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Abstract

We consider the problem of lossless compression of binagstrwith the aim of reducing
the number of code bits needed to store or transmit such. the&sssless grammar-based code is
presented which encodes each binary tree into a binary ardein two steps. In the first step,
the tree is transformed into a context-free grammar fromctvlthe tree can be reconstructed. In
the second step, the context-free grammar is encoded intnaaybcodeword. The decoder of the
grammar-based code decodes the original tree from its codety reversing the two encoding
steps. It is shown that the resulting grammar-based bimagydompression code is a universal code
on a family of probabilistic binary tree source models $gitig) certain weak restrictions.

Index Terms

grammar-based code, binary tree, lossless compressiatextdree grammar, minimal DAG
representation.

I. INTRODUCTION

There have been some recent initial attempts to concepéutiie notion of structure in
information theory [[12][3][16], with the ultimate futureogl being the development of a
lossless compression theory for structures. In the prepaper, we put forth a general
framework for this area, and then develop a lossless comipresheory for binary tree
structures within this framework. Our framework will petnain abstract asymptotic theory
for the compression of structures to be developed, wher&dahework is sufficiently general
to include the types of structures that have been considarether contexts, such as in the
asymptotic theory of networks [13] or the asymptotic theafrpatterns|[7]. The basic concepts
in this framework are the notions sfructure universestructure filter andstructure source
which we now define; after the definitions, we give examplethefconcepts relevant for the
work we shall do in this paper.

Concept of Structure Univers®&roadly speaking, “structure universe” will mean the set
of structures under consideration in a particular contéath structure has a “size” assigned
to it, which is a positive integer that can be a measure of hemgel or how complex the
structure is. For example, if a structure is a finite grgpthen the size of the structure could
be taken as the number of verticesgdr the number of edges of if a structure is a finite
treet, then the size of the structure could be taken as the numbkawés oft. We now
make the notion of structure universe precisestAucture univers& is defined to be any
countably infinite set such that for eaahe Q there is defined a positive integgn|, which
we call the size otv, such that the sefw e Q : |w| = n} is finite for each positive integer.

Concept of Structure FilteA structure filterF over a structure univers® (called Q-filter
for short) is defined to be any set of finite nonempty subset@ @fhich forms a partition
of Q. For example, given any structure univei@ewe have the natural-filter consisting
of all nonempty subsets @ of the form{we Q: |w| =n} (n=1,2,---). Given anQ-filter
F, a real-valued functionixg : F € ¥) defined on#, and an extended real numbler the
limit statement lingc+ X = L means that for any neighborhoad of L in the topology of
the extended real line, the s@t € 7 : xe &€ A} is finite; the limitL, if it exists, is unique,
which is due to the fact that a structure filter is always cabht infinite. Similarly, one can



make sense of limit statements of the form limsupxs =L and liminfcy X = L. The
sets in anyQ-filter & are growing in the sense that

Fliénf Min{|w| : we F}] = co. (1.1)

This condition will make possible an asymptotic theory afdiess compression of structures;
we will see how the condition is used in Sec. lll.

Concept of Structure Sourcformally, suppose we randomly select a structure fronheac
element of a structure filter; then these random structusastitute the output of a structure
source. Formally, we define a structure source to be anyet(i@l ¥,P) in which Q is a
structure universeZ is anQ-filter, andP is a function fromQ into [0,1] such that

EF Plw =1 Fe7. (1.2)

Note that[(1.R) simply tells us th& restricted to eack € ¥ yields a probability distribution
on F; for any subseF’ of F, we write the probability o’ under this distribution aB(F’),
which is computed as the suRcr/ P(w).

Example 1.For eachn > 2, fix an undirected graply, with n vertices andn(n—1)/2
edges, one edge for each pair of distinct vertices, an&Gjldbe the set of edge-labelings of
gn in which each edge afl, is assigned a label from the sfd,1}. That is, G, consists of
all pairs(gn,a) in which a is a mapping from the set of edges @f into the set{0,1}. Let
G;, be a subset o6, such that for eaclign, o) € Gy, there exists a uniqu@,,a*) € G;, into
which (gn,a) is carried by an isomorphism (that is, there is an isomomha§g, onto itself
which carries each edgeof g, into an edgeg of g, for which the edge labela(e),a*(€)
coincide). For exampleG; consists of four edge labelings gg, one in which all three of
the edges ofy3 are labeled 0, a second one in which all edge labels are 1ré dhie in
which two edge labels are 0 and the remaining one is 1, andr¢hfone in which two edge
labels are 1 and the remaining one is 0. Kebe the structure universe,-,G;,, where we
define the size of each labeled graphQno be the number of vertices of the graph. L%t
be theQ-filter {G},: n> 2}. For eacho € (0,1), let S = (Q, #,Ps) be the structure source
such that for eaclign,a’) € Q,

Ps(gn,a’) = N(gn,a’)a™(1—0)™,

where mgp is the number of edges af, assigneda’-label 0, m; is the number of edges
of gn assignedy’-label 1, andN(gn,a’) is the number ofg,, a) belonging toG,, for which
(gn,0*) = (gn,a’). For example, th&; probabilities assigned to the four structuresifigiven
above areo®,(1—-0)3, 30%(1—0), and 33(1— 0)?, respectively. In random graph theory, the
structure sourc&; is called the Gilbert model [6]. Choi and SzpankowskKi [3] exs$ed the
universal coding problem for the parametric family of s@#€¢S;: 0 < 0 < 1}. (We discuss
universal coding for general structure sources after thx¢ tweo examples.)

Example 2We consider finite rooted binary trees having at least twedsauch that each
non-leaf vertex has exactly two ordered children. From nawbe terminology “binary tree”
without further qualification will automatically mean suehtree. Let7 be a set of binary
trees such that each binary tree is isomorphic as an ordexedd a unique tree iff. Then
T is a structure universe, where the sitgof a treet in the universeZ is taken to be



the number of leaves df We discuss two ways in whicli’ can be partitioned to obtain a
T -filter. For eachn > 2, let 7, be the set of trees il that haven leaves. For each > 1,
let 7" be the set of trees i for which the longest root-to-leaf path consistsroédges
(that is, 7" consists of trees of depth). Then 71 = {Z,:n>2} and 7, ={7":n> 1}
are eachT -filters. A structure source of the forfiZ, ¥,P) for someZ filter ¥ is called a
binary tree sourceln [12], binary tree sources of forfiZ, F1,P) were introduced which are
called leaf-centric binary tree source models; we addressuniversal coding problem for
such sources in Section IV of the present paper. In Sectiave\address the universal coding
problem for a type of binary tree source of forfT, #,,P) which we call a depth-centric
binary tree source model.

Example 3Let A be a finite alphabet. For each> 1, let A" be the set of alh-tuples of
entries fromA. ThenQ = U} ;A" is a structure universe, where we define the size of each
structure inA" to ben. Let ¥ be theQ-filter {A": n > 1}. A structure source of the form
(Q, F,P) corresponds to the classical notion of finite-alphabetrinftion source ([8], page
14) . Thus, source coding theory for structure sources wdlude classical finite-alphabet
source coding theory as a special case.

