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Stopping Sets of Algebraic Geometry Codes
Jun Zhang, Fang-Wei Fu, and Daqing Wan

Abstract— Stopping sets and stopping set distribution of a
linear code play an important role in the performance analysis of
iterative decoding for this linear code. Let C be an [n, k] linear
code over Fq with parity-check matrix H , where the rows of
H may be dependent. Let [n] = {1, 2, . . . , n} denote the set of
column indices of H . A stopping set S of C with parity-check
matrix H is a subset of [n] such that the restriction of H to S
does not contain a row of weight 1. The stopping set distribution
{Ti (H)}n

i=0 enumerates the number of stopping sets with size
i of C with parity-check matrix H . Denote H∗, the parity-
check matrix, consisting of all the nonzero codewords in the
dual code C⊥ . In this paper, we study stopping sets and stopping
set distributions of some residue algebraic geometry (AG) codes
with parity-check matrix H∗. First, we give two descriptions of
stopping sets of residue AG codes. For the simplest AG codes, i.e.,
the generalized Reed–Solomon codes, it is easy to determine all
the stopping sets. Then, we consider the AG codes from elliptic
curves. We use the group structure of rational points of elliptic
curves to present a complete characterization of stopping sets.
Then, the stopping sets, the stopping set distribution, and the
stopping distance of the AG code from an elliptic curve are
reduced to the search, counting, and decision versions of the
subset sum problem in the group of rational points of the elliptic
curve, respectively. Finally, for some special cases, we determine
the stopping set distributions of the AG codes from elliptic curves.

Index Terms— Algebraic geometry codes, elliptic curves,
stopping distance, stopping sets, stopping set distribution, subset
sum problem.

I. INTRODUCTION

LET C be an [n, k, d] linear code over Fq with length
n, dimension k and minimum distance d . Let H be

a parity-check matrix of C , where the rows of H may be
dependent. Let [n] = {1, 2, . . . , n} denote the set of column
indices of H . A stopping set S of C with parity-check matrix
H is a subset of [n] such that the restriction of H to S, say
H (S), does not contain a row of weight 1. The stopping set
distribution {Ti (H )}n

i=0 enumerates the number of stopping
sets with size i of C with parity-check matrix H . Note that
the empty set ∅ is defined as a stopping set and T0(H ) = 1.
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A number of researchers have recently studied the stop-
ping sets and stopping set distributions of linear codes,
e.g., see [1]–[27]. Stopping sets and stopping set distribution
of a linear code are used to determine the performance of this
linear code under iterative decoding [24].

The stopping distance s(H ) of C with the parity-check
matrix H is the minimum size of nonempty stopping sets.
It plays an important role in the performance analysis of the
iterative decoding, just as the role of the minimum Hamming
distance d of a code for maximum-likelihood or algebraic
decoding. Analogously to the redundancy of a linear code,
Schwartz and Vardy [3] introduced the stopping redundancy
ρ(C), the minimal number of rows in the parity-check matrix
H for the linear code C such that the stopping distance
s(H ) = d , to characterize the minimal “complexity” of the
iterative decoding for the code C . The stopping redundancy of
some linear codes such as Reed-Muller codes, cyclic codes and
maximal distance separable (MDS) codes have been studied
recently [3]–[21].

Note that the stopping distance, the stopping sets and
stopping set distribution depend on the choice of the parity-
check matrix H of C . Recall that H ∗ is the parity-check matrix
consisting of all non-zero codewords in the dual code C⊥. For
any parity-check matrix H , it is obvious that Ti (H ) � Ti (H ∗)
for all i , since H is a sub-matrix formed by some rows of H ∗.
Although the iterative decoding with the parity-check matrix
H ∗ has the highest decoding complexity, it achieves the best
possible performance as it has the smallest stopping set distrib-
ution. It is known from [11] and [19] that the iterative decoding
with the parity-check matrix H ∗ is an optimal decoding for
the binary erasure channel. The stopping set distribution is
used to characterize the performance under iterative decoding.
So it is important to determine the stopping set distribution of
C with the parity-check matrix H ∗. However, in general, it is
difficult to determine the stopping set distribution of C with
the parity-check matrix H ∗. Using finite geometry, Jiang et
al. [8] gave characterizations of stopping sets of some Reed-
Muller codes (the Simplex codes, the Hamming codes, the first
order Reed-Muller codes and the extended Hamming codes).
Furthermore, they determined the stopping set distributions of
these codes. Since the iterative decoding with parity-check
matrix H ∗ has the highest decoding complexity, they [8]
considered a parity-check matrix H , a submatrix of H ∗, such
that the stopping set distribution of C with parity-check matrix
H is the same as that with H ∗, but has the smallest number
of rows. Such a parity-check matrix H is called optimal. In
general, it is difficult to obtain an optimal parity-check matrix
for a general linear code. In [8], they obtained optimal parity-
check matrices for the Simplex codes, the Hamming codes,
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the first order Reed-Muller codes and the extended Hamming
codes. They also proposed an interesting problem to determine
the stopping set distributions of well known linear codes
with the parity-check matrix H ∗. In this paper, we consider
AG codes and a specific class of AG codes, i.e., AG codes
associated with elliptic curves. We study the stopping sets and
stopping set distributions of AG codes with the parity-check
matrix H ∗.

