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When do Local Operations and Classical
Communication Suffice for Two-Qubit State
Discrimination?

Eric Chitambar, Runyao Duan, Min-Hsiu Hsieh

Abstract

In this paper we consider the conditions under which a givesemble of two-qubit states can be optimally distinguished
by local operations and classical communication (LOCC). Wggin by completing theerfect distinguishability problem of
two-qubit ensembles - both for separable operations and@ ©By providing necessary and sufficient conditions for thefgrt
discrimination of one pure and one mixed state. Then for th-known task of minimum error discrimination, it is showmat
almost alltwo-qubit ensembles consisting of three pure states camnaiptimally discriminated using LOCC. This is surprising
considering thatiny two pure states can be distinguished optimally by LOCC. Bpeattention is given to ensembles that lack
entanglement, and we prove an easy sufficient condition fenaa set of three product states cannot be optimally disghgd
by LOCC, thus providing new examples of the phenomenon knasvinon-locality without entanglement.” We next consider a
example of N parties who each share the same state but who are ignorastidéntity. The state is drawn from the rotationally
invariant “trine ensemble,” and we establish a tight cotinacbetween theN-copy ensemble and Shor’s “lifted” single-copy
ensemble. For any finit&/, we prove that optimal identification of the states cannoadigeved by LOCC; however &8 — oo,
LOCC can indeed discriminate the states optimally. Thisiésfirst result of its kind. Finally, we turn to the task of ur@guous
discrimination and derive new lower bounds on the LOCC ictusive probability for symmetric states. When applied he t
double trine ensemble, this leads to a rather differenindjatshability character than when the minimum-error bty is
considered.

Index Terms

LOCC, state discrimination, nonlocality without entamgnt, trine ensembles

I. INTRODUCTION

The ability to distinguish one physical configuration fromother lies at the heart of information theory. When quantum
systems are used for information transmission, messagesanded into quantum states, and the processing of thigrafion
in a faithful manner requires the encoded states to be digshable from one another. Hence, a fundamental topic amigun
information is the problem ddtate discriminationwhich investigates how well ensembles of quantum statedealistinguished
under various physical conditions.

One important operational setting in which questions ofimigiishability emerge is the so-called “distant lab” smeo.
Here, some multiparty quantum state is distributed to afatseparated quantum labs, and the various parties usg loc
measurements combined with classical communication t@ncy identify their state. This operational setting is als@wn
as LOCC (Local Operations and Classical Communication],the study of LOCC operations has played an important role
in developing our understanding of not only quantum infaioraprocessing, but also the nature of quantum entanglemen
itself. For instance, as demonstrated by the fundamergklaé quantum teleportation][1], viewing quantum commutica
in the LOCC setting allows us to cleanly separate entangksd &bits), qubits, and classical bits as distinct resesitbat can
be used for transmitting information between differenttigar Furthermore, the celebrated tasks of quantum keyilditibn
[2] and entanglement distillation ][3] are all proceduresf@ened within the LOCC paradigm. Yet at the same time, LOCC
operations can be viewed as a more basic concept than quamiamglement since a multipartite quantum state possesses
entanglement if and only if this state cannot be generated@@C operations [4],[15],[16].

As LOCC operations are just a subset of all possible physjsatations, certain state discrimination tasks becomedsiple
when the distant-lab constraint is imposed. For instancés ivell-known that a set of quantum states can be perfectly
distinguished if and only if the states are orthogonal. Faoltiparty states, this statement is still true; howeveg, measurement
used to discriminate the states may need to lgdobal measurement that coherently acts across all the subsydiemmany
cases, this global measurement cannot be implementedylabais making the states indistinguishable by LOCC unssre
identification error occurs (examples can be found in R&s.[8], [9], [10], [11], [12], [13], [14], [15], [16]). Sucha limitation
allows for the implementation of important informatioretiretic objectives such as data hidihg|[17],][18] and seshating
[19], [20]. For more general sets of states (possibly ndhemgyonal), one can quantify their distinguishability wsin variety of
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different measures, and in this paper, we consider botmihenum errorguessing probability and theaximum conclusivér
unambiguous) probability for a given ensemble. Both of ¢hiégures of merit are given in terms of some success probabili
that has been optimized over all possible measurementsn\Ah& OCC measurement can obtain the same success prgbabilit
as the global optimal, then we say that LOCC is able to optinthstinguish the ensemble with respect to the particutgureé

of merit, otherwise it cannot. The underlying question &ddn this paper is when it's possible for LOCC to performioat
state discrimination.

In general, this question is quite difficult due to the comjileof LOCC: the global communication among the parties
enables the choice of local measurement by one party at otieysar round to depend on the measurement outcomes of
all the other parties in previous rounds. It is often helgéulVisualize a general LOCC operation as a tree where each nod
indicates a particular choice of local measurement and &aghch corresponds to a particular sequence of measurement
outcomes. Deciding whether or not a certain discriminatask is feasible by LOCC therefore amounts to a consideratfo
all such possible trees.

Despite its complexity, partial progress has been madedenstanding conditions in which LOCC can perform optimatest
discrimination. Most notably is the discovery thaty two orthogonal pure states can be perfectly distinguistsaguLOCC
[21]. A similar result holds for pairs of non-orthogonaltst in which again, LOCC can obtain the optimal discrimioati
success probability that is physically possible; this igtfor both minimum error discrimination [22] and optimainctusive
discrimination [28], [24]. This finding is particularly mant to the current paper since we will show that, in shargrest,
almost all triples of two-qubit statesannotbe optimally distinguished by LOCC.

The fact that non-LOCC measurements can distinguish cegasembles better than any LOCC strategy may not be
overly surprising when the ensemble states possess eataeigl. This is because entanglement embodies some ndn-loca
property of two or more systems, and thus a global measurescenss all systems is needed in general to discriminatengmo
entangled states (this is essentially at the heart of sepsedcoding[25]). However, rather surprisingly, certaineables exist
consisting of unentangled states that cannot be distihgdi®ptimally using LOCCI[26]. This phenomenon is often ezll
“nonlocality without entanglement,” and it essentiallyfleets that fact that nonlocality and entanglement are twtergint
physical properties of multipartite quantum systems. Ustdeding the difference between the two is an importanblpro
in quantum information science, and thus a main objectivéhisf paper is to study, in particular, LOCC discriminatioh o
ensembles that lack entanglement.

Summary of Resultsthe body of this paper begins in Sect[oq 11l with a return te groblem of perfect state discrimination
among two-qubit orthogonal states. While our primary ies¢ris LOCC discrimination, we will also consider discririon
by the more general class of separable operations (SER.pfbblem has been solved for almost all types of ensembies, a
we solve the missing piece of perfect discrimination betwere pure state and one mixed state. Interestingly, we fiad th
SEP is more powerful than LOCC in the sense that certain tat@gnsembles are distinguishable by SEP but not LOCC. This
result allows us to later construct in Section IVIB2 exarspdé one pure product state and one (non-orthogonal) separab
mixed state that cannot be optimally distinguished by LOCGus, we obtain a large class of two-state ensembles which
demonstrate nonlocality without entanglement.

