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On the Construction of Nonbinary Quantum BCH
Codes

Giuliano G. La Guardia

Abstract—Four quantum code constructions generating sev-
eral new families of good nonbinary quantum nonprimitive
non-narrow-sense Bose-Chaudhuri-Hocquenghem codes are pre-
sented in this paper. The first two ones are based on Calderbank-
Shor-Steane (CSS) construction derived from two nonprimitive
Bose-Chaudhuri-Hocquenghem codes. The third one is based on
Steane’s enlargement of nonbinary CSS codes applied to suitable
sub-families of nonprimitive non-narrow-sense Bose-Chaudhuri-
Hocquenghem codes. The fourth construction is derived from
suitable sub-families of Hermitian dual-containing nonprimitive
non-narrow-sense Bose-Chaudhuri-Hocquenghem codes. These
constructions generate new families of quantum codes whose
parameters are better than the ones available in the literature.

Index Terms – Bose-Chaudhuri-Hocquenghem codes,
quantum codes, cyclotomic coset

I. I NTRODUCTION

Constructions of quantum codes with good parameters are
much investigated in the literature [1, 3, 6–11, 13–17,20, 21].
The CSS construction, the Hermitian construction, as well as
the symplectic construction are the most utilized construction
methods in order to generate good quantum codes. In this
context, many classical codes involved in these constructions
are Bose-Chaudhuri-Hocquenghem codes [4, 5, 12]. Interesting
works concerning this class of codes were presented in the
literature [1, 14–17,22]. More precisely, the dimension and
sufficient condition (in some cases, necessary and sufficient
condition) for dual (Euclidean and Hermitian) containing
Bose-Chaudhuri-Hocquenghem codes were investigated.

In [1], the authors constructed families of good nonbinary
quantum (narrow-sense) codes by showing useful properties
of cyclotomic cosets. More specifically, they computed the
exact dimension of classical narrow-sense Bose-Chaudhuri-
Hocquenghem codes of lengthn with minimum distance
of order O(n1/2) as well as establishing useful conditions
for identifying dual-containing (Euclidean as well as Her-
mitian) Bose-Chaudhuri-Hocquenghem codes. Following this
approach, the authors of [17, 22] also have constructed quan-
tum Bose-Chaudhuri-Hocquenghem codes by using proper-
ties of suitable cyclotomic cosets and also dual-containing
codes. In [14, 15], new families of nonbinary quantum Bose-
Chaudhuri-Hocquenghem codes were constructed by means
of the CSS, Hermitian and also by using Steane’s code con-
struction applied to suitable sub-families of Bose-Chaudhuri-
Hocquenghem codes. Finally, new quantum MDS codes of
non Reed-Solomon type are constructed in [16].

Giuliano Gadioli La Guardia is with Department of Mathematics and
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PR, Brazil. E-mail:gguardia@uepg.br.

Motivated by the construction of new nonbinary quantum
codes with good parameters, we propose four quantum code
constructions generating new families of good codes. These
new families consist of quantum codes whose parameters are
better than the ones available in the literature. In other words,
fixing n andd, the new quantum codes achieve greater values
of the number of encoded qudits than the codes available
in the literature (see Tables I to IV). In this paper we only
consider nonprimitive codes. In order to construct these new
families it is necessary to know the exactly dimension of
the classical Bose-Chaudhuri-Hocquenghem codes used for
this purpose. This is a difficult task since the dimension of
these codes is not known. To solve this problem, we show
suitable properties of cyclotomic cosets, providing the exact
dimension and also lower bounds for the minimum distance
of the corresponding quantum codes as in the Euclidean as
well as in the Hermitian case. Additionally, by applying the
concept of linear congruence, we prove (for codes of prime
length) the existence of, at least, oneq-ary coset containing
two consecutive integers. By means of this result we also
construct new families of good nonbinary quantum codes,
since this technique allows the construction of quantum codes
with great dimension and great minimum distance.

The proposed families have parameters

• [[n, n− 4(c− 2)− 2, d ≥ c]]q,
where q ≥ 4 is a prime power,n is an integer such that
gcd(q, n) = 1, (q− 1) | n, m = ordn(q) = 2 and2 ≤ c ≤ r,
wherer is such thatn = r(q − 1);

• [[n, n− 2mr, d ≥ r + 2]]q,

where m = ordn(q) ≥ 2, n is a prime number andr
is the number of cosets satisfying suitable conditions (see
Theorem 3.4);

• [[n, n−m(2r − 1), d ≥ r + 2]]q,
wherem = ordn(q) ≥ 2, n is a prime number andq ≥ 3;

• [[n, n− 4c, d ≥ c+ 2]]q,
wheren > q is an integer withgcd(q, n) = 1, (q − 1) | n,
m = ordn(q) = 2, 1 ≤ c ≤ r − 3 and r > 3 is such that
n = r(q − 1);

• [[n, n− 4c− 2, d ≥ c+ 2]]q,

where 2 ≤ c ≤ r − 2, q > 3, n = r(q2 − 1), r > 1 and
m = ordn(q

2) = 2;
• [[n, n− 2mr, d ≥ r + 2]]q,

whereq ≥ 3 is a prime power,n > q2 is a prime number such
that gcd(q, n) = 1, m = ordn(q

2) ≥ 2 andr is the number
of cosets satisfying suitable conditions (see Theorem 3.9).

This paper is structured as follows. In Section II we recall
basic concepts on cyclic codes. In Section III, the four new
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quantum code constructions are presented. More precisely:in
Subsection III-A, new families of nonprimitive quantum codes
of length n, wherem = ordn(q) = 2, are generated; in
Subsection III-B, new families ofq-ary quantum nonprim-
itive non-narrow-sense Bose-Chaudhuri-Hocquenghem codes
of prime length, wherem = ordn(q) ≥ 2, are con-
structed; in Subsection III-C, new families of quantum codes
derived from Steane’s code construction are shown; in Sub-
section III-D, the construction of new families of quantum
codes derived from nonprimitive non-narrow-sense Hermitian
dual-containing Bose-Chaudhuri-Hocquenghem codes are pro-
posed. In Section IV, the parameters of the new quantum codes
are compared with the ones available in the literature. Finally,
in Section V, a summary of this paper is given.

II. REVIEW OF CYCLIC CODES

This section presents some basic concepts on cyclic codes,
necessary for the development of this paper. For more details,
we refer the reader to [18].

