ given in Lemma 11, the optimal POVM for distinguishing the|ψi〉 can be found by solving
the problem for the|Li(α)〉. Since the|Li(α)〉 represent aU -covariant ensemble, the optimal measurement is given by the
so-called “pretty good measurement” (PGM)3. The optimal POVM is given by the orthogonal projectors{|fi〉〈fi|}2i=0 where

|fi〉 :=
√

2

3
U i|0〉+

√
1

3
|2〉 ↔ |Fi〉 :=

√
2

3
|ωi〉+

√
1

3
|z〉.

The success probability is given by

1

3

2∑

i=0

|〈Fi|ψi〉|2 =

(√
2

3

√
1− κ/3 +

√
1

3

√
κ/3

)2

.

Note that this goes to 1 asN → ∞, which reflects the fact that the|ψi〉 become orthogonal in the asymptotic limit.
We now want to prove that the|Fi〉 cannot be perfectly distinguished byN -party LOCC. By Proposition 4, this sufficies

for proving that LOCC is unable to optimally distinguishN -copies of the trine states. Following the work of Ref. [9], the
POVM states can be perfectly distiniguished only if there exists an orthornormal basis{|b0〉, |b1〉} for some party such that,
for i = 0, 1, 2

|Fi〉 =
√
2/3|ωi〉+

√
1/3|z〉 = |b0〉|ηi0〉+ |b1〉|ηi1〉

and〈ηi0|ηj0〉 = 〈ηi1|ηj1〉 = 0 for i 6= j. Summing over the|Fi〉 and using the fact that
∑2

i=0 |ωi〉 = 0 gives|z〉 =
√
1/3(|b0〉|v0〉+

|b1〉|v1〉) where|v0〉 =
∑2

i=0 |ηi0〉 and |v1〉 =
∑2

i=0 |ηi1〉. It is clear that|v0〉 and |v1〉 are linearly independent or else by the
overall symmetry,|z〉 would be anN -partite product state, which it’s not (this can be seen by simply contracting|z〉 in Eq. (15)
with |0〉 for all but two parties and observing that the remaining bipartite state is entangled). Furthermore, from the definition
of |z〉, we have that both〈b0|z〉 and〈b1|z〉 are invariant under the action ofU⊗N−1. Hence so are|v0〉 and |v1〉. But then the
invariance of|z〉 underU⊗N and the linear independence of the|v0〉 and |v1〉 imply that |b0〉 = U |b0〉, which is impossible.
Therefore, the|Fi〉 cannot be decomposed as required for LOCC distinguishability.

What’s particularly interesting about theN -copy trine ensemble is that LOCCcandistinguish the states optimally asN → ∞.
To see this, consider the single party POVM consisting of three projectors{|φi〉〈φi|}2i=0 where |φi〉 = U i|1〉. Note that for
each outcome, one of the the trine states is eliminated. Hence, consider the LOCC protocol where each party performs this
measurement and then globally communicate their results. The probability that they are unable to eliminate two of the states
(i.e. they all eliminate the same state) is(1/3)N → 0.

This result is quite interesting when one considers theN -copy problem for two pure state ensembles. It has been proven
thatN -party LOCC can always obtain the optimal success probability [28].

4) N -Ensemble Copies:We finally consider ensembles of product states that can be formed by takingN copies of one
particular ensemble. In other words, the ensemble has the decomposition{ρi, pi}k

N

i=1 =
(
{σi, qi}ki=1

)⊗N
(compare this to the

previous section). The following is a very simple observation. Let{Πi}ki=1 be the optimal POVM for the underlying ensemble
{σi, qi}ki=1. Then it is clear thatΛ ≥ qiσi for all i implies thatΛ⊗2 ≥ qiqjσi ⊗ σj for all i, j. By induction we then see that(
{Πi}ki=1

)⊗N
is the optimal POVM for the ensemble{ρi, pi}k

N

i=1. In other words, in theN -party LOCC setting, the ensemble
{ρi, pi}k

N

i=1 can be optimally distinguished by each party simply perfoming the same local POVM{Πi}ki=1. In fact, the same
argument shows that we don’t need the overall ensemble to beN copies of the same underlying ensemble; rather it needs to
only be the tensor product ofN ensembles.

