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Abstract

This paper studies the partial estimation of Gaussian graphical models from high-dimensional
empirical observations. We derive a convex formulation for this problem using ¢;-regularized
maximum-likelihood estimation, which can be solved via a block coordinate descent algorithm.
Statistical estimation performance can be established for our method. The proposed approach
has competitive empirical performance compared to existing methods, as demonstrated by var-
ious experiments on synthetic and real datasets.

1 Introduction

Given n independent copies {Z(®17 | of a random vector Z € R? with an unknown covariance
matrix X, the problem of precision matrix (mverse covariance matrlx) estimation is to estimate
Q) = X7, In particular, for multivariate normal data, the precision matrix induces the underlying
Gaussian graphical structure among the variables. For such Gaussian graphical models (GGMs), it
is usually assumed that a given variable can be predicted by a small number of other variables. This
assumption implies that the precision matrix is sparse. Therefore estimating Gaussian graphical
model can be reduced to the problem of estimating a sparse precision matrix.

One approach to sparse precision matrix estimation is covariance selection or neighborhood

selection (Dempster, [1972; Meinshausen & Biihlman, |21)£H which tries to estimate each row (or

\

column) of the precision matrix by predicting the corresponding variable using a sparse linear combi-
nation of other variables. An alternative formulation is maximume-likelihood estimation method that
directly estimate the full precision matrix. The sparseness of the precision matrix can be achieved

by adding sparse penalty functions such as the £;-penalty or the SCAD penalty (Id’_Aﬁpmnmﬂ_al‘l,

2008; Friedman et all, 2008; [Fan et all, M)

In this paper, we are interested in the problem of estimating blockwise partial precision matrix.
Given n independent copies {Y®); X -, of a random vector Z = (Y;X) € RP x R? with an
unknown precision matrix

0— [ny Qyw] :

%
Q) Qs


http://arxiv.org/abs/1209.6419v1

our goal is to simultaneously estimate the blocks €2,, and €),,, without attempting to estimate
the block €. If the joint distribution of Z = (Y; X) is normal, then €, has an interpretation
of conditional precision matrix of ¥ conditioned on X, and ), induces the mutual conditional
dependency between these two groups of variants. In machine learning applications where Y is the
response and X is the input feature, estimating partial precision matrix can be a useful tool for
constructing graphical models for the response conditioned on the input. For instance, in multi-
label image annotation, the response Y is the indicator vector of annotation and the input X is
the associated image feature vector. In this case, €}, induces a Gaussian graphical model for the
tags while €1, identifies the conditional dependency between tags and features. If we are mainly
interested in the conditional precision matrix €2, and the interaction matrix 2,,;, then it is natural
to ignore ,,. Consequently, we should not have to impose any assumption on the structure of
Qpz

Although the existing algorithms for GGMs can be used to estimate the full precision matrix
2 and consequently its blocks €2, and €, it requires an accurate estimation of {).,; in order to
estimate (2, in high dimension, we have to impose the assumption that €2,, is sparse; and the
degree of its sparsity affects the estimation accuracy of €, and €),,. Moreover, when ¢ is much
larger than p, computational procedures for the full GGMs formulation do not scale well with
respect to €,,. For example, the computational complexity of graphical Lasso (Friedman et all,
2008), a representative GGMs solver, for estimating €2 is O((p+¢)3). This complexity is dominated
by ¢ when ¢ > p and thus can be quite inefficient when ¢ is large. Unfortunately, it is not
uncommon for the feature dimensionality of modern datasets to be of order 10* ~ 107. Taking
document analysis as an example, the typical size of bag-of-word features is of the order 10%. In
web data mining, the feature dimensionality of a webpage is typically of the order 105 ~ 107. In
contrast, the dimensionality of the response Y, e.g., the number of document categories, is usually
of a much smaller order 10> ~ 103. The purpose of this paper is to develop a formulation that
directly estimates the precision matrix blocks €2, and 2, without explicit estimation of the block
Qpz

To estimate the underlying graphical model of Y, one might consider applying existing GGMs
to the marginal precision matrix ny = E;yl. However, this approach ignores the contribution of
X in predicting Y, and from a graphical model point of view, the marginal precision matrix ny
may be dense. Taking the expression quantitative trait loci (eQTL) data (Jansen & Nap, 2001) as
an example, if two genes in Y are both regularized by the same genetic variants in X at the gene
expression level, then there should not be any dependency of these two genes. However, without
taking the genetic effects of X into consideration, a link between these two genes is expected.

We introduce in this paper a new sparse partial precision matrix estimation model that si-
multaneously estimates the conditional precision matrix €2,, and the block matrix €),, under the
assumption that there are many zeros in both matrices. The key idea is to drop the ¢; regular-
ization for the €., part in the full GGMs formulation; as we will show, this leads to a convex
formulation that does not depend on €2;,, and consequently, we do not have to estimate €2;,. Nu-
merically this idea allows us to solve the reformulated problem more efficiently. We propose an
efficient coordinate descent procedure to find the global minimum. The computational complexity
is O(p> + p?>q + pgmin{n, ¢}), where n is the sample size. Statistically, we can obtain convergence
results for €, and €, in the high dimensional setting even though we do not impose sparsity
assumption on $,,.

Although derived in the context of GGMs, our method is immediately applicable to the problem
of multivariate regression with unknown noise covariance. This observation establishes the connec-
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tion between our method and the conditional GGM proposed by [Yin & Li (2011) which estimates
conditional precision matrix €),, via multivariate regression. However, the conditional graphical
model formulation derived there is quite different from the partial graphical model formulation of
this paper. In fact, the resulting formulations are different: we impose the sparsity assumption on
ys, which leads to a convex formulation, while they impose the sparsity assumption on Q;Z}ny,
which leads to a non-convex formulation.

In summary, our method has the following merits compared to the standard GGMs and the
method by Yin & Li (2011):

e Convexity: We estimate partial precision matrix via solving a convex optimization problem.
In contrast, the formulation proposed by [Yin & Li (2011) for a similar purpose is non-convex
and thus the global minimum cannot be guaranteed.

e Scalability: The proposed approach directly estimates the blocks €2, and €, by optimizing
out the block of €,,. This leads to improved scalability with respect to the dimensionality of
X in comparison to the standard GGMs formulation that estimates the full precision matrix.

e Interpretability: For normal data, the sparsity constraint on €2, in our formulation has a
natural interpretation in terms of the conditional dependency between the variables in X and
Y. This differs from the assumption in (Yin & Li, 2011) that essentially assumes the sparsity
of Q;leym which does not have natural graphical model interpretation.

e Theoretical Guarantees: Theoretical performance of our estimator can be established
without the sparsity assumption on €.

1.1 Related Work

Numerous methods have been proposed for sparse precision matrix estimation in recent years.
For GGMs estimation, a popular formulation is maximum likelihood estimation with ¢1-penalty
on the entries of the precision matrix (Yuan & Lin, 2007; [Banerjee et al), [2008; Rothman et all,
2008). The ¢;1-penalty leads to sparsity, and the resultant problem is convex. Theoretical guar-
antees of this type of methods have been investigated by Ravikumar et al! (2011); Rothman et al.
(2008), and its computation has been extensively studied in the literature (d’Aspremont et al.,
2008; [Friedman et all, 2008; [Lu, 2009). Non-convex formulations have also been considered be-
cause it is known that ¢;-penalty suffers from a so-called bias problem that can be remedied using
non-convex penalties (Fan et all, 2009; lJohnson et all, 2012). As an alternative approach to the
maximum likelihood formulation, one may directly estimate the support (that is, nonzero entries)
of the sparse precision matrix using separate neighborhood estimations for each variable followed
by a proper aggregation rule (Meinshausen & Biihlmann, 2006; [Yuan, 2010; (Cai et all, 2011)).

The conditional precision matrix €2y, is related to the latent Gaussian Graphical model of (Chandrasekaran et al
2010), where Y is observed and X are unobserved hidden variables. If we further assume that X
is low-dimensional (which is different from the situation of observed high dimensional X in this
paper), then the we may write the marginal precision matrix ny using the Schur complement as
Quy = Uy — QWQ;}Q;. This exhibits a sparse low-rank structure because €2, is sparse and the
dimensionality of X is low. (Chandrasekaran et al| (2010) explored such a sparse low-rank structure
and proposed a convex minimization method to recover €, as well as the low-rank component.
Although the model is more accurate than standard GGMs, the formulation does not take advan-
tage of the additional information provided by X when it is observed. Another issue is that this
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latent Gaussian graphical model assumes that the hidden variable X is of low dimension, which
may not be realistic for many applications.