This paper is organized as follows. We first summarize our
main results in Section II. In Section III, we study stopping
sets of an arbitrary AG code and give algebraic and geometric
descriptions of stopping sets. In Section IV, we study the
stopping sets and stopping set distributions of AG codes from
elliptic curves. We use the group structure of rational points
of elliptic curves to present a complete characterization of
stopping sets. It is shown that the stopping sets, the stopping
set distribution and the stopping distance of the AG code from
an elliptic curve can be reduced to the search, counting and
decision versions of the subset sum problem in the group of
rational points of the elliptic curve, respectively. We present
the counting formula for the stopping set distributions of
AG codes from elliptic curves. In particular, for some special
cases, we determine explicitly the stopping set distributions of
AG codes from elliptic curves. Finally, some conclusions and
open problems are given in Section V.

II. MAIN RESULT

In this section, we summarize our main results in this paper.
From now on, we always choose the parity-check matrix H ∗
for linear codes in this paper. It is well-known that
Proposition 1 ([3]). Let C be a linear code with minimum
distance d(C), and let H ∗ denote the parity-check matrix for
C consisting of all the nonzero codewords of the dual code
C⊥. Then the stopping distance s(H ∗) = d(C).

Note that the generalized Reed-Solomon codes are MDS
codes. For the [n, k, d] MDS code C , i.e., d = n − k + 1, its
dual code C⊥ is still an [n, n − k, k + 1] MDS code. Since
any non-zero codeword in C⊥ has at most n −k −1 zeros and
any (n − k) positions form an information set, we have
Proposition 2. Let C be an [n, k, n − k + 1] MDS code. Then

(i) any subset of [n] with cardinality � n − k + 1 is a
stopping set;

(ii) any non-empty subset of [n] with cardinality � n − k is
not a stopping set.

By Proposition 2, we obtain the stopping set distribution of
MDS codes.
Corollary 3. Let C be an [n, k, n − k + 1] MDS code. Then
the stopping set distribution of C is given by

Ti (H ∗) =
⎧
⎨

⎩

1, if i = 0,
0, if 1 � i � n − k,(n

i

)
, if i � n − k + 1.

As a generalization of the generalized Reed-Solomon codes,
next we study the stopping sets and stopping set distributions
of AG codes. We briefly recall the construction of AG codes.

Constructions of AG Codes.

We fix some notation valid for the entire paper.

• X/Fq is a geometrically irreducible smooth projective
curve of genus g over the finite field Fq with function
field Fq(X).

• X (Fq) is the set of all Fq-rational points on X.
• D = {P1, P2, . . . , Pn} is a proper subset of X (Fq).
• With slight abuse of notation, also write D = P1 + P2 +

· · · + Pn.
• G is a divisor of degree m (2g − 2 < m < n) with

Supp(G) ∩ D = ∅.

Let V be a divisor on X . Denote by L (V ) the Fq -vector
space of all rational functions f ∈ Fq(X) with the principal
divisor div( f ) � −V , together with the zero function. Denote
by �(V ) the Fq -vector space of all the Weil differentials ω
with divisor div(ω) � V , together with the zero differential
(cf. [28]). For any Fq -rational point P on X , choose one
uniformizer t for P . Then for any differential ω, we can write
ω = udt with some u ∈ Fq(X). Write the P-adic expansion
u = ∑∞

i=i0 ai t i for some i0 ∈ Z and ai ∈ Fq , the residue map
of ω at the point P is defined to be

resP(ω) = resP,t(u) = a−1.

One can show that the above definition is well-defined
[28, Proposition 4.2.9].

The residue AG code C�(D, G) is defined to be the image
of the following residue map:

res : �(G − D) → F
n
q

ω 	→ (resP1(ω), resP2(ω), . . . , resPn (ω)).

Its dual code, the functional AG code CL (D, G), is defined
to be the image of the following evaluation map:

ev : L (G) → F
n
q; f 	→ ( f (P1), f (P2), . . . , f (Pn)).

They are linear codes over Fq , and have the code parameters
[n, n − m + g − 1, d � m − 2g + 2] and [n, m − g + 1, d �
n − m], respectively. Moreover they can be represented from
each other [28, Proposition 8.1.2]. So in this paper we only
consider the residue AG codes.