Throughout this paper,p denotes a prime number,q 6= 2 is
a prime power,Fq is a finite field withq elements,n is the
code length (we always consider thatgcd(n, q) = 1). If C is an
[n, k, d]q code thenC⊥ denotes its Euclidean dual andC⊥H

denotes its Hermitian dual. As usual,m = ordn(q) denotes
the multiplicative order ofq modulo n (i.e., the smallest
positive integerm such thatn dividesqm−1) andC[s] denotes
the q-ary cyclotomic coset modulon containings, defined
by Cs = {s, sq, sq2, sq3, . . . , sqms−1} (ms is the smallest
positive integer such thatsqms ≡ s mod n), wheres is not
necessarily the smallest number in the cosetC[s]. The minimal
polynomial overFq of β ∈ Fqm is the monic polynomial
of smallest degree,M(x), with coefficients inFq such that
M(β) = 0. If β = αi for some primitiventh root of unity
α ∈ Fqm then the minimal polynomial ofβ = αi is denoted
by M (i)(x). It is well known thatxn − 1 =

∏

s

M (s)(x),

whereM (s)(x) denotes the minimal polynomial ofαs ∈ Fqm

over Fq, and s runs through the coset representatives mod
n. Let C be a cyclic code of lengthn. Then there is only
one monic polynomialg(x) with minimal degree inC such
that g(x) is the generator polynomial ofC, whereg(x) is a
factor of xn − 1. The dimension ofC equalsn − deg g(x).
The (Euclidean) dual codeC⊥ of a cyclic code is cyclic and
has generator polynomialg(x)⊥ = xdeg h(x)h(x−1), where
h(x) = (xn − 1)/g(x). Thus, the code having generator
polynomialh(x) is equivalent to the dual codeC⊥.

Let Fq be a finite field andn a positive integer with
gcd(q, n) = 1. Let α be a primitiventh root of unity. Recall
that a cyclic code of lengthn over Fq is a Bose-Chaudhuri-
Hocquenghem (BCH) code of designed distanceδ if, for some
integerb ≥ 0 we have

g(x) = lcm{M (b)(x),M (b+1)(x), . . . ,M (b+δ−2)(x)},

that is,g(x) is the monic polynomial of smallest degree over
Fq havingαb, αb+1, . . . , αb+δ−2 as zeros. Ifn = qm − 1 then
the BCH code is called primitive and ifb = 1 it is called
narrow-sense.

Theorem 2.1:[18, pg. 201] (The BCH bound) LetC be a
cyclic code with generator polynomialg(x) such that, for some
integersb ≥ 0, δ ≥ 1, andα ∈ Fqm (α is a primitiventh root
of unity), we haveg(αb) = g(αb+1) = . . . = g(αb+δ−2) = 0,
that is, the code has a sequence ofδ − 1 consecutive powers
of α as zeros. Then the minimum distance ofC is, at least,δ.
From the BCH bound, the minimum distance of a BCH code
is greater than or equal to its designed distanceδ.

III. C ODE CONSTRUCTIONS

In this section we present our contributions, i.e., the four
quantum code constructions previously mentioned.

A. Construction I - Nonprimitive Codes

In this subsection we construct new families of nonbinary
CSS codes derived from two distinct classical BCH codes, not
necessarily dual-containing. To proceed further, let us recall
the so-called CSS construction:

Definition 3.1: [6, 13, 19, 20] LetC1 and C2 denote two
classical linear codes with parameters[n, k1, d1]q and
[n, k2, d2]q, respectively, such thatC2 ⊂ C1. Then there
exists an[[n,K = k1 − k2, d]]q quantum code, whered =

min{wt(c) | c ∈ (C1\C2) ∪ (C⊥

2 \C⊥

1 )}.
We start by showing Lemma 3.1:
Lemma 3.1:Let q ≥ 3 be a prime power andn > q be an

integer such thatgcd(q, n) = 1. Assume also that(q − 1) | n
and m = ordn(q) ≥ 2 hold. Then each one of theq-ary
cyclotomic cosetsC[lr], wherer is such thatn = r(q−1) and
1 ≤ l ≤ q − 2 is an integer, has only one element.

Proof: Sincerq = n + r holds, one has(lr)q = l(n +
r) ≡ lr mod n, and therefore(lr)qt ≡ lr mod n, for each
1 ≤ t ≤ m− 1, proving the lemma.

Lemma 3.1 can be applied in order to show Theorem 3.1.
Theorem 3.1:Assume thatq > 3 is a prime power andn >

q is an integer such thatgcd(q, n) = 1. Assume also that(q−
1) | n andm = ordn(q) = 2 hold. Then there exist quantum
codes with parameters[[n, n− 4(r − 2)− 2, d ≥ r]]q, where
r is such thatn = r(q − 1).

Proof: Since it is true thatn | (q2 − 1) and because we
consider only nonprimitive BCH codes, it follows thatr ≤
q. Since gcd(q, n) = 1 one hasr < q, so the inequalities
(r − 2)q < n andr + (r − 2)q < n hold. We next show that
all the q-ary cosets (modulon) given byC[0] = {0},C[1] =
{1, q},C[2] = {2, 2q},C[3] = {3, 3q}, . . . ,C[r−2] = {r−
2, (r− 2)q},C[r] = {r},C[r+1] = {r+1, r+ q},C[r+2] =
{r+ 2, r+ 2q}, . . . ,C[2r−2] = {2r− 2, r + (r − 2)q}, are
mutually disjoint and, with exception of the cosetsC[0] = {0}
andC[r] = {r}, each of them has exactly two elements.

The cosetsC[0] andC[r] have only one element. Let us show
that each one of the other cosets has exactly two elements.
Since(r−2)q < n, then the congruencel ≡ lq modn implies
that l = lq, where1 ≤ l ≤ r − 2, which is a contradiction.
If r + s ≡ (r + s)q mod n, where 1 ≤ s ≤ r − 2, then
r + s = r + sq, which is a contradiction.

From now on, we show that all these cosets given above and
C[0] andC[r] are mutually disjoint. We only consider the case
C[r+l] = C[r−s], where1 ≤ l, s ≤ r− 2, since the other cases
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are similar to this one. Seeking a contradiction, we assume that
C[r+l] = C[r−s], where1 ≤ l, s ≤ r − 2. If the congruence
(r + l) ≡ (r − s) modn holds, one obtains

(r + l) ≡ (r − s) mod n =⇒ n | (l + s).

