
ar
X

iv
:1

20
9.

64
19

v1
  [

cs
.L

G
]  

28
 S

ep
 2

01
2

Partial Gaussian Graphical Model Estimation

Xiao-Tong Yuan

Department of Statistics, Rutgers University

New Jersey, 08816

xyuan@stat.rutgers.edu

Tong Zhang

Department of Statistics, Rutgers University

New Jersey, 08816

tzhang@stat.rutgers.edu

Abstract

This paper studies the partial estimation of Gaussian graphical models from high-dimensional
empirical observations. We derive a convex formulation for this problem using ℓ1-regularized
maximum-likelihood estimation, which can be solved via a block coordinate descent algorithm.
Statistical estimation performance can be established for our method. The proposed approach
has competitive empirical performance compared to existing methods, as demonstrated by var-
ious experiments on synthetic and real datasets.

1 Introduction

Given n independent copies {Z(i)}ni=1 of a random vector Z ∈ R
d with an unknown covariance

matrix Σ, the problem of precision matrix (inverse covariance matrix) estimation is to estimate
Ω = Σ−1. In particular, for multivariate normal data, the precision matrix induces the underlying
Gaussian graphical structure among the variables. For such Gaussian graphical models (GGMs), it
is usually assumed that a given variable can be predicted by a small number of other variables. This
assumption implies that the precision matrix is sparse. Therefore estimating Gaussian graphical
model can be reduced to the problem of estimating a sparse precision matrix.

One approach to sparse precision matrix estimation is covariance selection or neighborhood
selection (Dempster, 1972; Meinshausen & Bühlmann, 2006), which tries to estimate each row (or
column) of the precision matrix by predicting the corresponding variable using a sparse linear combi-
nation of other variables. An alternative formulation is maximum-likelihood estimation method that
directly estimate the full precision matrix. The sparseness of the precision matrix can be achieved
by adding sparse penalty functions such as the ℓ1-penalty or the SCAD penalty (d’Aspremont et al.,
2008; Friedman et al., 2008; Fan et al., 2009).

In this paper, we are interested in the problem of estimating blockwise partial precision matrix.
Given n independent copies {Y (i);X(i)}ni=1 of a random vector Z = (Y ;X) ∈ R

p × R
q with an

unknown precision matrix

Ω =

[

Ωyy Ωyx

Ω⊤
yx Ωxx

]

,
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our goal is to simultaneously estimate the blocks Ωyy and Ωyx, without attempting to estimate
the block Ωxx. If the joint distribution of Z = (Y ;X) is normal, then Ωyy has an interpretation
of conditional precision matrix of Y conditioned on X, and Ωyx induces the mutual conditional
dependency between these two groups of variants. In machine learning applications where Y is the
response and X is the input feature, estimating partial precision matrix can be a useful tool for
constructing graphical models for the response conditioned on the input. For instance, in multi-
label image annotation, the response Y is the indicator vector of annotation and the input X is
the associated image feature vector. In this case, Ωyy induces a Gaussian graphical model for the
tags while Ωyx identifies the conditional dependency between tags and features. If we are mainly
interested in the conditional precision matrix Ωyy and the interaction matrix Ωyx, then it is natural
to ignore Ωxx. Consequently, we should not have to impose any assumption on the structure of
Ωxx.

Although the existing algorithms for GGMs can be used to estimate the full precision matrix
Ω and consequently its blocks Ωyy and Ωyx, it requires an accurate estimation of Ωxx; in order to
estimate Ωxx in high dimension, we have to impose the assumption that Ωxx is sparse; and the
degree of its sparsity affects the estimation accuracy of Ωyy and Ωyx. Moreover, when q is much
larger than p, computational procedures for the full GGMs formulation do not scale well with
respect to Ωxx. For example, the computational complexity of graphical Lasso (Friedman et al.,
2008), a representative GGMs solver, for estimating Ω is O((p+q)3). This complexity is dominated
by q when q ≫ p and thus can be quite inefficient when q is large. Unfortunately, it is not
uncommon for the feature dimensionality of modern datasets to be of order 104 ∼ 107. Taking
document analysis as an example, the typical size of bag-of-word features is of the order 104. In
web data mining, the feature dimensionality of a webpage is typically of the order 106 ∼ 107. In
contrast, the dimensionality of the response Y , e.g., the number of document categories, is usually
of a much smaller order 102 ∼ 103. The purpose of this paper is to develop a formulation that
directly estimates the precision matrix blocks Ωyy and Ωyx without explicit estimation of the block
Ωxx.

To estimate the underlying graphical model of Y , one might consider applying existing GGMs
to the marginal precision matrix Ω̃yy = Σ−1

yy . However, this approach ignores the contribution of

X in predicting Y , and from a graphical model point of view, the marginal precision matrix Ω̃yy

may be dense. Taking the expression quantitative trait loci (eQTL) data (Jansen & Nap, 2001) as
an example, if two genes in Y are both regularized by the same genetic variants in X at the gene
expression level, then there should not be any dependency of these two genes. However, without
taking the genetic effects of X into consideration, a link between these two genes is expected.

We introduce in this paper a new sparse partial precision matrix estimation model that si-
multaneously estimates the conditional precision matrix Ωyy and the block matrix Ωyx under the
assumption that there are many zeros in both matrices. The key idea is to drop the ℓ1 regular-
ization for the Ωxx part in the full GGMs formulation; as we will show, this leads to a convex
formulation that does not depend on Ωxx, and consequently, we do not have to estimate Ωxx. Nu-
merically this idea allows us to solve the reformulated problem more efficiently. We propose an
efficient coordinate descent procedure to find the global minimum. The computational complexity
is O(p3 + p2q + pqmin{n, q}), where n is the sample size. Statistically, we can obtain convergence
results for Ωyx and Ωyy in the high dimensional setting even though we do not impose sparsity
assumption on Ωxx.

Although derived in the context of GGMs, our method is immediately applicable to the problem
of multivariate regression with unknown noise covariance. This observation establishes the connec-
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tion between our method and the conditional GGM proposed by Yin & Li (2011) which estimates
conditional precision matrix Ωyy via multivariate regression. However, the conditional graphical
model formulation derived there is quite different from the partial graphical model formulation of
this paper. In fact, the resulting formulations are different: we impose the sparsity assumption on
Ωyx, which leads to a convex formulation, while they impose the sparsity assumption on Ω−1

yy Ωyx,
which leads to a non-convex formulation.

In summary, our method has the following merits compared to the standard GGMs and the
method by Yin & Li (2011):

• Convexity: We estimate partial precision matrix via solving a convex optimization problem.
In contrast, the formulation proposed by Yin & Li (2011) for a similar purpose is non-convex
and thus the global minimum cannot be guaranteed.

• Scalability: The proposed approach directly estimates the blocks Ωyy and Ωyx by optimizing
out the block of Ωxx. This leads to improved scalability with respect to the dimensionality of
X in comparison to the standard GGMs formulation that estimates the full precision matrix.

• Interpretability: For normal data, the sparsity constraint on Ωyx in our formulation has a
natural interpretation in terms of the conditional dependency between the variables in X and
Y . This differs from the assumption in (Yin & Li, 2011) that essentially assumes the sparsity
of Ω−1

yy Ωyx which does not have natural graphical model interpretation.

• Theoretical Guarantees: Theoretical performance of our estimator can be established
without the sparsity assumption on Ωxx.

1.1 Related Work

Numerous methods have been proposed for sparse precision matrix estimation in recent years.
For GGMs estimation, a popular formulation is maximum likelihood estimation with ℓ1-penalty
on the entries of the precision matrix (Yuan & Lin, 2007; Banerjee et al., 2008; Rothman et al.,
2008). The ℓ1-penalty leads to sparsity, and the resultant problem is convex. Theoretical guar-
antees of this type of methods have been investigated by Ravikumar et al. (2011); Rothman et al.
(2008), and its computation has been extensively studied in the literature (d’Aspremont et al.,
2008; Friedman et al., 2008; Lu, 2009). Non-convex formulations have also been considered be-
cause it is known that ℓ1-penalty suffers from a so-called bias problem that can be remedied using
non-convex penalties (Fan et al., 2009; Johnson et al., 2012). As an alternative approach to the
maximum likelihood formulation, one may directly estimate the support (that is, nonzero entries)
of the sparse precision matrix using separate neighborhood estimations for each variable followed
by a proper aggregation rule (Meinshausen & Bühlmann, 2006; Yuan, 2010; Cai et al., 2011).

The conditional precision matrix Ωyy is related to the latent Gaussian Graphical model of (Chandrasekaran et al.
2010), where Y is observed and X are unobserved hidden variables. If we further assume that X
is low-dimensional (which is different from the situation of observed high dimensional X in this
paper), then the we may write the marginal precision matrix Ω̃yy using the Schur complement as
Ω̃yy = Ωyy − ΩyxΩ

−1
xxΩ

⊤
yx. This exhibits a sparse low-rank structure because Ωyy is sparse and the

dimensionality of X is low. Chandrasekaran et al. (2010) explored such a sparse low-rank structure
and proposed a convex minimization method to recover Ωyy as well as the low-rank component.
Although the model is more accurate than standard GGMs, the formulation does not take advan-
tage of the additional information provided by X when it is observed. Another issue is that this
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latent Gaussian graphical model assumes that the hidden variable X is of low dimension, which
may not be realistic for many applications.

Our approach is also closely related to the conditional Gaussian graphical model (cGGM) (Yin & Li,
2011) studied in the context of eQTL data analysis. The cGGM assumes a sparse multivariate re-
gression model between Y and X with (unknown) sparse error precision matrix. However, the
log-likelihood objective function associated with the model is non-convex. Their theoretical analy-
sis applies for a local minimum solution which may not be the solution found by the algorithm. The
cGGM model has also been considered in (Cai et al., 2010). The authors proposed to first estimate
the linear regression parameters by multivariate Dantzig-selector and then estimate the conditional
precision matrix by the CLIME estimator (Cai et al., 2011). The rate of convergence for such a
two-stage estimator was analyzed. Different from cGGM, our partial precision matrix estimation
approach directly estimates the blocks of the full precision matrix via a convex formulation. This
significantly simplifies the computational procedure and statistical analysis. Particularly, when
Y is univariate, our model reduces to the ℓ1-penalized maximum likelihood estimation studied
by Städler et al. (2010) for sparse linear regression. For multivariate random vector Y , our method
can be regarded as a multivariate generalization of Städler et al. (2010) for sparse linear regression
with unknown noise covariance.

1.2 Notation

In the following, Ω is a positive semi-definite matrix: Ω � 0; x ∈ R
p is a vector; A ∈ R

p×q is a
matrix. The following notations will be used in the text.

• λmin(Ω): the smallest eigenvalue of Ω.

• λmax(Ω): the largest eigenvalue of Ω.

• Ω−: the off-diagonals of Ω.

• xi: the ith entry of a vector.

• ‖x‖2 =
√
x⊤x: the Euclidean norm of vector x

• ‖x‖1 =
∑d

i=1 |xi|: the ℓ1-norm of vector x

• ‖x‖0: the number of nonzero of x.

• Aij : the element on the ith row and jth column of matrix A.

• Ai·: the ith row of A.

• A·j : the jth column of A.

• |A|∞ = max1≤i≤p,1≤j≤q |Aij |: ℓ∞-norm of A.

• |A|1 =
∑p

i=1

∑q
j=1 |Aij |: the element-wise ℓ1-norm of matrix A.

• ‖A‖1 = max1≤j≤q
∑p

i=1 |Aij |: the matrix ℓ1-norm of A.