For the simplest AG codes, i.e., the generalized Reed-
Solomon codes, we have determined all the stopping sets. Then
we consider the AG codes C�(D, G) from elliptic curves.
In this case, using the Riemann-Roch theorem, the stopping
sets can be characterized completely as follows.

Main Theorem. Let E be an elliptic curve over Fq ,
D = {P1, P2, . . . , Pn} a subset of E(Fq) such that the zero
element O /∈ D and let G = mO (0 < m < n). Recall
that the empty set is always considered as a stopping set by
convention. The non-empty stopping sets of the residue code
C�(D, G) are given as follows:

(i) Any non-empty subset of [n] with cardinality � m−1
is not a stopping set.

(ii) Any subset of [n] with cardinality � m + 2 is a
stopping set.
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(iii) A ⊆ [n], |A| = m + 1, is a stopping set if and only
if for all i ∈ A, the sum

∑

j∈A\{i}
Pj �= O.

(iv) A ⊆ [n], |A| = m, is a stopping set if and only if
∑

j∈A

Pj = O.

(v) Denote by S(m) and S(m + 1) the two sets of
stopping sets with cardinality m and m + 1 in the
cases (iv) and (iii), respectively. Let

S+(m) =
⋃

A∈S(m)

{A ∪ {i} : i ∈ [n] \ A}.

Then the union in S+(m) is a disjoint union, and we
have

S(m + 1) ∩ S+(m) = ∅,

and

S(m+1) = {subsets of [n] with size m+1}\S+(m).

The proof will be given in Section III. By this theorem, the
stopping set distribution of C�(D, G) follows immediately.
Theorem 4. Notation as above. The stopping set distribution
of C�(D, G) with the parity-check matrix H ∗ is

Ti (H ∗) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if i = 0,
0, if 1 � i � m − 1,
|S(m)|, if i = m,( n

m+1

) − (n − m)|S(m)|, if i = m + 1,
(n

i

)
, if i � m + 2.

Then by Theorem 4, we easily see that the stopping distance
of C�(D, G) is m or m + 1. But to decide it is equivalent
to a decision version of m-subset sum problem [29]–[31]
in the group E(Fq), which is an NP-hard problem under
RP-reduction [32]. Hence to compute the stopping distance
of C�(D, G) is NP-hard under RP-reduction. To compute the
stopping set distribution is a counting version of m-subset sum
problem in the group E(Fq), so it is also an NP-hard problem.
However, for a special D ⊆ E(Fq) with strong algebraic
structure, it is possible to compute the complete stopping set
distribution. For instance, if we take D = U \{O}, where U is
a subgroup of E(Fq). In particular, in application we always
choose D = E(Fq) \ {O} to get a long linear code which is
called standard elliptic code. Denote N = |U | the cardinality
of U , exp(U) the exponent of U , U [d] the d-torsion subgroup
of U , and

N(m) = 1

N

∑

s| exp(U )

(−1)m+
 m
s �

(
N/s − 1


m/s�
)

∑

d |s
μ(s/d)|U [d]|,

respectively. It is known from [30], [31] that |S(m)| = N(m).
Hence, we have
Theorem 5. Let D = U \ {O}, where U is a subgroup of
E(Fq). The stopping set distribution of C�(D, G) with the

parity-check matrix H ∗ is

Ti (H ∗) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if i = 0,
0, if 1 � i � m − 1,
N(m), if i = m,( n
m+1

) − (n − m)N(m), if i = m + 1,
(n

i

)
, if i � m + 2.

III. STOPPING SETS OF ALGEBRAIC GEOMETRY CODES

Let X/Fq be a geometrically irreducible smooth projective
curve of genus g over the finite field Fq with function field
Fq(X), and C�(D, G) the residue AG code from X . In this
section, we study stopping sets and stopping set distributions
of general residue AG codes and give algebraic and geometric
descriptions of the stopping sets of C�(D, G).
Theorem 6. A subset A ⊆ [n] is a stopping set of C�(D, G)
if and only if

L (G −
∑

j∈A

Pj ) =
⋃

i∈A

L (G −
∑

j∈A\{i}
Pj ),

which is equivalent to

L (G −
∑

j∈A

Pj ) = L (G −
∑

j∈A\{i}
Pj ) for any i ∈ A.

Proof: By the definition, A ⊆ [n] is not a stopping set of
C�(D, G) if and only if there is some f ∈ L (G) such that

ev( f )|A = ( f (Pi ))i∈A

has weight 1. That is, there is some i ∈ A such that

f (Pi ) �= 0 and f (Pj ) = 0 for all j ∈ A \ {i}.
This is equivalent to saying that

f ∈ L (G −
∑

j∈A\{i}
Pj ) \ L (G −

∑

j∈A

Pj ).

So A is a stopping set if and only if for any i ∈ A,

L (G −
∑

j∈A

Pj ) = L (G −
∑

j∈A\{i}
Pj ).

