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Abstract—We investigate performance limits of a multiple ac-
cess communication system with energy harvesting nodes where
the utility function is taken to be the long-term average sum-
throughput. We assume a causal structure for energy arrivals and
study the problem in the continuous time regime. For this setting,
we first characterize a storage model that captures the dynamics
of a battery with energy harvesting and variable transmission
power. Using this model, we next establish an upper bound on
the throughput problem as a function of battery capacity. We
also formulate a non-linear optimization problem to determine
optimal achievable power policies for transmitters. Applying a
calculus of variation technique, we then derive Euler-Lagrange
equations as necessary conditions for optimum power policies in
terms of a system of coupled partial integro-differential equations
(PIDEs). Based on a Gauss-Seidel algorithm, we devise an iterative
algorithm to solve these equations. We also propose a fixed-
point algorithm for the symmetric multiple access setting in
which the statistical descriptions of energy harvesters are identical.
Along with the analysis and to support our iterative algorithms,
comprehensive numerical results are also obtained.

Index Terms—Energy harvesting, Multiple access communica-
tion, iterative algorithm.

I. INTRODUCTION

The direct impact of energy on communication cost and
lifetime has spurred significant efforts to manage and opti-

mize energy consumption. In this respect, current and future

state of the art technology has focused on harvesting energy
from the environment. It is thus of paramount importance to

design suitable adaptive power transmission policies for these

technologies. In particular, the formulation of power policies in
energy harvesting systems depends intricately on many factors,

including energy arrival distribution, battery capacity, quality

of service, etc. Moreover, most renewable energy resources
have unpredictable behaviour that makes the design process

of optimal power policies difficult. Solar panels, for instance,

can only scavenge sunlight during the daytime and even then,
this is a function of weather conditions. Another example is

thermoelectric generators where energy is absorbed based on

random temperature gradients between two metal junctions.
Regarding these examples, a key objective of recent studies is

to engineer optimal transmission power polices. These studies,
depending on causal or non-causal knowledge of future energy

arrivals, fall within two major categories: offline or deterministic

(for non-causal), and online or stochastic (for causal) energy
harvesting systems.

In the offline regime and in terms of throughput maxi-
mization, optimal power allocation for different communication

topologies has been well studied. For instance, [2] studies the
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multiple access channel (MAC), [3] studies the broadcast chan-
nel, and the interference channel is studied in [4]. In addition,

the issue of maximizing throughput in a fading channel has

been treated in [5]. There, a directional water-filling algorithm
is proposed. In [6], a continuous time energy harvesting system

with constant energy leakage rate due to battery imperfections

is considered. Another interesting problem has been studied
in [7] where an offline energy harvesting problem subject

to minimizing the transmission completion time is analyzed.
Specifically, a continuous-time policy to minimize the delivery

time of data packets is formulated. Among more recent results

in the offline setting is [8] where energy cooperation in a two-
hop communication system is considered.

As an overview of prior works in the online regime, we refer
the reader to [5], [9], [10], and [11]. In [5] an algorithm in the

offline problem of throughput maximization by a deadline was

heuristically applied to the online counterpart. The authors have
also considered a dynamic programming solution for online

policies. However, the curse of dimensionality in the backward

induction renders the computational cost of this approach very
expensive. In [9], the capacity of the additive white Gaussian

noise channel (AWGN) under discrete-time energy arrivals

and infinite battery capacity is characterized. Additionally, two
achievable schemes based on save-and-transmit and best-effort-

transmit are studied there. In [10], queuing aspects of the
online energy harvesting problem with infinite battery and

buffer capacity have been considered. The authors have also

suggested a greedy policy that in the low signal to noise
ratio (SNR) regime is throughput optimal and attains minimum

delay. A more relevant study related to the work presented

here is [12]. Therein, Srivastava and Koksal have investigated
an optimization problem where the objective is to maximize a

utility function subject to causality and battery constraints. More

interestingly, they addressed a trade-off between achieving the
optimum utility and keeping the discharge rate low.

In this paper, we consider the online setting with continuous
time policies in which the energy release rates are regulated

dynamically based on the remaining charge of the battery at

each moment. This architecture naturally requires a different
mathematical framework in terms of modelling and analysis.

Particularly, the main tool here for modelling the interaction

between battery, energy arrivals, and energy consumption is a
stochastic process known as a compound Poisson dam model.

This model was pioneered by Moran in 1954 [13] and stud-
ied further by Gaver-Miller [14] and Harrison-Resnick [15].

In connection with this model, we derive an upper bound

on the total sum-throughput of an online energy harvesting
system. Also in terms of achievability, we construct an opti-

mization problem to maximize the sum-throughput subject to

an ergodicity constraint. This maximization problem turns out
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to be non-linear and analytically cumbersome. Relying on a

calculus of variations approach, we subsequently find a system
of simultaneous PIDEs as necessary conditions for an optimal

power policy. We then propose a Gauss-Seidel method (see

[16]) to solve these equations efficiently. In the symmetric case,
when the statistical description of all the energy harvesters are

identical, we obtain an alternative algorithm using a fixed point
iteration method. Moreover, in the case of the point-to-point

channel setting, the necessary condition further reduces to a non-

linear, autonomous ordinary differential equation (ODE) that can
be solved directly, using conventional numerical methods [1].

The rest of the paper is organized as follows. In section II,

we review some background, definitions, and notation. Section

III deals with necessary and sufficient conditions for ergodicity
of the storage process. In Section IV, we derive an upper bound

as well as the achievability results for both finite and infinite

storage cases, including two algorithms for the achievability
part. These algorithms are then used to compute the numerical

results in Section V. Lastly, in Section VI, we summarize our
main findings and outline possible future directions.

II. PRELIMINARIES

A. Communication model

We consider M multiple access transmission nodes that wish

to transmit their data over a shared communication channel.

Furthermore, each transmission node has an energy harvesting
module and a battery to capture and store arriving energy pack-

ets. Throughout the paper, we denote the instantaneous trans-

mission power at time t from the kth node (k = 1, 2, · · · ,M )
by Pk(t). Also, to quantify the corresponding transmission rate

of the nodes, we consider Shannon’s rate function, r(x) =
1
2 log2

(
1+(x/N0)

)
, where N0 denotes the noise power spectral

density. In particular, Shannon’s rate function carries the follow-

ing properties and, unless stated otherwise, only these properties

will be used in Section IV:

(A.1) Positivity: r(x) > 0 for all x > 0 and r(0) = 0.

(A.2) Differentiability: r(x) is three times continuously differen-

tiable on x ≥ 0.
(A.3) Monotone increasing: r′(x) > 0 for all x ≥ 0.

(A.4) Concavity: r′′(x) < 0 for all x ≥ 0.

Letting Rk denote the long-term average rate of the kth user,
we then have the rate-region described by

∑

k∈S

Rk ≤ lim
T→∞

1

T

∫ T

0

r

(
∑

k∈S

Pk(s)

)
ds, (1)

where the inequality holds for all subsets S ⊆ {1, 2, · · · ,M},
and the resulting region is a polytope called polymatroid. In
this study, we restrict ourselves to the dominant face of this

polymatroid (called permutahedron) that represents the total

sum-throughput (or sum-rate) of the channel. Then, the sum-
throughput is

M∑

k=1

Rk = lim
T→∞

1

T

∫ T

0

r

(
M∑

k=1

Pk(s)

)
ds. (2)

B. Energy harvesting and storage model

In our energy harvesting model, we allow the transmission
nodes to use different techniques for harvesting exogenous

energy. For example, while one node may collect solar en-

ergy, another node can use a thermoelectric generator. This

mechanism is especially important for sensor networks where

distributed terminals may measure miscellaneous targets that
also feed sensors with energy (e.g. see [17]). Mathematically,

we assume that for each individual node k ∈ {1, 2, · · · ,M},
energy is replenished into the corresponding battery according
to specific energy arrivals E0

k, E
1
k , · · · , where the superscript

denotes the order of arrivals. Furthermore, the energy arrivals
for node k are independent, identically distributed (i.i.d.) ac-

cording to IP{Ek ≤ x} = Bk(x) which occur at random

arrival times denoted by T 0
k , T

1
k , · · · . The interarrival times

∆T n
k = T n+1

k − T n
k are also assumed to be i.i.d. and ex-

ponentially distributed. Therefore, the attributed point process,

Nk(t)
def
=
∑

n∈N
1{Tn

k <t}, is a homogeneous Poisson point

process with intensity denoted by λk . Consequently, the total
energy flow EIn

k (0, t] into node k and up to time t is a compound

Poisson process,

EIn
k (0, t]

def
=

N(t)∑

i=0

Ei
k. (3)

To characterize the storage model, we also need to determine the
output process at each transmitter. To do so, let Xk(t) denote

the energy stored in the k-th battery as a function of time. Then,

the total energy expenditure until time t is

EOut
k (t)

def
=

∫ t

0

Pk(s) ds, (4a)

=

∫ t

0

pk(Xk(s)) ds, (4b)

where pk(·) represents the transmission power policy of the k-

th transmitter, modulated by the available energy in the battery.
Now, the storage equation in terms of the energy arrivals in Eq.

