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On the Construction of Nonbinary Quantum BCH
Codes

Giuliano G. La Guardia

Abstract—Four quantum code constructions generating sev-  Motivated by the construction of new nonbinary quantum
eral new families of good nonbinary gquantum nonprimitive codes with good parameters, we propose four quantum code
non-narrow-sense Bose-Chaudhuri-Hocquenghem codes areep ., nsiryctions generating new families of good codes. These
sented in this paper. The first two ones are based on Calderb&n famili ist of ¢ d h t
Shor-Steane (CSS) construction derived from two nonprimive new families consist o quan u_m co G_’S Whose parameters are
Bose_chaudhuri_Hocquenghem codes. The third one is based o better than the ones aVa"able In the ||terature. In Othe1d\‘Bl,0
Steane’s enlargement of nonbinary CSS codes applied to salile  fixing n andd, the new quantum codes achieve greater values
sub-families of nonprimitive non-narrow-sense Bose-Chadhuri-  of the number of encoded qudits than the codes available
Hocquenghem codes. The fourth construction is derived from in the literature (see Tables | to V). In this paper we only

suitable sub-families of Hermitian dual-containing nonptrimitive . Lt
non-narrow-sense Bose-Chaudhuri-Hocquenghem codes. Tée consider nonprimitive codes. In order to construct these ne

constructions generate new families of quantum codes whosefamilies it is necessary to know the exactly dimension of
parameters are better than the ones available in the literatre.  the classical Bose-Chaudhuri-Hocquenghem codes used for
this purpose. This is a difficult task since the dimension of
these codes is not known. To solve this problem, we show
suitable properties of cyclotomic cosets, providing thaatx
dimension and also lower bounds for the minimum distance
|. INTRODUCTION of the corresponding quantum codes as in the Euclidean as

well as in the Hermitian case. Additionally, by applying the

C%ngtructl_ons (()jf _qu?]ntul_m codes Vi”tg goi(lj ggraln;ezttersz%rgncept of linear congruence, we prove (for codes of prime
much investigated in the literature [1,3,6-11,13-17,20, length) the existence of, at least, og@ry coset containing

The CSS construction, the Hermitian construction, as well fvo consecutive integers. By means of this result we also
the symplectic construction are the most utilized consimac construct new families of good nonbinary quantum codes,

methods in ordtlar tc_> glene(;ate_goc:d gu_an';qum codes. ln_tglﬁce this technique allows the construction of quanturresod
context, many classical codes involved in these consbusti | ... great dimension and great minimum distance.

are Bose-Chau_dhuri-_Hocquenghem codes [4,5,12]. Intagest The proposed families have parameters
works concerning this class of codes were presented in the
literature [1, 14-17,22]. More precisely, the dimensiordan ® ™"~ 4(.6 —2) —2dz clly _ .
sufficient condition (in some cases, necessary and suffici¥f'€ré ¢ > 4 is a prime powern is an integer such that
condition) for dual (Euclidean and Hermitian) containing¢d(¢,;n) =1, (¢—1) [n, m = ord,(q) =2 and2 <c <,
Bose-Chaudhuri-Hocquenghem codes were investigated. Wherer is such that = r(q — 1);

In [1], the authors constructed families of good nonbinary * [[n,n —2mr,d > r +2]] ,
qguantum (narrow-sense) codes by showing useful propertiésere m = ord,(¢) > 2, n is a prime number and
of cyclotomic cosets. More specifically, they computed ths the number of cosets satisfying suitable conditions (see
exact dimension of classical narrow-sense Bose-Chaudh(ieorem 3.4);
Hocquenghem codes of length with minimum distance [[n,n—m(2r —1),d>r+2]]
of qrder _(’)(nl/Q) as well as estabhs_hlng useful condition§,heresm — ord,(g) > 2, n is a prime number ang > 3;
for identifying dual-containing (Euclidean as well as Her- I —ded> e+ 2
mitian) Bose-Chaudhuri-Hocquenghem codes. Following thi © mn ,C’ —_C a
approach, the authors of [17, 22] also have constructed-quiffierén > ¢ is an integer withged(q,n) = 1, (¢ — 1) | n,
tum Bose-Chaudhuri-Hocquenghem codes by using prop8t-= ©rdn(q) =2, 1 < ¢ <r—3andr > 3 is such that
ties of suitable cyclotomic cosets and also dual-contginif = (g —1);
codes. In [14, 15], new families of nonbinary quantum Bose- * [[n,n —4c—2,d > c+2]] ,
Chaudhuri-Hocquenghem codes were constructed by meadere2 < ¢ < r—2,q > 3, n = r(¢> — 1), r > 1 and
of the CSS, Hermitian and also by using Steane’s code con-= ord, (¢?) = 2;
struction applied to suitable sub-families of Bose-Chawgdh ([n,n — 2mr,d > r + 2]](,,
Hocquenghem codes. Finally, new quan;um MDS codes \%ereq > 3 is a prime powerp > g
non Reed-Solomon type are constructed in [16].