Asymptotically Optimal Codes for Structure Sourcdesthe following and in the rest of
the paper,B denotes the set of non-empty finite-length binary stringsl, lgb] denotes the
length of stringb € B. Let Q be a structure universe. A lossless codeDis a pair(Ye, Wq)
in which

o e (called the encoding map) is a one-to-one mappingonto B which obeys the

prefix condition, that is, ifw; and wp are two distinct structures i, then Ye(wy) is
not a prefix ofYe(wy); and

« g (called the decoding map) is the mapping fram(Q) onto Q which is the inverse

of Ye.
Given a lossless codepe, Wg) on structure univers@ and a structure sourd®, ¥ ,P), then
for eachF € ¥ we define the real number

RWeFP) S Y [0 {Llge(0)] +log, P(60) }P(0),
weF, P(w)>0

which is called the=-th order average redundancy of the cdqdg,yq) with respect to the
source. We say that a lossless cade,y) on Q is an asymptotically optimal code for
structure sourcéQ, 7 ,P) if

Fliénf R(We, F,P) =0. (1.3)

Universal Codes for Structure Source Familieet F be a fixedQ-filter for structure
universeQ. Let P be a set of mappings fro® into [0,1] such that[(1]2) holds for every
P € P. A universal code for the family of structure sourcg®, 7,P) : P € P} (if it exists)
is a lossless code of2 which is asymptotically optimal for every source in the fgmirhe
universal source coding problem for a family of structurarses is to determine whether the
family has a universal code, and, if so, specify a particulaversal code for the family.

There has been little previous work on universal coding nfcttire sources. One notable
exception is the work of Choi and SzpankowskKi [3], who dediseuniversal code for the
parametric family of Gilbert source§S; : 0 < 0 < 1} introduced in Ex. 1. Peshkin [17]



and Busatto et al! [2] proposed grammar-based codes for ressipn of general graphical
structures and binary tree structures, respectively; @setlauthors did not use a probabilistic
structure source model, it is unclear whether their codesuaiiversal in the sense of the
present paper (instead, they tested performance of thdescon actual structures).
Context-Free Grammar Backgrounth the present paper, we further develop the idea
behind the Busatto et al. codel [2] to obtain a grammar-baseé ¢or binary trees which,
under weak conditions, we prove to be a universal code foiliissrof binary tree sources. In
this Introduction, we describe the structure of our codednegal terms; code implementation
details will be given in Section Il. In order to describe thammar-based nature of our code,
we need at this point to give some background informatiorceoring deterministic context-
free grammars. A deterministic context free gramias a quadrupléS;, S, s*, P) in which
« S is a finite nonempty set whose elements are called the nomt@irvariables ofG.
« S is a finite nonempty set whose elements are called the terranables ofG. (SSUS
is the complete set of variables @f.)
« s'is a designated nonterminal variable called the start bkmiaf G;
« P is the finite set of production rules of production rules®fP has the same cardinality
asS,. There is exactly one production rule for each nontermiaiables, which takes
the form

S_)(817327"'7S'1>7 (14)

wheren is a positive integer which can depend on the rule sneb, - - -, s, are variables
of G. s, (s1,--+,Sn), andn are respectively called the left member, right member, and
arity of the rule [(1.14).
Given a deterministic context-free grammiar there is a unique up to isomorphism rooted
ordered vertex-labeled treg€G) (which can be finite or infinite) satisfying the following
properties:
« The label on the root vertex ¢fG) is the start variable of.
« The label on each non-leaf vertex tif) is a nonterminal variable of.
« The label on each leaf vertex ofG) is a terminal variable ofs.
« Let s(v) be the variable ofG which is the label on each vertexof t(G). For each
non-leaf vertexv of t(G) and its ordered childrewm, vz, - - -, vy,

S(V) = (8(v1),8(V2), -, S(Vn))

IS a production rule ofs.
“Unique up to isomorphism” means that for any two such roatedered trees there is an
isomorphism between the trees as ordered trees that pesstre labeling (that is, corre-
sponding vertices under the isomorphism have the same).labkel callt(G) the derivation
tree of G.

Outline of Binary Tree Compression Codeet 7 be the structure universe of binary trees
introduced in Ex. 2. Suppodec 7 and supposé: is a deterministic context-free grammar
such that the arity of each production rule is two. Then wethayG forms a representation
of t if t is the unique tree i isomorphic as an ordered tree to the tree which results when
all vertex labels on the derivation tree @f are removed. In Section Il, we will assign to each
t € 7 a particular deterministic context-free gramniar which forms a representation of



Then we will assign tds; a binary codeword(Gy) so that the prefix condition is satisfied.
The grammar-based binary tree code of this paper is therosteks codég., @q) on 7 in
which the encoding mape and decoding magy each operate in two steps as follows.
« Encoding Step 1: Given binary tred € 7, obtain the context-free gramm@¥ from t.
« Encoding Step 2: Assign to grammafG; the binary wordB(Gt) € B, and thenB(Gy)
is the codewordp(t) for t.
« Decoding Step 1: The grammarG; is obtained fromB(Gy), which is the inverse of the
second encoding step.
« Decoding Step 2: Gy is used to obtain the derivation tree@f, from whicht is obtained
by removing all labels.
The two-step encoding/decoding magsand ¢y are depicted schematically in the following
diagrams:

Encoding Mapg:: te T 1ﬁeth 2nd sgep B(Gt) = @e(t) € B

2nd step
—

Decoding Mapgy : B(Gy) 1iSt>eth t = @(B(Gt))

We point out the parallel between the grammar-based bimag compression algorithm
of this paper and the grammar-based lossless data compressthodology for data strings
presented in[[10]. In the grammar-based approach to cosipresf a data string, one
transformsx into a deterministic context-free grammayg from which x is uniquely recover-
able as the sequence of labels on the leaves of the deriiati®fGy; one then compresses
Gy instead ofx itself. Similarly, in the grammar-based approach to binaeg compression
presented here, one transforms a binary triggo the deterministic context-free gramniay
from whicht is uniquely recoverable by stripping all labels from theiion tree ofGy;
one then compressés instead oft itself.

The rest of the paper is laid out as follows. In Sec. Il, we @néghe implementation
details of the grammar-based binary tree compression t@dey). In Sec. I, we present
some weak conditions on a binary tree source under wigghypy) will be an asymptotically
optimal code for the source. The remaining sections exgiiese conditions to arrive at wide
families of binary tree sources on whi¢lpe, @) is a universal code (families of leaf-centric
models in Sec. IV and families of depth-centric models in.Sé&c

[1. IMPLEMENTATION OF BINARY TREE COMPRESSIONCODE

This section is organized as follows. In Section II-A, weegsome background regarding
binary trees that shall be used in the rest of the paper. Tiheé®ec II-B, we explain how to
transform each binary treec 7" into the deterministic context-free gramniay; this is Step
1 of encoding mappe. In Section II-C, there follows an explanation on how the exwdrd
B(Gt) is obtained fromGy; this is Step 2 of encoding mag.. Examples illustrating the
workings of the encoding mag. and the decoding magy are presented in Section II-D.
Theorem 1 is then presented in Section II-E, which gives fopeance bound for the code
(@, @q). Finally, in Section II-F, we discuss a sense in which thergrerG; is minimal and
unique among all grammars which form a representation<ofr .