(3) and the drift process in Eq. (4b) is

Xk(t) = Xk(0) + EIn
k (0, t]−

∫ t

0

pk(Xk(s)) ds, (5)

where Xk(0) is the initial battery reserve at time t = 0, and
here the battery is assumed to have infinite capacity (Xk(t) ∈
[0,∞)). In the case that the k-th battery has a finite storage
capacity, say Lk, then Xk ∈ [0, Lk], and we can similarly
characterize the following dynamics,

Xk(t) = Xk(0) + EIn
k (0, t]−

∫ t

0

pk(Xk(s)) ds− Zk(t), (6)

where Zk(t) is IR+ valued process that is null at zero (Zk(0) =
0), non-decreasing, continuous almost everywhere, and such that∫
IR+(Lk−Xk(s)) dZk(s) = 0. This process, known as reflection

process [18], ensures that for any energy arrival, the storage

process remains inside the boundary, i.e., Xk(t) ∈ [0, Lk].
It is also interesting to note that the application of the

structures in Eqs. (5) and (6) are not limited to the current

problem. In fact, this formulation has wide applicability in other
fields of studies. Examples include workload modulated queues

[19], water reservoir dam analysis [20], food contaminants

exposure in bioscience [21], etc. In this paper, the ergodicity
results of [20] will be used and are summarized in section III.

Notation. In the rest of the paper and for conciseness, we
adopt several shorthand notations. In particular, [M ] stands for

{1, 2, · · · ,M}. For M > 1, we define the rectangular domain

A as

A def
= [0, L1]× [0, L2]× · · · × [0, LM ].
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Related to this, we also define the M dimensional integral by

L1∫

0

L2∫

0

· · ·
LM∫

0

(·) dx1 dx2 · · ·dxM ,

which is represented by
∫
A
(·) dx. For all subsets S ⊆ [M ], we

use A(S) to denote the projection of A onto the coordinates

indexed by S, i.e.,

A({1, 3}) = [0, L1]× [0, L3].

Then,
∫
A(S)

(·) dx denotes integration over a subset of IR|S|.

Aj is also a shorthand for

Aj
def
= [0, L1]× · · · [0, Lj−1]× [0, Lj+1] · · · × [0, LM ].

III. ERGODIC THEORY OF STORAGE PROCESS

We here summarize necessary and sufficient conditions for

ergodicity of the storage process in Eq. (5). Before stating the
definitions regarding ergodic behaviour, we first put some mild

constraints on the transmission policies. Particularly, for all k =
1, 2, · · · ,M ,

1) ∀Lk > 0, 0 < xk ≤ Lk ⇒ pk(xk) > 0 and pk(0) = 0,
2) ∀Lk > 0, sup

0<xk≤Lk

pk(xk) <∞.

The first condition indicates that as long as there is energy in

the battery, transmission continues (otherwise, the battery would

have a minimum energy reserve that can not be consumed). The
second condition does not permit the energy in the battery to

be consumed instantly. Regarding these constraints, we say a

policy is admissible iff it fulfills these two conditions.

Definition 1. (Hitting Time) The hitting time, τ(x), is defined

as the first time that the energy level in the battery reaches the
value of x. More specifically,

τ(x)
def
= inf{t ≥ 0 : X(t) = x}.

Definition 2. (Transient and Recurrent Process [20, p. 290])
The storage process is said to be transient, if and only if for all

initial energy levels x(0) in the battery, we have IP(Xt →∞) =
1. Alternatively, the storage process is said to be recurrent if and
only if IP[τ(x) <∞|x(0)] = 1, ∀x > 0, x(0) ≥ 0. In the case

of a recurrent storage process, it is said to be positive recurrent

if it further satisfies IE[τ(x)|x(0) = x] <∞ for one x > 0 and

therefore for all x > 0 (irreducibility). Similarly, the recurrent

storage process is null recurrent if IE[τ(x)|x(0) = x] =∞ for
one x > 0 and therefore for all x > 0.

One motivation for surveying ergodic conditions is to rule
out policies that result in transient and null recurrent battery

behaviours. For example in the transient case X(t) → ∞
a.s. which is unrealistic. Also, in the null recurrent case
limt→∞ IP{X(t) ≤ u|x(0) = x} = 0, ∀x, u ≥ 0 which implies

an unbounded energy reserve in the battery.

Theorem 1. (Ergodicity Condition [20, Thm. 3.6]) The storage

process {Xk(t)}t≥0 is positive recurrent if and only if there

exist a probability measure πk that is absolutely continuous on
(0,∞) and which may possess an atom at zero, π0

k = πk({0}),
i.e.,

πk(xk) = π0
k +

∫ xk

0+
fk(vk) dvk, (7)

and such that

fk(xk) =
λk

pk(xk)

(
π0
k(1−Bk(xk))

+

∫ xk

0+
(1−Bk(xk − vk))fk(vk) dvk

)
. (8)

Furthermore, πk is the unique stationary distribution of the

process Xk(t). �

Remark 1. The elegant proof of Assmussen for the converse part

of Theorem 1 is based on an embedded Markov chain {Xk(n)}
at marked arrival times. In particular, for recurrent embedded
chains, it is shown that any storage interval (x0k, x

1
k), 0 < x0k <

x1k is recurrent in the sense of Harris. An alternative proof of

the converse part of Theorem 1 adopts the additional condition∫ xk

0
(1/pk(u)) du < ∞, ∀xk > 0. Due to this extra condition,

the required time to reach the zero state in the absence of new

arrivals from any energy level in the battery must be finite.
For this constraint, it can also be shown that xk = 0 is a

regenerative recurrent point for the process and therefore, due

to the additional constraint, the probability measure has a strict
atom π0

k > 0 at zero.

Remark 2. As discussed in [20, p. 297], in the finite energy

case (Lk <∞), the storage process is always positive recurrent
and the probability measure is likewise governed by Eqs. (7)

and (8).

Remark 3. We note that the atom of the probability measure
πk(xk) corresponds to an absorbing state of the process Xk(t)
in the sense that upon Xk(t) entering state xk = 0, the process
remains there until an energy arrival occurs (at which point the

process transits to another state). Based on this and the first

constraint on admissible power policies (in particular pk(Lk) >
0), there is no atom at xk = Lk in the finite case since it

has a strictly negative drift in Eq. (6) that shifts the process to

the inner region of the state-space instantaneously, i.e., xk <
Lk. Therefore, the battery never idles with xk = Lk (reflecting

boundary).

An interpretation for the forward equation in Eq. (8) can be
provided in terms of level crossing theory. In particular,

fk(xk)pk(xk) = (9)

λk

{
π0
k

(
1−Bk(xk)

)
+

∫ xk

0+

(
1−Bk(xk − vk)

)
fk(vk) dvk

}
,

is the equilibrium condition between the rate of down crossing at

level xk (the l.h.s of Eq. (9)) and up crossing at level xk (the r.h.s

of Eq. (9)). We can also view (8) as a Volterra integral equation

of the second kind with the kernel function K(xk, vk) = 1 −
Bk(xk − vk), and it can thus be solved numerically (see [22]).

In this paper, we consider the energy arrivals {Ei
k}∞i=0, k =

1, 2, · · · ,M , to be exponentially distributed with parameter ζk.

Therefore, we have

K(xk, vk) = exp(−ζk(xk − vk)),
that simplifies (8) to

fk(xk) =
λk exp(−ζkxk)

pk(xk)
Gk(xk), (10)

where

Gk(xk)
def
=

(
π0 +

∫ xk

0+
exp(ζkvk)fk(vk) dvk

)
. (11)
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Remark 4. The storage models in Eqs. (5) and (6) are memo-

ryless, in the sense that at each time instant t, the power policy
pk only depends on the available charge Xk(t) in the battery

and not the entire sample path {Xk(s); s ≤ t}. As an extension,

we can also define a storage model with memory and infinite
battery capacity as follows

Xk(t) = Xk(0) + EIn
k (0, t]−

∫ t

0

pk(Xk(u);u ≤ s) ds. (12)

The extension of the storage model with memory and finite

battery capacity follows similarly. However, when the arrival

process is Poisson, it can be shown that Xk(t) is a sufficient
statistic for an optimal power policy for both infinite and finite

battery cases (see Appendix A). In this regard, knowledge of the
entire path {Xk(s); s ≤ t} as an argument of pk(·) is excessive.

IV. BOUNDS ON TOTAL AVERAGE THROUGHPUT

Our objective now is to derive an upper bound on the

average throughput as well as achievable policies with good
performance. In connection with our system model, we will

analyze a MAC with 1) finite, and 2) infinite storage batteries.
In particular, in the finite storage case, a good power policy

must manage overflow in the battery as regular overflow causes

energy waste and potentially decreases the sum throughput.
To reduce overflow, the power policy must result in a large

transmission power when the battery charge is large as otherwise

overflow is likely to occur upon a new arrival. However, trans-
mitting with too large a transmission power when the battery

happens to have large charge is also undesirable due to the

concavity of the rate function. In other words, there is a tension
between overflow and the rate at which the large battery charge

is consumed to reduce overflow likelihood.
To further clarify the latter point, consider an energy har-

vesting system with a single node (M = 1) in which energy

E is replenished into a battery exactly every T units of time.
In addition, assume that the transmitter sends data by using a

constant transmission power P = E/(αT ), α > 0. Two cases

can now be examined:
(i) α > 1: In this case, the transmitter fails to consume the

entire battery charge before the next arrival, and thus overflow
occurs regularly. We then have

T × r
(
E

αT

)
≤ T × r

(
E

T

)
. (13)

(ii) α < 1: In this case, the transmitter depletes its available

battery charge within αT < T of each arrival. From the

concavity of the rate function, we have the following inequality

αT × r
(
E

αT

)
≤ T × r

(
E

T

)
. (14)

Here, the tension between (i) and (ii) is resolved by the
optimal choice of α = 1, i.e., P = E/T .