Index Terms — Bose-Chaudhuri-Hocquenghem codes,
guantum codes, cyclotomic coset

q’

2 is a prime number such
thatged(q,n) = 1, m = ord,(¢?) > 2 andr is the number

o - o _ of cosets satisfying suitable conditions (see Theorem 3.9)
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guantum code constructions are presented. More precisely: Theorem 2.1:[18, pg. 201] (The BCH bound) Le&f’ be a
Subsection I1l-A, new families of nonprimitive quantum &sd cyclic code with generator polynomig{z) such that, for some
of length n, wherem = ord,(q) = 2, are generated; in integersb >0, § > 1, anda € Fym (« is a primitiventh root
Subsection 11I-B, new families of-ary quantum nonprim- of unity), we haveg(a®) = g(ab*!) = ... = g(a®t972) =0,
itive non-narrow-sense Bose-Chaudhuri-Hocquenghemscodleat is, the code has a sequencejef 1 consecutive powers
of prime length, wherem = ord,(¢) > 2, are con- of a as zeros. Then the minimum distance(dfs, at least.
structed; in Subsection 1lI-C, new families of quantum codd-rom the BCH bound, the minimum distance of a BCH code
derived from Steane’s code construction are shown; in Sub-greater than or equal to its designed distafice

section 1lI-D, the construction of new families of quantum

codes derived from nonprimitive non-narrow-sense Heemiti I1l. CoDE CONSTRUCTIONS

dual-containing Bose-Chaudhuri-Hocquenghem codes are pr |, this section we present our contributions, i.e., the four
posed. In Sect|or_1 IV, the parame_ters Of_ the new quantum_ COQﬁJ%ntum code constructions previously mentioned.

are compared with the ones available in the literature.llyina

in Section V, a summary of this paper is given. _ —
A. Construction | - Nonprimitive Codes

In this subsection we construct new families of nonbinary
_ _ _ _ CSS codes derived from two distinct classical BCH codes, not
This section presents some basic concepts on cyclic cod@sgessarily dual-containing. To proceed further, let uslte
necessary for the development of this paper. For more detajhe so-called CSS construction:
we refer the reader to [18]. . _ Definition 3.1: [6, 13,19, 20] LetC; and C, denote two
Throughout this papep, denotes a prime numbey.# 2 is  classical linear codes with parametefs, k1,di], and
a prime power[, is a finite field withg elementsy is the [, &y, d,] , respectively, such tha€, C Ci. Then there
code length (we always consider tigatl(n, q) = 1). If C'isan  exists an|[n, K = ki — k»,d]], quantum code, wherd =
[n, k,d], code thenC~ denotes its Euclidean dual ar¢ min{wt(c) | ¢ € (C1\C2) U (CA\CL)}.
denotes its Hermitian dual. As usuah, = ord,(q) denotes  \ne start by showing Lemma 3.1:
the multiplicative order ofg modulo n (i.e., the smallest | emma 3.1:Let ¢ > 3 be a prime power and > ¢ be an
positive integern such that dividesq™ —1) andC, denotes jnteger such thaged(q, n) = 1. Assume also thatg — 1) | n
the g-ary cyclotomic coset modula containings, defined 5nq,, — ord,(g) > 2 hold. Then each one of theary
by Cs = {s,sq, sq®,sq°, ..., sq™ "1} (ms is the smallest cyclotomic coset€ |, wherer is such thaty = r(¢—1) and
positive integer such thaig™s = s modn), wheres is not <1< q—2is an integer, has only one element.
necessarily the smallest number in the cdsgt The minimal Proof: Sincerq = n + r holds, one haglr)g = I(n +
polynomial overF, of 8 € F,m is the monic polynomial r) = Ir mod n, and therefordlr)q’ = ir mod n, for each
of smallest degree) (x), with coefficients inF, such that | < ; <, — 1, proving the lemma. -
M(B) = 0. 1f 3 = o' for some primitiventh root of unity | emma 3.1 can be applied in order to show Theorem 3.1.
a € Fgn then the minimal polynomial off = o is denoted  Thegrem 3.1:Assume thay > 3 is a prime power and, >
by M@ (z). It is well known thatz” — 1 = HM(S) (z), ¢is an integer such thagd(¢q,n) = 1. Assume also thaly —

) . 8 1) | n andm = ord, (¢) = 2 hold. Then there exist quantum
where M'*)(z) denotes the minimal polynomial @f* € Fon - qas with parameter&:, n — 4(r — 2) — 2,d > r]],, where
over F,, and s runs through the coset representatives modig ¢ ,ch that, — r(g—1) -

n. Let C be a cyclic code of lengtlh. Then there is only
one monic polynomial(z) with minimal degree inC' such
that g(«) is the generator polynomial af', whereg(z) is a

Il. REVIEW OF CycLIc CODES

Proof: Since it is true that: | (¢> — 1) and because we
consider only nonprimitive BCH codes, it follows that<
g. Sinceged(g,n) = 1 one hasr < ¢, so the inequalities

factor of 2" — 1. The dimerlsion ol equalsn — degg(x). (. _9), < andr + (r — 2)g < n hold. We next show that
The (Euclidean) dual cod€- of a cyclic code is cyclic and all the g-ary cosets (modula) given by Co = {0}, Cpyj =