Section[1V investigates the problem of minimum-error disination between linearly independent states. However, w
prove that this seemingly more general problem actualluced to the problem of perfect discrimination of orthogastates.
This reduction therefore allows us to apply the results aftise[[V-Altoward the problem of minimum-error discriminat of
non-orthogonal (linearly independent) states. As a readtobtain il IV-A2 our main result that almost any threeesatannot
be optimally distinguished by LOCC. More precisely, if wdest a three-state ensemble by randomly choosing our staess
almost surely will LOCC fail to discriminate them as sucdelg as a more general global measurement. Seclions NFBE3]
then restrict attention to ensembles composed of unergdrajates. We are able to obtain a simple necessary conéition
when three product states cannot be distinguished optirbglLOCC. With this result, new examples of nonlocality vaith
entanglement can easily be constructed.

In Sectior IV-B3, we move beyond two-qubit ensembles andicken the optimal discrimination of three symmetNequbit
states. The specific ensemble we analyze isNheopy generalization of the celebrated double trine ensef@d]. We prove
that for any finite/V, the ensemble cannot be optimally discriminated us\rgarty LOCC. However a&v — oo, we give a
protocol that indeed achieves optimal (perfect) discration. This is quite different from thé&/-copy discrimination among
two possible pure states which can always be accomplishiahalfy by LOCC [28].

Finally, in SectionV, we consider the task of unambiguousimination by LOCC. We derive new upper bounds on
the LOCC success probability for ensembles of two-qubit mtnic states. With this, simple examples can be found when
LOCC is insufficient for optimal unambiguous discriminatioMe again consider the double trine and find that surpiiging
separable operations and LOCC operations perform equaly iw the task of unambiguous discrimination, a completely
different behaviour than when the figure of merit is the mimimerror probability[[29]. Before getting to all of these uits,
we first review some basic definitions and describe esserdiatepts for our investigation.



II. DEFINITIONS AND NOTATION

LetH = H1 ®...® Hy denote the underlyin]\g; Hilbert space for Anrpartite quantum system. Her#,, is the local system
of party k£ having dimensioni; so thatd = [[,_, d; is the total dimension. The set of bounded linear operatotiagion
‘H will be denoted byB(#) and1, is the identity element if3(7). The (one-copyjguantum state discrimination problem
involves the task of correctly identifying a quantum stdtattis randomly sampled from an enseméle- {p;, p;}?_,, where
pi € B(H) andp; is the probability of obtaining,. The “which state” classical information is extracted frtime sampled state
using a positive operator-valued measure (POVM), whichdslkction of positive semidefinite operatdis= {II,}? , acting
on B(H) such thaty" | II, = I,. The total identification success probability of the POYMis I1(&) := Y7, p; Tr[I;pi],
and theminimum error probabilityis given by

Porr(€) =min  (1-TI(E)). )

Here the minimization is taken over alloutcome POVMs, and a minimum can indeed be obtained sirecsghof POVMs
is compact.

For the task of unambiguous discrimination, an extra outdhy is appended to the set of POVMs, and an additional
constraint must be satisfied that[II,p,] = 0 wheneveri # j. Under this condition, no error will ever be made when guessi
the state; however, the outcome “0” represents an incomelusitcome and no guess is made on the state’s identity. The
minimum inconclusive probabilitis thus given by the following

Pinc(€) = min 2T1"[H0pi]
st. Tr[ILip;]=0 i#7>0. (2)

This time, the minimization is taken over gl + 1)-outcome POVMs.

We say the POVMII is separable(SEP) if for eachi, Tr”—n) can be expressed as a convex sum of product projectors
la1)(a1] & ... ® lan){an|, Where|ay)(ar| € B(Hx). The main interest in studying separable POVMs is that an{CCO
POVM is a separable POVM_[26], and therefore SEP offers aulisgfproximation to LOCC. However, there exists non-
LOCC operations that are nevertheless separable. SindeQh®1 elements of SEP contain no entanglement, studyingthes
non-LOCC separable operations provide one way to understensubtle difference between entanglement and nontycali

A general LOCC POVM is very complex and fortunately we wiltmeed a precise characterization of thém [30]. Roughly
speaking an LOCC protocol consists of successive local uneasnts which can each be described by a set of Kraus operato
{Mﬁk) @Ik, whereMﬁk) € B(Hy) and ZA(Mik))TMik) = I;. The notation reflects that parkyperforms a measurement
while the other parties act trivially. The measurement onite \ is announced to all the parties and some other party chooses a
local measurement to perform based on the informaXiathis process continues round after round. For the statgidimation
problem, the parties assign each state to a collection dilplesmeasurement outcome sequences, and they guesstéie sta
identity based on this assignment and what they happen tsurea

For most of this paper, we will only consider two-qubit sysg In such small dimensions, problems of distinguishigbili
become tractable, yet there is still enough degrees of dmefdr interesting phenomenon to emerge. A gengral2 pure
state|i)) can be uniquely represented by the 2 matrix ¢ given by|¢y) = I®|¥T), where|¥UT) is the maximally entangled
state|U+) = /1/2(|00) + |11)). One measure of the entanglement possessed i its concurrencewhich is defined by
C(w) = | det(y)| [B1.

The entanglement df ® 2 states has an additional feature of being completely detkcby the positive partial transpose
(PPT) criterion. For a bipartite matrix/, we letM" denote its partial transpose, which is defined by perforrttiegtranspose
operation on Bob’s system alone with respect to some fixeid.bagwo-qubit density matrix is separable (i.e. does naigass
entanglement) if and only if its partial transpose has naatieg eigenvalues [32].

A useful fact about two-qubit ensembles is that for any trogkogonal states, there exists a unique state orthogoradl t
three. Thus, for a given staté@), we will let {|®)}+ denote the orthogonal complement|df). Another important property
of two-qubit spaces is given by the first of the following tvexlnical lemmas. Both of these will be used heavily in Sectio
[M] and they each refer to “antiparallel” eigenvalues, grhare any two complex eigenvalues and z; related byz; = azs
for some negative real number

Lemma 1. SupposeS is a two-dimensional subspace such that the subspace jpwojét; is separable. Therb has an
orthonormal product basis. Furthermore, |if) and |®) are any two entangled orthogonal statesSrt, then (i) ®~! have
two anti-parallel eigenvalues, and (i) (¢') = C(®).

Proof: As Pgs is separable of rank two, it can be written Bs = xz|ab)(ab| + y|cd)cd|, wherez,y are positive numbers
and |ab), |cd) are two linearly independent product states spanifg3]. This linear independence ensures that the operators

{lab)(adl, |ab)(cd], |cd)(abl, [ed)(cd|}



are also linearly independent. Therefore, the condiff§n= Ps implies that|ab) and|cd) are orthonormal. To prove the final
assertion, note that whefihas an orthonormal product basis, so d6és Either S only contains product states, in which case
the lemma is trivially satisfied, or any two entangled orthiogl states irS+ will take the form|¢) = cos §|01) + €% sin §]10)
and|®) = —sin6|01) + ¢ cos 0|10). It can immediately be seen that these states have the samercence. Finally, a simple
calculation reveals that the eigenvaluesy@f—! are — tan 6 andcot #, which satisfies part (i) of the lemma. [ |

Lemma 2 (Duanet al. [34]). Let |¢)) and |®) be bipartite entangled pure states with> 0. Thenp(\) = [1)}v)| + \| PN D]
is separable if and only if (i))®~! has two antiparallel eigenvalues and ()= C(z))/C(®).