A. An Upper Bound

1) Finite Storage Battery: In this case Lk < ∞, ∀k ∈ [M ].
Then from (2) and due to ergodicity of the storage processes

{Xk(t)t≥0}Mk=1 in the finite battery case (ref. Remark 3), we

have almost surely

M∑

k=1

Rk
a.s.
= IE

[
r

(
M∑

k=1

pk(Xk)

)]
, (15)

where the expectation is with respect to the stationary distribu-

tion in Theorem 1. In addition, from the concavity property of
the rate function and Jensen’s inequality,

IE

[
r

(
M∑

k=1

pk(Xk)

)]
≤ r

(
M∑

k=1

IE[pk(Xk)]

)
. (16)

It thus remains to bound the mean transmission power
IE[pk(xk)]. This can be accomplished by integrating by parts

as follows

IE[pk(Xk)] = π0
kpk(0) +

∫ Lk

0+
pk(xk)fk(xk) dxk (17)

(a)
=

∫ Lk

0+
pk(xk)fk(xk) dxk (18)

(b)
= λk

∫ Lk

0+
exp(−ζkxk)Gk(xk) dxk (19)

= −λk
ζk

exp(−ζkxk)Gk(xk)
∣∣∣
Lk

0+
(20)

+
λk
ζk

∫ Lk

0+
exp(−ζkxk)G′

k(xk) dxk,

where (a) comes from the first constraint on the admissible
power policies and (b) follows from (10). Now from (11),

G′
k(xk) = fk(xk) exp(ζkxk). (21)

Also we note that Gk(0
+) = π0

k and

e−ζkLkGk(Lk) = e−ζkLk
(
π0
k +

∫ Lk

0+
eζkxkfk(xk) dxk

)
(22)

(c)

≥ e−ζkLk
(
π0
k +

∫ Lk

0+
fk(xk) dxk

)
(23)

= e−ζkLk , (24)

where inequality (c) is due to the fact that exp(ζkxk) ≥ 1 for

all xk ≥ 0 since ζk > 0. Substituting (24) and (21) in Eq. (20)
yields

IE[pk(Xk)] =
λk
ζk

(
Gk(0

+)− eζkLkGk(Lk)
)

+
λk
ζk

∫ Lk

0+
fk(xk) dxk, (25)

≤ λk
ζk

(
π0
k − e−ζkLk +

∫ Lk

0+
fk(xk) dxk

)
(26)

=
λk
ζk

(1 − exp(−ζkLk)), (27)

In the last step, we now use (27) and the non-decreasing
property of the rate function to characterize an upper bound

for all Lk <∞ as follows

M∑

k=1

Rk ≤ r
( M∑

k=1

λk
ζk

(1 − e−ζkLk)
)

def
= Rupper. (28)

2) Infinite Storage Battery: We now take Lk = ∞. In this
case, similar to (19) we can directly compute,

IE[pk(xk)] = λk

∫ ∞

0+
e−ζkxkGk(xk) dxk (29)

= λk

∫ ∞

0+
e−ζkxk

(
π0
k +

∫ xk

0+
eζkvkfk(vk) dvk

)
dxk (30)
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=
λk
ζk
π0
k + λk

∫ ∞

0+

∫ xk

0+
eζk(vk−xk)fk(vk) dvk dxk (31)

(a)
=
λk
ζk
π0
k + λk

∫ ∞

0+

∫ ∞

vk

eζk(vk−xk)fk(vk) dxk dvk (32)

=
λk
ζk
π0
k +

λk
ζk

∫ ∞

0+
fk(vk) dvk (33)

=
λk
ζk
, (34)

where in (a), we changed the order of integration. Thus, for

positive recurrent policies and when all Lk = ∞, we have the

following upper bound

M∑

k=1

Rk ≤ r
( M∑

k=1

λk
ζk

)
. (35)

Remark 5. In contrast with the inequality (28) which only holds

for positive recurrent transmission power policies, Eq. (35) is
valid for transient and null recurrent power policies as well. In

particular, in the infinite battery case,

lim
T→∞

1

T

∫ T

0

pk
(
Xk(t)

)
dt ≤ λk/ζk,

regardless of the type of power policy, and thus (35) follows by
concavity of the rate function. Nevertheless, the strict equality

in Eq. (34) will be used to study transmission power policies
that result in ergodic behavior for the infinite battery capacity

case in Section IV-B.

B. Achievable allocation scheme

To derive transmission power policies with good performance,

we start with the ergodicity assumption and the definition of

expectation, i.e.,

M∑

k=1

Rk = lim
T→∞

1

T

∫ T

0

r
( M∑

k=1

Pk(s)
)
ds (36)

a.s.
=

∫

A

r
( M∑

k=1

pk(xk)
) M∏

k=1

πk(dxk) (37)

def
= R̂

(
{pk(xk)}Mk=1

)
, (38)

where

πk(dxk) = [π0
kδ(xk) + fk(xk)] dxk, (39)

and δ(xk) denotes the Dirac delta function. We now aim to find

achievable policies through the following optimization problem

sup
{π0

k,fk(xk)}M
k=1

∫

A

r
( M∑

k=1

pk(xk)
) M∏

k=1

πk(dxk), (40a)

s.t. :fk(xk) =
λke

−ζkx

pk(xk)

(
π0
k +

∫ xk

0+
e−ζkvfk(v) dv

)
, (40b)

π0
k +

∫ Lk

0+
fk(xk) dxk = 1, (40c)

π0
k ≥ 0, fk(xk) ≥ 0, ∀k ∈ [M ], (40d)

which maximizes the overall expected throughput of the multi-

ple access channel subject to the stationary probability measure
constraints of the batteries. However, tackling this non-linear

optimization problem is challenging as the feasibility constraint

in Eq. (40b) is not in an explicit form. To circumvent this

difficulty, we use a calculus of variations approach to transform

the problem into a set of necessary conditions for an optimal
solution. As a starting point, consider the following linear

mappings

gk(xk)
def
= fk(xk)e

ζkxk , xk > 0, (41)

that transforms the positive recurrent condition in Eq. (10) into

gk(xk) =
λk

pk(xk)

(
π0
k +

∫ xk

0+
gk(v) dv

)
(42)

=
λk

pk(xk)
Gk(xk), (43)

with Gk(xk) =
(
π0
k +

∫ xk

0+ gk(v) dv
)

as in Eq. (11). Hence,

(37) is valid with

pk(xk) =

{
λkGk(xk)/gk(xk) xk > 0

0 xk = 0,
(44)

πk(dxk) = [π0
kδ(xk) + e−ζkxkgk(xk)] dxk. (45)

With this substitution, we obtain an equivalent formulation for
the optimization problem in Eqs. (40a)-(40d) as below

sup
{π0

k},{gk(xk)}

∫

A

r
( M∑

k=1

pk(xk)
) M∏

k=1

πk(dxk), (46a)

s.t. :Gk(xk) =
(
π0
k +

∫ xk

0+
gk(v) dv

)
, (46b)

π0
k +

∫ Lk

0+
e−ζkvgk(v) dv = 1, (46c)

π0
k ≥ 0, gk(xk) ≥ 0, ∀k ∈ [M ], (46d)

where pk(xk) and πk(dxk) are according to (44) and (45).

Through the formulation in Eqs. (46a)-(46d), we can show

that the throughput maximization problem in Eqs. (40a)-(40d)

is concave with respect to each coordinate over a convex feasible
set. In particular, since the transformation between fk(xk) and

gk(xk) is linear, the concavity of (40a)-(40d) can be shown

equivalently by proving the concavity of the formulation in Eqs.

(46a)-(46d). To this end, suppose that
{(
π0,1
k , g1k(xk)

)}M
k=1

and{(
π0,2
k , g2k(xk)

)}M
k=1

are two arbitrary sets of optimization pa-

rameters belonging to the feasible region defined in Eqs. (46b)-

(46d). Then for all α ∈ [0, 1] and ᾱ
def
= (1 − α), it readily fol-

lows that {
(
π0,α
k , gαk (xk)

)
}Mk=1 also satisfies (46b)-(46d), where

π0,α
k = απ0,1

k +ᾱπ0,2
k and gαk (xk) = αgk(xk)+ᾱgk(xk) are the

convex combinations of the densities and atoms, respectively.

This proves the convexity of the feasible region (46b)-(46d).