H L _ ,.degh(z —1
has gﬁnerantor polynomial(z)~ = zdesn( >h(a:_ ), where {1, q},Cly = {2, 24},Ciy = {3, 3q},....Cpps) = {r—
h(:lc) = '(Th - .1)/g(:cl). ;I'hus, tr;]e godle h;ng generato&a (r—2)g},Cpp = {r},Cpyr) = {r+1, 7+q},Chryn =
olynomial h(z) is equivalent to the dual code-.
i L):at F be( a)l finitqe field andn a positive integer with {rd2, vt 2. Carg = {20 =2, 1+ (r - 2)q}, are
q ot - mutually disjoint and, with exception of the cosétg, = {0}
ged(g,n) = 1. Leta be a pr|m|t|venth_ root of unity. Recall_ andC,; = {r}, each of them has exactly two elements.
that a cyclic code of length overF, is a Bose-Chaudhuri- g coset€|p andCj,) have only one element. Let us show
Hocquenghem (BCH) code of designed distafidigfor Some a4 each one of the other cosets has exactly two elements.
integerb > 0 we have Since(r—2)q < n, then the congruende= I¢ modn implies
g(z) = 1cm{M(b)(w)’M(b+l)(w)’ o Mo (2)}, that! = lq, wherel < [ < r — 2, which is a contradiction.
If r+s = (r+ s)g modn, wherel < s < r — 2, then
that is, g(x) is the monic polynomial of smallest degree over + s = r + sq, which is a contradiction.
F, havinga®, a®*t ... a®T9=2 as zeros. Ifv = ¢™ — 1 then From now on, we show that all these cosets given above and
the BCH code is called primitive and #f = 1 it is called Cp, andCy,j are mutually disjoint. We only consider the case
narrow-sense. Cppyp = Cp—g), wherel <[, s < r —2, since the other cases



are similar to this one. Seeking a contradiction, we assinaie t
Ciryyy = Cpp—y), wherel < [,s < r — 2. If the congruence ol
(r+1) = (r — s) modn holds, one obtains
CroCpy Cpgp -+ Cpryg)

(r+l)=(r—s)modn=n|({+s). Cs
c
If 4+ s # 0 one hasn <+ s, which is a contradiction. If Ci) Cprgry--- Cpap_g) Cpgyy-- - Cq,yy -
[+s = 0 holds it implies that = —s, which is a contradiction. _E'_/
On the other hand, ifr + )¢ = » — s mod n holds, one ’
obtains The union of the cosetsCiy,Cpyy,...,Cp_g is the

defining set of codeC;; the union of the cosets
Cio;,Cpaps - -+ Cpr—2), Cpayy - - -, Cpq,y) is the defining set of
= n|(lg+s). Ca, whereCy, 3, ..., Cl,,] are the remaining cosets in order
to complete the set of all cyclotomic cosets. The union of the
Sincel,s < r—2 andr < ¢ hold, if lg + s # 0 holds it cosetsCy,),Cj,41j,...,Ca,—9 is the defining set of”.
follows thatlq+ s < n, which is a contradiction. lfg+s =0 Corollary 3.1: Assume that all the hypothesis of Theo-

(r+l)g=r—s=1lg=—-smodn

thenlq = —s, which is a contradiction. Thus all theary rem 3.1 are valid. Then there exist quantum codes with
cosetsCig), Cpyy, ..., Cpr—g, are disjoint from each one of theparameterg[n,n — 4(c — 2) — 2,d > c]]q, where2 < c <.
g-ary cosetC(,j, Cp41y,...,Cja—g). Additionally, all theq- Proof: ChooseC; be the cyclic code generated by the
ary cosetsCyy, Cypy, ..., C}_g, are mutually disjoint and all product of the minimal polynomials
the g-ary cosetsCy,), Cj,4qj,.-.,Cp2—g), are also mutually 7 B
disjoint. MO @) MWD (z) ... M3 (@) M (),

Let €y be the cyclic code generated by the product of thg,q ¢, pe the cyclic code generated by the product of the
minimal polynomials minimal polynomials

MO @M (z) ...  MT=2(z), [ M9 (),
and C; be the cyclic code generated by (x), that is the wherei ¢ {r,r+1,...,7+c—2} andi runs through the coset
product of the minimal polynomials representatives mod. Proceeding similarly as in the proof of
Theorem 3.1, the result follows. [ ]

g2(w) = [ [ MV (x),
’ B. Construction Il - Codes of Prime Length

wherei ¢ {r,r +1,...,2r — 2} andi runs through the coset |n this subsection the attention is focused on cyclic codes o
representatives mod. From construction one has; C C1.  prime length. Among the contributions shown in this section
From the BCH bound, the minimum distance(@f is greater we prove there exists at least omgeary cyclotomic coset

than or equal tor because its defining set contains the sgontaining two consecutive integers (see Lemma 3.2). lerord

quence), 1,...,r—2, of r—1 consecutive integers. Similarly,to proceed further, let us recall a well-known result from
the defining set of the cod€' generated by the polynomialnumber theory:
h(z) = £ contains the sequenger +1,...,2r —2, of  Theorem 3.2:A linear congruencez = b (modm), where

r—1 consecutive integers and so, from the BCH bouidyjso # 0, admits an integer solution if and onlydf= gcd(a, m)
has minimum distance greater than or equatt®since the (ividess.