If l + s 6= 0 one hasn ≤ l + s, which is a contradiction. If
l+s = 0 holds it implies thatl = −s, which is a contradiction.

On the other hand, if(r + l)q ≡ r − s mod n holds, one
obtains

(r + l)q ≡ r − s =⇒ lq ≡ −s mod n

=⇒ n | (lq + s).

Since l, s ≤ r − 2 and r < q hold, if lq + s 6= 0 holds it
follows thatlq+s < n, which is a contradiction. Iflq+s = 0
then lq = −s, which is a contradiction. Thus all theq-ary
cosetsC[0], C[1], . . . ,C[r−2], are disjoint from each one of the
q-ary cosetsC[r], C[r+1], . . . ,C[2r−2]. Additionally, all theq-
ary cosetsC[0], C[1], . . . ,C[r−2], are mutually disjoint and all
the q-ary cosetsC[r], C[r+1], . . . ,C[2r−2], are also mutually
disjoint.

Let C1 be the cyclic code generated by the product of the
minimal polynomials

M (0)(x)M (1)(x) · . . . ·M (r−2)(x),

and C2 be the cyclic code generated byg2(x), that is the
product of the minimal polynomials

g2(x) =
∏

i

M (i)(x),

wherei /∈ {r, r+ 1, . . . , 2r− 2} and i runs through the coset
representatives modn. From construction one hasC2 ( C1.
From the BCH bound, the minimum distance ofC1 is greater
than or equal tor because its defining set contains the se-
quence0, 1, . . . , r−2, of r−1 consecutive integers. Similarly,
the defining set of the codeC generated by the polynomial
h(x) = xn

−1
g2(x)

contains the sequencer, r + 1, . . . , 2r − 2, of
r−1 consecutive integers and so, from the BCH bound,C also
has minimum distance greater than or equal tor. Since the
codeC⊥

2 is equivalent toC, C⊥

2 also has minimum distance
greater than or equal tor. Therefore, the resulting CSS code
has minimum distance greater than or equal tor.

Next we compute the dimension of the corresponding CSS
code. We know that the degree of the generator polynomial of
a cyclic code equals the cardinality of its defining set. Further,
the defining setZ1 of C1 hasr−1 disjoint cyclotomic cosets.
Moreover, all of them (except cosetC0) have two elements and
so,Z1 has2(r−2)+1 elements. Therefore,C1 has dimension
k1 = n − 2(r − 2) − 1. Similarly, C2 has dimensionk2 =
2(r − 2) + 1. Thus the dimension of the corresponding CSS
code equalsn− 4(r− 2)− 2. Applying the CSS construction
to the codesC1 and C2, one can get quantum codes with
parameters[[n, n− 4(r − 2)− 2, d ≥ r]]q.

We illustrate Theorem 3.1 by means of a graphical scheme:

C1

︷ ︸︸ ︷

C[0]C[1] C[2] . . . C[r−2]
︸ ︷︷ ︸

C2

C
︷ ︸︸ ︷

C[r] C[r+1] . . . C[2r−2] C[a1] . . .C[an]
︸ ︷︷ ︸

C2

.

The union of the cosetsC[0],C[1], . . . ,C[r−2] is the
defining set of code C1; the union of the cosets
C[0],C[1], . . . ,C[r−2],C[a1], . . . ,C[an] is the defining set of
C2, whereC[a1], . . . ,C[an] are the remaining cosets in order
to complete the set of all cyclotomic cosets. The union of the
cosetsC[r],C[r+1], . . . ,C[2r−2] is the defining set ofC.

Corollary 3.1: Assume that all the hypothesis of Theo-
rem 3.1 are valid. Then there exist quantum codes with
parameters[[n, n− 4(c− 2)− 2, d ≥ c]]q, where2 ≤ c < r.

Proof: ChooseC1 be the cyclic code generated by the
product of the minimal polynomials

M (0)(x)M (1)(x) · . . . ·M (c−3)(x)M (c−2)(x),

and C2 be the cyclic code generated by the product of the
minimal polynomials

∏

i

M (i)(x),

wherei /∈ {r, r+1, . . . , r+c−2} andi runs through the coset
representatives modn. Proceeding similarly as in the proof of
Theorem 3.1, the result follows.

B. Construction II - Codes of Prime Length

In this subsection the attention is focused on cyclic codes of
prime length. Among the contributions shown in this section,
we prove there exists at least oneq-ary cyclotomic coset
containing two consecutive integers (see Lemma 3.2). In order
to proceed further, let us recall a well-known result from
number theory:

Theorem 3.2:A linear congruenceax ≡ b (modm), where
a 6= 0, admits an integer solution if and only ifd = gcd(a,m)
dividesb.

Applying Theorem 3.2 we can prove Lemma 3.2:
Lemma 3.2:Assume thatq ≥ 3 is a prime power,n > q

is a prime number and considerm = ordn(q) ≥ 2. Then
there exists at least oneq-ary cyclotomic coset containing two
consecutive integers.

Proof: First, note thatgcd(q, n) = 1. In order to prove
this lemma, it suffices to show that the congruencexq ≡ x+1(
mod n) has at least one solution for some0 ≤ x ≤ n − 1
or, equivalently, the congruence(q − 1)x ≡ 1 (mod n) has
at least one solution. We know thatgcd(q − 1, n) = 1 holds,
becausen > q andn is a prime number. Sinceq − 1 6= 0,
it follows from Theorem 3.2 that(q − 1)x ≡ 1 (mod n) has
an integer solutionx0. Applying the division algorithm forx0

andn one hasx0 = ns0 + r0, wherer0 and s0 are integers
and0 ≤ r0 ≤ n− 1. Since(q− 1)x0 ≡ 1 (modn) holds then
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the congruence(q − 1)r0 ≡ 1 (mod n) also holds, and the
result follows.

Remark 3.1:Note that in Lemma 3.2 it is not necessary to
assume thatn is a prime number. In fact, we only need to
suppose thatgcd(q − 1, n) = 1 and gcd(q, n) = 1 hold (the
latter condition ensures thatC has simple roots). But since the
correspondingq-ary cosets of BCH codes of prime length have
nice properties, we have assumed thatn is prime. However, if
one assumes thatgcd(q − 1, n) = 1 andgcd(q, n) = 1 hold,
more good quantum codes can be constructed.