Our approach is also closely related to the conditional Gaussian graphical model (cGGM) (Yin & Li,
2011) studied in the context of eQTL data analysis. The cGGM assumes a sparse multivariate re-
gression model between Y and X with (unknown) sparse error precision matrix. However, the
log-likelihood objective function associated with the model is non-convex. Their theoretical analy-
sis applies for a local minimum solution which may not be the solution found by the algorithm. The
c¢GGM model has also been considered in (Cai et al!,2010). The authors proposed to first estimate
the linear regression parameters by multivariate Dantzig-selector and then estimate the conditional
precision matrix by the CLIME estimator (Cai et all, [2011). The rate of convergence for such a
two-stage estimator was analyzed. Different from ¢cGGM, our partial precision matrix estimation
approach directly estimates the blocks of the full precision matrix via a convex formulation. This
significantly simplifies the computational procedure and statistical analysis. Particularly, when
Y is univariate, our model reduces to the ¢i-penalized maximum likelihood estimation studied
by IStadler et all (2010) for sparse linear regression. For multivariate random vector Y, our method
can be regarded as a multivariate generalization of [Stéadler et all (2010) for sparse linear regression
with unknown noise covariance.

1.2 Notation

In the following, € is a positive semi-definite matrix: Q > 0; x € RP is a vector; A € RP*Y is a
matrix. The following notations will be used in the text.

o Apin(€2): the smallest eigenvalue of €.

Amax (2): the largest eigenvalue of €.

Q™ the off-diagonals of €.

x;: the ith entry of a vector.

|zl]2 = VaTa: the Euclidean norm of vector

llz|l1 = 2?21 |z;|: the ¢1-norm of vector z

|z||o: the number of nonzero of z.
e A;;: the element on the ith row and jth column of matrix A.

A;.: the ith row of A.

A.j: the jth column of A.

o [Aloo = maxi<i<pi<j<q |Aij|: loo-norm of A.
o |Al1 =30, >0 |Aijl: the element-wise /1-norm of matrix A.
o ||All1 = maxj<j<q > b_q |A;j|: the matrix ¢1-norm of A.

[AllF = /32211 >29=1 A7;: the Frobenius norm of matrix A.



[ All2 = sup|z|,<1 [[Az[]2: the spectral norm of matrix A.

supp(A) = {(4,7) : Aij # 0}: the support (set of nonzero elements) of A.

I: the identity matrix.

S: the complement of an index set S.

1.3 Outline

The remaining of this paper is organized as follows: Section 2] introduces the partial Gaussian
graphical model (pGGM) formulation; its statistical property in the high dimensional setting is
analyzed in Section [Bl Section Ml presents a coordinate descent algorithm which can be used to
solve pGGM. The extension of the proposed method to multivariate regression with unknown
covariance is discussed in Section Bl Monte-Carlo simulations and experimental results on real data
are given in Section [6l Finally, we conclude this paper in Section [1

2 Sparse Partial Precision Matrix Estimation

2.1 Gaussian Graphical Model

Suppose that two random vectors ¥ € RP and X € RY are jointly normally distributed with
zero-mean, ie., Z = (Y;X) ~ N(0,%*). Its density is parameterized by the precision matrix
QF = (%)~ = 0 as follows:

P(2;,Q) =

1 1
——z Q2.
V/ (2m)Pta(det Q)1 P { 2° z}

It is well known that the conditional independence between Z; and Z; given the remaining variables

is equivalent to ij = 0. Let G = (V, E) be a graph representing conditional independence relations

between components of Z. The vertex set V has p + g elements corresponding to Z; = Y7, ..., Z, =

Yy, Zpt1 = X1, ..., Zpyqg = X, and the edge set E consists of ordered pairs (7, j), where (i,j) € E

if there is an edge between Z; and Z;. The edge between Z; and Z; is excluded from E if and

only if Z; and Z; are independent given {Z, k # 4, j}. Thus for normal distributions, learning the
structure of graph is equivalent to estimating the support of the precision matrix *.

Suppose we have n independent observations {Z®) = (Y®; X@)17_ from the normal distribu-

n n

tion AV(0,X*). Let X" = [ Sy >y

T

sl yn ] be the empirical covariance matrix in which
yx Tx

n n n

n 1 i O\ T n 1 i )\ T n 1 i )\ T
2yy:EZy()(Y()) 7 2%:52}/()(3/()) 7 2MZEZX()(X()) )
i=1 i=1 i=1

The negative of the logarithm of the likelihood function corresponding to the GGMs is written by
L(Q2) := —logdet Q2 + (X", Q).

It is well-known that L(2) is convex when Q > 0, which implies that it is jointly convex with respect
to the blocks €y, Q,, and €,;. The goal of GGMs learning can be reduced to the problem of
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estimating the precision matrix * with extra sparsity constraints. In particular, the following ¢;-
regularized maximum-likelihood method is the most popular formulation to learn sparse precision
matrix (Banerjee et all, [2008):

Q= argmin{L(Q2) + A\, |27 |1}, (2.1)
Q>0

where )\, is the strength parameter of the penalty.

2.2 Partial Gaussian Graphical Model

We now present a new maximum-likelihood formulation for the partial GGM (pGGM) that only
aims at estimating the blocks Qy, and Qj, instead of estimating the full precision matrix 2.
Without causing confusion, we can write L(€) as L(yy, Qyz,Qzs). The basic idea of pGGM is
to eliminate Q,, by optimizing L(€yy, Qyz, Qze) with respect to €, and this can be achieved
if we do not impose any sparsity constraint on .,. As we will show in the following, this idea
allows us to decouple the estimation of 2, from the estimation of {€,, 2y, }. This not only allows
faster computation, but also allows us to develop a theoretical convergence analysis for {€,, Qy. }
without assuming the sparsity of ..

We introduce a reparameterization Qm = Oy — QJny_g}Qyw Note that Q > 0 implies Qm > 0.
The following proposition indicates that with such a reparameterization, L can be decomposed as
the sum of a component only dependent on {€,,,$2,} and a component only dependent on Qua.
Proposition 1. Under the transformation Qpw = Ny — QJxQ;leyx we have

L(Qyys Ve, Vi) = L(Qy, Qs L) = Lpa( Qs V) + H(Que), (2.2)
where H(Qm) = —logdet Q,, + tr(E;‘me) and

Lpa(Qyy, Q) 1= —log det(Qyy) + tr(27, Q) + 2tr(S0 T Qo) + tr(S0,0,,0, Q). (2.3)

Moreover Lpg(Sdyy, yz) is conver.

The proof of Proposition [lis provided in Appendix[A.Il Since both Lpa(Qyy, Qye) and H(Qyz)
are convex, we have that lNL(ny, Qyas Qm) is jointly convex in {€y,, Qya, Qm}

The decomposition formulation (2.2]) is the key idea key behind our new formulation which
decouples the optimization of {€,,, Q,,} and Q... In the high dimensional setting, we consider the
following penalized problem using the reparameterized §2:

{Qyys Qo Yoo} = argmin {L(Qyy, Y, Loa) + R(Qyys Q) + P(Qae) ), (2.4)
ny>07ﬂyx,ﬂxa€>0

where R(Qy,, ;) and P(,,) are decoupled regularization terms that can guarantee the problem

to be well-defined. Based on ([2.2]), problem (2.4]) can be decomposed into the following two separate

problems:

{nyv Qyw} = argmin {Lpa(nyv Qyw) + R(ny, er)}, (2.5)
ny>0,ﬂyx
Qe = arg min{H(Qm) + P(Qm)}
me>0



We call the first equation specified in ([2.5]) as partial Gaussian Graphical Model or pGGM, which
is the main formulation proposed in this paper. If we assume that both 2y, and )y, are sparse,
then we may use sparsity-inducing penalty R(Qy,, ;) in (Z5). For example, the following two

penalties enforce element-wise and column-wise sparsity respectively:
e Element-wise sparsity-inducing penalty: Re(Qyy, Qye) = Aa|Qyy[1 + pnlQyeli-

o Column-wise sparsity-inducing penalty: Re(Qyy, Qya) = An|Qy 1100l Qye 2,1 where [[Qyz][21 =
q
i=1 1€z 51

If we use the element-wise sparsity-inducing penalty, then the resulting formula is similar to ¢;-
penalized full Gaussian graphical model formulation of (2. The main difference is that the
pGGM formulation (Z.5]) does not depend on §2,,, and consequently it does not require the sparsity
assumption on §2,,. One advantage of pGGM is the significantly reduced computational complexity
when X is high dimensional. Another important merit of pGGM is that it does not depend on
model assumptions of 2. because the optimization has been decoupled. This is analogous to
the situation of conditional random field (Lafferty et al., [2001) where we model the conditional
distribution of Y given X directly, and good model of the distribution of X is unnecessary or
ancillary for discriminative analysis. In particular, as we will demonstrate in Section 6.1 the
formulation performs well even if (27 is relatively dense compared to €23, and €y, .