codeCy- is equivalent toC, C3- also has minimum distance Applying Theorem 3.2 we can prove Lemma 3.2:
greater than or equal ta Therefore, the resulting CSS code [ emma 3.2:Assume thaty > 3 is a prime powerp > ¢
has minimum distance greater than or equat.to is a prime number and consider = ord,(q) > 2. Then
Next we compute the dimension of the corresponding C3iere exists at least oneary cyclotomic coset containing two
code. We know that the degree of the generator polynomial @nsecutive integers.
a cyclic code equals the cardinality of its defining set. et Proof: First, note thatgcd(q,n) = 1. In order to prove
the defining se¥; of C; hasr — 1 disjoint cyclotomic cosets. this lemma, it suffices to show that the congruenge= z+1(
Moreover, all of them (except cos€p) have two elements and mod n) has at least one solution for sore< = < n — 1
so, Z; has2(r—2)+1 elements. Therefor€/; has dimension or, equivalently, the congruendg — 1)z = 1 (mod n) has
ki =n —2(r —2) — 1. Similarly, C> has dimensiork; = at least one solution. We know thgtd(q — 1,n) = 1 holds,
2(r — 2) 4+ 1. Thus the dimension of the corresponding CSBecause: > ¢ andn is a prime number. Since — 1 # 0,
code equals: — 4(r — 2) — 2. Applying the CSS construction it follows from Theorem 3.2 thatq — 1)z = 1 (mod n) has
to the codesC; and C,, one can get quantum codes withan integer solutiom,. Applying the division algorithm for:,
parametergn,n — 4(r —2) — 2,d > r]] . B andn one hasry = nsg + o, Wherery and s, are integers
We illustrate Theorem 3.1 by means of a graphical schenand0 < ro < n — 1. Since(q¢ — 1)zy = 1 (modn) holds then



the congruencg¢q — 1)rp = 1 (mod n) also holds, and the cosetsCy,j, Cj,19), - - -, Csy,, are mutually disjoint. Thug’;
result follows. B has dimensiok; = n — mr andCy has dimensiorky = mr,
Remark 3.1:Note that in Lemma 3.2 it is not necessary tgince there exist disjoint g-ary cosets not contained in the
assume that is a prime number. In fact, we only need talefining set ofCy, where each of them has cardinality.
suppose thaged(q — 1,n) = 1 andged(q,n) = 1 hold (the Therefore, the dimensiok™ of the corresponding CSS code
latter condition ensures that has simple roots). But since theequalsk” = n—2mr. Since the cosetS ), C, o), . - ., Cpspry,
corresponding-ary cosets of BCH codes of prime length hav&€|_,,C;_,_y, ..., C_,_,), are mutually disjoint, it follows
nice properties, we have assumed thas prime. However, if thatC, C C;. Applying the CSS construction 0, and Cs,
one assumes thatd(q — 1,n) = 1 andged(g,n) = 1 hold, one obtains af[n,n — 2mr,d > r + 2]|, code. [ |
more good quantum codes can be constructed. Example 3.1:Theorem 3.4 has variants as follows: to
Theorem 3.3:Let ¢ > 3 be a prime powerp > ¢ be a construct an[[19,13,d > 3]], code, considey = 7, n = 19
prime number and consider = ord,,(¢) > 2. Assume that and m = 3. The cosets are given b§, = {2,14,3} and

Ci # Ci—y, whereCy, is a cyclotomic coset containingCis = {5,16,17}. Let C; be the cyclic code generated
two consecutive integers. Then there exist quantum codis Wiy the minimal polynomialC; = (gi(z)) = (M®(x))
parameters[n,n — 2m,d > 3] . and C, generated bygy(z) = [[M©(z), where

Proof: First, note thatged(q,n) = 1. ChooseC; be _ i )
code generated by/(*)(z) and C, be the code generated ¢ {16} and i runs through the coset representatives

by HM(Z-)(I), wherei # —s andi runs through the coset mod 19. Then an[[19?13,d.2 3]]7 quantum code can be
constructed. Proceeding similarly, one can get quantum

représentatives mod. It is easy to see that the coseéfs,; codes with parameter§31,25,d > 3], [[71,61,d > 3]];,
andC,_ containm elements. Proceeding similarly as in thé[11,1,d > 4], [[31,19,d > 4]];, [[31,13,d > 5],
proof of Theorem 3.1, the result follows. B ([[71,51,d>4]];, [[71,41,d > 6]];.

Theorem 3.4:Assume thatq > 3 is a prime power,
m > ¢ is a prime number and co_nS|dem — C. Construction Ill - Codes Derived from Steane’s Construc-
ord,(q) > 2. Let Cj be the cyclotomic coset con-
taining s and s + 1. Suppose that all thej-ary cosets
Cpss Cssa)s -+ » Crotr)s Clos)s Closg]s - - -, C[_s_p, Ar€ mu- In this subsection we construct new families of quantum
tually disjoint. Then there exist quantum codes with paramBCH codes of prime length by applying Steane’s enlargement
ters([n,n — 2mr,d > r + 2] . of nonbinary CSS construction [11, Corollary 4]. These new

Proof: We know thatged(g,n) = 1 and the cose€|_ families have parameters better than the parameters of the

also contains two consecutive integers, namely,— 1 and duantum BCH codes available in the literature. Let us recall

—s. Let ¢ be the cyclic code generated by the product of thateane’s code construction:

minimal polynomials Corollary 3.2: [11, Corollary 4] Assume we have an
®) (o42) (o47) [No, Ko| linear codeL which contains its Euclidean dual,
M (@) M= () - MY (), L+ < L, and which can be enlarged to B¥,, K] linear code

and letCy be the cyclic code generated by the polynomia(r,’ where K > Ko + 2. Th/en there exis?s a qLﬁTtgm code
ga(z), that is the product of the minimal polynomials with parameter§ No, Ko+ Ko —No,d = min{d, [=d ]}]]

whered = w(I\L' ") andd’ = w(L'\L'").