Proposition 2. (Coordinate-wise Convexity) Let R̂α
j , R̂1

j and R̂2
j

be the utility functions corresponding to
{(
π0,α
k , gαk (xk)

)}M
k=1

,{(
π0,1
k , g1k(xk)

)}M
k=1

, and
{(
π0,2
k , g2k(xk)

)}M
k=1

respectively,

such that
(
π0,α
k , gαk (xk)

)
= α

(
π0,1
k , g1k(xk)

)
+ ᾱ

(
π0,2
k , g2k(xk)

)
, k = j,

(
π0,α
k , gαk (xk)

)
=
(
π0,1
k , g1k(xk)

)
=
(
π0,2
k , g2k(xk)

)
, k 6= j.

Then,

R̂α
j ≥ αR̂1

j + ᾱR̂2
j . (47)

Proof. The proof is relegated to Appendix B.
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Now, define an ensemble of perturbation functions, {ψk}Mk=1,

such that
∫ Lk

0+
ψk(v) dv = 0 (48)

∫ Lk

0+
exp(−ζkv)ψk(v) dv = 0, (49)

and the ψk are continuous and bounded on their domain (0, Lk]
and ψk(0) = 0. For sufficiently small εk > 0, k ∈ [M ], it

thus follows that gεkk (xk)
def
= gk(xk)+ εkψk(xk) satisfies (46b)-

(46d) with the same atoms π0
k and thus lies inside the feasibility

region. Then, with ε
def
= (ε1, ε2, · · · , εM ), it must be true for a

global maximum solution that

R̂ε ≤ R̂, (50)

where

R̂ε =

∫

A

r
( M∑

k=1

pεkk (xk)
) M∏

k=1

πεk
k (dxk), (51)

and

πεk
k (xk)

def
= [π0

kδ(xk) + e−ζkxkgk(xk) + εke
−ζkxkψk(xk)] dxk

= πk(dxk) + εke
−ζkxkψk(xk) dxk, (52)

and pεkk (xk) is calculated from Eq. (44) to be,

pεkk (xk) =




λk
Gk(xk) + εkΨk(xk)

gk(xk) + εkψk(xk)
xk > 0

0 xk = 0,
(53)

with,

Ψk(xk)
def
=

∫ xk

0

ψk(v) dv. (54)

For the moment, we assume that only the jth coordinate is
perturbed; that is εk = 0, ∀k 6= j. Expanding the right hand
side of (51) to first order then results in

R̂εj =

∫

A

[
r
( M∑

k=1

pk(xk)
)
+ εj

∂r
(∑M

k=1 pk(xk)
)

∂pj(xj)

dp
εj
j (xj)

dεj

∣∣∣
εj=0

]

×
[
πj(dxj) + εje

−ζjxjψj(xj) dxj

] ∏

k∈[M]−j

πk(dxk)

= R̂+ εj

∫

A

r
( M∑

k=1

pk(xk)
)
eζjxjψj(xj) dxj

∏

k∈[M]−j

πk(dxk)

+ εj

∫

A

∂r
(∑M

k=1 pk(xk)
)

∂pj(xj)

dp
εj
j (xj)

dεj

∣∣∣
εj=0

M∏

k=1

πk(dxk) +O(ε2j).

(55)

On the other hand, we note that

dp
εj
j (0)

dεj

∣∣∣
εj=0

= 0, (56)

since p
εj
k (0) = 0 from (53). Therefore,

∫

A

∂r
(∑M

k=1 pk(xk)
)

∂pj(xj)

dp
εj
j (xj)

dεj

∣∣∣
εj=0

δ(xj) dxj = 0, (57)

and thus from Eq. (55) we obtain (58) on the next page. This

expansion, accompanied with inequality (50) establishes (59) as

Alternatively, p
εj
j (0) = 0 for all εj as the battery is empty.

a necessary condition for a locally (and thus globally) optimal

solution, where we have neglected the second order term O(ε2j ).
Now with slight abuse of notation, let

IEj

[
r
( M∑

k=1

pk(xk)
)]

def
=

∫

Aj

r
( M∑

k=1

pk(xk)
) ∏

k∈[M ]−j

πk(dxk),

(68)

denote the expectation over all the coordinates except the j-th
coordinate. Then (59) can be restated as

Lj∫

0

[
∂IEj

[
r
(∑n

k=1 pk(xk)
)]

∂pj(xj)

dp
εj
j (xj)

dεj

∣∣∣
εj=0

e−ζjxjgj(xj)

+ IEj

[
r
( M∑

k=1

pk(zk)
)]
e−ζjxjψj(zj)

]
dxj = 0, (69)

where we used the fact that

IEj



∂r
(∑n

i=1 pi(zi)
)

∂pj(zj)


 =

∂

∂pj(zj)
IEj

[
r
( n∑

i=1

pi(zi)
)]
.

On the other hand, from Eq. (53), we compute

gj(xj)
dp

εj
j (xj)

dεj

∣∣∣
εj=0

= λj

[
Ψj(xj)−

ψj(xj)Gj(xj)

gj(xj)

]
(70)

= λjΨj(xj)− ψj(xj)pj(xj). (71)

We thus further proceed by substituting (71) in Eq. (69), i.e.,

Lj∫

0

[
λje

−ζjxj
∂IEj

[
r
(∑M

k=1 pk(xk)
)]

∂pj(xj)

]
Ψj(xj) dxj

−
Lj∫

0

[
e−ζjxj

∂IEj

[
r
(∑M

k=1 pk(xk)
)]

∂pj(xj)
pj(xj)

+ e−ζjxj IEj

[
r
( M∑

k=1

pk(xk)
)]]

ψj(xj) dxj = 0. (72)

Integrating by parts, the second integral can be evaluated as (74).
But since Ψj(0) = Ψj(Lj) = 0 due to the definition in Eq. (54)

and (48), the second term in Eq. (74) vanishes. Replacing the

remaining terms in Eq. (72) yields (75) which must hold for
all defined Ψj(xj) in Eq. (54), such that ψj(xj) satisfies both

(48) and (49). A family of solutions for Equation (75) can be

supplied by simultaneously noting from Eq. (49) that

0 =

∫ Lj

0

e−ζjxjψj(xj) dxj (76)

= e−ζjxjΨj(xj)
∣∣∣
Lj

0
+ ζj

∫ Lj

0

e−ζjxjΨj(xj) dxj (77)

(a)
= ζj

∫ Lj

0

e−ζjxjΨj(xj) dxj , (78)

where (a) is true since Ψj(0) = Ψj(Lj) = 0 as noted before.
Now, if pj(xj) is twice continuously differentiable, it follows

that the term inside the parentheses in Eq. (75) is continuously

differentiable as the rate function r(x) is assumed to be three
times continuously differentiable. Furthermore, since Ψj(xj) is

also continuously differentiable, from (78) and the fundamental

lemma of the calculus of variations, we then conclude that (75)
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R̂εj = R̂ + εj

∫

A

r
( M∑

k=1

pk(xk)
)
eζjxjψj(xj) dxj

∏

k∈[M ]−j

πk(dxk)

+ εj

∫

A

∂r
(∑M

k=1 pk(xk)
)

∂pj(xj)

dp
εj
j (xj)

dεj

∣∣∣
εj=0

eζjxjgj(xj) dxj
∏

k∈[M ]−j

πk(dxk) +O(ε2j). (58)

∫

A

r
( M∑

k=1

pk(xk)
)
eζjxjψj(xj) dxj

∏

k∈[M ]−j

πk(dxk)

+

∫

A

∂r
(∑M

k=1 pk(xk)
)

∂pj(xj)

dp
εj
j (xj)

dεj

∣∣∣
εj=0

eζjxjgj(xj) dxj
∏

k∈[M ]−j

πk(dxk) = 0. (59)

Lj∫

0

[
e−ζjxj

∂IEj

[
r
(∑n

k=1 pk(xk)
)]

∂pj(xj)
pj(xj) + e−ζjxj IEj

[
r
( M∑

k=1

pk(xk)
)]]

ψj(xj) dxj

=

(
e−ζjxj

∂IEj

[
r
(∑M

k=1 pk(xk)
)]

∂pj(xj)
pj(xj) + e−ζjxj IEj

[
r
( M∑

k=1

pk(xk)
)]
)
Ψj(xj)

∣∣∣
Lj

0

+

Lj∫

0

∂

∂xj

[
e−ζjxj

∂IEj

[
r
(∑M

k=1 pk(xk)
)]

∂pj(xj)
pj(xj) + e−ζjxj IEj

[
r
( M∑

k=1

pk(xk)
)]]

Ψj(zj) dxj . (74)

Lj∫

0

(
λje

−ζjxj
∂IEj

[
r
(∑M

k=1 pk(xk)
)]

∂pj(xj)

− ∂

∂xj

[
e−ζjxj

∂IEj

[
r
(∑M

k=1 pk(xk)
)]

∂pj(xj)
pj(xj) + e−ζjxj IEj

[
r
( M∑

k=1

pk(zk)
)]]
)
Ψj(xj) dxj = 0. (75)

holds only if the term inside the parentheses is in the form
of Kj exp(−ζjxj) for some constant Kj . Thus, as a necessary

condition, we have

pj(xj)p
′
j(xj)

∂2IEj [r(
∑M

k=1 pk(xk))]

∂2pj(xj)
+ (λj − ζjpj(xj))

× ∂IEj [r(
∑M

k=1 pk(xk))]

∂pj(xj)
+ ζjIEj [r(

M∑

k=1

pk(xk))] +Kj = 0.