Proof: See Ref.[[34]. [ |

IIl. COMPLETING THE2 ® 2 PERFECTDISCRIMINATION PICTURE

We begin by providing a full solution to the perfect distimghability problem of two-qubit ensembles, both for septea
operations and LOCC. Note that this problem has been hesttiljied, so much of our work here will be a recollection of
previously known results. However, we do provide simplecaessary and sufficient conditions for some occasions theat ar
easier to use than those previous results. As perfect gisshability requires orthogonality of the states, the@nly a few
possible types of ensembles to consider. Specifically, wectassify the ensemblel;}_, according to the ranks of their
states, and so any ensemble of two-qubit states that canrbecthe distinguished belongs to one of the following clss
{1,1}, {1,1,1}, {1,1,1,1}, {1,2}, {1,3}, {1,1,2} and {2,2}. For instance, any ensemble of the tyfle 1,2} consists of
three orthogonal states with respective ramks, and?2.

In principle, the LOCC problem has been completely solvedhsy following lemma from Ref.[[15]. In it, the notation
Sch (p) denotes the minimal number of orthogonal product statessefioear span contains the supportpof

Proposition 3 ([15]). A set of orthogonal two-qubit stat§®, ...p,, } can be perfectly distinguished using LOCC if and only
if

> Schy(pi) < 4.
=1

The goal of this section is to reformulate this lemma in a mamsparent form for each class of two-qubit ensembles.
Additionally, we would like to compare this with the conditis needed for perfect discrimination by SEP. This latterstjon
has been solved, either explicitly or implicitly, in Ref.4]3for all cases except thgl, 2} ensemble, i.e ensemble of one pure
state and one rank two mixed state. For completion, we wiltldy review the LOCC and SEP discrimination conditions
class-by-class and then end with a treatment of {he2} case, since this is the previously missing piece in the perfe
distinguishability picture. Proofs are given for the casdsch may not have been explicitly addressed before.

Case{1,1} [21]: LOCC (hence SEP) distinguishability is always possible.

Cases{1,1,1,1}, {1, 3}, {1,1,2} [9], [B4]: LOCC and SEP distinguishability are both possible if andy/ahliff) all the
pure states are product states.

Proof: The {1,1,1,1} case is solved in Ref_[9] for LOCC and in Ref.[34] for SEP.

For the{1,3} case, let]y)) be the pure state in the ensemble. The necessity)obeing product state follows from the
fact that the SEP POVM elemfrdetecting|:)) must be the projectdr)) (| Conversely, whem) = |a)|b), a perfect LOCC
discrimination scheme consists of Alice and Bob measuninthé respective basegsa), |a@)} and {|b), |b)}.

For the{1, 1,2} case, we denote the pure states|by) and|ys), and as before, the POVM detecting each of these states
must be|yr) (1] and |¢2) (12| respectively. Hence, for a SEP POVM, we must have fifa} and |¢») are both product
states. The POVM elemeiii, detecting the mixed state must be a separable projector onto the supporp.ofhus, by
Lemmall,II, = |z)(z| + |y)(y| for orthonormal product statgs) and |y). But sincep is orthogonal toj¢);) and |¢5), the
set{|y1),|2), |z), |y)} consisting of orthogonal product states can only be of thefda)|b), |a)|b), [a)|b), |b)|b)}. Hence, a
perfect LOCC discrimination scheme again consists of Adicd Bob measuring in the respective bages$, [a)} and{|b), |b)}.

[ |

Case{2,2}: SEP and LOCC distinguishability are both possible iff thejgctors onto the supports of each of the mixed
states are separable.

Proof: The argument uses Lemrpéa 1 and follows analogously to the {dade2}. |

Case{1,1,1} ([9], [84]: LOCC distinguishability is possible iff two of the three &a are product states. For SEP, let
{|v:)}3_, denote the ensemble of three orthogonal stategd@hthe state orthogonal to all of them. Then thig) are perfectly
distinguishable by separable operations iff: ((i))®~! has two antiparallel eigenvalues for each entangled statand (ii)
Yo, Ch) = C(®).

Proof: The LOCC condition is given in Refl ][9] while the SEP criterics proven in Ref.[[34]. Examples of ensembles
are presented in Ref_[34] that satisfy the SEP distingbidihaconditions but not the LOCC conditions. Thus, SEPtigcty
more powerful than LOCC for two-qubit state discrimination [ |

1This implies the necessity for perfect LOCC discrimination



Case{1,2}: Let |¢)) be orthogonal to a rank-two statewith |®) being orthogonal to both. Thelw) andp are perfectly
distinguishable by SEP iff eithei)) is a product state, or the two conditions hold: (i) the matrik—! has two antiparallel
eigenvalues and (i’ () < C(®). In particular, when® is a maximally entangled state, any sueh andp are perfectly
distinguishable by SEP. For LOCC, the states are perfecitjnduishable iff eitheiv)) is a product state, or condition (i) is
satisfied and equality holds for condition (ii).

Proof: We first consider LOCC. Suppose tha} is entangled anfl)) andp are perfectly distinguishable. Th&ah, (¢) =
2 and Propositio]3 requires thdth | (p) = 2. Hence, the assumption of Lemiia 1 is satisfied on the suppertand thus
conditions (i) and (ii) are satisfied, with the latter being equality. Conversely, if the two conditions hold witfi(v) =
C(®) > 0, then Lemmd12 combined with Lemnid 1 implies that the suppbrt bas an orthogonal product basis. Thus
Sch (¢) 4+ Sch, (p) < 4 and so LOCC discrimination is possible. On the other handyjfis a product state, a perfect
discrimination protocol follows as in th€l, 3} case.

Moving to SEP, suppose that the two states can be perfestingduished by separable POVME, I — E}. From Theorem
1 of [34], we know that the operatdf must have the formt = )| + A|®)®|, whereA < 1. Then invoking Lemmal2
directly gives the two conditions. Conversely, wheneveihaee|)) and|®) satisfying (i) and (ii), we can construct a separable
operationE = [1)1)| + A\|®)X®|, whereX = C(v)/C(®), according to Lemmal2. It is not difficult to see tHat,1— £} can
perfectly distinguish the state)) andp. One final step is to verify thdt— F is also separable. AE is a separable non-negative
operator with rank two, it can be decomposed ifto= z|ab)ab| + y|cd)cd|, wherex,y are positive numbers andbd), |cd)
are two product state§ [33]. Next, observe thaand ET are equivalent up to a local unitary of forfa ® Ug. The unitary
Ug can be defined throughip|b) = [b*) andUg|d) = €*?|d*), where|b*) and |d*) are complex conjugate defined according
to any fixed orthonormal basis. That sucli/a exists follows from the preservation of inner producb|d)| = |(b*|d*}|. So
we see that the partial transposelof E is locally equivalent tal — E itself and hence must be non-negative. And in the
2 ® 2 case, PPT of — E implies its separability.