A. Binary Tree Background

We take the direction along each edge of a binary tree to bg &wm the root. The root
vertex of a binary tree is the unique vertex which is not thikdabf any other vertex, the leaf
vertices are the vertices that have no child, and each ofdhdeaf vertices has exactly two
ordered children. We regard a tree consisting of just ongexdo be a binary tree, which
we call a trivial binary tree; all other binary trees have edst two leaves and are called
non-trivial. Given a binary tre¢, V(t) shall denote the set of its vertices, avd(t) shall
denote the set of its non-leaf vertices. Each edgeisfan ordered paifa,b) of vertices in
V(t), wherea is the vertex at which the edge begins d@nd the vertex at which the edge
ends & is the parent ob andb is a child ofa). A path in a binary tree is defined to be
any sequencévi, Vo, - --, V) of vertices of lengttk > 2 in which each vertex from, onward
is a child of the preceding vertex. For each verneaf a binary tree which is not the root,
there is a unique path which starts at the root and ends ¥fe define the depth level of
each non-root vertex of a binary tree to be one less than the number of verticesen th
unique path from root t@ (this is the number of edges along the path); we define thehdept
level of the root to be zero. Vertew is said to be a descendant of vertexif there exists
a (necessarily unique) path leading framto v». If a binary tree has leaf vertices, then it
hasn— 1 non-leaf vertices and thereforén2- 1) edges.

We have a locally defined order on each binary trée which each sibling pair of child
vertices oft is ordered. From this locally defined order, one can inferous total orders on
V(t) which are each consistent with the local orders on the sethittfren. The most useful
of the possible total orders for us will be tlheeadth-firstorder. If we list the vertices of a
binary tree in breadth-first order, we first list the root e&rat depth level 0, then its two
ordered children at depth level 1, then the vertices at dipil 2, depth level 3, etc. Two
verticesvy, Vv, at depth levelj > 0 are consecutive in breadth-first order if and only if either
(a) v1,v2 have the same parent aridprecedess in the local ordering of children, or (b) the
parent ofv; and the parent o¥; are consecutive in the breadth-first ordering of the noh-lea
vertices at depth levgl— 1. It is sometimes convenient to represent a treectorially via a
“top down” picture, where the root vertex bfappears at the top of the picture (depth level
0) and edges extend downward in the picture to reach vertitesreasing depth level; the
vertices at each depth level will appear horizontally in pieture with their left-right order
corresponding to the breadth-first order. Fig. 1 depicts bivary trees with their vertices
labeled in breadth-first order.

The structure univers& consists only of nontrivial binary trees. Sometimes we nieed
consider a trivial binary tree consisting of just one vertek such a trivial tree™. Then
T* =T U{t*} can be taken as our structure universe of binary trees hivtal tind nontrivial.
For eachn > 1, letting 7, be the set of trees i * havingn leaves, and lettind<, be the
cardinality of 7y, it is well known [18] that{K, : n> 1} is the Catalan sequence, expressible

by the formula
1/2(n—-1)
== >1.
o n< n—1 )’ n=1
For example, using this formula, we have

Ki=Ko=1 K3=2, K4=5, Kg=14
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Fig. 1 depicts one of th¢1/8) (%)) = 429 binary trees irZs, and one of the1/16)(39) =
9,694 845 binary trees infyg.

\
Fig. 1: Binary trees inZg (left) and 716 (right) with breadth-first ordered vertices

A subtree of a binary treeis a tree whose edges and vertices are edges and vertices of
t; by convention, we require also that a subtree of a binay $teould be a (nontrivial or
trivial) binary tree. There are two special types of sulgrega binary tree that shall be of
interest to us, namely final subtrees and initial subtre@gerGa binary tred, a final subtree
of t is a subtree of whose root is some fixed vertex bland whose remaining vertices are
all the descendants of this fixed vertextinan initial subtree ot is any subtree of whose
root coincides with the root of. If t is any nontrivial binary tree and € V(t), we define
t(v) to be the unique binary tree f™* which is isomorphic to the final subtree bfooted
atv. Note thatt(v) =t* if v is a leaf oft, and thatt(v) =t if t € 7 andv is the root oft.
There are also two other trees of tt{g) type which appear often enough that we give them
a special name; letting;,v» be the ordered children of the root of nontrivial binary ttee
we definet, =t(v1) andtgr =t(v2) to reflect the respective left and right positions of these
trees in the top down pictorial representation of tree

B. Encoding Step 1

Givent € 7, we explain how to transforrinto the grammarG, which is Step 1 of the
encoding mapp.. DefineN = N(t) to be the cardinality of the sdt(v) :veV(t)}. Note that
N > 2 sincet* andt are distinct and both belong to this set. The set of nontalvariables
of Gt is the nonempty set of integef®,1,--- ;N —2}. The set of terminal variables d¥;
is the singleton sefT }, where we have denoted the unique terminal variable as thaadp
symbolT. The start variable ofs; is 0. All that remains to complete the definition@f is to
specify the production rules d@¥;. We do this indirectly by first labeling the verticestoi a
certain way and then extracting the production rules froenléibeled tree. This labeling takes
place as follows. The root dfis labeled 0 and each leaf bfis labeledT. The vertices ot



are traversed in breadth-first order. Whenever a vertexthus encountered which as yet has
no label, one checks to see whethgr) coincides witht(v') for some previously traversed
vertexV. If this is the casey is assigned the same label dsotherwise,v is assigned label
equal to the smallest member of the $611,---,N—2} which has so far not been used as a
label. For each nonterminal variable {0,1,---,N— 2}, we can then extract from the labeled
tree the unique production rule &% of form i — (i1,i2) by finding any vertex of the labeled
tree whose label i§, the entriesi1,i> are then the respective labels on the ordered children
of this vertex. Incidentally, the labeled tree we employedhis construction turns out to be
the derivation tree ofs;.

Figures 2-3 illustrate the results of Encoding Step 1 forkihmary trees in Fig. 1.

0 — (1,2
1 - (2,3
2 — (T,3
3 —» (T,T)

Fig. 2: Encoding Step 1 For Left Figure 1 tree

o~ wWN P O
A

6
Fig. 3: Encoding Step 1 For Right Figure 1 tree
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C. Encoding Step 2

Fix t € 7. We now explain Step 2 of the encodingtafhich is to obtain from the grammar
Gt a stringB(Gy) € B which is taken as the codewogd(t) of t. We will be employing two
sequence§(t) and S (t) defined as follows:



o LetN=N(t). Foreach =0,---,N—2, let ordered paifayi;1,azi+2) be the right member
of the production rule ofs; whose left member is ThenS(t) is the sequence of length
2N — 2 defined by

A
St) = (ag,az, -+, an-3,8N-2).