• ‖A‖F =
√

∑p
i=1

∑q
j=1A

2
ij : the Frobenius norm of matrix A.
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• ‖A‖2 = sup‖x‖2≤1 ‖Ax‖2: the spectral norm of matrix A.

• supp(A) = {(i, j) : Aij 6= 0}: the support (set of nonzero elements) of A.

• I: the identity matrix.

• S̄: the complement of an index set S.

1.3 Outline

The remaining of this paper is organized as follows: Section 2 introduces the partial Gaussian
graphical model (pGGM) formulation; its statistical property in the high dimensional setting is
analyzed in Section 3. Section 4 presents a coordinate descent algorithm which can be used to
solve pGGM. The extension of the proposed method to multivariate regression with unknown
covariance is discussed in Section 5. Monte-Carlo simulations and experimental results on real data
are given in Section 6. Finally, we conclude this paper in Section 7.

2 Sparse Partial Precision Matrix Estimation

2.1 Gaussian Graphical Model

Suppose that two random vectors Y ∈ R
p and X ∈ R

q are jointly normally distributed with
zero-mean, i.e., Z = (Y ;X) ∼ N (0,Σ∗). Its density is parameterized by the precision matrix
Ω∗ = (Σ∗)−1 ≻ 0 as follows:

φ(z; Ω∗) =
1

√

(2π)p+q(det Ω∗)−1
exp

{

−1

2
z⊤Ω∗z

}

.

It is well known that the conditional independence between Zi and Zj given the remaining variables
is equivalent to Ω∗

ij = 0. Let G = (V,E) be a graph representing conditional independence relations
between components of Z. The vertex set V has p+ q elements corresponding to Z1 = Y1, ..., Zp =
Yp, Zp+1 = X1, ..., Zp+q = Xq, and the edge set E consists of ordered pairs (i, j), where (i, j) ∈ E
if there is an edge between Zi and Zj . The edge between Zi and Zj is excluded from E if and
only if Zi and Zj are independent given {Zk, k 6= i, j}. Thus for normal distributions, learning the
structure of graph is equivalent to estimating the support of the precision matrix Ω∗.

Suppose we have n independent observations {Z(i) = (Y (i);X(i))}ni=1 from the normal distribu-

tion N (0,Σ∗). Let Σn =

[

Σn
yy Σn

yx

Σn⊤
yx Σn

xx

]

be the empirical covariance matrix in which

Σn
yy =

1

n

n
∑

i=1

Y (i)(Y (i))⊤, Σn
yx =

1

n

n
∑

i=1

Y (i)(Y (i))⊤, Σn
xx =

1

n

n
∑

i=1

X(i)(X(i))⊤.

The negative of the logarithm of the likelihood function corresponding to the GGMs is written by

L(Ω) := − log det Ω + 〈Σn,Ω〉.

It is well-known that L(Ω) is convex when Ω ≻ 0, which implies that it is jointly convex with respect
to the blocks Ωyy, Ωyx and Ωxx. The goal of GGMs learning can be reduced to the problem of
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estimating the precision matrix Ω∗ with extra sparsity constraints. In particular, the following ℓ1-
regularized maximum-likelihood method is the most popular formulation to learn sparse precision
matrix (Banerjee et al., 2008):

Ω̂ = argmin
Ω≻0

{L(Ω) + λn|Ω−|1}, (2.1)

where λn is the strength parameter of the penalty.

2.2 Partial Gaussian Graphical Model

We now present a new maximum-likelihood formulation for the partial GGM (pGGM) that only
aims at estimating the blocks Ω∗

yy and Ω∗
yx instead of estimating the full precision matrix Ω∗.

Without causing confusion, we can write L(Ω) as L(Ωyy,Ωyx,Ωxx). The basic idea of pGGM is
to eliminate Ωxx by optimizing L(Ωyy,Ωyx,Ωxx) with respect to Ωxx, and this can be achieved
if we do not impose any sparsity constraint on Ωxx. As we will show in the following, this idea
allows us to decouple the estimation of Ωxx from the estimation of {Ωyy,Ωyx}. This not only allows
faster computation, but also allows us to develop a theoretical convergence analysis for {Ωyy,Ωyx}
without assuming the sparsity of Ωxx.

We introduce a reparameterization Ω̃xx := Ωxx−Ω⊤
yxΩ

−1
yy Ωyx. Note that Ω ≻ 0 implies Ω̃xx ≻ 0.

The following proposition indicates that with such a reparameterization, L can be decomposed as
the sum of a component only dependent on {Ωyy,Ωyx} and a component only dependent on Ω̃xx.

Proposition 1. Under the transformation Ω̃xx = Ωxx − Ω⊤
yxΩ

−1
yy Ωyx we have

L(Ωyy,Ωyx,Ωxx) = L̃(Ωyy,Ωyx, Ω̃xx) = Lpa(Ωyy,Ωyx) +H(Ω̃xx), (2.2)

where H(Ω̃xx) = − log det Ω̃xx + tr(Σn
xxΩ̃xx) and

Lpa(Ωyy,Ωyx) := − log det(Ωyy) + tr(Σn
yyΩyy) + 2tr(Σn⊤

yx Ωyx) + tr(Σn
xxΩ

⊤
yxΩ

−1
yy Ωyx). (2.3)

Moreover Lpa(Ωyy,Ωyx) is convex.

The proof of Proposition 1 is provided in Appendix A.1. Since both Lpa(Ωyy,Ωyx) and H(Ω̃xx)
are convex, we have that L̃(Ωyy,Ωyx, Ω̃xx) is jointly convex in {Ωyy,Ωyx, Ω̃xx}.

The decomposition formulation (2.2) is the key idea key behind our new formulation which
decouples the optimization of {Ωyy,Ωyx} and Ω̃xx. In the high dimensional setting, we consider the
following penalized problem using the reparameterized Ω:

{Ω̂yy, Ω̂yx, Ω̃xx} = argmin
Ωyy≻0,Ωyx,Ω̃xx≻0

{L̃(Ωyy,Ωyx, Ω̃xx) +R(Ωyy,Ωyx) + P (Ω̃xx)}, (2.4)

where R(Ωyy,Ωyx) and P (Ω̃xx) are decoupled regularization terms that can guarantee the problem
to be well-defined. Based on (2.2), problem (2.4) can be decomposed into the following two separate
problems:

{Ω̂yy, Ω̂yx} = argmin
Ωyy≻0,Ωyx

{Lpa(Ωyy,Ωyx) +R(Ωyy,Ωyx)}, (2.5)

Ω̃xx = argmin
Ω̃xx≻0

{H(Ω̃xx) + P (Ω̃xx)}.

6



We call the first equation specified in (2.5) as partial Gaussian Graphical Model or pGGM, which
is the main formulation proposed in this paper. If we assume that both Ω∗

yy and Ω∗
yx are sparse,

then we may use sparsity-inducing penalty R(Ωyy,Ωyx) in (2.5). For example, the following two
penalties enforce element-wise and column-wise sparsity respectively:

• Element-wise sparsity-inducing penalty: Re(Ωyy,Ωyx) = λn|Ω−
yy|1 + ρn|Ωyx|1.

• Column-wise sparsity-inducing penalty: Rc(Ωyy,Ωyx) = λn|Ω−
yy|1+ρn‖Ωyx‖2,1 where ‖Ωyx‖2,1 =

∑q
j=1 ‖(Ωyx)·j‖.

If we use the element-wise sparsity-inducing penalty, then the resulting formula is similar to ℓ1-
penalized full Gaussian graphical model formulation of (2.1). The main difference is that the
pGGM formulation (2.5) does not depend on Ωxx, and consequently it does not require the sparsity
assumption on Ωxx. One advantage of pGGM is the significantly reduced computational complexity
when X is high dimensional. Another important merit of pGGM is that it does not depend on
model assumptions of Ω∗

xx because the optimization has been decoupled. This is analogous to
the situation of conditional random field (Lafferty et al., 2001) where we model the conditional
distribution of Y given X directly, and good model of the distribution of X is unnecessary or
ancillary for discriminative analysis. In particular, as we will demonstrate in Section 6.1, the
formulation performs well even if Ω∗

xx is relatively dense compared to Ω∗
yy and Ω∗

yx.

3 Theoretical Analysis

We now analyze the estimation error between the estimated precision matrix blocks {Ω̂yy, Ω̂yx}
in (2.5) and the true blocks {Ω∗

yy,Ω
∗
yx}. Let Syy := supp(Ω∗

yy) ∪ {(i, i) : i = 1, ..., p} and S̄yy be
its complement. Similarly we define Syx and S̄yx. To simplify notation, we denote Θ = (Ωyy,Ωyx),
S = Syy ∪ Syx and S̄ = S̄yy ∪ S̄yx. The error of the first-order Taylor expansion of Lpa at Θ in
direction ∆Θ is

∆Lpa(Θ,∆Θ) := Lpa(Θ +∆Θ)− Lpa(Θ)− 〈∇Lpa(Θ),∆Θ〉.

We introduce the concept of local restricted strong convexity to bound δLpa(Θ,∆Θ).

Definition 1 (Local Restricted Strong Convexity). We define the following quantity which
we refer to as local restricted strong convexity (LRSC) constant at Θ:

β(Θ; r, α) = inf

{

∆Lpa(Θ,∆Θ)

‖∆Θ‖2F
: 0 < ‖∆Θ‖F ≤ r, |∆ΘS̄ |1 ≤ α|∆ΘS |1

}

,

where α = 3max{λn, ρn}/min{λn, ρn}.

As will be described in our main result, the Theorem 1, that the LRSC condition of Lpa is
required to guarantee the statistical efficiency of pGGM. Before presenting the theorem, we will
first show that when n is sufficiently large, such a condition holds with high probability under
proper conditions. We require the following assumption.
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Assumption 1. Assume that the following conditions hold for some integers s̃:

inf

{

u⊤Σn
xxu

u⊤Σ∗
xxu

: u 6= 0, ‖u‖0 ≤ s̃

}

≥0.5,

sup

{

u⊤Σn
xxu

u⊤Σ∗
xxu

: u 6= 0, ‖u‖0 ≤ s̃

}

≤1.5,

λmax

[

Ω∗
yxΣ

n
xx(Ω

∗
yx)

⊤
]

λmax

[

Ω∗
yxΣ

∗
xx(Ω

∗
yx)

⊤
] ≤1.4.

The assumption is similar to the RIP condition in compressed sensing. The following result
is known from the compressed sensing literature (see Baraniuk et al., 2008; Rauhut et al., 2008;
Candès et al., 2011, for example).

Proposition 2. There exists absolute constants c1 and c2 such that Assumption 1 holds with
probability no less than 1− exp(−c2n) when n ≥ c1(p + s̃ log(p+ q)).

Assumption 1 can be used to obtain a bound on β(Θ∗, r, α).

Proposition 3. Let

ρ− = 0.5min(λmax(Ω
∗
yy)

−1, λmin(Σ
∗
xx)), ρ+ = 1.5λmax(Σ

∗
xx).

Assume that Assumption 1 holds with s̃ = |S|+ ⌈4(ρ+/ρ−)α2|S|⌉. If

r ≤ min

[

0.5λmin(Ω
∗
yy), 0.13

√

λmax

[

Ω∗
yxΣ

∗
xx(Ω

∗
yx)

⊤
]

/ρ+

]

,

then we have

β(Θ∗, r, α) ≥ ρ−
40λmax(Ω∗

yy)
·min

[

2,
λmin(3Ω

∗
yy)

8λmax(Ω∗
yxΣ

∗
xx(Ω

∗
yx)

⊤)

]

.

The following definition of γn is also needed in our analysis.

