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Abstract

We consider the problem of lossless compression of binary trees, with the aim of reducing
the number of code bits needed to store or transmit such trees. A lossless grammar-based code is
presented which encodes each binary tree into a binary codeword in two steps. In the first step,
the tree is transformed into a context-free grammar from which the tree can be reconstructed. In
the second step, the context-free grammar is encoded into a binary codeword. The decoder of the
grammar-based code decodes the original tree from its codeword by reversing the two encoding
steps. It is shown that the resulting grammar-based binary tree compression code is a universal code
on a family of probabilistic binary tree source models satisfying certain weak restrictions.

Index Terms

grammar-based code, binary tree, lossless compression, context-free grammar, minimal DAG
representation.

I. INTRODUCTION

There have been some recent initial attempts to conceptualize the notion of structure in
information theory [12][3][16], with the ultimate future goal being the development of a
lossless compression theory for structures. In the presentpaper, we put forth a general
framework for this area, and then develop a lossless compression theory for binary tree
structures within this framework. Our framework will permit an abstract asymptotic theory
for the compression of structures to be developed, where theframework is sufficiently general
to include the types of structures that have been consideredin other contexts, such as in the
asymptotic theory of networks [13] or the asymptotic theoryof patterns [7]. The basic concepts
in this framework are the notions ofstructure universe, structure filter, andstructure source,
which we now define; after the definitions, we give examples ofthe concepts relevant for the
work we shall do in this paper.

Concept of Structure Universe.Broadly speaking, “structure universe” will mean the set
of structures under consideration in a particular context.Each structure has a “size” assigned
to it, which is a positive integer that can be a measure of how large or how complex the
structure is. For example, if a structure is a finite graphg, then the size of the structure could
be taken as the number of vertices ofg or the number of edges ofg; if a structure is a finite
tree t, then the size of the structure could be taken as the number ofleaves oft. We now
make the notion of structure universe precise. Astructure universeΩ is defined to be any
countably infinite set such that for eachω ∈ Ω there is defined a positive integer|ω|, which
we call the size ofω, such that the set{ω ∈ Ω : |ω|= n} is finite for each positive integern.

Concept of Structure Filter.A structure filterF over a structure universeΩ (calledΩ-filter
for short) is defined to be any set of finite nonempty subsets ofΩ which forms a partition
of Ω. For example, given any structure universeΩ, we have the naturalΩ-filter consisting
of all nonempty subsets ofΩ of the form{ω ∈ Ω : |ω|= n} (n= 1,2, · · ·). Given anΩ-filter
F , a real-valued function(xF : F ∈ F ) defined onF , and an extended real numberL, the
limit statement limF∈F xF = L means that for any neighborhoodN of L in the topology of
the extended real line, the set{F ∈ F : xF 6∈ N } is finite; the limit L, if it exists, is unique,
which is due to the fact that a structure filter is always countably infinite. Similarly, one can
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make sense of limit statements of the form limsupF∈F xF = L and liminfF∈F xF = L. The
sets in anyΩ-filter F are growing in the sense that

lim
F∈F

[min{|ω| : ω ∈ F}] = ∞. (1.1)

This condition will make possible an asymptotic theory of lossless compression of structures;
we will see how the condition is used in Sec. III.

Concept of Structure Source.Informally, suppose we randomly select a structure from each
element of a structure filter; then these random structures constitute the output of a structure
source. Formally, we define a structure source to be any triple (Ω,F ,P) in which Ω is a
structure universe,F is anΩ-filter, andP is a function fromΩ into [0,1] such that

∑
ω∈F

P(ω) = 1, F ∈ F . (1.2)

Note that (1.2) simply tells us thatP restricted to eachF ∈ F yields a probability distribution
on F; for any subsetF ′ of F, we write the probability ofF ′ under this distribution asP(F ′),
which is computed as the sum∑ω∈F ′ P(ω).

Example 1.For eachn ≥ 2, fix an undirected graphgn with n vertices andn(n− 1)/2
edges, one edge for each pair of distinct vertices, and letGn be the set of edge-labelings of
gn in which each edge ofgn is assigned a label from the set{0,1}. That is,Gn consists of
all pairs(gn,α) in which α is a mapping from the set of edges ofgn into the set{0,1}. Let
G∗

n be a subset ofGn such that for each(gn,α) ∈ Gn, there exists a unique(gn,α∗) ∈ G∗
n into

which (gn,α) is carried by an isomorphism (that is, there is an isomorphism of gn onto itself
which carries each edgee of gn into an edgee′ of gn for which the edge labelsα(e),α∗(e′)
coincide). For example,G∗

3 consists of four edge labelings ofg3, one in which all three of
the edges ofg3 are labeled 0, a second one in which all edge labels are 1, a third one in
which two edge labels are 0 and the remaining one is 1, and a fourth one in which two edge
labels are 1 and the remaining one is 0. LetΩ be the structure universe∪n≥2G∗

n, where we
define the size of each labeled graph inΩ to be the number of vertices of the graph. LetF
be theΩ-filter {G∗

n : n≥ 2}. For eachσ ∈ (0,1), let Sσ = (Ω,F ,Pσ) be the structure source
such that for each(gn,α′) ∈ Ω,

Pσ(gn,α′) = N(gn,α′)σm1(1−σ)m0,

where m0 is the number of edges ofgn assignedα′-label 0, m1 is the number of edges
of gn assignedα′-label 1, andN(gn,α′) is the number of(gn,α) belonging toGn for which
(gn,α∗)= (gn,α′). For example, thePσ probabilities assigned to the four structures inG∗

3 given
above areσ3,(1−σ)3, 3σ2(1−σ), and 3σ(1−σ)2, respectively. In random graph theory, the
structure sourceSσ is called the Gilbert model [6]. Choi and Szpankowski [3] addressed the
universal coding problem for the parametric family of sources{Sσ : 0< σ < 1}. (We discuss
universal coding for general structure sources after the next two examples.)

Example 2.We consider finite rooted binary trees having at least two leaves such that each
non-leaf vertex has exactly two ordered children. From now on, the terminology “binary tree”
without further qualification will automatically mean sucha tree. LetT be a set of binary
trees such that each binary tree is isomorphic as an ordered tree to a unique tree inT . Then
T is a structure universe, where the size|t| of a tree t in the universeT is taken to be
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the number of leaves oft. We discuss two ways in whichT can be partitioned to obtain a
T -filter. For eachn≥ 2, let Tn be the set of trees inT that haven leaves. For eachn≥ 1,
let T n be the set of trees inT for which the longest root-to-leaf path consists ofn edges
(that is, T n consists of trees of depthn). Then F1 = {Tn : n ≥ 2} and F2 = {T n : n ≥ 1}
are eachT -filters. A structure source of the form(T ,F ,P) for someT -filter F is called a
binary tree source. In [12], binary tree sources of form(T ,F1,P) were introduced which are
called leaf-centric binary tree source models; we address the universal coding problem for
such sources in Section IV of the present paper. In Section V,we address the universal coding
problem for a type of binary tree source of form(T ,F2,P) which we call a depth-centric
binary tree source model.

Example 3.Let A be a finite alphabet. For eachn≥ 1, let An be the set of alln-tuples of
entries fromA. ThenΩ = ∪∞

n=1An is a structure universe, where we define the size of each
structure inAn to be n. Let F be theΩ-filter {An : n≥ 1}. A structure source of the form
(Ω,F ,P) corresponds to the classical notion of finite-alphabet information source ([8], page
14) . Thus, source coding theory for structure sources will include classical finite-alphabet
source coding theory as a special case.