3Recall that the “Pretty Good Measurement” for an ensemble{|φi〉, pi}ki=1
is the POVM with elementspiρ−1/2|φi〉〈φi|ρ−1/2, where ρ =∑k

i=1
pi|φi〉〈φi| [43].
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V. UNAMBIGUOUS DISCRIMINATION

We now consider the task of unambiguous discrimination for two-qubit pure states. Recall that unambiguous discrimination
of an ensemble{|ψi〉, pi}ni=1 consists of a POVM{Πi}ni=0 with n+1 outcomes. Each state is assigned one of then outcomes,
and the remaining outcomeΠ0 corresponds to an inconclusive or ambiguous conclusion. The constraint is that for each of the
unambiguous outcomes, there is no decision error. In other words, 〈ψi|Πj |ψi〉 = 0 for i 6= j > 0. The task is to choose a
POVM that minimizes the probability of an inconclusive outcome. Explicitly, the problem is

min
Π

q =
n∑

i=1

pi〈ψi|Π0|ψi〉

s.t. 〈ψi|Πj |ψi〉 = 0 i 6= j > 0. (16)

Not all ensembles will allow for a feasible solution, and unambiguous discrimination is possible if and only if the states are
linearly independent [44]. For such ensembles, the elementsΠi are easy to characterize. LetS be the subspace spanned by the
|ψi〉, and take|ϕi〉 to be an orthonormal basis ofS. With respect to this basis, letR be thedim(S)× dim(S) matrix whose
columns are the|ψi〉. Linear independence of the|ψi〉 ensures invertibility ofR. After normalization, the rows ofR−1 are the
states|ψ̃i〉 with the property that〈ψ̃i|ψj〉 = 0 for i 6= j. Furthermore, up to an overall factor, these are the unique vectors in
S with this property4. As a result, the POVM elementΠi for unambiguous discrimination must have support onS̃i, which is
the space spanned by|ψ̃i〉 and elements lying inS⊥.

For unambiguous discrimination by LOCC, there is an added constraint to (16) that each of the POVM must be realized by
an LOCC protocol. In general, this added constraint will often make the problem infeasible. For general pure state ensembles,
Chefles has shown that unambiguous discrimination is possible by LOCC iff for each|ψi〉, there exists a product state inS⊥

i

[45]. Subsequent work on LOCC unambiguous discrimination was conducted in References [46], [47].
When the ensemble under consideration consists of four two-qubit pure states, unambiguous discrimination by LOCC

becomes possible iff each of the|ψ̃i〉 are product states [46]. Of course, four orthogonal productstate can be perfectly
distinguished by LOCC. But a non-trivial example consists of the ensemble

|ψ1〉 = |00〉, |ψ2〉 = |0+〉, |ψ3〉 = |+ 0〉, |ψ4〉 = |++〉, (17)

where|±〉 =
√

1/2(|0〉 ± |1〉). The states necessary for LOCC unambiguous discriminationare

|ψ̃1〉 = | − −〉, |ψ̃2〉 = | − 1〉, |ψ̃3〉 = |1−〉, |ψ̃4〉 = |11〉. (18)

On the other hand, the linearly independent states

|ψ1〉 = |00〉, |ψ2〉 = |0+〉, |ψ3〉 = |+ 0〉, |ψ4〉 = |11〉 (19)

cannot be unambiguously discriminated by LOCC, while they can be by a global POVM. To see LOCC impossibility directly,
note that the state lying orthogonal to|ψ2〉, |ψ3〉 and |ψ4〉 is

√
1/3(|00〉 + |01〉 + |10〉), which is entangled. Thus, we can

conclude that ensemble (19) demonstrates a type of nonlocality without entanglement, at least with respect to unambiguous
discrimination [46].

In contrast to four-state ensembles, the ability to unambiguously discriminate three states by global operations implies
feasibility by LOCC [47]. This follows from the fact that anytwo-dimensional subspace inC2 ⊗ C2 contains at least one
product state [33]. Nevertheless, there is still the question of whether the maximum global unambiguous probability1− q can
be achieved by LOCC.