Definition 2. Define

An =Σn
yy − Σ∗

yy − (Ω∗
yy)

−1Ω∗
yx(Σ

n
xx − Σ∗

xx)Ω
∗⊤
yx (Ω

∗
yy)

−1

Bn =2(Σn
yx − Σ∗

yx + (Ω∗
yy)

−1Ω∗
yx(Σ

n
xx − Σ∗

xx)),

γn =max{|An|∞, |Bn|∞}.

We have the following estimate of γn.

Proposition 4. For any η ∈ (0, 1), and given the sample size n ≥ log(10(p+ q)2/η), we have with
probability 1− η:

γn ≤ 16
√

log(10(p + q)2/η)/n

[

max
i

(Σ∗
ii) + max

i
(((Ω∗

yy)
−1Ω∗

yxΣ
∗
xxΩ

∗⊤
yx (Ω

∗
yy)

−1)ii)

]

.

The following result bounds the Frobenius norm estimation error in terms of γn.
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Theorem 1. Let Θ̂ = (Ω̂yy, Ω̂yx) be the global minimizer of (2.5) with element-wise ℓ1-penalty
Re. Assume that λn, ρn ∈ [2γn, c0γn] for some c0 ≥ 2. We further assume that Lpa has LRSC
at Θ∗ = (Ω∗

yy,Ω
∗
yx) with constant β(Θ∗; r, α) > 0. Consider r0, β0 > 0 so that β(Θ∗; r0, α) ≥ β0.

Define ∆n = 1.5c0β
−1
0 γn

√

|S|. If ∆n < r0, then

‖Θ̂−Θ∗‖F ≤ 1.5c0β
−1
0 γn

√

|S|.

The following corollary is easier to interpret than Theorem 1.

Corollary 1. Let Θ̂ = (Ω̂yy, Ω̂yx) be the global minimizer of (2.5) with element-wise ℓ1-penalty Re.
Assume that λn, ρn ∈ [2γn, c0γn] for some c0 ≥ 2. Define

β0 =
ρ−

40λmax(Ω∗
yy)

·min

[

2,
3λmin(Ω

∗
yy)

8λmax(Ω∗
yxΣ

∗
xx(Ω

∗
yx)

⊤)

]

,

r0 =min

[

0.5λmin(Ω
∗
yy), 0.13

√

λmax

[

Ω∗
yxΣ

∗
xx(Ω

∗
yx)

⊤
]

/ρ+

]

,

γ0 =16

[

max
i

(Σ∗
ii) + max

i
(((Ω∗

yy)
−1Ω∗

yxΣ
∗
xxΩ

∗⊤
yx (Ω

∗
yy)

−1)ii)

]

.

Let c1 and c2 be absolute constants in Proposition 2. If n is sufficiently large so that

n > max
[

c1(p+ s̃ log(p + q)), log(10(p + q)2/η), (1.5c0γ0)
2(r0β0)

−2|S| log(10(p + q)2/η)
]

with s̃ = |S|+ ⌈4(ρ+/ρ−)α2|S|⌉, then with probability no less than 1− exp(−c2n)− η,

‖Θ̂ −Θ∗‖F ≤ 1.5c0β
−1
0 γ0

√

|S| log(10(p + q)2/η)/n.

Proof. Since n ≥ c1(p + s̃ log(p + q)), with probability no less than 1 − exp(−c2n) − η, both
Assumption 1 hold and Proposition 4 are valid.

Since Assumption 1 holds, Proposition 3 implies β(Θ∗, r0, α) ≥ β0. Since n ≥ log(10(p+ q)2/η),
Proposition 4 implies that γn ≤

√

log(10(p + q)2/η)/nγ0. Therefore the assumption of n implies

that ∆n ≤ 1.5c0β
−1
0 γ0

√

|S| log(10(p + q)2/η)/n < r0, and Theorem 1 implies that ‖Θ̂ − Θ∗‖F ≤
∆n.

We may assume that β0, r0, and γ0 to be O(1) constants that depend on Ω∗ and Σ∗. The
corollary implies that when n is at least the order of p+ |S| log((p+ q)/η), then

‖Θ̂ −Θ∗‖F = O(
√

|S| log((p + q)/η)/n).

4 Numerical Algorithm

We present a coordinate descent procedure to solve the pGGM problem (2.5). The algorithm
alternates between solving the following two subproblems on Ωyy and Ωyx respectively:

Ω(t+1)
yy = argmin

Ωyy≻0

[

Lpa(Ωyy,Ω
(t)
yx) +R(Ωyy,Ω

(t)
yx)

]

, (4.1)

Ω(t+1)
yx = argmin

Ωyx

[

Lpa(Ω
(t+1)
yy ,Ωyx) +R(Ω(t+1)

yy ,Ωyx)
]

. (4.2)
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Since the objective is convex, it is guaranteed that the above procedure converges to the global
minimum. Let us first consider the minimization problem (4.1). This is equivalent to

Ω(t+1)
yy = argmin

Ωyy≻0

[

F (t)(Ωyy) +R(Ωyy,Ω
(t)
yx)

]

, (4.3)

where
F (t)(Ωyy) := − log det(Ωyy) + tr(Σn

yyΩyy) + tr(Σn
xx(Ω

(t)
yx)

⊤Ω−1
yy Ω

(t)
yx).

In our implementation, the proximal gradient descent method (Nesterov, 2005; Beck & Teboulle,
2009) is utilized to solve the above composite optimization problem, where the gradient of the first
(smooth) term of (4.3) is given by

∇F (t)(Ωyy) = −Ω−1
yy +Σn

yy − Ω−1
yy Ω

(t)
yxΣ

n
xx(Ω

(t)
yx)

⊤Ω−1
yy .

Next, we consider the minimization problem (4.2). This is equivalent to

Ω(t+1)
yx = argmin

[

G(t)(Ωyx) +R(Ω(t+1)
yy ,Ωyx)

]

, (4.4)

where
G(t)(Ωyx) := tr(Σn

xxΩ
⊤
yx(Ω

(t+1)
yy )−1Ωyx) + 2tr(Σn⊤

yx Ωyx).

Again, we apply the proximal gradient method to solve this subproblem. Here the gradient of the
first (smooth) term of (4.4) is given by

∇G(t)(Ωyx) = 2(Ω(t+1)
yy )−1ΩyxΣ

n
xx + 2Σn

yx.

The computational complexity in terms of p and q for this coordinate descent algorithm is as
follows: (1) O(p3 + p2q + pqmin{n, q}) for the subproblem (4.1) due to the inverse of Ωyy and the
matrix product in the evaluation of gradient ∇F (t)(Ωyy); and (2) O(p2q + pqmin{n, q}) for the
subproblem (4.2) from matrix product in evaluating gradient ∇G(t)(Ωyx). Therefore, the overall
complexity of the proposed algorithm is O(p3 + p2q + pqmin{n, q}). This can be compared to the
O((p+ q)3) or higher per iteration complexity required by well known representative algorithms for
full precision matrix estimation (Friedman et al., 2008; d’Aspremont et al., 2008; Rothman et al.,
2008; Lu, 2009). In the high dimensional setups where q ≫ max{n, p}, the computational advantage
of pGGM over standard GGMs can be significant.

5 pGGM for Multivariate Regression with Unknown Covariance

In this section, we show that pGGM provides a convex formulation for solving the following model
of multivariate regression with unknown noise covariance:

Y = Γ∗
yxX + ε̄y, (5.1)

where Y ∈ R
p, X ∈ R

q, Γ∗
yx is a p × q regression coefficient matrix and the random noise vector

ε̄y ∼ N (0, (Ω̄∗
yy)

−1) is independent of X. Our interest is in the simultaneous estimation of Γ∗
yx and

Ω̄∗
yy from observations {Y (i);X(i)}ni=1 in the high-dimensional setting. Note that for this regression

problem we do not have to assume the joint normality of (Y ;X), but rather that the noise term is
normal (or more generally sub-Gaussian). Our discussion in this section is based on the fact that
pGGM is a regularized maximum likelihood estimator for multivariate regression with Gaussian
noise.
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5.1 pGGM as a Conditional Maximum Likelihood Estimator

We will start our discussion under the joint Gaussian setup, which provides the connection of the
pGGM formulation and multivariate regression. Let the true covariance matrix Σ∗ be partitioned
into blocks

Σ∗ =

[

Σ∗
yy Σ∗

yx

Σ∗⊤
yx Σ∗

xx

]

.

Here we assume that (Y ;X) is jointly normal, the conditional distribution of Y given X, given as
follows, remains normal:

Y | X ∼ N
(

Σ∗
yx(Σ

∗
xx)

−1X,Σ∗
yy − Σ∗

yx(Σ
∗
xx)

−1Σ∗⊤
yx

)

. (5.2)

Now by using algebra for block matrix inversion, we may write the precision matrix Ω∗ = (Σ∗)−1

as

Ω∗ =

[

(

Σ∗
yy − Σ∗

yx(Σ
∗
xx)

−1Σ∗⊤
yx

)−1 −
(

Σ∗
yy − Σ∗

yx(Σ
∗
xx)

−1Σ∗⊤
yx

)−1
Σ∗
yx(Σ

∗
xx)

−1

−(Σ∗
xx)

−1Σ∗⊤
yx

(

Σ∗
yy − Σ∗

yx(Σ
∗
xx)

−1Σ∗⊤
yx

)−1
✷

]

,

and thus

Ω∗
yy =

(

Σ∗
yy − Σ∗

yx(Σ
∗
xx)

−1Σ∗⊤
yx

)−1
, Ω∗

yx = −Ω∗
yyΣ

∗
yx(Σ

∗
xx)

−1. (5.3)

Therefore the conditional distribution (5.2) can be rewritten as:

Y | X ∼ N (−(Ω∗
yy)

−1Ω∗
yxX, (Ω∗

yy)
−1).

This can be equivalently expressed as the following multivariate regression model:

Y = −(Ω∗
yy)

−1Ω∗
yxX + εy, (5.4)

where εy ∼ N (0, (Ω∗
yy)

−1) is independent of X. Note that this model can be regarded as a reparam-
eterization of the standard multivariate regression model in (5.1). It is easy to verify that given the
observations {Y (i);X(i)}ni=1, the negative of the conditional log-likelihood function for εy is written
by

− log det(Ω∗
yy) + tr(Σn

yyΩ
∗
yy) + 2tr(Σn⊤

yx Ω
∗
yx) + tr(Σn

xxΩ
∗⊤
yx (Ω

∗
yy)

−1Ω∗
yx).

which is exactly Lpa(Ω
∗
yy,Ω

∗
yx) given by (2.3). Therefore, pGGM is essentially a regularized condi-

tional maximum likelihood estimator for the regression model (5.4). This implies that we can use
pGGM to solve multivariate regression problem with unknown noise covariance matrix Ωyy.

5.2 Convexity and cGGM

We now consider the general multivariate regression model (5.1) with Gaussian noise. A more
straightforward method for estimating the model parameters {Ω̄∗

yy,Γ
∗
yx} was considered by Yin & Li

(2011) using the following ℓ1-regularized log-likelihood function associated with ε̄y:

{Ω̂yy, Γ̂yx} = argmin
Ω̄yy≻0,Γyx

{

− log det Ω̄yy + tr(Σn
Γyx

Ω̄yy) + λn|(Ω̄yy)
−|1 + ρn|Γyx|1

}

, (5.5)
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where Σn
Γyx

= Σn
yy −Σn

yxΓ
⊤
yx −ΓyxΣ

n⊤
yx +ΓyxΣ

n
xxΓ

⊤
yx. However, with this formulation, the objective

function in (5.5) is not jointly convex in Γyx and Ω̄yy, although it is convex with respect to Γyx for
any fixed Ω̄yy, and it is also convex respective to Ω̄yy for any fixed Γyx.

