
1

Interference Channels with Half-Duplex Source
Cooperation

Rui Wu, Vinod Prabhakaran, Pramod Viswanath and Yi Wang

Abstract

The performance gain by allowing half-duplex source cooperation is studied for Gaussian interference channels.
The source cooperation is in-band, meaning that each source can listen to the other source’s transmission, but there
is no independent (or orthogonal) channel between the sources. The half-duplex constraint supposes that at each
time instant the sources can either transmit or listen, but not do both.

Our main result is a characterization of the sum capacity when the cooperation is bidirectional and the channel
gains are symmetric. With unidirectional cooperation, we essentially have a cognitive radio channel. By requiring
the primary to achieve a rate close to its link capacity, the best possible rate for the secondary is characterized
within a constant. Novel inner and outer bounds are derived as part of these characterizations.

I. INTRODUCTION

A basic characteristic of the wireless medium is its broadcast nature. This manifests itself as interference
when multiple users try to share the medium. An active area of research which investigates efficient
schemes for managing interference has focused on interference channels [3], [8], [9], [10]. However,
the broadcast feature is also a blessing in disguise in that the same transmission could be heard by
multiple receivers, opening up the possibility of cooperation. Traditionally, the cooperation aspect has
been investigated separately using relay channels in which only one source-destination pair is present [7].
Recently, the role of cooperation in managing interference has come under scrutiny ([4], [5], [11], [15],
[16], [17], [19], [20], [21], [22], [24], [25], [28], [30], [32] is an incomplete list of references).

In this paper we investigate reliable communication over the two-user interference channel, where the
two sources may not only transmit but also receive (Figure 1). This ability to receive will allow the
sources to cooperate. However, to be realistic about the gains that can be derived from this cooperation,
we impose two key restrictions:
• In-band cooperation. No extra orthogonal band is available for the source nodes to transmit to

each other over; all transmission and reception must happen over the same band. Thus, the sources
cooperate by transmitting and receiving over the same band that is originally available for the
interference channel.

• Half-duplex operation. Each source node may either transmit or receive at a time but cannot do both.
This respects the limitations of current hardware technology.

Reliable communication with a half-duplex constraint has been previously studied in the context of the
relay channel in [27]. In [13], half-duplex cooperation was used to provide spatial diversity for fading
channels. recent work on full duplex cooperation in interference channels [19], [28], [18] are closely
related to the present manuscript. [19] studied source cooperation under full-duplex assumption. In [28]
cooperation is over conferencing links orthogonal to the original channel. in contrast to in-band cooperation
here. Our model is identical to the source cooperation part in [18]. In [18], an achievable rate region is
provided, but the outer bound is only studied the case when cooperation is very strong. The work [29]
considers the half duplex cooperation for relay channels, which are special cases of the interference
channels considered in this paper.
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Fig. 1: Interference channel with half-duplex source cooperation. The sources can work in three modes:
(A) both sources transmit, (B) source 1 transmits while source 2 receives, and (C) source 2 transmits
and source 1 receives.

The characterization of the capacity region in this setting is quite challenging – it includes the canonical
interference and relay channels as special cases. A complete characterization of the capacity region is
also made further complicated by the huge amount of notation and description complexity of the region.
While we do not characterize the entire capacity region in this work, we nevertheless make significant
progress in understanding the nature of near optimal communication schemes in this setting. We present
our results in two different scenarios, aiming at minimizing the notation and description complexity while
providing the maximum intuition to the nature of the capacity region as well as gains of interference
mitigation via cooperation.
• In the first scenario, the cooperation is bidirectional and the channel gains are symmetric. Our

main result is a characterization of the sum capacity of this channel within a constant. Maintaining
symmetric channel gains is primarily aimed at reducing the notational burden.

• In the second scenario, the cooperation is unidirectional; i.e., source 2 can listen to source 1’s
transmission but not the other way around. This setting is essentially what is also known in the
literature as a “cognitive radio channel”, where we cansider source 1 and destination 3 the “primary
user” and source 2 and destination 4 the “secondary user”. The main question we address is the
following: what rate can the secondary user achieve without affecting the primary user’s performance
by much? The largest such rate, known as the capacity of the cognitive radio channel, is characterized
in this manuscipt up to a constant.

The coding scheme we use to enable reliable communication is quite general and can be applied to
all interference channels with half-duplex source cooperation. The key idea is to turn the half-duplex
cooperation problem to a virtual channel problem. A virtual channel is an interference channel with
rate-limited bit-pipes between the two sources and from each source to the destination where it causes
interference. This virtual channel is similar to the channel considered in [28] except that there they do
not have bit-pipes from sources to destinations.

The coding scheme for the virtual channel is an extension of the superposition coding scheme for the
interference channels [10]. In addition to public and private messages, we further introduce cooperative
private and pre-shared public messages. Cooperative private messages are shared over the bit-pipes between
the two sources so they can be sent using source beamforming. Pre-shared public messages are shared
over the bit-pipes from the sources to the destinations so the signals corresponding to such messages can
be canceled at the other destination and do not cause interference.

To reduce the original channel to a virtual channel, we schedule the transmission in two steps. In the
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first step, only one source transmits and the other source listens. The active source can send data to
its destination, share information with the other nodes, or relay data from the other source to the other
destination. In the second step, both sources transmit. The shared information from the previous step and
the interference channel together is indeed a virtual channel, and the scheme mentioned above is applied
to this channel. In the end, we optimize over the scheduling parameters to get the best achievable rate.

An important tool we use to study the Gaussian channel is the linear deterministic model introduced in
[1]. The linear deterministic model focuses on modeling the broadcast and interference of the signals. It
assumes that the signals are quantized and the noise is negligible, which can be a good approximation in
the high SNR regime. For each problem, we will first study the corresponding linear deterministic model
and then consider an achievable scheme that mimics the scheme of the linear deterministic model for the
Gaussian case. We note that it is possible to get the constant gap result for the Gaussian case directly,
but the linear deterministic model allows us to get a clearer understanding of the coding schemes as it is
much simpler to deal with.

The rest of the paper is organized as follows. In section II, we formally state the two problems and
in section III the main results about the sum capacity and the cognitive capacity are given. Section V
and section VI deal with the symmetric case and section VII and section VIII are for the cognitive case.
In both cases, we start by examining the corresponding linear deterministic model and use the intuition
derived to work with the more complicated Gaussian model.

II. PROBLEM STATEMENT

A. The Symmetric Case
The Gaussian interference channel with bidirectional source cooperation is depicted in Figure 1.
The source nodes 1 and 2 want to communicate with destination nodes 3 and 4, respectively. The

communication is over discrete time slots t = 1, . . . , L. We assume that the additive noise processes are
memoryless and independent across receivers. Without loss of generality, we also assume that the channel
is normalized. i.e., the additive noise processes (Zit), i = 1, 2, 3, 4 are independent CN (0, 1), i.i.d. over
time, and the codeword (Xit) at source i satisfies the power constraint

1

L

L∑
t=1

E
[
|Xit|2

]
≤ 1, i = 1, 2.

Further, we assume the channel is symmetric, i.e., |h13|2 = |h24|2 = SNR, |h14|2 = |h23|2 = INR, |h12|2 =
|h21|2 = CNR.

As the cooperation is half-duplex, the first source chooses to transmit (send) or listen at each time
t = 1, 2, . . . , n based on its message W1 and what it has received so far Y t−1

1 . Thus, the first source’s
input to the channel is (X1, S1) ∈ C× {1, 0} and the encoding function is (X1,t, S1,t) = f1,t(W1, Y

t−1
1 ).

Furthermore the power constraint at the first source’s transmitter is (1/n)
∑n

t=1E[|X1,t|21S1,t=1]. Similary
for the second source. The channel outputs are as follows:

Y1,t = (h21X2,t + Z1,t)1S1,t=0

Y2,t = (h12X1,t + Z2,t)1S2,t=0

Y3,t = h13X1,t1S1,t=1 + h23X2,t1S2,t=1 + Z3,t,

Y4,t = h14X1,t1S1,t=1 + h24X2,t1S2,t=1 + Z4,t.

More specifically, the channel can be in one of the following three modes. In mode A, both sources
transmit. The nodes receive

Y1t = 0,

Y2t = 0,

Y3t = h13X1t + h23X2t + Z3t,

Y4t = h14X1t + h24X2t + Z4t.



4

In mode B, source 1 transmits and source 2 listens. Then

Y1t = 0,

Y2t = h12X1t + Z2t,

Y3t = h13X1t + Z3t,

Y4t = h14X1t + Z4t.

In mode C, source 2 transmits, source 1 listens, and

Y1t = h21X2t + Z1t,

Y2t = 0,

Y3t = h23X2t + Z3t,

Y4t = h24X2t + Z4t.

A block length-L codebook of rate (R1, R2) for the channel consists of a schedule function ϕ(t) ∈
{A,B,C} and a sequence of encoding functions fit and decoding functions gi+2, i = 1, 2, t = 1, 2, . . . , L.
The scheduling function specifies which mode the channel is in at time t. The source messages Wi ∈
{1, 2, . . . , 2LRi}, i = 1, 2 are independent and uniformly distributed. The sources transmit Xit = fit(Wi, Y

t−1
i ),

where Y t−1
i = (Yi1, . . . , Yi(t−1)). Note that the encoding functions are causal. Further, the encoding

functions also are constrained by a scheduling function ϕ(t); i.e., we have X2t = f2t(W2, Y
t−1
2 ) = 0

when ϕ(t) = B and X1t = f1t(W1, Y
t−1
1 ) = 0 when ϕ(t) = C. Destination-(i+ 2) estimates the message

intended for it as Ŵi = gi+2(Y
L
i+2), i = 1, 2. We say that a rate pair (R1, R2) is achievable if there is

sequence of rate (R1, R2) codebooks such that as L→∞,

P (Ŵi 6= Wi)→ 0, i = 1, 2.

The capacity region C is the collection of all achievable (R1, R2). The sum-capacity Csum of the channel
is defined as the largest R1 +R2 such that (R1, R2) ∈ C . In Section III we will provide a characterization
of the sum-capacity within a constant.

B. The Cognitive Case
The Gaussian interference channel with unidirectional source cooperation is depicted in Figure 2. This

channel has no cooperation link from source 2 to source 1.
The source nodes 1 and 2 want to communicate with destination nodes 3 and 4, respectively. The

communication is over discrete time slots t = 1, . . . , L. Without loss of generality, we assume the channel
is normalized; i.e., the additive noise processes (Zit), i = 2, 3, 4 are independent CN (0, 1), i.i.d. over time,
and the codeword (Xit) at source i satisfies the power constraint

1

L

L∑
t=1

E
[
|Xit|2

]
≤ 1, i = 1, 2.

Here, we assume that the channel gains are asymmetric in general. We can view source 1 as the primary
user and source 2 as the secondary user, and the secondary can listen to the primary’s transmission and
adapt its behavior accordingly. Hence, this case corresponds to the cognitive scenario.

As there is only one-side half-duplex cooperation, the secondary sender chooses to transmit (send) or
listen at each time t = 1, 2, . . . , n based on its message W2 and what it has received so far Y t−1

2 . Secondary
transmitter’s input to the channel is (X2, S2) ∈ C × {1, 0} and the encoding function is (X2,t, S2,t) =
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Fig. 2: Interference channel with unidirectional half-duplex source cooperation.

f2,t(W2, Y
t−1
2 ). Furthermore the power constraint at the secondary transmitter is (1/n)

∑n
t=1E[|X2,t|21S2,t=1].

The channel outputs are as follows:

Y1,t = 0

Y2,t = (h12X1,t + Z2,t)1S2,t=0

Y3,t = h13X1,t + h23X2,t1S2,t=1 + Z3,t,

Y4,t = h14X1,t + h24X2,t1S2,t=1 + Z4,t.

More specifically, the channel can be in one of the following two modes. In mode A, both sources transmit.
The nodes receive

Y1t = 0,

Y2t = 0,

Y3t = h13X1t + h23X2t + Z3t,

Y4t = h14X1t + h24X2t + Z4t.

In mode B, source 1 transmits and source 2 listens. Then

Y1t = 0,

Y2t = h12X1t + Z2t,

Y3t = h13X1t + Z3t,

Y4t = h14X1t + Z4t.

Let SNR1 = |h13|2, SNR2 = |h24|2, INR1 = |h23|2, INR2 = |h14|2,CNR = |h12|2.
The codebook definition is similar to that in the symmetric case except that now the scheduling function

ϕ(t) only takes value in {A,B} and the encoding function f1t is only a function of W1, as Y1t is always
0. In this case, instead of the sum capacity, we are more interested in another question from the cognitive
perspective: what can the secondary achieve if we do not sacrifice the primary’s performance? This
motivates us to consider the following definition.

Definition 2.1: Let C0 = log(1 + SNR1) be the capacity achieved by source 1 when X2t = 0,∀t. Then
R0-capacity for the secondary user is defined as

CR0 = max
(R1,R2)∈C
R1≥C0−R0

R2.