The alphabet of(t) is A(t) = {1,2,---,N—2}U{T}. Note thatG; is fully recoverable
from S(t).

« Si(t) is the sequence of lengthh remaining after one deletes fro8it) the first left-to-
right appearance i§(t) of each member of the s¢f.,2,--- N —2}.

Note thatN = N(t) = 2 if and only if t is the unique tree irly; in this caseG; has only
one production rule 6+ (T,T), andS(t) = S(t) = (T, T). If N =2, defineB(Gt) = 1. Now
assumeN > 2. The codeword(Gy) will be obtained via processing of the sequerge).
Note thatS(t) partitions into the two subsequencBgt) (defined previously) an&(t) =
(1,2,---,N—2). For eacha € A(t), define f, to be the positive integer

faécard{1§i§2N—2:ai:a},

that is,(fa:a€ A(t)) is the un-normalized first-order empirical distributiont). Let Si(t)
be the set of all possible permutationsSft); the cardinality ofS;(t) is then computable as

B N!
(-1

B(Gt) is defined to be the left-to-right concatenation of the bjinsatrings B1, By, B3, B4
obtained as follows:

« Bj is the binary string of lengtiN — 1 consisting ofN — 2 zeroes followed by 1.

« B> is the binary string of lengthl— 2 in which there are exactlil — 2 entries equal
to 1, where these entries correspond to the first left-tbtrappearances i§(t) of the
members of the sefl,2 --- N —2}. Given By, one can reconstrud(t) from its two
subsequenceS;(t) and S(t).

« Bj is the binary string consisting & — 1 alternate runs of ones and zeroes, where the
lengths of the runs (left-to-right) are taken to bg fo,---, fn_2,1, respectively. Since
fr > 1, B3 is of length less thani2— 2.

o Let M(t) = [log,card Si(t))]. If M(t) =0, B is the empty string. Otherwise, list all
members ofs;(t) in the lexicographical ordering resulting from the ordgrih---,N —
2,T of the alphabeA(t). Assign each member of the list an index, starting with in@ex
Let | be the index of5;(t) in this list. B4 is the lengthM(t) binary expansion of integer
l.

Verification of Prefix ConditionSupposé € 7 has been processed by the encoding map
to yield codewordp(t) = B(Gt). Step 1 of the decoding magy is to determine the grammar
Gt from B(Gt). More generally, we discuss here h&t) and henceG; is recoverable from
any binary wordw of which codewordB(Gt) = B1B,B3B4 is a prefix; this will establish that
the encoding mag. : 7 — ‘B satisfies the prefix condition. Scannimgleft-to-right to find
the first 1, one determind® andN = N(t). By is then determined from the fact that its length
is 2N — 2, and therBs is determined from the fact that it consistsMf 1 runs. Knowledge

card S1(t))
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of Bz allows one to determine the sét(t) and to computeM(t), the length ofB4, whence
B4 can be extracted fromw. From B4, one is able to locat&(t) in the list of the members
of S1(t). Using By, one is able to put togeth&(t) from S;(t) and S(t).

D. Encoding/Decoding Examples

We present two examples. Example 4 illustrates how the engoghap @ works, and
Example 5 illustrates how the decoding mapworks.

Example 4Lett be the tree on the right in Fig. 1. Fig. 3 illustrates the ressaf Step 1
of encoding mapp.. We then obtain

N=N(t)=8,
S(t)=(1,2,3,4,3,T,54,T,6,6,T,T,T),
Si(t)=(3,T,4T,6T,T,T),

S(t)=(1,2,3,4,5,6),
fi=fa=1fs=1 f3=f,=fs=2, fr =5,

B; = 0000001
B, =1111001001000Q0
Bz =1011001001
We now list the 8/5! = 336 members of(t) in lexicographical order untib; (t) is obtained:

index sequence index sequence
0 (3,4,6,T, T, T,T,T) 7 (3,6, T,4T,T,T,T)
1 |(3,4T,6T,T,T,T) 8 |(36T,T,4T,T,T)
2 (3,4,T,T,6,T,T,T) 9 (3,6, T,T,T,4T,T)
3 |(34T,T1,T,6,T,T)| 10 |(3,6,T,T,T,T,4,T)
4 (3,4, T,T,T,T,6.T) 11 | (3,6, T, T,T,T,T,4)
5 |(34rT1,TT1,T,T,6)| 12 |(3T,4,6T,T,T,T)
6 (3,6,4, T, T,T,T,T) 13 |(3,T,4T,6,T,T,T)

The index ofS(t) is thusl = 13. (Alternatively, one can use the method of Cover [4] to
computel directly without forming the above list.) To obtaBy, we expand the indek= 13
into its [log,336] = 9 bit binary expansion, which yields

B4 = 000001101

The codewordps(t) = B1B2B3B; is of length 7414+ 10+ 9 = 40.
Example 5Let binary treet € 7 be such that

@(t) = B(Gy) = 00011101000010011000001

We employ the decoding mapy to find t from B(Gy). In Decoding Step 1, the grammar
Gy must be determined, which, as remarked earlier, is equivate finding the sequence
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S(t). B(Gt) = B1B2B3B4 must be parsed its constituent paBs By, Bz, B4. By is the unique
prefix of B(Gt) belonging to the sef1,01,001,001 0001 -- -}, whenceB; = 0001, and hence
N =N(t)=4+1=5. Thus,S(t) and By are both of length ® —2 =8, whence

B> = 11010000

and S(t) is of the form
S(t) = (a1, a2, a3, a4, as, 86, a7, 8g).

The positions of symbol 1 i, tell us that
SZ(t) — <a17a27a4) = (17 27 3)7
and therefore5; (t) is made up of the remaining entries $t), giving us

Si(t) = (as,as, a6, a7, 88).

Since B3 consists ofN — 1 =4 runs of ones and zeroes, with the last run of length 1, we
must have
B3z =100110

The alphabet o5(t) is {1,2,---,N—2,T} ={1,2,3, T}, and so fromB3 the frequencies of
1,2,3 in S(t) are the lengths of the first three runsBpg, respectively, whence

fi=1 f,=2, f3=2

The remaining entries dit) are all equal tar, giving usfr =8—(1+2+2) = 3. It follows
thatS; (t) consists off; — 1= 0 entries equal to 1f, — 1 =1 entry equal to 2f3—1=1 entry
equal to 3, andt = 3 entries equal td. Consequentlys; (t) is the set of all permutations of
(2,3, T,T,T). The cardinality of this set is 38! = 20, and sdB4 is of length[log,20] = 5.
This checks with what is left oB(G;) = B1B,B3zB4 after By, By, B3 are removed, namely

B4 = 00001

The index ofSi(t) in the list of the members afi(t) is thusl = 1. This list starts with
(2,3, T, T,T), which has index 0, and the sequence following this mustetbez by S (t).
We conclude that

Si(t)=(2T,3T,T).