Finally, if |®) is a maximally entangled state, then #s< 2 matrix representatio® is equal to some& x 2 unitary U:
® = U. Notice that

Tr[p® '] = Te[UTY] = 2(P|y) =0,

we can conclude that®~! would have two antiparallel eigenvalues sirigé is entangled. Furthermore, sinc§®) = 1, the
maximal possible value for concurrence, ii) holds. This ptetes our proof. [ |

IV. MINIMUM ERRORDISCRIMINATION
A. General Linearly Independent Ensembles

We begin our discussion by recalling some general factstabbtumum error discrimination. For an ensemile, p; } ;,
a POVM{IL;}?, is optimal in minimum error discrimination if and only if — p;p; > 0 for all p;, in which the operator
A =371 pillip; is hermitian [35], [36], [37]. Sincé ", II; = I, we have

0="Tr[A— A= Te[I;(A - pjp;)] = > _ Tr[(A — p;p;)I;]. 3)
J=1

j=1
As A —p;p; > 0 and

Tr[I1; (A — pjp;)] = Tr[(A — pjpi)L;]
= Te[I1/* (A — p;p)IL/ %] > 0,
we, in fact, must have
(A = pjpj) = (A = pjp;)Il; = 0. (4)

Using these fundamental properties of the optimal POVM wet generalize a result given in Ref.[29], which itself is
based on work by Mochom [38]. This proposition offers the kegl used throughout most of this section.

Proposition 4. Let & = {p;,p;}!, be an ensemble of linearly independent states; i.e. fortsgledecompositiong,; =

> i1 Nijlig) (Wiz], the [ib;) are linearly independent. Lef be the subspace spanned by the;), and let P, be the
optimal minimum error probability in discrimination. Thehere exists a unique decomposition$f= S; & S. & ... ® S,
with \S; having dimensiom; such that a POVM can obtaift,,; on £ if and only if it can perfectly distinguish the normalized
subspace projectorg-Ts,, ~Ts,,....—Ts,.

Proof: Our argument proceeds like the one in Refl[29]. As fihg) are linearly independent, there exists a set of dual
vectors|i;;) such that(y;;|vre) = dixd;e. Let {II;}7_, obtainP,,, on . Taking Y5 to be the projector onté' and defining
II; = TsII; Y, it is obvious that the POVMIL;, 1 — Ts}7_, is also optimal for€. Thus thell; satisfy

I (A —pip;) = (A — pip)IL; = 0, (5)



where A = TsATs. We next observe that the vecto{ﬁ [vk)} i, are linearly independent for eagh For suppose
that 22" akH |w3k> = 0 for some nonzeray,. Then we could contract both sides af — pjp; > 0 with the vector

l0j) = Zkil 3=[tjx) to obtain

0< (el (K= X0 Auelogedwel) o) = — 30 122

i1 Pidik

Hence, the space spanned {ﬁj|wjk> ., has dimension;. Now, applyingHj(A —pjpj) =0in Eq. (B) t0|{/;1-k> gives
I '(pi)\ikﬁ'|¢ik>) = 5ijpi)\ikﬁ'|¢ik>- (6)

Thus, for everyl < k <r;, the elemenﬂ [tir) lies in the kernel 01'1'[ for ¢ # j, while I, [1ix) is an elgenvector o]‘I with
eigenvalue +1 when = j. Thus II; must be the projector ont§;, the r;-dimensional subspace spanned{lﬂqh/)lk}},C 1-
Addltlonally, we have thatl; H = 5UH Clearly then for the original POVMIL }7, we haveTr[1 -, 1, ;] = di;, where

Ts, = H is the projector ontd;. Hence, the POVM can perfectly distinguish the normahzekissace prOJectoréTs

Conversely, if a POVM(X; }", perfectly dlstlngwshe$ TS }7 1» then we must hav& sX; Tg := E = Tg,, which means
that the{X,;}" , obtainsP,,, on €.

To prove uniqueness, suppose tma} *, and {H’ ', are two optimal POVMs on the subspaSe Then any convex
combination{ \IT; + (1 — MIT 37, will also be optimal. But as shown above, optimality reqsiteatll;, H’ and Il +(1— /\)H’
are projectors onto some- dlmenS|onaI subspace of. This is possible only ifl; = H’ [ |

1) Conditions of LOCC Optimality for Two-Qubit Pure Statésd now apply Propositi04 to the LOCC discrimination
of two-qubit pure ensemblel§y;), p;}7 ;. As we only consider linearly independent ensembles, atsijo: < 4. In the pure
state case, the subspace projectbgs correspond to an orthonormal bagig; )} , for the space spanned by thg;). Thus,
any LOCC POVMII; optimally distinguishes thi);) if and only if it can perfectly dlstmgwsh thig;). However for two-qubit
ensembles, the conditions for perfect discrimination agnorthogonal states have already been proven by Walgate arayH
[9]. We thus obtain the following.

Proposition 5. Consider an ensemble of linearly independent two-qubiestgi;), p;}*,. If n = 3, then an LOCC protocol
can optimally discriminate the ensemble (in the minimuroresense) if and only if the statd$g;)}? , corresponding to the
projectors s, = |¢;){¢;| described by Propositionl 4 contain at least two productesatfn = 4, then all of the|¢;) must
be product states.

Equivalently, forn = 3 (resp.n = 4) LOCC feasibility requires the decompositich= S; @ .. ® S,, of Propositior# to
consist of at least two (resp. four) tensor product subspakpplying this result is still rather difficult since theappears to
be no easy method for determining whether or not the optif@IN® projectors|o;){¢;| have product state form. However,
product POVMs belong to the more general class of separaDlév3, and for two-qubit systems, separability is capturgd b
the PPT condition: a two-qubit positive operafadt is separable if and only i/ > 0, whereI' denotes the partial transpose
operation[[32]. Since we know that the optimal POVM is a ueigank one projective measurement, and the only PPT rank
one projectors are product projectors, we thus obtain thewimg.

Proposition 6. Let {|+;),p;}?, an ensemble of linearly independent two-qubit states Bgdhe projector on the subspace
spanned by theéy;). Then the ensemble can be optimally distinguished by LOG®dfonly if the following semi-definite
program is feasible: Lef\ = Z oI (], Vi=1,2,--- n

A — pili)api| > 0,
subject to
I, >0 and AT = A;

In addition, ifn = 3 :
(YsII\Ys)" >0 for at least two € {1,2,3}.
if n=24:
(YsI\Ys)" >0 forall A e {1,2,3,4}.
2) LOCC is Not Optimal for Almost All Pure Three-State EnsesibProposition 6 at least makes it a computable task
to decide whether or not LOCC can achieve the optimal minineurar discrimination probability. Nevertheless, we cae us
a randomized argument to show that for general instancesSBP of Propositiofil6 is not feasible. More precisely, if we

randomly choose a two-qubit ensemble consisting of at lgmet states, almost surely there will be no LOCC protocat th
optimally discriminates them.