This definition specifies the best performance the secondary user can get, given that the primary user
backs off less than R0 from its link capacity. In Section III, the R0-capacity is characterized when R0 is
larger than some constant.
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To see why we introduce a back-off in the primary rate, consider the Z-channel where CNR = INR2 =
0, SNR1 = SNR2 = SNR > 1, INR1 = INR = 1. Let Rij denote the rate from source i to destination j.
For a complex Gaussian Z-channel with weak interference (i.e., INR < SNR), the achievable rate-tuple
(R11, R21, R22) must satisfy [14, Theorem 2]

R21 ≤ log

(
1 +

(1− β)INR

1 + βINR

)
R22 ≤ log(1 + βSNR)

R11 +R21 ≤ log

(
1 +

SNR + (1− β)INR

βINR + 1

)
,

for some 0 ≤ β ≤ 1. In our case, R11 = R1, R22 = R2 and R21 = 0, thus the above constraints reduce to

R2 ≤ log(1 + βSNR)

R1 ≤ log

(
1 +

SNR + (1− β)INR

βINR + 1

)
,

for some 0 ≤ β ≤ 1. If no back-off is allowed, i.e., we insist that R1 = C0 = log(1 + SNR), then we
must have β ≤ 1

1+SNR
, which gives R2 ≤ log(1 + SNR

1+SNR
) ≤ 1 bit. However, if the primary can back off

its rate by 1 bit, then the secondary can send to its destination at full power and achieve a nonconstant
rate R2 = log(1 + SNR). Notice that the gap between the two is unbounded when SNR scales to ∞.
Since we are more interested in the high-SNR region and would want to characterize capacity only up to
a constant, the definition above with back-off better serves our purpose.

We further remark that this definition is not a constant gap characterization of the upper-right corner
point of the capacity region C . In fact, with the help of the secondary, the primary can do strictly better
than C0 in some channel parameter settings.

III. RESULTS

The main result of this paper is the approximate characterization of the sum capacity of the symmetric
case and the R0-capacity of the cognitive case for R0 larger than some constant. We state them in the
following two theorems and highlight the gains we can get from half-duplex cooperation. To prove these
theorems, we first motivate the schemes we use by studying the corresponding linear deterministic model
in Section V and VII. We then sketch the proofs in Section VI and VIII, with details taken up in the
appendices.

A. The Symmetric Case
Let θij be the phase angle of hij and define θ to be the angle difference between the direct links and

the interference links, i.e., θ = θ13 + θ24 − θ14 − θ23 . We say the channel is aligned if SNR = INR and
θ = 0. The following theorem characterizes the sum capacity of the symmetric channel within a constant.

Theorem 3.1: Define Csum = maxδ Csum(δ) = maxδ min(u1, u2, u3, u4), where

u1 =
2

2 + δ

[
δ log(1 + SNR) + log(1 + SNR + CNR)

]
u2 =

1

2 + δ

[
δ log(1 + 2SNR + 2INR) + log(1 + SNR) + log(1 + SNR + INR + CNR)

+ δ log(1 +
SNR

1 + INR
)
]

u3 =
2

2 + δ

[
δmax{log(1 + INR +

2SNR + INR

1 + INR
), log(1 + 2INR)}+ log(1 + SNR + INR + CNR)]

u4 =
1

2 + δ

[
δ log(1 + 4SNR + 4INR + SNR2 + INR2 − 2SNRINR cos θ) + 2 log(1 + SNR + INR)

]
.
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Fig. 3: Sum capacity of the interference channel with half-duplex source cooperation.

Then the sum capacity Csum of the symmetric channel defined in section II-A satisfies Csum − 17 ≤
Csum ≤ Csum + 7.

In the coding scheme, we consider a symmetric scheduling and the number of time slots spent in
mode B and C are the same, i.e., |ϕ−1(B)| = |ϕ−1(C)| where by definition ϕ−1(B) is the set of time
slots scheduled for mode B and |S| denotes the cardinality set S. We define the scheduling parameter
δ = |ϕ−1(A)|

|ϕ−1(B)| , which is also the optimization parameter in the above theorem.
To demonstrate the gains from cooperation, we plot the generalized degree of freedom [9] of the sum

capacity. Here we use the natural generalization of the original definition given in [28]. Assume

lim
SNR→∞

log INR

log SNR
= α, lim

SNR→∞

logCNR

log SNR
= β.

Then the generalized degree of freedom for fixed α, β is

dsum(α, β) = lim
fix(α,β)
SNR→∞

Csum

log SNR
.
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Note that dsum is well-defined for α 6= 1. When α = 1, dsum can take two different values, and we
need to treat them separately.

1) h13h24 = h14h23. Consider the cut-set bound with sources on one side and destinations on the
other. The upper bound on the sum capacity of the interference channel reduces to the capacity
of a degenerated multiple input multiple output (MIMO) point-to-point channel. As the degree of
freedom of the latter channel is only 1, therefore we get dsum = 1.

2) h13h24 6= h14h23. For this setting, the channel is well-conditioned and dsum is a continuous function
with respect to α at α = 1.

In Figure 3, we show plots of dsum against α for different β′s under the more interesting assumption
h13h24 6= h14h23. We also compare it with the result for full-duplex source cooperation [19]. In [19], the
sources are allowed both to listen and transmit at the same time instant. Under such full-duplex assumption,
the channel has only one mode: both sources transmit and listen. The resulted dsum is a piecewise linear
function of α. For our half-duplex channe, however, we need to switch between three modes, and the
optimization over the scheduling parameter δ makes each piece a smoothed curve rather than a linear
function. From the plots, we first observe that half-duplex cooperation is helpful only when β > 1, while
full-duplex cooperation is helpful for all β > 0. When β is large enough (for example, β = 3.2), the sum
capacity of our channel can be strictly better than that of the usual interference channel. Moreover, when
β =∞, the sources can get to know both messages in negligible amount of time with either half-duplex or
full-duplex cooperation. Therefore the channel essentially become a broadcast channel with two antennas
at the source, and the channel with half-duplex source cooperation has the same sum capacity as the
channel with full-duplex source cooperation.

B. The Cognitive Case
The following theorem characterizes the R0-capacity of the cognitive channel within a constant.
Theorem 3.2: Define CR0 = maxδ CR0(δ) = maxδ min(u1, u2, u3, u4), where

u1 =
1

1 + δ
log(1 + SNR2) + 1

u2 =
1

1 + δ

[
log(1 + 2SNR2 + 2INR2)− log(1 + SNR1) + δ log(1 +

INR2 + CNR

1 + SNR1

)

+ log(1 +
SNR1

1 + INR2

)
]

+ 2 +R0

u3 =
1

1 + δ

[
log(1 + 2SNR1 + 2INR1)− log(1 + SNR1) + log(1 +

SNR2

1 + INR1

)

]
+ 2 +R0

u4 =
1

1 + δ

[
log(1 + 2SNR1 + 2INR1)− log(1 + SNR1) + log(1 +

SNR1

1 + INR2

)− log(1 + SNR1)

+ max(log(1 + INR2 +
2SNR2 + INR2

1 + INR1

), log(1 + 2INR2)) + δ log(1 +
INR2 + CNR

1 + SNR1

)
]

+ 3 + 2R0.

Then when R0 ≥ 7, the R0-capacity CR0 of the cognitive channel defined in section II-B satisfies CR0 −
23− 2R0 ≤ CR0 ≤ CR0 .

In the coding scheme, we define the scheduling parameter δ to be the ratio of the number of time slots
spent in mode B and A, i.e., δ = |ϕ−1(B)|

|ϕ−1(A)| . We note that this definition of δ is a little bit different from the
one for the symmetric case, as it is now proportional to ϕ(B), which is more convenient for presenting
the result.

To demonstrate the gains from cooperation, we plot the generalized degree of freedom [9] of the R0-
capacity. To be consistent in notations with later sections, we consider a reference SNR that goes to



9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n1 = 1.0,  n2 = 0.8, α2 = 1.1

α1

d co
g

 

 
β ≤ α2∨  n1

β = 1.2
β = 1.3
β = 2.0
β = ∞

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

n1 = 1.0,  n2 = 1.2, α2 = 1.1

α1

d co
g

 

 
β ≤ α2∨  n1

β = 1.2
β = 1.3
β = 2.0
β = ∞

Fig. 4: Cognitive capacity of the interference channel with half-duplex source cooperation.

infinity, and assume

lim
SNR→∞

log SNR1

log SNR
= n1, lim

SNR→∞

log SNR2

log SNR
= n2,

lim
SNR→∞

log INR1

log SNR
= α1, lim

SNR→∞

log INR2

log SNR
= α2,

lim
SNR→∞

logCNR

log SNR
= β.

For the discussion with generalized degree of freedom in this section, we simply take SNR = SNR1 thus
n1 = 1 . Then the generalized degree of freedom for given n2, α1, α2, β is

dcog(n2, α1, α2, β) = lim
SNR→∞

CR0

log SNR
.

Unlike the symmetric case, this limit always exists, i.e., dcog is always well-defined. In particular, when
|h13||h24| = |h23||h14|, dcog is the same as that of an interference channel without cooperation, which is
essentially saying that cooperation is not quite helpful even when the absolute value of the channel gains
are aligned. Phases do not matter here. Moreover, dcog is continuous when the channel gains are close
to being aligned. Figure 4 shows two typical plots of dcog against α1 for various β while n2, α2 are held
fixed.

In our model, β = 0 corresponds to an interference channel without cooperation. The above plot shows
that when β ≤ α2∨n1, where x∨y = max(x, y), the generalized degree of freedom is the same as that of
β = 0. Hence, cooperation is not very helpful unless it is above the threshold. This behavior is the same
as what happens to the symmetric channel case. On the other hand, when β =∞, the cooperation link is
so strong that the secondary can decode the primary’s message in a negligible amount of time. This case
is equivalent to the cognitive radio channel model in [12], where the secondary is assumed to know both
messages. One other interesting thing to notice is that when n2 ≤ α1 ≤ n1, dcog is always 0, even with
infinite cooperation. This is because in this region, what destination 4 gets from source 2 is only a noisy
version of what destination 3 gets from source 2, which implies that destination 3 can further decode W2

after decoding W1. Since we require the primary to achieve a rate near its link capacity, the rate allowed
for W2 must be at most a constant in the high-SNR region.
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two sources and from each source to the destination node where it causes interference.

IV. ACHIEVABILITY

Our coding scheme turns the two-user interference channel of mode A (Fig. 1a) into a virtual two-user
interference channel (Fig. 5), with rate-limited (noiseless) bit-pipes between the two sources and from
each source to the destination node where it causes interference. The bit-pipes are realized by operating in
modes B and C (Fig.1b and 1c) where only one of the source nodes transmits while the other receives. In
these modes, in addition to sending data to its own destination, the transmitting source sends messages to
the other nodes as well to establish the noiseless links. In this section, we first describe a coding scheme
and characterize an achievable rate region for the virtual channel. Then we will use this characterization to
obtain an achievable rate region for the two-user interference channel with half-duplex source cooperation.
We note that it is possible to obtain an achievable scheme using strategies in [19], [31], However, we do
not pursue this route in this paper, as it is as complicated specializing known schemes as describing our
coding scheme.

A. Interference Channel with Bit-pipes
We denote the virtual channel in Fig. 5 by IFcoop(pY3,Y4|X1,X2 ,C12,C21,C14,C23), where Cij are the rates

of the bit-pipes between node i ∈ {1, 2} and node j ∈ {1, 2, 3, 4}. The virtual channel is converted from
mode A, therefore it lasts for the duration of mode A. With a little abuse of notation, we assume the
communication is over discrete time slots t = 1, . . . , L in this subsection for simplicity. For this new
channel, we limit ourselves to block-coding schemes of the following type:

1) First, the sources send at most LCij bits over the bit-pipes, where L is the blocklength. These bits
are functions only of the message of the source sending the bits.

2) Then, the sources transmit over the interference channel with each of their channel inputs (of
blocklength L) being functions of their message and the bits exchanged in the first step. For the
Gaussian channel, these transmissions are required to satisfy average power constraints of unity.

A rate pair (R1, R2) is defined to be achievable for this channel along the same lines as in Section II.
In the rest of the section, we first discuss an achievable region Rvirtual(C12,C21,C14,C23) for the virtual
channel1. Then using this result, an achievable region for the half-duplex channel will be presented.

Our coding scheme for this virtual channel is a generalization of the superposition coding scheme given
by Han and Kobayashi for interference channels. The scheme of Han and Kobayashi in this context may
be interpreted as follows. Each source node transmits its information in two parts:
• public message is decoded by both destinations (even though it is meant for only one of the

destinations),
• private message is decoded only by one of the destinations, the one to which it is intended.

1We drop the channel pY3,Y4|X1,X2
from the notation since the channel will be clear from the context.
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Our scheme also uses superposition coding and involves two additional parts each of which takes advantage
of one of the two types of bit-pipes available.