In contrast, the expression (5.4) is jointly convex in {Ωyy,Ωyx}, which may be regarded as a
convex reparameterization of (5.1) under the following transformation:

Ω̄yy = Ωyy , Γyx = −Ω−1
yy Ωyx.

This transformation yields a one-to-one mapping from {Ω̄yy,Γyx} to {Ωyy,Ωyx}. The convexity of
(5.4) is desirable both for optimization and for theoretical analysis which we considered in Section 3.

It is worth mentioning that for high dimensional problems, regularization has to be imposed
on the model parameters. With regularization, the pGGM regression formulation (5.4) becomes
(2.5), which is different from the cGGM formulation of (5.5). This is because for pGGM, the
ℓ1-norm penalties are imposed on {Ωyy,Ωyx}, and for cGGM, the ℓ1-norm penalties have to be
directly imposed on {Ω̄yy,Γyx}. The former has a natural interpretation in terms of the conditional
dependency between the variables in X and Y , while the latter does not have such an intuitive
interpretation.

5.3 Univariate Case

As a special case, when the output Y is univariate, pGGM reduces to a regularized maximum
likelihood estimator for high-dimensional linear regression with unknown variance. In this case,
by replacing the scalar Ωyy and the row vector Ωyx with ω and θ⊤ respectively in the pGGM
formulation (2.5), with element-wise ℓ1-penalty Re, we arrive at the following estimator:

{ω̂, θ̂} = argmin
ω>0,θ

Lpa(ω, θ) + ρ‖θ‖1, (5.6)

where
Lpa(ω, θ) := − log(ω) + Σn

yyω + 2θ⊤Σn
xy + θ⊤Σn

xxθ/ω.

As aforementioned that this is identical to a regularized maximum likelihood estimator for the
following linear regression model with unknown variance:

Y = −ω−1θ⊤X + ε, (5.7)

where ε ∼ N (0, ω−1) is independent of X. The specific ℓ1-penalized maximum likelihood estima-
tor (5.6) has also been studied by Städler et al. (2010) for sparse linear regression with unknown
noise covariance. For multivariate random vector Y , pGGM can be regarded as a multivariate
generalization of the method in (Städler et al., 2010).

For graphical model estimation, pGGM with univariate Y can also be regarded as a variant of
the neighborhood selection method (Meinshausen & Bühlmann, 2006). Let us write Ωjj the entry
of Ω at the jth row and the jth column, and denote by Ωj,−j or Ω−j,j the jth row of Ω with its jth
entry removed or the jth column with its jth entry removed respectively. In order to recover the
non-zero entries in Ω, Meinshausen & Bühlmann (2006) proposed to solve for each row j a Lasso
problem:

θ̂ = argmin
θ

θ⊤Σn
−j,−jθ + 2θ⊤Σn

−j,j + ρ‖θ‖1. (5.8)
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If we fix ω = 1 in (5.6), then the resultant estimator is identical to (5.8). For precision matrix
estimation, our formulation (5.6) is different from neighborhood selection (5.8) due to the inclu-
sion of ω as an unknown parameter. More precisely, the quantity ω−1 is the noise variance for
the corresponding Lasso regression, and the estimator (5.6) may be regarded as an extension of
neighborhood selection without knowing the noise variance. For multivariate random vector Y ,
pGGM can be regarded as a blockwise generalization of neighborhood selection for graphical model
estimation.

For precision matrix estimation, the regression model (5.7) has also been considered by Yuan
(2010). However, the author suggested a procedure to estimate θ via the Dantzig-selector (Candès & Tao,
2007) followed by a mean squared error estimator for the variance ω−1. In contrast, the pGGM
based estimator (5.6) simultaneously estimates the two parameters under a joint convex optimiza-
tion framework.

6 Experiments

In this section, we investigate the empirical performance of the pGGM estimator on both synthetic
and real datasets and compare its performance to several representative approaches for sparse
precision matrix estimation.

6.1 Monte Carlo Simulations

In the Monte Carlo simulation study, we investigate parameter estimation and support recovery
accuracy as well as algorithm efficiency using synthetic data for which we know the ground truth.

6.1.1 Data

Our simulation study employs a precision matrix Ω∗ whose sub-matrices Ω∗
yy and Ω∗

yx are sparse,

while Ω∗
xx is dense. The matrix is generated as follows: we first define Ω̃∗ = M + σI, where each

off-diagonal entry in M is generated independently and equals 1 with probability P = 0.1 or 0 with
probability 1−P = 0.9. M has zeros on the diagonal, and σ is chosen so that the condition number
of Ω∗ is p + q. We then add the q × q all-one matrix to the block Ω̃∗

xx and the resultant matrix is
defined as Ω∗. We generate a training sample of size n from N (0,Σ∗) and an independent sample of
size n from the same distribution for validating the tuning parameters. The goal is to estimate the
sparse blocks {Ω∗

yy,Ω
∗
yx}. We fix (n, p) = (100, 50) and compare the performance under increasing

values of q = 50, 100, 200, 500, replicated 50 times each.

6.1.2 Comparing Methods and Evaluation Metrics

We compare the performance of pGGM to the following three representative approaches for sparse
precision matrix estimation:

• cGGM for conditional Gaussian graphical model estimation (Yin & Li, 2011). After recover-
ing the regression parameters Γ̂yx and the conditional precision matrix Ω̂yy, we estimate the
block Ω̂yx = −Ω̂yyΓ̂yx.

• GLasso for ℓ1-penalized precision matrix estimation (Friedman et al., 2008). We convention-
ally apply GLasso to estimate the full precision matrix Ω̂.
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• NSLasso for support recovery (Meinshausen & Bühlmann, 2006). We use a modified version
to recover the supports in the blocks Ω∗

yy and Ω∗
yx by regressing each Yi on Y−i and X via the

Lasso. Such a modified neighborhood selection method has also been adopted by Yin & Li
(2011) for their empirical study. Note that this method does not provide an estimate of the
precision matrix.

For all methods, we use the validation set to estimate the values of the regularization parameters.
We measure the parameter estimation quality of Θ̂ = (Ω̂yy, Ω̂yx) by its Frobenius norm distance

to Θ∗ = (Ω∗
yy,Ω

∗
yx). To evaluate the support recovery performance, we use the F-score from the

information retrieval literature. Note that precision, recall, and F-scores are standard concepts in
information retrieval defined as follows:

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F-score = 2·Precision·Recall
Precision+Recall ,

where TP stands for true positives (for nonzero entries), and FP and FN stand for false positives
and false negatives. Since one can generally trade-off precision and recall by increasing one and
decreasing the other, a common practice is to use the F-score as a single metric to evaluate different
methods. The larger the F-score, the better the support recovery performance.

6.1.3 Results

Figure 1(a), 1(b), 1(c) plot the mean and standard errors of the above metrics as a function of
dimensionality q. The results show the following:

• Parameter estimation accuracy (see Figure 1(a)): pGGM and cGGM perform favorably to
GLasso. This is expected because GLasso enforces the sparsity of the full precision matrix
and thus tends to select a smaller regularization parameter due to the dense structure of block
Ω∗
xx. In contrast, pGGM and cGGM exclude Ωxx in the model and thus avoid potential under

penalization of sparsity. pGGM and cGGM perform comparably on parameter estimation
accuracy. Note that NSLasso does not estimate the precision matrix.

• Support recovery (see Figure 1(b)): pGGM achieves the best performance among all four
methods being compared. pGGM outperforms cGGM since the former directly enforces the
sparsity on blocks Ωyy and Ωyx while the latter enforces the sparsity of Γyx = −Ω−1

yy Ωyx which
is not necessarily sparse. GLasso is inferior due to the under penalization. We also observe
that pGGM is slightly better than NSLasso.

• Computational efficiency (see Figure 1(c)): The pGGM and cGGM methods can achieve
×100 speedup over GLasso when q = 500.

We further compare pGGM to GLasso applied to the marginal distribution of Y by ignoring
X. We call this method as GLasso-M. The results are plotted in Figure 1(d), 1(e), 1(f). It can be
observed from these figures that pGGM consistently outperforms GLasso-M in terms of parameter
estimation and support recovery accuracies.

The detailed performance figures that are used to generate Figure 6.1 are presented in Ap-
pendix B in tabular forms, along with additional performance metrics in spectral norm and matrix
ℓ1-norm. The observations using the other norms are consistent with that of the Frobenius norm.
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Figure 6.1: Performance curves on the synthetic data. Top row: comparison of the estimated
blocks {Ω̂yy, Ω̂yx}. Bottom row: comparison of the estimated Ω̂yy by pGGM and GLasso-M. The
down-arrow ↓ means the smaller the better while the up-arrow ↑ means the larger the better.

6.2 Real Data

We further study the performance of pGGM on real data.

6.2.1 Data

We use three multi-label datasets Corel5k, MIRFlickr25k and RCV1-v2 and a stock price dataset
S&P500 for this study. For each dataset, we generate a training sample for parameter estimation
and an independent test sample for evaluation. Table 6.1 summarizes some statistics of the data.
We next describe the derails of these datasets.
Corel5k. This dataset was first used in (Duygulu et al., 2002). Since then, it has become a stan-
dard benchmark for keyword based image retrieval and image annotation. It contains around
5,000 images manually annotated with 1 to 5 keywords. The vocabulary contains 260 visual
words. The average number of keywords per sample is 3.4 and the maximum number of key-
words per sample is 5. The data set along with the extracted visual features are publicly available
at lear.inrialpes.fr/people/guillaumin/data.php. In our experiment, we down sample the
training data to size 450 for constructing the Gaussian graphical models of image keywords. For
evaluation purpose, an independent test set of size 450 is selected. Each image is described by
the GIST feature which has dimensionality 512. Our goal is to construct a graphical model for
image tags. Note that the size of label-feature joint variable is 260+ 512 = 772, which allows us to
examine the performance when p+ q > n.
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Table 6.1: Statistics of data.
p q training size (n) test size

Corel5k 260 512 450 450
MIRFlickr25k 457 512 1,250 1,250
RCV1-v2 103 1,000 1,000 1,000
S&P500 165 300 101 101

MIRFlickr25k. This data contains 25,000 images collected from Flickr over a period of 15 months.
The database is available at press.liacs.nl/mirflickr/. The collection contains highest scored
images according to Flickr’s “interestingness” score. These images were annotated for 24 con-
cepts, including object categories but also more general scene elements such as sky, water or
indoor. For 14 of the 24 concepts, a second and more strict annotation was made. The vocabu-
lary contains 457 tags. The average number of words per sample is 2.7 and the maximum words
per sample is 32. The data set along with the extracted visual features are publicly available
at lear.inrialpes.fr/people/guillaumin/data.php. In our experiment, we down sample the
training set to size 1,250 for constructing the Gaussian graphical models of image keywords. For
evaluation purpose, an independent test set of size 1,250 is selected. Each image is described by
the GIST feature of dimension 512. Our goal is to construct a graphical model for image tags.
RCV1-v2. This data set contains newswire stories from Reuters Ltd Lewis et al. (2004). Sev-
eral schemes were utilized to process the documents including removing stopping words, stem-
ming, and transforming each document into a numerical vector. There are three sets of cat-
egories: Topics, Industries and Regions. In this paper, we consider the Topics category set,
and make use of a subset collection (sample size 3,000, feature dimension 47,236) of this data
from www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets. We further down sample the data
set to a size of 1,000, and select the top 1,000 words with highest TF-IDF frequencies. For eval-
uation purpose, an independent test set of size 1,000 is selected. The vocabulary contains 103
keywords. The average number of words per sample is 3.3 and the maximum words per sample is
12. Our goal is to construct a graphical models for these keywords.
S&P500. We investigate the historical prices of S&P500 stocks over 5 years, from January 1, 2007
to January 1, 2012. By taking out the stocks with less than 5 years of history, we end up with
465 stocks, each having daily closing prices over 1,260 trading days. The prices are first adjusted
for dividends and splits and the used to calculate daily log returns. Each day’s return can be
represented as a point in R

465. For each day’s return, we chose the first 300 as X and the rest 165
as Y . We down sample the data set to size 101. For evaluation purpose, an independent test set
of size 101 is selected. Our goal is to construct the conditional precision matrix of Y conditioned
on X.