We begin by fixing an algorithm for generating a random twaijensemble of three pure states. The first step consists of
choosing a triple(p1, p2, p3) from the uniformly distributed probability simplex. We thassume that some distribution has
been chosen and is fixed. The protocol then consists of timéependent samplings froti(2 ® 2), the two-qubit unitary
group, according to the uniform and unitarily invariant Halgstribution onl/(2 ® 2) [39]. Applying each of these unitaries
to the statg00) generates an ensemifieof three two-qubit states. Hence, the probability that adeemly chosen ensemble
belongs to some (measurable) family of ensemblds P(r) = [1.(£)d€, wherel is the indicator function. Giver,
we add one additional randomization step: another unitang randomly chosen fror¥(2 ® 2) and applied tc€. In other
words, we transforn€ — UE, whereU¢ is the ensemble obtained by applyibgto each element i€. In summary, letting
Us :={UE : U € U(2® 2)}, our random ensemble is generated by first choo§iremd then choosing a randoff€ € Us.
Unitary invariance of the Haar measure ensures théthas been uniformly selected among all possible ensemblé&ws &t
states:

P(r) = / 1, (E)dE = / / 1,(€)dEdU

://ILUTT((S)deU
= / / 1. (UE)dUdE, ()

where the third equality follows fron#(7) = P(UTr).
The purpose of the extra randomization step is seen by thewioly lemma, which essentially reduces the problem of
randomly choosing an ensemble to randomly choosing thrib®gonal states.

Lemma 7. Let B be the collection of all tripleg|¢:), |$2), |¢3)) of pairwise orthonormal two-qubit states. For each lingarl
independent ensembfeof three states, there is a bijectiak : Us — B such that(A(U€&))?_, gives the optimal measurement
basis for distinguishing the ensembile.

Proof: For €& = {|¢;),p;}3_,, Propositio# ensures the existence of stateg)?_; =: A(£) € B that form an optimal
detection basis. From the conditi@lepi|¢i><¢i|wi><wi| — pi|Yw) (Y| > 0, we see that the optimal measurement basis for
UE is given by the sequend@/|¢;))3_,, which is A(UE) € B. Since(U|¢p;))3, = (V]g:))i, iff VIU is the identity, the
mappingA is injective. Conversely, any eleme(jty}))?_, in 8 can be related ta\(£) = (|¢:))7_; by a unitaryV, and so
the measurement basis given @y.))2_; is optimal for the ensembl&& € Uge. Hence,A is surjective. [ |

Putting it all together, for a fixed distributiofp, p2, p3), let L be the set of all two-qubit linearly independent ensembles
that can be perfectly distinguished by LOCC. Since the dubsall linearly dependent ensembles has measuiie suffices
to only consider the probability of randomly choosing anesnble belonging td.. We haveP(L) = [ [ 1.,(U&)dUdE, and
by Propositio b and the previous Lemmpal . (U&)dU is precisely the probability of randomly choosing an orttional
triple (|¢1), |#2), |¢3)) such that at least two of them are product states. This oetitinsprobability zero, and thus we prove
the following.

Theorem 8. Three randomly chosen two-qubit pure states almost sugiyat be discriminated optimally by LOCC.

B. Discrimination of Ensembles that Lack Entanglement

It is especially interesting to consider ensembles thatagossess any entanglement. When each of the states areiprod
states, one might naively suppose that the ensemble alke &ty sort of nonlocality, and thus LOCC should be able to
achieve optimal discrimination. However, this intuiticurris out to be incorrect as there exists product state erissritfiat
cannot be optimally distinguished by LOCC[26]. Below, wes iropositio ¥ to prove new instances of nonlocality withou

entanglement in two-qubit systems.
1) Three StatesFirst we turn to ensembles of three product states. Thevollp provides a necessary condition for optimal

discrimination by LOCC.

Theorem 9. Suppose thaf|iy) := |aa)|Br), pa}5—; (pa > 0) is some linearly independent two-qubit product state erie
that spans{|®)}+. Let \,,.;,,(®) denote the smallest squared Schmidt coefficien®pf If

PiAin () > 05 |l )* + pi (i) |2
for every choice of, j, k such that{s, j, k} = {1, 2,3}, then the ensemble cannot be distinguished optimally émtmimum
error sense) with LOCC.

Proof: Following Proposition 2, if there exists an LOCC protocdttiobtains optimality, then we have that) and|s)
are product states for somje# k € {1,2,3}. It is then easy to shov [34] th&t(¢;) = C(®), whereC(¢;) is the concurrence
of |¢;) [31]. Since® and ¢; have the same concurrence, they also have the same Schreffitieats. Optimality requires

D PAlOA) (Baln) (| + pildi) (i) (Wil = pilabi) (.

A=j.k



Contracting both sides bly);) gives
D oAl da) (dala) (Walhi) > pi(1 — (il di)[?). ®)

A=j,k
Applying the Cauchy-Schwarz inequality on the LHS [of (8)egiv

D pa(ilda)(@aln) (wal )

A=7,k

< 0 Kwilon 2 | Rl wla)?

A=j,k A=j,k

= VI=1Wilod) 2 [ Y p3I(ila)?

A=7,k

< [ Bl ©)

A=7,k

Hence, Egs.[{8):(9) give

> BRlwilon) 2 = pi (1= (il i) )

A=j,k

where the second inequality follows from the fact thaf) is a product state and therefore its overlap with) can be no
greater than the largest Schmidt coefficieni®f). This gives the desired necessary condition for LOCC disicition. MW
Theoreni® is very useful for constructing ensembles thaioaestnate “non-locality without entanglement”. Despit@sisting
of product states, ensembles satisfying the condition &fofén® possess some non-local aspect since LOCC is insnffici
for optimal discrimination. Furthermore, we can obtainrapées in which separable operations attain optimal disod@ton
but LOCC cannot. For this, we rely on the fact that, as meetioim Sectiori 1ll three states can be perfectly distinguishe
by separable operations iff their concurrence sums to tinewroence of their common orthogonal complement state célen
separable operations become strictly more powerful tha@CQdor distinguishing a set of product statps) that satisfy
TheorenT® while their corresponding detection states satisfny’:1 C(¢i) = C(P).
An important example of such an ensemble is the so-callediSiotrine” ensemble [27], which is given by a uniform
distribution of the state);) = |s;) ® |s;) for i =0, 1,2 where

s0) = [0},
) = =210 - L),

Lo, V3
s2) = —310) + 2210, )

The inability for LOCC to optimally discriminte the doublerte states follows from Theorelh 9 and the fact tHa ;)| =
1/16, while A2, (®) = 1/4. Thus,1/4 > 1/8. On the other hand, it can be easily compufed [27]| [40], (2@} the detection
states|¢;) each have a concurrence bf3. Since the maximally entangled singlet state lies orthagom each of thegv;),
we indeed hav@f’:1 C(¢;) = C(®) = 1. Hence, a separable POVM can optimally discriminate theb#otrine ensemble.
In Ref. [29], an even stronger result was proven that a firde gxists between the best achievable LOCC success prinjabil
and the optimal probability achievable lapy physically implementable LOCC operation. In Secfion TV-B& generalize the
double trine ensemble to i¥-copy form.

2) Discrimination of One Pure Product State and One Rank Tejagble State:n this section, we apply Propositioh 4

to a mixed state discrimination problem. Consider the feilg orthonormal basi§| ¥ ~), |U*),|sT(0)), |s~(0))} where
[0*) = v/1/2(01) = [10)),
|sT(0)) = cos8]00) + sin ]11),
[s7(0)) = —sin §]00) + cos 0|11) (12)
for 0 < 6 < 7/2. The task is to optimally distinguish the following two stat
|9) (| = 00)(00],

p(0) (IsT(0))(sT ()] + sin 20[wT) (W), (13)

T 1+sin20



The concurrence ofs*(#)) is 1 + sin 26, and so by LemmBl2(#) is separable for any choice 6f We note that

1
p(r/4) = (I + )+ +[+]= =)=~ (14)
and the states reduce to the pair studied in Ref. [41].