Si(t) and $(t) now both being known, we put them together to obtain
St)=(1,2,2,3,T,3,T,T).

PartitioningS(t) into blocks of length two, we obtain the four production sute G; in Fig.
3, whereupors; is determined, completing Decoding Step 1. In Decoding 3teme grows
the derivation tree ofs; from the production rules ofs; as explained in the Introduction,
giving us the derivation tree in Fig. 3; stripping the labketsn this tree, we obtain the binary
treet on the left in Fig. 1, completing Decoding Step 2.
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E. Performance Bound

We present Theorem 1, which gives us an upper bound on thehkergf the binary
codewords assigned by the encoding npaprhich shall be useful in later sections. Theorem 1
uses the notion of the first order empirical probability disition of a sequencés;, s, -+, S)
whose entries are selected from a finite alphabetvhich is the probability distribution
p=(pa:acA) defined by

pa2nlcardl<i<n:s=a}, acA

The Shannon entropi (p) of this first order empirical distributiop is defined as
A
H(p) = ) —Ppalog; pa,
2.

which is also expressible as
n

H(p)=n"*Y —log, ps.
i; 2 MS

Theorem 1. Lett be any binary tree ir/. Let p; be the first order empirical probability
distribution of the sequencg(t). Then

Lie(t)] < S(N(t) — 1) + N(t)H (py). (2.5)

Proof.Let N = N(t). We haveN > 2. If N = 2, thent is the unique tree iz andL[@e(t)] =
1, whence[(215) holds because the right side is 5. AssNme2. Recall thatS;(t) is the set
of all permutations ofS;(t). From the relationships

4
L{ge(t)] = ;L[Bi] =3(N—1)+L[Ba] + [logy(card Si(t)))],

[log,(card 51(t)))] < logy(card S5 (t))) +1,

we obtain
L[@e(t)] < 5(N —1) +logy(card Su(t))).

Since$1(t) is a type class of sequences of lendthin the sense of Chapter 2 of| [5], Lemma
2.3 of [5] tells us that

log,(cardSu(t))) < NH(py).
Inequality [2.5) is now evident.
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F. Minimality/Uniqueness ofs

Givent € 7, we discuss what distinguishé€s among the possibly many deterministic
context-free grammars which form a representatioh. ¢first, we explain what it means for
a directed acyclic graph (DAG) to be a representation @kt D be a finite rooted DAG with
at least two vertices such that each non-leaf vertex hastlgxaw ordered edges. Define
G(D) to be the deterministic context-free grammar whose set onferminal variables is the
set of non-leaf vertices oD, whose set of terminal variables is the set of leaf vertides o
D, whose start variable is the root vertex@f and whose production rules are all the rules
of the formv — (v1,v2) in which v is a non-leaf vertex oD, andvy, v, are the respective
vertices ofD at the terminus of the edges2lemanating fromv. Then we say thab is a
representation of € 7 if the grammarG(D) forms a representation af It is known that
each binary tree ir¥’ has a unique DAG representation up to isomorphism with themal
number of verticed [14]; we call this DAG the minimal DAG repentation of the binary tree.
One particular choice of minimal DAG representationt af 7 is the DAGD*(t) defined as
follows. The set of vertices dD*(t) is {t(v):veV(t)}. The root vertex oD*(t) is t, andt*
is the unique leaf vertex d*(t). If uis a non-leaf vertex oD*(t), then there are exactly two
ordered edges emanating framedge 1 terminating at, and edge 2 terminating ak. Note
that the number of vertices of the minimal DAG representafiy(t) of t is N(t), which
coincides with the number of variables 6f. (Recall that the complete set of variables
of Gt is {0,1,---,N(t) —2} U{T}, of cardinality N(t).) The paper([2] gives a linear-time
algorithm for computind*(t). Fig. 4 illustrates a binary tree together with its minima#l®
representation.

Lemmal. Lett € 7. ThenG; has the smallest number of variables among all deterngnisti
context-free grammars which form a representatiot. of

Proof. Let G be a deterministic context-free grammar which forms a isg&ation oft.
The proof consists in showing that the number of variable& @ at leastN(t), the number
of variables ofGt. In the following, we explain how to extract from the derieet treet(G)
of G a rooted ordered DAM®(t) which is a representation of The set of vertices ob(t)
is the set of labels on the vertices tfz). The root vertex oD(t) is the label on the root
vertex oft(G), the set of non-leaf vertices @f(t) is the set of labels on the non-leaf vertices
of t(G), and the set of leaf vertices @f(t) is the set of labels on the leaf verticest¢f).
Let s be any non-leaf vertex dD(t). Find a vertexv of t(G) whose label iss, and lets;, s,
be the respective labels on the ordered childrew af t(G); the pair(s,sz) thus derived
will be the same no matter which verteof t(G) with label s is chosen. There are exactly
two ordered edges d@(t) emanating frorrs, namely, edge 1 which terminatessatand edge
2 which terminates at,. This completes the specification of the DARt). By construction
of D(t), the number of variables dF is at least as much as the number of vertice® ().
SinceD(t) is a DAG representation df the number of vertices d(t) is at least as much
as the number of verticdd(t) of the minimal DAG representation of Thus, the number of
variables ofG is at leastN(t), completing the proof.

Remark. With some more work, one can show that any deterministiceod+ftee grammar
which forms a representation o= 7 and has the same number of variableszasnust be
isomorphic toGt, using the known fact mentioned earlier that the minimal D&@resentation
of t is unique up to isomorphism. This gives us a sense in whicls unique.
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Fig. 4: A binary tree (left) and its minimal DAG representati(right)

IIl. SOURCESFOR WHICH (e, @) 1S ASYMPTOTICALLY OPTIMAL

This section examines the asymptotic performance of the ¢@g@y) on a binary tree
source. We put forth weak sufficient conditions on a binaeg tsource so that our two-step
grammar-based codep, @) will be an asymptotically optimal code for the source. Befor
doing that, we need to first establish a lemma giving an asytneEverage redundancy lower
bound for general structure sources.

Suppos€gQ, F,P) be an arbitrary structure source. L@le, Wy) be a lossless code dp,
and letF € ¥ be such that every structucec F is of the same size. The well-known entropy
lower bound for prefix codes tells us that

> Le(@IP@) 2 5 —P(e)logP(e),
we weF, P(w)>0

from which it follows that
R(qJe, F7 P) 2 07

that is, theF-th order average redundancy of the code with respect to dhecs is non-

negative. Although this redundancy non-negativity proptails for a general structure source,

the following result gives us an asymptotic sense in whigdrage redundancy is non-negative.
Lemma 2. Let (Q, #,P) be a general structure source. Then

liminf R(Ye,F,P) >0 (3.6)
Feg

for any lossless cod@le, Yq) on Q.