A. Symmetric Ensembles

For symmetric product state ensembles, we can obtain an upper bound on the conclusive probability. By symmetric states,
we mean those that are invariant under the SWAP operationF, which acts on any product state|αβ〉 by F|αβ〉 = |βα〉.
Theorem 13. Let {|ψi〉, pi}i=1...3 be an ensemble of two-qubit linearly independent symmetricpure states with|ψ̃i〉 being dual
states satisfying〈ψ̃i|ψj〉 = 0 for i 6= j. If C(ψ̃i) ≥ |〈ψ̃i|ψi〉|2 for all i, then LOCC cannot obtain an unambiguous probability
greater thanpmax := max{p1, p2, p3}.

Proof: We will prove that this theorem holds for the more general class of separable operations. Let|Ψ−〉 = 1√
2
(|01〉−|10〉)

be the anti-symmetric state lying orthogonal to the ensemble states. Then, the conclusive POVM elementsΠi must take the
form

Πi = ai|ψ̃i〉〈ψ̃i|+ bi|Ψ−〉〈ψ̃i|+ b∗i |ψ̃i〉〈Ψ−|+ ci|Ψ−〉〈Ψ−|.
The total success probability of this POVM is given by

∑3
i=1 aipi|〈ψ̃i|ψi〉|2. Note that the|ψ̃i〉 lie in the symmetric subspace.

Our first task is to show that we can takebi = 0 without loss of generality. For theΠi to be an separable POVM, we need

4Note, here we demand that the dual states|ψ̃i〉 are normalized in contrast to the vectors used in the proof ofProposition 4.
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that theΠi can be expressed as a positive sum of product states. Then ifΠi is separable, so isFΠiF as well as the group
projectionτ(Πi) := (Πi+FΠiF)/2. Furthermore, we have

∑3
i=1 τ(Πi) ≤ I and also|〈ψ̃i|F|ψi〉|2 = |〈ψ̃i|ψi〉|2. Therefore, we

can replace the separable POVMΠi with the separable POVMτ(Πi) = ai|ψ̃i〉〈ψ̃i|+ ci|Ψ−〉〈Ψ−|, and the overall conclusive
probability remains unchanged.

Next, we compute the required values ofai and ci for eachΠi to be separable. It is not difficult to verify that, up to an
overall constant, the only two product states lying in the span of |ψ̃i〉 and |Ψ−〉 are |ψ̃i〉 ± C(ψ̃i)|Ψ−〉, whereC(ψ̃i) is the
concurrence of|ψ̃i〉. Thus, the separableΠi must take the formΠi = αi(|ψ̃i〉〈ψ̃i| + C(ψ̃i)|Ψ−〉〈Ψ−|). For

∑3
i=1 Πi ≤ I,

we need that
∑3

i=1 αiC(ψ̃i) ≤ 1. On the other hand, the overall conclusive probability is
∑3

i=1 piαi|〈ψ̃i|ψi〉|2. Hence, if
C(ψ̃i) ≥ |〈ψ̃i|ψi〉|2 for all i, then the total conclusive probability will be no greater than pmax.

As a simple example of this is the equiprobable ensemble of the three symmetric Bell states
√
1/2(|00〉 ± |11〉) and√

1/2(|01〉+ |10〉) [7]. Here |ψ̃i〉 = |ψi〉, and the conditions of Theorem 13 are met. Hence, the LOCC conclusive probability
cannot exceed1/3 while the global conclusive probability is1.

B. The Double Trine Ensemble

The converse to Theorem 13 does not hold in general. As an interesting example, we consider the double trine ensemble
(11), and show that LOCC and SEP obtain the same maximum conclusive probability, which turns out to be less than the
optimal probability feasible by global operations. Thus, the double trine ensemble demonstrates a very curious distinguishability
property: For minimum-error discrimination, LOCC< SEP= GLOBAL; For optimal unambiguous discrimination, LOCC=
SEP< GLOBAL.

Global and Separable Operations:The dual states of|ψi〉 = |si〉 ⊗ |si〉 in (11) can be computed as

|ψ̃0〉 = 3√
10
|00〉 − 1√

10
|11〉

|ψ̃1〉 = −
√

3
10 (|01〉+ |10〉) +

√
2
5 |11〉

|ψ̃2〉 =
√

3
10 (|01〉+ |10〉) +

√
2
5 |11〉.