3 Theoretical Analysis

We now analyze the estimation error between the estimated precision matrix blocks {ny,ny}

in [2.3) and the true blocks {€2,,Qy,}. Let S,y = supp(€},) U {(i,i) : i = 1,...,p} and Sy, be
its complement. Similarly we define S, and S'yx. To simplify notation, we denote © = (€, Qyz),
S = 8y, USy,; and S = Sy, U Sy,. The error of the first-order Taylor expansion of Ly, at © in

direction A© is
ALpa(0,A0) = Lpa(© + AB) = Lpa(©) = (VLpa(0), AO).
We introduce the concept of local restricted strong convexity to bound 0Ly, (0, AO).

Definition 1 (Local Restricted Strong Convexity). We define the following quantity which
we refer to as local restricted strong convezity (LRSC) constant at O:

AL,.(©,AO)

B(O;r, ) :inf{ RCIE 10 < [|AB|F <71, |AOg1 §04|A@s|1},
F

where o = 3max{\p, pn}/ min{\,, pn }.

As will be described in our main result, the Theorem [I that the LRSC condition of Ly, is
required to guarantee the statistical efficiency of pGGM. Before presenting the theorem, we will
first show that when n is sufficiently large, such a condition holds with high probability under
proper conditions. We require the following assumption.



Assumption 1. Assume that the following conditions hold for some integers §:

TZn
inf{u 2y, # 0, [Jullo < §} >0.5,

TADYRY
uTEZm
sup { St 20, Huuo<s}
)\ QO En * T

The assumption is similar to the RIP condition in compressed sensing. The following result
is known from the compressed sensing literature (see Baraniuk et all, [2008; [Rauhut et all, 2008;
Candes et all, 2011, for example).

Proposition 2. There exists absolute constants c¢1 and co such that Assumption [1 holds with
probability no less than 1 — exp(—con) when n > c¢1(p + §log(p + q)).

Assumption [Tl can be used to obtain a bound on 3(©*,r, «).
Proposition 3. Let
p— = 0'5min()‘max(92y)_l7 )‘mln(E;x))7 P+ = 15)‘maX(E;m)

Assume that Assumption [ holds with 5 = |S| + [4(py/p—)a?|S|]. I

r < min 0.5)\min(sz),0.13\/)\maX [Q,3%,.(Q ZI)T]/,O_F} ,

then we have

B0, r0) > —P=— _.min [2

Amin (3€2},)
T 40 max(25,)

" 8Amax (25, 25, () T)

yxr“xx

The following definition of +,, is also needed in our analysis.
Definition 2. Define
An =2, — 5, — ()7 0 (27, — Sh)20 (2,)
B, =22, — By, + ()7 Q. (35, — E52)),
Tn = max{[An|oo, | Bnloo }-
We have the following estimate of ~,.

Proposition 4. For any n € (0,1), and given the sample size n > log(10(p + q)?/n), we have with
probability 1 — n:

T < 16y/10a(10(p + q)2/n)/n |max(S5) + max(((2,) 10,5, (24,) 7))

The following result bounds the Frobenius norm estimation error in terms of ~,.



Theorem 1. Let © = (y,,Q,.) be the global minimizer of ZF) with element-wise {1-penalty
R.. Assume that A\, pn € (29, covn] for some co > 2. We further assume that Ly, has LRSC

at ©* = (0, Q) with constant B(©*;r,a) > 0. Consider ro, By > 0 so that 3(0;r9, ) > fo.

Define A, = 1.560,80_1’}’7“/ |S]. If A, <19, then

1© — ©*||F < 1.5¢c08; " n\/1S].

The following corollary is easier to interpret than Theorem [

Corollary 1. Let © = (Q,,Qy.) be the global minimizer of (X)) with element-wise £1-penalty Re.
Assume that A, pn € [2Vn, coyn] for some ¢y > 2. Define

3>\min(QZy)
8 (e X0 () 1) ]

p—
40 A max (25,)

ro = min {omminm;y), 0,13 A [ 55, (25,) ] /p+] 7

Bo =

- min [2

0 =16 [max(55) + max(((25,) 0S50 (0,) i)
Let ¢y and co be absolute constants in Proposition [2. If n is sufficiently large so that

n > max [c1(p + §log(p + q)),10g(10(p + q)* /1), (1.5c070)* (ro50) S| log (10(p + ¢)* /n)]

with § = |S| + [4(p+/p—)a?|S]], then with probability no less than 1 — exp(—can) —n,

16 — ©*||r < 1.5¢oB; " v0V/[S] log(10(p + q)2/n) /n.

Proof. Since n > ¢1(p + Slog(p + q)), with probability no less than 1 — exp(—can) — 1, both
Assumption [ hold and Proposition [ are valid.

Since Assumption [ holds, Proposition [ implies 5(0*, 79, &) > Bo. Since n > log(10(p+q)?/n),
Proposition @ implies that v, < /log(10(p + ¢)2/n)/nvo. Therefore the assumption of n implies
that A, < 1.5¢08; 704/]S|10g(10(p + ¢)2/n)/n < 70, and Theorem [ implies that 16 —0*||F <
A, O

We may assume that Sy, 79, and 9 to be O(1) constants that depend on Q* and ¥*. The
corollary implies that when n is at least the order of p + |S|log((p + ¢)/n), then

16 — ©*|lr = O(/IS]log((p + a)/n)/n)-

4 Numerical Algorithm

We present a coordinate descent procedure to solve the pGGM problem (Z3). The algorithm
alternates between solving the following two subproblems on €, and €, respectively:

ngﬂ) = argmin [Lpa(ny’ Qg(fm)) + R(yy, 95,’2)] ) (4.1)
Qyy>0
ngl) = arg min [Lpa(Qg;l), Qye) + R(ng;l), ny)} ) (4.2)

yx



Since the objective is convex, it is guaranteed that the above procedure converges to the global
minimum. Let us first consider the minimization problem (4.1]). This is equivalent to

Q?(J?_l) = argmin [F(t)(ny) + R(Qyy, Qﬁf%) ; (4.3)
Qyy >0

where
FU(Qyy) = —log det(Qyy) + tr(£), Q) + tr(S,(Q4) 2y Q).
In our implementation, the proximal gradient descent method (Nesterowv, 2005; Beck & Teboulle,
2009) is utilized to solve the above composite optimization problem, where the gradient of the first
(smooth) term of ([4.3)) is given by
VED(Qy,) = -, ) + 30— lolyr i)To !

Next, we consider the minimization problem (£.2]). This is equivalent to

Qgﬂzmgm{dw%g+3mgﬂﬁwﬂ, (4.4)

where
GO Q) = (0, QL Q) 710,0) + 26(S0 ).

Again, we apply the proximal gradient method to solve this subproblem. Here the gradient of the
first (smooth) term of (4.4 is given by

vcwaggzzaﬁﬁh4ﬂwz&+zgk

The computational complexity in terms of p and ¢ for this coordinate descent algorithm is as
follows: (1) O(p® + p?q + pgmin{n, ¢}) for the subproblem (&I]) due to the inverse of Q,, and the
matrix product in the evaluation of gradient VF®(Q,,); and (2) O(p?q + pgmin{n,q}) for the
subproblem (£.2]) from matrix product in evaluating gradient VG(t)(Qym). Therefore, the overall
complexity of the proposed algorithm is O(p® + p?q + pgmin{n, q}). This can be compared to the
O((p+q)?) or higher per iteration complexity required by well known representative algorithms for
full precision matrix estimation (Friedman et al), [2008; d’Aspremont et all, [2008; [Rothman et all,
2008; Lu, 2009). In the high dimensional setups where ¢ > max{n, p}, the computational advantage
of pGGM over standard GGMs can be significant.