Theorem 3.3:Let q ≥ 3 be a prime power,n > q be a
prime number and considerm = ordn(q) ≥ 2. Assume that
C[s] 6= C[−s], whereC[s] is a cyclotomic coset containing
two consecutive integers. Then there exist quantum codes with
parameters[[n, n− 2m, d ≥ 3]]q.

Proof: First, note thatgcd(q, n) = 1. ChooseC1 be
code generated byM (s)(x) and C2 be the code generated
by

∏

i

M (i)(x), wherei 6= −s and i runs through the coset

representatives modn. It is easy to see that the cosetsC[s]

andC[−s] containm elements. Proceeding similarly as in the
proof of Theorem 3.1, the result follows.

Theorem 3.4:Assume thatq ≥ 3 is a prime power,
n > q is a prime number and considerm =
ordn(q) ≥ 2. Let C[s] be the cyclotomic coset con-
taining s and s + 1. Suppose that all theq-ary cosets
C[s],C[s+2], . . . ,C[s+r],C[−s],C[−s−2], . . . ,C[−s−r], are mu-
tually disjoint. Then there exist quantum codes with parame-
ters [[n, n− 2mr, d ≥ r + 2]]q.

Proof: We know thatgcd(q, n) = 1 and the cosetC[−s]

also contains two consecutive integers, namely,−s − 1 and
−s. Let C1 be the cyclic code generated by the product of the
minimal polynomials

M (s)(x)M (s+2)(x) · . . . ·M (s+r)(x),

and letC2 be the cyclic code generated by the polynomial
g2(x), that is the product of the minimal polynomials

g2(x) =
∏

j

M (j)(x),

wherej /∈ {−s− r, . . . ,−s− 2,−s} and j runs through the
coset representatives modn.

From the BCH bound, the minimum distance ofC1 is
greater than or equal tor + 2 because its defining set
contains the sequence ofr + 1 consecutive integers given by
s, s + 1, s + 2, . . . , s + r. Similarly, the defining set of the
codeC generated by the polynomialh2(x) = (xn−1)/g2(x),
contains a sequence ofr + 1 consecutive integers given by
−s− r, . . . ,−s− 2,−s− 1,−s. Again, from the BCH bound,
C has minimum distance greater than or equal tor+2. Since
C is equivalent toC⊥

2 , it follows thatC⊥

2 also has minimum
distance greater than or equal tor+2. Therefore, the resulting
CSS code have minimum distance greater than or equal to
r + 2. If s ∈ [1, n− 1] satisfiesgcd(s, n) = 1 then the coset
Cs has cardinalitym. In fact, if |Cs| = c < m it follows that
n|s(qc − 1), so n|(qc − 1), a contradiction. Thus, sincen is
prime, each one of the cosetsCs, wheres ∈ [1, n − 1], has
cardinalitym. Additionally, from the hypothesis, all theq-ary

cosetsC[s],C[s+2], . . . ,C[s+r], are mutually disjoint. ThusC1

has dimensionk1 = n−mr andC2 has dimensionk2 = mr,
since there existr disjoint q-ary cosets not contained in the
defining set ofC2, where each of them has cardinalitym.
Therefore, the dimensionK of the corresponding CSS code
equalsK = n−2mr. Since the cosetsC[s],C[s+2], . . . ,C[s+r],
C[−s],C[−s−2], . . . ,C[−s−r], are mutually disjoint, it follows
thatC2 ( C1. Applying the CSS construction toC1 andC2,
one obtains an[[n, n− 2mr, d ≥ r + 2]]q code.

Example 3.1:Theorem 3.4 has variants as follows: to
construct an[[19, 13, d ≥ 3]]7 code, considerq = 7, n = 19
and m = 3. The cosets are given byC2 = {2, 14, 3} and
C16 = {5, 16, 17}. Let C1 be the cyclic code generated
by the minimal polynomialC1 = 〈g1(x)〉 = 〈M (2)(x)〉

and C2 generated by g2(x) =
∏

i

M (i)(x), where

i /∈ {16} and i runs through the coset representatives
mod 19. Then an [[19, 13, d ≥ 3]]7 quantum code can be
constructed. Proceeding similarly, one can get quantum
codes with parameters[[31, 25, d ≥ 3]]5, [[71, 61, d ≥ 3]]5,
[[11, 1, d ≥ 4]]3, [[31, 19, d ≥ 4]]5, [[31, 13, d ≥ 5]]5,
[[71, 51, d ≥ 4]]5, [[71, 41, d ≥ 6]]5.

C. Construction III - Codes Derived from Steane’s Construc-
tion

In this subsection we construct new families of quantum
BCH codes of prime length by applying Steane’s enlargement
of nonbinary CSS construction [11, Corollary 4]. These new
families have parameters better than the parameters of the
quantum BCH codes available in the literature. Let us recall
Steane’s code construction:

Corollary 3.2: [11, Corollary 4] Assume we have an
[N0,K0] linear codeL which contains its Euclidean dual,
L⊥ ≤ L, and which can be enlarged to an[N0,K

′

0] linear code
L

′

, whereK
′

0 ≥ K0 + 2. Then there exists a quantum code
with parameters[[N0,K0+K

′

0−N0, d ≥ min{d, ⌈ q+1
q d

′

⌉}]],

whered = w(L\L
′⊥

) andd
′

= w(L
′

\L
′⊥

).
Euclidean dual-containing cyclic codes can be derived from

Lemma 3.3:
Lemma 3.3:[1, Lemma 1] Assume thatgcd(q, n) = 1. A

cyclic code of lengthn overFq with defining setZ contains
its Euclidean dual code if and only ifZ ∩ Z−1 = ∅, where
Z−1 = {−z mod n | z ∈ Z}.