Proof. Fix a general structure sour¢®, 7,P). Let Q be the set of alQ: Q — (0,1) such
that the restriction ofQ to eachF € ¥ is a probability distribution orF. In the first part of
the proof, we show that

P(w)

. . 71 T\
imint 5 JoiP(@)log (Q(w)) >0, Qe (3.7)
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where in [3.7) and henceforth, any expected value of the fpgaE g(w)P(w) is computed by
summing only over those € F for which P(w) > 0. The proof of [(3.I7) exploits the concept
of divergence. Ifp=(p;: j € A) andg=(q; : j € A) are any two probability distributions on
a finite setA, with all g; probabilities> 0, we letD(p|q) denote the divergence qf with

respect tog, defined by
P
D(pla) = 3 p;log (—)
p: i'08% a

It is well-known thatD(p|qg) > 0 [5]. Fix an arbitraryQ € Q. GivenF € ¥, letlg = {|w| : w e
F}, and for each € Ig, let K = {we F : |w| =i}. Furthermore, lePr, Qr be the probability
distributions onlg such that

Pe(i) = P(F), i €lr,
Qr (i) =Q(F), i €lF,
and for each € I, let PL,Qr be probability distributions off; such that
P(w) = P (i)PL (w), weF,
Q() = Qr (1)Qk (), weF.

It is easy to show that

Z: |0 1P (w) log, (%) = Z i~1P=(i)D(PL|QF) + i~ P (i) log, ((I;FF((Il))) ’

and therefore

w; 0] 1P (w) log, <%) > i;F i~1P:(i)log, (SFF—((II))) .

Let EF,Ef be the expected values defined by

3R,

Z i~1Qr (i)

Note thatEF and E§ both belong to the intervel0,1]. Let P, Qi be the probability distri-
butions onlg defined by

>

Ep

>

E

O

>

iP(i)/Ef, i elF,

i_lQF(i>/E5, i €lE.

Pe (i)

Qr (1)

>

Then we have

)3 i~'Px (i) log, (SFF—%))) = Ef D(PF|QF) + Ep log,(1/EQ) +Ep log, Ep
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Since 1/E5 > 1, the first two terms on the right side of the preceding etyate non-negative,
whence

.. _ P((JO)) .. E =
liminf W P(w)log, [ ——2 ) > liminf ES log, ES. 3.8
mint 5 jol”P(w)log, ( 5% ) = iminf EF log, 38)
Note that 1
F
<
O<Bp < min{|w|: we F}’
and so by[(112)
lim Ef =0, (3.9)
FeF

the right side of[(3.18) is zero, and (B.7) holds. To finish theof let (Ye, Yq) be any lossless
code onQ. By Kraft's inequality for prefix codes, there exiggsc Q such that

L[We(w)] > —log,Q(w), we Q,
and hence

R(We,F,P) = EF |00 H{L[@e(w)] +l0g, P(w) }P(w) > EF |0 "1P(w) log, <@) .

Q(w)
(3.8) then follows by appealing t6 (3.7).
Remark. In view of Lemma 2, given a general structure souf@ ¥ ,P), a lossless code
(We, Wg) on Q is an asymptotically optimal code for the source if and ofily i

limsupR(We, F,P) <O0. (3.10)
FeF
We now turn our attention to properties of a binary tree sewuneder which the grammar-
based codé@.,@y) on 7 will be asymptotically optimal for the source. There are tafo
these properties, the Domination Property and the RepiesmmRatio Negligibility Property,
which are discussed in the following.
Domination PropertyWe define/ to be the set of all mappings: 7* — (0, 1] such that
e (A): A(t) <A(tDA(tR), teT.
« (b): There exists a positive integ&r(A) such that

1< S A <n*™ n>1 (3.11)
teTn

An elementA of A dominates a binary tree sour¢g, 7,P) if P(t) <A(t) forallte 7. A
binary tree source satisfies the Domination Property ifehexists an element ok which
dominates the source.

Representation Ratio Negligibility Propertyet t € 7. We define the representation ratio
of t, denotedr(t), to be the ratio between the number of variables of the granigaaand
the number of leaves df That is,r(t) = N(t)/|t|. Since

N(t) = card{t(v) : ve V(t)} = 1+card{t(v) :ve VYD) } < 14 (Jt| — 1) = [t],

the representation ratio is at most 1. In the main result ¢f Hection, Theorem 2, we
will see that our ability to compresse 7 via the code(@e, ¢q) becomes greater agt)
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becomes smaller. We say that a binary tree so(ceF ,P) obeys the Representation Ratio
Negligibility Property (RRN Property) if
lim Z:r(t)P(t) =0. (3.12)

FGTIG

Definition. Henceforth,y : [0,1] — [0, ) is the function defined by

yx) 2 { ~(/210%(y2). x>0

Theorem 2. The following statements hold:
(a@): For each\ € A,

[t {L[ge(t)] +logzA ()} < (2K(A) +10)¥(r (1)), t € 7. (3.13)

(b): Let (T, F,P) be a binary tree source satisfying the Domination Propeitgre
F can be anyT -filter. There exists a positive real numb@r depending only on
the source, such that

R(¢e, F, P) gCy<Z:r(t)P(t)> ,FerT. (3.14)
te

(©): (9, @y) is an asymptotically optimal code for any binary tree sountgch
satisfies both the Domination Property and the RRN Property.

Proof. It suffices to prove part (a). (Part (b) follows from part (adahe fact thaty is a
concave function; part(c) follows from part(b) and (3.1Qet A € A be arbitrary. Fixt € T
and letN = N(t). There is an initial binary subtreé of t such that

« There areN leaf vertices oft.

« The subtrees(v) are distinct as/ ranges through thdl — 1 non-leaf vertices of.

(One can obtairt™ either by pruning the derivation tree & or by growing it using the
production rules of; so that in the growth process each production rule is usedtemé a
leaf exactly once; see Fig. 5.) Let,vo,---,vN be an enumeration of the leavestdf There
is a one-to-one correspondence between the{ige} : v V(t)} and the set of variables
of Gt, and under this correspondence, the sequesice (t(v1),t(v2),---,t(vn)) is carried
into a sequence which is a permutation of the sequé&a(e, and the first order empirical
distribution p* of s* is carried into the first order empirical distributiqgm of S;(t). Thus, the
Shannon entropied (p*), H(pt) coincide, and appealing to Theorem 1, we have

N
Lige(t)] <5(N—1)+ > —log, p*(t(vi)).
=i

Define

II>

M Z A(u), j>1

ueTj

There is a unique real numbBr> 1/2 such that

q(u) £ DM Yu 2\ (u), ue T, j>1 (3.15)
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defines a probability distribution oi™*. Shannon’s Inequality[([1], page 37) then gives us
N

N
3 ~10g;P'(t()) < 3 ~1ogq(t(w)),

Using formula [(3.1b) and the fact thatlog,D < 1, we obtain

N
Z—Iogzq(t(vi)) = N(-log,D)+Q1+2Q2+ Q3

i=
< N+Q1+2Q2+Qs,
where

N

Ql — logZMt i)l
i; t(w)|
N

Q = log, [t(vi)],
2,10% I

N
Qs = 5 Iog\(t(w).

