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Abstract

In many wireless communication systems, radios are subject to a duty cycle constraint, that is, a

radio only actively transmits signals over a fraction of the time. For example, it is desirable to have a

small duty cycle in some low power systems; a half-duplex radio cannot keep transmitting if it wishes

to receive useful signals; and a cognitive radio needs to listen and detect primary users frequently. This

work studies the capacity of scalar discrete-time Gaussian channels subject to duty cycle constraint as

well as average transmit power constraint. An idealized duty cycle constraint is first studied, which

can be regarded as a requirement on the minimum fraction of nontransmissions or zero symbols in

each codeword. A unique discrete input distribution is shown to achieve the channel capacity. In many

situations, numerically optimized on-off signaling can achieve much higher rate than Gaussian signaling

over a deterministic transmission schedule. This is in part because the positions of nontransmissions

in a codeword can convey information. Furthermore, a more realistic duty cycle constraint is studied,

where the extra cost of transitions between transmissions and nontransmissions due to pulse shaping is

accounted for. The capacity-achieving input is no longer independent over time and is hard to compute.

A lower bound of the achievable rate as a function of the input distribution is shown to be maximized

by a first-order Markov input process, the distribution of which is also discrete and can be computed

efficiently. The results in this paper suggest that, under various duty cycle constraints, departing from

the usual paradigm of intermittent packet transmissions may yield substantial gain.

This work has been presented in part at the 2011 and 2012 IEEE International Symposium on Information Theory.

ar
X

iv
:1

20
9.

46
87

v1
  [

cs
.I

T
] 

 2
1 

Se
p 

20
12



Index Terms

Duty cycle constraint, capacity-achieving input, mutual information, entropy rate, Markov process,

hidden Markov process (HMP), Monte Carlo method.

I. INTRODUCTION

In many wireless communication systems, a radio is designed to transmit actively only for a fraction

of the time, which is known as its duty cycle. For example, the ultra-wideband system in [1] transmits

short bursts of signals to trade bandwidth for power savings. The physical half-duplex constraint also

requires a radio to stop transmission over a frequency band from time to time if it wishes to receive useful

signals over the same band. Thus wireless relays are subject to duty cycle constraint, so do cognitive

radios which have to listen to the channel frequently to avoid causing interference to primary users. The

de facto standard solution under duty cycle constraint is to transmit packets intermittently.

This work studies the fundamental question of what is the optimal signaling for a Gaussian channel

with duty cycle constraint as well as average transmission power constraint. An important observation

is that the signaling in nontransmission periods can be regarded as transmission of a special zero signal.

We first make a simplistic and idealized assumption that the analog waveform corresponding to each

transmitted symbol is exactly of the span of one symbol interval. We restrict our attention to discrete-

time scalar additive white Gaussian noise (AWGN) channels for simplicity, where the duty cycle constraint

is equivalent to a requirement on the minimum fraction of zero symbols in each transmitted codeword,

which is called the idealized duty cycle constraint. We then consider the case where a practical pulse

shaping filter is used, e.g., for band-limited transmissions. As such, during a transition between a zero

symbol and a nonzero symbol, the pulse waveform of the nonzero symbol leaks into the interval of

the zero symbol. A realistic duty cycle constraint must include the extra cost incurred upon transitions

between zero and nonzero symbols. The mathematical model of the preceding input-constrained channels

is described in Section II.

Determining the capacity of a channel subject to various input constraints is a classical problem. It

is well-known that Gaussian signaling achieves the capacity of a Gaussian channel with average input

power constraint only. In addition, Zamir [2] shows that the mutual information rate achievable using a

white Gaussian input never incurs a loss of more than half a bit per sample with respect to the power
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constrained capacity. Furthermore, Smith [3] investigated the capacity of a scalar AWGN channel under

both peak power constraint and average power constraint. The input distribution that achieves the capacity

is shown to be discrete with a finite number of probability mass points. The discreteness of capacity-

achieving distributions for various channels, including quadrature Gaussian channels, and Rayleigh-fading

channels is also established in [4]–[9]. Chan [10] studied the capacity-achieving input distribution for

conditional Gaussian channels which form a general channel model for many practical communication

systems. Until now, the impact of duty cycle constraint on capacity-achieving signaling is underexplored

in the literature.

The main results of this paper are summarized in Section III. In the case of the idealized duty cycle

constraint, because all costs associated with the constraints can be decomposed into per-letter costs, the

optimal input distribution is independent and identically distributed (i.i.d.). We use a similar approach as

in [3] and [10] to show that the capacity-achieving input distribution for an AWGN channel with duty

cycle constraint and average power constraints is discrete. Unlike in [3] and [10], the optimal distribution

has an infinite number of probability mass points, whereas only a finite number of the points are found

in every bounded interval. This allows efficient numerical optimization of the input distribution.

The case of realistic duty cycle constraint is more challenging. Because the constraint concerns symbol

transitions, the capacity-achieving input distribution is no longer independent over time, and becomes

hard to compute. We develop a good lower bound of the input-output mutual information as a function

of the input distribution. It is proved that, under the realistic duty cycle constraint, a first-order Markov

process maximizes the lower bound, the distribution of which is also discrete and can be computed

efficiently. The main theorems for the cases of idealized and realistic duty cycle constraints are proved

in Section IV and V, respectively.

We devote Section VI to the numerical methods and results. In order to compute the achievable rate

when the input is a Markov Chain, a Monte Carlo method is introduced in Section VI-A to numerically

compute the differential entropy rate of hidden Markov processes. Numerical results in Section VI-B

demonstrate that in the case of idealize duty cycle constraint using a numerically optimized discrete

signaling achieves higher rates than using Gaussian signaling over a deterministic transmission schedule.

For example, if the radio is allowed to transmit no more than half the time, i.e., the duty cycle is no

greater than 50%, a near-optimal discrete input achieves 50% higher rate at 10 dB signal-to-noise ratio
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(SNR). In the case of realistic duty cycle constraint, numerical results also show that the rate achieved

by the Markov process is substantially higher than that achieved by any i.i.d. input. This suggests that,

compared to intermittently transmitting packets using Gaussian or Gaussian-like signaling, it is more

efficient to disperse nontransmission symbols within each packet to form codewords, which results in a

form of on-off signaling.

One of the reasons for the superiority of on-off signaling is that the positions of nontransmission

symbols can be used to convey information, the impact of which is particularly significant in case of low

SNR or low duty cycle. This has been observed in the past. For example, as shown in [11] (see also [12],

[13]), time sharing or time-division duplex (TDD) can fall considerably short of the theoretical limits in

a relay network: The capacity of a cascade of two noiseless binary bit pipes through a half-duplex relay

is 1.14 bits per channel use, which far exceeds the 0.5 bit achieved by TDD and even the 1 bit upper

bound on the rate of binary signaling.

Besides that duty cycle constraint is frequently seen in practice, another motivation of this study is

a recent work [14], in which on-off signaling is proposed for a clean-slate design of wireless ad hoc

networks formed by half-duplex radios. Using this signaling scheme, which is called rapid on-off-division

duplex (RODD), a node listens to the channel and receives useful signals during its own off symbols

within each frame. Each node can transmit and receive messages at the same time over one frame interval,

thereby achieving (virtual) full-duplex communication. Understanding the impact of duty cycle constraint

is crucial to characterizing the fundamental limits of such wireless networks.

II. SYSTEM MODEL

Consider digital communication systems where coded data are mapped to waveforms for transmission.

Usually there is a collection of pulse waveforms, where each pulse represents a symbol (or letter) from a

discrete alphabet. We view nontransmission over a symbol interval as transmitting the all zero waveform.