Asymptotically Optimal Codes for Structure Sources.In the following and in the rest of
the paper,B denotes the set of non-empty finite-length binary strings, and L[b] denotes the
length of stringb∈ B. Let Ω be a structure universe. A lossless code onΩ is a pair(ψe,ψd)
in which

• ψe (called the encoding map) is a one-to-one mapping ofΩ into B which obeys the
prefix condition, that is, ifω1 and ω2 are two distinct structures inΩ, then ψe(ω1) is
not a prefix ofψe(ω2); and

• ψd (called the decoding map) is the mapping fromψe(Ω) onto Ω which is the inverse
of ψe.

Given a lossless code(ψe,ψd) on structure universeΩ and a structure source(Ω,F ,P), then
for eachF ∈ F we define the real number

R(ψe,F,P)
∆
= ∑

ω∈F, P(ω)>0

|ω|−1{L[φe(ω)]+ log2P(ω)}P(ω),

which is called theF-th order average redundancy of the code(ψe,ψd) with respect to the
source. We say that a lossless code(ψe,ψd) on Ω is an asymptotically optimal code for
structure source(Ω,F ,P) if

lim
F∈F

R(ψe,F,P) = 0. (1.3)

Universal Codes for Structure Source Families.Let F be a fixedΩ-filter for structure
universeΩ. Let P be a set of mappings fromΩ into [0,1] such that (1.2) holds for every
P∈ P. A universal code for the family of structure sources{(Ω,F ,P) : P∈ P} (if it exists)
is a lossless code onΩ which is asymptotically optimal for every source in the family. The
universal source coding problem for a family of structure sources is to determine whether the
family has a universal code, and, if so, specify a particularuniversal code for the family.

There has been little previous work on universal coding of structure sources. One notable
exception is the work of Choi and Szpankowski [3], who devised a universal code for the
parametric family of Gilbert sources{Sσ : 0 < σ < 1} introduced in Ex. 1. Peshkin [17]
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and Busatto et al. [2] proposed grammar-based codes for compression of general graphical
structures and binary tree structures, respectively; as these authors did not use a probabilistic
structure source model, it is unclear whether their codes are universal in the sense of the
present paper (instead, they tested performance of their codes on actual structures).

Context-Free Grammar Background.In the present paper, we further develop the idea
behind the Busatto et al. code [2] to obtain a grammar-based code for binary trees which,
under weak conditions, we prove to be a universal code for families of binary tree sources. In
this Introduction, we describe the structure of our code in general terms; code implementation
details will be given in Section II. In order to describe the grammar-based nature of our code,
we need at this point to give some background information concerning deterministic context-
free grammars. A deterministic context free grammarG is a quadruple(S1,S2,s∗,P) in which

• S1 is a finite nonempty set whose elements are called the nonterminal variables ofG.
• S2 is a finite nonempty set whose elements are called the terminal variables ofG. (S1∪S2

is the complete set of variables ofG.)
• s∗ is a designated nonterminal variable called the start variable of G;
• P is the finite set of production rules of production rules ofG. P has the same cardinality

asS1. There is exactly one production rule for each nonterminal variables, which takes
the form

s→ (s1,s2, · · · ,sn), (1.4)

wheren is a positive integer which can depend on the rule ands1,s2, · · · ,sn are variables
of G. s, (s1, · · · ,sn), and n are respectively called the left member, right member, and
arity of the rule (1.4).

Given a deterministic context-free grammarG, there is a unique up to isomorphism rooted
ordered vertex-labeled treet(G) (which can be finite or infinite) satisfying the following
properties:

• The label on the root vertex oft(G) is the start variable ofG.
• The label on each non-leaf vertex oft(G) is a nonterminal variable ofG.
• The label on each leaf vertex oft(G) is a terminal variable ofG.
• Let s(v) be the variable ofG which is the label on each vertexv of t(G). For each

non-leaf vertexv of t(G) and its ordered childrenv1,v2, · · · ,vn,

s(v)→ (s(v1),s(v2), · · · ,s(vn))

is a production rule ofG.
“Unique up to isomorphism” means that for any two such rootedordered trees there is an
isomorphism between the trees as ordered trees that preserves the labeling (that is, corre-
sponding vertices under the isomorphism have the same label). We call t(G) the derivation
tree ofG.

Outline of Binary Tree Compression Code.Let T be the structure universe of binary trees
introduced in Ex. 2. Supposet ∈ T and supposeG is a deterministic context-free grammar
such that the arity of each production rule is two. Then we saythatG forms a representation
of t if t is the unique tree inT isomorphic as an ordered tree to the tree which results when
all vertex labels on the derivation tree ofGt are removed. In Section II, we will assign to each
t ∈ T a particular deterministic context-free grammarGt which forms a representation oft.
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Then we will assign toGt a binary codewordB(Gt) so that the prefix condition is satisfied.
The grammar-based binary tree code of this paper is then the lossless code(φe,φd) on T in
which the encoding mapφe and decoding mapφd each operate in two steps as follows.

• Encoding Step 1: Given binary treet ∈ T , obtain the context-free grammarGt from t.
• Encoding Step 2: Assign to grammarGt the binary wordB(Gt) ∈ B, and thenB(Gt)

is the codewordφe(t) for t.
• Decoding Step 1: The grammarGt is obtained fromB(Gt), which is the inverse of the

second encoding step.
• Decoding Step 2: Gt is used to obtain the derivation tree ofGt , from whicht is obtained

by removing all labels.
The two-step encoding/decoding mapsφe andφd are depicted schematically in the following
diagrams:

Encoding Mapφe : t ∈ T
1st step
−→ Gt

2nd step
−→ B(Gt) = φe(t) ∈ B

Decoding Mapφd : B(Gt)
1st step
−→ Gt

2nd step
−→ t = φd(B(Gt))

We point out the parallel between the grammar-based binary tree compression algorithm
of this paper and the grammar-based lossless data compression methodology for data strings
presented in [10]. In the grammar-based approach to compression of a data stringx, one
transformsx into a deterministic context-free grammarGx from which x is uniquely recover-
able as the sequence of labels on the leaves of the derivationtree ofGx; one then compresses
Gx instead ofx itself. Similarly, in the grammar-based approach to binarytree compression
presented here, one transforms a binary treet into the deterministic context-free grammarGt
from which t is uniquely recoverable by stripping all labels from the derivation tree ofGt ;
one then compressesGt instead oft itself.

The rest of the paper is laid out as follows. In Sec. II, we present the implementation
details of the grammar-based binary tree compression code(φe,φd). In Sec. III, we present
some weak conditions on a binary tree source under which(φe,φd) will be an asymptotically
optimal code for the source. The remaining sections exploitthese conditions to arrive at wide
families of binary tree sources on which(φe,φd) is a universal code (families of leaf-centric
models in Sec. IV and families of depth-centric models in Sec. V).