(79)

Remark 6. Rewriting Equation (79) as

p′j(xj) = −pj(xj)
∂2IEj [r(

∑M

k=1 pk(xk))]

∂2pj(xj)

]−1[
(λj − ζjpj(xj))

×
∂IEj [r(

∑M

k=1 pk(xk))]

∂pj(xj)
+ ζjIEj [r(

M∑

k=1

pk(xk))] +Kj , (80)

it is easy to verify that Kj provides a degree of freedom to set

the initial slope p′j(xj)
∣∣
xj=0+

of the power policy pj(xj).

Now since the choice of jth coordinate was arbitrary, (79)

holds for all j ∈ [M ]. Accordingly, we obtain a system of

coupled PIEDs over M coordinates with 2M degree of freedom
where the integration is implicit in the notation of IEj [·] (ref.

In the system of equations, {pk(0
+)}Mk=1 and {p′k(0

+)}Mk=1 (or equiva-

lently {pk(0
+)}Mk=1 and {Kk}

M
k=1) are free parameters.

Eq. (68)). In the following, we consider solutions in the infinite
and finite battery cases.

1) Infinite Storage Battery: Motivated by the converse result

for the infinite storage battery, we consider a set of admissible
policies as below

p̄k(xk) =

{(
λk/ζk

)
+ ̺ xk > 0

0 xk = 0,
(81)

where the excess power ̺ > 0 is added to ensure the positive
recurrence of the process. In the limit, as ̺→ 0, the suggested

policies in Eq. (81) satisfy (79) for all j, provided

Kj = −ζjIEj

[
r
( M∑

k=1

λk
ζk

)
]
. (82)

The average transmission power of (81) can then be evaluated

as

IE[p̄k(xk)] = π0
kp̄k(0) +

(
(λk/ζk) + ̺

) ∫ ∞

0+
fk(xk) dxk (83)

=
(
(λk/ζk) + ̺

)(
1− π0

k

)
. (84)

On the other hand, in light of Eq. (34) we have IE[p̄k(xk)] =
λk/ζk. As a result, a transmission node that exploits p̄k(xk) as

transmission power policy has the following probability mass at
zero

π0
k =

̺

(λk/ζk) + ̺
, (85)
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i.e., it sends information for a fraction
(λk/ζk)

(λk/ζk) + ̺
of time.

Moreover, associated with p̄k(xk), the mean square deviation
of transmission power is given by

σ2
(
p̄k(Xk)

)
=
(λk
ζk

)2
π0
k +

∫ ∞

0+

(
p̄k(xk)−

λk
ζk

)2
fk(xk) dxk

= (λk/ζk)̺. (86)

For these power transmission strategies, we also have

R̂ ≥ r
( M∑

k=1

(λk/ζk + ̺)
) M∏

k=1

(λk/ζk)

(λk/ζk) + ̺
, (87)

where the inequality follows from neglecting situations in which

a strict subset of nodes are transmitting and the rest are silent

due to battery exhaustion. As ̺ ↓ 0, the upper bound (35) and
the lower bound (87) coincide with each other. The total average

throughput is given asymptotically by

R̂ = r
( M∑

k=1

λk/ζk

)
. (88)

Thus, near optimal performance of the energy harvesting system
can be achieved when ̺ ↓ 0, and the behaviour of a classical

communication systems (in the sense of using a constant power
supply without interruption) can be closely approximated at the

same time.

2) Finite Storage Battery: In contrast to the case of batteries

with infinite capacity, the system of equations in Eq. (79) doesn’t
appear to admit a closed form expression for power policies

when the storage capacity is finite. The remaining option is thus

to solve (79) numerically. However, the complexity in dealing
with such systems is that the equations are not independent, but

coupled. Alternatively, if all but one of the pk(·) are known, the
remaining one can be obtained by solving a first order non-linear

ODE in terms of the corresponding coordinate, using (79). First

from (43) and since G′
k(xk) = gk(xk) we obtain by integration

lnGk(xk)− lnGk(0) =

∫ xk

0+

λk
pk(vk)

dvk. (90)

Therefore,

Gk(xk) = π0
k exp

( ∫ xk

0+

λk
pk(v)

dv
)
. (91)

By differentiating both sides with respect to xk , we obtain

gk(xk) =
π0
kλk

pk(xk)
exp

(∫ xk

0+

λk
pk(v)

dv
)
, (92)

or equivalently,

fk(xk) = π0
k

e−λkxkλk
pk(xk)

exp
(∫ xk

0+

λk
pk(v)

dv
)
. (93)

Also, due to the normalization condition

π0
k +

∫ Lk

0+
fk(xk) dxk = 1, (94)

Algorithm 1 Gauss-Seidel Alg. for Transmission Power Policies

1: for all k ∈ [M ] do

2: Initialize pk(xk) with some arbitrary function;
3: compute (93) and (95);

4: end for

5: repeat

6: for j ← 1,M do

7: calculate (68);

8: update pj(xj) by solving (79) for optimized values
of pj(0

+) and Kj ;

9: update (93) and (95) for k = j;
10: end for

11: until termination criterion is satisfied.

we have

π0
k =

[
1 +

∫ Lk

0+

e−λkxkλk

pk(xk)
exp

(∫ xk

0+

λk

pk(v)
dv
)
dxk

]−1

, (95)

which can simply be derived via substituting (93) in Eq. (94)
and solving for π0

k.

With the help of (93) and (95), we propose an iterative

method, outlined as Algorithm 1, that computes a solution for

(79). Also, the convergence analysis of Algorithm 1 follows the
following three steps:

(i) at each iteration of Algorithm 1, the utility function (37)
is non-decreasing,

(ii) the utility function in Eq. (37) is bounded above,

(iii) the utility (37) thus converges if Algorithm 1 is allowed to
iterate indefinitely (i.e. no termination constraint).

Specifically, in the first step, we denote the utility R̂ as an

explicit function of the power policies in Algorithm 1, e.g.,

R̂(p
(0)
1 (x1), p

(0)
2 (x2), · · · , p(0)M (xM )) is the initial utility. After

the N th full iteration of steps 5-10 (outer loop) of Algorithm

1, in the jth iteration of 6-10 (inner loop), we then obtain Eq.
(96) below. Therefore,

R̂
(
p
(N+1)
1 (x1), · · · , p(N)

j (xj), · · · , p(N)
M (xM )

)

≤ R̂
(
p
(N+1)
1 (x1), · · · , p(N+1)

j (xj), · · · , p(N)
M (xM )

)
. (97)

In addition, since the objective function is upper bounded by
(28), we further have

R̂sup
def
= sup

{pk(xk)}

R̂(p1(x1), p2(x2), · · · , pM (xM )) (98)

≤ r
( M∑

k=1

λk
ζk

(1 − exp(−ζkLk))
)
. (99)

Concluding from (97) and (99), the sequence R̂
(
{pNk (xk)}∞N=0

)

must converge in the limit as N →∞.

Now, we concentrate on two important degenerate cases of

our problem that can substantially reduce the computational

burden of solving the PIEDs. In the first scenario, suppose that
all the transmission nodes scavenge energy in the same manner.

By this statement, we mean that the statistical parameters of all

the energy harvesters are identical, i.e., λk = λ and ζk = ζ

p
(N+1)
j (xj) = argmax

ξ
R̂(p

(N+1)
1 (x1), · · · , p(N+1)

j−1 (xj−1), ξ, p
(N)
j+1(xj+1), · · · , p(N)

M (xM )). (96)
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for all k = 1, 2, · · · ,M . In the symmetric case, further assume

that the batteries have identical capacities (Lk = L) and all
transmitters employ the same power policy (pk(xk) = p(xk)).
Then, Equation (79) reduces to

p(xj)p
′(xj)

∂2IEj [r(
∑M

k=1 p(xk))]

∂2p(xj)
+ (λ− ζp(xj))

× ∂IEj [r(
∑M

k=1 p(xj))]

∂p(xj)
+ ζIEj [r(

M∑

k=1

p(xj))] +K = 0,

(100)

where j is arbitrary and chosen from [M ], and the operator

IEj [·] now simplifies as

IEj

[
r
( M∑

k=1

p(xk)
)]

=

∫

Aj

r
( M∑

k=1

p(xk)
) ∏

k∈[M ]−j

π(dxk).

(101)

If we rearrange the terms in Equation (100), we have that

p(xj) = F
(
p(xj)

)
, (102)

where the mapping F (·) : C1(0, L]→ C1(0, L] is given by

F
(
p(xj)

)
=

p(0+)−
∫ xj

0+

[
Kj + ζIEj [r(

M∑

k=1

p(vk))] + (λ− ζp(vj))

× ∂IEj [r(
∑M

k=1 p(vk))]

∂p(vj)

][
p(vj)

∂2IEj [r(
∑M

k=1 p(vk))]

∂2p(vj)

]−1

dvj .

(103)

As a result, it follows that the desired p(xj) is a fixed point

of F (·). This then suggests an alternative algorithm for this
special case (see Algorithm 2).