6.2.2 Methods and Evaluation Metrics

In these experiments, we compare pGGM to GLasso, GLasso-M (for estimating marginal precision
matrix using the data component Y only) and NSLasso. Here we focus on convex formulations,
and thus skip cGGM. For all these methods, we use the Bayesian information criterion (BIC) to
select the regularization parameters.

Since there is no ground truth precision matrix, we measure the quality of Θ̂ by evaluating
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Table 6.2: Quantitative results on real data

Lpa value on test set CPU Time (sec.)on training set

pGGM GLasso GLasso-M NSLasso pGGM GLasso GLasso-M NSLasso

Corel5k -1.08e3 -0.63e3 — — 16.63 125.74 9.07 9.06
MIRFlickr25k -1.99e3 -1.99e3 — — 56.93 228.71 39.74 42.89
RCV1-v2 -0.42e3 -0.39e3 — — 3.04 421.86 1.38 75.43
S&P500 0.22e3 0.24e3 — — 4.83 46.65 4.28 4.29

the Lpa objective (recall its definition in (2.3)) on the test data. The training CPU times are also
reported. Since the category information of RCV1-v2 and S&P500 are available, we also measure
the precision of the top k links in the constructed conditional GGM from Ωyy on these two datasets.
A link is regarded as true if and only if it connects two nodes belonging to the same category. Note
that the category information is not used in any of the graphical model learning procedures.

6.2.3 Results

Table 6.2 tabulates the evaluated Lpa objectives on the test set and the training time. The key
observations are

• In most cases, pGGM outputs smaller Lpa objective value than GLasso (note that the Lpa

value cannot be evaluated for GLasso-M and NSLasso). pGGM runs much faster than GLasso
on all these datasets.

• pGGM is slightly slower than NSLasso on Corel5k, MIRFlickr25k and S&P500 where p ∼ q,
but significantly faster than NSLasso on RCV1-v2 where p ≪ q.

Figure 6.2 shows the precision of top k links in the conditional graphs as a function of k. It can be
seen that pGGM performs favorably in comparison to the other three methods for identifying correct
links on RCV1-v2. On S&P500, pGGM and GLasso-M have comparable performance, and both are
better than GLasso and NSLasso. This is because the S&P500 stocks are weakly correlated and
thus the conditional graphical model can be well approximated by the marginal graphical model.

We further evaluate the sparsity of the constructed graphs on these datasets. The links are
identified by {(i, j) : i 6= j, |[Ω̂yy ]ij| ≥ µ} in which µ > 0 is a threshold value. Figure 6.3 shows the
number of links in graphs as a function of µ. It can be seen that pGGM, GLasso and NSLasso tend
to output sparser graphical models than GLasso-M. A potential reason is that GLasso-M ignores
the information provided by X, and thus false positive links can be induced. NSLasso outputs the
sparsest network on corel5k, MIRFlickr25k and S&P500, while pGGM outputs the sparsest model
on RCV1-v2. Note that NSLasso does not estimate precision matrix. Moreover, pGGM tends to
be slightly sparser than GLasso. These observations are consistent with our observations on the
synthetic data.

Figure 6.4 plots the graphs constructed by using different estimation methods with µ = 0.1
for Corel5k, MIRFlickr25k and RCV1-v2, and µ = 0.05 for S&P500. It can be seen that different
methods will construct different graphs. Figure 6.5 illustrates in detail the top 50 links in each
graph.

17



0 500 1000 1500
0.4

0.5

0.6

0.7

0.8

0.9

1

k

P
re

ci
si

on

 RCV1−v2

 

 
pGGM
GLasso
GLasso−M
NSLasso

0 500 1000 1500

0.4

0.5

0.6

0.7

0.8

0.9

1

k

P
re

ci
si

on

 S&P500

 

 
pGGM
GLasso
GLasso−M
NSLasso

Figure 6.2: Link precision curves on RCV1-v2 and S&P500.
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Figure 6.3: Number of links as a function of µ in the constructed conditional graphical model.
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7 Conclusion

This paper presents a new formulation pGGM for estimating sparse partial precision matrix. The
advantages of pGGM over prior GGMs and conditional GGMs include: (i) the formulation is
convex; (ii) the optimization procedure scales well with respect to the component X; (iii) the
model has natural interpretation in terms of the conditional dependency between the variables in
X and Y ; and (iv) theoretical guarantees on the global solution can be established without sparsity
assumptions on the precision matrix of X. We showed that the rate of convergence of pGGM
depends on how sparse the underlying true partial precision matrix is. Numerical experiments on
several synthetic and real datasets demonstrated the competitive performance of pGGM compared
to the existing approaches.

In the current paper, the pGGM is derived under the assumption that (Y ;X) is jointly normally
distributed. As discussed in Section 5 that pGGM is still valid in the setting where the joint
normality is relaxed to the conditional normality. We would like to point out that by assuming
the Gaussian copular structure of the random vector, pGGM can be easily extended to the setting
of nonparanormal (Liu et al., 2009) which is a useful tool for semiparametric estimation of high
dimensional undirected graphs. We believe that such an extension will broaden the application
range of pGGM in practice.
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A Technical Proofs

A.1 Proof of Proposition 1

Proof. Using the following well known fact of block matrix determinant

det

([

A B⊤

B C

])

= det(A) det(C −BA−1B⊤)

and simple algebra, we obtain that

L(Ωyy,Ωyx,Ωxx) = Lpa(Ωyy,Ωyx)− log det(Ωxx−Ω⊤
yxΩ

−1
yy Ωyx)+tr(Σn

xx(Ωxx−Ω⊤
yxΩ

−1
yy Ωyx)), (A.1)

where

Lpa(Ωyy,Ωyx) = − log det(Ωyy) + tr(Σn
yyΩyy) + 2tr(Σn⊤

yx Ωyx) + tr(Σn
xxΩ

⊤
yxΩ

−1
yy Ωyx).

The claim (2.2) follows immediately from the re-parametrization of Ω̃xx = Ωxx − Ω⊤
yxΩ

−1
yy Ωyx.

We next show that Lpa(Ωyy,Ωyx) is convex. Note that when Σn
xx ≻ 0, by minimizing both

sides of (A.1) over Ωxx, which is achieved at Ωxx = (Σn
xx)

−1 +Ω⊤
yxΩ

−1
yy Ωyx, we know that up to an

additive constant, Lpa is the pointwise minimum of L over Ωxx. Since the pointwise minimization
of a convex objective function with a part of the parameters is convex with respect to the other
parameters (see, e.g., Boyed & Vandenberghe, 2004), we immediately obtain the convexity of Lpa.
In the high-dimensional case where n < q, we only have Σn

xx � 0 and thus the minimization over
Ωxx is not well-defined. To show the convexity in general case, we may replace Σxx by Σxx + λI
for some λ > 0, and the resulting partial GMM formula:

Lλ
pa(Ωyy,Ωyx) = − log det(Ωyy) + tr(Σn

yyΩyy) + 2tr(Σn⊤
yx Ωyx) + tr((Σn

xx + λI)Ω⊤
yxΩ

−1
yy Ωyx)

is convex in (Ωyy,Ωyx) by the previous argument. Now, let λ → 0+, we have Lλ
pa(Ωyy,Ωyx) →

Lpa(Ωyy,Ωyx), which immediately implies the convexity of Lpa(·, ·).
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A.2 Proof of Proposition 3

Lemma 1. Assume the conditions of the proposition hold. Then for any matrix V = (Vyy, Vyx) ∈
R
p×p × R

p×q such that |VS̄ |1 ≤ α|VS |1, we have

tr(V Σ̃V ⊤) ≥ ρ−
5
‖V ‖2F , where Σ̃ =

[

Ω−1
yy 0

0 Σn
xx

]

.

Moreover, we have
tr(VyxΣ

n
xxV

⊤
yx) ≤ 2.25ρ+‖V ‖2F .

Proof. In the following, we let s = |S| and s′ = s̃ − s ≥ 4(ρ+/ρ−)α
2s. Since r ≤ λmax(Ω

∗
yy), we

know that λmax(Ωyy)
−1 ≥ ρ−. Indeed, λmax(Ωyy) ≤ λmax(Ω

∗
yy) + λmax(∆Ωyy) ≤ λmax(Ω

∗
yy) + r ≤

2λmax(Ω
∗
yy), which from the definition of ρ− implies that λmax(Ωyy)

−1 ≥ ρ−. Therefore for any

U ∈ R
p×(p+q) such that |U |0 ≤ s+ s′, the conditions of Assumption 1 imply that

tr(U Σ̃U⊤) ≥ ρ−‖U‖2F .

We order the elements of VS̄ in descending order of absolute values. Let V (0) = VS which contains
s nonzero values, and V (k) contains (at most) s′ nonzero values of VS̄ with (ks′ − s′ + 1)-th to
(ks′)-th largest absolute values. It follows that ‖V (k+1)‖F ≤

√

|V (k+1)|∞|V (k+1)|1 ≤ |V (k)|1/
√
s′

for all k ≥ 1. Therefore we have

a0 = tr((V (0) + V (1))Σ̃(V (0) + V (1))⊤) ≥ ρ−‖V (0) + V (1)‖2F
and

a1 =
∣

∣tr((V (0) + V (1))Σ̃
∑

k≥1

V (k+1)⊤)
∣

∣

≤√
a0
√
ρ+

∑

k≥1

‖V (k+1)‖F

≤√
a0ρ+

∑

k≥1

|V (k)|1/
√
s′

≤α
√
a0ρ+|VS |1/

√
s′ ≤ α

√
a0ρ+‖V (0) + V (1)‖F

√

s/s′.

Note that tr(V Σ̃V ⊤) ≥ a0 − 2a1 + a2, where

a2 = tr











∑

k≥1

V (k+1)



 Σ̃





∑

k≥1

V (k+1)





⊤





.

The semi-positive-definiteness of Σ̃ implies that minµ[a0 + 2µa1 + µ2a2] ≥ 0, which implies that
a21 ≤ a0a2. Therefore

tr(V ⊤Σ̃V ) ≥a0 − 2a1 + a2 ≥ a0 − 2a1 + a21/a0

≥ρ−‖V (0) + V (1)‖2F (1− α
√

(ρ+/ρ−)(s/s′))
2 ≥ ρ−‖V (0) + V (1)‖2F /4,

where the last inequality is due to the definition of s′ that implies that α
√

(ρ+/ρ−)(s/s′) ≤ 0.5.
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Moreover we have

‖V ‖2F =‖V (0) + V (1)‖2F +
∑

k≥1

‖V (k+1)‖2F

≤‖V (0) + V (1)‖2F +
∑

k≥1

‖V (k)‖21/s′

≤‖V (0) + V (1)‖2F + ‖V (1)‖1‖VS̄‖1/s′

≤‖V (0) + V (1)‖2F + α‖V (1)‖2‖VS‖2
√

s/s′

≤(1 + 0.5α
√

s/s′)‖V (0) + V (1)‖2F ≤ 1.25‖V (0) + V (1)‖2F .