II. I MPLEMENTATION OF BINARY TREE COMPRESSIONCODE

This section is organized as follows. In Section II-A, we give some background regarding
binary trees that shall be used in the rest of the paper. Then,in Sec II-B, we explain how to
transform each binary treet ∈ T into the deterministic context-free grammarGt ; this is Step
1 of encoding mapφe. In Section II-C, there follows an explanation on how the codeword
B(Gt) is obtained fromGt ; this is Step 2 of encoding mapφe. Examples illustrating the
workings of the encoding mapφe and the decoding mapφd are presented in Section II-D.
Theorem 1 is then presented in Section II-E, which gives a performance bound for the code
(φe,φd). Finally, in Section II-F, we discuss a sense in which the grammarGt is minimal and
unique among all grammars which form a representation oft ∈ T .
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A. Binary Tree Background

We take the direction along each edge of a binary tree to be away from the root. The root
vertex of a binary tree is the unique vertex which is not the child of any other vertex, the leaf
vertices are the vertices that have no child, and each of the non-leaf vertices has exactly two
ordered children. We regard a tree consisting of just one vertex to be a binary tree, which
we call a trivial binary tree; all other binary trees have at least two leaves and are called
non-trivial. Given a binary treet, V(t) shall denote the set of its vertices, andV1(t) shall
denote the set of its non-leaf vertices. Each edge oft is an ordered pair(a,b) of vertices in
V(t), wherea is the vertex at which the edge begins andb is the vertex at which the edge
ends (a is the parent ofb and b is a child of a). A path in a binary tree is defined to be
any sequence(v1,v2, · · · ,vk) of vertices of lengthk≥ 2 in which each vertex fromv2 onward
is a child of the preceding vertex. For each vertexv of a binary tree which is not the root,
there is a unique path which starts at the root and ends atv. We define the depth level of
each non-root vertexv of a binary tree to be one less than the number of vertices in the
unique path from root tov (this is the number of edges along the path); we define the depth
level of the root to be zero. Vertexv2 is said to be a descendant of vertexv1 if there exists
a (necessarily unique) path leading fromv1 to v2. If a binary tree hasn leaf vertices, then it
hasn−1 non-leaf vertices and therefore 2(n−1) edges.

We have a locally defined order on each binary treet in which each sibling pair of child
vertices oft is ordered. From this locally defined order, one can infer various total orders on
V(t) which are each consistent with the local orders on the sets ofchildren. The most useful
of the possible total orders for us will be thebreadth-firstorder. If we list the vertices of a
binary tree in breadth-first order, we first list the root vertex at depth level 0, then its two
ordered children at depth level 1, then the vertices at depthlevel 2, depth level 3, etc. Two
verticesv1,v2 at depth levelj > 0 are consecutive in breadth-first order if and only if either
(a) v1,v2 have the same parent andv1 precedesv2 in the local ordering of children, or (b) the
parent ofv1 and the parent ofv2 are consecutive in the breadth-first ordering of the non-leaf
vertices at depth levelj −1. It is sometimes convenient to represent a treet pictorially via a
“top down” picture, where the root vertex oft appears at the top of the picture (depth level
0) and edges extend downward in the picture to reach verticesof increasing depth level; the
vertices at each depth level will appear horizontally in thepicture with their left-right order
corresponding to the breadth-first order. Fig. 1 depicts twobinary trees with their vertices
labeled in breadth-first order.

The structure universeT consists only of nontrivial binary trees. Sometimes we needto
consider a trivial binary tree consisting of just one vertex. Fix such a trivial treet∗. Then
T ∗ = T ∪{t∗} can be taken as our structure universe of binary trees both trivial and nontrivial.
For eachn ≥ 1, letting Tn be the set of trees inT ∗ having n leaves, and lettingKn be the
cardinality ofTn, it is well known [18] that{Kn : n≥ 1} is the Catalan sequence, expressible
by the formula

Kn =
1
n

(

2(n−1)
n−1

)

, n≥ 1.

For example, using this formula, we have

K1 = K2 = 1, K3 = 2, K4 = 5, K5 = 14.
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Fig. 1 depicts one of the(1/8)
(14

7

)

= 429 binary trees inT8, and one of the(1/16)
(30

15

)

=
9,694,845 binary trees inT16.
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Fig. 1: Binary trees inT8 (left) andT16 (right) with breadth-first ordered vertices

A subtree of a binary treet is a tree whose edges and vertices are edges and vertices of
t; by convention, we require also that a subtree of a binary tree should be a (nontrivial or
trivial) binary tree. There are two special types of subtrees of a binary tree that shall be of
interest to us, namely final subtrees and initial subtrees. Given a binary treet, a final subtree
of t is a subtree oft whose root is some fixed vertex oft and whose remaining vertices are
all the descendants of this fixed vertex int; an initial subtree oft is any subtree oft whose
root coincides with the root oft. If t is any nontrivial binary tree andv∈ V(t), we define
t(v) to be the unique binary tree inT ∗ which is isomorphic to the final subtree oft rooted
at v. Note thatt(v) = t∗ if v is a leaf oft, and thatt(v) = t if t ∈ T and v is the root oft.
There are also two other trees of thet(v) type which appear often enough that we give them
a special name; lettingv1,v2 be the ordered children of the root of nontrivial binary treet,
we definetL = t(v1) and tR = t(v2) to reflect the respective left and right positions of these
trees in the top down pictorial representation of treet.

B. Encoding Step 1

Given t ∈ T , we explain how to transformt into the grammarGt , which is Step 1 of the
encoding mapφe. DefineN = N(t) to be the cardinality of the set{t(v) : v∈V(t)}. Note that
N ≥ 2 sincet∗ andt are distinct and both belong to this set. The set of nonterminal variables
of Gt is the nonempty set of integers{0,1, · · · ,N−2}. The set of terminal variables ofGt
is the singleton set{T}, where we have denoted the unique terminal variable as the special
symbolT. The start variable ofGt is 0. All that remains to complete the definition ofGt is to
specify the production rules ofGt . We do this indirectly by first labeling the vertices oft in a
certain way and then extracting the production rules from the labeled tree. This labeling takes
place as follows. The root oft is labeled 0 and each leaf oft is labeledT. The vertices oft
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are traversed in breadth-first order. Whenever a vertexv is thus encountered which as yet has
no label, one checks to see whethert(v) coincides witht(v′) for some previously traversed
vertexv′. If this is the case,v is assigned the same label asv′; otherwise,v is assigned label
equal to the smallest member of the set{0,1, · · · ,N−2} which has so far not been used as a
label. For each nonterminal variablei ∈ {0,1, · · · ,N−2}, we can then extract from the labeled
tree the unique production rule ofGt of form i → (i1, i2) by finding any vertex of the labeled
tree whose label isi; the entriesi1, i2 are then the respective labels on the ordered children
of this vertex. Incidentally, the labeled tree we employed in this construction turns out to be
the derivation tree ofGt .

Figures 2-3 illustrate the results of Encoding Step 1 for thebinary trees in Fig. 1.

 2 1

 0

2 3 3

3

T

T T T T T

T T

0 → (1,2)

1 → (2,3)

2 → (T,3)

3 → (T,T)

Fig. 2: Encoding Step 1 For Left Figure 1 tree

44

3

0

1 2

43 T

T

 T T  T  T  T  T

 T  T  T  T  T  T  T  T

5  5 6

6  6  6  6

0 → (1,2)

1 → (3,4)

2 → (3,T)

3 → (5,4)

4 → (T,6)

5 → (6,T)

6 → (T,T)

Fig. 3: Encoding Step 1 For Right Figure 1 tree

C. Encoding Step 2

Fix t ∈ T . We now explain Step 2 of the encoding oft which is to obtain from the grammar
Gt a stringB(Gt) ∈ B which is taken as the codewordφe(t) of t. We will be employing two
sequencesS(t) andS1(t) defined as follows:
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• Let N=N(t). For eachi = 0, · · · ,N−2, let ordered pair(a2i+1,a2i+2) be the right member
of the production rule ofGt whose left member isi. ThenS(t) is the sequence of length
2N−2 defined by

S(t)
∆
= (a1,a2, · · · ,a2N−3,a2N−2).

The alphabet ofS(t) is A(t) = {1,2, · · · ,N−2}∪{T}. Note thatGt is fully recoverable
from S(t).

• S1(t) is the sequence of lengthN remaining after one deletes fromS(t) the first left-to-
right appearance inS(t) of each member of the set{1,2, · · · ,N−2}.