Using theV = U ⊗ U symmetry, we can further simplify the problem. Note that{|ψ̃i〉} also demonstrate the symmetry
|ψ̃i〉 = V i|ψ̃0〉. Consequently, we have

1

3

2∑

k=0

〈ψk|Πk|ψk〉 =
1

3

2∑

k=0

〈ψk|Πk + VΠk−1V
† + V 2Πk−2(V

†)2|ψk〉,

and so we can replace any POVM{Π0,Π1,Π2,Π?} by

Π̂0 = 1/3(Π0 + VΠ2V
† + V 2Π1V

†)

Π̂1 = V Π̂0V
†

Π̂2 = V 2Π̂0(V
†)2

Π̂? = 1/3(Π? + VΠ?V
† + V 2Π?(V

†)2

= I−Π0 − V Π̂0V
† − V 2Π̂0(V

†)2. (20)

Thus,〈ψk|Π̂k|ψk〉 is constant for allk, and so without loss of generality our problem is the following:

max
Π≥0

〈ψ0|Π|ψ0〉

such that: supp(Π) = S̃0

2∑

k=0

V kΠ(V †)k ≤ I. (21)

For a separable POVM{Π0,Π1,Π2,Π?}, eachΠk is a convex combination of rank one product projectors, and sinceU ⊗U
maps product states to product states, the modified POVM{Π̂0, Π̂1, Π̂2, Π̂?} given by Eq. (20) will also be separable. Hence,
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our new optimization problem is

max
Π≥0

〈ψ0|Π|ψ0〉

such that: supp(Π) = S̃0

2∑

k=0

V kΠ(V †)k ≤ I

Π is separable

I−
2∑

k=0

V kΠ(V †)k is separable. (22)

We take
Π = a|ψ̃0〉〈ψ̃0|+ b(|ψ̃0〉〈Ψ−|+ |Ψ−〉〈ψ̃0|) + c|Ψ−〉〈Ψ−| (23)

so that〈ψ0|Π|ψ0〉 = a, the eigenvalues ofΠ are

{1
9
(5a+ 9c±

√
(5a− 9c)2 + 180b2)} (24)

and
∑2

k=0 V
kΠ(V †)k has distinct eigenvalues of

{4
3
a,

1

3
[a+ 9c±

√
(a− 9c)2 + 36b2]}. (25)

Putting aside the separability constraint, we thus see thatthe choicea = 3/4 andb = c = 0 is a feasible point which maximizes
〈ψ0|Π|ψ0〉. In other words, the optimal unambiguous probability for the double trine using global operations is3/4.

Now, to demand thatΠ is separable, we compute its concurrence. Recall that for a two-qubit mixed stateρ, its concurrence
is given byC(ρ) = max{0, λ↓1−λ↓2−λ↓3−λ↓4} where theλ↓i are the square roots of the eigenvalues (in decreasing order) of the
matrix ρρ̃, whereρ̃ = σy⊗σyρ∗σy⊗σy [31]. Without loss of generality, we can assume thatΠ is real, and it will be separable
if and only if its concurrence vanishes. SinceΠ is rank 2, this amounts to the two nonzero eigenvalues ofΠ(σy⊗σy)Π(σy⊗σy)
being equal. Hence, we obtain the following constraint:

0 = (a− 3c)2[(a+ 3c)2 − 12b2]. (26)

In addition, to this, we also need thatΩ := I −∑2
k=0 V

kΠ(V †)k is separable. However, first let’s focus on the optimization
only under the constraint of (26). We are thus left with two cases: (i)a = 3c and (ii) 12b2 = (a + 3c)2. First consider case
(ii). Substituting into Eq. (25), the task is to maximizea subject to3 ≥ a+9c+2

√
a2 + 27c2 anda+9c− 2

√
a2 + 27c2 ≥ 0.

The maximum is obtained at the boundary, which is the pointa = 3/8, b =
√
3/8, andc = 1/8. On the other hand, for case

(i) we maximizea subject to3 ≥ 4a+
√
2a2 + 36b2 and4a ≥

√
2a2 + 36b2. Again, optimality is obtained at the boundary,

but this time with the pointa = 1/2, b = 0, andc = 1/6.
Now we turn to the operatorΩ. The eigenvalues forΩ(σy ⊗ σy)Ω(σy ⊗ σy) are

t1 =1− 2

3
a+

2

9
a2 + 4b2 − 6c+ 18c2

+
2

9
(3− a− 9c)

√
(a− 9c)2 + 36b2,

t2 =1− 2

3
a+

2

9
a2 + 4b2 − 6c+ 18c2

− 2

9
(3− a− 9c)

√
(a− 9c)2 + 36b2,

t3 =
1

9
(3− 4a)2,

t4 =
1

9
(3− 4a)2.