Lemma 10. For 0 < 0 < 7/2, the state$00) and p(6) given with arbitrary a priori probability can be distinguigd optimally
by SEP but not by LOCC.

Proof: We first use Propositiofl 4, to translate the problem into dngeofect discrimination between orthogonal states.
We can easily decompose the hermitian operate(d) — p2|00)(00] into its positive and negative eigenspaces:

p1p(8) — p2(00){00] = a| ) (TF| + bls™(0))(s*(9)| — c|s~(9)) (s~ (O)]

for positive numbers., b, c and withd # 0, /2, since0 < # < w/2 (an explict formula ford can be computed but is irrelevant
for our purpose). Optimal discrimination ¢0) and p(#) thus amounts to perfect discrimination of the state(d)) and the
normalized projectoR Y, where Y = [UF)(UF| + [s7(6))(sT(F)|. We have thatC(s~(f)) < 1 which, by case{1,2} of
Sectionll, implies that SEP achieves perfect discrimarabut LOCC does not. [ |

To our knowledge, this is the first time a pair of states havenbt&hown to be optimally distinguishable, in the minimum
error sense, by SEP but not LOCC. Réf.][41] shows a distihgibigity gap for|00) and the mixed state given by Ef.{14),
but with respect to a special type of unambiguous discritionaneasure.

3) N-Copy Trine EnsembleConsider the equiprobable ensemblefqubit statéd {|;)}2_, with [¢;) = (U%]0)®N,

where
U — _e2mi/N ( 1/2 —m>
V3/4 1/2 ’
Note that
U2 = gAmi/N (—1/2 —\/ﬂ)
V34 12 )7

and so the global phase 6f is chosen such thdt/®")3 = I. Also, we have(y;|v;) = (—1/2)Y for i #£ j.
We want to show that these states cannot be optimally disghgd usingV-party LOCC. To accomplish this, we will map
these three states to an ensemble dfigstates known as the “lifted” trine ensemhle][42]:

Lo(a)) = VI —al0) + Val2)

[L1(0)) = VI =a(=3[0) = *2[1)) + val2)

[L2(@)) = VI = a(=50) + 1) + Val2).
The value ofa is known as the “lifting angle” of the ensemble.

Lemma 11. For any fixedN, there is an isomorphic mapping: |¢;) = (U?|0))®Y — |L;(«)) with
I N O Ry

Proof: To construct this equivalence, first let

fori=0,1,2.

2
|2) = (35) 72> i) (15)
1=0

wherex is a normalization constant that will be given later. Thidimles our “axis” of rotation similar td2) in the lifted trine.
Using the symmetry we have that

(Wilz) = (35) 72 (ol (U)®N|aho)

j=0
= (3r) 721+ 2(-1/2)Y),

wherex = 1 — (—1/2)N -1 is defined so thatz|z) = (3x)"1[3(1 +2(—1/2)")] = 1. We also have;|z) = \/k/3. We next

define _ 1) = [l

i 1-k/3

2When N = 2, it corresponds to the double trine ensemble givern (11).
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so that(y;|w;) = /1 — /3. Therefore,
Vi) = V1 = K/3lwi) + VK/3]2)

We have
(wilw;) = (Vilthy) — (Pal2) (z]1;)
B 1-k/3
(=12 —K/3
R a e

The {|w;)} satisfy the important property th{t:fzo |wi) = 0, and thus they constitute a linearly dependent set. We cam th
establish an isomorphic mappirgby |w;) <+ U?|0) and|z) « |2). As a result, theV-copy trine states can be identified with
the lifted trine statesy;) < |L;(«)) with lifting anglea = x/3 = 1/3(1 — (=1/2)V 1), ]

Theorem 12. For any finite N, {|¢;)}7_, cannot be optimally distinguished by LOCC.

Proof: Via the isomorphisny given in LemmaIll, the optimal POVM for distinguishing thle) can be found by solving
the problem for theL;(«)). Since the|L;(«)) represent d&/-covariant ensemble, the optimal measurement is given &y th
so-called “pretty good measurement” (PC@M’}'he optimal POVM is given by the orthogonal projectdts;)(f:|}?_, where

|fi) = \/%Uilm + \/g|2> < |F) = \/glwz? + \/gld

The success probability is given by

%Z: A <\/> 1—r/3 +\[\/_>

Note that this goes to 1 a¥ — oo, which reflects the fact that the);) become orthogonal in the asymptotic limit.

We now want to prove that thg;) cannot be perfectly distinguished By-party LOCC. By Propositiofil4, this sufficies
for proving that LOCC is unable to optimally distinguisti-copies of the trine states. Following the work of Réf. [9let
POVM states can be perfectly distiniguished only if therestsxan orthornormal basi§by), |b1)} for some party such that,

fori=0,1,2
|F3) = V/2/3|wi) +\/1/3]2) = |bo) |770 )+ |b1>|771>

and(nj|3) = (ni|nl) = 0 fori # 5. Summing over théF;) and using the fact th@l o lwi) = 0 gives|z) = \/1/3(|bo)|vo) +
|b1)|v1)) where|vg) = 212:0 Ins) and|vy) = ZZ _o|nt). Itis clear thatjvy) and|v;) are linearly independent or else by the
overall symmetry|z) would be anN-partite product state, which it's not (this can be seen p$y contractingz) in Eq. (15)
with |0) for all but two parties and observing that the remaining Hifmstate is entangled). Furthermore, from the definition
of |z), we have that botlib|2) and (b;|z) are invariant under the action 6f*~~!. Hence so arév,) and|v;). But then the
invariance of|z) underU®" and the linear independence of thg) and|v;) imply that |bg) = U|b), which is impossible.
Therefore, the F;) cannot be decomposed as required for LOCC distinguiskabili [ |

What'’s particularly interesting about thé-copy trine ensemble is that LOG&ndistinguish the states optimally &6 — cc.

To see this, consider the single party POVM consisting oéehprojectors{|¢;)(¢:|}7_, where|¢;) = U’|1). Note that for
each outcome, one of the the trine states is eliminated. éJeronsider the LOCC protocol where each party performs this
measurement and then globally communicate their resufits. probability that they are unable to eliminate two of thetest
(i.e. they all eliminate the same state)(is/3)" — 0.

This result is quite interesting when one considers Aheopy problem for two pure state ensembles. It has been prove
that N-party LOCC can always obtain the optimal success prolgi#8].

4) N-Ensemble CopiesWe finally consider ensembles of product states that can tyeeid by taking/N copies of one
particular ensemble. In other words, the ensemble has ttm*rnimsition{pi7pi}§;vl = ({Ui,qi}le)@v (compare this to the
previous section). The following is a very simple obseatiLet {II;}%_, be the optimal POVM for the underlying ensemble
{oi,q;}F_,. Then it is clear that\ > ¢;o; for all i implies thatA®2 > gqiqjo; ® o; for all 4, j. By induction we then see that
({Im e )® is the optimal POVM for the ensemb{e)z,pz}l 1- In other words, in theéV-party LOCC setting, the ensemble
{pi, p:}¥_, can be optimally distinguished by each party simply perfogrthe same local POVMII; }%_,. In fact, the same
argument shows that we don’t need the overall ensemble W loepies of the same underlying ensemble; rather it needs to
only be the tensor product @f ensembles.