92(z) = H M (x), Euclidean dual-containing cyclic codes can be derived from
J Lemma 3.3:
wherej ¢ {—s—r,...,—s —2,—s} andj runs through the  Lemma 3.3:[1, Lemma 1] Assume thagcd(¢,n) = 1. A
coset representatives mad cyclic code of lengthn over F, with defining setZ contains

From the BCH bound, the minimum distance 6% is its Euclidean dual code if and only # N Z~! = (), where
greater than or equal te + 2 because its defining setZ=!' ={—z mod n|z € Z}.
contains the sequence of+ 1 consecutive integers given by In Lemma 3.2 of Section I1l-B we have shown the existence
s,s+1,s+2,...,s + r. Similarly, the defining set of the of, at least, ong-ary cyclotomic coset containing two consec-
codeC generated by the polynomiah(z) = (z™—1)/g2(z), utive integers provided the code length is a prime number. In
contains a sequence of+ 1 consecutive integers given bywhat follows we show how to construct good quantum codes

—-s—r,...,—s—2,—s—1,—s. Again, from the BCH bound, of prime length by applying Steane’s code construction. We
C has minimum distance greater than or equat #62. Since begin by presenting an illustrative example:
C'is equivalent toCs-, it follows thatC5- also has minimum  Example 3.2:Assume thatn = 31 and ¢ = 5. From

distance greater than or equalite- 2. Therefore, the resulting Lemma 3.2, there exists a cyclotomic coset containing at lea
CSS code have minimum distance greater than or equaltie consecutive integers; here it is the coBgt= {8,9, 14}.

r+ 2. If s € [1,n — 1] satisfiesged(s,n) = 1 then the coset Let C be the cyclic code generated by the product of the
C, has cardinalitym. In fact, if |Cs| = ¢ < m it follows that minimal polynomialsC = (g(z)) = (M® ()M ®) (z)). C
nls(¢® — 1), son|(¢¢ — 1), a contradiction. Thus, since is has defining sef = C,UCs = {4,7,8,9, 14,20} and has pa-
prime, each one of the coset, wheres € [1,n — 1], has rameterg31,25,d > 4],. From Lemma 3.3, it is easy to check
cardinalitym. Additionally, from the hypothesis, all thgary that C is Euclidean dual-containing. Furthermor&,can be



enlarged to a codé€’ with parameter$31,28,d > 3|, whose =~ We next establish Theorem 3.7, an analogous to Theo-

generator polynomial i\ (®) (z). Applying Corollary 3.2 to rem 3.1.

C andC’ one obtains af[31,22,d > 4]]; code. Theorem 3.7:Suppose that > 5 is a prime power and
Theorem 3.5:Let ¢ > 3 be a prime powerp > ¢ be a n > ¢ is an integer such thaicd(¢,n) = 1. Assume also

prime number and consider that = ord,(¢q) > 2. LetCj,) that(¢ — 1) | n andm = ord,(¢) = 2 hold. Then there

be theg-ary coset containing and s + 1 and consider that exist quantum codes with parametfirs n — 4¢,d > ¢ + 2]]

Z = Ciq UCleqg), WwhereC, # Ciyi9. Assume also that wherel < ¢ <r — 3 andr > 3 is such thain = r(¢ — 1).

Z N Z~' = ( holds. Then there exist quantum codes with  Proof: We only prove the existence of an

parametergn,n — 3m,d > 4]] . [[n,n —4(r — 3),d > r —1]], code, since the constructions

Proof: We know thatged(gq,n) = 1. Let C' be the of the other codes are quite similar.

cyclic code generated the product of the minimal polynosnial Let C' be the cyclic code generated by the product of the

(M) (z) M+2)(z)). By hypothesis and from Lemma 3.3, weminimal polynomials

know thatC' is Euclidean (jual-containinmj has parameters . rt1) (2r—3)

[n,n—2m,d >4],. Let C' be the cyclic code generated MO @M (@) ... M (@).

by the minimal polynomiald/()(x). We know thatC’ is  rom | emma 3.1 and from the proof of Theorem 3.1, we
an enlargement of" and has parametefa,n —m,d > 3|,.  ynow that theg-ary cosets given byCy; = {r},Cpii =
Sincem > 2, thenk’ — k = m > 2, wherek’ denotes the ({11, r+q}, Cppa = {r+2, 74+24},...,Cpayg) = {2r—
dimension ofC" andk denotes the dimension 6f. Applying 3 1 4 (r — 3)¢} are mutually disjoint and each of them has
Steane's code construction @andC’, since ™! > 1 holds two elements. Therefor€; has dimensiort = n—2(r—3)—1
one obtains atjn,n — 3m,d > 4]]q code. B and minimum distancd > r — 1.
Theorem 3.5 can be generalized in the following way: Let us prove that is Euclidean dual-containing. In fact, if
Theorem 3.6:Assume thay > 3 is a prime powern > q  (r +4) = —(r + j) modn, where0 < 4,j < r — 3, it follows
is a prime number and consider that=ord,(q) > 2. Let that2r+i+; = 0 modn. Since the inequalit@r +i+j < n
C|s) be the cyclotomic coset containingand s + 1. Assume holds becausg > 5, one has a contradiction. On the other
that Z = Cpg) U Cps42) U ... U Cispp, where all theg-ary  hand, if (r + i)g = —(r + j) modn holds then

q’

cosetsCp,py, @ = 0,2,3,...,r, are mutually disjoint, and

suppose thaZ N Z~! = (). Then there exist quantum codes (ig+j)¢—1)=0 modn=

with parametergn,n —m(2r —1),d > r + 2]] . . i(¢*—q)+37(¢g—1)=0 mod n =
Proof: We know thatged(gq,n) = 1. Let C' be the cyclic jlg—1)=i(g—1) modn,

code generated by the product of the minimal polynomials
(s) (s42) (0 . aglstr) where the latter congruence holds becausg, (¢) = 2. Then
M ()M @) M (). the unique solution is whein = j. Let us investigate this
SinceZ N Z~' = § holds, it implies from Lemma 3.3 that case. Seeking a contradiction, we assume that the congruenc
C is Euclidean dual-containing. From the hypothesis, all tHe + i)g = —(r + ) modn is true. Then one obtains

g-ary cosetsCi,, Cisio, ..., Cisppp are mutually disjoint, so N .