By combining the previous two displayed inequalities, we obtain the first desired bound.
To prove the second bound, we define

Σ̃′ =

[

0p×p 0
0 Σn

xx

]

.

Therefore for any U ∈ R
p×(p+q) such that |U |0 ≤ s+ s′, the conditions of Assumption 1 imply that

tr(U Σ̃′U⊤) ≤ ρ+‖U‖2F .

Therefore we have
a′0 = tr((V (0) + V (1))Σ̃′(V (0) + V (1))⊤) ≤ ρ+‖V ‖2F

and

a′2 =tr











∑

k≥1

V (k+1)



 Σ̃′





∑

k≥1

V (k+1)





⊤






≤
∑

k≥1

∑

k′≥1

tr(V (k+1)Σ̃′V (k′+1)⊤)

≤ρ+
∑

k≥1

∑

k′≥1

‖V (k+1)‖F ‖V (k′+1)‖F

≤ρ+
∑

k≥1

∑

k′≥1

|V (k)|1|V (k′)|1/s′ ≤ ρ+|VS̄ |21/s′

≤α2ρ+|VS |21/s′ ≤ α2ρ+‖V ‖2F (s/s′).

Therefore we obtain (using α2(s/s′) ≤ 0.25)

tr(VyxΣ
n
xxV

⊤
yx) ≤ a′0 + 2

√

a′0a
′
2 + a′2 ≤ 1.5a′0 + 3a′2 ≤ (1.5 + 3/4)ρ+‖V ‖2F = 2.25‖V ‖2F .

This completes the proof.

Lemma 2. Let

ϑ = min

[

2

3
,

λmin(Ω
∗
yy)

8λmax(Ω∗
yxΣ

∗
xx(Ω

∗
yx)

⊤)

]

,

then we have
λmax(Ω

−1
yy ΩyxΣ

n
xxΩ

⊤
yx) ≤ 1/(2ϑ).
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Proof. Let σ(A) be the largest singular value of a matrix A, then σ(A) =
√

λmax(A⊤A). Therefore
we have

√

λmax

[

ΩyxΣn
xxΩ

⊤
yx

]

=σ(Ωyx(Σ
n
xx)

1/2)

≤σ(Ω∗
yx(Σ

n
xx)

1/2) + σ(∆Ωyx(Σ
n
xx)

1/2)

≤σ(Ω∗
yx(Σ

n
xx)

1/2) +
√

tr(∆ΩyxΣn
xx∆Ω⊤

yx)

≤
√

λmax

[

Ω∗
yxΣ

n
xx(Ω

∗
yx)

⊤
]

+ 1.5
√
ρ+‖∆Ω‖F

≤1.4
√

λmax

[

Ω∗
yxΣ

∗
xx(Ω

∗
yx)

⊤
]

,

where the third inequality uses the second inequality of Lemma 1, and the last inequality uses the

third inequality of Assumption 1 and ‖∆Ω‖F ≤ r ≤ 0.13
√

λmax

[

Ω∗
yxΣ

∗
xx(Ω

∗
yx)

⊤
]

/ρ+. This implies

λmax

[

ΩyxΣ
n
xxΩ

⊤
yx

]

≤ 2λmax

[

Ω∗
yxΣ

∗
xx(Ω

∗
yx)

⊤
]

.

Since the assumption of r ≤ λmin(Ω
∗
yy)/2 also implies that

λmin(Ωyy) ≥ λmin(Ω
∗
yy)− λmin(∆Ωyy) ≥ λmin(Ω

∗
yy)− r ≥ λmin(Ω

∗
yy)/2.

Therefore we have

λmax(Ω
−1
yy ΩyxΣ

n
xxΩ

⊤
yx) ≤

λmax(ΩyxΣ
n
xxΩ

⊤
yx)

λmin(Ωyy)
≤

4λmax

[

Ω∗
yxΣ

∗
xx(Ω

∗
yx)

⊤
]

λmin(Ω∗
yy)

= 1/(2ϑ),

which leads to the desired bound.

Proof of Proposition 3. For any s ∈ (0, 1), we define for convenience that

Ωyy = Ω∗
yy + s∆Ωyy, Ωyx = Ω∗

yx + s∆Ωyx,

and consider the function f(s) defined as

f(s) := − log det(Ωyy) + tr(Σn
yyΩyy) + 2tr(Σn⊤

yx Ωyx) + tr(Σn
xxΩ

⊤
yxΩ

−1
yy Ωyx).

It can be verified that

f ′(s) =− tr(Ω−1
yy ∆Ωyy) + tr(Σn

yy∆Ωyy)

+ 2tr(Σn⊤
yx ∆Ωyx) + 2tr(Σn

xxΩ
⊤
yxΩ

−1
yy ∆Ωyx)− tr(Σn

xxΩ
⊤
yxΩ

−1
yy ∆ΩyyΩ

−1
yy Ωyx)

and

f ′′(s) =tr(Ω−1
yy ∆ΩyyΩ

−1
yy ∆Ωyy) + 2tr(Σn

xx∆Ω⊤
yxΩ

−1
yy ∆Ωyx)− 4tr(Σn

xxΩ
⊤
yxΩ

−1
yy ∆ΩyyΩ

−1
yy ∆Ωyx)

+ 2tr(Σn
xxΩ

⊤
yxΩ

−1
yy ∆ΩyyΩ

−1
yy ∆ΩyyΩ

−1
yy Ωyx).

We obtain from Taylor expansion that

∆Lpa(Θ
∗,∆Θ) =

1

2
f ′′(s), for some s ∈ (0, 1).
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This implies that

f ′′(s) = tr(Ω−1
yy ∆ΩyyΩ

−1
yy ∆Ωyy) + 2tr(Σn

xx∆Ω⊤
yxΩ

−1
yy ∆Ωyx)− 4tr(Σn

xxΩ
⊤
yxΩ

−1
yy ∆ΩyyΩ

−1
yy ∆Ωyx)

+2tr(Σn
xxΩ

⊤
yxΩ

−1
yy ∆ΩyyΩ

−1
yy ∆ΩyyΩ

−1
yy Ωyx)

= tr(Ω−1
yy ∆ΩyyΩ

−1
yy ∆Ωyy) + 2tr(Σn

xx∆Ω⊤
yxΩ

−1
yy ∆Ωyx)− 4tr(Σn

xxΩ
⊤
yxΩ

−1
yy ∆ΩyyΩ

−1
yy ∆Ωyx)

+(2 + ϑ)tr(Σn
xxΩ

⊤
yxΩ

−1
yy ∆ΩyyΩ

−1
yy ∆ΩyyΩ

−1
yy Ωyx)− ϑtr(Σn

xxΩ
⊤
yxΩ

−1
yy ∆ΩyyΩ

−1
yy ∆ΩyyΩ

−1
yy Ωyx)

≥ tr(Ω−1
yy ∆ΩyyΩ

−1
yy ∆Ωyy) +

2ϑ

2 + ϑ
tr(Σn

xx∆Ω⊤
yxΩ

−1
yy ∆Ωyx)

−ϑtr(Ω−1/2
yy ΩyxΣ

n
xxΩ

⊤
yxΩ

−1/2
yy Ω−1/2

yy ∆ΩyyΩ
−1
yy ∆ΩyyΩ

−1/2
yy )

≥ tr(Ω−1
yy ∆ΩyyΩ

−1
yy ∆Ωyy) +

2ϑ

2 + ϑ
tr(Σn

xx∆Ω⊤
yxΩ

−1
yy ∆Ωyx)

−ϑλmax(Ω
−1/2
yy ΩyxΣ

n
xxΩ

⊤
yxΩ

−1/2
yy )tr(Ω−1/2

yy ∆ΩyyΩ
−1
yy ∆ΩyyΩ

−1/2
yy )

≥ 0.5tr(Ω−1
yy ∆ΩyyΩ

−1
yy ∆Ωyy) +

2ϑ

2 + ϑ
tr(Σn

xx∆Ω⊤
yxΩ

−1
yy ∆Ωyx),

where we have used the trace equality tr(AB) = tr(BA) throughout the derivations. The first
inequality is due to the trace inequality (2/(2+ϑ))tr(A⊤A)− 4tr(A⊤B)+ (2+ϑ)tr(B⊤B) ≥ 0; the
second inequality uses tr(AB) ≤ λmax(A)tr(B) for symmetric positive semidefinite matrices A and

B; and the last inequality is due to λmax(Ω
−1/2
yy ΩyxΣ

n
xxΩ

⊤
yxΩ

−1/2
yy )ϑ ≤ 1/2 (Lemma 2).

Since ϑ ≤ 2/3, we have 0.5 ≥ 2ϑ/(2 + ϑ). Therefore

2∆Lpa(Θ
∗,∆Θ) =f ′′(s)

≥ 2ϑ

2 + ϑ

[

tr(Ω−1
yy ∆ΩyyΩ

−1
yy ∆Ωyy) + tr(Σn

xx∆Ω⊤
yxΩ

−1
yy ∆Ωyx)

]

≥ 2ϑ

2 + ϑ
λ−1
max(Ωyy)

[

tr(∆ΩyyΩ
−1
yy ∆Ωyy) + tr(∆ΩyxΣ

n
xx∆Ω⊤

yx)
]

≥2ϑλ−1
max(Ωyy)ρ−
5(2 + ϑ)

‖∆Θ‖2F ,

where the second inequality uses tr(AB) ≥ λmin(A)tr(B) for symmetric positive semidefinite ma-
trices A and B; and the last inequality follows from Lemma 1. We complete the proof by noticing
5(2 + ϑ) ≤ 40/3.

A.3 Proof of Proposition 4

We will employ the following tail-bound for χ2 random variable, due to Laurent & Massart (2000).

Lemma 3. Consider independent Gaussian random variables z1, . . . , zn ∼ N (0, σ2). We have for
all t > 0:

Pr

[

n
∑

ℓ=1

z2ℓ ≥ nσ2 + 2σ2
√
nt+ 2σ2t

]

≤ e−t

and

Pr

[

n
∑

ℓ=1

z2ℓ ≤ nσ2 − 2σ2
√
nt

]

≤ e−t.
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The following lemma is a consequence of Lemma 3 when applied to the covariance of multivariate
Gaussian distribution.

Lemma 4. Consider the covariance matrix Σ∗ of a d-dimensional Gaussian random vector and its
sample covariance Σn from n i.i.d. Gaussian random vectors from N (0,Σ∗). For any η ∈ (0, 1)
and any deterministic d′ × d matrix A. Let

σ2 = max
ij

[

(AΣ∗A⊤)ii + 2|(AΣ∗)ij |+ (Σ∗)jj

]

,

then with probability at least 1− η for any η ∈ (0, 1), we have

|A(Σn −Σ∗)|∞ ≤ 2σ2
√

ln(4dd′/η)/n,

provided that n ≥ ln(4dd′/η).

Proof. Consider the multivariate Gaussian random vector X(1), . . . ,X(n) ∼ N (0,Σ∗).

Given any index pair (i, j), let z(ℓ) = (AX(ℓ))i + X
(ℓ)
j . We have z(ℓ) ∼ N (0, (AΣ∗A⊤)ii +

2(AΣ∗)ij + (Σ∗)jj). We thus obtain from Lemma 3 that for t ≤ n: with probability at least
1− 2e−t,

∣

∣

∣

∣

∣

n−1
n
∑

ℓ=1

(AX(ℓ))i +X
(ℓ)
j )2 − [(AΣ∗A⊤)ii + 2(AΣ∗)ij + (Σ∗)jj]

∣

∣

∣

∣

∣

≤ 4σ2
√

t/n.