We bound each of these quantities in turn. By (8.11), we abtai

Q1 <KA)Q2.
By concavity of the logarithm function, and recalling thi@t) = N/|t|, we have
N Jt(v
Qz < Niog, ( =1} — iogy /M) = 28iir () - .

By property (a) for membership of in A, we have

Q3 < —log,A(t).
Combining previous bounds, and writikg= K(A), we see that
Lige(t)] +10goA(t) < 6N—(K+2)N+2(K+2)]t|y(r(t))
< 3tfr(t) +2(K+2)[ty(r (1))

holds, whence[(3.13) holds becausg) < 2y(r(t)), completing the proof of part (a) of
Theorem 2.
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[7]
Fig. 5: Initial subtree of Fig. 3 derivation tree used in Trezo 2 proof

IV. UNIVERSAL CODING OF LEAF-CENTRIC BINARY TREE SOURCES

We fix throughout this section th&-filter #1 = {Z,:n > 2}. We now formally define
the set of leaf-centric binary tree sources, which are retimary tree sources of the form
(T, 71,P). Let N be the set of positive integers, and It be the set of all functions from
N x N into [0,1] such that

{(i,0)1,i>1,i+j=n}

For eacho € 23, let P; be the mapping from?” into [0, 1] such that
Po(t) = |_1| o([t(v)Ll, [t(V)rl), te T.
veVi(t)

Since
Z Ps(t)=1, n>2,
tedn

S(o) = (7,%,Ps) is a binary tree source. The sources in the fari§fo) : 0 € 21} are
called leaf-centric binary tree sources, the reason bdiag the probability of each tree is
computed based purely upon the number of leaves in each fifdtissubtrees. Leaf-centric
binary tree sources were first considered in the paper [12].

Example 6.Let ZI be the subset of; consisting of allo € Z; for which

{(,):i,j>1i+j=n0(i,j) >0 c{(Ln=1),(n—1,1)}, n>2.

If o€ ZI, then a tree € T with positive P, probability must satisfy the property that there
exist only two vertices of at each depth level dfbeyond level 0; we call such a binary tree
a one-dimensional tree. Consider the structure univergénafy strings3, in which the size
of a stringb € ‘B is taken to be its length[b]. For eacln > 1, let B, be the set of strings i®

of lengthn, and let¥ (B) be theB-filter {B,:n> 1}. Let [0,1]” be the set of all sequences
o = (aj:i>1) in which eacha; belongs to the interval0, 1], and for eacho € [0,1]*, let
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(B, F(B),Qq) be the one-dimensional source in which for each sthigp - - - b, belonging
to B we have

Qu(biby-- r!q (ai,bi),

whereq(ai,bj) is taken toa; if bj =0 and taken to be 1 a;, otherwise. It is easy to see that
the family of sourceq (7T, F1,Ps):0¢€ ZI} has a universal code if and only if the family of
one-dimensional sourcd$3, ¥ (B),Qq) : a € [0,1]*} has a universal code. The third author
has shown that this Iatter family of one-dimensional sasiftas no universal code. Therefore,
the family {S(o): 0 € Zl} has no universal code, and so the bigger family of all leatmoe
binary tree sources also has no universal code.

The following result shows thafps, @) is a universal code for a suitably restricted sub-
family of the family of leaf-centric binary tree sources.

Theorem 3. Let ] be the uncountable set consisting of @lE X, such that

sup{ !+.J. >, 0(i,j)>0}<oo. (4.16)

min(i, j)

Then (@, @q) is a universal code for the family of sourcéS(o): o € >7}.

Before proceeding with the proof of Theorem 3, we provide aample of a source in
{S(0):0€Zi}.

Example 7G|ven a general structure sour@®, ¥ ,P), then for each € 7, theF-th order
entropy of the source is defined by

He (P) £ > ~lel™P(w)log,P(@)
we

limec# He (P) is defined to be the entropy rate of the source, if the limisexiotherwise,
the source has no entropy rate. In universal source codewayyor families of classical one-
dimensional sources (see Ex. 3), the sources are typicsslynaed to be stationary sources or
finite-state sources, which are types of sources which haven&ropy rate. In the universal
coding of binary tree sources, however, one very often dedls sources which have no
entropy rate. We illustrate a particular source of this typéhe family {S(o) : 0 € Z7}. Let
o € 2] be the function such that for each evei 2,

o(n/2,n/2) =1,
and for each odah > 3,
a([n/2],[n/2]) =a([n/2],[n/2]) =1/2.

The resulting leaf-centric binary tree sour@), introduced in[[12], is called thbisection
tree source modeln [9], it is shown that there is a unique nonconstant carttirs periodic
function f : R — [0, 1], with period 1, such that

—log, Ps(t) = |t|f(log, [t]), t € T, (4.17)

and the restriction of to [0,1] is characterized as the attractor of a specific iteratedtitomc
system onl0, 1]; because of this property, the sours@) has no entropy rate.
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Proof of Theorem 3If o € %4, letA: 7% — [0, 1] be the function such that(t*) =1 and
A(t) = max(K; 1, Py(t)), teZn, n>2.

ThenA € A and A dominatesPs;. Thus, every source in the familyS(o) : o € 3]} satisfies
the Domination Property. By Theorem 2, our proof will be cdete once it is shown that
every source in this family satisfies the RRN Property. Mareagally, we show that the RRN
Property holds for any binary tree sourcg, ¥,P) for which

W) 3
tefé’<'i’>>o{v£3?é> [min(\t(vm, \t(V>RD]} < (4-18)

(The T -filter ¥ in the given sourc€T, F,P) need not be equal t#;.) Let C be a positive
integer greater than or equal to the supremum on the leftcfidé.18). Fixt € 7 for which
P(t) > 0. As in the proof of Theorem 2, I¢t be an initial binary subtree @fwith N = N(t)
leaves such thaft(v) : ve V1(th)} = {t(v) :ve Vi(t)}. Let vi,vo,---, vy be an enumeration
of the leaves of" and for each = 1,2,---,N, let uj € V1(tT) be the parent vertex of. We
have

|t(UI)| _C7 | = 1727“'7N7
[t(v)]
|t(ug)|+ [t(u2)|+ -+ [t(un)]
|t(va)| +[t(v2) |+ -+ [t(wn)| —
The sum in the denominator j§, and so
|t<u1>|+|t<uz>|t||+---+|t<uN>| —c (4.19)

Eachu € {u1,---,uy} can be the parent of at most two elements of the{set--,w}, and
So

and therefore

card{us,---,un}) > (1/2)card {vi,---,vn}) = N/2.