C has dimen'[si]ork[ i ]n — mr[ Jarln]d minimum distancel > (r+i)g=—(r+i) modn=
r+2. ThusC has parametefs., n — mr,d > r + 2] . LetC’ 2r+i(g+1)=0 modn—=
be the cyclic code generated by the product of the minimal r(¢g—3)=i(¢g+1) modn.
polynomials

If 0 <i<r—4,then
M ()M (z) . MO (g).
r(g—3)—i(g+1) >
rg=3)—(r—4)(¢+1)=
4g—4r+4>0,

We know thatC’ is an enlargement of” and has pa-
rameters[n,n —m(r — 1),d > r +1] . Sincem > 2 then
k' —k = m > 2, wherek denotes the dimension of

¢ and k denotes the dimension of. Applying Steane’s \yhere the latter inequality holds because ¢ since we only

code construction to the codes and " one obtains an ¢onsider nonprimitive BCH codes. Moreover, the inequality

([n,n —m(2r —1),d > r +2]|, code, as required. B (g—3)—i(qg+1) < n also holds, which is a contradiction.
Example 3.3:In  this example we _construct  anjf ;j — » — 3 then the congruence(q — 3) = (r — 3)(¢ + 1)

[31,16,d > 5]]; quantum code. For this purpose Wenod r holds, that is,d4r = 3(q + 1) mod n holds. Since

taken = 31 andg = 5; thenm = ordn(q) = 3. LetC' | (4 + 1) andg + 1 > r hold, it implies thatg + 1 >

be the cyclic code generated by the product of the minimg). 5o 3(¢+ 1) — 4r > 2r > 0. Moreover, the inequality

polynomials M ()M (z)M®)(x). It is easy to see 3¢, 1)_ 47 < n holds, which is a contradiction. Therefore,

that C' is Euclidean dual-containing and has parametefsis Eyclidean dual-containing.

[31,22,d > 5];. Let C' be the cyclic code generated by | et ' pe the cyclic code generated by the product of the

the product of the minimal polynomial8/)(z)M® (x); minimal polynomials

C has parameterg3l1,25,d > 4],.Thus there exists an

[31,16,d > 5]]; quantum code. MO ()M () M= ().



C’ is an enlargement of’; ¢ has dimensiot’ = n — 2(r— We first show that”' is Hermitian dual-containing. For this,
4) — 1 and minimum distancel > r — 2. Sincem = 2 let us consider the defining s&tof C consisting of the;2-ary
then k" — k = 2, wherek’ denotes the dimension af’ cyclotomic cosets given b, = {r},Cp, 4y = {r+1, r+
and k is the dimension ofC. We know that[%dﬂ > q2}7<C[,‘+2] ={r+2, r+2¢°},...,Cipp_q ={2r -2, r+
r — 1. Thus, applying Steane’s code construction one has an— 2)q¢*}.
[[n,n —4(r = 3),d > r — 1]], quantum code, as requireds We know thatged(q,n) = 1 holds. From Lemma 3.4, it
Recall that an[[n, k,d]], code C' satisfies the quantumsuffices to show thaZ N Z~7 = (). Seeking a contradiction,
Singleton bound given b¥ + 2d < n + 2. If C attains the we assume thaZ N Z~7 # (). Then there exist, j, where
quantum Singleton bound, i. &, +2d = n+ 2, thenitis 0 < 4,5 < r — 2, such that(r + j)¢' = —q(r + i) mod n,
called a quantum maximum distance separable (MDS) codéierel = 0orl = 2.1f [ =0, one has+; = —q(r+i) modn
In the following two examples we construct quantum MDSand soq(r +i)+7+j = 0 modn. Sinceg(r+i)+r+j <n
BCH codes: and q(r +i) + r + j # 0 hold, one has a contradiction. If
[ =2, it implies that(r + j)¢®> = —q(r + i) modn and since

) " . d(¢%2,n) = 1 andr¢® = r modn one obtains
D. Construction IV - Hermitian dual-containing BCH Codes™ (a%m) =T "

N 2 .

In this subsection we present the fourth proposed construc- (r+7)¢” = —q(r+4) modn
tion, which is based on finding good Hermitian dual-containi = r+j¢* = —q(r+i) modn
BCH codes. Let us recall some useful concepts. = (¢+ 1)r = —q(i +jg) modn

Suppose thaf’ is a linear code of length overF .. Then
its Hermitian dual code is defined by'# = {y € F}. | o
y?-x =0 for all x € C}, wherey? = (y7,...,y?) denotes = nlq(i+7g)(g—1)
the conjugate of the vectar= (y1,...,yn). = 7r(q+1)]q(i+jq).