In other words, a symbol interval of nontransmission is simply regarded as transmitting a special symbol

“0,” which carries no energy.

As far as the capacity-achieving input is concerned it suffices to consider the baseband discrete-time
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model for the AWGN channel. The received signal over a block of n symbols can be described by

Yi = Xi +Ni (1)

where i = 1, . . . , n, Xi denotes the transmitted symbol at time i and N1, . . . , Nn are independent standard

Gaussian random variables. For simplicity, we assume no inter-symbol interference is at receiver. Each

symbol modulates a continuous-time pulse waveform for transmission. If the width of all pulses were

exactly of one symbol interval, which is denoted by T , the duty cycle is equal to the fraction of nonzero

symbols in a codeword. In practice, however, the pulse is usually wider than T , so that the support of the

transmitted waveform is greater than the sum of the intervals corresponding to nonzero symbols due to

leakage into intervals of adjacent zero symbols. To be specific, suppose the width of a pulse is (1+2c)T ,

then each transition between zero and nonzero symbols incurs an additional cost of up to c T in terms

of actual transmission time.

Let 1−q denote the maximum duty cycle allowed. In this paper, we require every codeword (x1, x2, · · · , xn)

to satisfy

1

n

n∑
i=1

1{xi 6=0} +
1

n
2c

(
n−1∑
i=1

1{xi=0,xi+1 6=0} + 1{xn=0,x1 6=0}

)
≤ 1− q (2)

where 1{·} is the indicator function, and the transition cost is twice that of zero-to-nonzero transitions,

because the number of nonzero-to-zero transitions and the number of zero-to-nonzero transitions is equal

under the cyclic transition cost configuration. From now on, we refer to (2) as duty cycle constraint

(q, c). Note that the idealized duty cycle constraint is the special case (q, 0). If c ∈ [0, 1
2 ], then the left

hand side of (2) is equal to the actual duty cycle. If c > 1
2 , the left hand side of (2) is an overestimate of

the duty cycle. Nonetheless, we use constraint (2) for its simplicity. In addition, we consider the usual

average input power constraint,

1

n

n∑
i=1

x2
i ≤ γ. (3)

In many wireless systems, the transmitter’s activity is constrained in the frequency domain as well as

in the time domain. In principle, the results in this paper also apply to the more general model where

the duty cycle constraint is on the time-frequency plane.
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III. MAIN RESULTS

A. The Case of Idealized Duty Cycle Constraint

Let µ denote the distribution of the channel input X . The set of distributions with duty cycle constraint

(q, 0) and power constraint γ is denoted by

Λ(γ, q) =
{
µ : µ({0}) ≥ q, Eµ

{
X2
}
≤ γ}. (4)

It should be understood that µ is a probability measure defined on the Borel algebra on the real number

set, denoted by B(R).

Theorem 1: The capacity of the additive white Gaussian noise channel (1) with its idealized duty cycle

no greater than 1− q and the average power no greater than γ is

C(γ, q) = max
µ∈Λ(γ,q)

I(µ) . (5)

In particular, the following properties hold:

a) the maximum of (5) is achieved by a unique (capacity-achieving) distribution µ0 ∈ Λ(γ, q);

b) µ0 is symmetric about 0 and its second moment is exactly equal to γ; and

c) µ0 is discrete with an infinite number of probability mass points, whereas the number of probability

mass points in any bounded interval is finite.

The proof of Theorem 1 is relegated to Section IV. Property (b) suggests that the capacity-achieving

input always exhausts the power budget. Property (c) indicates that the capacity-achieving input can be

well approximated by some discrete inputs with finite alphabet, which can be computed using numerical

methods. The achievable rate of numerically optimized input distribution is studied in Section VI.

B. The Case of Realistic Duty Cycle Constraint

In this paper, let Xn
k denote the subsequence (Xk, Xk+1, · · · , Xn), where X∞k = (Xk, Xk+1, · · · ). We

also use shorthand Xn = Xn
1 . Let µ denote the probability distribution of the process X1, X2, · · · . We

use µXi to denote the marginal distribution of Xi, and µXi,Xj to denote the joint probability distribution

of (Xi, Xj). Denote the set of n-dimension distribution which satisfy duty cycle constraint (q, c) and
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power constraint γ by

Λn(γ, q, c) =

{
µ :

1

n

n∑
i=1

[
µXi({0})− 2 c µXi,Xi mod n+1

({0} × (R\{0}))
]
≥ q,

Eµ

{
1

n

n∑
i=1

X2
i

}
≤ γ

}
(6)

where

µXi,Xj ({0} × (R\{0})) = P (Xi = 0, Xj 6= 0) (7)

denotes the probability of a zero-to-nonzero transition and

i mod n =


i, if 1 ≤ i < n,

0, if i = n.

(8)

For convenience in a subsequent proof, the duty cycle in (6) is defined in a cyclic manner using the

modular operation, where a transition between Xn and X1 is also counted. This of course has vanishing

impact as n→∞ and thus no impact on the capacity.

The capacity of the AWGN channel (1) with duty cycle constraint (q, c) and power constraint γ is

C(γ, q, c) = lim
n→∞

1

n
max

PXn∈Λn(γ,q,c)
I(Xn;Y n). (9)

The capacity is in fact achieved by a stationary input process. This is justified in Section V-A by

showing that any nonstationary input process has a stationary counterpart with equal or greater input-

output mutual information per symbol. Let us denote the set of stationary distributions which satisfy duty

cycle constraint (q, c) and power constraint γ by

Λ(γ, q, c) =
{
µ : µ is stationary, Eµ

{
X2

1

}
≤ γ,

µX1
({0})− 2 c µX1,X2

({0} × (R\{0})) ≥ q
}
.

(10)

Theorem 2: For any µ ∈ Λ(γ, q, c), let

L(µ) = I(X;Y )− I(X1;X∞2 ) (11)

where I(X;Y ) is the mutual information of the additive white Gaussian noise channel between the input
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symbol X , which follows distribution µX1
, and the corresponding output Y . The following properties

hold:

a) L(µ) is a lower bound of the channel capacity;

b) The maximum of L(·) is achieved by a discrete first-order Markov process, denoted by µ∗;

c) µ∗ satisfies the following property: Define Bi = 1{Xi 6=0}, i = 1, 2, . . . . Then for every i, conditioned

on Bi and Bi+1, the variables Xi and Xi+1 are independent, and

L(µ∗) = I(X;Y )− I(B1;B2). (12)

The proof of Theorem 2 is relegated to Section V. Evidently, increasing the input power by scaling

the input linearly not only maintains its duty cycle, but also increases the mutual information. Therefore,

the optimal input distribution must exhaust the power budget γ.

IV. PROOF OF THEOREM 1 (THE CASE OF IDEALIZED DUTY CYCLE CONSTRAINT)

This section is devoted to a proof of Theorem 1 for the case of the idealized duty cycle constraint

(q, 0). The conditional probability density function (pdf) of the output given the input of the AWGN

channel (1) is

pY |X(y|x) = φ(y − x) (13)

where

φ(t) =
1√
2π
e−

t2

2 (14)

is the standard Gaussian pdf.