1) cooperative private message. These messages are shared in advance between the sources over the
bit-pipes between them. The messages are then sent out cooperatively by the two sources. But
they are only decoded by the intended destination. Below, we will use superposition coding and
beamforming for transmitting these messages.

2) pre-shared public message. Each source shares this type of message with the unintended destination
in advance over the bit-pipes to that destination. This ensures that when it appears as interference
in the transmission over the interference channel, the destination can treat it as known interference
while decoding.

In slightly greater detail, our coding scheme is as follows: We fix the input distribution

p(xV ′1 , xV ′2 , xW1 , xW2 , xU1 , xU2 , v1, v2, xV1 , xV2 , x1, x2)

=p(xV ′1 )p(xV ′2 )p(xW1|xV ′1 )p(xW2|xV ′2 )p(xU1|xW1 , xV ′1 )p(xU2|xW2 , xV ′2 )

p(v1)p(v2)p(xV1 , xV2 |v1, v2)p(x1|xU1 , xV1)p(x2|xU2 , xV2).

Codebook construction and encoding: Source i ∈ {1, 2} divides its message into four parts mi =
(mWi

,mUi ,mVi ,mV ′i
), where W stands for (noncooperative) public, U for (noncooperative) private, V

for cooperative private, and V ′ for pre-shared public. First, mVi is shared with the other source and mV ′i
is shared with the other destination over the bit-pipes. Superposition codewords are then transmitted over
the interference channel. A random codebook construction for these codewords is as follows:

1) At source i ∈ {1, 2}, generate the pre-shared public codeword XL
V ′i

(mV ′i
) independently according

to distribution p(xLV ′i ) =
∏L

t=1 p(xV ′i ,t), where mV ′i
∈ {1, 2, . . . , 2L(RV ′i −ε)}.

2) At source i, for each mV ′i
, generate the public codeword XL

Wi
(mV ′i

,mWi
) independently according

to distribution p(xLWi
|xLV ′i (mV ′i

)) =
∏L

t=1 p(xWi,t|xV ′i ,t(mV ′i
)), where mWi

∈ {1, 2, . . . , 2L(RWi−ε)}.
3) At source i, for each pair of (mWi

,mV ′i
), generate the private codeword XL

Ui
(mUi ,mWi

,mV ′i
) accord-

ing to distribution p(xLUi |x
L
Wi

(mWi
,mV ′i

), xLV ′i
(mV ′i

)) =
∏L

t=1 p(xUi,t|xWi,t(mWi
,mV ′i

), xV ′i ,t(mV ′i
)),

where mUi ∈ {1, 2, . . . , 2L(RUi−ε)}.
4) Generate, for i ∈ {1, 2}, the auxiliary cooperative private codewords V L

i (mVi), according to distri-
bution pvLi =

∏L
t=1 p(vi,t), where mVi ∈ {1, 2, . . . , 2L(RVi−ε)}. For every pair (mV1 ,mV2), define the

cooperative private codewords (XL
V1
, XL

V2
)(mV1 ,mV2) according to distribution

p(xLV1 , x
L
V2
|vL1 (mV1), v

L
2 (mV2)) =

L∏
t=1

p(xV1,t, xV2,t|v1,t(mV1), v2,t(mV2)).

5) At source 1, generate the codewords to be transmitted XL
1 (mW1 ,mU1 ,mV ′1

,mV1 ,mV2) according to
distribution

p(xL1 |xLU1
(mU1 ,mW1 ,mV ′1

), xLV1(mV1 ,mV2)) =
L∏
t=1

p(x1,t|xU1,t(mU1 ,mW1 ,mV ′1
), xV1,t(mV1 ,mV2)).

At source 2, generate XL
2 (mW2 ,mU2 ,mV ′2

,mV2 ,mV1) similarly.
Decoding: Destination 3 looks for a unique (mW1 ,mU1 ,mV1 ,mV ′1

) such that

(Y L
3 , X

L
V ′1

(mV ′1
), XL

W1
(mW1 ,mV ′1

), XL
U1

(mU1 ,mW1 ,mV ′1
), V L

1 (mV1), X
L
W2

(m̂W2), X
L
V ′2

(mV ′2
))

is jointly typical, for some m̂W2 . Note that mV ′2
is available to destination 3 via the bit-pipe from source 2.

Destination 4 uses the same decoding rule with index 1 and 2 exchanged.
Theorem 4.1: The rate pair (RW1 + RU1 + RV1 + RV ′1

, RW2 + RU2 + RV2 + RV ′2
) is achievable if

RW1 , RW2 , RU1 , RU2 , RV1 , RV2 , RV ′1
, RV ′2

are non-negative reals which satisfy the following constraints.
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Constraints at destination 3:

RV ′1
≤ C14

RU1 ≤ I(XU1 ;Y3|XW1 , V1, XV ′1
, XW2 , XV ′2

)

RW1 +RU1 ≤ I(XW1 , XU1 ;Y3|V1, XV ′1
, XW2 , XV ′2

)

RV ′1
+RW1 +RU1 ≤ I(XW1 , XU1 , XV ′1

;Y3|V1, XW2 , XV ′2
)

RV1 ≤ I(V1;Y3|XW1 , XU1 , XV ′1
, XW2 , XV ′2

)

RV1 +RU1 ≤ I(XU1 , V1;Y3|XW1 , XV ′1
, XW2 , XV ′2

)

RV1 +RW1 +RU1 ≤ I(XW1 , XU1 , V1;Y3|XV ′1
, XW2 , XV ′2

)

RV1 +RV ′1
+RW1 +RU1 ≤ I(XW1 , XU1 , V1, XV ′1

;Y3|XW2 , XV ′2
)

RW2 +RU1 ≤ I(XW2 , XU1 ;Y3|XW1 , V1, XV ′1
, XV ′2

)

RW2 +RW1 +RU1 ≤ I(XW2 , XW1 , XU1 ;Y3|V1, XV ′1
, XV ′2

)

RW2 +RV ′1
+RW1 +RU1 ≤ I(XW2 , XW1 , XU1 , XV ′1

;Y3|V1, XV ′2
)

RW2 +RV1 ≤ I(XW2 , V1;Y3|XW1 , XU1 , XV ′1
, XV ′2

)

RW2 +RV1 +RU1 ≤ I(XW2 , XU1 , V1;Y3|XW1 , XV ′1
, XV ′2

)

RW2 +RV1 +RW1 +RU1 ≤ I(XW2 , XW1 , XU1 , V1;Y3|XV ′1
, XV ′2

)

RW2 +RV1 +RV ′1
+RW1 +RU1 ≤ I(XW1 , XU1 , XV ′1

, V1, XW2 ;Y3|XV ′2
).

Constraints at destination 4: Above with index 1, 2 exchanged and index 3, 4 exchanged.
Constraints at sources:

RV1 ≤ C12, RV2 ≤ C21.

for some

p(xW1 , xU1 , xV1 , xV ′1 , xW2 , xU2 , xV2 , xV ′2 , v1, v2) = p(xV ′1 , xW1 , xU1)p(xV ′2 , xW2 , xU2)p(v1)p(v2)p(xV1 , xV2 |v1, v2).

For the Gaussian channel, the joint distribution must satisfy

Var (XUi) + Var (XVi) ≤ 1, i ∈ {1, 2}.

We denote this rate region by Rvirtual(C12,C21,C14,C23).
Proof: The proof is omitted since it follows from standard arguments for superposition coding.

B. Achievablity for Half-Duplex Channel
Now we give a scheme for the original channel. The rate region will be given in terms of Rvirtual in

Theorem 4.1. Our coding scheme consists of a sequence of blocks. Each block is dδALe+ dδBLe+ dδCLe
long (δA, δB, δC ≥ 0). Let us denote, LA = dδALe, LB = dδBLe and LC = dδCLe. In each block, the first
1, 2, . . . , LB and LB + 1, LB + 2, . . . , LB + LC, respectively are operated in modes B and C respectively.
The rest LA long duration is in mode A. During mode B and C of each block, we will realize the bit-pipes
of the virtual channel. This will allow us to implement our coding scheme for the virtual channel during
mode A. In addition to realizing the virtual channels, modes B and C also involve communication of
additional data directly to the intended destination as well as by relaying through the other source node
as explained next.

Notice that in mode B (resp. C), we have a broadcast channel with source node 1 (resp. 2) as the
sender and three receivers, namely, the two destinations nodes 3 & 4 and the other souce node 2 (resp. 1).
We describe mode B; mode C is symmetric. In addition to realizing the bit-pipes of the virtual channel,
during mode B, the source node 1

(i) sends data to its own destination node 3, and
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(ii) implements a simple block Markov decode-and-forward scheme in conjunction with source node
2 by (a) sending data to the other source node 2 to be relayed by source node 2 to the intended
destination node 3 in mode C of the next block, and (b) relaying data received from the other source
node 2 during mode C of the previous block to its intended destination node 4.

In mode B, source node 1 uses superposition coding to send messages to each of the other nodes. In
particular, it sends at a rate of R1B to destination 3, at a rate δA

δB
C12 + ∆R123 to the other source (node 2)

and at a rate of δA
δB
C14 + δC

δB
∆R214 to destination node 4. The transmissions at rates δA

δB
C12 and δA

δB
C14 are

used to realize the bit-pipes originating from source node 1 to nodes 2 and 4, respectively in the virtual
channel. Similarly, source node 2 realizes the bit-pipes to the other nodes in mode C. With these bit-
pipes in place, the channel in the following mode A is effectively transformed into the virtual channel we
described before. The transmission at rate ∆R123 is meant to be relayed on by source node 2 to destination
node 3 in the following mode C. And the transmission at rate δC

δB
∆R214 is of the data node 1 received

from source node 2 in mode C of the previous block that is intended to be relayed to destination node 4.
Similarly, in mode C, source node 2 sends using superposition coding at rates R2C, δA

δC
C21 + ∆R214, and

δA
δC
C23 + δB

δC
∆R123 to nodes 4, 1, and 3, respectively. Note that in mode B for the first block, there is no

relay data available for node 1 to relay to node 4. But, by increasing the number of blocks, the resulting
deficit in rate can be made as small as desired.

For the degraded broadcast channel of mode B (resp. C), we will use the natural ordering of users for
superposition coding-successive cancellation decoding, i.e., the strongest user’s message is superposed on
the codeword resulting from superposing the next stronger user’s message on the weakest user’s codeword.
To denote all possibilities together, we adopt the following notation. Let

R̃B
3 = R1B, R̃C

4 = R2C,

R̃B
2 =

δA
δB

C12 + ∆R123, R̃C
1 =

δA
δC

C21 + ∆R214,

R̃B
4 =

δA
δB

C14 +
δC
δB

∆R214, and R̃C
3 =

δA
δC

C23 +
δB
δC

∆R123.

Then, by superposition coding, the above rates are achievable if there are permutations φB of {2, 3, 4}
and φC of {1, 3, 4}, and a joint distribution
p(ũB1 )p(ũB2 )p(ũB3 )p(x1|ũB1 , ũB2 , ũB3 )p(ũC1 )p(ũC2 )p(ũC3 )p(x2|ũC1 , ũC2 , ũC3 ), (which satisfies the condition Var (X1),
Var (X2) ≤ 1 for the Gaussian case) such that

i∑
j=1

R̃B
φB(j) ≤ I(ŨB

1 , . . . , Ũ
B
i ;YφB(i)), i ∈ {1, 2, 3}, (1)

i∑
j=1

R̃C
φC(j) ≤ I(ŨC

1 , . . . , Ũ
C
i ;YφC(i)), i ∈ {1, 2, 3}. (2)

Note that, for a given channel, we will use only the permutations φB, φC corresponding to the natural
ordering described above. Also, note that the ŨB’s are auxiliary random variables corresponding to the
messages superposition coded in mode B (similary, ŨC for mode C). Thus, we have proved the following
theorem:

Theorem 4.2: The rate pair (R1, R2) is achievable for the half-duplex channel, where

R1 =
δAR1A + δBR1B + δB∆R123

δA + δB + δC
,

R2 =
δAR2A + δCR2C + δC∆R214

δA + δB + δC
,

for parameters as defined in the above discussion such that (1)-(2) hold and

(R1A, R2A) ∈ Rvirtual(C12,C21,C14,C23).
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Fig. 6: Linear deterministic interference channel with half-duplex source cooperation.

V. THE SYMMETRIC CASE: LDM
In this section, we study the linear deterministic model (LDM) of the symmetric half duplex source

cooperation problem, and characterize the sum capacity for this LDM. In particular, there is a natural
way to divide this problem into several different parameter regions, and in each region we explicitly
characterize how the achievable scheme allocates rates for various messages. For the Gaussian model in
the next section, we will divide the problem into parameter regions that correspond to the regions for the
LDM. Our achievable scheme for the Gaussian model in each region mostly follows from the intuition
we gain from the LDM.