Since L (G − ∑
j∈A Pj ) ⊆ L (G − ∑

j∈A\{i} Pj ) for any
i ∈ A, we have

L (G − ∑
j∈A Pj ) = ⋃

i∈A L (G − ∑
j∈A\{i} Pj )

⇐⇒ L (G − ∑
j∈A Pj ) = L (G − ∑

j∈A\{i} Pj ) ∀i ∈ A.

So the theorem holds.
As a simple corollary, we obtain
Corollary 7. (i) Any subset of [n] with cardinality � m + 2
is a stopping set of C�(D, G).

(ii) Any non-empty subset of [n] with cardinality � m −
2g + 1 is not a stopping set of C�(D, G).

Proof: (i) For any subset A ⊆ [n] with cardinality �
m+2, divisors G−∑

j∈A\{i} Pj and G−∑
j∈A Pj are negative.

So

L (G −
∑

j∈A

Pj ) =
⋃

i∈A

L (G −
∑

j∈A\{i}
Pj ) = {0}.

It follows from Theorem 6 that A is a stopping set.
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(ii) For any non-empty subset A ⊆ [n] with cardinality
� m − 2g + 1, by the Riemann-Roch theorem we have

dim(L (G − ∑
j∈A Pj )) = m − |A| − g + 1,

dim(L (G − ∑
j∈A\{i} Pj )) = m − |A| − g + 2.

So

L (G −
∑

j∈A

Pj ) � L (G −
∑

j∈A\{i}
Pj )

for all i ∈ A. It follows from Theorem 6 that A is not a
stopping set. Note that one can also give another proof of (ii)
from Proposition 1, since the minimum distance of C�(D, G)
is at least m − 2g + 2.

If we represent the generalized Reed-Solomon codes as AG
codes from the rational function field, then by Corollary 7, we
also obtain Proposition 2 for the generalized Reed-Solomon
codes.

Using the Riemann-Roch theorem, we give another descrip-
tion of stopping sets of AG codes C�(D, G).
Theorem 8. A subset A ⊆ [n] is a stopping set of C�(D, G)
if and only if for any i ∈ A, there exists an effective divisor
Fi with Pi /∈ Supp(Fi ) such that

K − G +
∑

j∈A

Pj ∼ Fi ,

where K is a canonical divisor on X and ∼ means that two
divisors are linearly equivalent, i.e., the difference between the
two divisors is a principal divisor.

Proof: From the proof of Theorem 6, a subset A ⊆ [n] is
a stopping set if and only if for any i ∈ A,

dim L (G −
∑

j∈A

Pj ) = dim L (G −
∑

j∈A\{i}
Pj ).

The Riemann-Roch theorem states that for any divisor V ,
we have

dim L (V ) = deg(V ) − g + 1 + dim L (K − V ).

So a subset A ⊆ [n] is a stopping set if and only if for any
i ∈ A,

dim L (K − G +
∑

j∈A

Pj ) = dim L (K − G +
∑

j∈A\{i}
Pj ) + 1.

It is equivalent to that for any i ∈ A, there exists

f ∈ L (K − G +
∑

j∈A

Pj ) \ L (K − G +
∑

j∈A\{i}
Pj ).

The last statement is equivalent to that for any i ∈ A, there
exists an effective divisor Fi with Pi /∈ Supp(Fi ) such that

K − G +
∑

j∈A

Pj ∼ Fi .

Indeed, Fi = div( f ) + K − G + ∑
j∈A Pj .

By Theorem 8, we immediately have a sufficient condition for
a subset to be a stopping set.
Corollary 9. Keep notation as above. Let A be a subset of
[n]. If K − G + ∑

j∈A Pj ∼ F for some effective divisor F
whose support has no intersection with {Pi | i ∈ A}, then A is
a stopping set.

IV. STOPPING SETS AND STOPPING SET DISTRIBUTIONS

OF AG CODES FROM ELLIPTIC CURVES

In the previous section, for the general AG code C�(D, G),
we have seen that there is a gap, deg(G) − 2g + 2 � i �
deg(G)+1, where in general we have not determined whether
a subset with cardinality i is a stopping set or not. Note that
there is no gap for the case g = 0, i.e., the Reed-Solomon
codes. Recall that the case g = 0 was done in Section II.
We are now moving on to the case g = 1, i.e., AG codes
constructed from elliptic curves.

Let X = E be an elliptic curve over the finite field Fq with
a rational point O. Endow E(Fq) a group structure with the
zero element O. Let D = {P1, P2, . . . , Pn} be a subset of the
set E(Fq) such that O /∈ D. Let G = mO (0 < m < n).