With the idealized constraint, the capacity of the AWGN channel is achieved by an i.i.d. process and

the duty cycle constraint reduces to a per symbol cost constraint. For given input distribution µ, the pdf

of the output exists and is expressed as

pY (y;µ) =

∫
pY |X(y|x)µ(dx) = Eµ {φ(y −X)} . (15)
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Denote the relative entropy D
(
pY |X(·|x)‖pY (·;µ)

)
by d(x;µ), which is expressed as

d(x;µ) =

∫ ∞
−∞

pY |X(y|x) log
pY |X(y|x)

pY (y;µ)
dy . (16)

The mutual information I(µ) = I(X;Y ) is then

I(µ) =

∫
d(x;µ)µ(dx) = Eµ {d(X;µ)} . (17)

The capacity of the AWGN channel under per-letter duty cycle constraint and power constraint is

evidently given by the supremum of the mutual information I(µ) where µ ∈ Λ(γ, q). The achievability

and converse of this result can be established using standard techniques in information theory.

The proof of property (a) is presented in Section IV-A. Now suppose µ0 is the unique capacity-

achieving distribution, property (b) is established as follows. Since the mirror reflection of µ0 about 0 is

evidently also a maximizer of (5), the uniqueness requires that µ0 be symmetric. Note that linear scaling

of the input to increase its power maintains its duty cycle and cannot reduce the mutual information,

as the receiver can add noise to maintain the same SNR. By the uniqueness of the maximizer µ0, the

power constraint must be binding, i.e., the second moment of µ0 must be equal to γ. In order to prove

property (c), we first establish a sufficient and necessary condition for µ0 in Section IV-B and then apply

it to show the discreteness of µ0 in Section IV-C.

A. Existence and Uniqueness of µ0

Let P denote the collection of all Borel probability measures defined on (R,B(R)), which is a

topological space with the topology of weak convergence [15]. We first establish the following lemma.

Lemma 1: Λ(γ, q) is compact in the topological space P .

Proof: According to [15], the topology of weak convergence on P is metrizable. Therefore, by

Prokhorov’s theorem [16], in order to prove that Λ(γ, q) is compact in P , it suffices to show that it is

both tight and closed.

For any ε > 0, there exits an aε > 0, such that for all µ ∈ Λγ ,

µ(|X| > aε) ≤
Eµ
{
X2
}

a2
ε

≤ γ

a2
ε

< ε (18)
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by Chebyshev’s inequality. Choose Kε = [−aε, aε], then Kε is compact in R and µ(Kε) ≥ 1− ε for all

µ ∈ Λ(γ, q), thus Λ(γ, q) is tight.

Let Bm =
[
− 1
m ,

1
m

]
for m = 1, 2, . . . . Let {µn}∞n=1 be a convergent sequence in Λ(γ, q) with limit

µ0. Since µn(Bm) ≥ q for every m,n, we have [15, Section 3.1]

q ≤ lim sup
n→∞

µn(Bm) ≤ µ0(Bm), (19)

and hence

µ0({0}) = µ0

( ∞⋂
m=1

Bm

)
= lim

m→∞
µ0(Bm) ≥ q. (20)

Moreover, let f(x) = x2 which is continuous and bounded below. By weak convergence [15, Section 3.1],

we have

Eµ0

{
X2
}

=

∫
fdµ0 ≤ lim inf

n→∞

∫
fdµn ≤ γ. (21)

Therefore, µ0 ∈ Λ(γ, q), i.e., Λ(γ, q) is closed, and the compactness of Λ(γ, q) then follows.

Since the mutual information I(µ) is continuous on P [17, Theorem 9], it must achieve its maximum

on the compact set Λ(γ, q). Hence the capacity-achieving distribution µ0 exists.

According to [17, Corollary 2], the mutual information I(µ) is strictly concave. It is easy to see that

Λ(γ, q) is convex. Hence the capacity-achieving distribution µ0 must be unique.

B. Sufficient and Necessary Conditions

We denote the finite-power set as

Λ(q) = ∪0≤γ<∞Λ(γ, q). (22)

Let φ(·) defined in (14) be extended to the complex plane. The relative entropy d(x;µ) defined in (16)

can be extended to the complex plane C and has the following property:

Lemma 2: For any µ ∈ Λ(q) and z ∈ C,

d(z;µ) =

∫ ∞
−∞

φ(y − z) log
φ(y − z)
pY (y;µ)

dy (23)
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is a holomorphic function of z on C. Consequently, d(x;µ) is a continuous function of x on R.

Proof: It can be shown that
∫∞
−∞ φ(y− z) log φ(y− z)dy is a constant, thus a holomorphic function

of z on C. Therefore, it remains to prove that

ξ(z) =

∫ ∞
−∞

φ(y − z) log pY (y;µ)dy (24)

is a holomorphic function of z on C.

First, by Jensen’s inequality, we have

pY (y;µ) = Eµ

{
1√
2π
e−

(y−X)2

2

}
(25)

≥ 1√
2π
e−

1

2
Eµ{(y−X)2} (26)

= e−
1

2
y2−ay−b (27)

where a = −Eµ {X} and b = 1
2

(
Eµ
{
X2
}

+ log(2π)
)

are real numbers due to the fact that µ ∈ Λ(q).

Thus, pY (y;µ) ∈ [e−
1

2
y2−ay−b, 1], i.e.,

| logPY (y;µ)| ≤ 1

2
y2 + ay + b. (28)

As a result, we have

|φ(y − z) log pY (y;µ)| ≤ 1√
2π

∣∣∣e− (y−z)2

2

∣∣∣ (1

2
y2 + ay + b

)
(29)

=
1√
2π
e−

(y−Re(z))2−Im2(z)

2

(
1

2
y2 + ay + b

)
, (30)

which is integrable. (Here Re(z) and Im(z) represent the real and imaginary parts of z, respectively.) It

follows that ξ(z) given by (24) exists for any µ ∈ Λ(q) and z ∈ C.

Suppose U is an open and bounded subset of C. There exists an r > 0 such that |Re(z)| ≤ r and

|Im(z)| ≤ r for all z ∈ U . It is easy to check that

e−
(y−Re(z))2

2 ≤ e−
y2

2
+|yr| (31)

≤ e−
y2

2
+yr + e−

y2

2
−yr (32)

= e
r2

2

[
e−

1

2
(y−r)2 + e−

1

2
(y+r)2

]
. (33)
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Combining (29) and (33) yields that

|φ(y − z) log pY (y;µ)| ≤ er
2

√
2π

[
e−

1

2
(y−r)2 + e−

1

2
(y+r)2

](1

2
y2 + ay + b

)
, (34)

which is integrable. Therefore, the integral
∫∞
−∞ φ(y − z) log pY (y;µ)dy is uniformly convergent for all

z ∈ U . Moreover, φ(y− z) log pY (y;µ) is a holomorphic function of z on U for each y ∈ R. According

to the differentiation lemma [18], ξ(z) is a holomorphic function of z on U . It then follows that it is

holomorphic on the whole complex plane C. Lemma 2 is thus established.

Let F (µ) be a real-valued function defined on the convex set Λ(q) and µ0 ∈ Λ(q). Define the weak

derivative of F (µ) at µ0 as

F ′µ0
(µ) = lim

θ→0+

F ((1− θ)µ0 + θµ)− F (µ0)

θ
(35)

whenever the limit exists. The following result, which finds its parallel in [6], [9], [10] gives the weak

derivative of the mutual information function I(µ).