A. Channel Model and Sum Capacity
The linear deterministic channel [1] corresponding to the symmetric case is parameterized by nonneg-

ative integers

nD = blog SNRc+, nI = blog INRc+, nC = blogCNRc+.
The channel is depicted in Figure 6. Let Sn be the shift matrix in Fn×n2 , where F2 is the finite field with
two elements, i.e.,

Sn =


0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 1 0


n×n

.

The sources can work in one of the three modes. In mode A, both sources transmit and the channel
inputs X1t, X2t are in Fmax{nD,nI}

2 . The nodes receive:

Y1t = 0,

Y2t = 0,

Y3t = S
max{nD,nI}−nD
max{nD,nI} X1t ⊕ Smax{nD,nI}−nI

max{nD,nI} X2t,

Y4t = S
max{nD,nI}−nD
max{nD,nI} X2t ⊕ Smax{nD,nI}−nI

max{nD,nI} X1t.

In mode B, source 2 listens and the channel inputs X1t, X2t are in Fmax{nD,nI ,nC}
2 . Then,

Y1t = 0,

Y2t = S
max{nD,nI ,nC}−nC
max{nD,nI ,nC} X1t,

Y3t = S
max{nD,nI ,nC}−nD
max{nD,nI ,nC} X1t,

Y4t = S
max{nD,nI ,nC}−nI
max{nD,nI ,nC} X1t.
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In mode C, source 1 listens and the channel inputs X1t, X2t are in Fmax{nD,nI ,nC}
2 . Then,

Y1t = S
max{nD,nI ,nC}−nC
max{nD,nI ,nC} X2t,

Y2t = 0,

Y3t = S
max{nD,nI ,nC}−nI
max{nD,nI ,nC} X2t,

Y4t = S
max{nD,nI ,nC}−nD
max{nD,nI ,nC} X2t.

Theorem 5.1: The sum capacity of the interference channel in Figure 6 is

Csum = max
δ≥0

min{l1(δ), l2(δ), l3(δ), l4(δ)},

where

l1(δ) =
2

2 + δ
(δnD + max{nD, nC}) ,

l2(δ) =
1

2 + δ
(δmax{2nD − nI , nI}+ nD

+ max{nD, nI , nC}),

l3(δ) =
2

2 + δ
(δmax{nI , nD − nI}+ max{nD, nI , nC})

l4(δ) =

{
2(1+δ)
2+δ

max{nD, nI}, nD 6= nI
nD, nD = nI

.

The parameter δ is a scheduling parameter the same as the scheduling parameter used in Theorem 3.1. The
proof for the converse of the theorem is similar to that of the Gaussian case and is omitted in this paper.
Below we describe the achievable coding scheme for the LDM. Note that when nI = nD or nC ≤ nD, the
sum capacity reduces to that of the interference channel without cooperation. Hence, it can be achieved
with the optimal interference channel scheme. In the following discussions, we assume nI 6= nD and
nC > nD.

B. Coding Scheme
To characterize the sum capacity, it is sufficient to consider only symmetric schemes. The induced

virtual channel is also symmetric. The symmetric virtual channel has an interference channel determined
by (nD, nI) and its bit-pipes have rates C12 = C21 = Css and C14 = C23 = Csd. We denote this type of
virtual channel by IFcoop((nD, nI),Css,Csd).

For simplicity, let n = max{nD, nI}. For source i ∈ {1, 2}, we define the public, pre-shared and private
auxiliary random variables Wi, V

′
i , Ui to be independent random variables on Fn2 . In particular, the public

and pre-shared auxiliary random variables are uniformly distributed over Fn2 . The private auxiliary random
variables are uniformly distributed over the set of length n vectors in Fn2 whose upper n − (nD − nI)+
elements are fixed to be 0. In Theorem 4.1, we set

XV ′i
= V ′i ,

XWi
= V ′i +Wi,

XUi = V ′i +Wi + Ui.

Note that the private auxiliary random variable Ui occupies the lower (nD − nI)+ levels so that it does
not appear at the other destination. This is similar to the choice made in [9] for the (non-cooperative)
intereference channel.
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For the cooperative private codebook, we choose the auxiliary random variables Vi, i = 1, 2 independent
of each other and all the other auxiliary random variables, and distributed uniformly over Fn2 . We choose
(XV1 , XV2) as deterministic functions of (V1, V2) such that[

V1
V2

]
=

[
Sn−nDn Sn−nIn

Sn−nIn Sn−nDn

] [
XV1

XV2

]
As the channel matrix is invertible, we can always find such XVi for arbitrary Vi. For the particular choice
of XVi , the sources are effectively doing zero-forcing beamforming such that each destination receives the
message Vi intended for it.

Using these definitions, source i sends XL
Ui

+XL
Vi
, i = 1, 2. The induced channel pY3,Y4|V ′1 ,V ′2 ,W1,W2,U1,U2,V1,V2

is as follows:

Y3 = Sn−nDn (W1 + U1 + V ′1) + Sn−nIn W2 + V1

Y4 = Sn−nDn (W2 + U2 + V ′2) + Sn−nIn W1 + V2,

where the unintended pre-shared public signals which the receivers know in advance are removed. We
choose symmetric rates for the four types of messages: i.e., RV ′1

= RV ′2
= RV ′ , and so on. When nI < nD,

the sources only send data to their own destinations in modes B and C, thus we set Csd = 0 and the
pre-shared message rate RV ′ = 0. By Theorem 4.1 the rate pair (RW + RU + RV , RW + RU + RV ) is
achievable if

2RW +RV +RU ≤ nD

RU +RW ≤ max{nI , nD − nI}
RU ≤ nD − nI

with RW ≥ 0, RU ≥ 0, 0 ≤ RV ≤ Css. When nI > nD we set the private message rate RU = 0 as the
interference is strong. By Theorem 4.1 the rate pair (RW +RV +R′V , RW +RV +R′V ) is achievable if

2RW +RV +RV ′ ≤ nI

RW +RV ′ ≤ nD

with RW ≥ 0, 0 ≤ RV ≤ Css, 0 ≤ R′V ≤ Csd. By the Fourier-Motzkin elimination, we arrive at
Theorem 5.2: The following is an achievable sum rate Rvirtual

sum for IFcoop((nD, nI),Css,Csd).
1) When nI < nD,Csd = 0,

Rvirtual
sum = 2 min

 nD,
nD − 1

2
nI + 1

2
Css,

max{nI , nD − nI}+ Css

 ,

2) when nI > nD,

Rvirtual
sum = 2 min


nD + Css,
nI+Css+Csd

2
,

nI

 .

Now we can show the achievability of the sum capacity Csum using a symmetric version of the scheme
in Section IV-B. Set δB = δC = 1, δA = δ. For superposition coding in modes B and C, the sources set
the data rates R1B = R2C = nD and choose the shared rates C12 = C21 = Css, C14 = C23 = Csd and relay
rates ∆R123 = ∆R214 = ∆R. The constraints (1)-(2) translate to

δCss + ∆R ≤ (nC − nD)+,

δCsd + ∆R ≤ (nI − nD)+,

δCss + δCsd + 2∆R ≤ (max{nI , nC} − nD)+.
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By Theorem 4.2, the sum rate achieved by this scheme is

Rsum = max
δ≥0

1

2 + δ
(2nD + 2∆R + δRvirtual

sum (nD, nI ,Css,Csd)).

The optimization problem for Rsum naturally divides in to the following parameter regions. For our
choice of rates Css,Csd and ∆R, tt is not hard to verify that the above constraints are satisfied and
Rsum = Csum in all regions.

1) nI < nD < nC . Css = (nC − nD)/δ, Csd = 0 and ∆R = 0. The interference link is weak in this
region. We do not use it for sharing information or relay.

2) nD < nI ≤ nC . Csd = 0. The cooperation link dominates the interference link in this region, so we
do not share data over the interference link. When the cooperation is strong enough, we use the
additional capacity to relay data.

a) nC − nD ≤ δnI . Css = (nC − nD)/δ and ∆R = 0.
b) nC − nD > δnI . Css = nI and

∆R = min

(
nC − nD − δnI

2
, nI − nD

)
3) nD < nC < nI . The interference link dominates in this region. We always use it for sharing data.

When the cooperation link and the interference link are both strong enough, we further use them
to relay data.

a) nI−nD ≤ δnI or nC−nD ≤ δ(nI−nD). Css = (nC−nD)/δ,Csd = (nI−nC)/δ and ∆R = 0.
b) nI − nD > δnI and nC − nD > δ(nI − nD). Css = nI − nD,Css + Csd = nI and

∆R = min

(
nC − nD − δ(nI − nD),

nI − nD − δnI
2

)
Remark: Primarily, cooperation enables better rates of transmission over the interference channel. When

both nC and nI are large relative to nD, relaying also comes into play. In the Gaussian model, we divide
the problem into parameter regions as above. The basic idea for the coding scheme is to allocate the power
for the signals according to the intuition provided by the LDM, such that the rates for the messages in the
Gaussian model and the corresponding LDM differ by at most a constant. Then it is sufficient to apply
the achievable coding scheme for the LDM. Note that when SNR ≈ INR, which corresponds to the case
nD = nI , the achievable rate obtained by directly applying the LDM result is not tight with respect to
the upper bound. In fact, we need to further consider the angle difference θ for the channel gains to show
the constant gap result.

VI. THE SYMMETRIC CASE: GAUSSIAN MODEL

We follow the intuition from the linear deterministic channel and consider a symmetric version of the
coding scheme in section IV as well. The auxiliary random variables in Theorem 4.1 for the induced
symmetric virtual channel are chosen as follows: for source i = 1, 2, we define the auxiliary random
variables Wi, Ui, V

′
i to be independent, zero-mean Gaussian random variables with variances σ2

W , σ
2
U , σ

2
V ′ ,

respectively. Set

XV ′i
= V ′i ,

XWi
= V ′i +Wi,

XUi = V ′i +Wi + Ui.

The variance σ2
U for the private message is set below the noise power level at the destination where

it causes interference. Following the intuition from the linear deterministic case, we will employ zero-
forcing beamforming for the cooperative private messages. We choose V1, V2 to be zero-mean Gaussian
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random variables with variance σ2
V , independent of each other and all previously defined auxiliary random

variables, . When the channel matrix is invertible, XVi , i = 1, 2 are chosen such that[
V1
V2

]
=

[
h13 h23
h14 h24

] [
XV1

XV2

]
where XVi , i = 1, 2 are correlated Gaussian random variables with variance

Var (XVi) =
SNR + INR

SNR2 + INR2 − 2SNR INR cos θ
σ2
V .

When the channel matrix is not invertible, we simply set σ2
V = 0 and XV1 = XV2 = 0, i.e., there will be

no cooperative private message. The variance parameters must satisfy the power constraint

σ2
W + σ2

U + σ2
V ′ + Var (XVi) ≤ 1, i = 1, 2.

After removing the unintended pre-shared public signals, the destinations receive

Y3 = h13(W1 + U1 + V ′1) + h23W2 + V1 + h23U2 + Z3

Y4 = h24(W2 + U2 + V ′2) + h24W1 + V2 + h14U1 + Z4.

We set the rates for the four types of messages to be symmetric, i.e., RW1 = RW2 = RW and so on. Also,
in Theorem 4.2, we set C12 = C21 = Css, C14 = C23 = Csd, and ∆R123 = ∆R214 = ∆R.

With the above definitions of auxiliary random variables, there exist power and rate allocations such
that the rate Csum, defined in Theorem 3.1, is achievable within a constant. Specifically,

Theorem 6.1: Csum ≥ Csum − 17.
Proof: We sketch how we prove the theorem and refer the reader to Appendix A for details. We

show achievability in the following five parameter regions. In the first four regions, we consider the coding
schemes for the corresponding LDM and show that the sum capacity of the LDM can be achieved within
a constant. The last region is unique for Gaussian channel, where the scheme according to the LDM can
be strictly suboptimal.

1) CNR ≤ SNR or CNR ≤ 1 or INR ≤ 1. In this region, the condition implies that either the cooperation
is not helpful or there is little interference. Therefore, the previous schemes for the interference
channel are enough to achieve the upper bound within a constant.

2) 2INR < SNR < CNR. This region corresponds to the case nI < nD < nC .
3) 2SNR < INR < CNR. This region corresponds to the case nD < nI ≤ nC . We further divide this

region into two subregions as for the LDM.
4) SNR < CNR < INR. This region corresponds to the case nD < nC ≤ nI . We further divide this

region into two subregions as for the LDM.
5) SNR ≈ INR < CNR. This region corresponds to the case nD = nI . In LDM, if nD = nI , the channel

is degenerated and the channel matrix S has only rank nD. However, in the Gaussian case, whether
the channel is degenerated further depends on the angles of the channel gains. In particular, when
cos θ ≈ 0, the channel matrix H is well conditioned and cooperation is still helpful.