In general, if G is a divisor of degree m on E , then for any
rational point Q ∈ E(Fq), as deg(G − (m − 1)Q) = 1, by the
Riemann-Roch theorem, there exists one and only one rational
point P ∈ E(Fq) such that G ∼ (m −1)Q + P . Suppose there
exist rational points Q, P such that G ∼ (m − 1)Q + P and
P, Q /∈ D. Let G′ = (m−1)Q+ P . Then the codes C�(D, G)
and C�(D, G′) are equivalent [28, Proposition 2.2.14]. The
dual codes CL (D, G) and CL (D, G′) are also equivalent.
Here two linear codes C1, C2 ⊆ F

n
q are said to be equivalent1

if there is a vector a = (a1, . . . , an) ∈ (F∗
q)n such that

C2 = a · C1 = {(a1c1, . . . , ancn) | (c1, . . . , cn) ∈ C1}.
It is easy to see that two equivalent codes have the same
stopping sets and hence the same stopping set distributions.
So to study the stopping sets and the stopping set distribution
of C�(D, G), it suffices to determine all the stopping sets
and the stopping set distribution of C�(D, (m − 1)Q + P).
In this case, we use Q to define the group E(Fq) with the
zero element Q. Then all results in this paper hold similarly
for C�(D, G) with G ∼ (m − 1)Q + P such that P, Q /∈ D.

Note that g = 1 for elliptic curves. According to
Corollary 7, any subset of [n] with cardinality � m + 2 is a
stopping set and any non-empty subset of [n] with cardinality
� m − 1 is not a stopping set. So it is enough to consider
the subsets of [n] with cardinality m and m + 1. Below we
use the group E(Fq) [33], [34] to give a description of these
two classes of stopping sets with cardinality m + 1 and m,
respectively.

(i) Suppose A ⊆ [n] with cardinality m+1 is not a stopping
set. Then there are some i ∈ A and f ∈ L (G) such that

f ∈ L (G −
∑

j∈A\{i}
Pj ) \ L (G −

∑

j∈A

Pj ).

Note that

deg(G −
∑

j∈A\{i}
Pj ) = m − m = 0,

1In general, a fixed permutation of coordinates of codewords is also
considered as an equivalence relation of linear codes. In this case, stopping
set distribution is not changed under permutation equivalences, but not for
stopping sets. More precisely, if linear codes C1 and C2 are equivalent under
the permutation T , i.e., T (C1) = C2, then the set S is a stopping set of
C1 if and only if T (S) is a stopping set of C2.
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and

div( f ) � −G +
∑

j∈A\{i}
Pj .

Since both sides have degree zero, they have to be equal. That
is

div( f ) = −G +
∑

j∈A\{i}
Pj =

∑

j∈A\{i}
(Pj − O).

In this case, A ⊆ [n], |A| = m +1, is not a stopping set if and
only if there exists some i ∈ A such that the sum

∑
j∈A\{i} Pj

in the group E(Fq) is O.
(ii) Suppose A ⊆ [n] with cardinality m is a stopping set.

By Theorem 6, for any i ∈ A, we have

L (G −
∑

j∈A\{i}
Pj ) = L (G −

∑

j∈A

Pj ).

Note that

deg(G −
∑

j∈A\{i}
Pj ) = 1 � 2g − 1 = 1.

By the Riemann-Roch theorem, there exists some f ∈ Fq(E)
such that

0 �= f ∈ L (G −
∑

j∈A\{i}
Pj ) = L (G −

∑

j∈A

Pj ).

So

div( f ) = G −
∑

j∈A

Pj =
∑

j∈A

(O − Pj ).

This is equivalent to
∑

j∈A

Pj = O

in the group E(Fq). Conversely, let A ⊆ [n] with cardinality
m such that

∑
j∈A Pj = O. Since the zero divisor K = 0 is

a canonical divisor for elliptic curves, we have

K − G +
∑

j∈A

Pj ∼ 0.

By Corollary 9, A is a stopping set.
From the argument above, we obtain the following partial

results of the main theorem in Section II.
Theorem 10. Let E be an elliptic curve over the finite field
Fq , D = {P1, P2, . . . , Pn} a subset of E(Fq) such that the
zero element O /∈ D and let G = mO (0 < m < n).
The non-empty stopping sets of the residue code C�(D, G)
are given as follows:

(i) Any subset of [n] with cardinality � m − 1 is not a
stopping set.

(ii) Any subset of [n] with cardinality � m + 2 is a
stopping set.

(iii) A ⊆ [n], |A| = m + 1, is a stopping set if and only
if for all i ∈ A, the sum

∑

j∈A\{i}
Pj �= O.

(iv) A ⊆ [n], |A| = m, is a stopping set if and only if
∑

j∈A

Pj = O.

Let us give an example to illustrate the theorem.
Example 11. Let E be the elliptic curve defined over F5 by
the equation

y2 = x3 + x + 1.