Lemma 3: Let µ0, µ ∈ Λ(q), the weak derivative of the mutual information function I(µ) at µ0 is

I ′µ0
(µ) =

∫
d(x;µ0)µ(dx)− I(µ0). (36)

Proof: Define µθ = (1− θ)µ0 + θµ for all θ ∈ (0, 1]. It can be shown that

1

θ
(I(µθ)− I(µ0)) =

1

θ

∫
(d(x;µθ)− d(x;µ0)) µθ(dx) +

1

θ

(∫
d(x;µ0)µθ(dx)− I(µ0)

)
(37)

= −1

θ

∫ ∞
−∞

pY (y;µθ) log
pY (y;µθ)

pY (y;µ0)
dy +

∫
d(x;µ0)µ(dx)− I(µ0). (38)

Therefore, it suffices to show that

lim
θ→0+

∫ ∞
−∞

1

θ
pY (y;µθ) log

pY (y;µθ)

pY (y;µ0)
dy = 0. (39)

In the remainder of this proof, we find a function independent of θ that dominates the integrand so

that dominated convergence theorem can be used to establish (39) by exchanging the order of the limit

and the integral therein.
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Lemma 4: Let θ, a, b ∈ (0, 1]. Define

f(θ) =
(1− θ)a+ θb

θ
log

(1− θ)a+ θb

a
, (40)

then

|f(θ)| ≤ b+ a− b log b− b log a . (41)

Proof: It is easy to check that f(1) = b log b
a , f(0+) = b− a and

f ′(θ) =
b− a
θ
− a

θ2
log

(
1− θ +

b

a
θ

)
. (42)

Define g(θ) = θ(b− a)− a log
(
1− θ + b

aθ
)

for θ ∈ (0, 1], then we have

g′(θ) =
θ(b− a)2

(1− θ)a+ θb
≥ 0. (43)

Since g(0+) = 0, g(θ) ≥ 0 for all θ ∈ (0, 1]. According to (42), we have f ′(θ) = g(θ)
θ2 ≥ 0. It follows

that for all θ ∈ (0, 1],

b− a = f(0+) ≤ f(θ) ≤ f(1) = b log
b

a
, (44)

and hence

|f(θ)| ≤ max

{
|b− a|,

∣∣∣∣b log
b

a

∣∣∣∣} (45)

≤ b+ a− b log b− b log a. (46)

Lemma 4 is thus established.

Applying Lemma 4 with a = pY (y;µ0) and b = pY (y;µ), we have∣∣∣∣1θpY (y;µθ) log
pY (y;µθ)

pY (y;µ0)

∣∣∣∣ ≤ pY (y;µ) + pY (y;µ0)

− pY (y;µ) log pY (y;µ)− pY (y;µ) log pY (y;µ0) (47)

where the right hand side is an integrable function of y by the result that−
∫∞
−∞ pY (y;µ2) log pY (y;µ1)dy <

∞ for any µ1, µ2 ∈ Λ(q). In fact, as in the proof of Lemma 2 (see (28)), there exist a, b ∈ R such that
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| log pY (y;µ1)| ≤ 1
2y

2 + ay + b. Therefore,∫ ∞
−∞
|pY (y;µ2) log pY (y;µ1)|dy ≤

∫ ∞
−∞

pY (y;µ2)

(
1

2
y2 + ay + b

)
dy (48)

=
1

2
Eµ2

{
X2
}

+ aEµ2
{X}+ b+

1

2
(49)

<∞ (50)

due to the assumption that µ2 ∈ Λ(q).

Therefore, the dominated convergence theorem provides that

lim
θ→0+

1

θ

∫ ∞
−∞

pY (y;µθ) log
pY (y;µθ)

pY (y;µ0)
dy =

∫ ∞
−∞

lim
θ→0+

1

θ
pY (y;µθ) log

pY (y;µθ)

pY (y;µ0)
dy (51)

=

∫ ∞
−∞

(pY (y;µ)− pY (y;µ0)) dy (52)

= 0. (53)

Lemma 3 is thus proved.

We establish the following sufficient and necessary condition for the optimal input distribution.

Lemma 5: Let

fλ(x;µ) = d(x;µ)− I(µ)− λ(x2 − γ). (54)

Then µ0 ∈ Λ(γ, q) achieves the capacity if and only if there exists λ ≥ 0 such that λEµ0

{
X2 − γ

}
= 0

and Eµ {fλ(X;µ0)} ≤ 0 for all µ ∈ Λ(q).

Proof: Define the Lagrangian

J(µ) = I(µ)− λEµ
{
X2 − γ

}
(55)

where λ is the Lagrange multiplier. Since Λ(q) is a convex set and I(µ) <∞ on Λ(q), µ0 is capacity-

achieving if and only if there exists λ ≥ 0 such that the following conditions hold [19]:

(i) λEµ0

{
X2 − γ

}
= 0;

(ii) for all µ ∈ Λ(q), J(µ0) ≥ J(µ).

Due to concavity of I(µ), J(µ) is also concave. Condition (ii) is then equivalent to that the weak derivative

J ′µ0
(µ) ≤ 0 for all µ ∈ Λ(q).
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By Lemma 3, the linearity of Eµ
{
X2 − γ

}
with respect to (w.r.t.) µ and Condition (i), J ′µ0

(µ) can be

easily calculated as

J ′µ0
(µ) = Eµ {fλ(X;µ0)} . (56)

Therefore, Condition (ii) is equivalent to Eµ {fλ(X;µ0)} ≤ 0 for all µ ∈ Λ(q). Thus Lemma 5 follows.

We call x ∈ R a point of increase of a measure µ if µ(O) > 0 for every open subset O of R containing x.

Let Sµ be the set of points of increase of µ. Based on Lemma 5, we derive another sufficient and necessary

condition for the optimal input distribution, which will be used to prove Property (c) of Theorem 1 in

Section IV-C.

Lemma 6: Let

gλ(x;µ) = qfλ(0;µ) + (1− q)fλ(x;µ). (57)

Then µ0 ∈ Λ(γ, q) achieves the capacity if and only if there exists λ ≥ 0 such that for every x ∈ R,

gλ(x;µ0) ≤ 0 . (58)

Furthermore, gλ(x;µ0) = 0 for every x ∈ Sµ0
\{0}.

Proof: The necessity part is shown as follows. Suppose µ0 achieves the capacity, then by Lemma 5,

there exists λ ≥ 0 such that λEµ0

{
X2 − γ

}
= 0 and Eµ {fλ(X;µ0)} ≤ 0 for all µ ∈ Λ(q). For any

x ∈ R\{0}, choose µ such that µ({0}) = q and µ({x}) = 1− q, so by the fact that µ ∈ Λ(q), we have

0 ≥ Eµ {fλ(X;µ0)} = qfλ(0;µ0) + (1− q)fλ(X;µ0). (59)

Due to the continuity of d(x;µ0) by Lemma 2, fλ(x;µ0) is also continuous so that (59) holds for all

x ∈ R, i.e., gλ(x;µ0) ≤ 0 for every x ∈ R.

To finish proving the necessity, it suffices to show that gλ(x;µ0) = 0 for all x ∈ Sµ0
\{0}. Evidently,

gλ(0;µ0) = fλ(0;µ0) and by (17) and λEµ0

{
X2 − γ

}
= 0,∫

fλ(x;µ0)µ0(dx) = 0 . (60)
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Hence, ∫
R\{0}

gλ(x;µ0)µ0(dx) =

∫
gλ(x;µ0)µ0(dx)− gλ(0;µ0)µ0({0}) (61)

≥ qfλ(0;µ0) + (1− q)
∫
fλ(x;µ0)µ0(dx)− qfλ(0;µ0) (62)

= 0. (63)

Since gλ(x;µ0) ≤ 0 for every x ∈ R, (63) implies that on R\{0}, gλ(x;µ0) = 0 µ0-almost surely, so

that gλ(x;µ0) = 0 for all x ∈ Sµ0
\{0} follows immediately.

The sufficiency part of Lemma 6 is established as follows. Suppose gλ(x;µ0) ≤ 0 for every x ∈ R.