Note thatN = N(t) = 2 if and only if t is the unique tree inT2; in this case,Gt has only
one production rule 0→ (T,T), andS(t) = S1(t) = (T,T). If N = 2, defineB(Gt) = 1. Now
assumeN > 2. The codewordB(Gt) will be obtained via processing of the sequenceS(t).
Note thatS(t) partitions into the two subsequencesS1(t) (defined previously) andS2(t) =
(1,2, · · · ,N−2). For eacha∈ A(t), define fa to be the positive integer

fa
∆
= card{1≤ i ≤ 2N−2 : ai = a},

that is,( fa : a∈ A(t)) is the un-normalized first-order empirical distribution ofS(t). Let S1(t)
be the set of all possible permutations ofS1(t); the cardinality ofS1(t) is then computable as

card(S1(t)) =
N!

fT ! ∏N−2
i=1 ( fi −1)!

.

B(Gt) is defined to be the left-to-right concatenation of the binary strings B1,B2,B3,B4
obtained as follows:

• B1 is the binary string of lengthN−1 consisting ofN−2 zeroes followed by 1.
• B2 is the binary string of length 2N−2 in which there are exactlyN−2 entries equal

to 1, where these entries correspond to the first left-to-right appearances inS(t) of the
members of the set{1,2, · · · ,N−2}. Given B2, one can reconstructS(t) from its two
subsequencesS1(t) andS2(t).

• B3 is the binary string consisting ofN−1 alternate runs of ones and zeroes, where the
lengths of the runs (left-to-right) are taken to bef1, f2, · · · , fN−2,1, respectively. Since
fT > 1, B3 is of length less than 2N−2.

• Let M(t) = ⌈log2card(S1(t))⌉. If M(t) = 0, B4 is the empty string. Otherwise, list all
members ofS1(t) in the lexicographical ordering resulting from the ordering 1, · · · ,N−
2,T of the alphabetA(t). Assign each member of the list an index, starting with index0.
Let I be the index ofS1(t) in this list. B4 is the lengthM(t) binary expansion of integer
I .

Verification of Prefix Condition.Supposet ∈ T has been processed by the encoding mapφe
to yield codewordφe(t) = B(Gt). Step 1 of the decoding mapφd is to determine the grammar
Gt from B(Gt). More generally, we discuss here howS(t) and henceGt is recoverable from
any binary wordw of which codewordB(Gt) = B1B2B3B4 is a prefix; this will establish that
the encoding mapφe : T → B satisfies the prefix condition. Scanningw left-to-right to find
the first 1, one determinesB1 andN=N(t). B2 is then determined from the fact that its length
is 2N−2, and thenB3 is determined from the fact that it consists ofN−1 runs. Knowledge
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of B3 allows one to determine the setS1(t) and to computeM(t), the length ofB4, whence
B4 can be extracted fromw. From B4, one is able to locateS1(t) in the list of the members
of S1(t). Using B2, one is able to put togetherS(t) from S1(t) andS2(t).

D. Encoding/Decoding Examples

We present two examples. Example 4 illustrates how the encoding map φe works, and
Example 5 illustrates how the decoding mapφd works.

Example 4.Let t be the tree on the right in Fig. 1. Fig. 3 illustrates the results of Step 1
of encoding mapφe. We then obtain

N = N(t) = 8,

S(t) = (1,2,3,4,3,T,5,4,T,6,6,T,T,T),

S1(t) = (3,T,4,T,6,T,T,T),

S2(t) = (1,2,3,4,5,6),

f1 = f2 = f5 = 1, f3 = f4 = f6 = 2, fT = 5,

B1 = 0000001,

B2 = 11110010010000,

B3 = 1011001001.

We now list the 8!/5!= 336 members ofS1(t) in lexicographical order untilS1(t) is obtained:

index sequence index sequence
0 (3,4,6,T,T,T,T,T) 7 (3,6,T,4,T,T,T,T)
1 (3,4,T,6,T,T,T,T) 8 (3,6,T,T,4,T,T,T)
2 (3,4,T,T,6,T,T,T) 9 (3,6,T,T,T,4,T,T)
3 (3,4,T,T,T,6,T,T) 10 (3,6,T,T,T,T,4,T)
4 (3,4,T,T,T,T,6.T) 11 (3,6,T,T,T,T,T,4)
5 (3,4,T,T,T,T,T,6) 12 (3,T,4,6,T,T,T,T)
6 (3,6,4,T,T,T,T,T) 13 (3,T,4,T,6,T,T,T)

The index ofS1(t) is thus I = 13. (Alternatively, one can use the method of Cover [4] to
computeI directly without forming the above list.) To obtainB4, we expand the indexI = 13
into its ⌈log2336⌉= 9 bit binary expansion, which yields

B4 = 000001101.

The codewordφe(t) = B1B2B3B4 is of length 7+14+10+9= 40.
Example 5.Let binary treet ∈ T be such that

φe(t) = B(Gt) = 00011101000010011000001.

We employ the decoding mapφd to find t from B(Gt). In Decoding Step 1, the grammar
Gt must be determined, which, as remarked earlier, is equivalent to finding the sequence
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S(t). B(Gt) = B1B2B3B4 must be parsed its constituent partsB1,B2,B3,B4. B1 is the unique
prefix of B(Gt) belonging to the set{1,01,001,001,0001, · · ·}, whenceB1 = 0001, and hence
N = N(t) = 4+1= 5. Thus,S(t) andB2 are both of length 2N−2= 8, whence

B2 = 11010000

andS(t) is of the form
S(t) = (a1,a2,a3,a4,a5,a6,a7,a8).

The positions of symbol 1 inB2 tell us that

S2(t) = (a1,a2,a4) = (1,2,3),

and thereforeS1(t) is made up of the remaining entries inS(t), giving us

S1(t) = (a3,a5,a6,a7,a8).

SinceB3 consists ofN−1 = 4 runs of ones and zeroes, with the last run of length 1, we
must have

B3 = 100110.

The alphabet ofS(t) is {1,2, · · · ,N−2,T}= {1,2,3,T}, and so fromB3 the frequencies of
1,2,3 in S(t) are the lengths of the first three runs inB3, respectively, whence

f1 = 1, f2 = 2, f3 = 2.

The remaining entries ofS(t) are all equal toT, giving us fT = 8−(1+2+2)= 3. It follows
thatS1(t) consists off1−1= 0 entries equal to 1,f2−1= 1 entry equal to 2,f3−1= 1 entry
equal to 3, andfT = 3 entries equal toT. Consequently,S1(t) is the set of all permutations of
(2,3,T,T,T). The cardinality of this set is 5!/3! = 20, and soB4 is of length⌈log220⌉= 5.
This checks with what is left ofB(Gt) = B1B2B3B4 after B1,B2,B3 are removed, namely

B4 = 00001.

The index ofS1(t) in the list of the members ofS1(t) is thus I = 1. This list starts with
(2,3,T,T,T), which has index 0, and the sequence following this must therefore byS1(t).
We conclude that

S1(t) = (2,T,3,T,T).

S1(t) andS2(t) now both being known, we put them together to obtain

S(t) = (1,2,2,3,T,3,T,T).

PartitioningS(t) into blocks of length two, we obtain the four production rules of Gt in Fig.
3, whereuponGt is determined, completing Decoding Step 1. In Decoding Step2, one grows
the derivation tree ofGt from the production rules ofGt as explained in the Introduction,
giving us the derivation tree in Fig. 3; stripping the labelsfrom this tree, we obtain the binary
tree t on the left in Fig. 1, completing Decoding Step 2.
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E. Performance Bound

We present Theorem 1, which gives us an upper bound on the lengths of the binary
codewords assigned by the encoding mapφe which shall be useful in later sections. Theorem 1
uses the notion of the first order empirical probability distribution of a sequence(s1,s2, · · · ,sn)
whose entries are selected from a finite alphabetA, which is the probability distribution
p= (pa : a∈ A) defined by

pa
∆
= n−1card{1≤ i ≤ n : si = a}, a∈ A.