The following theorem provides an upperbound to the sum-rate. It is proved in Appendix B. This
theorem together with the previous one imply Theorem 3.1.
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Theorem 6.2: Let

Cut(δ) =
1

2 + δ

[
δ log(1 + SNRP1A) + δ log(1 + SNRP2A)

log(1 + (SNR + CNR)P1B) + log(1 + (SNR + CNR)P2C)
]

Z(δ) =
1

2 + δ

[
δ log(1 + 2SNRP1A + 2INRP2A) + log(1 + SNRP1B)

+ log(1 + (SNR + INR + CNR)P2C) + δ log(1 +
SNRP2A

1 + INRP2A

)
]

V (δ) =
1

2 + δ

[
δ log

(
1 + INRP2A +

2SNRP1A + INRP2A

1 + INRP1A

)
+ log(1 + (SNR + INR + CNR)P1B)

+ δ log

(
1 + INRP1A +

2SNRP2A + INRP1A

1 + INRP2A

)
+ log(1 + (SNR + INR + CNR)P2C)

]
Cut′(δ) =

1

2 + δ

[
δ log(1 + 2(SNR + INR)(P1A + P2A) + P1AP2A(SNR2 + INR2 − 2SNRINR cos θ))

+ log(1 + (SNR + INR)P1B) + log(1 + (SNR + INR)P2C)
]

Define CHD
sum = max

δ,P1A,P1B

min(Cut(δ), Z(δ), V (δ), Cut′(δ)), where the maximization is over all non-negative

δ, P1A, P1B, P2A, P2C which satisfy the power constraints

δP1A + P1B

2 + δ
≤ 1 and

δP2A + P2C

2 + δ
≤ 1.

Then
Csum ≤ CHD

sum ≤ Csum + 7.

VII. THE COGNITIVE CASE: LDM
In this section, we study the linear deterministic model (LDM) of the cognitive channel. We first

characterize the cognitive capacity of the LDM, which is the counterpart of the R0-capacity for the
Gaussian case. Next we describe the coding scheme for the channel and provide a simple interpretation
of the coding scheme. We then briefly discuss the converse. The intuition from the LDM will be our
guideline for studying the Gaussian channel in the next section.

A. Channel Model and Cognitive Capacity
The LDM of the cognitive channel is parameterized by the nonnegative integers

n1 = blog SNR1c+, n2 = blog SNR2c+, α1 = blog INR1c+,
α1 = blog INR2c+, β = blogCNRc+

The channel is depicted in Figure 7. Let Sn be the shift matrix in Fn×n2 , as defined in Section V. As
the cooperation is only unidirectional, the sources can work in mode A and B. In mode A, both sources
transmit and the channel inputs X1t, X2t are in Fmax{n1,α1,n2,α2}

2 . The nodes receive:

Y1t = 0,

Y2t = 0,

Y3t = S
max{n1,α1,n2,α2}−n1

max{n1,α1,n2,α2} X1t ⊕ Smax{n1,α1,n2,α2}−α1

max{n1,α1,n2,α2} X2t,

Y4t = S
max{n1,α1,n2,α2}−n2

max{n1,α1,n2,α2} X2t ⊕ Smax{n1,α1,n2,α2}−α2

max{n1,α1,n2,α2} X1t.
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Fig. 7: Linear deterministic interference channel with unidirectional half-duplex source cooperation.

In mode B, source 2 listens and the channel inputs X1t, X2t are in Fmax{n1,α1,n2,α2,β}
2 . Then,

Y1t = 0,

Y2t = S
max{n1,α1,n2,α2,β}−β
max{n1,α1,n2,α2,β} X1t,

Y3t = S
max{n1,α1,n2,α2,β}−n1

max{n1,α1,n2,α2,β} X1t,

Y4t = S
max{n1,α1,n2,α2,β}−α2

max{n1,α1,n2,α2,β} X1t.

For this channel, source 1 is the primary user and source 2 is the secondary user. As mentioned in
Section II, we would like to know the best rate the secondary can get when the primary is communicating
at its link capacity, which is R1 = n1. We define the cognitive capacity for this LDM as follows, which
is similar to the R0-capacity for the Gaussian case.

Definition 7.1: Assume the capacity region of the channel in Figure 7 is C . The cognitive capacity of
the channel is defined as

Ccog = max
(R1,R2)∈C
R1=n1

R2.

Note that in this definition, the primary does not need to back-off as in the R0-capacity. This back-off
is not necessary because the linear deterministic model is a coarser description of the true channel. It
characterizes the channel capacity only up to degree of freedom. Therefore, a constant back-off in the
Gaussian model is negligible in this LDM.

Theorem 7.1: The cognitive capacity Ccog of channel in Figure 7 is given by

Ccog = max
δ≥0

min(u1, u2, u3, u4),

where

u1 =
1

1 + δ
n2

u2 =
1

1 + δ
[n2 ∨ α2 − α2 ∧ n1 + δ(β ∨ α2 ∨ n1 − n1)]

u3 =
1

1 + δ
[(α1 − n1)

+ + (n2 − α1)
+]

u4 =
1

1 + δ
[(α1 − n1)

+ − α2 ∧ n1 + (n2 − α1) ∨ α2 + δ(β ∨ α2 ∨ n1 − n1)].

The parameter is a scheduling parameter the same as the scheduling parameter used in Theorem 3.2.
Before continuing to the coding scheme and the converse proof, we summarize here the result for cognitive
capacity of the interference channel without cooperation for comparison.
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Proposition 7.1: The cognitive capacity of linear deterministic interference channel parameterized by
n1, n2, α1, α2 is

C IFC
cog = min(v1, v2, v3, v4),

where

v1 = n2

v2 = n2 ∨ α2 − α2 ∧ n1

v3 = (α1 − n1)
+ + (n2 − α1)

+

v4 = (α1 − n1)
+ − α2 ∧ n1 + (n2 − α1) ∨ α2.

Proof: The capacity region of the linear deterministic interference channel [2] is given by the set of
(R1, R2) satisfying

R1 ≤n1

R2 ≤n2

R1 +R2 ≤(n1 − α2)
+ + n2 ∨ α2

R1 +R2 ≤(n2 − α1)
+ + n1 ∨ α1

R1 +R2 ≤α1 ∨ (n1 − α2) + α2 ∨ (n2 − α1)

2R1 +R2 ≤n1 ∨ α1 + (n1 − α2)
+ + α2 ∨ (n2 − α1)

R1 + 2R2 ≤n2 ∨ α2 + (n2 − α1)
+ + α1 ∨ (n1 − α2).

Evaluating the inequalities at R1 = n1, the maximum R2 gives the cognitive capacity above.
Using the notation in the proposition, we can rewrite the cognitive capacity of the cognitive channel as

Ccog = max
δ

1

1 + δ
min(v1, v2 + δ(β ∨ α2 ∨ n1 − n1), v3, v4 + δ(β ∨ α2 ∨ n1 − n1)).

When β = 0, clearly the cognitive channel reduces to the original interference channel and Ccog(β =
0) = CIFC

cog . When β ≤ α2 ∨ n1, we can see that Ccog(β) = Ccog(β = 0) = CIFC
cog . Moreover, when the

channel is aligned, i.e., n1 + n2 = α1 + α2, we have

Ccog ≤ max
δ
u3 = v3 = max(n1, n2, α1, α2)− n1 = CIFC

cog .

In both cases, the cooperation link is useless and the optimal interference channel scheme is enough.
Therefore, in the following discussions, we assume β > α2 ∨ n1, n1 + n2 6= α1 + α2, and

Ccog = max
δ

1

1 + δ
min(v1, v2 + δ(β − n1), v3, v4 + δ(β − n1)).

B. Coding Scheme
We consider general asymmetric schemes for the cognitive LDM. Compared with the symmetric case, we

have several differences: (a) the interference channel is asymmetric and is determined by (n1, α1, n2, α2);
(b) for the virtual channel, as n21 = 0, we always have C21 = 0.

In our coding scheme, we do not use the pre-shared message and set C14 = C23 = 0. Hence the virtual
channel is denoted as IFcoop(n1, α1, n2, α2,C12). Moreover, relay is also not used in this case and we set
the relay rates ∆R123 = ∆R214 = 0. By definition of the cognitive capacity, we have R1 = n1 and our
scheme sets R1B = R1A = n1.

To choose the auxiliary random variables in Theorem 4.1 for this asymmetric virtual channel, let
n = n1 ∨ α1 ∨ n2 ∨ α2 for simplicity. For source i ∈ {1, 2}, we define the public and private auxiliary
random variables Wi, Ui to be independent random variables on Fn2 . The public auxiliary random variables
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are uniformly distributed over Fn2 . The private auxiliary random variables are uniformly distributed over
the set of length n vectors in Fn2 whose upper n− (ni−αi)+ elements are fixed to be 0. In Theorem 4.1,
we set V ′i = 0 and

XWi
= Wi,

XUi = Wi + Ui.

Note that Ui occupies the lower (ni − αi)+ levels so that it does not appear at the other destination.This
is similar to the choice made in [9] for the (non-cooperative) intereference channel.

For the cooperative private codebook, we set the auxiliary random variable V2 = 0 and choose V1
independent of the auxiliary random variables and distributed uniformly over the set of length n vectors
in Fn2 whose upper n− k elements are fixed to be 0. The choice of k will be specified later. We choose
(XV1 , XV2) as deterministic functions of V1 such that[

V1
0

]
=

[
Sn−n1
n Sn−α1

n

Sn−α2
n Sn−n2

n

] [
XV1

XV2

]
(3)

For the particular choice of XVi , the sources are effectively doing zero-forcing beamforming such that the
primary destination receives V1 and the signal cancels at the secondary destination. For this scheme to be
feasible, k is chosen such that for arbitrary V1 in Fn2 with the upper n− k elements being 0, there exist
XV1 , XV2 satisfying the above equation. Such k is called realizable, and we have the following lemma.

Lemma 7.1: For channel with parameters (n1, n2, α1, α2), the largest realizable k is [n1− (α2−n2)
+]∨

[α1 − (n2 − α2)
+]

Proof: Clearly we have k ≤ n1 ∨ α1. Assume α2 ≥ n2. As V2 = 0 and the upper α2 − n2 bits of V2
and XV1 are the same, those bits of XV1 must be zero. After removing the corresponding first α2 − n2

columns, the channel matrix is equivalent to a channel with parameters (n1− (α2−n2), n2, α1, n2). Hence
we have k ≤ (n1 − (α2 − n2)) ∨ α1. Ignoring the all zero rows of this new channel matrix, it is not
hard to see that it is of full row rank and for any V1 ∈ Fk2 with its upper n− k elements being 0, where
k = (n1 − (α2 − n2)) ∨ α1, there exists XV1 , XV2 satisfying (3). Hence the maximum realizable k is
(n1− (α2− n2))∨ α1. A similar argument can be made for α2 < n2 and combining the two we have the
lemma.

According to the above lemma, we set k = [n1 − (α2 − n2)
+] ∨ [α1 − (n2 − α2)

+]. Source 1 sends
XL
U1

+XL
V1

and source 2 sends XL
U2

. The induced channel pY3,Y4|W1,W2,U1,U2,V1 is

Y3 = Sn−n1
n (W1 + U1) + Sn−α1

n W2 + V1

Y4 = Sn−n2
n (W2 + U2) + Sn−α2

n W1.

By Theorem 4.1 the rate pair (RW1+RU1+RV1 , RW2+RU2) is achievable if the rates RW1 , RU1 , RV1 , RW2 , RU2

are non-negative and they satisfy the following conditions:

RW1 +RU1 +RW2 +RV1 ≤ max(α1, n1)

RU1 +RW2 +RV1 ≤ max(α1, k)

RW1 +RU1 +RV1 ≤ max(n1, k)

RW1 +RU1 ≤ n1

RU1 +RW2 ≤ max(n1 − α2, α1)

RU1 +RV1 ≤ k

RU1 ≤ (n1 − α2)
+

RV1 ≤ C12

RW1 +RW2 +RU2 ≤ max(α2, n2)

RW1 +RU2 ≤ max(n2 − α1, α2)
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RW2 +RU2 ≤ n2

RU2 ≤ (n2 − α1)
+

Set R1 = RW1 + RU1 + RV1 = n1 and R2 = RW2 + RU2 . Applying Fourier-Motzkin elimination to the
above inequalities we get the following theorem.

Theorem 7.2: The following is an achievable cognitive rate for IFcoop(n1, α1, n2, α2,C12),

Rvirtual
cog = min(v1, v2 + C12, v3, v4 + C12)

in which vi, i = 1, 2, 3, 4 are defined in Proposition 7.1.
With this theorem in hand, showing the achievability of the cognitive capacity for the original half-

duplex channel Ccog is quite straightforward. Set δB = δ, δC = 0, δA = 1. For the superposition coding
in mode B, source 1 sets rate R1B = n1 and the shared rate C12

δ
= β − n1 or C12 = δ(β − n1). As

R1B = R1A = n1, the total rate for the primary is R1 = n1. Then by Theorem 4.2, the cognitive rate
achieved by the secondary is

Rcog = max
δ≥0

1

1 + δ
Rvirtual

cog = max
δ≥0

min(u1, u2, u3, u4),

where u1, u2, u3, u4 were defined in Theorem 7.1.