By integrating gλ(x;µ0) w.r.t. µ0, we have

qgλ(0;µ0) ≥
∫
gλ(x;µ0)µ0(dx) (64)

= qgλ(0;µ0)− (1− q)λEµ0

{
X2 − γ

}
(65)

≥ qgλ(0;µ0) (66)

where (65) is due to (17) and gλ(0;µ0) = fλ(0;µ0), and (66) follows from Eµ0

{
X2
}
≤ γ since

µ0 ∈ Λ(γ, q). Hence, λEµ0

{
X2 − γ

}
= 0 due to the fact that q < 1. Furthermore, for any µ ∈ Λ(q), by

integrating gλ(x;µ0) w.r.t. µ, we have

qgλ(0;µ0) ≥
∫
gλ(x;µ0)µ(dx) (67)

= qfλ(0;µ0) + (1− q)Eµ {fλ(X;µ0)} . (68)

Because gλ(0;µ0) = fλ(0;µ0), we have Eµ {fλ(X;µ0)} ≤ 0. Together with λEµ0

{
X2 − γ

}
= 0 and

Lemma 5, this implies that µ0 must be capacity-achieving.

C. Discreteness of µ0

With Lemma 6 established, we now prove Property (c) in Theorem 1.

Let λ ≥ 0 satisfy condition (58) and d(z;µ) be defined in (23). We extend functions fλ(x;µ) in

Lemma 5 and gλ(x;µ) in Lemma 6 to be defined on the whole complex plane C as (54) and (57),

respectively, with x replaced by z ∈ C. By Lemma 2, d(z;µ) is a holomorphic function of z on C,
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hence so is gλ(z;µ). According to Lemma 6, each element in the set Sµ0
\{0} is a zero of the function

gλ(z;µ0).

Next we show that for any bounded interval L of R, Sµ0

⋂
L is a finite set. Suppose, to the contrary,

Sµ0

⋂
L is infinite, then it has a limit point in R by the Bolzano-Weierstrass Theorem [18] and hence,

gλ(z;µ0) = 0 on the whole complex plane C by the Identity Theorem [20]. Then, by (16), (54) and (57),

for every x ∈ R, ∫ ∞
−∞

φ(y − x)r(y)dy = 0 (69)

where

r(y) = log pY (y;µ0) + λy2 + c (70)

and c = 1
2 log(2πe) + I(µ0)− q

1−qd(0)− λ(γ + 1) is a constant.

As in the proof of Lemma 2, there exist a, b ∈ R such that | log pY (y;µ0)| ≤ 1
2y

2 + ay + b. As

a result, there exist some α, β > 0 such that |r(y)| ≤ αy2 + β. Since the convolution of r(y) and

the Gaussian density is equal to the zero function by (69), r(y) must be the zero function according

to [10, Corollary 9]. This requires the capacity-achieving output distribution pY (y;µ0) be Gaussian,

which cannot be true unless X is Gaussian, which contradicts the assumption that X has a probability

mass at 0. Therefore, Sµ0

⋂
L must be a finite set for any bounded interval L, which further implies that

Sµ0
is at most countable.

Finally, we show that Sµ0
is countably infinite. Suppose, to the contrary, Sµ0

= {xi}Ni=1 is a finite set

with µ0({xi}) = pi and |xi| ≤ B1 for all i = 1, 2, . . . , N . For any y > B1,

pY (y;µ0) =

N∑
i=1

piφ(y − xi) ≤ e−
(y−B1)2

2 . (71)

For any ε > 0, choose B2 > 0 such that
∫ B2

−B2
φ(x)dx > 1 − ε. By (16), (54), (57) and (58), for any
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x > B1 +B2, we have

0 ≥ −
∫ ∞
−∞

φ(y − x) log pY (y;µ0)dy − λx2 − (c+ λ) (72)

≥
∫ x+B2

x−B2

φ(y − x)
1

2
(y −B1)2dy − λx2 − (c+ λ) (73)

=

∫ B2

B2

φ(t)
1

2
(x−B1 + t)2dt− λx2 − (c+ λ) (74)

≥ 1

2
(x−B1)2(1− ε)− λx2 − (c+ λ). (75)

For (72) to hold for large x, λ must satisfy λ ≥ 1
2 .

To finish the proof, it suffices to show that λ < 1
2 for any γ > 0, so that contradiction arises, which

implies that Sµ0
must be countably infinite. For fixed q ∈ (0, 1), denote the Lagrange multiplier in (58)

as λ(γ). Denote CG(γ) = 1
2 log(1 + γ), which is the channel capacity of a Gaussian channel with the

average power constraint only. By the envelope theorem [19], λ(γ) is the derivative of C(γ, q) w.r.t. γ.

Since C(0, q) = CG(0) = 0 and the derivative of CG(γ) at γ = 0 is 1
2 , we have λ(0) ≤ 1

2 , otherwise

we could find a small enough γ such that C(γ, q) would exceed CG(γ) which is obviously impossible.

Next we show that C(γ, q) is strictly concave for γ ≥ 0. Suppose µ1 and µ2 are the capacity-achieving

input distributions of (5) for different power constraints γ1 and γ2, respectively. Due to Property (b) in

Theorem 1, µ1 and µ2 must be different. Define µθ = θµ1 + (1 − θ)µ2 for θ ∈ (0, 1). It is easy to see

that µθ satisfies that the duty cycle is no greater than 1 − q and the average input power is no greater

than θγ1 + (1− θ)γ2. Now we have

C(θγ1 + (1− θ)γ2, q) ≥ I(µθ) (76)

> θI(µ1) + (1− θ)I(µ2) (77)

= θC(γ1, q) + (1− θ)C(γ2, q), (78)

where (77) is due to the strict concavity of I(µ). Therefore, the strict concavity of C(γ, q) for γ ≥ 0

follows, which implies that λ(γ) < λ(0) = 1
2 for all γ > 0.
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V. PROOF OF THEOREM 2 (THE CASE OF REALISTIC DUTY CYCLE CONSTRAINT)

A. Stationarity of the Capacity-achieving Input Distribution

We first establish the fact that a stationary distribution achieves the capacity of the AWGN channel

with the realistic duty cycle constraint and power constraint.

Proposition 1: A stationary distribution1 achieves

max
µ∈Λn(γ,q,c)

I(Xn;Y n). (79)

Proof: Let Tk(·) as a k-cyclic-shift operator on µ ∈ Λn(γ, q, c), defined as

Tk(µ) = µXk+1,··· ,Xn,X1,···Xk (80)

where k = 1, · · · , n− 1, and specifically T0(µ) = µ. For any distribution µ in Λn(γ, q, c), a distribution

ν on Xn can be defined as

ν =
1

n

n−1∑
k=0

Tk(µ). (81)

According the concavity of the mutual information I(·),

I(ν) = I

(
1

n

n−1∑
k=0

Tk(µ)

)
(82)

≥ 1

n

n−1∑
k=0

I(Tk(µ)) (83)

= I(µ) (84)

where I(Tk(µ)) = I(µ) since the AWGN channel (1) is a memoryless and time-invariant. Obviously ν is

a stationary distribution and satisfied the duty cycle constraint and power constraint, i.e., ν ∈ Λn(γ, q, c),

hence Proposition 1 established.

1The stationarity of distribution ν on Xn satisfies

νXs,··· ,Xt = νXs+k,··· ,Xt+k

for any index s, t, k satisfied
1 ≤ s ≤ t ≤ n 1 ≤ s+ k ≤ t+ k ≤ n
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According to Proposition 1, for any n, I(Xn;Y n) is maximized by a stationary distribution. Therefore

with n converges to infinity, the capacity in (9) is achieved by a stationary input distribution.