SRecall that the “Pretty Good Measurement” for an ensemfle;), p; }*
Zz_l pil¢i){(¢i| [43].

k_| is the POVM with elementsp;p=1/2|¢;){(¢:|p~ /2, where p =
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V. UNAMBIGUOUS DISCRIMINATION

We now consider the task of unambiguous discriminationia-¢ubit pure states. Recall that unambiguous discrinanat
of an ensemblé|;), p;}1~, consists of a POVMIL,; }* , with n+ 1 outcomes. Each state is assigned one ofitlseitcomes,
and the remaining outcorriéo corresponds to an inconclusive or ambiguous conclusioa.cimstraint is that for each of the
unambiguous outcomes, there is no decision error. In otleedsy(i;|II;];) = 0 for ¢ # j > 0. The task is to choose a
POVM that minimizes the probability of an inconclusive autte. Explicitly, the problem is

min ¢= > pi (il o)
i=1

Not all ensembles will allow for a feasible solution, and omguous discrimination is possible if and only if the statee
linearly independen{[44]. For such ensembles, the eleniénare easy to characterize. L&tbe the subspace spanned by the
[v;), and take|p;) to be an orthonormal basis f. With respect to this basis, l6t be thedim/(S) x dim(S) matrix whose
columns are théy);). Linear independence of the;) ensures invertibility of2. After normalization, the rows oR~! are the
states|wz> with the property tha(wz|wj> = 0 for i # j. Furthermore, up to an overall factor, these are the unigaetovs in

S with this propertﬂ As a result, the POVM elemeiit; for unambiguous discrimination must have supportS@nwmch is
the space spanned by;) and elements lying ir5.

For unambiguous discrimination by LOCC, there is an addetstcaint to [I6) that each of the POVM must be realized by
an LOCC protocol. In general, this added constraint wilenftmake the problem infeasible. For general pure state dailesm
Chefles has shown that unambiguous discrimination is plesBipLOCC iff for each|t;), there exists a product state di-
[45]. Subsequent work on LOCC unambiguous discriminati@s wonducted in Referencés[46],1[47].

When the ensemble under consideration consists of fourgwmt pure states, unambiguous discrimination by LOCC
becomes possible iff each of the;) are product states [46]. Of course, four orthogonal proditate can be perfectly
distinguished by LOCC. But a non-trivial example considtshe ensemble

|¢h1) = 100), [¥2) = [0+), ¥s) = +0), Ya) = [+ ), a7
where|£) = /1/2(]0) + |1)). The states necessary for LOCC unambiguous discriminatien

1) = |- -), [2) = | = 1), s} = [1-), [ha) = [11). (18)
On the other hand, the linearly independent states

1) = 100), [¥2) = [0+), ¥3) = [ +0), [¥a) = [11) (19)

cannot be unambiguously discriminated by LOCC, while thay be by a global POVM. To see LOCC impossibility directly,
note that the state lying orthogonal @), |«3) and [¢4) is \/1/3(|00) + |01) + |10)), which is entangled. Thus, we can
conclude that ensemblB_{19) demonstrates a type of noitlowdathout entanglement, at least with respect to unamdigu
discrimination [46].

In contrast to four-state ensembles, the ability to unamnngly discriminate three states by global operations igspl
feasibility by LOCC [47]. This follows from the fact that artywo-dimensional subspace i@i> @ C? contains at least one
product state[[33]. Nevertheless, there is still the goastif whether the maximum global unambiguous probability g can
be achieved by LOCC.

A. Symmetric Ensembles

For symmetric product state ensembles, we can obtain arr ingped on the conclusive probability. By symmetric states,
we mean those that are invariant under the SWAP operdtjamhich acts on any product stafes) by F|las) = |Sa).

Theorem 13. Let {|v:), p;i }i=1...3 be an ensemble of two-qubit linearly independent symmgtrie states Withi);) being dual
states satisfyingy;|y;) = 0 for i # j. If C(1h;) > |(i|1s)|? for all 4, then LOCC cannot obtain an unambiguous probability
greater thanp,,q, := max{p1, p2, ps}.

Proof: We will prove that this theorem holds for the more generad<laf separable operations. L[&t ) = %(|01>— [10))
be the anti-symmetric state lying orthogonal to the ensemstdtes. Then, the conclusive POVM elemdrifsmust take the
form

T = aq s (s Bil 0 ) (] + 05 [0a) (B | + |0 )(T .

The total success probability of this POVM is given Eﬁ,l a;pil( ¢z|¢z>|2 Note that thqzm lie in the symmetric subspace.
Our first task is to show that we can take= 0 without loss of generality. For thH; to be an separable POVM, we need

4Note, here we demand that the dual sta{és} are normalized in contrast to the vectors used in the prodfropositior .
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that thell; can be expressed as a positive sum of product states. TH&nig separable, so iBIL;IF as well as the group
projectionr(I1;) := (II; + FIL;F) /2. Furthermore, we havE:?:1 7(I1;) < T and also|(y;|F|v;)|? = [{(¥;]1;)|>. Therefore, we

can replace the separable POV with the separable POVM(IL;) = a;|;) (15| 4 ¢;|¥~)(¥~|, and the overall conclusive
probability remains unchanged.

Next, we compute the required valuesqfandc; for eachll; to be separable. It is not difficult to verify that, up to an
overall constant, the only two product states lying in tharspf|¢;) and |U—) are 1) + C ()W), WhereC(ujz) is the
concurrence owz) Thus, the separabll; must take the formil; = a;(|4;)(vi| + C(4:)| @) (T~ ]). For 320 TI; < I,
we need thatz et C(1;) < 1. On the other hand, the overall conclusive probabllltyzg 1pzozz|<1/)1|¢z>|2 Hence, if

(1/%) 2 |<¢z|1/)1>|2 for all ¢, then the total conclusive probability will be no greatearitp,, ... [

As a simple example of this is the equiprobable ensemble efttiiee symmetric Bell stateg/1/2(]00) + |11)) and
V/1/2(101) +[10)) [7]. Here |¢;) = |¢;), and the conditions of Theorem]13 are met. Hence, the LOCClasine probability
cannot exceed /3 while the global conclusive probability is.

B. The Double Trine Ensemble

The converse to Theorem]13 does not hold in general. As arestieg example, we consider the double trine ensemble
(11), and show that LOCC and SEP obtain the same maximum usivel probability, which turns out to be less than the
optimal probability feasible by global operations. Thirg touble trine ensemble demonstrates a very curiousglissinability
property: For minimum-error discrimination, LOCE SEP= GLOBAL; For optimal unambiguous discrimination, LOCE
SEP < GLOBAL.

Global and Separable Operationghe dual states ofi);) = |s;) ® |s;) in (1) can be computed as

[0} = 25100} — A1)
) = /3 01) + [10)) + /2 10)
) = /3 (01) + [10)) + /2]11).