5 pGGM for Multivariate Regression with Unknown Covariance

In this section, we show that pGGM provides a convex formulation for solving the following model
of multivariate regression with unknown noise covariance:

Y =T, X+, (5.1)

where Y € RP, X € RY, I'), is a p X ¢ regression coefficient matrix and the random noise vector
gy ~ N(0, (sz)_l) is independent of X. Our interest is in the simultaneous estimation of Iy, and
sz from observations {Y(i); X (@) }7, in the high-dimensional setting. Note that for this regression
problem we do not have to assume the joint normality of (Y; X), but rather that the noise term is
normal (or more generally sub-Gaussian). Our discussion in this section is based on the fact that
pGGM is a regularized maximum likelihood estimator for multivariate regression with Gaussian
noise.
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5.1 pGGM as a Conditional Maximum Likelihood Estimator

We will start our discussion under the joint Gaussian setup, which provides the connection of the
pGGM formulation and multivariate regression. Let the true covariance matrix ¥* be partitioned

into blocks
DD Py
s = [ ) yw} .
Y Yira
Here we assume that (Y; X) is jointly normal, the conditional distribution of ¥ given X, given as
follows, remains normal:

VX~ N (S5(Sh0) X, T — S50(Sh0) 150 ) (5.2)

Now by using algebra for block matrix inversion, we may write the precision matrix Q* = (X*)~!
as

* * x \—1vT)\ 1 * * ¥ \—1v*T\ 1 s * \—1
OFf = [ (Elyy ; 2yx(2x:c) Ey:c) T —1 - (Eyy - 2yx(2xx) 2y:c) ny(E:c:c) ] 7
_(E;x)_ EZ&B (Egjy - EZw(E;m)_ EZ%) =
and thus .
* * * x \—1yvT ) * * gk x \—1
ar, = (zyy — 3 (50,) zyx> = = () (5.3)

Therefore the conditional distribution (5.2]) can be rewritten as:
Y| X~ N ((95,) 705, X (2,)7).
This can be equivalently expressed as the following multivariate regression model:
Y =—(Q,) 7', X +ey, (5.4)

where e, ~ N (0, (sz)_l) is independent of X. Note that this model can be regarded as a reparam-
eterization of the standard multivariate regression model in (5.]). It is easy to verify that given the
observations {Y(i); X @ }*_,, the negative of the conditional log-likelihood function for e, is written
by

—log det(€2},) + tr(Ep, Q5 ) + 2tr(Xp) Q) + tr(E0, Q00 (Q,) 7 1Q0,).

Yy~ Yy xx* “yx

which is exactly Lpa(£y,,€2;,) given by (Z.3). Therefore, pGGM is essentially a regularized condi-
tional maximum likelihood estimator for the regression model (5.4]). This implies that we can use

pGGM to solve multivariate regression problem with unknown noise covariance matrix €, .

5.2 Convexity and cGGM

We now consider the general multivariate regression model (5.]) with Gaussian noise. A more
straightforward method for estimating the model parameters {2, , 'y .} was considered by Yin & Li
(2011) using the following ¢;-regularized log-likelihood function associated with &,:

{nyv fyx} = argmin § —logdet Qyy + tr(Z?Wny) + Al (Quy) "1 + Pn’ry:c‘l} ) (5.5)
Qyy=0,Tys
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where Lpp = Xy, — ZZxF;/rx - FWZZJ + Pyngxrgx. However, with this formulation, the objective
function in (5.5)) is not jointly convex in I'y, and yy, although it is convex with respect to I'y, for
any fixed €, and it is also convex respective to 2, for any fixed I'y,.

In contrast, the expression (5.4)) is jointly convex in {€y,, 2y}, which may be regarded as a

convex reparameterization of (5.I]) under the following transformation:
0 — _ _0-1
Quy =Qyy , Tya = —Qyy Qo

This transformation yields a one-to-one mapping from {Qy,,Iyz} to {2y, Qyz}. The convexity of
(E4) is desirable both for optimization and for theoretical analysis which we considered in Section Bl

It is worth mentioning that for high dimensional problems, regularization has to be imposed
on the model parameters. With regularization, the pGGM regression formulation (5.4]) becomes
235), which is different from the cGGM formulation of (5.5]). This is because for pGGM, the
¢1-norm penalties are imposed on {€y,, 2y}, and for cGGM, the ¢;-norm penalties have to be
directly imposed on {ny, I'yz}. The former has a natural interpretation in terms of the conditional
dependency between the variables in X and Y, while the latter does not have such an intuitive
interpretation.

5.3 Univariate Case

As a special case, when the output Y is univariate, pGGM reduces to a regularized maximum
likelihood estimator for high-dimensional linear regression with unknown variance. In this case,
by replacing the scalar €1, and the row vector €y, with w and 67 respectively in the pGGM
formulation (2.5]), with element-wise ¢1-penalty R, we arrive at the following estimator:

{@,0} = argmin Ly, (w, 0) + pl|0]]1, (5.6)

w>0,0

where
Lpa(w,0) == —log(w) + Xy,w + 20T22y +07%" 0/w.

As aforementioned that this is identical to a regularized maximum likelihood estimator for the
following linear regression model with unknown variance:

Y = —w 0T X +e, (5.7)

where £ ~ N (0,w™!) is independent of X. The specific /1-penalized maximum likelihood estima-
tor (5.6]) has also been studied by [Stédler et al! (2010) for sparse linear regression with unknown
noise covariance. For multivariate random vector Y, pGGM can be regarded as a multivariate
generalization of the method in (Stédler et al!, [2010).

For graphical model estimation, pGGM with univariate Y can also be regarded as a variant of
the neighborhood selection method (Meinshausen & Biihlmann, 2006). Let us write §2;; the entry
of € at the jth row and the jth column, and denote by €2, _; or £2_; ; the jth row of Q with its jth
entry removed or the jth column with its jth entry removed respectively. In order to recover the
non-zero entries in 2, Meinshausen & Biihlmann (2006) proposed to solve for each row j a Lasso
problem:

6= argemin 0TS, 0+20T5",  + pl|6]]1. (5.8)
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If we fix w = 1 in (5.6]), then the resultant estimator is identical to (5.8]). For precision matrix
estimation, our formulation (5.6]) is different from neighborhood selection (0.8 due to the inclu-
sion of w as an unknown parameter. More precisely, the quantity w™' is the noise variance for
the corresponding Lasso regression, and the estimator (5.6) may be regarded as an extension of
neighborhood selection without knowing the noise variance. For multivariate random vector Y,
pGGM can be regarded as a blockwise generalization of neighborhood selection for graphical model
estimation.

For precision matrix estimation, the regression model (.7 has also been considered by [Yuan
(2010). However, the author suggested a procedure to estimate 6 via the Dantzig-selector (Candes & Tad,
2007) followed by a mean squared error estimator for the variance w=!. In contrast, the pGGM
based estimator (5.6]) simultaneously estimates the two parameters under a joint convex optimiza-
tion framework.

6 Experiments

In this section, we investigate the empirical performance of the pGGM estimator on both synthetic
and real datasets and compare its performance to several representative approaches for sparse
precision matrix estimation.

6.1 Monte Carlo Simulations

In the Monte Carlo simulation study, we investigate parameter estimation and support recovery
accuracy as well as algorithm efficiency using synthetic data for which we know the ground truth.

6.1.1 Data

Our simulation study employs a precision matrix " whose sub-matrices {2, and )y, are sparse,
while Q7 is dense. The matrix is generated as follows: we first define Q* = M + oI, where each
off-diagonal entry in M is generated independently and equals 1 with probability P = 0.1 or 0 with
probability 1 — P = 0.9. M has zeros on the diagonal, and ¢ is chosen so that the condition number
of O* is p + q. We then add the ¢ x ¢ all-one matrix to the block Q;z and the resultant matrix is
defined as Q*. We generate a training sample of size n from N (0, ¥*) and an independent sample of
size n from the same distribution for validating the tuning parameters. The goal is to estimate the
sparse blocks {Qy, .y }. We fix (n,p) = (100,50) and compare the performance under increasing

values of ¢ = 50,100, 200, 500, replicated 50 times each.

6.1.2 Comparing Methods and Evaluation Metrics

We compare the performance of pGGM to the following three representative approaches for sparse
precision matrix estimation:

e ¢cGGM for conditional Gaussian graphical model estimation (Yin & Li, 2011). After recover-
ing the regression parameters Fyr and the conditional precision matrix ny, we estimate the
block ny = nyfyx.

e GLasso for ¢;-penalized precision matrix estimation (Friedman et all, 2008). We convention-
ally apply GLasso to estimate the full precision matrix §2.
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e NSLasso for support recovery (Meinshausen & Biihlmann, 2006). We use a modified version
to recover the supports in the blocks 2y, and €, by regressing each Y; on Y_; and X via the
Lasso. Such a modified neighborhood selection method has also been adopted by [Yin & Li
(2011) for their empirical study. Note that this method does not provide an estimate of the
precision matrix.

For all methods, we use the validation set to estimate the values of the regularization parameters.