B. The Input-output Mutual Information

Proposition 2: Let the input follows a stationary distribution µ ∈ Λ(γ, q, c). The limit of the input-

output mutual information per symbol as a function of µ can be expressed as

I(µ) = I(X;Y )− h(Y ) + h(Y ) (85)

where I(X;Y ) is the mutual information of the AWGN channel between the input X , which follows

distribution µX1
and the corresponding output Y , h(Y ) is the differential entropy of Y and h(Y ) is the

differential entropy rate of output process {Yi}.

Proof: The mutual information between Xn and Y n can be expressed using relative entropies

I(Xn;Y n) = D(PY n|Xn‖PY n |PXn) (86)

= D(PY n|Xn‖PY1
× · · · × PYn |PXn)−D(PY n‖PY1×···×PYn ) (87)

=

n∑
k=1

D(PYk|Xk |PYk |PXn)− E

{
logPY n(Y n)−

n∑
i=1

logPYi(Yi)

}
(88)

= nI(X;Y )− nh(Y ) + h(Y n). (89)

Then

I(µ) = lim
n→∞

1

n
I(Xn;Y n) (90)

= I(X;Y )− h(Y ) + lim
n→∞

1

n
h(Y n) (91)

= I(X;Y )− h(Y ) + h(Y ). (92)

Proposition 2 is established.

When the input is an i.i.d. random process, the output process is also i.i.d., h(Y ) = h(Y ). This implies

the following corollary.

Corollary 1: Among all i.i.d. distributions, the one that maximizes the mutual information under duty
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cycle constraint (q, c) and average power constraint γ can be solved from the following optimization:

maximize
PX

I(X;Y )

subject to PX(0)− 2cPX(0)(1− PX(0)) ≤ q,

E{X2} ≤ γ.

(93)

In the special case of no transition cost, i.e., c = 0, the result of (93) is equal to that of (5).

C. Proof of Theorem 2

The mutual information expressed by (85) is hard to optimize, even if the input is restricted to Markov

processes. To simply the matter, we introduce a lower bound of I(µ), which is given by L(µ) in (11).

Property (a): Using the fact that processing reduce relative entropy and µ is specified as a stationary

probability distribution, we have

1

n
D(PY n‖PY1

×PY2
×· · ·×PYn) ≤ 1

n
D(PXn‖PX1

×PX2
×· · ·×PXn) (94)

=
1

n

n−1∑
k=1

D(PXk|Xn
k+1
‖PXk |PXn

k+1
) (95)

=
1

n

n∑
k=2

I(X1;Xk
2 ). (96)

Therefore

lim
n→∞

1

n
D(PXn‖PX1

×PX2
×· · ·×PXn) = I(X1;X∞2 ) (97)

using the fact that the Cesáro mean of sequence I(X1, X
k
2 ) is I(X1;X∞2 ). Applying (85), (87) and (97),

L(µ) = I(X;Y )− I(X1;X∞2 ) ≤ I(µ) ≤ C(γ, q, c). (98)

Thus Property (a) is established.

Property (b): For any µ ∈ Λ(γ, q, c), which is not Markov in general, its first-order Markov

approximation ν is defined by

νX1,··· ,Xn = µX1
µX2|X1

µX3|X2
· · ·µXn|Xn−1

. (99)
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Evidently, ν and µ have identical marginal distributions: νXi = µXi , and also identical joint distributions

of any consecutive pairs: νXi,Xi+1
= µXi,Xi+1

. Therefore

νXi({0}) = µXi({0}) (100)

and

νXi,Xi+1
({xi = 0, xi+1 6= 0}) = µXi,Xi+1

({xi = 0, xi+1 6= 0}. (101)

Since µ ∈ Λ(γ, q, c), we have ν ∈ Λ(γ, q, c). Let {Xi} follow distribution µ and {Zi} follow distribution

ν. Then

I(Z1;Z∞2 ) = I(Z1;Z2) + I(Z1;Z∞3 |Z2) (102)

= I(Z1;Z2) (103)

= I(X1;X2) (104)

≤ I(X1;X∞2 ) (105)

where equality holds if and only if {Xi} is a first-order Markov process. By (11) and (105), L(ν) ≥ L(µ).

So for any µ which maximizes L(µ), ν can be generated from µ by (99) with L(ν) ≥ L(µ). L(µ) must

be maximized by a first-order Markov process.

Property (c): Suppose ν is a stationary fist-order Markov process, sufficiently denote as ν =

{X , PX2|X1
}, where X is the state space of ν and PX2|X1

is the transition probability distribution.

Define a new first-order Markov process ν̄ from ν as follows.

Definition 1: Let ν̄, defined on the same state space X as ν, be a first-order Markov process denoted

by (X , PZ2|Z1
), where

PZ2|Z1
(z2|z1) =



α z1 = 0 z2 = 0,

1− β z1 6= 0 z2 = 0,

1− α
η

PX(z2) z1 = 0 z2 6= 0,

β

η
PX(z2) z1 6= 0 z2 6= 0,

(106)
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where

S1 = X \ {0} (107)

and

α = PX2|X1
(0|0) (108)

β = P (X2 ∈ S1|X1 ∈ S1) (109)

η = P (X ∈ S1). (110)

The process ν̄ is described by (X , α, β, PX). It is easy to prove that the stationary distribution PZ of

ν̄ is equal to PX of ν, ν̄ ∈ Λ(γ, q, c). Moreover, ν̄ satisfies the same power and duty cycle constraint ν

satisfies, i.e., ν̄ ∈ Λ(γ, q, c). Furthermore let Bi = 1{Xi 6=0}, then

PB2|B1
(0|0) = α (111)

PB2|B1
(1|1) = β. (112)

Let bi = 1{zi 6=0}. Since

PZ2|Z1
(z2|z1) = PB2|B1

(b1|b2)
PX(z2)

PB2
(b2)

, (113)

Zi and Zi+1 are independent given Bi = 1{Zi 6=0} and Bi+1 = 1{Zi+1 6=0}.

Based on (106) to (113), it is easy to see that

I(Z1;Z2) = E

{
log

PZ2|Z1
(Z2|Z1)

PZ2
(Z2)

}
(114)

= E

{
log

PB2|B1
(B2|B1)

PB2
(B2)

}
(115)

= I(B1;B2) (116)

≤ I(X1;X2). (117)

The inequality in (117) follows since X1 → X2 → B2 forms a Markov chain then I(X1;B2) ≤ I(X1;X2)

[21] and B2 → X1 → B1 also forms a Markov chain then I(B2;B1) ≤ I(B2;X1).
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The discreteness of the optimized input distribution is proved in the following. According to Properties

(b) and (c), lower bound L(·) is maximized by a first-order Markov process, the transition probability

distribution of which PX2|X1
can be expressed as

PX2|X1
(x2|x1) = PB2|B1

(b2|b1)
PX(x2)

PB2
(b2)

(118)

where bi = 1{xi 6=0} PX = µX and PX2|X1
= µX2|X1

. Then the maximum of L(µ) can be achieved by

the follow optimization

maximize
q0

IX(q0)− IB(q0) (119)

subject to IX(q0) = maximize
PX

I(X;Y ) (120)

IB(q0) = minimize
P (B2|B1)

I(B1;B2) (121)

PX(0) = PB1
(0) = PB2

(0) = q0 (122)

q0 − 2cq0PB2|B1
(1|0) ≥ q. (123)

Since given any q0 ≥ q > 0, IX(q0) − IB(q0) can be maximized by the maximum of IX(q0) and the

minimum of IB(q0) respectively, the maximization of (119) must be achieved by PX , which maximizes

I(X;Y ) for given q0. Therefore given q0, the maximization in (120) is similar to the problem in Theorem

1. The difference to Theorem 1 is that in (120) the distribution PX satisfies PX(0) = q0 ≥ q, however

in Theorem 1 the distribution PX satisfies PX(0) ≥ q. Define

Λ0(γ, q0) =
{
µ : µ({0}) = q0, Eµ

{
X2
}
≤ γ} (124)

where µ is the marginal input distribution of the first-order Markov process. We can establish the following

lemma.