The Shannon entropyH(p) of this first order empirical distributionp is defined as

H(p)
∆
= ∑

a∈A

−pa log2 pa,

which is also expressible as

H(p) = n−1
n

∑
i=1

− log2 psi .

Theorem 1. Let t be any binary tree inT . Let pt be the first order empirical probability
distribution of the sequenceS1(t). Then

L[φe(t)]≤ 5(N(t)−1)+N(t)H(pt). (2.5)

Proof.Let N=N(t). We haveN≥ 2. If N= 2, thent is the unique tree inT2 andL[φe(t)] =
1, whence (2.5) holds because the right side is 5. AssumeN > 2. Recall thatS1(t) is the set
of all permutations ofS1(t). From the relationships

L[φe(t)] =
4

∑
i=1

L[Bi ] = 3(N−1)+L[B3]+ ⌈log2(card(S1(t)))⌉,

L[B3]≤ 2N−3,

⌈log2(card(S1(t)))⌉ ≤ log2(card(S1(t)))+1,

we obtain
L[φe(t)]≤ 5(N−1)+ log2(card(S1(t))).

SinceS1(t) is a type class of sequences of lengthN in the sense of Chapter 2 of [5], Lemma
2.3 of [5] tells us that

log2(card(S1(t)))≤ NH(pt).

Inequality (2.5) is now evident.
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F. Minimality/Uniqueness ofGt

Given t ∈ T , we discuss what distinguishesGt among the possibly many deterministic
context-free grammars which form a representation oft. First, we explain what it means for
a directed acyclic graph (DAG) to be a representation oft. Let D be a finite rooted DAG with
at least two vertices such that each non-leaf vertex has exactly two ordered edges. Define
G(D) to be the deterministic context-free grammar whose set of nonterminal variables is the
set of non-leaf vertices ofD, whose set of terminal variables is the set of leaf vertices of
D, whose start variable is the root vertex ofD, and whose production rules are all the rules
of the form v→ (v1,v2) in which v is a non-leaf vertex ofD, and v1,v2 are the respective
vertices ofD at the terminus of the edges 1,2 emanating fromv. Then we say thatD is a
representation oft ∈ T if the grammarG(D) forms a representation oft. It is known that
each binary tree inT has a unique DAG representation up to isomorphism with the minimal
number of vertices [14]; we call this DAG the minimal DAG representation of the binary tree.
One particular choice of minimal DAG representation oft ∈ T is the DAGD∗(t) defined as
follows. The set of vertices ofD∗(t) is {t(v) : v∈V(t)}. The root vertex ofD∗(t) is t, andt∗

is the unique leaf vertex ofD∗(t). If u is a non-leaf vertex ofD∗(t), then there are exactly two
ordered edges emanating fromu, edge 1 terminating atuL and edge 2 terminating atuR. Note
that the number of vertices of the minimal DAG representation D∗(t) of t is N(t), which
coincides with the number of variables ofGt . (Recall that the complete set of variables
of Gt is {0,1, · · · ,N(t)− 2}∪ {T}, of cardinality N(t).) The paper [2] gives a linear-time
algorithm for computingD∗(t). Fig. 4 illustrates a binary tree together with its minimal DAG
representation.

Lemma 1. Let t ∈ T . ThenGt has the smallest number of variables among all deterministic
context-free grammars which form a representation oft.

Proof. Let G be a deterministic context-free grammar which forms a representation oft.
The proof consists in showing that the number of variables ofG is at leastN(t), the number
of variables ofGt . In the following, we explain how to extract from the derivation treet(G)
of G a rooted ordered DAGD(t) which is a representation oft. The set of vertices ofD(t)
is the set of labels on the vertices oft(G). The root vertex ofD(t) is the label on the root
vertex oft(G), the set of non-leaf vertices ofD(t) is the set of labels on the non-leaf vertices
of t(G), and the set of leaf vertices ofD(t) is the set of labels on the leaf vertices oft(G).
Let s be any non-leaf vertex ofD(t). Find a vertexv of t(G) whose label iss, and lets1,s2
be the respective labels on the ordered children ofv in t(G); the pair (s1,s2) thus derived
will be the same no matter which vertexv of t(G) with label s is chosen. There are exactly
two ordered edges ofD(t) emanating froms, namely, edge 1 which terminates ats1 and edge
2 which terminates ats2. This completes the specification of the DAGD(t). By construction
of D(t), the number of variables ofG is at least as much as the number of vertices ofD(t).
SinceD(t) is a DAG representation oft, the number of vertices ofD(t) is at least as much
as the number of verticesN(t) of the minimal DAG representation oft. Thus, the number of
variables ofG is at leastN(t), completing the proof.

Remark. With some more work, one can show that any deterministic context-free grammar
which forms a representation oft ∈ T and has the same number of variables asGt must be
isomorphic toGt , using the known fact mentioned earlier that the minimal DAGrepresentation
of t is unique up to isomorphism. This gives us a sense in whichGt is unique.
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Fig. 4: A binary tree (left) and its minimal DAG representation (right)

III. SOURCESFOR WHICH (φe,φd) IS ASYMPTOTICALLY OPTIMAL

This section examines the asymptotic performance of the code (φe,φd) on a binary tree
source. We put forth weak sufficient conditions on a binary tree source so that our two-step
grammar-based code(φe,φd) will be an asymptotically optimal code for the source. Before
doing that, we need to first establish a lemma giving an asymptotic average redundancy lower
bound for general structure sources.

Suppose(Ω,F ,P) be an arbitrary structure source. Let(ψe,ψd) be a lossless code onΩ,
and letF ∈ F be such that every structureω ∈ F is of the same size. The well-known entropy
lower bound for prefix codes tells us that

∑
ω∈F

L[ψe(ω)]P(ω)≥ ∑
ω∈F, P(ω)>0

−P(ω) log2P(ω),

from which it follows that
R(ψe,F,P)≥ 0,

that is, theF-th order average redundancy of the code with respect to the source is non-
negative. Although this redundancy non-negativity property fails for a general structure source,
the following result gives us an asymptotic sense in which average redundancy is non-negative.

Lemma 2. Let (Ω,F ,P) be a general structure source. Then

liminf
F∈F

R(ψe,F,P)≥ 0 (3.6)

for any lossless code(ψe,ψd) on Ω.
Proof. Fix a general structure source(Ω,F ,P). Let Q be the set of allQ : Ω → (0,1) such

that the restriction ofQ to eachF ∈ F is a probability distribution onF. In the first part of
the proof, we show that

liminf
F∈F

∑
ω∈F

|ω|−1P(ω) log2

(

P(ω)
Q(ω)

)

≥ 0, Q∈Q, (3.7)
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where in (3.7) and henceforth, any expected value of the form∑ω∈F g(ω)P(ω) is computed by
summing only over thoseω ∈ F for which P(ω)> 0. The proof of (3.7) exploits the concept
of divergence. Ifp= (p j : j ∈ A) andq= (q j : j ∈ A) are any two probability distributions on
a finite setA, with all q j probabilities> 0, we letD(p|q) denote the divergence ofp with
respect toq, defined by

D(p|q)
∆
= ∑

j∈A

p j log2

(

p j

q j

)

.

It is well-known thatD(p|q)≥ 0 [5]. Fix an arbitraryQ∈Q. GivenF ∈ F , let IF = {|ω| : ω ∈
F}, and for eachi ∈ IF , let Fi = {ω ∈ F : |ω|= i}. Furthermore, letPF ,QF be the probability
distributions onIF such that

PF(i) = P(Fi), i ∈ IF ,

QF(i) = Q(Fi), i ∈ IF ,

and for eachi ∈ IF , let Pi
F ,Q

i
F be probability distributions onFi such that

P(ω) = PF(i)P
i
F(ω), ω ∈ Fi,

Q(ω) = QF(i)Q
i
F(ω), ω ∈ Fi .