Now in the second scenario, consider that there is only one
transmitter in the communication system (i.e. a point-to-point
setup). We thus have a simplified formulation as a necessary
condition here, i.e.,

p(x)p′(x)
d2r
(
p(x)

)

d2p(x)
+
(
λ− ζp(x)

)dr
(
p(x)

)

dp(x)
+ ζr

(
p(x)

)
+K = 0.

(104)

As argued in [1], this is a second order, non-linear, autonomous

ODE that can be solved numerically by employing linear
multistep methods (e.g. Runge-Kutta or Adams-Bashforth). The

next lemma demonstrates some properties of solutions to this

ODE.

Lemma 3. Suppose K > −ζr(λ/ζ) in Eq. (104), then for the
Shannon rate function

(i) any solution p(x) is a strictly increasing function of x for

x ≥ 0, and p(x)→∞ as x→∞,
(ii) p(x) grows doubly exponentially fast as x→∞. �

Proof. Solving (104) for p′(x), we have

p′(x) =

(
λ− ζp(x)

)
r′
(
p(x)

)
+ ζr

(
p(x)

)
+K

−p(x)r′′
(
p(x)

) . (105)

From concavity of the rate function as well as the first constraint

on admissible power policies we have r′′(p(x)) < 0 and p(x) ≥
0, respectively. Therefore, the denominator is always positive
and p′(x) > 0 for all x ≥ 0 iff

K > −
[(
λ− ζp(x)

)
r′
(
p(x)

)
+ ζr

(
p(x)

)]
, ∀x ≥ 0. (106)

Algorithm 2 Fixed Point Alg. For the Symmetric MAC

1: Initialize p(0)(xj) with some function.
2: repeat

3: compute (93) and (95);

4: compute (101);
5: update p(N+1)(xj) = F (p(N)(xj)) from Eq. (103) for

optimized values of p(N+1)(0+) and K(N+1);
6: until termination criterion is satisfied.

Moreover, it can be verified that

d

dp(x)

[(
λ− ζp(x)

)
r′
(
p(x)

)
+ ζr

(
p(x)

)]
=
(
λ− ζp(x)

)
r′′(p(x)).

Hence, p(x) = λ/ζ is a global maxima for the right hand side

of (106). Replacing p(x) = λ/ζ into (106), the numerator of
(105) is then lower bounded by

K + ζr(λ/ζ) > 0.

Furthermore, since r(x) = 1
2 log2

(
1 +

x

N0

)
, we upper bound

the denominator by

−p(x)r′′(p(x)) = 1/N0

2 ln 2

p(x)/N0

(1 + p(x)/N0)2

≤ 1/N0

8 ln 2
.

and thus p(x)→ +∞.

To prove the second part of Lemma 3, consider the substitu-
tion

p(x)/N0 = exp(S(x)), (107)

where S(x) increases since p(x) increases. Then we have

S(x)→ +∞, as x→∞. (108)

Consequently, for the Shannon rate function we obtain

dr
(
p(x)

)

dp(x)
=

1

2 ln 2

1/N0

1 + p(x)/N0
≃ 1/N0

2 ln 2
exp(−S(x)), (109)

d2r
(
p(x)

)

dp(x)2
=
−1
2 ln 2

1/N2
0

(1 + p(x)/N0)2

≃ −1/N
2
0

2 ln 2
exp(−2S(x)), (110)

and

r(p(x)) =
1

2
log2

(
1 + p(x)/N0

)
≃ 1

2 ln 2
S(x). (111)

Replacing (109)-(111) in Eq. (104) yields that for x→∞
− S′(x) + (λ − ζN0e

S(x))(e−S(x)/N0)

+ ζS(x) + (K/2 ln 2) = 0, (112)

As x→∞ and due to (108), Equation (112) reduces to

ζS(x) = S′(x), (113)

which has the following solution

S(x) = A exp(ζx), (114)

for some constant A, and thus

p(x) = O
(
exp(eζx)

)
, as x→∞. (115)
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Remark 7. Due to Lemma 1, it is easy to verify that when K ≤
−ζr(λ/ζ), the property of (115) does not hold in general. In

fact, for sufficiently large negative K , solutions of Eq. (104) are

decreasing power policies. However, we conjecture that all such
power policies are suboptimal as they fail to control the overflow

in the battery. A more detailed discussion will be presented in

the following section.

V. NUMERICAL EXPERIMENTS

We now study a multiple access communication system

consisting of two nodes (M = 2) with λ1 = λ2 = λ = 1 and
ζ1 = ζ2 = ζ = 1. Because of the symmetry of the MAC, the

achievable power policies for this setting are obtained through
Algorithm 2. However, to implement Algorithm 2 according

to steps 1-6, one is obliged to search for optimized values of

p(0+) and K at each iteration. To ease this process and in what
follows, Algorithm 2 is modified in a way that once the values

of p(0+) and K are initialized, the same values are used at each

iteration step.

With this modification, Fig. 1(a) then shows the designed
power policy as a function of the remaining charge in the

battery with initial conditions p(0+) = 0.1 and K = 0 and

initializing function p(0)(xk) = xk + p(0+), 0 < xk ≤ Lk.
After N = 10 iterations, the power policy has converged to

a solution of (100). It can also be seen from Fig. 1(a) that as

the remaining charge in the battery increases, the transmission
power also increases rapidly. Supported by part (b) of Lemma

3, we further conjecture that this increase is in fact doubly

exponential in x. Indeed, when the occupied charge of the
battery becomes large, the chance of overflow due to new energy

arrivals increases as well. In this regard, an optimal power policy
is one which consumes the battery charge fast enough such that

the occurrence of overflow is traded-off against the potential

suboptimality of employing a large instantaneous transmission
power (see Section IV). On the other hand, for sufficiently

large negative K , solutions of Eq. (100) are non-increasing

(see Remark 7 for the point-to-point case) and they thus fail
to manage battery overflow. The numerical results have further

verified that for non-increasing power policies, the achieved

sum-throughput is strictly less than for increasing ones. As a
result, here we only consider increasing power policies.

Corresponding to the designed power policy in Figure 1(a),

Figure 1(b) shows the absolutely continuous part (density) of

the probability measure in Eq. (7). In this case, consistent with
our earlier observation for the power policy, the density function

also falls off quickly. In terms of ergodicity, this is basically an
assertion of the fact that the system spends little time with large

stored charge in the battery.

Using Algorithm 2, we have computed the achievable rates

provided in Table I and Table II, where the termination criterion
is taken to be

θ =
r
(∑M

k=1 p
N+1(xk)

)
− r
(∑M

k=1 p
N (xk)

)

r
(∑M

k=1 p
N (xk)

) < 1%,

i.e., the iteration stops whenever the increase in rate is less

than one percent. With this precision, Table I shows the sum

Although this approach is potentially suboptimal, it always yields achievable
results, and in the case of the considered example here, the achievable results
are close to the upper bound.

TABLE I: Total average throughput for two identical nodes, using
Shannon rate function, r(x) = 1

2
log(1+x/N0), with N0 = 1, equation

constant K = 0, initializing function p(x) = x + p(0+), 0 < x ≤ L,
and for various storage capacity L and initial values p(0+).

Initial Value p(0+)
L Rupper 0.001 0.001 0.1 1

0.5 0.4187 0.3177 0.3152 0.3094 0.2797
1 0.5895 0.4217 0.4159 0.4069 0.3722
2 0.7243 0.4634 0.4575 0.4511 0.4075
3 0.7681 0.4652 0.4593 0.4510 0.4091

TABLE II: Total average throughput for two identical nodes, using
Shannon rate function, r(x) = 1

2
log(1 + x/N0), with N0 = 1, initial

value p(0+) = 0.001, initializing function p(x) = x + p(0+), 0 <
x ≤ L, and for various storage capacity L and equation constant K.
The upper bound for infinite storage battery (Lk = ∞) is given by
R∞ = 1

2
log(1 + 2) = 0.792.

.

Equation Constant K
L Rupper +0.5 0 −0.5 Optimum

0.5 0.4187 0.3017 0.3177 0.3057 0.3262 (77.9%) [K=-0.15]
1 0.5895 0.3707 0.4217 0.4410 0.4612 (78.2%) [K=-0.37]
2 0.7243 0.3854 0.4634 0.5725 0.5951 (82.1%) [K=-0.63]
3 0.7681 0.3858 0.4652 0.5907 0.6654 (86.6%) [K=-0.67]

throughput for several choices of p(0+) and fixed K = 0. The

upper bound is also computed from (28) and denoted by Rupper

in the table.
Based on a comparison between the upper and lower lim-

its on the rate function, it is immediate that the choice of
p(0+) = 0.001 results the best performance of the designed

power policy. For the same choices of p(0+) as in Table I and
K = 0, Figure 2 shows the power policy solutions. Except for

the case of p(0+) = 1, all the power policy solutions adopt

a small transmission power when the battery charge is small.
Along the same lines, Table II shows the upper and lower limits

on the average throughput for fixed p(0+) = 0.001 and variable

K . We have particularly provided the best value of K up to
precision 0.01 as well as the corresponding achievable rates.