Similarly, we have for t ≤ n: with probability at least 1− 2e−t,

∣

∣

∣

∣

∣

n−1
n
∑

ℓ=1

(AX(ℓ))i −X
(ℓ)
j )2 − [(AΣ∗A⊤)ii − 2(AΣ∗)ij + (Σ∗)jj]

∣

∣

∣

∣

∣

≤ 4σ2
√

t/n.

Taking union bound, and adding the previous two inequalities, we obtain that with probability at
least 1− 4e−t:

∣

∣

∣

∣

∣

[

n−1
n
∑

ℓ=1

(AX(ℓ))i +X
(ℓ)
j )2 − [(AΣ∗A⊤)ii + 2(AΣ∗)ij + (Σ∗)jj]

]

−
[

n−1
n
∑

ℓ=1

(AX(ℓ))i −X
(ℓ)
j )2 − [(AΣ∗A⊤)ii − 2(AΣ∗)ij + (Σ∗)jj]

]∣

∣

∣

∣

∣

≤ 8σ2
√

t/n.

This simplifies to |A(Σn − Σ∗)ij | ≤ 2σ2
√

t/n. Now by taking union bound over i = 1, . . . , d′ and
j = 1, . . . , d, and set η = 4dd′e−t, we obtain the desired bound.

Note that in Lemma 4, we have σ2 ≤ 2maxi(AΣ
∗A⊤)ii + 2maxi(Σ

∗)ii. It implies that with
probability 1− η:

|A(Σn − Σ∗)|∞ ≤ 4[max
i

(AΣ∗A⊤)ii +max
i

(Σ∗)ii]
√

ln(4dd′/η)/n (A.2)

when n ≥ ln(4dd′/η).
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Proof of Proposition 4. For any η ∈ (0, 1) such that n ≥ ln(10(p + q)2/η), we obtain from (A.2)
with A = I that with probability 1− 0.4η:

|Σn − Σ∗|∞ ≤ 8max
i

(Σ∗)ii
√

ln(10(p + q)2/η)/n.

Let Ã = (Ω∗
yy)

−1Ω∗
yx. We may also apply (A.2) to the Gaussian covariance matrix ÃΣ∗

xxÃ
⊤ and

A = I to obtain that with probability 1− 0.4η:

|ÃΣn
xxÃ

⊤ − ÃΣ∗
xxÃ

⊤|∞ ≤ 8max
i

(ÃΣ∗
xxÃ

⊤)ii
√

ln(10q2/η)/n.

Similarly, we may also apply (A.2) to the Gaussian covariance matrix Σ∗ with A = Ã to obtain
that with probability 1− 0.2η:

|ÃΣn
xx − ÃΣ∗

xx|∞ ≤ 8max
i

(ÃΣ∗
xxÃ

⊤)ii
√

ln(20pq/η)/n.

Taking union bound with the previous three inequalities, we have with probability 1− η:

An ≤ |Σn − Σ∗|∞ + |ÃΣn
xxÃ

⊤ − ÃΣ∗
xxÃ

⊤|∞ ≤ 8K∗

√

ln(10(p + q)2/η)/n

and
0.5Bn ≤ |Σn − Σ∗|∞ + |ÃΣn

xx − ÃΣ∗
xx|∞ ≤ 8K∗

√

ln(10(p + q)2/η)/n,

where
K∗ = max

i
(Σ∗

ii) + max
i

(((Ω∗
yy)

−1Ω∗
yxΣ

∗
xxΩ

∗⊤
yx (Ω

∗
yy)

−1)ii).

This completes the proof.

A.4 Proof of Theorem 1

For convenience, we will introduce the following notations:

∆Ωyy := Ω̂yy − Ω∗
yy, ∆Ωyx := Ω̂yx − Ω∗

yx,

and ∆Θ = Θ̂−Θ∗ = (∆Ωyy,∆Ωyx).
We first introduce the following lemma which shows that error is in the cone of Definition 1.

Lemma 5. Assume that min{λn, ρn} ≥ 2γn. Then the error ∆Θ satisfies |∆ΘS̄|1 ≤ α|∆ΘS |1.

Proof. Since (Ω∗
yy)S̄yy

= 0, we have

|(Ω∗
yy +∆Ωyy)

−|1 − |(Ω∗
yy)

−|1 = |(Ω∗
yy +∆Ωyy)

−
Syy

|1 + |(Ω∗
yy +∆Ωyy)

−
S̄yy

|1 − |(Ω∗
yy)

−|1
= |(Ω∗

yy +∆Ωyy)
−
Syy

|1 + |(∆Ωyy)S̄−

yy

|1 − |(Ω∗
yy)

−|1
≥ |(∆Ωyy)

−
S̄yy

|1 − |(∆Ωyy)
−
Syy

|1
≥ |(∆Ωyy)S̄yy

|1 − |(∆Ωyy)Syy
|1. (A.3)

Similarly we have

|Ω∗
yx +∆Ωyx|1 − |Ω∗

yx|1 ≥ |(∆Ωyx)S̄yx
|1 − |(∆Ωyx)Syx

|1. (A.4)
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We define the function f(s) as in the proof of Proposition 3. From the convexity of the loss Lpa

we have
Lpa(Θ̂)− Lpa(Θ

∗) = f(1)− f(0) ≥ f ′(0) = tr(A⊤
n∆Ωyy) + tr(B⊤

n ∆Ωyx),

where

An = Σn
yy − (Ω∗

yy)
−1 − (Ω∗

yy)
−1Ω∗

yxΣ
n
xx(Ω

∗
yx)

⊤(Ω∗
yy)

−1, Bn = 2(Σn
yx + (Ω∗

yy)
−1Ω∗

yxΣ
n
xx).

From the equalities in (5.3) we can equivalently write

An = Σn
yy−Σ∗

yy−(Ω∗
yy)

−1Ω∗
yx(Σ

n
xx−Σ∗

xx)Ω
∗⊤
yx (Ω

∗
yy)

−1, Bn = 2(Σn
yx−Σ∗

yx+(Ω∗
yy)

−1Ω∗
yx(Σ

n
xx−Σ∗

xx)).

Note that we have

|tr(A⊤
n∆Ωyy)| ≤ |An|∞|∆Ωyy|1 ≤

λn

2
|∆Ωyy|1,

and
|tr(B⊤

n ∆Ωyx)| ≤ |Bn|∞|∆Ωyx|1 ≤
ρn
2
|∆Ωyx|1,

where we have used the assumption min{λn, ρn} ≥ 2γn. Therefore

Lpa(Θ̂)− Lpa(Θ
∗) ≥ −λn

2
|∆Ωyy|1 −

ρn
2
|∆Ωyx|1. (A.5)

By combing (A.3), (A.4), and (A.5), we obtain

0 ≥ Lpa(Θ̂) +Re(Θ̂)− Lpa(Θ
∗)−Re(Θ

∗)

≥ −λn

2
|∆Ωyy|1 −

ρn
2
|∆Ωyx|1 + λn(|(∆Ωyy)S̄yy

|1 − |(∆Ωyy)Syy
|1) + ρn(|(∆Ωyx)S̄yx

|1 − |(∆Ωyx)Syx
|1)

≥ λn

2

(

|(∆Ωyy)S̄yy
|1 − 3|(∆Ωyy)Syy

|1
)

+
ρn
2

(

|(∆Ωyx)S̄yx
|1 − 3|(∆Ωyx)Syx

|1
)

≥ min(λn, ρn)

2

(

|(∆Ωyy)S̄yy
|1 + |(∆Ωyx)S̄yx

|1
)

− 3max(λn, ρn)

2

(

|(∆Ωyy)Syy
|1 + |(∆Ωyx)Syx

|1
)

,

which implies |(∆Θ)S̄ |1 ≤ α|(∆Θ)S |1.

Proof of Theorem 1. Since λn, ρn ∈ [2γn, c0γn], by Lemma 5 we have |(∆Θ)S̄ |1 ≤ α|(∆Θ)S |1. Let
∆Θ̃ = (∆Ω̃yy,∆Ω̃yx) = t∆Θ where we pick t = 1 if ‖∆Θ‖F < r0 and t ∈ (0, 1) with ‖∆Θ̃‖F = r0
otherwise. By definition, we have ‖∆Θ̃‖F ≤ r0 and |(∆Θ)S̄ |1 ≤ α|(∆Θ)S |1. Due to the optimality
of Θ̂ and the convexity of Lpa, it holds that

Lpa(Θ
∗ + t∆Θ) +Re(Θ

∗ + t∆Θ) ≤ Lpa(Θ
∗) +Re(Θ

∗).

Following the similar arguments in Lemma 5 and the LRSC of Lpa we obtain

0 ≥ Lpa(Θ
∗ + t∆Θ) +Re(Θ

∗ + t∆Θ)− Lpa(Θ
∗)−Re(Θ

∗)

≥ λn

2

(

|(∆Ω̃yy)S̄yy
|1 − 3|(∆Ω̃yy)Syy

|1
)

+
ρn
2

(

|(∆Ω̃yx)S̄yx
|1 − 3|(∆Ω̃yx)Syx

|1
)

+β(Θ∗; r0, α)‖∆Θ̃‖2F
≥ −1.5max{λn, ρn}|(∆Θ̃)S |1 + β0‖∆Θ̃‖2F
≥ −1.5c0γn

√

|S|‖∆Θ̃‖F + β0‖∆Θ̃‖2F ,
which implies that

‖∆Θ̃‖F ≤ 1.5c0β
−1
0 γn

√

|S| = ∆n.

Since ∆n < r0, we claim that t = 1 and thus ∆Θ̃ = ∆Θ. Indeed, if otherwise t < 1, then
‖∆Θ̃‖F = r0 > ∆n which contradicts the above inequality. This completes the proof.
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Table B.1: Comparison of average CPU run times and average matrix losses and F-scores for
synthetic datasets over 50 replications. In this experiment, we fix n = 100 and p = 50.

Methods q = 50 q = 100 q = 200 q = 500

CPU Time (sec.) ↓
pGGM 0.17 0.26 0.46 0.98
cGGM 0.22 0.28 0.45 1.09
GLasso 0.45 1.51 8.52 150.98
NSLasso 2.01 2.36 3.14 5.38

Operator norm ‖Θ̂−Θ∗‖2 ↓
pGGM 0.98 (0.04) 1.06 (0.03) 1.17 (0.03) 1.23 (0.02)
cGGM 0.99 (0.04) 1.07 (0.04) 1.18 (0.03) 1.23 (0.02)
GLasso 1.22 (0.05) 1.44 (0.07) 1.71 (0.07) 2.31 (0.04)
NSLasso — — — —

Matrix ℓ1-norm ‖Θ̂ −Θ∗‖1 ↓
pGGM 2.01 (0.12) 1.98 (0.23) 1.81 (0.11) 1.10 (0.10)
cGGM 2.35 (0.16) 2.13 (0.20) 1.89 (0.06) 1.10 (0.10)
GLasso 2.90 (0.20) 3.03 (0.32) 3.11 (0.21) 3.29 (0.32)
NSLasso — — — —

Frobenius norm ‖Θ̂−Θ∗‖F ↓
pGGM 3.36 (0.07) 3.91 (0.11) 4.81 (0.12) 4.58 (0.04)
cGGM 3.43 (0.07) 3.96 (0.12) 4.85 (0.13) 4.59 (0.04)
GLasso 4.58 (0.11) 5.94 (0.06) 7.89 (0.08) 12.22 (0.03)
NSLasso — — — —

Support Recovery F-score ↑
pGGM 0.41 (0.01) 0.37 (0.01) 0.35 (0.01) 0.23 (0.01)
cGGM 0.33 (0.01) 0.31 (0.01) 0.32 (0.01) 0.23 (0.01)
GLasso 0.31 (0.01) 0.27 (0.01) 0.27 (0.01) 0.22 (0.01)
NSLasso 0.40 (0.01) 0.35 (0.01) 0.32 (0.01) 0.21 (0.01)

B Additional Materials on Monte Carlo Simulations

In this appendix section, we provide the detailed performance figures on the synthetic data as
described in Section 6.1. For support recovery, we use F-score. We also measure the precision
matrix estimation quality by three matrix norms: the operator norm, the matrix ℓ1-norm, and the
Frobenius norm. The results are presented in Table B.1 and Table B.2 .
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Table B.2: Comparison of average CPU run times and average matrix losses and F-scores for
synthetic datasets over 50 replications. Here we fix n = 100 and p = 50.