We measure the parameter estimation quality of 6= (ny, Qym) by its Frobenius norm distance
to ©F = (sz, sz) To evaluate the support recovery performance, we use the F-score from the
information retrieval literature. Note that precision, recall, and F-scores are standard concepts in

information retrieval defined as follows:

Precision = TP/(TP + FP)
Recall = TP/(TP + FN)

2-Precision-Recall

F-score = Precision+Recall ?

where TP stands for true positives (for nonzero entries), and FP and FN stand for false positives
and false negatives. Since one can generally trade-off precision and recall by increasing one and
decreasing the other, a common practice is to use the F-score as a single metric to evaluate different
methods. The larger the F-score, the better the support recovery performance.

6.1.3 Results

Figure [1(a)} [L(b)} |1(c)| plot the mean and standard errors of the above metrics as a function of
dimensionality gq. The results show the following:

e Parameter estimation accuracy (see Figure : pGGM and ¢cGGM perform favorably to
GLasso. This is expected because GLasso enforces the sparsity of the full precision matrix
and thus tends to select a smaller regularization parameter due to the dense structure of block
2. In contrast, pGGM and cGGM exclude 2, in the model and thus avoid potential under
penalization of sparsity. pGGM and ¢GGM perform comparably on parameter estimation
accuracy. Note that NSLasso does not estimate the precision matrix.

e Support recovery (see Figure : pGGM achieves the best performance among all four
methods being compared. pGGM outperforms ¢GGM since the former directly enforces the
sparsity on blocks €, and €2,, while the latter enforces the sparsity of Iy, = —Q;leym which
is not necessarily sparse. GLasso is inferior due to the under penalization. We also observe
that pGGM is slightly better than NSLasso.

e Computational efficiency (see Figure [I(c)): The pGGM and ¢cGGM methods can achieve
x100 speedup over GLasso when ¢ = 500.

We further compare pGGM to GLasso applied to the marginal distribution of Y by ignoring
X. We call this method as GLasso-M. The results are plotted in Figure [L(d), [L(e)} [L(f)} It can be
observed from these figures that pGGM consistently outperforms GLasso-M in terms of parameter
estimation and support recovery accuracies.

The detailed performance figures that are used to generate Figure are presented in Ap-
pendix [Blin tabular forms, along with additional performance metrics in spectral norm and matrix
f1-norm. The observations using the other norms are consistent with that of the Frobenius norm.
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Figure 6.1: Performance curves on the synthetic data. Top row: comparison of the estimated
blocks {2y, 2y, }. Bottom row: comparison of the estimated €, by pGGM and GLasso-M. The
down-arrow | means the smaller the better while the up-arrow 1 means the larger the better.

6.2 Real Data
We further study the performance of pGGM on real data.

6.2.1 Data

We use three multi-label datasets Corel5k, MIRFlickr25k and RCV1-v2 and a stock price dataset
S&P500 for this study. For each dataset, we generate a training sample for parameter estimation
and an independent test sample for evaluation. Table summarizes some statistics of the data.
We next describe the derails of these datasets.

Corel5k. This dataset was first used in (Duygulu et all, 2002). Since then, it has become a stan-
dard benchmark for keyword based image retrieval and image annotation. It contains around
5,000 images manually annotated with 1 to 5 keywords. The vocabulary contains 260 visual
words. The average number of keywords per sample is 3.4 and the maximum number of key-
words per sample is 5. The data set along with the extracted visual features are publicly available
at lear.inrialpes.fr/people/guillaumin/data.php. In our experiment, we down sample the
training data to size 450 for constructing the Gaussian graphical models of image keywords. For
evaluation purpose, an independent test set of size 450 is selected. Each image is described by
the GIST feature which has dimensionality 512. Our goal is to construct a graphical model for
image tags. Note that the size of label-feature joint variable is 260 + 512 = 772, which allows us to
examine the performance when p + g > n.
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Table 6.1: Statistics of data.

D q training size (n) test size
Corel5k 260 512 450 450
MIRFlickr25k 457 512 1,250 1,250
RCV1-v2 103 1,000 1,000 1,000
S&P500 165 300 101 101

MIRFlickr25k. This data contains 25,000 images collected from Flickr over a period of 15 months.
The database is available at press.liacs.nl/mirflickr/. The collection contains highest scored
images according to Flickr’s “interestingness” score. These images were annotated for 24 con-
cepts, including object categories but also more general scene elements such as sky, water or
indoor. For 14 of the 24 concepts, a second and more strict annotation was made. The vocabu-
lary contains 457 tags. The average number of words per sample is 2.7 and the maximum words
per sample is 32. The data set along with the extracted visual features are publicly available
at lear.inrialpes.fr/people/guillaumin/data.php. In our experiment, we down sample the
training set to size 1,250 for constructing the Gaussian graphical models of image keywords. For
evaluation purpose, an independent test set of size 1,250 is selected. Each image is described by
the GIST feature of dimension 512. Our goal is to construct a graphical model for image tags.
RCV1-v2. This data set contains newswire stories from Reuters Ltd Lewis et ali (2004). Sev-
eral schemes were utilized to process the documents including removing stopping words, stem-
ming, and transforming each document into a numerical vector. There are three sets of cat-
egories: Topics, Industries and Regions. In this paper, we consider the Topics category set,
and make use of a subset collection (sample size 3,000, feature dimension 47,236) of this data
from www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets. We further down sample the data
set to a size of 1,000, and select the top 1,000 words with highest TF-IDF frequencies. For eval-
uation purpose, an independent test set of size 1,000 is selected. The vocabulary contains 103
keywords. The average number of words per sample is 3.3 and the maximum words per sample is
12. Our goal is to construct a graphical models for these keywords.

S&P500. We investigate the historical prices of S&P500 stocks over 5 years, from January 1, 2007
to January 1, 2012. By taking out the stocks with less than 5 years of history, we end up with
465 stocks, each having daily closing prices over 1,260 trading days. The prices are first adjusted
for dividends and splits and the used to calculate daily log returns. Each day’s return can be
represented as a point in R, For each day’s return, we chose the first 300 as X and the rest 165
as Y. We down sample the data set to size 101. For evaluation purpose, an independent test set
of size 101 is selected. Our goal is to construct the conditional precision matrix of Y conditioned
on X.

6.2.2 Methods and Evaluation Metrics

In these experiments, we compare pGGM to GLasso, GLasso-M (for estimating marginal precision
matrix using the data component Y only) and NSLasso. Here we focus on convex formulations,
and thus skip cGGM. For all these methods, we use the Bayesian information criterion (BIC) to
select the regularization parameters.

Since there is no ground truth precision matrix, we measure the quality of © by evaluating

16


press.liacs.nl/mirflickr/
lear.inrialpes.fr/people/guillaumin/data.php
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Table 6.2: Quantitative results on real data

L, value on test set CPU Time (sec.)on training set
pGGM GLasso GLasso-M NSLasso ‘ pGGM GLasso GLasso-M NSLasso
Corel5k -1.08e3 -0.63e3 — — 16.63  125.74 9.07 9.06
MIRFlickr25k -1.99e3 -1.99e3 — — 56.93  228.71 39.74 42.89
RCV1-v2 -0.42e3  -0.39e3 — — 3.04 421.86 1.38 75.43
S&P500 0.22e3  0.24e3 — — 4.83 46.65 4.28 4.29

the Ly, objective (recall its definition in (2:3))) on the test data. The training CPU times are also
reported. Since the category information of RCV1-v2 and S&P500 are available, we also measure
the precision of the top k links in the constructed conditional GGM from (2, on these two datasets.
A link is regarded as true if and only if it connects two nodes belonging to the same category. Note
that the category information is not used in any of the graphical model learning procedures.

6.2.3 Results

Table tabulates the evaluated L, objectives on the test set and the training time. The key
observations are

e In most cases, pPGGM outputs smaller Ly, objective value than GLasso (note that the L,
value cannot be evaluated for GLasso-M and NSLasso). pGGM runs much faster than GLasso
on all these datasets.

e pGGM is slightly slower than NSLasso on Corel5k, MIRFlickr25k and S&P500 where p ~ ¢,
but significantly faster than NSLasso on RCV1-v2 where p < gq.

Figure shows the precision of top k links in the conditional graphs as a function of k. It can be
seen that pGGM performs favorably in comparison to the other three methods for identifying correct
links on RCV1-v2. On S&P500, pGGM and GLasso-M have comparable performance, and both are
better than GLasso and NSLasso. This is because the S&P500 stocks are weakly correlated and
thus the conditional graphical model can be well approximated by the marginal graphical model.