The best achievable rate, as a percentage of the upper bound,

is also evaluated.
Finally, to show the robustness of the iterative algorithm to

the initializing function, a different choice of p
(0)
k (xk) is studied

in Figure 3. Therein, we particularly have selected p
(0)
k (xk) =

pk(0
+), 0 < xk ≤ 3 for purpose of initialization in Algorithm 2

while the rest of the parameters are the same as in Figure 1(a).
Evidently, the power policy converges to an identical function

as one depicted in Figure 1(a). Similarly, the same convergence

was observed when p
(0)
k (xk) = pk(0

+) +
√
xk, 0 < xk ≤ 3. In

this respect, the proposed algorithm appears to be insensitive to

the choice of the initial power policy.

VI. CONCLUSION

We have considered continuous-time power policies for a

multiple access communication system where each node is

capable of harvesting energy. First we modelled the battery as
a compound Poisson dam, where the remaining charge in the

battery modulates the transmission power. We then analysed
this storage dam model in the ergodic case. In particular, we

characterized an upper bound on the maximum sum-rate as a

function of the energy arrivals distributions and the capacity
of the batteries. For batteries with infinite capacity, we proved

that any rate close to this bound is achievable by a set of

constant power policies that result in stable battery behavior. For
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Fig. 1: Battery capacity L = 3, equation constant K = 0, and p(0+) =
0.1 for two nodes case. (a) The convergence of transmission power
policy to an achievable policy (denoted by squares) after N = 10
iterations with initializing function p(0)(x) = x+p(0+) (dashed lines)
and iterates (solid lines), (b) Absolutely continuous part f(x) of π(x)
for the converged solution.

batteries with limited capacity, we showed that optimal power

policies can be derived by solving a system of simultaneous
partial integro-differential equations. To solve these equations,

we developed an iterative algorithm based on the Gauss-Seidel
approach. We next derived a fixed point algorithm for the sym-

metric MAC case where the multiple access nodes have identical

energy harvesting statistics. Furthermore, the convergence of
the utility function that results from the proposed algorithms

was established. Numerical results show that for L = 3, the

achievable scheme provides throughput up to 86.6% of the upper
bound.

Potential future work includes extending the study to the case

where each transmitter has a data buffer. This could model
scenarios in which a sensor monitors a physical quantity (e.g.

temperature), and then stores the data in a buffer for eventual

transmission once enough energy has been harvested.

APPENDIX A

In the following, we show that for every power policy with

memory, p∗k(Xk(u);u ≤ t), there exist a memoryless counter-

part pk(Xk(t)) that attains the same or better sum-throughput
performance. In particular, let (Ω,F , IP) be a complete proba-

bility space and X∗
k(t;ω),−∞ < t < ∞ be a stationary and

ergodic stochastic process defined on this probability space and
whose evolution for t ≥ 0 is given by

X∗
k(t;ω) = X∗

k(0;ω) + EIn
k

(
(0, t];ω

)

−
∫ t

0

p∗k
(
X∗

k(u;ω);u ≤ s
)
ds. (116)

In conjunction with the process X∗
k(t;ω), we then define the

following empirical CDFs,

F̃ ∗
k (ρk, xk;ω)

def
= (117)

lim
T→∞

1

T

∫ T

0

1

(
pk(X

∗
k(u;ω);u ≤ s) ≤ ρk

)
1(X∗

k(s;ω) ≤ xk)ds

π̃∗
k(xk;ω)

def
= lim

T→∞

1

T

∫ T

0

1(X∗
k (s;ω) ≤ xk)ds (118)

= lim
ρk→∞

F̃ ∗
k (ρk, xk;ω). (119)

Now since X∗
k (t) is ergodic, F̃ ∗

k (ρk, xk;ω) and π̃∗
k(xk;ω) are

well defined, and constant IP−almost surely on Ω, i.e.,

F̃ ∗
k (ρk, xk;ω)

a.s.
= F ∗

k (ρk, xk), (120a)

π̃∗
k(xk;ω)

a.s.
= π∗

k(xk), (120b)

For the functions F ∗
k (ρk, xk), π

∗
k(xk) in Eqs. (120) we define

the conditional CDF F ∗
k (ρk|xk) by

F ∗
k (ρk, xk) =

∫ xk

0

F ∗
k (ρk|s)π∗

k(ds). (121)

Also, we define the memoryless power policy pk(xk) as follows

pk(xk)
def
=

∫ ∞

0

ρkF
∗
k (dρk|xk), (122)

and a corresponding storage process Xk(t) governed by

Xk(t) = Xk(0) + EIn
k (0, t]−

∫ t

0

pk
(
Xk(s)

)
ds. (123)

Also, we denote the stationary measure of Xk(t) by πk(xk).
Our objective now is to prove that the throughput using the
storage process with memory p∗k(X

∗
k (u;w), u ≤ t) is no better

than that of it’s memoryless counterpart pk(Xk(t)), i.e.,

R̂({p∗k(X
∗
k (s;w); s ≤ t)}Mk=1)≤R̂

(
{pk(Xk(t))}

M
k=1

)
, (124)

almost surely. To show this result, we begin with the definition

of the long term average throughput for the storage process in

Eq. (116), i.e.,

R̂
(
{p∗k(X∗

k (s;w); s ≤ t)}Mk=1

)

def
= lim

T→∞

1

T

∫ T

0

r
( M∑

k=1

p∗k(X
∗
k (s;w); s ≤ t)

)
ds (125)

(a)
=

∫

A

∫

B

r(
M∑

k=1

ρk)
M∏

k=1

F̃ ∗
k (dρk, dxk;w) (126)

For clarity, we make the dependence on ω ∈ Ω explicit.
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Fig. 2: Transmission power policies p(x) with different initial values
(L = 3,M = 2, K = 0).
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Fig. 3: Robustness to the initializing function, using a constant

initializing function (dashed line) p(0)(xk) = p(0+), 0 ≤ xk ≤ L
(L = 3,M = 2, K = 0 and N = 10).

a.s.
=

∫

A

∫

B

r(

M∑

k=1

ρk)

M∏

k=1

F ∗
k (dρk, dxk), (127)

=

∫

A

∫

B

r(

M∑

k=1

ρk)

M∏

k=1

F ∗
k (dρk|xk)π∗

k(dxk), (128)

where (a) follows from the definition of F̃ ∗
k (dρk, dxk;w) in Eq.

(117), and B def
= [0,∞) × [0,∞) × · · · × [0,∞) is the domain

of integration on {ρk}Mk=1. From concavity of the rate function,
we then upper bound (128) as follows

R̂
(
{p∗k(X∗

k(s;w); s ≤ t)}Mk=1

)

a.s.
=

∫

A

∫

B

r
( M∑

k=1

ρk

) M∏

ℓ=1

F ∗
ℓ (dρℓ|xℓ)

M∏

k=1

π∗
k(dxk),

≤
∫

A

r(

M∑

k=1

∫

B

ρk

M∏

ℓ=1

F ∗
ℓ (dρℓ|xℓ))

M∏

k=1

π∗
k(dxk)

=

∫

A

r
( M∑

k=1

∫ ∞

0

ρkF
∗
k (dρk|xk)

) M∏

k=1

π∗
k(dxk) (129)

def
=

∫

A

r
( M∑

k=1

pk(xk)
) M∏

k=1

π∗
k(dxk), (130)

where the last step follows from the definition of pk
(
xk
)

in

Eq. (122). The remaining task is now to show that π∗
k(xk) =

πk(xk), ∀k ∈ [M ]. For this purpose, we define some notation

in conjunction with an arbitrary, stationary, càdlàg process

Y (t) whose jumps (positive or negative) occur at time instants
T 0, T 1, · · · . In particular, the right hand derivative of Y (t) is

defined by

Y +(t)
def
= lim

ε↓0

Y (t+ ε)− Y (t)

ε
. (131)

In addition, define

Y (t−)
def
= lim

ε↓0
Y (t− ε). (132)

Theorem 4. (Rate Conservation Law) Let Y (t) be an ergodic,
stationary, càdlàg process. Then,

f(y)IE
[
Y +(t)|Y (t) = y

]
= (133)

λ0IE0
[
1{Y (T 0,−)>y}1{Y (T 0)<y} − 1{Y (T 0,−)<y}1{Y (T 0)>y}

]
,

where f(y) is the probability density at y, and IE0 denotes

the expectation with respect to the Palm probability distribution

corresponding to the point process (with assumed intensity λ0)
for the jumps. �

Proof. The proof can be found in [23, p. 36].

Remark 8. The term 1{Y (T 0,−)>y}1{Y (T 0)<y} in the right hand

side of Theorem 4 corresponds to negative jumps in the sample
path while 1{Y (T 0,−)<y}1{Y (T 0)>y} corresponds to positive

jumps.