Methods q = 50 q = 100 q = 500 q = 1000

CPU Time ↓
pGGM 0.17 0.26 0.46 0.98

GLasso-M 0.04 0.05 0.05 0.05

Operator norm ‖Ω̂yy − Ω∗
yy‖2 ↓

pGGM 0.76 (0.04) 0.86 (0.07) 0.91 (0.06) 0.58 (0.01)
GLasso-M 0.88 (0.06) 0.86 (0.09) 0.88 (0.03) 0.86 (0.02)

Matrix ℓ1-norm ‖‖Ω̂yy − Ω∗
yy‖‖1 ↓

pGGM 1.94 (0.12) 1.94 (0.26) 1.879 (0.13) 0.94 (0.03)
GLasso-M 2.80 (0.18) 2.87 (0.29) 2.76 (0.08) 1.93 (0.08)

Frobenius norm ‖Ω̂yy − Ω∗
yy‖F ↓

pGGM 2.55 (0.08) 2.68 (0.12) 3.17 (0.15) 2.18 (0.06)
GLasso-M 3.14 (0.09) 3.11 (0.09) 3.26 (0.05) 3.03 (0.04)

Support Recovery F-score ↑
pGGM 0.42 (0.01) 0.38 (0.02) 0.39 (0.02) 0.30 (0.01)

GLasso-M 0.31 (0.01) 0.28 (0.01) 0.27 (0.01) 0.27 (0.01)
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(a) Corel5k, µ = 0.1. Method(# Links): pGGM (677), NSLasso (293), GLasso (909), GLasso-M (1153).

pGGM

exploresky

nikon

i2007
blue

bw

canon

water

red

portrait

night

naturesunset

green

clouds

macro
light

flower
abigfave

white

beach

meselfportrait

art

yellowinterestingness

landscape

geotagged

street

dog
i500

architectureflowers

blackandwhite
i365days

graffiti

treepeople
reflection

california

black

naturesfinest

explored
city

london

impressedbeauty

sea

nyc
sun

diamondclassphotographerpink

i2008

anawesomeshot

italy

france

orange

girl

film

usa

canada

supershot

snow

color

spring urban

trees travel
sanfrancisco

winter

paris

newyork

d80

car self
lake

summer

love

wall

i50mm

italia

bokeh

window

colors

music

d50

building

flickrdiamond
streetart

uk

chicago

lightsbravo

germany

oldspain

man

europe

garden

longexposure

bn

digital

animal
blueribbonwinner

india

brasil

d200

cielo

chile

ocean

autumn
newyorkcity

d40

beautiful

nikkor

downtown

superbmasterpiece
eos

england

berlin

soe

aplusphoto

face

brazil

irancloud

church

apple

moon

sand

christmas

olympus

espaa

flickrsbest

photography

fog
morningfall

camera

gimp

manhattan

milano

purple

toys
vacation

pentax

child

d70

woman

i350d

project365blackwhite

roma

heart

painting

leaves

reflections

stormpuppy

kid

cold

interesting

bicycle

concert

skyline

outdoor
superaplus

ice

nikonstunninggallery
rome

holiday

azul

playa

specanimal

live

dusk

netherlands

gothamist

vancouver

forest

paint

ny

smile

madrid

model

public
rainbow

iranian

agua windows
cityscape

rebel

blank

i35mm

fujifilm

sp

santiago

waves
switzerland

may
mist

illinois

retrato

lumix

americastatue

melbourne

persian

rojotrip

amsterdam

rural

i5d

mac

rocks

outdoors

farm

panasonick10d

i30d

persia

lamp
fruit

milan

bc

avianexcellence

NSLasso

explore

sky

nikon

i2007

blue

bw

canon

water

red

portrait

night

green
clouds

macro

light

flower

abigfave

white

beach

me

selfportrait

yellow

interestingness

street

dog

i500

architecture

flowers

blackandwhite
i365days

graffiti

people

reflection
california

black
explored

city
impressedbeauty

sea

nyc

sun

diamondclassphotographer

pink

anawesomeshot

italy

france

orange

girl

film

usa

snow

urban
trees

travel

sanfrancisco

winter

paris

newyork

d80

self

lake

love

italia

bokeh

colors

music
d50

building

flickrdiamond

streetart
uk

chicago

lights

germany

spain

man

longexposure

bn

brasil

d200

cielo

ocean

autumn

newyorkcity

d40
nikkor

eos

england

berlin

aplusphoto

face
brazil

iran

cloud

apple

moon

sand

espaa

photography

fall

manhattan

milano

pentax

child

woman

i350d

blackwhite

roma

heart

leaves

puppy

kid

concert

skyline

superaplus

ice

nikonstunninggallery

rome

azul

live

netherlands

ny

public

iranian

agua

blank

i35mm

sp
waves

switzerland

may

illinois

america

persian

rojo

trip

amsterdam

i5d

mac

k10d

i30d

persia

lamp

milan

GLasso

exploresky
nikoni2007
blue

bw

canon
water

red
portraitnight

naturesunset
greencloudsmacro

light

flowerabigfave

white

beach
me

selfportrait

art
yellowinterestingness

landscape

street

dog

i500
architecture

flowers

blackandwhite

i365days

graffiti

tree

peoplereflection
california

black

naturesfinest

exploredcity

londonimpressedbeauty
sea

nyc

sun

diamondclassphotographer

pink

i2008anawesomeshot

italy
france

orangegirl

film

usa

canada
supershot

snow

colorspring

urban

hdr

trees
travel

sanfrancisco

winter

paris

bird

newyork

sign

d80
selflake

summer

love wall

i50mm

italia

bokeh

window
colors

music

d50

building

flickrdiamond

streetart

uk
chicagolights

bravo

germany

oldspain man
europe

garden

cute

shadow

baby

longexposure

bn

digital

animal

bridge

blueribbonwinner

india

brasil

d200cielo
chile

ocean

dark

photo

autumn

newyorkcity

d40

beautiful

nikkor

downtown

toy

superbmasterpieceeos

england

grass

house
berlin

closeup
aplusphoto

handmade

dof

face

brazil

iransilhouette

sigma

cloud

church

apple
abandoned moon

birds

sand

christmas

olympusespaa

barcelona

flickrsbestphotography
fun

fog

life
i365

morning

fall

camera

gimp

bike

manhattan
milano

purple
oregon

toys

lomo

sony
vacation

pentax

child

d70

woman

i350d

road

project365

xpro

blackwhite

romaheart

knitting

eye

shoes

painting

panorama

leaves

decay
reflections

children

storm

puppy

crochet

kid

cold

sepia

craft

interestingbicycle

kids
concert

skyline

texas
mirror

funny

outdoor jump
superaplus

ice

buildings

festival

nikonstunninggallery

rome

holiday

brown

holga

friends

azul

playa
specanimal

live

dusk

eveningnetherlands

stencil

zoo

gothamist

vancouver

etsy

forest

paint

searchthebest

ny
smilemadrid

model

public
iranianisland

agua

windows

cityscape

day

deutschland

rebel

blank
arizona

happy

i35mmfujifilm
sp

party

beauty

santiago

waves

work

switzerlandmay

desert

mistmalaysia

illinois
detail

holland

wow

lumix

americastatue

wildlife

melbourne
persian

rojo

trip

amsterdam

rural

i5d

mac

office

rocks

nikond40

ireland
outdoors

farm

neon

powershot
coast

wisconsin

canoneos350d

panasonic

k10d

yarn

i30d

persia ipod

de lamp

mare
artlibre

d300
fruit

catalunya

milan

bc
avianexcellence

infrared
minnesota

GLasso−M

explore
skynikon

i2007bluebw
canon

water
red
portrait

night
nature

sunset

green

clouds

macrolightflowerabigfave
white

beach

meselfportrait

art

yellowinterestingness
landscape

geotagged
streetdog

i500
architecture

flowers
blackandwhitei365days

graffiti

tree

peoplereflectioncalifornia

black
naturesfinest

explored

city

london

impressedbeauty

seanyc
sun

diamondclassphotographer
pink

i2008

anawesomeshot

italyfranceorange
girl

film

usa
canadasupershotsnow

colorspring

urban
hdr

trees

travel

sanfrancisco

winter
paris

bird

newyork

sign

d80

car
self

lake
summer

love

walli50mm

italia
bokeh

window
colors

music

d50

building

flickrdiamond

streetart

uk
chicago

lights
bravo

river germany
old

photoshop

spain

man

europe

strobistgardencute

shadow
baby

longexposure

bn

digital

animal

bridge

blueribbonwinner

india

brasil

rain

d200

cielochileocean dark
photo

autumn

newyorkcity
d40

beautiful

nikkordowntown

toy
superbmasterpiece

eos

england

grass

house

berlin

soecloseup
aplusphoto

handmade

dof
face

brazil

iran

silhouette sigma

eyes

cloud

abstract

church

apple

abandoned

moonbirds

sand

christmas
olympus

sunrise
espaa

barcelona

train

flickrsbest

photography

fun

fog life

i365morningfall
cameragimp

bike

manhattan

milano
purple

oregon

toys

lomo

sony vacation

pentaxchild

d70

woman

i350d

road

project365

xpro

blackwhite
roma

heart
knitting

eye

shoes

painting
panorama

leaves

decay

reflections

children

storm

puppy
crochet

kid

coldsepia

craft

boat
chocolateinteresting bicycle

kids

concert

skyline

texas

mirror

funny
outdoor

smoke
jump

superaplusice buildings

festival

nikonstunninggallery
lightroom

rome
holiday

brown

holga

friends

azul

tower

playa

specanimal

live

dusk
evening

netherlands

stencil

zoo

gothamist

vancouver

etsy
forest

paint

searchthebest

ny

smile

madrid

model
public

rainbow

iranian

island

agua
leaf

windows
grey

cityscape
day
deutschland

rebelblank

michigan
arizona

happy

i35mm

fujifilm

sp

party

beauty

santiago
waves

workswitzerland

may

desert

mist

malaysia

illinoisretratodetail
holland

wow
lumix

america
statuewildlife

melbourne

persian

rojo

trip
amsterdam

rural i5d

mac

office

rocks

nikond40
ireland

outdoors

farm

neon

powershot

coast
wisconsin

canoneos350d

panasonic

k10d

yarn

i30dpersia

ipod
de

lamp

mare
artlibre d300

fruit

catalunya

milan
bcavianexcellence

infrared

contrast

minnesota
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(c) RCV1-v2, µ = 0.1. Method(# Links): pGGM (87), NSLasso (156), GLasso (282), GLasso-M (688).
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(d) S&P500, µ = 0.05. Method(# Links): pGGM (136), NSLasso (94), GLasso (160), GLasso-M (221).

Figure 6.4: Constructed graphs by pGGM, NSLasso, GLasso and GLasso-M.
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(d) S&P500.

Figure 6.5: The top 50 links in the constructed graphs by pGGM, NSLasso, GLasso and GLasso-M.
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