The mappingu — t(u) from the setv1(t") into the set{t(v):veV1(t)} is a one-to-one onto
mapping (both sets have cardinallty— 1). Therefore,

card{t(uy),t(uz),---,t(un)}) > N/2. (4.20)

Let k= [N/2]. We conclude from[(4.19})-(4.20) that there &relistinct treesty,to,-- -ty in
7 whose total number of leaves i [t|C, where we suppose that thekdrees have been
enumerated so that

] <ftof <--- <t

Lett(1),t(2),t(3),--- be an enumeration of all trees A such that(1) is the unique tree in
T, 1(2),t(3) are the two trees i3, t(4),t(5),t(6),t(7),t(8) are the five trees iy, and so
forth. We clearly havet(i)| < |tj| for i = 1.--- k. Therefore,

LD+t +- -+ K[ < [tIC (4.21)
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The sequencey = [t(i)| can be characterized as the sequence in winich- 2 and for each
j >3, m = | for all integersi satisfying

Ko+ Kg+---+Kj_1 <i <Ko+ Kz+--- +Kj.

Define
k(M)émax{kgl:m1+rr12+~-~+m<§M}, M>2

Since the sequendd; : j > 2} grows exponentially fast, it follows th&tM) /M = O(1/log, M)
by an argument similar to an argument on page 753 df [10], @mtén

lim k(M)/M =0. (4.22)
M—00
From [4.21), we have shown that
[N(t)/2] <k([t|C)), te T, P(t)>0.
Dividing both sides byt| and summing, we then have
Z:r(t)P(t) <2 Z: t|~k(t|C))P(t), F € 7. (4.23)
te te
Let ne = min{]t| :t € F}, and define
8(3) £ sup(k(j)/:j =3}, Iz 2
From (4.28), we then have

 r(t)P(t) <2C3(neC), F € 7. (4.24)
tefF
By (L.1), limgcs# e = o, and we also have lig,. &(J) = 0. Taking the limit along filterF
on both sides of[(4.24), we then obtain (3.12), which is theNRIRoperty for the source
(‘T,F,P).

V. UNIVERSAL CODING OF DEPTH-CENTRIC BINARY TREE SOURCES

For eacht € 7%, defined(t) to be the depth of, which is the number of edges in the
longest root-to-leaf path in. We haved(t*) = 0 and as defined in Ex. 2, for each> 1
we let 7" be the set of treegt € 7 : d(t) = n}. We fix throughout this section the -
filter 72 ={7":n> 1}. We now formally define the set of depth-centric binary treerses,
which are certain binary tree sources of the fqri #>,P). Let Z* be the set of nonnegative
integers, and lek, be the set of all functions from Z* x Z* into [0,1] such that

o(i,j)=1, n>1
{(l,])l,]Z(l max(Lj):n—l}

For eacho € 25, let Py be the mapping from into [0, 1] such that
Polt) = ] o(d(t(u),dt()r), teT.
veVi(t)
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Since
Z Ps(t)=1, n>1,
tez"
S(o) = (T, %2,Ps) is a binary tree source. The sources in the fandi§(o) : 0 € 2,} are
called depth-centric binary tree sources, the reason lbatgthe probability of each tree is
based purely upon the depths of its final subtrees.
Example 8Let Zg be the subset aof, consisting of allo € 2, for which

{G,7):1,j >0, maxi,j)=n—1, a(i,j) >0} c {(0,n—1),(n—1,0)}, n> 1.

If o€ Zg, then a tred € 7 has positiveP; probability if and only ift is a one-dimensional
tree. The family of source§S(0): 0 € ZZ} has no universal code by the same argument given
in Ex. 6. Thus, the bigger family of all depth-centric bindrge sources also has no universal
code.

Our final result shows thatpe, @) is a universal code for a suitably restricted subfamily
of the family of depth-centric binary tree sources.

Theorem 4. Let 25 be the uncountable set consisting of @l€ =, such that

sup{li—j[:i,j =0, o(i,j) >0} < (5.25)

and
car{|i—j|:i,j >0, max(i,j)=n—1,0(i,j) >0} =1, n> 1. (5.26)

Then (¢e,@q) is a universal code for the family of sourcéS(o) : o € 25}.

Proof. Each source in the familyS(o) : 0 € 35} satisfies the Domination Property, by the
same argument given in the proof of Theorem 3. Appealing teofém 2, our proof will be
complete once we verify that each source in this family atlsBes the RRN Property. Fix
the sourceS(o), whereo € %5. By the last part of the proof of Theorem S(o) will satisfy
the RRN Property if

tv)] } } .
20 e [ ) < 20

By (6.26), for eacm > 1, there exist&, € {0,1,---,n—1} such that
{(|7 J) : Iaj 2 07 maX(i, J) = n_l7 0(i7 J) > O} - {(kn,n— 1)7(n_ 17kn)}
Let (x(n) :n>0) be the sequence of real numbers such @t =1 and

x(n) =x(n—1) +x(kn), n>1.

We prove the statement
t| =x(d(t)), te {t*}U{t' € T :Ps(t') > 0} (5.28)

by induction on|t|, starting with|t| = 1. If |t| =1, thent =t* and |t| = x(d(t)) is the true
statement = x(0). Now fix u € 7 for which Ps(u) > 0 and we assume as our induction
hypothesis thalt| = x(d(t)) holds for everyt € {t*} U{t’ € 7 : P5(t") > 0} for which [t| < |ul.
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Note that(d(u.),d(ur)) belongs to the sef(d(u) — 1,kqw), (K, d(u) —1)}. The induction
hypothesis holds for both, andug, and so
U = JuL[ +|ur| = x(d(uL)) +x(d(ur)) = X(d(u) — 1) +X(kg()) = x(d(u)),
completing the proof of statement (5128). We conclude frbn2g) that for everyt € T for
which P(t) > 0,
[t(v)]

min([t(v)L|, [t(V)r])
By (5.25), letmec Z* be the supremum on the left side 6f (3.25); then 1 —k, < m for
n> 1. Since the sequenge&(n)) is nondecreasing(n)/x(n—1) <2 forn>1, and so

e {x(n)/x(ka) :n> 1}, veVi).

xnm) & X n- e
m_i_uﬂx(i—l)gz n<2h izt

Thus, the left side of (5.27) is at most'2 and [5.2V) holds, completing our proof.

VI. CONCLUSIONS

We have shown that the grammar-based ca@ep) on the setZ” of binary tree structures
defined in this paper is asymptotically optimal for any byndéree source satisfying the
Domination Property and the Representation Ratio NedglityitProperty. In typical cases, we
have found that the Domination Property is easy to verifyaftinary tree source, whereas the
RRN Property is more troublesome to verify. In a subsequapep[11], we investigate more
scenarios in which the RRN Property will hold. (The one-diasienal binary trees discussed
in Example 6 need to be avoided in a binary tree source mosl@lel as some trees derived
from these.) In[[11], we also show thépe, @g) is universal for some families of binary tree
sources induced by branching processes (including fasmliessources which were considered
in [15] from an entropy point of view but not from a compressgoint of view).
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