In Lemma 3.2 of Section III-B we have shown the existence
of, at least, oneq-ary cyclotomic coset containing two consec-
utive integers provided the code length is a prime number. In
what follows we show how to construct good quantum codes
of prime length by applying Steane’s code construction. We
begin by presenting an illustrative example:

Example 3.2:Assume thatn = 31 and q = 5. From
Lemma 3.2, there exists a cyclotomic coset containing at least
two consecutive integers; here it is the cosetC8 = {8, 9, 14}.
Let C be the cyclic code generated by the product of the
minimal polynomialsC = 〈g(x)〉 = 〈M (4)(x)M (8)(x)〉. C
has defining setZ = C4∪C8 = {4, 7, 8, 9, 14, 20} and has pa-
rameters[31, 25, d ≥ 4]5. From Lemma 3.3, it is easy to check
that C is Euclidean dual-containing. Furthermore,C can be
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enlarged to a codeC
′

with parameters[31, 28, d ≥ 3]5, whose
generator polynomial isM (8)(x). Applying Corollary 3.2 to
C andC

′

one obtains an[[31, 22, d ≥ 4]]5 code.
Theorem 3.5:Let q ≥ 3 be a prime power,n > q be a

prime number and consider thatm = ordn(q) ≥ 2. Let C[s]

be theq-ary coset containings and s + 1 and consider that
Z = C[s] ∪ C[s+2], whereCs 6= C[s+2]. Assume also that
Z ∩ Z−1 = ∅ holds. Then there exist quantum codes with
parameters[[n, n− 3m, d ≥ 4]]q.

Proof: We know that gcd(q, n) = 1. Let C be the
cyclic code generated the product of the minimal polynomials
〈M (s)(x)M (s+2)(x)〉. By hypothesis and from Lemma 3.3, we
know thatC is Euclidean dual-containing.C has parameters
[n, n− 2m, d ≥ 4]q. Let C

′

be the cyclic code generated
by the minimal polynomialM (s)(x). We know thatC

′

is
an enlargement ofC and has parameters[n, n−m, d ≥ 3]q.
Sincem ≥ 2, then k

′

− k = m ≥ 2, wherek
′

denotes the
dimension ofC

′

andk denotes the dimension ofC. Applying
Steane’s code construction toC andC

′

, since q+1
q > 1 holds

one obtains an[[n, n− 3m, d ≥ 4]]q code.
Theorem 3.5 can be generalized in the following way:
Theorem 3.6:Assume thatq ≥ 3 is a prime power,n > q

is a prime number and consider thatm = ordn(q) ≥ 2. Let
C[s] be the cyclotomic coset containings ands+ 1. Assume
that Z = C[s] ∪ C[s+2] ∪ . . . ∪ C[s+r], where all theq-ary
cosetsC[s+i], i = 0, 2, 3, . . . , r, are mutually disjoint, and
suppose thatZ ∩ Z−1 = ∅. Then there exist quantum codes
with parameters[[n, n−m(2r − 1), d ≥ r + 2]]q.

Proof: We know thatgcd(q, n) = 1. Let C be the cyclic
code generated by the product of the minimal polynomials

M (s)(x)M (s+2)(x) · . . . ·M (s+r)(x).

SinceZ ∩ Z−1 = ∅ holds, it implies from Lemma 3.3 that
C is Euclidean dual-containing. From the hypothesis, all the
q-ary cosetsC[s],C[s+2], . . . ,C[s+r] are mutually disjoint, so
C has dimensionk = n − mr and minimum distanced ≥
r+2. ThusC has parameters[n, n−mr, d ≥ r + 2]q. Let C

′

be the cyclic code generated by the product of the minimal
polynomials

M (s)(x)M (s+2)(x) · . . . ·M (s+r−1)(x).

We know that C
′

is an enlargement ofC and has pa-
rameters[n, n−m(r − 1), d ≥ r + 1]q. Since m ≥ 2 then
k

′

− k = m ≥ 2, where k
′

denotes the dimension of
C

′

and k denotes the dimension ofC. Applying Steane’s
code construction to the codesC and C

′

one obtains an
[[n, n−m(2r − 1), d ≥ r + 2]]q code, as required.

Example 3.3:In this example we construct an
[[31, 16, d ≥ 5]]5 quantum code. For this purpose we
take n = 31 and q = 5; then m = ordn(q) = 3. Let C
be the cyclic code generated by the product of the minimal
polynomials M (4)(x)M (6)(x)M (8)(x). It is easy to see
that C is Euclidean dual-containing and has parameters
[31, 22, d ≥ 5]5. Let C

′

be the cyclic code generated by
the product of the minimal polynomialsM (4)(x)M (8)(x);
C

′

has parameters[31, 25, d ≥ 4]5.Thus there exists an
[[31, 16, d ≥ 5]]5 quantum code.

We next establish Theorem 3.7, an analogous to Theo-
rem 3.1.

Theorem 3.7:Suppose thatq ≥ 5 is a prime power and
n > q is an integer such thatgcd(q, n) = 1. Assume also
that (q − 1) | n and m = ordn(q) = 2 hold. Then there
exist quantum codes with parameters[[n, n− 4c, d ≥ c+ 2]]q,
where1 ≤ c ≤ r − 3 andr > 3 is such thatn = r(q − 1).

Proof: We only prove the existence of an
[[n, n− 4(r − 3), d ≥ r − 1]]q code, since the constructions
of the other codes are quite similar.

Let C be the cyclic code generated by the product of the
minimal polynomials

M (r)(x)M (r+1)(x) · . . . ·M (2r−3)(x).

From Lemma 3.1 and from the proof of Theorem 3.1, we
know that theq-ary cosets given byC[r] = {r},C[r+1] =
{r+1, r+q},C[r+2] = {r+2, r+2q}, . . . ,C[2r−3] = {2r−
3, r + (r − 3)q} are mutually disjoint and each of them has
two elements. Therefore,C has dimensionk = n−2(r−3)−1
and minimum distanced ≥ r − 1.

Let us prove thatC is Euclidean dual-containing. In fact, if
(r+ i) ≡ −(r+ j) modn, where0 ≤ i, j ≤ r− 3, it follows
that2r+ i+ j ≡ 0 modn. Since the inequality2r+ i+ j < n
holds becauseq ≥ 5, one has a contradiction. On the other
hand, if (r + i)q ≡ −(r + j) modn holds then

(iq + j)(q − 1) ≡ 0 mod n =⇒

i(q2 − q) + j(q − 1) ≡ 0 mod n =⇒

j(q − 1) ≡ i(q − 1) mod n,

where the latter congruence holds becauseordn(q) = 2. Then
the unique solution is wheni = j. Let us investigate this
case. Seeking a contradiction, we assume that the congruence
(r + i)q ≡ −(r + i) modn is true. Then one obtains

(r + i)q ≡ −(r + i) mod n =⇒

2r + i(q + 1) ≡ 0 mod n =⇒

r(q − 3) ≡ i(q + 1) mod n.