It can be verified that for the pointa = 1/2, b = 0, and c = 1/6 we havet1 → 4/9, t2 → 0, and t3 = t4 → 1/9. The
concurrence ofΩ is given by

√
t1 −

√
t2 −

√
t3 −

√
t4 = 0. Thus, the optimal point for separability ofΠ is also a point in

which Ω is separable. So in summary, the optimal unambiguous probability for the double trine using separable operations is
1/2.
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LOCC Operations:We next describe an LOCC protocol that also obtains an unambiguous probability of 1/2. It is, in fact,
the one described in Section IV-B3. Consider the states

|s0〉 = |1〉

|s1〉 =
√
3

2
|0〉+ 1

2
|1〉

|s2〉 =
√
3

2
|0〉 − 1

2
|1〉.

Note that|〈s̃i|sj〉| =
√
3/2 if i 6= j and0 if i = j. It can be verified that the set

P =

{
2

3
|s0〉〈s0|,

2

3
|s1〉〈s1|,

2

3
|s2〉〈s2|

}

constitutes a valid POVM. The protocol consists of Alice andBob each performing the POVMP and comparing their results.
If they obtain different outcomes, then they know the state they share is the one distinct from each of their outcomes. For
instance if Alice obtains|s0〉 and Bob obtains|s2〉, then they can conclusively deduce that their state is|ψ1〉 = |s1〉 ⊗ |s1〉.
Thus, the only time they cannot determine their state is whenthey both obtain the same outcome. This occurs with probability:

1

3
·
∑

i6=j

(
2

3

)2

|〈si|sj〉|4 =

(
2

3

)2

· 2 · 9

16
= 1/2. (27)

Therefore, the optimal probability of unambiguous discrimination via LOCC is 1/2.

VI. CONCLUSION

In this paper, we have provided conditions under which various ensembles of two-qubit states can either be perfectly or
optimally distinguished by LOCC. These results significantly advance the current understanding of state discrimination for
two-qubit ensembles. For perfect LOCC discrimination, we provide new instances of necessary and sufficient conditionsthat
are much easier to verify than the condition given in [15]. Additionally, we have provided a necessary and sufficient condition
for which the two-qubit ensembles consisting of one pure state and one rank two mixed state can be perfectly distinguished by
separable operations; thus completing the previously missing piece in the perfect distinguishability setting. With this, perfect
discrimination of two-qubit ensembles by both LOCC and SEP operations is completely solved.

Most notably, we have observed sharp distinctions between ensembles consisting of two states and those consisting of
three states. First, we have shown thatalmost all two-qubit ensembles consisting of three pure states cannotbe optimally
discriminated using LOCC; in contrast,any two pure states can be optimally distinguished by LOCC [21].Furthermore, we
have demonstrated that theN -copy trine ensemble cannot be optimally distinguished by LOCC for any finiteN . Again, this
behavior is the complete opposite than if there were only twoN -copy states, which can be optimally distinguished by LOCC
[28].

We would like to emphsize the interesting connection between theN -copy trine ensemble forN ≥ 3 and Shor’s lifted trine
ensemble, where each positive integerN corresponds to a certain lifting angle [42]. This observation allows us to simplify the
computation by mapping theN -qubit trine states of higher dimensions into a three-dimensional subspace inR3.

Finally, we have also observed very bizarre distinguishability features for the double trine ensemble; namely, we haveshown
in this paper that for optimal unambiguous discrimination:LOCC=SEP<GLOBAL. This finding is rather different than a
previously obtained result that LOCC<SEP=GLOBAL when minimum error discrimination is considered [29]. This raises the
intriguing question of whether there exists certain ensembles for which LOCC<GLOBAL with respect to one performance
measure but LOCC=GLOBAL with respect to another. If the answer is positive, then the phenomenon of nonlocality without
entanglement might not be a property that depends solely on the underlying states themselves.
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