Lemma 3.4:[1, Lemma 13] Assume thafcd(g,n) = 1. A
cyclic code of lengtm overF . with defining setZ contains
its Hermitian dual code if and only i N Z~% = (), where
Z 1={—gqzmod n|zeZ}.

Lemma 3.5:[1, Lemma 17 c¢)] (Hermitian Construction) If
there exists a classical linedn, k,d] . code D such that
D+tr C D, then there exists afin, 2k — n, > d|], stabilizer

= —q(i+j¢)(¢g—1)=0 modn

Since ged(r,q) = 1 andged(g + 1,9) = 1 hold it implies
that r(¢ + 1) | (¢ + jq), which is a contradiction because
i+ jq <r(g+1). ThusC is Hermitian dual-containing.

It is easy to see that these cosets are mutually disjoint,
with exception of the cosef,;, the other cosets have two
elements. Thug” has dimensiork = n — 2(r — 2) — 1.

By construction, the defining s&f of C' contains the se-
code. ) quencer,r + 1,...,2r — 2, of r — 1 consecutive integers
LeEanizplg 5.4:(:Laer: l:)Se szapr;"(\e/\gth toagr;thee)(ran'zﬁlee I(-)|];rrrr]1(i)t\;vand' so the minimum distance 6f is greater than or equal
construction in order to construct good codes. Assuan%);iyit:g ttr:z ge;i]iiligr\[négnst?L(JZtioz) tmlgﬁ]ez gL“; ;g? 2n

. 2
thatq = 7, n = 144, m = 3 andr = 3; the ¢°-ary cosets |[[n,n —4(r —2) —2,d > r]], quantum code, as desiredm
Cs, C4, C9 and Cy5 contain only one element. The othe Corollary 3.3: Suppose; ; 3 is a prime power and > ¢2
cosets necessary for the construction @e= {4,52,100}, is an integersu;:h thatd(q?, n) — 1. Assume alsdg®—1) | n
Cs = {5,101,53}, C7 = {755,103}, Cs = {8,104,56}, 4, ord,(¢%) = 2. Then there exist quantum codes with
Cyo = {10,58,106},Cy; = {11,107,59}. LetC be the cyclic arameter§in, n — dc — 2,d > ¢+ 2]],, where2 < ¢ < r—2
cm(dgt)e gen(e(z?ted b(;g)the pggduct cz;the m(i8r;imal p()glynomiaasndn = r(g? ’_ . = @ s
%(1§§C(1:];4M(££)(%ME£)>J(Z). (I;C)ifstrgg);]r\l{for\sfa)r]\j to(?how Proof: Let C' be the BCH code generated by the prod-

ini jalshs (™) r+D () -
that C' is Hermitian dual-containing and has parametePCE gf) the minimal .polyrllor.nlal .(I)M ()
) . 1\"*¢)(x). Proceeding similarly as in the proof of Theo-
[144,122,d > 11]... Thus, applying the Hermitian construc-
; ; rem 3.8, the result follows. ]
tion, one obtains an[144,100,d > 11]], quantum code. ) . 9
- . Theorem 3.9:Let ¢ > 3 be a prime powerp > ¢ be a
Similarly one can construct quantum codes with parameters

i — 2
[[144, 102, d > 10}, [[144, 108,d > 9]}, [[144, 114,d > 8]}, prlmE nl;mber Iand (_:0n5|der that = ordg(q ) 2A2. Let
[144,116,d > 7)., [[144,122,d > 6]],, [[144,128.d > 5]]., C|) be the cyclotomic coset containingand s 4 1. Assume

[[144,130,d > 4]), and([[144, 136,d > 3].. that Z = Cjy) U Cgyg U ... U Cioyyy, Where all theg-ary

: L . cosetsCp,1y, @ = 0,2,3,...,r, are mutually disjoint, and
Theorem 32.8:Suppo_se thay > 3 is a p2r|me power suppose thaZ N Z~7 = (). Then there exist quantum codes
and n > ¢° is an integer such thagcd(¢®,n) = 1.

i — > :
Assume also thatg? — 1) | n and m = ord,(¢?) = with parametersin, n — 2mr, d > 1 +2]],

. . Proof: We know thatged(q,n) = 1 holds. LetC be
2 hold. Then there exist quantum codes with parameters . ’ -
([, — 4(r —2) — 2,d > 1]],, where r is such thatn = Ghe cyclic code generated by the product of the minimal

r(g 1), polynomials

Proof: Let C' be the cyclic code generated by the product M) (I)M(SH) (z)-...- M+ (z).

of the minimal polynomials ) )
SinceZ N Z—7 = () holds, it follows from Lemma 3.4 that

MO ()M (z) - M2 (). C' is Hermitian dual-containing. From the BCH bound, the



minimum distance of” is greater than or equal to+ 2. It
is easy to see that the cosélg;, wherei =0,2,3,...,r,
havem elements and they are mutually disjoint. Thiushas
parametergn,n — mr,d > r + 2| .. Applying the Hermitian
construction one can get dfn,n — 2mr,d > r + 2], code.
[ |

We finish this subsection by showing how Lemma 3.2 works
for constructing quantum MDS-BCH codes:

Example 3.5:Let us consider; = 5 andn = 13. Since
ged(13,24) = 1, the linear congruencg? — 1)z = 1 modn
has a solution, so there exists at least ghary coset contain-
ing two consecutive integers, namely, the cdSgt = {6, 7}.
ChooseC = (M) (z)). SinceCyy # Cig, C is Hermitian
dual-containing and has paramet@rs, 11, d > 3].. Applying
the Hermitian construction, af{13,9,3]]; quantum MDS-
BCH code is constructed. Similarly, we can also construct an
[[17,13,3]], and an[[17,9, 5]], quantum MDS-BCH code.