C. An Interpretation of the Scheme
For the interesting region β > α2 ∨ n1 and n1 + n2 6= α1 + α2, we can obtain a simple interpretation

of the scheme by optimizing over δ. Let

Ccog(δ) =
1

1 + δ
min(v1, v2 + δ(β − n1), v3, v4 + δ(β − n1))

=
1

1 + δ
min(v1 ∧ v3, v2 ∧ v4 + δ(β − n1)).

Define δ0 = v1∧v3−v1∧v2∧v3∧v4
β−n1

≥ 0. When δ ≥ δ0,

Ccog(δ) =
1

1 + δ
[v1 ∧ v3] ≤

1

1 + δ0
[v1 ∧ v3].

When 0 ≤ δ < δ0, we must have δ0 > 0, which means v1 ∧ v3 > v1 ∧ v2 ∧ v3 ∧ v4; hence, v2 ∧ v4 =
v1 ∧ v2 ∧ v3 ∧ v4.

Ccog(δ) =
1

1 + δ
[v2 ∧ v4 + δ(β − 1)]

≤ max

(
v2 ∧ v4,

1

1 + δ0
[v2 ∧ v4 + δ0(β − 1)]

)
= max

(
v1 ∧ v2 ∧ v3 ∧ v4,

1

1 + δ0
[v1 ∧ v3]

)
.

The second inequality is due to the fact that Ccog(δ) is a monotone function in this region and its maximum
is achieved at the end points. The last equality follows from the fact that v2 ∧ v4 = v1 ∧ v2 ∧ v3 ∧ v4.

In summary,

Ccog(δ) ≤ max

(
v1 ∧ v2 ∧ v3 ∧ v4,

1

1 + δ0
[v1 ∧ v3]

)
Ccog = max

δ
Ccog(δ) = max

(
v1 ∧ v2 ∧ v3 ∧ v4,

1

1 + δ0
[v1 ∧ v3]

)
.
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The equality is achieved by taking either δ = 0 or δ = δ0. As defined in Section VII-A, C IFC
cog =

v1 ∧ v2 ∧ v3 ∧ v4. If we let α2 = 0, the interference channel reduces to the corresponding Z-channel and
we can define its cognitive capacity as

CZ
cog = C IFC

cog(α2 = 0) = v1 ∧ v2 ∧ v3 ∧ v4|α2=0 = v1 ∧ v3,

Then Ccog can be rewritten as

Ccog = max

(
C IFC

cog ,
1

1 + δ0
CZ

cog

)
.

This expression of Ccog provides a new interpretation of our scheme. It consists of two optional schemes.
One is the optimal scheme for the interference channel that achieves its cognitive capacity. In the second
scheme, the secondary first listens in mode B long enough to collect information of the interference
from source 1 during mode A. In each time instant, it gets β − n1 bits. Then in mode A, it uses this
information to perform dirty paper coding to fully “cancel” the interference. Thus the original channel is
now equivalent to a Z-channel and CZ

cog is achieved for the secondary. The amount of information needed

to cancel interference is CZ
cog − C IFC

cog ; hence, the time to listen is δ0 =
CZ

cog−C IFC
cog

β−n1
, as defined above. It is

easy to see that this scheme achieves rate 1
1+δ0

CZ
cog. Our optimal scheme picks the better of the two and

achieves capacity Ccog.

D. Converse
To prove the converse, we need the following theorem.
Theorem 7.3: The capacity region C is contained within

⋃
δ C (δ), where C (δ) is the set of rate pairs

(R1, R2) satisfying

R2 ≤
1

1 + δ
n2

R1 +R2 ≤
1

1 + δ
[max(n2, α2) + δmax(β, α2, n1) + (n1 − α2)

+]

R1 +R2 ≤
1

1 + δ
[max(α1, n1) + δn1 + (n2 − α1)

+]

2R1 +R2 ≤
1

1 + δ
[max(α1, n1) + δ + (n1 − α2)

+ + max(n2 − α1, α2) + δmax(β, α2, n1)]

For schemes with scheduling parameter δ, C (δ) can be shown as an outer bound on the achievable
rate region. The first upper bound is proved by assuming no interference. The second and third upper
bounds are proved along the lines of the Z-channel bound in [9] and the last bound has similarities to the
2R1 +R2 upper bound in the same reference. The full details are provided for the Gaussian model.

By evaluating the upper bounds with R1 = n1 and optimizing over δ we get an upper bound on R2,
which matches the cognitive capacity given in Theorem 7.1.

VIII. THE COGNITIVE CASE: GAUSSIAN MODEL

We follow the intuition in the previous section to approximately characterize the R0-capacity of the
Gaussian cognitive channel. The auxiliary random variables for the virtual channel in Theorem 4.1 are
chosen as follows: For source i = 1, 2, we define respectively the public and the private auxiliary random
variables Wi and Ui to be independent, zero-mean Gaussian random variables with variances σ2

Wi
, σ2

Ui
,

respectively. In Theorem 4.1, we define

XWi
= Wi,

XUi = Wi + Ui.
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The variance σ2
Ui

for the private message is set below the noise power level at the destination where it
causes interference. Following the intuition from the linear deterministic case, we will employ zero-forcing
beamforming for the cooperative private messages. We choose V2 = 0 and V1 to be zero-mean Gaussian
random variables with variance σ2

V1
, independent of each other and all previously defined auxiliary random

variables. When the channel matrix is invertible, XV1 and XV2 are chosen such that[
V1
0

]
=

[
h13 h23
h14 h24

] [
XV1

XV2

]
In this case, XVi , i = 1, 2 are correlated Gaussian random varaibles with variances

Var (XV1) =
|h24|2

|h13h24 − h14h23|2
σ2
V1

=
SNR2

SNR1SNR2 + INR1INR2 − 2
√
SNR1SNR2INR1INR2 cos θ

σ2
V1

(4)

Var (XV2) =
|h14|2

|h13h24 − h14h23|2
σ2
V1

=
INR2

SNR1SNR2 + INR1INR2 − 2
√
SNR1SNR2INR1INR2 cos θ

σ2
V1

(5)

When the channel matrix is singular, we set2 σ2
V1

= 0, i.e., there is no cooperative private message. The
variance parameters must satisfy the power constraint

Var (XUi) + Var (XVi) ≤ 1, i = 1, 2

The destinations receive

Y3 =h13(W1 + U1) + h23W2 + V1 + h23U2 + Z3

Y4 =h24(W2 + U2) + h24W1 + h14U1 + Z4

In Theorem 4.2, as mentioned earlier, we set C21 = C14 = C23 = ∆R123 = ∆R214 = 0, i.e., only C12 is
non-zero, in general.

In appendix C we show that with the above choice of auxiliary random variables, there are power
and rate allocations under which we achieve an R1 which is within R0 of the point-to-point capacity
C0 = log(1 + SNR1) of the primary link and an R2 which is within a constant of CR0 as defined in
Theorem 3.2. Specifically, we prove that

Theorem 8.1: If R0 > 7,

CR0 ≥ CR0 − 23− 2R0.

To prove the converse part of Theorem 3.2, we need the following theorem that is similar to Theorem 7.3.
It is proved in appendix D.

2In fact, in a region where the channel matrix is ill-conditioned, we do not employ cooperative private message.
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Theorem 8.2: The capacity region C is contained within
⋃
δ C (δ), where C (δ) is the set of rate pairs

(R1, R2) satisfying

R2 ≤1 +
1

1 + δ
log(1 + SNR2P2A)

R1 +R2 ≤1 +
1

1 + δ

[
log(1 + 2SNR2P2A + 2INR2P1A) + δ log(1 + (SNR1 + INR2 + CNR)P1B)

+ log(1 +
SNR1P1A

1 + INR2P1A

)
]

R1 +R2 ≤2 +
1

1 + δ

[
log(1 + 2SNR1P1A + 2INR1P2A) + δ log(1 + SNR1P1B) + log(1 +

SNR2P2A

1 + INR1P2A

)

]
2R1 +R2 ≤3 +

1

1 + δ

[
log(1 + 2SNR1P1A + 2INR1P2A) + δ log(1 + SNR1P1B) + log(1 +

SNR1P1A

1 + INR2P1A

)

+ log(1 + INR2P1A +
2SNR2P2A + INR2P1A

1 + INR1P2A

) + δ log(1 + (SNR1 + INR2 + CNR)P1B)
]

with power constraint

P1A + δP1B

1 + δ
≤ 1,

P2A

1 + δ
≤ 1, P2B = 0.

Setting the power terms to their maximum possible value, i.e., PiA = 1 + δ, P1B = 1+δ
δ
, i = 1, 2, we

get a new outer bound on the capacity region that is easier to use. The following lemma is shown in
appendix E.

Lemma 8.1: The capacity region C is contained within
⋃
δ C (δ), where C (δ) is the set of rate pairs

(R1, R2) satisfying

R2 ≤
1

1 + δ
log(1 + SNR2) + 2

R1 +R2 ≤
1

1 + δ

[
log(1 + 2SNR2 + 2INR2) + δ log(1 + (SNR1 + INR2 + CNR)) + log(1 +

SNR1

1 + INR2

)

]
+ 3

R1 +R2 ≤
1

1 + δ

[
log(1 + 2SNR1 + 2INR1) + δ log(1 + SNR1) + log(1 +

SNR2

1 + INR1

)

]
+ 4

2R1 +R2 ≤
1

1 + δ

[
log(1 + 2SNR1 + 2INR1) + δ log(1 + SNR1) + log(1 +

SNR1

1 + INR2

)

+ max(log(1 + INR2 +
2SNR2 + INR2

1 + INR1

), log(1 + 2INR2)) + δ log(1 + (SNR1 + INR2 + CNR))
]

+ 6

Setting R1 = log(1 + SNR1)−R0 in this lemma we get CR0 ≤ CR0 .

APPENDIX A
PROOF OF THEOREM 6.1

We prove this sum-rate achievability result in two steps. Instead of directly comparing Csum with the
rate achievable by the coding scheme in section IV, we will first show that the Csum is within a constant
of CLDM

sum , a quantity we define below inspired by the result for the linear deterministic model. We will then
prove that the coding scheme in section IV can be used to achieve a sum-rate which is within a constant
of CLDM

sum . Specifically, we prove the following two lemmas which together imply Theorem 6.1. To simplify
the notation, let x = SNR, y = INR, z = CNR, and define nD = blog xc+, nI = blog yc+, nC = blog zc+.

Lemma A.1: Define

CLDM
sum = max

δ
CLDM

sum (δ) = max
δ

min(u′1 − 6, u′2 − 4, u′3, u
′
4 − 4, u4 − 10)
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where

u′1 =
2

2 + δ
(δnD + max{nD, nC})

u′2 =
1

2 + δ
(δmax{2nD − nI , nI}+ nD + max{nD, nI , nC})

u′3 =
2

2 + δ
(δmax{nI , nD − nI}+ max{nD, nI , nC})

u′4 =
2(1 + δ)

2 + δ
max{nD, nI}

and u4 is as defined in Theorem 3.1. Then Csum ≤ CLDM
sum + 10.

Proof: The following inequality is useful for the proof.

blog xc+ ≤ (log x)+ ≤ log(1 + x) ≤1 + (log x)+ ≤ 2 + blog xc+, ∀x > 0.

It is easy to verify that u1 ≤ u′1 + 4, u2 ≤ u′2 + 6 and u3 ≤ u′3 + 10. So we get the result.
Note that in the definition of CLDM

sum we have preserved the term u4 rather than have all the terms as
functions of nD, nI and nC . The reason for this is that the linear deterministic model is too coarse to
model the channel phase information. When the channel matrix becomes ill-conditioned, the term u4 may
dominate Csum and also have a large gap with respect to u′4.

Next we show that CLDM
sum can be achieved within a constant.

Lemma A.2: Csum ≥ CLDM
sum − 7.

Proof: To simplify the notation, let

β1 =
x2 + y2 − 2xy cos θ

x(x+ y)

β2 =
x2 + y2 − 2xy cos θ

y(x+ y)
.

Then, for the auxiliary random variables in section VI, we have σ2
V = β1xVar (XV ). We note that

β1x = β2y, and it is easy to show the following properties for β1 and β2.
1) When 1

2
≤ x

y
≤ 2, we have βi ≤ 3, i = 1, 2.

2) When x
y
≥ 2 we have β1 ≥ 1

6
, and when y

x
≥ 2, we have β2 ≥ 1

6
.

To satisfy the average power constraints, we always allocate the source powers such that local average
power constraints are satisfied, i.e., the average power for each mode is at most 1. We consider five
different regions which together cover all possibilities. In the first four regions, we consider the coding
schemes for the corresponding LDM and show that the Gaussian channel can allocate the same rates for
all the messages up to some constant. The last region is unique for Gaussian channel, where following
the scheme for the LDM can be strictly suboptimal. The sum rate is

Rsum =
1

2 + δ
(δRA +RB +RC + 2∆R).