It is easy to show that

∑
ω∈F

|ω|−1P(ω) log2

(

P(ω)
Q(ω)

)

= ∑
i∈IF

i−1PF(i)D(Pi
F |Q

i
F)+ ∑

i∈IF

i−1PF(i) log2

(

PF(i)
QF(i)

)

,

and therefore

∑
ω∈F

|ω|−1P(ω) log2

(

P(ω)
Q(ω)

)

≥ ∑
i∈IF

i−1PF(i) log2

(

PF(i)
QF(i)

)

.

Let EF
P ,E

F
Q be the expected values defined by

EF
P

∆
= ∑

i∈IF

i−1PF(i),

EF
Q

∆
= ∑

i∈IF

i−1QF(i).

Note thatEF
P andEF

Q both belong to the interval(0,1]. Let P∗
F ,Q

∗
F be the probability distri-

butions onIF defined by

P∗
F(i)

∆
= i−1PF(i)/EF

P , i ∈ IF ,

Q∗
F(i)

∆
= i−1QF(i)/EF

Q, i ∈ IF .

Then we have

∑
i∈IF

i−1PF(i) log2

(

PF(i)
QF(i)

)

= EF
P D(P∗

F |Q
∗
F)+EF

P log2(1/EF
Q)+EF

P log2EF
P .
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Since 1/EF
Q ≥1, the first two terms on the right side of the preceding equality are non-negative,

whence

liminf
F∈F

∑
ω∈F

|ω|−1P(ω) log2

(

P(ω)
Q(ω)

)

≥ lim inf
F∈F

EF
P log2EF

P . (3.8)

Note that
0< EF

P ≤
1

min{|ω| : ω ∈ F}
,

and so by (1.2)
lim
F∈F

EF
P = 0, (3.9)

the right side of (3.8) is zero, and (3.7) holds. To finish the proof, let (ψe,ψd) be any lossless
code onΩ. By Kraft’s inequality for prefix codes, there existsQ∈Q such that

L[ψe(ω)]≥− log2Q(ω), ω ∈ Ω,

and hence

R(ψe,F,P) = ∑
ω∈F

|ω|−1{L[φe(ω)]+ log2P(ω)}P(ω)≥ ∑
ω∈F

|ω|−1P(ω) log2

(

P(ω)
Q(ω)

)

.

(3.6) then follows by appealing to (3.7).
Remark. In view of Lemma 2, given a general structure source(Ω,F ,P), a lossless code

(ψe,ψd) on Ω is an asymptotically optimal code for the source if and only if

limsup
F∈F

R(ψe,F,P)≤ 0. (3.10)

We now turn our attention to properties of a binary tree source under which the grammar-
based code(φe,φd) on T will be asymptotically optimal for the source. There are twoof
these properties, the Domination Property and the Representation Ratio Negligibility Property,
which are discussed in the following.

Domination Property.We defineΛ to be the set of all mappingsλ : T ∗ → (0,1] such that
• (a): λ(t)≤ λ(tL)λ(tR), t ∈ T .
• (b): There exists a positive integerK(λ) such that

1≤ ∑
t∈Tn

λ(t)≤ nK(λ), n≥ 1. (3.11)

An elementλ of Λ dominates a binary tree source(T ,F ,P) if P(t)≤ λ(t) for all t ∈ T . A
binary tree source satisfies the Domination Property if there exists an element ofΛ which
dominates the source.

Representation Ratio Negligibility Property.Let t ∈ T . We define the representation ratio
of t, denotedr(t), to be the ratio between the number of variables of the grammar Gt and
the number of leaves oft. That is,r(t) = N(t)/|t|. Since

N(t) = card{t(v) : v∈V(t)}= 1+card{t(v) : v∈V1(t)} ≤ 1+(|t|−1) = |t|,

the representation ratio is at most 1. In the main result of this section, Theorem 2, we
will see that our ability to compresst ∈ T via the code(φe,φd) becomes greater asr(t)
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becomes smaller. We say that a binary tree source(T ,F ,P) obeys the Representation Ratio
Negligibility Property (RRN Property) if

lim
F∈F

∑
t∈F

r(t)P(t) = 0. (3.12)

Definition.Henceforth,γ : [0,1]→ [0,∞) is the function defined by

γ(x) ∆
=

{

−(x/2) log2(x/2), x> 0
0, x= 0

Theorem 2. The following statements hold:
(a): For eachλ ∈ Λ,

|t|−1{L[φe(t)]+ log2λ(t)} ≤ (2K(λ)+10)γ(r(t)), t ∈ T . (3.13)

(b): Let (T ,F ,P) be a binary tree source satisfying the Domination Property,where
F can be anyT -filter. There exists a positive real numberC, depending only on
the source, such that

R(φe,F,P)≤Cγ

(

∑
t∈F

r(t)P(t)

)

, F ∈ F . (3.14)

(c): (φe,φd) is an asymptotically optimal code for any binary tree sourcewhich
satisfies both the Domination Property and the RRN Property.

Proof. It suffices to prove part (a). (Part (b) follows from part (a) and the fact thatγ is a
concave function; part(c) follows from part(b) and (3.10).) Let λ ∈ Λ be arbitrary. Fixt ∈ T
and letN = N(t). There is an initial binary subtreet† of t such that

• There areN leaf vertices oft†.
• The subtreest(v) are distinct asv ranges through theN−1 non-leaf vertices oft†.

(One can obtaint† either by pruning the derivation tree ofGt or by growing it using the
production rules ofGt so that in the growth process each production rule is used to extend a
leaf exactly once; see Fig. 5.) Letv1,v2, · · · ,vN be an enumeration of the leaves oft†. There
is a one-to-one correspondence between the set{t(v) : v ∈ V(t)} and the set of variables
of Gt , and under this correspondence, the sequences∗ = (t(v1), t(v2), · · · , t(vN)) is carried
into a sequence which is a permutation of the sequenceS1(t), and the first order empirical
distribution p∗ of s∗ is carried into the first order empirical distributionpt of S1(t). Thus, the
Shannon entropiesH(p∗), H(pt) coincide, and appealing to Theorem 1, we have

L[φe(t)]≤ 5(N−1)+
N

∑
i=1

− log2 p∗(t(vi)).

Define
M j

∆
= ∑

u∈T j

λ(u), j ≥ 1.

There is a unique real numberD > 1/2 such that

q(u)
∆
= DM−1

j |u|−2λ(u), u∈ T j , j ≥ 1 (3.15)
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defines a probability distribution onT ∗. Shannon’s Inequality ([1], page 37) then gives us

N

∑
i=1

− log2 p∗(t(vi))≤
N

∑
i=1

− log2q(t(vi)).

Using formula (3.15) and the fact that− log2D ≤ 1, we obtain

N

∑
i=1

− log2q(t(vi)) = N(− log2D)+Q1+2Q2+Q3

≤ N+Q1+2Q2+Q3,

where

Q1 =
N

∑
i=1

log2M|t(vi)|,

Q2 =
N

∑
i=1

log2 |t(vi)|,

Q3 = −
N

∑
i=1

log2λ(t(vi)).

We bound each of these quantities in turn. By (3.11), we obtain

Q1 ≤ K(λ)Q2.

By concavity of the logarithm function, and recalling thatr(t) = N/|t|, we have

Q2 ≤ N log2

(

∑N
i=1 |t(vi)|

N

)

= N log2(|t|/N) = 2|t|γ(r(t))−N.

By property (a) for membership ofλ in Λ, we have

Q3 ≤− log2 λ(t).