We further evaluate the sparsity of the constructed graphs on these datasets. The links are
identified by {(7,J) : i # j, |[ny]ij| > p} in which g > 0 is a threshold value. Figure shows the
number of links in graphs as a function of p. It can be seen that pGGM, GLasso and NSLasso tend
to output sparser graphical models than GLasso-M. A potential reason is that GLasso-M ignores
the information provided by X, and thus false positive links can be induced. NSLasso outputs the
sparsest network on corel5k, MIRFlickr25k and S&P500, while pGGM outputs the sparsest model
on RCV1-v2. Note that NSLasso does not estimate precision matrix. Moreover, pGGM tends to
be slightly sparser than GLasso. These observations are consistent with our observations on the
synthetic data.

Figure [6.4] plots the graphs constructed by using different estimation methods with u = 0.1
for Corel5k, MIRFlickr25k and RCV1-v2, and p = 0.05 for S&P500. It can be seen that different
methods will construct different graphs. Figure illustrates in detail the top 50 links in each

graph.
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7 Conclusion

This paper presents a new formulation pGGM for estimating sparse partial precision matrix. The
advantages of pGGM over prior GGMs and conditional GGMs include: (i) the formulation is
convex; (ii) the optimization procedure scales well with respect to the component X; (iii) the
model has natural interpretation in terms of the conditional dependency between the variables in
X and Y; and (iv) theoretical guarantees on the global solution can be established without sparsity
assumptions on the precision matrix of X. We showed that the rate of convergence of pGGM
depends on how sparse the underlying true partial precision matrix is. Numerical experiments on
several synthetic and real datasets demonstrated the competitive performance of pGGM compared
to the existing approaches.

In the current paper, the pGGM is derived under the assumption that (Y; X) is jointly normally
distributed. As discussed in Section [] that pGGM is still valid in the setting where the joint
normality is relaxed to the conditional normality. We would like to point out that by assuming
the Gaussian copular structure of the random vector, pGGM can be easily extended to the setting
of nonparanormal (Liu et al), 2009) which is a useful tool for semiparametric estimation of high
dimensional undirected graphs. We believe that such an extension will broaden the application
range of pGGM in practice.
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A Technical Proofs

A.1 Proof of Proposition [1

Proof. Using the following well known fact of block matrix determinant

det <[§ %T D = det(A) det(C — BA™'BT)

and simple algebra, we obtain that

L(Qyy, Qs V) = Lpa(Qyys Q) — log det (Qy — Q;mgz;ylgym) + (27, (Qae — Q;xsz;;szyx)), (A1)

where

Lpa(Qyy, Qo) = —log det(Qy,) + tr(Xp, Qyy) + 260(S5 Q) + (20,2, 2,1 Qo).

The claim (2.2]) follows immediately from the re-parametrization of Qo = Qo — QJxQJZ}ny
We next show that Lpa(§dyy,$y,) is convex. Note that when X7, >~ 0, by minimizing both
sides of (A1) over €, which is achieved at Q. = (X7,)"! + QJxQ;;ny, we know that up to an
additive constant, Ly, is the pointwise minimum of L over {1,,. Since the pointwise minimization
of a convex objective function with a part of the parameters is convex with respect to the other
parameters (see, e.g., Boyed & Vandenberghe, 2004), we immediately obtain the convexity of Lp,.
In the high-dimensional case where n < ¢, we only have X” > 0 and thus the minimization over
Q. is not well-defined. To show the convexity in general case, we may replace Y, by Y. + A
for some A > 0, and the resulting partial GMM formula:
L. (Qyy, Qo) = —log det(Qy,) + tr(X7,Qyy) + 2t0(S0] Q) + (S0, + ADQ, Q0 Qya)
is convex in (Qyy, Qye) by the previous argument. Now, let A — 0%, we have Léa(ny,ny) —
Lpa(Qyy, Qyz), which immediately implies the convexity of Lpa(-, ). O

21



A.2 Proof of Proposition [3]

Lemma 1. Assume the conditions of the proposition hold. Then for any matrizc V = (Vyy, Vyz) €
RPXP x RP*Y such that |Vg|1 < a|Vs|i, we have

= _ = Ql o
Ty P 2 — vy .
tr(VEV') > = W%, where % 0 sn
Moreover, we have
tr(V, X0, V1) < 2.25p, ||V]2.

zx ¥ yx

Proof. In the following, we let s = |S| and s’ = § — s > 4(py/p_)a’s. Since 1 < Apax(2,), we
know that Amax(Qyy) ! > p—. Indeed, Amax(Qyy) < Amax (25,) + Amax(AQyy) < Amax(Qy,) + 7 <
2)\max(sz), which from the definition of p~ implies that /\max(ny)_l > p_. Therefore for any
U € RP*(P*9) such that |U|g < s + &, the conditions of Assumption [ imply that

r(USUT) > p||U|%

We order the elements of Vg in descending order of absolute values. Let V() = Vg which contains
s nonzero values, and V(*) contains (at most) s nonzero values of Vg with (ks — s’ + 1)-th to
(ks')-th largest absolute values. It follows that ||[V*+D||p < /[VEHD| VR < [VE)| /6
for all £ > 1. Therefore we have

ag = tr(VO + VIR O 4+ v Ty > p_ v+ )3
and

aq :|tr((V(0) +vHs Z V(k+1)T)‘
k>1

<Vaoy/pr ) IVEV||k

k>1

<Vaopy »_[VH Vs

k>1
<ayaop|Vsh/Vs' < ayaops |V + V|| py/s/s'.
Note that tr(ViVT) > ag — 2a1 + as, where

-
ay = tr Z RGN ES Z (k1)

k>1 k>1

The semi-positive-definiteness of 3 implies that min,[ag + 2pa; + p2as] > 0, which implies that
a% < agay. Therefore

tr(V'EV) >ag — 2a1 + ag > ag — 2a1 + a3 /ag
>p- VO + VIR = av/(p1/p-)(s/5)* = p- |V + VIV 3./4,

where the last inequality is due to the definition of s’ that implies that a+/(py/p—)(s/s’) < 0.5.
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Moreover we have
VI[E=IVO + VO 4> v %
E>1

VO + VO 4> v®3/s
k>1

<O + VO + VO Vs /s
VO + VO 4+ VO o Vs l2/s/s
<(14 0.5a+/5/s)|[V® + v|12 <125V O 4 vD2,

By combining the previous two displayed inequalities, we obtain the first desired bound.
To prove the second bound, we define

"‘/_ Opo O
=% s |

Therefore for any U € RP*®+9) such that |U|y < s+ s, the conditions of Assumption [limply that
tr(UZ'UT) < py||U7

Therefore we have ~
ay = te(VO + VO (VO £ v Ty < p V%

and

T
(1/2 —tr Z V(k+1) i/ (Z V(k+1)

E>1 k>1
<N (VIS Y REDT)
k>1k>1
<pi > D IVED R VED
k>1k'>1
<pr > > WVERIVE /S < p|Vsli/s
E>1k>1

<a?pi[Vsl2/s' < a?pi|VI(s/s))-

Therefore we obtain (using o(s/s’) < 0.25)

tr(Vye X0, Vi) < af + 24/ahab + ay < 1.5aq + 3ah < (154 3/4)p, ||V |[F = 2.25|V || 3.

This completes the proof. O
Lemma 2. Let \ .
¥ = min 2 min($2y)
SAmaX(QZxE;x(QZJ:)T)

then we have
Amax (2, Qe S0,0,) < 1/(29).

zz® “yx
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Proof. Let o(A) be the largest singular value of a matrix A, then 0(A) = \/Amax(AT A). Therefore
we have

oo [0 S8 =o(9(22,) )
0, (52,)1/%) + 0(A0 (521 2)

Y
< () (58) ) + \[r(AQ,, S, AQ])
\//\max [QZQCE;LQC(QZ:U)T] + 15\/ﬁ||AQHF
1.4\/ Amax [, 25, () T],

where the third inequality uses the second inequality of Lemma [l and the last inequality uses the
third inequality of Assumption [[land [|[AQ|r <r < 0.13\//\max Q.2 (Q;x)T] /p+. This implies

IN

IN

yrzx

xS fyx yx“xx
Since the assumption of 7 < Ayin(§25,)/2 also implies that
Amin(ny) > /\min(sz) - Amin(Any) > /\min(sz) —r=> Amin(sz)/z
Therefore we have

Ao (oS8 0) _ A [0 55, ()]

Amax (219,57 Q) < LA yr e =1/(29),
vy Y )‘min(ny) )‘min(QZy)
which leads to the desired bound. O

Proof of Proposition[3. For any s € (0, 1), we define for convenience that
Qyy = Qy, +5AQy, Qe = Qp, + sAQy,,
and consider the function f(s) defined as

f(s) := —log det(Lyy) + tr(Xy, Qyy) + 2tr(ZZ;ny) + tr(ngQ;xQ;leyx).