Region 1: z ≤ x or z ≤ 1 or y ≤ 1.
In this region we do not use any cooperation (δB = δC = 0 in Theorem 4.2). The scheme reduces to

Han and Kobayashi’s scheme for the interference channel[9], [6], and it is not hard to show that CLDM
sum

can be achieved within 6 bits in this region.
Region 2: 2y < x < z and y > 1.

This region corresponds to the case nI < nD < nC for the LDM. The sources share messages with
each other and there is no relay.



28

In this region, β1 ≥ 1
6

is a finite constant bounded away from 0. We set Csd = 0,∆R = 0. In modes B
and C, each source uses power 1− 1

x
to send data to its own destination and uses power 1

x
to share bits

with the other source. By superposition coding, the following rates are achievable.

RB = RC = log

(
1 +

(1− 1
x
)x

2

)
≥ (nD − 1)+

δCss = log
(

1 +
z

x

)
≥ (nC − nD − 1)+.

Therefore we can set RB = RC = (nD − 1)+ and δCss = (nC − nD − 1)+.
For the virtual channel, we take RV ′ = 0 and set powers σ2

W = 1
3
, σ2

U = 1
3y
,Var (XV ) = 1

3
. So

destination 3 receives W1, U1,W2, V1, U2 with powers x
3
, x
3y
, y
3
, β1x

3
, 1
3
, respectively, and destination 4 gets

W2, U2,W1, V2, U1 with powers x
3
, x
3y
, y
3
, β1x

3
, 1
3
, respectively. It is easy to verify that the following con-

straints on non-negatives rates imply all the relevant rate constraints in Theorem 4.1.

2RW +RU +RV ≤ log
(

1 +
β1x

4

)
RU +RW ≤ log

(
1 +

x
y

+ y

4

)
RU ≤ log

(
1 +

x

4y

)
RV ≤ Css

Hence the following non-negative rates are achievable.

2RW +RU +RV ≤ (nD − 2− log 6)+

RU +RW ≤ (max(nD − nI , nI)− 3)+

RU ≤ (nD − nI − 3)+

RV ≤ Css

Setting RA = 2(RW +RU +RV ), we can achieve

RA = min

 (2nD − 4− 2 log 6)+

(2 max(nD − nI , nI) + 2Css − 6)+

(2nD − nI + Css − 5− log 6)+

 .

Therefore the sum rate is

Rsum =
1

2 + δ
(δRA +RB +RC) ≥ min {u′2 − 9, u′3 − 6, u′4 − 10} .

Hence CLDM
sum can be achieved within 6 bits in this region.

Region 3: 2x < y ≤ z and y > 1.
This region corresponds to the case nD < nI < nC for the LDM. The sources share messages with

each other and relay is used when the cooperation link is strong. In particular, we consider two subregions
as in the LDM. When nC is small, we will only use the cooperative private signal to improve the virtual
channel sum-rate. But when nC is big enough to achieve the cut-set bound of the virtual channel, we
need to use relaying in modes B and C (∆R > 0) to further increase the achievable rate.

We set Csd = 0. Firstly, we assume that x > 1 and consider the following two subregions.
1) yδx ≥ z. This subregion corresponds to the case nC −nD ≤ δnI for the LDM. We set ∆R = 0. As

in Region 2, we can set RB = RC = (nD−1)+ and δCss = (nC−nD−1)+. For the virtual channel,
we choose RU = RV ′ = 0 and set powers σ2

W = 1
2
,Var (XV ) = 1

2
. Then we apply Theorem 4.1 as

in Region 2, and get Rsum ≥ min {u′1 − 4, u′2 − 11} . Hence CLDM
sum can be achieved within 7 bits in

this case.
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2) yδx ≤ z. This subregion corresponds to the case nC − nD > δnI for the LDM. In modes B and C,

sources use power 1
3

to send data to its own destination and 1
3

√
yδ

xz
and 1

3x
, respectively, to send to

the other source and the other destination, respectively. By superposition coding, the following are
achievable.

RB = RC = log

1 +
x
3

1 + 1
3

+ 1
3

√
xyδ

z

 ≥ (nD − log 5)+

∆R = log

1 +
y
3x

1 + 1
3

√
yδ+2

xz

 ≥ min(nI − nD,
1

2
(nC − nD − δnI))− 2− log 3− 1

2
δ

∆R + δCss = log

(
1 +

1

3

√
zyδ

x

)
≥ 1

2
(nC + δnI − nD − 1)− log 3

Since the condition yδx ≤ z implies that δnI − 1 ≤ nC − nD, it is easy to see that we can set

RB = RC = (nD − log 5)+

δCss = (δnI − 1− log 3)+

∆R = (min(nI − nD,
1

2
(nC − nD − δnI))− 2− log 3− 1

2
δ)+.

For the virtual channel, we use the same scheme as in the previous subregion. Then we apply
Theorem 4.1 as in Region 2, and get Rsum ≥ min {u′2, u′4} − 11. Hence CLDM

sum can be achieved
within 7 bits in this case.

Now we consider the case x ≤ 1. As nD = 0, no (significant) direct transmission of data from source
to destination is possible; all data must pass through the other source. This can happen in one of two
ways: relaying in modes B and C, and cooperative private message for the virtual channel. We note that
the power allocation for x > 1 might not satisfy the local power constraints in modes B and C now. As
in the previous case , we consider the following two subregions separately.

1) yδ ≥ z. In modes B and C, the sources use all their power to send data to the other source and get

RB = RC = 0, δCss = log(1 + z) ≥ nC .

For the virtual channel, each source relays the shared data to the other destination and the direct
link signals are treated as interference. It is easy to show that we can achieve

RA = 2 min(log(1 +
y

1 + x
),Css) ≥ 2(

nC
δ
− 2),

Therefore the sum-rate is Rsum ≥ u′1 − 4. Hence CLDM
sum can be achieved in this case.

2) yδ ≤ z. In mode B and C, each source uses powers 1
2

√
yδ

z
and 1

2
, respectively, to share bits with

the other source and the other destination, respectively. By superposition coding, the following rates
are achievable.

∆R = log
(

1 +
y
2

1 + 1
2

√
yδ+2

z

)
≥ min(nI ,

1

2
(nC − δnI))−

δ

2
− 2

∆R + δCss = log(1 +
1

2

√
yδz) ≥ 1

2
(nC + δnI)− 1.



30

Therefore we can set

δCss =
(
δnI −

3

2

)+
∆R =

(
min(nI ,

1

2
(nC − δnI))−

δ

2
− 2
)+

For the virtual channel, we use the same scheme as in the previous subregion and achieve

RA = 2 min((nI − 1),Css) ≥ 2
(
nI − 1− 3

2δ

)
.

Therefore the sum-rate is Rsum ≥ min {u′2, u′4} − 4. Hence CLDM
sum can be achieved in this case.

Region 4: x < z < y, 2x < y, and z > 1.
This region corresponds to the case nD < nC < nI for the LDM. The sources share messages with each

other and the other destinations, and relay is used when both the cooperation link and the interference
link are strong. In particular, we consider two subregions as in the LDM. When nC and nI are small,
we will only use the cooperative private signal and the pre-shared public signal to improve the virtual
channel sum-rate. But when nC , nI are big enough to achieve the cut-set bound of the virtual channel,
we need to use relaying in modes B and C (i.e., ∆R > 0) to further improve the achievable rate.

Firstly, we assume that x > 1 and consider the following two subregions.
1) y ≤ xyδ or nC − nD + 1 ≤ δ(nI − nD). The condition y ≤ xyδ leads to nI ≤ nD + δnI + δ + 1.

In mode B,C, each source uses power 1− 1/x to send data to its own destination and 1/x− 1/z
and 1/z to share bits with the other source and the other destination respectively. By superposition
coding, the following rates are achievable.

RB = RC = log(1 + x)− 1 ≥ (nD − 1)+

δCss = log(1 +
z

x
)− 1 ≥ (nC − nD − 2)+

δCsd = log(1 +
y

z
) ≥ (nI − nC − 1)+

Therefore we can set the corresponding rates equal to the lower bounds on right-hand side. By the
assumption, we have either Css ≥ nI − nD or Css + Csd ≤ nI + 1.
For the virtual channel, we take RU = 0 and set powers σ2

W = 1
3
, σ2

V ′ = 1
3
,Var (XV ) = 1

3
. Then

we apply Theorem 4.1 as in Region 2, and get Rsum ≥ min {u′1 − 9, u′2 − 10} . Hence CLDM
sum can be

achieved within 6 bits in this case.
2) y ≥ xyδ. In modes B and C, each source uses a power of 1

3
to send data to its own destination

and 1
3x

and 1

3
√
y1+δx1−2δ

to share bits with the other source and the other destination, respectively.

We note that this is a valid local power allocation since we have y1+δx1−2δ ≥ y1−δx ≥ 1. By
superposition coding, the following rates are achievable.

RB = RC = log
(

1 +
2
3

1 + 1
3

+ x

3
√
y1+δx1−2δ

)
≥ (nD − log 5)+

δCss + ∆R = log
(

1 +
z
3x

1 + z

3
√
y1+δx1−2δ

)
≥ min

(
nC − nD,

1 + δ

2
nI −

1 + 2δ

2
nD

)
− 2− log 3− δ

2

δCsd + ∆R = log

(
1 +

1

3

√
y1−δ

x1−2δ

)
≥ 1− δ

2
nI −

1− 2δ

2
nD −

1− δ
2
− log 3.
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Since the condition y ≥ xyδ implies that nI + 1 ≥ nD + δnI and 1− δ ≥ 0, it is easy to verify that
we can set

δCss = δ(nI − nD)− 3− log 3− δ

2

δCsd = δnD −
3

2
+
δ

2
− log 3

∆R = min
(
nC − nD − δ(nI − nD),

1− δ
2

nI −
1

2
nD

)
+ 1.

For the virtual channel, we use the same scheme as in the previous subregion. Then we apply
Theorem 4.1 as in Region 2, and get Rsum ≥ min {u′1, u′2}−9. Hence CLDM

sum can be achieved within
6 bits in this case.

Now we consider the case x ≤ 1. As nD = 0, no (significant) direct transmission of data from source
to destination is possible; all data must pass through the other source. This can happen in one of two
ways: relaying in modes B and C, and cooperative private message for the virtual channel. We note that
the power allocation for x > 1 might not satisfy the local power constraints in modes B and C now. As
in the previous case , we consider the following two subregions separately.

1) yδ ≥ z. The analysis here is the same as the corresponding case in Region 3, i.e., 2x < y, x < 1 <
y ≤ z and yδ ≥ z.

2) yδ < z. In modes B and C, each source uses powers 1
2

and 1

2
√
y1+δ

to share bits with the other source

and the other destination, respectively. By superposition coding, the following rates are achievable.

δCss + ∆R = log
(

1 +
z
2

1 + z

2
√
y1+δ

)
= min

(
nC ,

1 + δ

2
nI

)
− 2

∆R = log
(

1 +
1

2

√
y1−δ

)
≥ 1− δ

2
nI − 1

Therefore we can set

δCss = δnI − 3

∆R = min
(
nC − δnI ,

1− δ
2

nI

)
− 1.

For the virtual channel, we use the same scheme as in the previous subregion and achieve

RA = 2 min((nI − 1),Css) ≥ 2
(
nI − 1− 3

δ

)
.

Therefore the sum-rate is Rsum ≥ min {u′1, u′2} − 4. Hence CLDM
sum can be achieved in this case.

Region 5: 1
2
≤ x

y
≤ 2, z > x, z > 1, and y > 1.

This region corresponds to the case nD = nI for the LDM. In LDM, the channel is degenerated and
cooperation is not helpful. However, in the Gaussian case, whether the channel is degenerated further
depends on the phase information of the channel, which is not captured by the LDM.

When x < 1, we have y ≤ 2x < 2 and get nD = nI = 0. Therefore, CLDM
sum = 0, which can be achieved

trivially. Below we assume x ≥ 1.
In this region, we have nI − 2 ≤ nD ≤ nI + 2 and β1 ≤ 3. We set Csd = 0,∆R = 0. As in Region 2,

we can set RB = RC = (nD − 1)+ and δCss = (nC − nD − 1)+. For the virtual channel, we set rates
RU = RV ′ = 0 and powers σ2

W = 1
2
,Var (XV ) = 1

2
. By Theorem 4.1, non-negative rates which satisfy

the following conditions are achievable 3

3Redundant conditions are not listed here. Also, conditions corresponding to error events which involve an unwanted message along with
zero-rate messages are also not listed. For example, the rate constraint on RW2 +RU1 is avoided since it corresponds to the error event of
destination 3 making an error on the unwanted message mW2 and the message mU1 which is absent in this case.
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2RW +RV ≤ log
(

1 +
y

2

)
RW +RV ≤ log

(
1 +

x

2

)
RV ≤ log

(
1 +

β1x

2

)
∧ Css

Therefore, for the virtual channel, we can achieve

RA = min


(2nD − 2)+

(nI + Css − 1)+

(nI + log(1 + β1x
2

)− 1)+

 .