Using theV = U ® U symmetry, we can further simplify the problem. Note tt{@%} also demonstrate the symmetry
[v;) = V¥1). Consequently, we have

1

2 2

1

3 > (k| lpr) = 3 > Wk + VI VT4 V2o (V)2 [eh),
=0 k=0

and so we can replace any POV, I1;, I, I } by
Iy = 1/3(My + VILVT + V211, V1)
I, = VI VT
I, = V2, (V)2
I, = 1/3(I, + VIL VT 4+ V2L, (V)3
=1—1Iy — VII,VT — V2IIy (V)2 (20)
Thus, (43|11 |¢r) is constant for all:, and so without loss of generality our problem is the follogi

max (1o [M[abo)

such that: supp(Il) = Sy
2
S vV <L (21)

For a separable POVNIIIy, I1;, [T, I1; }, eachll; is a convex combination of rank one product projectors, amced/ © U
maps product states to product states, the modified PQUM I1;, I1,, IT. } given by Eq.[(2D) will also be separable. Hence,
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our new optimization problem is
max (tho|I[to)
such that: supp(Il) = Sy

2
S ovEIvhE <1
k=0

IT is separable

2
I- Z VFII(VTF is separable (22)
k=0
We take L B B
IT = altoo) (Yol + b([t0) (¥ | + [¥7)(¢ol) 4 [T} (W 7| (23)
so that(yy|I|ve) = a, the eigenvalues dfl are
{%(5(1 +9¢+ +/(5a — 9¢)2 + 18002)} (24)
andY"»_, VFTII(V1)* has distinct eigenvalues of
ga, %[a +9¢+ /@ =907 + 3687]}. (25)

Putting aside the separability constraint, we thus seethleathoicen = 3/4 andb = ¢ = 0 is a feasible point which maximizes
(¥o|I|1yg). In other words, the optimal unambiguous probability foe tiouble trine using global operations3is4.

Now, to demand thall is separable, we compute its concurrence. Recall that faoequbit mixed state, its concurrence
is given byC(p) = max{0, /\f — /\§ — /\§ — )\j} where the/\j are the square roots of the eigenvalues (in decreasing)afigre
matrix pp, wherep = o, ® 0, p* 0, ® 0, [31]. Without loss of generality, we can assume thas real, and it will be separable
if and only if its concurrence vanishes. Sindés rank 2, this amounts to the two nonzero eigenvalud$(ef, @ o, )II(o, ® 0y)
being equal. Hence, we obtain the following constraint:

0 = (a —3c)*[(a+ 3c)* — 12b%]. (26)

In addition, to this, we also need th@t:= 1 — Zi:o VKII(VT)k is separable. However, first let's focus on the optimization
only under the constraint of (26). We are thus left with twses (i)a = 3c and (ii) 126> = (a + 3c¢)?. First consider case
(ii). Substituting into Eq.[(Z5), the task is to maximizesubject to3 > a + 9c+ 2va? + 27¢2 anda + 9¢c — 2va? + 27¢2 > 0.
The maximum is obtained at the boundary, which is the peiat3/8, b = v/3/8, andc = 1/8. On the other hand, for case
(i) we maximizea subject to3 > 4a + v/2a? + 36b% and4a > V/2a? + 36b%. Again, optimality is obtained at the boundary,
but this time with the point = 1/2, b =0, andec = 1/6.

Now we turn to the operatdi. The eigenvalues fo(o, ® o,)Q(0, @ o,,) are

2 2

t1 =1 — ga—i— §a2 +4b% — 6¢ + 18¢2
2

—|—§(3—a—90) (a —9c¢)? + 3602,

2 2
tr=1-Za+ §a2 +4b? — 6¢ + 18¢2
2
—5(3—61—90) (a —9¢)? + 3602,

1

t3 = (3 — 4&)2,

©

1
ty :§(3 — 4a)?.

It can be verified that for the point = 1/2, b = 0, andc = 1/6 we havet; — 4/9, t» — 0, andts = t4 — 1/9. The
concurrence of) is given by/t1 — /t2 — v/t3 — /t4 = 0. Thus, the optimal point for separability ®f is also a point in
which Q is separable. So in summary, the optimal unambiguous pilithbr the double trine using separable operations is
1/2.
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LOCC Operations:We next describe an LOCC protocol that also obtains an urguobs probability of 1/2. It is, in fact,
the one described in Sectibn IV-B3. Consider the states

) = 1)
) = Lo+ 2
) = L0y - 1.

Note that|(si|s;)| = v/3/2 if i # j and0 if i = j. It can be verified that the set
2 2 2
P — { 2155 sl 27 o1, 2 o) 1

constitutes a valid POVM. The protocol consists of Alice &ub each performing the POVP and comparing their results.

If they obtain different outcomes, then they know the sthiytshare is the one distinct from each of their outcomes. For
instance if Alice obtaingsy) and Bob obtaingss), then they can conclusively deduce that their statR)is = |s1) ® |s1).
Thus, the only time they cannot determine their state is whewy both obtain the same outcome. This occurs with proiabil

1 2\* 2\% .9
32 (3) It = (5) 2 =12 @)
i#]
Therefore, the optimal probability of unambiguous disénation via LOCC is 1/2.

VI. CONCLUSION

In this paper, we have provided conditions under which weriensembles of two-qubit states can either be perfectly or
optimally distinguished by LOCC. These results signifiba@tdvance the current understanding of state discrinonafor
two-qubit ensembles. For perfect LOCC discrimination, wevjile new instances of necessary and sufficient conditioais
are much easier to verify than the condition given[inl [15]dAidnally, we have provided a necessary and sufficient itmmd
for which the two-qubit ensembles consisting of one pureestad one rank two mixed state can be perfectly distingdislye
separable operations; thus completing the previouslyingsgiece in the perfect distinguishability setting. Withist, perfect
discrimination of two-qubit ensembles by both LOCC and SkpErations is completely solved.

Most notably, we have observed sharp distinctions betwemsembles consisting of two states and those consisting of
three states. First, we have shown th#&host all two-qubit ensembles consisting of three pure states cdomaiptimally
discriminated using LOCC; in contrastny two pure states can be optimally distinguished by LOCC [ELirthermore, we
have demonstrated that thé-copy trine ensemble cannot be optimally distinguished BCIC for any finite N. Again, this
behavior is the complete opposite than if there were only Nvaopy states, which can be optimally distinguished by LOCC
[28].

We would like to emphsize the interesting connection betwtbe N-copy trine ensemble faV > 3 and Shor’s lifted trine
ensemble, where each positive integércorresponds to a certain lifting angle [42]. This obsepmtillows us to simplify the
computation by mapping th&/-qubit trine states of higher dimensions into a three-disi@mal subspace iR3.

Finally, we have also observed very bizarre distinguiditglieatures for the double trine ensemble; namely, we tsha@vn
in this paper that for optimal unambiguous discriminatib@CC=SER<GLOBAL. This finding is rather different than a
previously obtained result that LOGSEP=-GLOBAL when minimum error discrimination is consideréd[28his raises the
intriguing question of whether there exists certain endembor which LOCG<GLOBAL with respect to one performance
measure but LOCEGLOBAL with respect to another. If the answer is positivegritthe phenomenon of nonlocality without
entanglement might not be a property that depends solelyh@munderlying states themselves.
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