Combining previous bounds, and writingK = K(λ), we see that

L[φe(t)]+ log2λ(t) ≤ 6N− (K+2)N+2(K +2)|t|γ(r(t))
≤ 3|t|r(t)+2(K+2)|t|γ(r(t))

holds, whence (3.13) holds becauser(t) ≤ 2γ(r(t)), completing the proof of part (a) of
Theorem 2.
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Fig. 5: Initial subtree of Fig. 3 derivation tree used in Theorem 2 proof

IV. UNIVERSAL CODING OF LEAF-CENTRIC BINARY TREE SOURCES

We fix throughout this section theT -filter F1 = {Tn : n ≥ 2}. We now formally define
the set of leaf-centric binary tree sources, which are certain binary tree sources of the form
(T ,F1,P). Let N be the set of positive integers, and letΣ1 be the set of all functionsσ from
N×N into [0,1] such that

∑
{(i, j):i, j≥1, i+ j=n}

σ(i, j) = 1, n≥ 2.

For eachσ ∈ Σ1, let Pσ be the mapping fromT into [0,1] such that

Pσ(t) = ∏
v∈V1(t)

σ(|t(v)L|, |t(v)R|), t ∈ T .

Since
∑

t∈Tn

Pσ(t) = 1, n≥ 2,

S(σ) = (T ,F1,Pσ) is a binary tree source. The sources in the family{S(σ) : σ ∈ Σ1} are
called leaf-centric binary tree sources, the reason being that the probability of each tree is
computed based purely upon the number of leaves in each of itsfinal subtrees. Leaf-centric
binary tree sources were first considered in the paper [12].

Example 6.Let Σ†
1 be the subset ofΣ1 consisting of allσ ∈ Σ1 for which

{(i, j) : i, j ≥ 1, i + j = n, σ(i, j)> 0} ⊂ {(1,n−1),(n−1,1)}, n≥ 2.

If σ ∈ Σ†
1, then a treet ∈ T with positivePσ probability must satisfy the property that there

exist only two vertices oft at each depth level oft beyond level 0; we call such a binary tree
a one-dimensional tree. Consider the structure universe ofbinary stringsB, in which the size
of a stringb∈ B is taken to be its lengthL[b]. For eachn≥ 1, let Bn be the set of strings inB
of lengthn, and letF (B) be theB-filter {Bn : n≥ 1}. Let [0,1]∞ be the set of all sequences
α = (αi : i ≥ 1) in which eachαi belongs to the interval[0,1], and for eachα ∈ [0,1]∞, let
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(B,F (B),Qα) be the one-dimensional source in which for each stringb1b2 · · ·bn belonging
to B we have

Qα(b1b2 · · ·bn) =
n

∏
i=1

q(αi,bi),

whereq(αi,bi) is taken toαi if bi = 0 and taken to be 1−αi , otherwise. It is easy to see that
the family of sources{(T ,F1,Pσ) : σ ∈ Σ†

1} has a universal code if and only if the family of
one-dimensional sources{(B,F (B),Qα) : α ∈ [0,1]∞} has a universal code. The third author
has shown that this latter family of one-dimensional sources has no universal code. Therefore,
the family {S(σ) : σ ∈ Σ†

1} has no universal code, and so the bigger family of all leaf-centric
binary tree sources also has no universal code.

The following result shows that(φe,φd) is a universal code for a suitably restricted sub-
family of the family of leaf-centric binary tree sources.

Theorem 3. Let Σ∗
1 be the uncountable set consisting of allσ ∈ Σ1 such that

sup

{

i + j
min(i, j)

: i, j ≥ 1, σ(i, j)> 0

}

< ∞. (4.16)

Then (φe,φd) is a universal code for the family of sources{S(σ) : σ ∈ Σ∗
1}.

Before proceeding with the proof of Theorem 3, we provide an example of a source in
{S(σ) : σ ∈ Σ∗

1}.
Example 7.Given a general structure source(Ω,F ,P), then for eachF ∈ F , theF-th order

entropy of the source is defined by

HF(P)
∆
= ∑

ω∈F
−|ω|−1P(ω) log2P(ω).

limF∈F HF(P) is defined to be the entropy rate of the source, if the limit exists; otherwise,
the source has no entropy rate. In universal source coding theory for families of classical one-
dimensional sources (see Ex. 3), the sources are typically assumed to be stationary sources or
finite-state sources, which are types of sources which have an entropy rate. In the universal
coding of binary tree sources, however, one very often dealswith sources which have no
entropy rate. We illustrate a particular source of this typein the family {S(σ) : σ ∈ Σ∗

1}. Let
σ ∈ Σ∗

1 be the function such that for each evenn≥ 2,

σ(n/2,n/2) = 1,

and for each oddn≥ 3,

σ(⌊n/2⌋,⌈n/2⌉) = σ(⌈n/2⌉,⌊n/2⌋) = 1/2.

The resulting leaf-centric binary tree sourceS(σ), introduced in [12], is called thebisection
tree source model. In [9], it is shown that there is a unique nonconstant continuous periodic
function f : R→ [0,1], with period 1, such that

− log2Pσ(t) = |t| f (log2 |t|), t ∈ T , (4.17)

and the restriction off to [0,1] is characterized as the attractor of a specific iterated function
system on[0,1]; because of this property, the sourceS(σ) has no entropy rate.
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Proof of Theorem 3.If σ ∈ Σ1, let λ : T ∗ → [0,1] be the function such thatλ(t∗) = 1 and

λ(t) = max(K−1
n ,Pσ(t)), t ∈ Tn, n≥ 2.

Then λ ∈ Λ and λ dominatesPσ. Thus, every source in the family{S(σ) : σ ∈ Σ∗
1} satisfies

the Domination Property. By Theorem 2, our proof will be complete once it is shown that
every source in this family satisfies the RRN Property. More generally, we show that the RRN
Property holds for any binary tree source(T ,F ,P) for which

sup
t∈T , P(t)>0

{

max
v∈V1(t)

[

|t(v)|
min(|t(v)L|, |t(v)R|)

]}

< ∞. (4.18)

(The T -filter F in the given source(T ,F ,P) need not be equal toF1.) Let C be a positive
integer greater than or equal to the supremum on the left sideof (4.18). Fix t ∈ T for which
P(t)> 0. As in the proof of Theorem 2, lett† be an initial binary subtree oft with N = N(t)
leaves such that{t(v) : v∈V1(t†)}= {t(v) : v∈V1(t)}. Let v1,v2, · · · ,vN be an enumeration
of the leaves oft† and for eachi = 1,2, · · · ,N, let ui ∈V1(t†) be the parent vertex ofvi . We
have

|t(ui)|

|t(vi)|
≤C, i = 1,2, · · · ,N,

and therefore
|t(u1)|+ |t(u2)|+ · · ·+ |t(uN)|

|t(v1)|+ |t(v2)|+ · · ·+ |t(vN)|
≤C.

The sum in the denominator is|t|, and so

|t(u1)|+ |t(u2)|+ · · ·+ |t(uN)|

|t|
≤C. (4.19)

Eachu∈ {u1, · · · ,uN} can be the parent of at most two elements of the set{v1, · · · ,vN}, and
so

card({u1, · · · ,uN})≥ (1/2)card({v1, · · · ,vN}) = N/2.

The mappingu→ t(u) from the setV1(t†) into the set{t(v) : v∈V1(t)} is a one-to-one onto
mapping (both sets have cardinalityN−1). Therefore,

card({t(u1), t(u2), · · · , t(uN)})≥ N/2. (4.20)

Let k = ⌈N/2⌉. We conclude from (4.19)-(4.20) that there arek distinct treest1, t2, · · · , tk in
T whose total number of leaves is≤ |t|C, where we suppose that thesek trees have been
enumerated so that

|t1| ≤ |t2| ≤ · · · ≤ |tk|.