If 0 ≤ i ≤ r − 4, then

r(q − 3)− i(q + 1) ≥

r(q − 3)− (r − 4)(q + 1) =

4q − 4r + 4 > 0,

where the latter inequality holds becauser < q since we only
consider nonprimitive BCH codes. Moreover, the inequality
r(q − 3)− i(q + 1) < n also holds, which is a contradiction.
If i = r − 3 then the congruencer(q − 3) ≡ (r − 3)(q + 1)
mod n holds, that is,4r ≡ 3(q + 1) mod n holds. Since
r | (q + 1) and q + 1 > r hold, it implies thatq + 1 ≥
2r so, 3(q + 1) − 4r ≥ 2r > 0. Moreover, the inequality
3(q+1)− 4r < n holds, which is a contradiction. Therefore,
C is Euclidean dual-containing.

Let C
′

be the cyclic code generated by the product of the
minimal polynomials

M (r)(x)M (r+1)(x) · . . . ·M (2r−4)(x).
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C
′

is an enlargement ofC; C
′

has dimensionk
′

= n− 2(r−
4) − 1 and minimum distanced

′

≥ r − 2. Sincem = 2
then k

′

− k = 2, where k
′

denotes the dimension ofC
′

and k is the dimension ofC. We know that⌈ q+1
q d

′

⌉ ≥
r − 1. Thus, applying Steane’s code construction one has an
[[n, n− 4(r − 3), d ≥ r − 1]]q quantum code, as required.

Recall that an[[n, k, d]]q code C satisfies the quantum
Singleton bound given byk + 2d ≤ n + 2. If C attains the
quantum Singleton bound, i. e.,k + 2d = n + 2, then it is
called a quantum maximum distance separable (MDS) code.
In the following two examples we construct quantum MDS-
BCH codes:

D. Construction IV - Hermitian dual-containing BCH Codes

In this subsection we present the fourth proposed construc-
tion, which is based on finding good Hermitian dual-containing
BCH codes. Let us recall some useful concepts.

Suppose thatC is a linear code of lengthn overFq2 . Then
its Hermitian dual code is defined byC⊥H = {y ∈ Fn

q2 |
yq · x = 0 for all x ∈ C}, whereyq = (yq1 , . . . , y

q
n) denotes

the conjugate of the vectory = (y1, . . . , yn).
Lemma 3.4:[1, Lemma 13] Assume thatgcd(q, n) = 1. A

cyclic code of lengthn overFq2 with defining setZ contains
its Hermitian dual code if and only ifZ ∩ Z−q = ∅, where
Z−q = {−qz mod n | z ∈ Z}.

Lemma 3.5:[1, Lemma 17 c)] (Hermitian Construction) If
there exists a classical linear[n, k, d]q2 code D such that
D⊥h ⊂ D, then there exists an[[n, 2k − n,≥ d]]q stabilizer
code.

Example 3.4:Let us start with an example of how
Lemma 3.1 can be applied together the Hermitian
construction in order to construct good codes. Assume
that q = 7, n = 144, m = 3 and r = 3; the q2-ary cosets
C3, C6, C9 and C12 contain only one element. The other
cosets necessary for the construction areC4 = {4, 52, 100},
C5 = {5, 101, 53}, C7 = {7, 55, 103}, C8 = {8, 104, 56},
C10 = {10, 58, 106},C11 = {11, 107, 59}. LetC be the cyclic
code generated by the product of the minimal polynomials
M (3)(x)M (4)(x)M (5)(x)M (6)(x)M (7)(x)M (8)(x)M (9)(x)·
·M (10)(x)M (11)(x)M (12)(x). It is straightforward to show
that C is Hermitian dual-containing and has parameters
[144, 122, d ≥ 11]72 . Thus, applying the Hermitian construc-
tion, one obtains an[[144, 100, d ≥ 11]]7 quantum code.
Similarly one can construct quantum codes with parameters
[[144, 102, d ≥ 10]]7, [[144, 108, d ≥ 9]]7, [[144, 114, d ≥ 8]]7,
[[144, 116, d ≥ 7]]7, [[144, 122, d ≥ 6]]7, [[144, 128, d ≥ 5]]7,
[[144, 130, d ≥ 4]]7 and [[144, 136, d ≥ 3]]7.

Theorem 3.8:Suppose thatq > 3 is a prime power
and n > q2 is an integer such thatgcd(q2, n) = 1.
Assume also that(q2 − 1) | n and m = ordn(q

2) =
2 hold. Then there exist quantum codes with parameters
[[n, n− 4(r − 2)− 2, d ≥ r]]q, where r is such thatn =

r(q2 − 1).
Proof: Let C be the cyclic code generated by the product

of the minimal polynomials

M (r)(x)M (r+1)(x) · . . . ·M (2r−2)(x).

We first show thatC is Hermitian dual-containing. For this,
let us consider the defining setZ of C consisting of theq2-ary
cyclotomic cosets given byC[r] = {r},C[r+1] = {r+1, r+
q2},C[r+2] = {r+2, r+2q2}, . . . ,C[2r−2] = {2r− 2, r+
(r − 2)q2}.

We know thatgcd(q, n) = 1 holds. From Lemma 3.4, it
suffices to show thatZ ∩ Z−q = ∅. Seeking a contradiction,
we assume thatZ ∩ Z−q 6= ∅. Then there existi, j, where
0 ≤ i, j ≤ r − 2, such that(r + j)ql ≡ −q(r + i) mod n,
wherel = 0 or l = 2. If l = 0, one hasr+j ≡ −q(r+i) modn
and soq(r+ i)+ r+ j ≡ 0 modn. Sinceq(r+ i)+ r+ j < n
and q(r + i) + r + j 6= 0 hold, one has a contradiction. If
l = 2, it implies that(r + j)q2 ≡ −q(r+ i) modn and since
gcd(q2, n) = 1 andrq2 ≡ r modn one obtains

(r + j)q2 ≡ −q(r + i) mod n

=⇒ r + jq2 ≡ −q(r + i) mod n

=⇒ (q + 1)r ≡ −q(i+ jq) mod n

=⇒ −q(i+ jq)(q − 1) ≡ 0 mod n

=⇒ n | q(i+ jq)(q − 1)

=⇒ r(q + 1) | q(i + jq).