Then E has 9 rational points: the infinity point O and
P1 = (0, 1), P2 = (4, 2), P3 = (2, 1), P4 = (3, 4),
P5 = (3, 1), P6 = (2, 4), P7 = (4, 3), P8 = (0, 4).
Using Group Law Algorithm 2.3 in [34], one can check that
E(F5) forms a cyclic group with Pi = [i ]P1. Let D =
{P1, P2, . . . , P8} and G = 3O.

By Corollary 9 and Theorem 10, all nonempty stopping sets
of C�(D, G) are given as follows:

(i) subsets of [n] with cardinality � 5;
(ii) {1,2,3,7}, {1,2,3,8}, {1,2,4,5}, {1,2,4,7}, {1,2,4,8},

{1,2,5,7}, {1,2,5,8}, {1,2,7,8}, {1,3,4,6}, {1,3,4,7},
{1,3,4,8}, {1,3,6,7}, {1,3,6,8}, {1,4,5,6}, {1,4,5,7},
{1,4,5,8}, {1,4,6,7}, {1,4,7,8}, {1,5,6,8}, {1,5,7,8},
{1,6,7,8}, {2,3,5,6}, {2,3,5,7}, {2,3,5,8}, {2,3,6,7},
{2,3,6,8}, {2,4,5,6}, {2,4,5,7}, {2,4,5,8}, {2,4,6,7},
{2,4,7,8}, {2,5,6,8}, {2,5,7,8}, {2,6,7,8}, {3,4,5,6},
{3,4,5,7}, {3,4,5,8}, {3,4,6,7}, {3,5,6,8}, {4,5,7,8};

(iii) {1,2,6}, {1,3,5}, {2,3,4}, {3,7,8}, {4,6,8}, {5,6,7}.

So the stopping set distribution of C�(D, G) with the
parity-check matrix H ∗ is

Ti (H ∗) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if i = 0,
0, if i = 1 or 2,
6, if i = 3,

40, if i = 4,
(8

i

)
, if i � 5.

Also, the minimum distance of the code C�(D, G) is 3 by
Proposition 1.

Theorem 10 describes all the stopping sets of residue AG
codes from elliptic curves. Next, we establish the relationship
between the set of stopping sets with cardinality m and the
set of stopping sets with cardinality m + 1.

Denote by S(m) and S(m + 1) the two sets of stopping sets
with cardinality m and m + 1 in the cases (iv) and (iii) in
Theorem 10, respectively. Let S+(m) be the extended set of
S(m) defined as follows

S+(m) =
⋃

A∈S(m)

{A ∪ {i} : i ∈ [n] \ A}.

Theorem 12. Notations as above. We have

S(m + 1) ∩ S+(m) = ∅,

and S(m + 1) = {subsets o f [n] wi th si ze m + 1} \ S+(m).
Moreover, the union in the definition of S+(m) is a disjoint

union. Hence

|S(m + 1)| = ( n
m+1

) − |S+(m)|
= ( n

m+1

) − (n − m)|S(m)|.
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Proof: First, S(m + 1) ∩ S+(m) = ∅ is obvious by parts
(iii) and (iv) of Theorem 10. So

S(m + 1) ⊆ {subsets of [n] with size m+1}\S+(m).
On the other hand, for any subset A with |A| = m + 1 and

A /∈ S(m + 1), we have |A| � 2 as m � 1. By Theorem 10
(iii), there is some i ∈ A such that

∑
j∈A\{i} Pj = O. By

Theorem 10 (iv), A \ {i} ∈ S(m). So

A = (A \ {i}) ∪ {i} ∈ S+(m).

Hence
S(m + 1) = {subsets of [n] with size m + 1} \ S+(m).

If there exist A ∈ S(m), A′ ∈ S(m), i /∈ A and i ′ /∈ A′ such
that

A ∪ {i} = A′ ∪ {i ′} ∈ S+(m),

then we have i ∈ A′, i ′ ∈ A and A \ {i ′} = A′ \ {i}.
Since

∑

j∈A

Pj =
∑

j∈A′
Pj = O,

we get Pi = Pi ′ . So

A = A′, i = i ′.

That is, the union in the definition of S+(m) is a disjoint union.
The formula

|S(m + 1)| = ( n
m+1

) − |S+(m)|
= ( n

m+1

) − (n − m)|S(m)|
follows immediately.
Remark 13. The above theorem shows how we can get S(m+
1) from S(m). Conversely, if we know S(m + 1), then by the
above theorem, we can exclude S(m + 1) from the set of all
subsets of [n] with m + 1 elements to get S+(m). For any
I ∈ S+(m), we calculate

∑
i∈I Pi . Then by Theorem 10 (iv),

there is some index j (I ) ∈ I such that
∑

i∈I

Pi = Pj (I ).

By the definitions of S(m) and S+(m), we have

S(m) = {I \ { j (I )} : I ∈ S+(m)}.
In the above example, by Theorem 10 (iv), S(3) consists of

all the subsets of [8] whose sums have 9 as a divisor. Then
by Theorem 12, S(4) follows immediately from S(3).