Lemma 7: Λ0(γ, q0) is compact in the topological space P .
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Proof: As mentioned in Lemma 1, the topology of weak convergence on P is metrizable with the

Lévy-Prohorov metric [15] and defined as

L(µ, ν) = inf
{
δ :µ(A) ≤ ν(A(δ)) + δ and

ν(A) ≤ µ(A(δ)) + δ for all A ⊆ B
}

(125)

for any µ, ν ∈ P , where A(δ) denotes the set of all x ∈ R which lie a d-distance less than δ from A.

Similarly as in the proof of Lemma 1, it suffices to show that Λ0(γ, q0) is both tight and closed in

P . The tightness can be shown by the same arguments as in Lemma 1. In the following, we prove that

Λ0(γ, q0) is closed in P .

Let Bm =
[
− 1
m ,

1
m

]
for m = 1, 2, . . . . Let {µn}∞n=1 be a convergent sequence in Λ0(γ, q0) with limit

µ0. For any m ∈ N, there exists an nm such that L(µn, µ0) < 1
m for all n > nm. By the definition of L

in (125), we have for any m ∈ N and n > nm,

µ0({0}) ≤ µn(Bm) +
1

m
, (126)

and

µn({0}) ≤ µ0(Bm) +
1

m
. (127)

For any n ∈ N
⋃
{0}, we have

µn({0}) = µn

( ∞⋂
m=1

Bm

)
= lim

m→∞
µn(Bm), (128)

so for any m ∈ N, there exists an n′m such that µn(Bm) ≤ µn({0}) + 1
m . Therefore, according to (126)

and (127), for all m ∈ N and n > max{nm, n′m},

q0 −
2

m
≤ µ0({0}) ≤ q0 +

2

m
. (129)

Thus we have µ0({0}) = q0 by letting m→∞.

Moreover, let f(x) = x2 which is continuous and bounded below. By weak convergence [15, Sec-

tion 3.1], we have

Eµ0

{
X2
}

=

∫
fdµ0 ≤ lim inf

n→∞

∫
fdµn ≤ γ. (130)
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Together with µ0({0}) = q0, we have µ0 ∈ Λ0(γ, q0), i.e., Λ0(γ, q0) is closed, and the compactness of

Λ0(γ, q0) then follows.

Now PX can be proved to be discrete by following the same development as in the proof of Theorem 1

with Lemma 1 substituted by Lemma 7. Because PX is the stationary distribution of the Markov process,

the maximum of the lower bound L(·) is achieved by a discrete first-order Markov process.

Based on Theorem 2, in order to find the lower bound of the capacity, we can maximize L(µ) and

obtain an optimized discrete first-order Markov input µ∗ = {X , α, β, PX} in Λ(γ, q, c). Let µ0 denote

the capacity-achieving distribution, then

I(µ0) ≥ I(µ∗) ≥ L(µ∗). (131)

In Section VI-A, we develop a computationally efficient scheme to determine µ∗, which is a good

approximation of the capacity-achieving input µ0.

VI. NUMERICAL METHODS AND RESULTS

A. Computation of the entropy of Hidden Markov Processes

In order to numerically calculate the mutual information (85), it is important to compute the differ-

ential entropy rate of a HMP generated by Markov input through the AWGN channel. Computing the

(differential) entropy rate of HMPs is a hard problem. Most works in this area focus on the entropy

rate of the binary Markov input through various channels. Reference [22] solves a linear system for the

stationary distribution of the quantized Markov process to obtain a good approximation of the entropy

rate for the HMP output generated by binary Markov input through a binary symmetric channel. In [23],

the entropy rate of HMP generated by binary-symmetric Markov input through arbitrary memoryless

channels is studied and a numerical method is presented based on quantizing a fixed-point functional

equation. Based on these existing studies, a Monte Carlo algorithm is provided in this paper to compute

the differential entropy rate of HMPs generated from a m-state Markov chain (m ≥ 3) through the

AWGN channel. We sketch the main ideas in our algorithm for computing the differential entropy rate

in this subsection.

Based on Blackwell’s work [24], the entropy of HMPs can be expressed as an expectation on the

distribution of the conditional distribution of X0 given the past observations Y 0
−∞. In order to estimate
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PX0|Y 0
−∞

, first define the log-likelihood ratio:

L(i)
n = log

PXn|Y n(X(i)|Y n)

PXn|Y n(X(0)|Y n)
, i = 0, 1, · · · ,m− 1 (132)

where m is the number of the states of Markov Chain, X(i) ∈ X is the ith state and X is the state

space of Markov Chain. It is obviously that L(0)
n ≡ 0. Then given Ln = {L(0)

n , L
(1)
n , · · · , L(m−1)

n },

PXn|Y n(Xn|Y n) can be calculated as

PXn|Y n(X(i)|Y n) =
eL

(i)
n∑m−1

i=0 eL
(i)
n

(133)

and when n→∞, (133) converges to PX0|Y 0
−∞

(X(i)|Y 0
−∞).

In addition, L(i)
n+1 can be calculated from Ln iteratively as

L
(i)
n+1 = R(i)(Yn+1) + F (i)(Ln) (134)

where

R(i)(Yn+1) = (X(i) −X(0)) Yn+1 −
1

2
((X(i))2 − (X(0))2) (135)

F (i)(Ln) = log

∑m−1
k=0 PX2|X1

(X(i)|X(k)) eL
(k)
n∑m−1

k=0 PX2|X1
(X(0)|X(k)) eL

(k)
n

. (136)

Detail deduction of (134) is shown in (137)

L
(i)
n+1 = log

PXn+1|Y n+1
1

(X(i)|Y n+1
1 )

PXn+1|Y n+1
1

(X(0)|Y n+1
1 )

(137)

= log

∑m−1
k=0 PYn+1|Xn+1

(Yn+1|X(i))PX2|X1
(X(i)|X(k))PXn|Y n1 (X(k)|Y n

1 )∑m−1
k=0 PYn+1|Xn+1

(Yn+1|X(0))PX2|X1
(X(0)|X(k))PXn|Y n1 (X(k)|Y n

1 )
(138)

= log
PYn+1|Xn+1

(Yn+1|X(i))

PYn+1|Xn+1
(Yn+1|X(0))

+ log

∑m−1
k=0 PX2|X1

(X(i)|X(k)) eL
(k)
n∑m−1

k=0 PX2|X1
(X(0)|X(k)) eL

(k)
n

(139)

= R(i)(Yn+1) + F (i)(Ln). (140)

For the hidden Markov processes observed through the AWGN channel (1), the entropy of HMPs can

be computed as [24]

h(Y ) = lim
n→∞

−
∫∫

r(y, ln) log r(y, ln) dy dPLn(ln) (141)
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where

r(y,Ln) =

m−1∑
i=0

φ(y − x(i))

m−1∑
k=0

eL
(i)
n∑m−1

i=0 eL
(i)
n

PX2|X1
(x(i)|x(k)). (142)

In order to compute the entropy rate of HMPs based on (141), the key is to estimate the probability

distribution of Ln, PLn . In [22] for binary Markov input and the binary symmetric channel, Ln is

considered as a 1-dim M -state Markov chain by quantizing the dynamic system expressed in (134).