Since gcd(r, q) = 1 and gcd(q + 1, q) = 1 hold it implies
that r(q + 1) | (i + jq), which is a contradiction because
i+ jq < r(q + 1). ThusC is Hermitian dual-containing.

It is easy to see that these cosets are mutually disjoint,
with exception of the cosetC[r], the other cosets have two
elements. ThusC has dimensionk = n − 2(r − 2) − 1.
By construction, the defining setZ of C contains the se-
quencer, r + 1, . . . , 2r − 2, of r − 1 consecutive integers
and, so the minimum distance ofC is greater than or equal
to r, that is, C is an [n, n− 2(r − 2)− 1, d ≥ r]q2 code.
Applying the Hermitian construction toC one can get an
[[n, n− 4(r − 2)− 2, d ≥ r]]q quantum code, as desired.

Corollary 3.3: Supposeq > 3 is a prime power andn > q2

is an integer such thatgcd(q2, n) = 1. Assume also(q2−1) | n
andm = ordn(q

2) = 2. Then there exist quantum codes with
parameters[[n, n− 4c− 2, d ≥ c+ 2]]q, where2 ≤ c < r− 2

andn = r(q2 − 1).
Proof: Let C be the BCH code generated by the prod-

uct of the minimal polynomialsM (r)(x)M (r+1)(x) · . . . ·
M (r+c)(x). Proceeding similarly as in the proof of Theo-
rem 3.8, the result follows.

Theorem 3.9:Let q ≥ 3 be a prime power,n > q2 be a
prime number and consider thatm = ordn(q

2) ≥ 2. Let
C[s] be the cyclotomic coset containings ands+ 1. Assume
that Z = C[s] ∪ C[s+2] ∪ . . . ∪ C[s+r], where all theq-ary
cosetsC[s+i], i = 0, 2, 3, . . . , r, are mutually disjoint, and
suppose thatZ ∩ Z−q = ∅. Then there exist quantum codes
with parameters[[n, n− 2mr, d ≥ r + 2]]q.

Proof: We know thatgcd(q, n) = 1 holds. LetC be
the cyclic code generated by the product of the minimal
polynomials

M (s)(x)M (s+2)(x) · . . . ·M (s+r)(x).

SinceZ ∩ Z−q = ∅ holds, it follows from Lemma 3.4 that
C is Hermitian dual-containing. From the BCH bound, the
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minimum distance ofC is greater than or equal tor + 2. It
is easy to see that the cosetsC[s+i], wherei = 0, 2, 3, . . . , r,
havem elements and they are mutually disjoint. ThusC has
parameters[n, n−mr, d ≥ r + 2]q2 . Applying the Hermitian
construction one can get an[[n, n− 2mr, d ≥ r + 2]]q code.

We finish this subsection by showing how Lemma 3.2 works
for constructing quantum MDS-BCH codes:

Example 3.5:Let us considerq = 5 and n = 13. Since
gcd(13, 24) = 1, the linear congruence(q2 − 1)x ≡ 1 modn
has a solution, so there exists at least oneq2-ary coset contain-
ing two consecutive integers, namely, the cosetC[6] = {6, 7}.
ChooseC = 〈M (6)(x)〉. SinceC[4] 6= C[6], C is Hermitian
dual-containing and has parameters[13, 11, d ≥ 3]5. Applying
the Hermitian construction, an[[13, 9, 3]]5 quantum MDS-
BCH code is constructed. Similarly, we can also construct an
[[17, 13, 3]]4 and an[[17, 9, 5]]4 quantum MDS-BCH code.

IV. CODE COMPARISONS

In this section we compare the parameters of the new
quantum BCH codes with the ones available in the literature.
The codes available in the literature derived from Steane’s
code construction are generated by the same method presented
in [20, Table I] by considering the criterion for classical
Euclidean dual-containing BCH codes given in [1, Theorems 3
and 5].

Let us fix the notation:
• [[n, k, d]]q are the parameters of the new quantum codes;
• [[n

′

, k
′

, d
′

]]q =

[[n
′

, n
′

− 2m(⌈(δ − 1)(1− 1/q)⌉), d
′

≥ δ]]q are the pa-
rameters of quantum codes available in [1];

• [[n
′′

, k
′′

, d
′′

]]q are the parameters of quantum BCH codes
derived from Steane’s code construction shown in [11,
Corollary 4].

Tables I and II show the new codes derived from Construc-
tion I and from Theorem 3.4 in Construction II; Table III
presents new codes derived from Construction III and Table IV
shows the new codes derived from Construction IV.

Checking the parameters of the new quantum BCH codes
tabulated, one can see that the new codes have parameters
better than the ones available in the literature. In other words,
fixing n andd, the new quantum BCH codes achieve greater
values of the number of qudits than the quantum BCH codes
available in the literature. As the referee observed, it is
interesting to note that most of our codes of length larger
thanq2 + 1 are new.

Remark 4.1:Note that the codes[[31, 25, d ≥ 3]]5 and
[[1093, 1079, d≥ 3]]3 have the same parameters of the cor-
responding Hamming codes and the new[[71, 61, d ≥ 3]]5
code can be compared with distance three codes obtained by
shortening Hamming codes.

V. SUMMARY

We have presented four quantum code constructions gen-
erating new families of good nonprimitive non-narrow-sense
quantum BCH codes. These new quantum codes have param-
eters better than the ones available in the literature. Addition-
ally, most of these codes are generated algebraically.