It can be verified that
F(s) = — tr(Qy, AQy,) + tr(), AQy,)
+ 2t (S0 T AQy,) + 2tr (37,0, Q0 T AQy,) — tr(S7,9Q,,Q. 1AQ, Q. 10,,)

and

F(s) =tr(Qy,) AQy, Q0 AQy, ) + 2tr (S0, AQ) Q) TAQ,) — 4tr(S],9Q,,9, 1 AQ,, QL TAQ,,)

+ 2tr(EﬁmQ;mQ;ylAnyQ;ylAnyQ;leyx).

We obtain from Taylor expansion that
1
AL, (0%,A0) = 5]’”(3), for some s € (0,1).
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This implies that
F(s) = tr(Q, AQy, Q. TAQy,) + 2tr(S2,AQ) QL TAQy,) — 4t (50,0, Q0 TAQ,, Q0 TAQ,, )

+2tr(2§wQ;xQ;ylAnyQ;y1AnyQ;leyx)

= tr(Qy, AQy, QT AQy,) + 2tr(X7, AQ, Q0 TAQy,) — 4tr(S5,Q),Q, T AQ,, Q) TAQ,,)

H(2 4+ ) tr (S, 0, Q) AQ, QU TAQ, Q1O ) — 9tr(S,Q), Q0 TAQ,, Q) TAQ,, Q0 10, ,)
29

tr(,, AQy, Q, TAQy,) + H—ﬁtr(ZQmAQ;mQ;;AQW)

—1/2 n T —1/2 —1/2 —1 —1/2
—9tr(Qy, Qe X0, Q) QU2 QU2 AQ,, O TAQ,, QL2
2+

— n o7 — — — —
I max (R 2 Qya D, Q0 Qe Q2 AQ, Q) LA, Q) 12
29

579

v

v

tr(Qy, AQy, Q,  AQy,) + xrAQL O TAQ,,)

yrTryy

> 0.5tr (€, AQy, Q, TAQ,,) + xrAQLOTIAQ,,),

ya* by

where we have used the trace equality tr(AB) = tr(BA) throughout the derivations. The first
inequality is due to the trace inequality (2/(2+))tr(AT A) — 4tr(AT B) + (2+9)tr(BT B) > 0; the
second inequality uses tr(AB) < Apax(A)tr(B) for symmetric positive semidefinite matrices A and
B; and the last inequality is due to )\maX(Qy_;mnyE" Q) Qy_yl/z)vﬂ < 1/2 (Lemma [2I).

Tx® "yx

Since ¥ < 2/3, we have 0.5 > 29/(2 + 9). Therefore
2A Ly, (0%, AB) =f"(s)

2
> 20 [tr(Q;;AnyQ;;Any) + tr(0,AQ) Q—lAny)}

249 yz=Syy
29

255 n ﬂx\r?lix(ny) [tr(AnyQ;ylAny) + tr(AnyEZxAQJx)]
201 (Q )p_

> max yy A@ 2

- 5(2_’_79) H HFa

where the second inequality uses tr(AB) > Apin(A)tr(B) for symmetric positive semidefinite ma-
trices A and B; and the last inequality follows from Lemma [l We complete the proof by noticing
5(2 + 1) <40/3. O

A.3 Proof of Proposition [4
We will employ the following tail-bound for x? random variable, due to [Laurent & Massart (2000).

Lemma 3. Consider independent Gaussian random variables z1,. .., 2z, ~ N(0,02). We have for
all t > 0:

n
Pr [Z zf > no? + 202Vnt + 20t < et

/=1

and

n
Pr [Z z? < no? — 202\/nt] <et
(=1
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The following lemma is a consequence of Lemma [3when applied to the covariance of multivariate
Gaussian distribution.

Lemma 4. Consider the covariance matriz X* of a d-dimensional Gaussian random vector and its
sample covariance X" from n i.i.d. Gaussian random vectors from N(0,%*). For any n € (0,1)
and any deterministic d x d matriz A. Let

o = [(AS AT )i + 204y + (5]
ij

then with probability at least 1 —n for any n € (0,1), we have

|A(Z" — 29| < 202+/In(4dd’ /1) /n,
provided that n > In(4dd’ /7).

Proof. Consider the multivariate Gaussian random vector X, ... X ~ A/(0, 2%).

Given any index pair (i,7), let 20 = (AX®); + XJ(»Z). We have 20 ~ N(0,(AX*AT); +
2(AX*);; + (¥%)j5). We thus obtain from Lemma [3] that for ¢ < n: with probability at least

1 —2e7?,

< 40%\/t/n.

— - é * * *
n7E 3 (AXO); 4 XI9)2 — [(AZFAT ) + 2(AZ); + (5);4]
/=1

Similarly, we have for ¢t < n: with probability at least 1 — 2e~¢,

< 40%\/t/n.

" ;;(AX@)% — X\ — [(AD* AT )y — 2(A8%)i; + ()]

Taking union bound, and adding the previous two inequalities, we obtain that with probability at
least 1 — 4e~t:

[n_l Zn:(AX(Z))i + X](-Z))2 — [(AS*AT);; + 2(AX*)5 + (E*)jj]]
=1

< 8a%4/t/n.

_ [n—l SAXO), = X O~ [(AS*AT ) — 24T, + <E*>m]
/=1

This simplifies to |A(X" — $*);;] < 20%4/t/n. Now by taking union bound over i = 1,...,d and
j=1,...,d, and set n = 4dd'e”!, we obtain the desired bound. O

Note that in Lemma @ we have ¢ < 2max;(AX*AT);; + 2max;(X*);. It implies that with
probability 1 — #:

JAX" — X))o < 4[mZaX(AE*AT)M + IIlZaX(E*)“'] In(4dd' /n)/n (A.2)

when n > In(4dd’ /n).

26



Proof of Proposition [l For any n € (0,1) such that n > In(10(p + ¢)?/n), we obtain from (A2)
with A = I that with probability 1 — 0.4n:

X" = o < Sm?X(E*)iz\/ln(lo(p +4q)*/n)/n.

Let A = (sz)_lex We may also apply (A.2) to the Gaussian covariance matrix AE* AT and
A =T to obtain that with probability 1 — 0.4n:

|Ax? AT — A% AT < 8max(AXE,AT);1/In(10¢2 /1) /n.

Similarly, we may also apply (A2) to the Gaussian covariance matrix X* with A = A to obtain
that with probability 1 — 0.2n:

][12;‘1, — le‘,;‘m\oo < Bm?X(AE;xAT)M In(20pq/n)/n.

Taking union bound with the previous three inequalities, we have with probability 1 — #:

Ap S |87 = oo + AR AT — AT; AT | < 8K.y/In(10(p + )% /1) /n

and
0.5By < [ = oo + [ A2, — A2, oo < 8K,/I(100p + 0)2/m) /1,
where
K. = max(3) + max(((25,) 705, 25,0 (25,) i)
This completes the proof. O

A.4 Proof of Theorem [IJ

For convenience, we will introduce the following notations:

Any = ny sz, AQy;c = ny‘ QZm?

and AG = 0 — 0% = (AQy,, AQy,).

We first introduce the following lemma which shows that error is in the cone of Definition [II
Lemma 5. Assume that min{\,, pn} > 2v,. Then the error AO satisfies |AOg|; < a|ABg|;.