The following corollary follows immediately from
Proposition 1, Theorems 10 and 12.
Corollary 14. Notations as above. The minimum distance
and the stopping distance of the residue AG code C�(D, G)
constructed from an elliptic curve is deg(G) or deg(G) + 1.
More explicitly, if |S(m)| > 0, then we have the stopping
distance

s(C�(D, G)) = d(C�(D, G)) = m = deg(G).

If|S(m)| = 0, then we have|S(m + 1)| > 0 and hence

s(C�(D, G)) = d(C�(D, G)) = m + 1 = deg(G) + 1.

Let G be an abelian group with zero element O and D a
finite subset of G. For an integer 0 < k < |D| and an element
b ∈ D, we denote

NG(k, b, D) =
∣
∣
∣
∣
∣

{

S ⊆ D : |S| = k and
∑

x∈S

x = b

}∣
∣
∣
∣
∣
.

Computing NG (k, b, D) is called a counting version of the
k-subset sum problem (k-SSP). In general, a counting k-SSP
is NP-hard [35]. If there is no confusion, we simply denote

N(k, b, D) = NG(k, b, D).

Remark 15. By the above theorem, for a general subset
D ⊆ E(Fq), to decide whether |S(m)| > 0 is the decision
m-subset sum problem in E(Fq). It is known that the decision
m-subset sum problem in E(Fq) in general is NP-hard under
RP-reduction [32]. So to compute the stopping distance of
C�(D, G) is NP-hard under RP-reduction.

For a subset D ⊆ E(Fq) with special algebraic structure,
it is possible to give an explicit formula for |S(m)| =
N(m, O, D), and hence explicit formulas for |S(m + 1)| and
the whole stopping set distribution by Theorem 12. In the
following, we consider special subsets D = U \ {O} for some
subgroup U of E(Fq). In particular, recall that C�(D, G) is
called the standard elliptic code if D = E(Fq) \ {O}.
Proposition 16 ([30, 31]). Let G be a finite abelian group.
For b ∈ G, we have

N(i, g,G \ {0}) = 1
N

∑
s| exp(G)(−1)i+
 i

s �(N/s−1

i/s�

)

· ∑d | gcd(e(g),s) μ(s/d)#G[d].
where N = |G|, exp(G) is the exponent of G, e(b) = max{d :
d| exp(G), b ∈ dG}, μ is the Möbius function and G[d] is the
d-torsion subgroup of G.

Set G = U a subgroup of E(Fq) in Proposition 16. Let
N = |U | = n + 1 and D = U \ {O}. Then we have
Theorem 17. The number of stopping sets of C�(D, mO) with
cardinality m is

|S(m)| = 1

N

∑

s| exp(U )

(−1)m+
 m
s �

(
N/s − 1


m/s�
)

·
∑

d |s
μ(s/d)|U [d]|.

So together with Theorems 10 and 1, we obtain Theorem 5.
It is well-known [36] that the group E(Fq) of rational points

is isomorphic to

E(Fq) ∼= Z/m1Z ⊕ Z/m2Z,

for some integers m1|m2. Then by Theorems 10, 12 and 17,
we can determine the stopping set distribution of the standard
residue AG code C�(D, mO) from any elliptic curve E/Fq

provided that we know the group structure of E(Fq). Explic-
itly, we can compute |S(3)| in Example 11:

|S(3)| = 1
9

∑
s|9(−1)3+
 3

s �(9/s−1

3/s�

)∑
d |s μ(s/d) |Z/9Z[d]|

= 1
9

((8
3

) + (2
1

)
(3 − 1) − (9 − 3)

)
= 6.

So |S(4)| = (8
4

) − (8 − 3)|S(3)| = 40. This agrees with the
exhausting calculation in Example 11.

For a general subgroup of E(Fq), the refined structure of
the subgroup is required to compute |S(m)|. By the formula
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in Theorem 17, we even need to know the factorization of the
exponent of the subgroup which is hard to be known if the
exponent is big. If we take some special subgroups of E(Fq),
then we have the following corollary.
Corollary 18. Notations as above.

(i) If we take

U ∼= Z/ptZ

for some prime integer p and integer t � 1, then

|S(m)| = 1
pt

((pt−1
m

) + (−1)m(pt − p
logp(m)�)

+ ∑
logp(m)�
i=1 (−1)

m+
 m
pi �

(pi − pi−1)
(pt−i −1


 m
pi �

)
)

.

In particular, if t = 1, then

|S(m)| = 1

p

((
p − 1

m

)

+ (−1)m(p − 1)

)

.

If t = 2, then

|S(m)| = 1
p2

((p2−1
m

) + (−1)m(p2 − p) + (−1)
m+
 m

p �

·(p − 1)
(p−1

 m

p �
)
)

.