TABLE |
CODE COMPARISON

New CSS codes CSS codes in [1]
[[n, &, d]], [n,k,d]l,
11,1,d > 4], —

13,1,d > 4], —
[[1093,1079,d > 3], | [[1093,1065,d > 3]],
[[31,19,d > 4]], [31,13,d > 4]];
[[317137d2 5”5 [[31777 d, 2 5”5
[71,61,d > 3]]; [[71,51,d > 3]];
[[71,51,d > 4]|; [71,41,d > 4]];
[[73,61,d > 4]]¢ [[73,55,d > 4]],
[[73,55,d > 5]]g [[73,49,d > 5]],
[[73,49,d > 6]] [[73,43,d > 6]],
[[73,43,d > 7)]g [73,37,d > 7]l
TABLE 1|

CODE COMPARISON

New CSS codes

Steane’s code construction

IV. CoDE COMPARISONS

In this section we compare the parameters of the new

guantum BCH codes with the ones available in the literature.

The codes available in the literature derived from Steane’s

code construction are generated by the same method présente [[73,55,d > 55

in [20, Table I] by considering the criterion for classical

[[n, k. d]), (" k", d ) L, L
[31,19,d > 4]l | [[31,16,d" > 4]]5: [31,22,4];, [31,25,3]5
[31,13,d > 5], | [[31,10,d” > 5]].: [31,19, 5], [31,22,4].
[[73,61,d > 4]l | [[73,58,d > 4]]g: [73,64,4]g, [73,67,3]g
[[73,52,d" > 5]]g: [73,61, 5], [73, 64, 4]
[[73,49,d > 6]l | [[73,46,d > 6]]5: [73,58, 6]g, [73,61, 5]
[[73,43,d > 7]l | [[73,40,d" > 7llg: [73,55, Tlg, [73,58, 6]g

Euclidean dual-containing BCH codes given in [1, Theorems 3
and 5].

Let us fix the notation:

e [[n, k,d]] are the parameters of the new quantum codes;

o ([0, K. d]], =
([n',n" —2m([(6 = 1)(1 = 1/q)]),d > ¢]], are the pa-
rameters of quantum codes available in [1];

e [[n",k",d"]], are the parameters of quantum BCH codes
derived from Steane’s code construction shown in [11,
Corollary 4].

Tables | and Il show the new codes derived from Construc-
tion | and from Theorem 3.4 in Construction Il; Table IlI
presents new codes derived from Construction Il and Table |
shows the new codes derived from Construction IV.

Checking the parameters of the new quantum BCH codes
tabulated, one can see that the new codes have paramete

TABLE Il

CoDE COMPARISON

New codes (Construction Il Steane’s code constructiop
[[n,k’,d]]q Hn,,7kj,,7d,,ﬂq

[[31,22,d > 4]]5 ([31,16,d > 4]]5
[[31,16,d > 5]]; [131,10,d" > 5]];
[[71,56,d > 4]]; [[71,46,d" > 4]]
[[73,64,d > 4]]4 [[73,58,d > 4]l
[[73,58,d > 5]] [[73,52,d" > 5]l

[[40, 36, 3], (MDS)

[[60,56, 3], , (MDS)

TABLE IV

CoDE COMPARISON

FFRlew Hermitian Codes (Construction 1V

Hermitian Codes in [1]

better than the ones available in the literature. In othenda,o

([, , d]],

(', k", d7],

fixing n andd, the new quantum BCH codes achieve greater

17,13,3

1, (MDS)

values of the number of qudits than the quantum BCH code$

17,9,5

, (MDS)

available in the literature. As the referee observed, it is

13,9,3

. (MDS)

interesting to note that most of our codes of length largen

[312,298,d > 5]].

thang? + 1 are new.

312,294, d > 6]

[[312,292,d > 6]];

Remark 4.1:Note that the codeg[31,25,d > 3]]; and

312,290, d > 7]

[1312,288,d > 7]];

[[312,284,d > 8]],

[[1093,1079,d > 3]], have the same parameters of the cor-
responding Hamming codes and the ngl,61,d > 3]|;

[
[
[312,286,d > 8],
[312,282,d > 9],

[1312,280,d > 9]];

£
~

[

312,278, d > 10]

([312,276,d > 10]

code can be compared with distance three codes obtained Iy

5
5

([312,272,d > 11]

5
5

5]

shortening Hamming codes.

[
[
[
[
[
[
[
[

[

]
(312,274, d > 11]]
]

312,270, d > 12]

[or

[312,268,d > 12]],

V. SUMMARY

144,128,d > 5

144,120,d > 5

We have presented four quantum code constructions ger

]
]
]
7
7
7
7

erating new families of good nonprimitive non-narrow-sens

guantum BCH codes. These new quantum codes have parar

eters better than the ones available in the literature. thaddi

144,122,d > 6 ; 144,114,d > 6

_ 144,116,d > 7], 144,108,d > 7
144,114, d > 8|, 144,102,d > 8
144,108,d > 9 [144,96,d > 9]

' 144,102, d > 10]], 144,90, d > 10]],
144,700, d > 11]], 144,84,d > 11|,

ally, most of these codes are generated algebraically.
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