Proof. Since (},)g, =0, we have

(2 + Ay )"l = [(2y) 711 = 1y + Ay ) g b +1(Qyy + Ay g 1= 1(2,)" 1
= (2 + AQyy)g, 11+ [(AQyy)5- 11 — |(QZy)_|1
> [(AQ yy)gyy|1_|( Qyy)s,, 1
> [(AQyy)s,, [t — [(AQyy)s,, [1- (A3)
Similarly we have
e + Aot — Q11 2 [(AQya)g,, [1 — [(AQys)s,.]1- (A4)
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We define the function f(s) as in the proof of Proposition Bl From the convexity of the loss Ly,

we have A
Lpa(©) — Lpa(07) = f(1) — f(0) = f'(0) = tr(A; AQy,) + tr(B, AQy,),
where
_\n * \—1 * \—1O*x v /O* \I /O \—1 _ o/vn * \—1lO*x v n
ATL - Eyy - (ny) - (ny) Qy:czxa:(ny) (ny) 7Bn - 2(ny + (ny) nyzxx)
From the equalities in (5.3) we can equivalently write
An = EZy - EZy - (QZy)_lgzx(zgx - E;x)QZI(QZy)_17 Bn = 2(2296 - EZSC + (QZy)_lgzx(zgx - E;kcx))
Note that we have
[tr(Ay AQyy)| < [Anloc| AQyy 11

IA

An
AR, |,

and )
]tr(B;Any)\ S ’Bn‘oo‘AQy:c‘l S En‘AQy:c‘la

where we have used the assumption min{\,, p,} > 27,. Therefore
A * )\n Pn
Lpa(@) - Lpa(@ ) > _EIAny‘l - E‘Agyx‘l' (A-5)
By combing (A3)), (A4), and (AF), we obtain

~ N

0> Lpa(©) + Re(O) — Lpa(0%) — R (O)

An Pn
> _7|Any|1 - 7|A9ym|1 + )‘n(|(Any)§yy|1 - |(Any)Syy|1) + pn(|(AQym)§yz|1 - |(AQym)Syz|1)
An Pn
> 2 (1823, = 31(A%)s,, 1) + 2 (1(8%0)5,, 11 = 31(A%y0)s,. 1)
min(Ay,, pn 3max(An, pn
> B0 (80,5, 1+ (80,05, 1) — 2202 (A0 )0 1+ (A5, 1)
which implies [(A©)g|1 < a|(ABO)g]1. O

Proof of Theorem[D. Since A, pn, € [27n, coYn), by Lemma Bl we have [(A©)gl1 < a|(AB)g];. Let
A© = (AQy,, AQy;) = tAO where we pick ¢ = 1 if [|AB|[r < ¢ and t € (0,1) with [[AB||F = 1o
otherwise. By definition, we have |AO||p < ro and [(A©)gl1 < a|(AO)s|1. Due to the optimality
of © and the convexity of L,, it holds that

Lpa(0" +tAO) + R (0 +tAB) < L, (0%) + R.(0F).
Following the similar arguments in Lemma [5] and the LRSC of L, we obtain

0 > Lpa(OF +tAO) + Re(0* + tAO) — Lya(0*) — R.(OF)
M (1) n . n (1(AG ;
> 2 (KAQ?JZ/)Syyh - 3|(Any)Syy|1) + % <|(AQW)SW|1 N 3|(AQW)SW|1)
+8(0%; 19, ) || AB|| %
—1.5max{A,, pn }|(AO) 5|1 + 50”A9”%
—1.5¢o7m\/|S|||AB||F + Bol|ABO||%,

which implies that

VvV 1V

|AB||F < 1.5¢oBy v /|S] = A
Since A, < 7o, we claim that ¢ = 1 and thus AO = AO. Indeed, if otherwise ¢ < 1, then
|A®||p = ro > A, which contradicts the above inequality. This completes the proof. O
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Table B.1: Comparison of average CPU run times and average matrix losses and F-scores for
synthetic datasets over 50 replications. In this experiment, we fix n = 100 and p = 50.

Methods q =50 q =100 q = 200 q = 500
CPU Time (sec.) |
pGGM 0.17 0.26 0.46 0.98
cGGM 0.22 0.28 0.45 1.09
GLasso 0.45 1.51 8.52 150.98
NSLasso 2.01 2.36 3.14 5.38

Operator norm [|© — ©*||5 |

pGGM  0.98 (0.04) 1.06 (0.03) 1.17 (0.03) 1.23 (0.02)
cGGM  0.99 (0.04) 1.07 (0.04) 1.18 (0.03) 1.23 (0.02)
GLasso  1.22 (0.05) 1.44 (0.07) 1.71 (0.07) 2.31 (0.04)
NSLasso — — — —

Matrix ¢1-norm ||© — ©*||; |

pGGM 2,01 (0.12) 1.98 (0.23)  1.81 (0.11) 1.10 (0.10)

cGGM  2.35 (0.16) 2.13 (0.20)  1.89 (0.06) 1.10 (0.10)

GLasso  2.90 (0.20) 3.03 (0.32)  3.11 (0.21)  3.29 (0.32)

NSLasso — — — —
Frobenius norm [|© — ©*|| |

pGGM  3.36 (0.07) 3.91 (0.11)  4.81 (0.12)  4.58 (0.04)

(0.07
cGGM  3.43 (0.07) 3.96 (0.12) 4.85 (0.13) 4.59 (0.04)
GLasso 4.58 (0.11) 5.94 (0.06) 7.89 (0.08) 12.22 (0.03)
NSLasso — — — —
Support Recovery F-score 1
pGGM 041 (0.01) 0.37 (0.01) 0.35 (0.01) 0.23 (0.01)
cGGM  0.33 (0.01) 0.31 (0.01) 0.32 (0.01) 0.23 (0.01)
GLasso 0.31 (0.01) 0.27 (0.01) 0.27 (0.01) 0.22 (0.01)
NSLasso 0.40 (0.01) 0.35 (0.01) 0.32 (0.01) 0.21 (0.01)

B Additional Materials on Monte Carlo Simulations

In this appendix section, we provide the detailed performance figures on the synthetic data as
described in Section For support recovery, we use F-score. We also measure the precision
matrix estimation quality by three matrix norms: the operator norm, the matrix ¢1-norm, and the
Frobenius norm. The results are presented in Table and Table .
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Table B.2: Comparison of average CPU run times and average matrix losses and F-scores for
synthetic datasets over 50 replications. Here we fix n = 100 and p = 50.

Methods q=>50 q =100 q = 500 q = 1000
CPU Time |
pGGM 0.17 0.26 0.46 0.98
GLasso-M 0.04 0.05 0.05 0.05
Operator norm ||ny - ll2 4
pGGM  0.76 (0.04) 0.86 (0.07) 0.91 (0.06) 0.58 (0.01)
GLasso-M  0.88 (0.06) 0.86 (0.09) 0.88 (0.03) 0.86 (0.02)
Matrix ¢1-norm ||[|Qy, — Q5 [[|l1 |
pGGM  1.94 (0.12) 1.94 (0.26) 1.879 (0.13) 0.94 (0.03)
GLasso-M  2.80 (0.18) 2.87 (0.29) 2.76 (0.08) 1.93 (0.08)
Frobenius norm ||, — Qe
pGGM  2.55 (0.08) 2.68 (0.12) 3.17 (0.15) 2.18 (0.06)
GLasso-M  3.14 (0.09) 3.1 (0.09) 3.26 (0.05) 3.03 (0.04)
Support Recovery F-score 1
pGGM  0.42 (0.01) 0.38 (0.02) 0.39 (0.02) 0.30 (0.01)
GLasso-M  0.31 (0.01) 0.28 (0.01) 0.27 (0.01) 0.27 (0.01)
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NSLasso Glasso Glasso-M

(a) Corel5k, = 0.1. Method(# Links): pGGM (677), NSLasso (293), GLasso (909), GLasso-M (1153).

NSLasso GLasso-M

(b) MIRFlicker25k, o = 0.1. Method(# Links): pGGM (409), NSLasso (110), GLasso (573), GLasso-M
(960).

NSLasso Glasso-M

(¢) RCV1-v2, pn = 0.1. Method(# Links): pGGM (87), NSLasso (156), GLasso (282), GLasso-M (688).

PGGM NSLasso Glasso GLasso-M

(d) S&P500, i = 0.05. Method(# Links): pGGM (136), NSLasso (94), GLasso (160), GLasso-M (221).

Figure 6.4: Constructed graphs by pGGM, NSLasso, GLasso and GLasso-M.
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(a) Corel5k.
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(b) MIRFlicker25k.

@

NSLasso Glasso-M

T o

(c) RCV1-v2.

NSLasso Glasso-M

(d) S&P500.

Figure 6.5: The top 50 links in the constructed graphs by pGGM, NSLasso, GLasso and GLasso-M.

32



	1 Introduction
	1.1 Related Work
	1.2 Notation
	1.3 Outline
	2 Sparse Partial Precision Matrix Estimation
	2.1 Gaussian Graphical Model
	2.2 Partial Gaussian Graphical Model

	3 Theoretical Analysis
	4 Numerical Algorithm
	5 pGGM for Multivariate Regression with Unknown Covariance
	5.1 pGGM as a Conditional Maximum Likelihood Estimator
	5.2 Convexity and cGGM
	5.3 Univariate Case


	6 Experiments
	6.1 Monte Carlo Simulations
	6.1.1 Data
	6.1.2 Comparing Methods and Evaluation Metrics
	6.1.3 Results

	6.2 Real Data
	6.2.1 Data
	6.2.2 Methods and Evaluation Metrics
	


	7 Conclusion
	A Technical Proofs
	A.1 Proof of Proposition 1
	A.2 Proof of Proposition 3
	A.3 Proof of Proposition 4
	A.4 Proof of Theorem 1
	B Additional Materials on Monte Carlo Simulations