Let t(1), t(2), t(3), · · · be an enumeration of all trees inT such thatt(1) is the unique tree in
T2, t(2), t(3) are the two trees inT3, t(4), t(5), t(6), t(7), t(8) are the five trees inT4, and so
forth. We clearly have|t(i)| ≤ |ti| for i = 1. · · · ,k. Therefore,

|t(1)|+ |t(2)|+ · · ·+ |t(k)| ≤ |t|C. (4.21)
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The sequencemi = |t(i)| can be characterized as the sequence in whichm1 = 2 and for each
j ≥ 3, mi = j for all integersi satisfying

K2+K3+ · · ·+K j−1 < i ≤ K2+K3+ · · ·+K j .

Define
k(M)

∆
= max{k≥ 1 : m1+m2+ · · ·+mk ≤ M}, M ≥ 2.

Since the sequence{K j : j ≥2} grows exponentially fast, it follows thatk(M)/M =O(1/ log2M)
by an argument similar to an argument on page 753 of [10], and hence

lim
M→∞

k(M)/M = 0. (4.22)

From (4.21), we have shown that

⌈N(t)/2⌉ ≤ k(|t|C)), t ∈ T , P(t)> 0.

Dividing both sides by|t| and summing, we then have

∑
t∈F

r(t)P(t)≤ 2 ∑
t∈F

|t|−1k(|t|C))P(t), F ∈ F . (4.23)

Let nF = min{|t| : t ∈ F}, and define

δ(J) ∆
= sup{k( j)/ j : j ≥ J}, J ≥ 2.

From (4.23), we then have

∑
t∈F

r(t)P(t)≤ 2Cδ(nFC), F ∈ F . (4.24)

By (1.1), limF∈F nF = ∞, and we also have limJ→∞ δ(J) = 0. Taking the limit along filterF
on both sides of (4.24), we then obtain (3.12), which is the RRN Property for the source
(T ,F ,P).

V. UNIVERSAL CODING OF DEPTH-CENTRIC BINARY TREE SOURCES

For eacht ∈ T ∗, defined(t) to be the depth oft, which is the number of edges in the
longest root-to-leaf path int. We haved(t∗) = 0 and as defined in Ex. 2, for eachn ≥ 1
we let T n be the set of trees{t ∈ T : d(t) = n}. We fix throughout this section theT -
filter F2 = {T n : n≥ 1}. We now formally define the set of depth-centric binary tree sources,
which are certain binary tree sources of the form(T ,F2,P). Let Z+ be the set of nonnegative
integers, and letΣ2 be the set of all functionsσ from Z+×Z+ into [0,1] such that

∑
{(i, j):i, j≥0, max(i, j)=n−1}

σ(i, j) = 1, n≥ 1.

For eachσ ∈ Σ2, let Pσ be the mapping fromT into [0,1] such that

Pσ(t) = ∏
v∈V1(t)

σ(d(t(v)L),d(t(v)R)), t ∈ T .



23

Since
∑

t∈T n

Pσ(t) = 1, n≥ 1,

S(σ) = (T ,F2,Pσ) is a binary tree source. The sources in the family{S(σ) : σ ∈ Σ2} are
called depth-centric binary tree sources, the reason beingthat the probability of each tree is
based purely upon the depths of its final subtrees.

Example 8.Let Σ†
2 be the subset ofΣ2 consisting of allσ ∈ Σ2 for which

{(i, j) : i, j ≥ 0, max(i, j) = n−1, σ(i, j)> 0} ⊂ {(0,n−1),(n−1,0)}, n≥ 1.

If σ ∈ Σ†
2, then a treet ∈ T has positivePσ probability if and only if t is a one-dimensional

tree. The family of sources{S(σ) : σ ∈ Σ†
2} has no universal code by the same argument given

in Ex. 6. Thus, the bigger family of all depth-centric binarytree sources also has no universal
code.

Our final result shows that(φe,φd) is a universal code for a suitably restricted subfamily
of the family of depth-centric binary tree sources.

Theorem 4. Let Σ∗
2 be the uncountable set consisting of allσ ∈ Σ2 such that

sup{|i − j| : i, j ≥ 0, σ(i, j)> 0}< ∞ (5.25)

and
card{|i − j| : i, j ≥ 0, max(i, j) = n−1, σ(i, j)> 0}= 1, n≥ 1. (5.26)

Then (φe,φd) is a universal code for the family of sources{S(σ) : σ ∈ Σ∗
2}.

Proof. Each source in the family{S(σ) : σ ∈ Σ∗
2} satisfies the Domination Property, by the

same argument given in the proof of Theorem 3. Appealing to Theorem 2, our proof will be
complete once we verify that each source in this family also satisfies the RRN Property. Fix
the sourceS(σ), whereσ ∈ Σ∗

2. By the last part of the proof of Theorem 3,S(σ) will satisfy
the RRN Property if

sup
t∈T , Pσ(t)>0

{

max
v∈V1(t)

[

|t(v)|
min(|t(v)L|, |t(v)R|)

]}

< ∞. (5.27)

By (5.26), for eachn≥ 1, there existskn ∈ {0,1, · · · ,n−1} such that

{(i, j) : i, j ≥ 0, max(i, j) = n−1, σ(i, j)> 0} ⊂ {(kn,n−1),(n−1,kn)}.

Let (x(n) : n≥ 0) be the sequence of real numbers such thatx(0) = 1 and

x(n) = x(n−1)+x(kn), n≥ 1.

We prove the statement

|t|= x(d(t)), t ∈ {t∗}∪{t ′ ∈ T : Pσ(t
′)> 0} (5.28)

by induction on|t|, starting with|t| = 1. If |t|= 1, thent = t∗ and |t|= x(d(t)) is the true
statement 1= x(0). Now fix u ∈ T for which Pσ(u) > 0 and we assume as our induction
hypothesis that|t|= x(d(t)) holds for everyt ∈ {t∗}∪{t ′ ∈ T : Pσ(t ′)> 0} for which |t|< |u|.
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Note that(d(uL),d(uR)) belongs to the set{(d(u)−1,kd(u)),(kd(u),d(u)−1)}. The induction
hypothesis holds for bothuL anduR, and so

|u|= |uL|+ |uR|= x(d(uL))+x(d(uR)) = x(d(u)−1)+x(kd(u)) = x(d(u)),

completing the proof of statement (5.28). We conclude from (5.28) that for everyt ∈ T for
which Pσ(t)> 0,

|t(v)|
min(|t(v)L|, |t(v)R|)

∈ {x(n)/x(kn) : n≥ 1}, v∈V1(t).

By (5.25), letm∈ Z+ be the supremum on the left side of (5.25); thenn−1− kn ≤ m for
n≥ 1. Since the sequence(x(n)) is nondecreasing,x(n)/x(n−1)≤ 2 for n≥ 1, and so

x(n)
x(kn)

=
n

∏
i=kn+1

x(i)
x(i −1)

≤ 2n−kn ≤ 2m+1, n≥ 1.

Thus, the left side of (5.27) is at most 2m+1 and (5.27) holds, completing our proof.

VI. CONCLUSIONS

We have shown that the grammar-based code(φe,φd) on the setT of binary tree structures
defined in this paper is asymptotically optimal for any binary tree source satisfying the
Domination Property and the Representation Ratio Negligibility Property. In typical cases, we
have found that the Domination Property is easy to verify fora binary tree source, whereas the
RRN Property is more troublesome to verify. In a subsequent paper [11], we investigate more
scenarios in which the RRN Property will hold. (The one-dimensional binary trees discussed
in Example 6 need to be avoided in a binary tree source model, as well as some trees derived
from these.) In [11], we also show that(φe,φd) is universal for some families of binary tree
sources induced by branching processes (including families of sources which were considered
in [15] from an entropy point of view but not from a compression point of view).
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