Remark 9. As the memoryless storage process in Eq. (123) only
contains positive jumps,

IE0
[
1{Xk(T

0,−

k
)>xk}

1{Xk(T 0
k
)<xk}

]
= 0,

where as defined in Section II-B, T 0
k , T

1
k , · · · denote the energy

arrival times for the kth node. In this special case, we then have

fk(xk)IE[X
+
k
(t)|Xk(t) = xk] = fk(xk)IE[−pk(Xk(t))|Xk(t) = xk]

= −fk(xk)pk(xk). (134)

For the right hand side of Theorem 4 we obtain

λ0IE0[−1{Xk(T 0,−)<xk}1{Xk(T 0)>xk}]

(a)
= λkIE[−1{Xk(T 0,−)<xk}1{Xk(T 0)>xk}] (135)

= −λk
∫ xk

0

(
1−Bk(xk − vk)

)
πk(dvk) (136)

= −λk
[(
1−Bk(xk)

)
π0
k

+

∫ xk

0+

(
1−Bk(xk − vk)

)
f(vk) dvk

]
, (137)

Right continuous with left hand limit. Note that both the storage processes
in Eqs. (116) and (123) are càdlàg.
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where (a) follows from the notion of Poisson Arrivals See Time

Averages (PASTA) [23, Prop. 1.23] for Poisson energy arrival
process with intensity λ0 = λk. Equating (134) and (137)

according to Theorem 4, we obtain

fk(xk)pk(xk) = λk

[(
1−Bk(xk)

)
π0
k

+

∫ xk

0+

(
1−Bk(xk − vk)

)
fk(vk) dvk

]
, (138)

which is the equilibrium condition in Eq. (9) with the density
fk(xk) and the atom π0

k.

Returning to the storage process with memory in Eq. (116),

now it is also easy to see that

IE
[
(X∗

k (t))
+|X∗

k(t) = xk
]
=

∫ ∞

0

ρkFk(dρk|xk) (139)

def
= pk(xk), (140)

which is simply the average rate of down crossing at level xk
corresponding to the stationary distribution of X∗

k (t) in Eq.
(116). Using the argument in Remark 9 for the process in Eq.

(116) results

f∗
k (xk)IE

[
(X∗

k (t))
+|X∗

k(t) = xk
]
= f∗

k (xk)pk(xk)

= λk

[(
1−Bk(xk)

)
π∗,0
k

+

∫ xk

0+

(
1−Bk(xk − vk)

)
f∗
k (vk) dvk

]
, (141)

where π∗,0
k and f∗

k (xk) are the atom and the continuous part

(density) of the probability measure π∗
k(xk). Since from The-

orem 1 the probability measure that solves (138) and (141) is

unique,

π∗
k(xk) = πk(xk), ∀xk. (142)

Concluding from (130), we thus showed that

R̂
(
{p∗k(X∗

k (s;w); s ≤ t)}Mk=1

) a.s.

≤
∫

A

r
( M∑

k=1

pk(xk)
)
π∗
k(dxk),

=

∫

A

r
( M∑

k=1

pk(xk)
)
πk(dxk)

a.s.
= R̂

(
{pk(Xk(t))}Mk=1

)
,

Remark 10. We note that in the ergodic regime, the upcrossing

rate as well as the drift component of the storage process in the
finite battery case also obey the law stated in Theorem 4. Thus,

we again obtain Eq. (141) as battery overflow does not change

the upward and downward rates. Therefore, a similar proof can
be used to show Xk(t) is a sufficient statistic for optimal power

policies in the storage model with a finite battery capacity in
Eq. (6).

APPENDIX B

Proof. Since for all k 6= j,

(π0,α
k , gαk (xk)) = (π0,1

k , g1k(xk)) = (π0,2
k , g2k(xk)),

we have that

πα
k (dxk) = π1

k(dxk) = π2
k(dxk).

Then,

R̂α
j =

∫

A

r

(
λj

Gα
j (xj)

gαj (xj)
+
∑

k∈[M]−j

λk

Gk(xk)

gk(xk)

)
πα
j (dxj)

∏

k∈[M]−j

πk(dxk)

= IEj

[ ∫ Lj

0

r

(
λj

Gα
j (xj)

gαj (xj)
+

∑

k∈[M]−j

λk

Gk(xk)

gk(xk)

)
πα
j (dxj)

]
(143)

= IEj

[ ∫ Lj

0

r

(
λj

Gα
j (xj)

gαj (xj)
+

∑

k∈[M]−j

λk

Gk(xk)

gk(xk)

)

× [π0,α
j δ(xj) + e−ζjxjgαj (xj)] dxj

]
(144)

= IEj

[∫ Lj

0

r

(
λj

Gα
j (xj)

gαj (xj)
+
∑

k∈[M]−j

λk

Gk(xk)

gk(xk)

)
e−ζjxjgαj (xj) dxj

]

+ π0,α
j IEj

[
r

( ∑

k∈[M]−j

λk

Gk(xk)

gk(xk)

)]
. (145)

For the term inside the first expectation in Eq. (145), we proceed

as (146)-(149) on the next page, where (148) can be verified via

the lemma given in Appendix C and choosing

a1 = αe−ζjxjg1j (xj), a2 = ᾱe−ζjxjg2j (xj),

b1 = αe−ζjxjG1
j(xj), b2 = ᾱe−ζjxjG2

j(xj),

and

γ = λj , β =
∑

k∈[M ]−j

λkGk(xk)

gk(xk)
.

Therefore, for the first term of (145) we obtain Eq. (150).
Splitting the second term of (145) as

π0,α
j IEj

[
r

( ∑

k∈[M]−j

λk

Gk(xk)

gk(xk)

)]
= απ0,1

j IEj

[
r

( ∑

k∈[M]−j

λk

Gk(xk)

gk(xk)

)]

+ ᾱπ0,2
j IEj

[
r

( ∑

k∈[M]−j

λk

Gk(xk)

gk(xk)

)]
,

(151)

and combining (150) and (151) we derive

R̂α
j ≥ αR̂1

j + ᾱR̂2
j . (152)

APPENDIX C

Lemma 5. Let γ, β > 0, ak > 0 and bk > 0 be given. Then

∑

k

akr

(
γ
bk
ak

+ β

)
≤ ar

(
γ
b

a
+ β

)
, (153)

where a =
∑

k ak and b =
∑

k bk. �

Proof. we define the function V (x)
def
= xr

(
(γ/x)+β

)
which is

known to be concave for all x > 0 since

V ′′(x) =
γ2

x3
r′′
(γ
x
+ β

)
< 0,

where the concavity property of the rate function has been used.

We then proceed as

∑

k

akr

(
γ
bk
ak

+ β

)
=
∑

k

bk(ak/bk)r

(
γ
bk
ak

+ β

)

=
∑

k

bkV (ak/bk)
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∫ Lj

0

r

(
λj
Gα

j (xj)

gαj (xj)
+

∑

k∈[M ]−j

λk
Gk(xk)

gk(xk)

)
e−ζjxjgαj (xj) dxj

=

∫ Lj

0

r

(
λj
αG1

j (xj) + ᾱG2
j (xj)

αg1j (xj) + ᾱg2j (xj)
+

∑

k∈[M ]−j

λkGk(xk)

gk(xk)

)(
αe−ζjxjg1j (xj) + ᾱe−ζjxjg2j (xj)

)
dxj (146)

=

∫ Lj

0

r

(
λj
αe−ζjxjG1

j (xj) + ᾱe−ζjxjG2
j (xj)

αe−ζjxjg1j (xj) + ᾱe−ζjxjg2j (xj)
+

∑

k∈[M ]−j

λkGk(xk)

gk(xk)

)(
αe−ζjxjg1j (xj) + ᾱe−ζjxjg2j (xj)

)
dxj (147)

≥
∫ Lj

0

r

(
λj
αe−ζjxjG1

j(xj)

αe−ζjxjg1j (xj)
+

∑

k∈[M ]−j

λkGk(xk)

gk(xk)

)
αe−ζjxjg1j (xj) dxj

+

∫ Lj

0

r

(
λj
ᾱe−ζjxjG2

j (xj)

ᾱe−ζjxjg2j (xj)
+

∑

k∈[M ]−j

λkGk(xk)

gk(xk)

)
ᾱe−ζjxjg2j (xj)dxj (148)

= α

∫ Lj

0

r

(
λj
G1

j (xj)

g1j (xj)
+

∑

k∈[M ]−j

λkGk(xk)

gk(xk)

)
e−ζjxjg1j (xj) dxj

+ ᾱ

∫ Lj

0

r

(
λj
G2

j(xj)

g2j (xj)
+

∑

k∈[M ]−j

λkGk(xk)

gk(xk)

)
e−ζjxjg2j (xj)dxj , (149)

IEj

[ ∫ Lj

0

r

(
λj
Gα

j (xj)

gαj (xj)
+

∑

k∈[M ]−j

λk
Gk(xk)

gk(xk)

)
e−ζjxjgαj (xj) dxj

]

≥ αIEj

[ ∫ Lj

0

r

(
λj
G1

j (xj)

g1j (xj)
+

∑

k∈[M ]−j

λk
Gk(xk)

gk(xk)

)
e−ζjxjg1j (xj) dxj

]

+ ᾱIEj

[ ∫ Lj

0

r

(
λj
G2

j(xj)

g2j (xj)
+

∑

k∈[M ]−j

λk
Gk(xk)

gk(xk)

)
e−ζjxjg2j (xj) dxj

]
. (150)

= b
∑

k

(bk/b)V (ak/bk).

Furthermore, from concavity of V (x),

b
∑

k

(bk/b)V (ak/bk) ≤ bV (
∑

k

bk/b× ak/bk)

= bV (a/b)

= ar

(
γ
b

a
+ β

)
.

Hence,

∑

k

akr

(
γ
bk
ak

+ β

)
≤ ar

(
γ
b

a
+ β

)
.
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