TABLE I
CODE COMPARISON

New CSS codes CSS codes in [1]

[[n, k, d]]
q

[[n
′

, k
′

, d
′

]]
q

[[11, 1, d ≥ 4]]
3

—
[[13, 1, d ≥ 4]]

3
—

[[1093, 1079, d ≥ 3]]
3

[[1093, 1065, d
′

≥ 3]]
3

[[31, 19, d ≥ 4]]
5

[[31, 13, d
′

≥ 4]]
5

[[31, 13, d ≥ 5]]
5

[[31, 7, d
′

≥ 5]]
5

[[71, 61, d ≥ 3]]
5

[[71, 51, d
′

≥ 3]]
5

[[71, 51, d ≥ 4]]
5

[[71, 41, d
′

≥ 4]]
5

[[73, 61, d ≥ 4]]
8

[[73, 55, d
′

≥ 4]]
8

[[73, 55, d ≥ 5]]
8

[[73, 49, d
′

≥ 5]]
8

[[73, 49, d ≥ 6]]
8

[[73, 43, d
′

≥ 6]]
8

[[73, 43, d ≥ 7]]
8

[[73, 37, d
′

≥ 7]]
8

TABLE II
CODE COMPARISON

New CSS codes Steane’s code construction

[[n, k, d]]
q

[[n
′′

, k
′′

, d
′′

]]
q
: L, L

′

[[31, 19, d ≥ 4]]
5

[[31, 16, d
′′

≥ 4]]
5
: [31, 22, 4]

5
, [31, 25, 3]

5

[[31, 13, d ≥ 5]]
5

[[31, 10, d
′′

≥ 5]]
5
: [31, 19, 5]

5
, [31, 22, 4]

5

[[73, 61, d ≥ 4]]
8

[[73, 58, d
′′

≥ 4]]
8
: [73, 64, 4]

8
, [73, 67, 3]

8

[[73, 55, d ≥ 5]]
8

[[73, 52, d
′′

≥ 5]]
8
: [73, 61, 5]

8
, [73, 64, 4]

8

[[73, 49, d ≥ 6]]
8

[[73, 46, d
′′

≥ 6]]
8
: [73, 58, 6]

8
, [73, 61, 5]

8

[[73, 43, d ≥ 7]]
8

[[73, 40, d
′′

≥ 7]]
8
: [73, 55, 7]

8
, [73, 58, 6]

8

TABLE III
CODE COMPARISON

New codes (Construction III) Steane’s code construction

[[n, k, d]]
q

[[n
′′

, k
′′

, d
′′

]]
q

[[31, 22, d ≥ 4]]
5

[[31, 16, d
′′

≥ 4]]
5

[[31, 16, d ≥ 5]]
5

[[31, 10, d
′′

≥ 5]]
5

[[71, 56, d ≥ 4]]
5

[[71, 46, d
′′

≥ 4]]
5

[[73, 64, d ≥ 4]]
8

[[73, 58, d
′′

≥ 4]]
8

[[73, 58, d ≥ 5]]
8

[[73, 52, d
′′

≥ 5]]
8

[[40, 36, 3]]
9

(MDS)
[[60, 56, 3]]

11
(MDS)

TABLE IV
CODE COMPARISON

New Hermitian Codes (Construction IV) Hermitian Codes in [1]

[[n, k, d]]
q

[[n
′

, k
′

, d
′

]]
q

[[17, 13, 3]]
4

(MDS)
[[17, 9, 5]]

4
(MDS)

[[13, 9, 3]]
5

(MDS)

[[312, 298, d ≥ 5]]
5

[[312, 296, d
′

≥ 5]]
5

[[312, 294, d ≥ 6]]
5

[[312, 292, d
′

≥ 6]]
5

[[312, 290, d ≥ 7]]
5

[[312, 288, d
′

≥ 7]]
5

[[312, 286, d ≥ 8]]
5

[[312, 284, d
′

≥ 8]]
5

[[312, 282, d ≥ 9]]
5

[[312, 280, d
′

≥ 9]]
5

[[312, 278, d ≥ 10]]
5

[[312, 276, d
′

≥ 10]]
5

[[312, 274, d ≥ 11]]
5

[[312, 272, d
′

≥ 11]]
5

[[312, 270, d ≥ 12]]
5

[[312, 268, d
′

≥ 12]]
5

[[144, 128, d ≥ 5]]
7

[[144, 120, d ≥ 5]]
7

[[144, 122, d ≥ 6]]
7

[[144, 114, d ≥ 6]]
7

[[144, 116, d ≥ 7]]
7

[[144, 108, d ≥ 7]]
7

[[144, 114, d ≥ 8]]
7

[[144, 102, d ≥ 8]]
7

[[144, 108, d ≥ 9]]
7

[[144, 96, d ≥ 9]]
7

[[144, 102, d ≥ 10]]
7

[[144, 90, d ≥ 10]]
7

[[144, 100, d ≥ 11]]
7

[[144, 84, d ≥ 11]]
7



8

ACKNOWLEDGMENT

I would like to thank the Associate Editor Patrick Hayden
and the anonymous referee for their valuable comments and
suggestions that improve significantly the quality and the
presentation of this paper. I also would like to thank Prof.
Reginaldo Palazzo Jr. for useful discussions with respect to
the first quantum code construction and Dr. J. H. Kleinschmidt
for critical reading of the manuscript. Part of this work was
presented in ISITA 2012, Honolulu-Hawaii. This research has
been partially supported by the Brazilian agencies CAPES and
CNPq.

REFERENCES

[1] S. A. Aly, A. Klappenecker, and P. K. Sarvepalli. On quantum and
classical BCH codes.IEEE Trans. Inform. Theory, 53(3):1183–1188,
2007.

[2] A. Ashikhmin and E. Knill. Non-binary quantum stabilizer codes.IEEE
Trans. Inform. Theory, 47(7):3065–3072, 2001.

[3] J. Bierbrauer and Y. Edel. Quantum twisted codes.J. Comb. Designs,
8:174–188, 2000.

[4] R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting
binary group codes.Information and Control, 3:68-79, 1960.

[5] R. C. Bose and D. K. Ray-Chaudhuri. Further results on error correcting
binary group codes.Information and Control, 3:279-290, 1960.

[6] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum
error correction via codes overGF (4). IEEE Trans. Inform. Theory,
44(4):1369–1387, 1998.

[7] H. Chen, S. Ling, and C. P. Xing. Quantum codes from concatenated
algebraic geometric codes.IEEE. Trans. Inform. Theory, 51(8):2915 –
2920, 2005.

[8] G. D. Cohen, S. B. Encheva, and S. Litsyn. On binary constructions of
quantum codes.IEEE Trans. Inform. Theory, 45(7):2495–2498, 1999.

[9] M. Grassl and T. Beth. Quantum BCH codes. InProc. X Int. Symp.
Theor. Elec. Eng., pp. 207–212, Magdeburg, Germany, 1999.
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