(ii) If we take

U ∼= Z/pt1Z ⊕ Z/pt2Z

for some prime integer p and integers 1 � t1 � t2, then

|S(m)| = 1
pt1+t2

(
(pt1+t2−1

m

) + ∑t2
i=1(−1)

m+
 m
pi �

·(pt1+t2−i −1

 m

pi �
)
(pi+min{i,t1} − pi−1+min{i−1,t1})

)

.

(iii) If we take

U ∼= Z/pt1
1 Z ⊕ Z/pt2

2 Z

for two distinct prime integers p1, p2 and integers t1, t2 � 1,
then

#S(m) = 1
p

t1
1 p

t2
2

((p
t1
1 p

t2
2 −1

m

) + (p1 − 1)(p2 − 1)

·
t1∑

i=1

t2∑

j=1
(−1)

m+
 m

pi
1 p

j
2

�
pi−1

1 p j−1
2

(p
t1−i
1 p

t2− j
2 −1


 m

pi
1 p

j
2

�
)

+
t1∑

i=1
(−1)

m+
 m
pi

1
�(p

t1−i
1 p

t2
2 −1


 m
pi

1
�

)
(pi

1 − pi−1
1 )

+ ∑t2
j=1(−1)

m+
 m

p
j
2

�(p
t1
1 p

t2− j
2 −1


 m

p
j
2

�
)
(p j

2 − p j−1
2 )

)

.

Proof: We first check (i). Note that in this case

N = pt and exp(U) = pt .

By Theorem 17, we have

|S(m)|
= 1

pt

∑
s|pt (−1)m+
 m

s �(pt/s−1

m/s�

)∑
d |s μ(s/d)|U [d]|

= 1
pt

∑t
i=0(−1)

m+
 m
pi �(pt−i −1


m/pi�
) ∑

d |pi μ(pi/d)|U [d]|
= 1

pt

(pt−1
m

) + 1
pt

t∑

i=1
(−1)

m+
 m
pi �(pt−i−1


m/pi�
) i∑

j=0
μ(pi− j )|U [p j ]|

(1)= 1
pt

(pt−1
m

) + 1
pt

t∑

i=1
(−1)

m+
 m
pi �(pt−i−1


m/pi�
)
(|U [pi ]| − |U [pi−1]|)

= 1
pt

(pt−1
m

) + 1
pt


logp(m)�∑

i=1
(−1)

m+
 m
pi �(pt−i−1


m/pi �
)
(pi − pi−1)

+ 1
pt

t∑

i=
logp(m)�+1
(−1)m

(pt−i −1
0

)
(pi − pi−1)

= 1
pt

((pt−1
m

) + (−1)m(pt − p
logp(m)�)

+

logp(m)�∑

i=1
(−1)

m+
 m
pi �

(pi − pi−1)
(pt−i −1


 m
pi �

)
)

,

where the equality (1) follows from μ(1) = 1, μ(p) = −1
and μ(pi) = 0 for all i � 2.

The proof of statement (ii) is almost the same as that of (i)
with N = pt1+t2 , exp(U) = pt2 and |U [pi ]| = pi+min{i,t1}.
The proof of statement (iii) is similar to that of (i) but with
the Möbius function given explicitly by:

μ(pk
1 pl

2) =
⎧
⎨

⎩

1, if k = 0 and l = 0;
−1, if {k, l} = {0, 1};
0, if k � 2 or l � 2.

V. CONCLUSION

In this paper, we study stopping sets and stopping set
distributions of residue algebraic geometry codes C�(D, G).
Two descriptions of stopping sets of residue algebraic
geometry codes are presented. In particular, there is a
gap deg(G) − 2g + 2 � i � deg(G) + 1 where in general
we do not know whether a subset with cardinality i is
a stopping set or not. In the case g = 0, there is no
gap and we have a complete understanding. In the case
g = 1, using the group structure of rational points of
elliptic curves, we can characterize all the stopping sets
of algebraic geometry codes from elliptic curves. Then
determining the stopping sets, the stopping set distribution
and the stopping distance of C�(D, G) are reduced to
deg(G)-subset sum problems in finite abelian groups. In the
case g > 1, only partial results can be obtained. It is still
not known how to compute the stopping set distribution. For
further work, there are two interesting problems:

(i) There are some papers contributing to compute the
stopping redundancy of MDS codes [3], [5], [7]. For AG codes
from elliptic curves, we have seen that the code is very closed
to be MDS, i.e., MDS or near-MDS [37] (an [n, k, d] linear
code is called near-MDS if d = n − k and the dual distance
d⊥ = k). So how about the stopping redundancy of AG codes
from elliptic curves?

(ii) In this paper, we have determined the stopping set
distributions of AG codes from elliptic curves with the
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parity-check matrix H ∗. Can we give optimal parity-check
matrices for AG codes from elliptic curves?
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