Then the distribution of L∞ is the stationary distribution of the quantized Markov process and can

be computed easily through eigenvector solving method. In this paper because the number of states of

the Markov input, m is larger than 2 and the HMPs is observed through the AWGN channel, directly

quantizing the dynamic system (134) will generate a quantized Markov chain with Mm−1 states, which

is very difficult to deal with when large M is selected for good estimation precision.

According to (134), since Ln+1 is only dependent on Ln and Yn+1, {Ln} can be considered as a

Markov process. In order to compute the stationary probability distribution PL∞ , we can evolve the

distribution of Ln based on (134) from any initial distribution PL0
. When n is large enough, the

distribution PLn converges to PL∞ . A Monte Carlo algorithm for approximating h(Y ) is introduced

as follows:

1) Initialize M particles {L0,1, · · · ,L0,M}, L0,k can be simply sampled from the (m−1)-dim Uniform

distribution with each dimension on [−max(X(i)),max(X(i))].

2) for n = 0, 1, 2, · · · , N , iteratively evolve the particles {L0,1, · · · ,L0,M} based on (134), where each

yn+1,k is sampled according to r(y,Ln,k).

3) when N is large enough, {LN,k} can be used to estimate h(Y ) as

h(Y ) ≈ − 1

M

M∑
k=1

∫
r(y,LN,k) log r(y,LN,k) dy. (143)

When M is very large, histogram method can be used to describe {LN,k} and reduce the computational

load.

B. Numerical Results

1) Idealized duty cycle constraint (q, 0): One implication of Theorem 1 is that directly computing

the capacity-achieving input distribution requires solving an optimization problem with infinite variables
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which is prohibitive. Assuming any upper bound on the number of probability mass points, however,

a numerical optimization over the mutual information can yield a suboptimal input distribution and a

lower bound on the channel capacity. As we increase the number of mass points, the lower bound can

be further refined. We take this approach to numerically compute a good approximation of the channel

capacity by optimizing over a sufficient number of probability mass points.

Given the duty cycle and power constraints, we first numerically optimize the mutual information by

a 3-point input distribution (including a mass at 0), then increase the number of probability mass points

by 2 at a time to improve the mutual information, until the improvement is less than 10−3.

First consider the case that the duty cycle is no greater than 70%, i.e., P (X = 0) ≥ q = 0.3. For

different SNRs, the mass points of the near-optimal input distribution with finite support along with the

corresponding probability masses are shown in Fig. 1. Due to symmetry, only the positive half of the input

distribution is plotted. We can see that as the SNR increases, more masses are put on higher-amplitude

points, whereas the probability mass at zero achieves its lower bound 0.3 eventually.

In Fig 2, we compare the rate achieved by the near-optimal input distribution and the rate achieved by

a conventional scheme using Gaussian signaling over a deterministic schedule, which is (1−q) times the

Gaussian channel capacity without duty cycle constraint. It is shown in the figure that there is substantial

gain for both 0 dB and 10 dB SNRs by using discrete input over Gaussian signaling with a deterministic

schedule. For example, when the SNR is 10 dB, given the duty cycle is no more than 50%, the discrete

input distribution achieves 50% higher rate. Hence departing from the usual paradigm of intermittent

packet transmissions may yield significant gains.

We also plot in Fig 2 the achievable rate by a superposition coding, where the input distribution is

a mixture of Gaussian and a point mass at 0. We first decode the support of the input to find out the

positions of nonzero symbols, and then the Gaussian codeword conditioned on the support. It is shown

in the figure that the near-optimal discrete input achieves higher rate compared with the mixture input.

2) Realistic duty cycle constraint (q, c): In this subsection the numerical results of lower bound of

capacity and suboptimal distribution are provided based on the results in Section V and VI-A.

We first seek a discrete Markov chain with finite alphabet that maximizes the objective L(µ) defined

in (11). Once the optimal Markov distribution µ∗ is determined, we compute the achievable rate I(µ∗)

according to (85).
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Fig. 1. Suboptimal input distribution for P (X = 0) ≥ q = 0.3.

X2

0.0000 3.9281 -3.9281 7.1398 -7.1398
0.0000 0.8342 0.0605 0.0605 0.0224 0.0224
3.9281 0.4923 0.1852 0.1852 0.0687 0.0687

X1 -3.9281 0.4923 0.1852 0.1852 0.0687 0.0687
7.1398 0.4923 0.1852 0.1852 0.0687 0.0687

-7.1398 0.4923 0.1852 0.1852 0.0687 0.0687
PX 0.7481 0.0919 0.0919 0.0341 0.0341

TABLE I
PX2|X1

AND PX FOR q = 0.5, c = 1.0, SNR = 8dB.

In this paper µ∗ = (X , α, β, PX) is used to approximate the optimum distribution µ0 through the

maximizing L(·). It is obvious that the optimized µ∗ is symmetric about 0. Table I is the transition
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Fig. 2. Achievable rates under duty cycle constraint for 0 dB and 10 dB SNRs.

probability matrix PX2|X1
and stationary probability PX for q = 0.5, c = 1.0 and SNR = 8 dB. The

symmetry of the transition probability matrix is evident, as conditioned on that two consecutive symbols

are nonzero, they are independent.

Fig. 3 shows the stationary (marginal) distribution for suboptimal Markov input. In order to compensate

the transition cost, additional fraction of zero symbol should be transmitted, PX(0) > q. As the SNR

increases, more and more weights are put on distant constellation points, where less and less weights are

put on the zero letter.

In Fig. 4, the rates achieved by various optimized input distributions are plotted against the SNR. The

rate achieved by the optimized Markov input is larger than that of suboptimal i.i.d. input calculated by
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Fig. 3. The marginal distribution of the stationary Markov input. Duty cycle ≤ 0.5, transition cost c = 1.0.

formula (93) with duty cycle constraint (q, c). The lower bound L(µ) is quite tight and can be regarded

as a good approximation of mutual information of first-order Markov inputs.

Figs. 5 and 6 demonstrate the sensitivity of the achievable rates to the duty cycle parameter q and the

transition cost c, respectively. The performance of Markov inputs is superior to i.i.d. inputs as well as

Gaussian signaling with deterministic schedule. Fig 5 shows that the performance of i.i.d. input is similar

to the deterministic schedule, which implies that different from the case under the idealized duty cycle

constraint, i.i.d. input is not a good choice under the realistic duty cycle constraint.

32



−5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

SNR(dB)

A
c
h
ie

v
a
b
le

 r
a
te

 (
b
it
s
 p

e
r 

c
h
a
n
n
e
l 
u
s
e
)

 

 
Markov input

Capacity of AWGN channel

i.i.d. input, duty cycle constraint (q,0)

i.i.d. input, duty cycle constraint (q,c)

Lower bound  L(µ*)
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VII. CONCLUDING REMARKS

In this paper we have studied the impact of duty cycle constraint on the capacity of AWGN channels.

Under the idealize duty cycle constraint, the optimal distribution has an infinite number of probability

mass points in a bounded interval. This allows efficient numerical optimization of the input distribution.

Under the realistic duty cycle constraint, the capacity-achieving input is hard to compute. We develop

techniques for computing a near-optimal input distribution. This input takes the form of a discrete first-

order Markov process, which matches the “Markov” nature of the duty cycle constraint. The numerical

results show that under the duty cycle constraint, departing from the usual paradigm of intermittent packet

transmissions may yield substantial gain.
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