By the assumption, it is not hard to verify that Rsum ≥ min {u′2 − 4, u′4 − 6, u4 − 6} . Hence CLDM
sum can

be achieved within 2 bits in this region.

APPENDIX B
PROOF OF THEOREM 6.2

We prove the outerbound by first proving an outerbound for a more general channel with generalized
feedback of which ours is a special case. Specifically, we consider the following two user interference
channel p(y1, y2, y3, y4|x1, x2) whose input alphabets are X1, X2 respectively for the first and second
sources, output alphabets are Y3, Y4 respectively for first and second destinations, and Y1 and Y2

respectively are the output alphabets (of the generalized feedback) for first and second sources. Let
W1 and W2 be the messages of the first and second sources. At time t, the first source’s signal X1,t

may depend only on its past outputs Y t−1
1 and its message W1, similary for the second source. We also

have cost functions c1 : X1 → R+ and c2 : X2 → R+ and there are average cost constraints P1 and
P2, respectively, on the first and second sources. Along the lines of [23], we focus on channels of the
following form p(y1, y2, y3, y4|x1, x2) =

∑
u1,u2

p(u1, u2, y1, y2, y3, y4|x1, x2), where

p(u1, u2, y1, y2, y3, y4|x1, x2) = p(u1, y2|x1)p(u2, y1|x2)δ(y3 − f3(x1, u2))δ(y4 − f4(x2, u1)),

where U1 and U2 take values in alphabets U1 and U2 respectively, and, for every x1 ∈ X1, the map
f3(x1, .) : U2 → Y3 defined as u2 7→ f3(x1, u2) is invertible, and similarly, for f4. The capacity region of
this channel may be defined as usual.

The following gives an outerbound on the capacity region of the above channel.
Theorem B.1: If (R1, R2) belongs to the capacity region of the above channel, there there is a p(q, x1, x2)

with E[c1(X1)] ≤ P1 and E[c2(X2)] ≤ P2 such that for the joint distribution

p(u1, u2, y1, y2, y3, y4, x1, x2) = p(u1, u2, y2, y3, y4|x1, x2)p(q, x1, x2),

R1 ≤ I(X1;Y2, Y3|X2, Q), (6)
R2 ≤ I(X2;Y1, Y4|X1, Q), (7)

R1 +R2 ≤ I(X1, X2;Y3, Y4|Q), (8)
R1 +R2 ≤ I(X1;Y2, Y3|Y4, X2, Q) + I(X1, X2;Y4|Q), (9)
R1 +R2 ≤ I(X2;Y4, Y1|Y3, X1, Q) + I(X1, X2;Y3|Q), (10)
R1 +R2 ≤ I(X1, X2;Y1, Y3|U1, Y2, Q) + I(X1, X2;Y2, Y4|U2, Y1, Q)). (11)
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Proof: The bounds (6)-(7) are simple cutset bounds. The next three (8)-(10) were proved in [26,
Theorem II.1]. We omit the proofs here. The last one is new and its proof follows. By Fano’s inequality,
for any ε > 0, we have a sufficiently large blocklength n such that

n(R1 − ε) ≤ I(W1;Y
n
3 )

≤ I(W1;Y
n
3 , U

n
1 , Y

n
1 , Y

n
2 )

= H(Y n
3 , U

n
1 , Y

n
1 , Y

n
2 )−H(Y n

3 , U
n
1 , Y

n
1 , Y

n
2 |W1)

= H(Un
1 , Y

n
1 , Y

n
2 ) +H(Y n

3 |Un
1 , Y

n
1 , Y

n
2 )−H(Y n

3 , Y
n
1 , Y

n
2 |W1)−H(Un

1 |Y n
3 , Y

n
1 , Y

n
2 ,W1).

(12)
But,

H(Y n
3 |Un

1 , Y
n
1 , Y

n
2 ) ≤

n∑
t=1

H(Y3,t|U1,t, Y1,t, Y2,t),

H(Y n
3 , Y

n
1 , Y

n
2 |W1) =

n∑
t=1

H(Y3,t, Y1,t, Y2,t|W1, Y
t−1
3 , Y t−1

1 , Y t−1
2 )

=
n∑
t=1

H(Y3,t, Y1,t, Y2,t|X t
1,W1, Y

t−1
3 , Y t−1

1 , Y t−1
2 )

=
n∑
t=1

H(U2,t, Y1,t, Y2,t|X t
1,W1, U

t−1
2 , Y t−1

1 , Y t−1
2 )

=
n∑
t=1

H(U2,t, Y1,t|X t
1,W1, U

t−1
2 , Y t−1

1 , Y t−1
2 ) +H(Y2,t|X t

1,W1, U
t
2, Y

t
1 , Y

t−1
2 )

(a)
=

n∑
t=1

H(U2,t, Y1,t|U t−1
2 , Y t−1

1 , Y t−1
2 ) +H(Y2,t|X1,t, U2,t, Y1,t)

=
n∑
t=1

(H(U2,t, Y1,t, Y2,t|U t−1
2 , Y t−1

1 , Y t−1
2 )−H(Y2,t|U t

2, Y
t
1 , Y

t−1
2 ))

+H(Y2,t|X1,t, U2,t, Y1,t)

≥
n∑
t=1

H(U2,t, Y1,t, Y2,t|U t−1
2 , Y t−1

1 , Y t−1
2 )−H(Y2,t|U2,t, Y1,t)

+H(Y2,t|X1,t, X2,t, U2,t, Y1,t)

≥H(Un
2 , Y

n
1 , Y

n
2 )−

n∑
t=1

I(X1,t, X2,t;Y2,t|U2,t, Y1,t),

H(Un
1 |Y n

3 , Y
n
1 , Y

n
2 ,W1) =H(Un

1 |Xn
1 , Y

n
3 , Y

n
1 , Y

n
2 ,W1)

=
n∑
t=1

H(U1,t|U t−1
1 , Xn

1 , Y
n
3 , Y

n
1 , Y

n
2 ,W1)

=
n∑
t=1

H(U1,t|X1,t, Y2,t)

=
n∑
t=1

H(U1,t|X1,t, X2,t, Y1,t, Y2,t, U2,t)

=
n∑
t=1

H(Y4,t|X1,t, X2,t, Y1,t, Y2,t, U2,t),
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where (a) follows from the fact that (W1, X
t
1) − (Y t−1

1 , Y t−1
2 ) − X2,t − (U2,t, Y1,t) is a Markov chain.

Substituting in (12), we get

n(R1 − ε) ≤H(Un
1 , Y

n
1 , Y

n
2 )−H(Un

2 , Y
n
1 , Y

n
2 )

+

(
n∑
t=1

I(X1,t, X2,t;Y2,t|U2,t, Y1,t) +H(Y3,t|U1,t, Y1,t, Y2,t)−H(Y4,t|X1,t, X2,t, Y1,t, Y2,t, U2,t)

)
.

Similarly,

n(R2 − ε) ≤H(Un
2 , Y

n
1 , Y

n
2 )−H(Un

1 , Y
n
1 , Y

n
2 )

+

(
n∑
t=1

I(X1,t, X2,t;Y1,t|U1,t, Y2,t) +H(Y4,t|U2,t, Y1,t, Y2,t)−H(Y3,t|X1,t, X2,t, Y1,t, Y2,t, U1,t)

)
.

Adding up,

n(R1 +R2 − 2ε) ≤
n∑
t=1

I(X1,t, X2,t;Y2,t|U2,t, Y1,t) + I(X1,t, X2,t;Y1,t|U1,t, Y2,t)

+ I(X1,t, X2,t;Y3,t|U1,t, Y1,t, Y2,t) + I(X1,t, X2,t;Y4,t|U2,t, Y1,t, Y2,t)

=
n∑
t=1

I(X1,t, X2,t;Y1,t, Y3,t|U1,t, Y2,t) + I(X1,t, X2,t;Y2,t, Y4,t|U2,t, Y1,t).

Proceeding as usual by picking Q to be uniformly distributed over {1, . . . , n} and letting X1 = X1,Q and
so on, we obtain (11).

We will use the above theorem to prove our outerbound. Without loss of generality, we may rewrite
our channel (by absorbing phases into the inputs and outputs) in the following symmetric form.

Y1,t = (|h21|X2,t + Z1,t)1S1,t=0 (13)
Y2,t = (|h12|X1,t + Z2,t)1S2,t=0 (14)

Y3,t = |h13|ejθ/2X1,t1S1,t=1 + |h23|X2,t1S2,t=1 + Z3,t, (15)

Y4,t = |h14|X1,t1S1,t=1 + |h24|ejθ/2X2,t1S2,t=1 + Z4,t. (16)

Recall that θ = θ13+θ24−θ14−θ23, and we assume |h13|2 = |h24|2 = SNR, |h14|2 = |h23|2 = INR, |h12|2 =
|h21|2 = CNR. Notice that our channel fits the model of Theorem B.1 if we identify the first and second
sources’ channel inputs as (X1, S1) and (X2, S2) respectively, the outputs for the two sources are Y1
and Y2 respectively, and U1 = h14X11S1=1 + Z4, U2 = h23X21S2=1 + Z3. The two destinations’ channel
outputs are Y3 = h13X11S1=1 + U2, and Y4 = h24X21S2=1 + U1 respectively. And the cost functions are
c1(x1, s1) = |x1|21s1=1 and c2(x2, s2) = |x2|21s2=1 with unit power constraints P1 = P2 = 1.

Using Theorem B.1 we get an upperbound on the sum-rate, namely, the minimum of the right hand
sides of (8)-(11) and the sum of the right hand sides of (6) and (7), maximized over p(q, x1, x2) which
satisfy the power constraints. First of all, let us notice that when the channel and the power constraints
are symmetric, as is the case for the channel in (13)-(16), without loss of generality, we may assume
that P(S1 = 1, S2 = 0) = P(S1 = 0, S2 = 1). Let δ = P(S1 = 1, S2 = 1)/P(S1 = 1, S2 = 0), and
γ = P(S1 = 0, S2 = 0)/P(S1 = 1, S2 = 0). Also, let

P1A = E
[
|X1|2 | S1 = S2 = 1

]
, P1B = E

[
|X1|2 | S1 = 1, S2 = 0

]
, P1C = 0, and

P2A = E
[
|X2|2 | S1 = S2 = 1

]
, P2B = 0, P2C = E

[
|X2|2 | S1 = 0, S2 = 1

]
.

We have E [|Xi|21Si=1] = (δPiA+PiB+PiC)/(2+δ+γ) ≤ 1, for i = 1, 2. We now derive the outerbounds:
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1) Cut(δ)

From (6)-(7),

R1 +R2 ≤ I(X1, S1;Y2, Y3|X2, S2, Q) + I(X2, S2;Y1, Y4|X1, S1, Q)

≤ H(S1) +H(S2) + I(X1;Y2, Y3|X2, Q, S1, S2) + I(X2;Y1, Y4|X1, Q, S1, S2)

≤ 2 + (I(X1;Y3|Q,S1 = S2 = 1) + I(X2;Y4|Q,S1 = S2 = 1))P(S1 = S2 = 1)

+ I(X1;Y2, Y3|Q,S1 = 1, S2 = 0)P(S1 = 1, S2 = 0)

+ I(X2;Y1, Y4|Q,S1 = 0, S2 = 1)P(S1 = 0, S2 = 1)

≤ 2 +
δ

2 + δ + γ
(log(1 + xP1A) + log(1 + xP2A))

+
1

2 + δ + γ
log(1 + (x+ z)P1B) +

1

2 + δ + γ
log(1 + (x+ z)P2C)

≤ 2 +
δ

2 + δ
(log(1 + xP1A) + log(1 + xP2A))

+
1

2 + δ
log(1 + (x+ z)P1B) +

1

2 + δ
log(1 + (x+ z)P2C).

2) Z(δ)
From (10),

R1 +R2 ≤ I(X2, S2;Y1, Y4|Y3, X1, S1, Q) + I(X1, S1, X2, S2;Y3|Q)

≤ H(S2) +H(S1, S2) + I(X2;Y1, Y4|Y3, X1, Q, S1, S2) + I(X1, X2;Y3|Q,S1, S2)

≤ 3 + (I(X2;Y4|Y3, X1, Q, S1 = S2 = 1) + I(X1, X2;Y4|Q,S1 = S2 = 1))P(S1 = S2 = 1)

+ I(X1;Y3|Q,S1 = 1, S2 = 0)P(S1 = 1, S2 = 0)

+ I(X2;Y1, Y3, Y4|Y3, Q, S1 = 0, S2 = 1)P(S1 = 0, S2 = 1)

≤ 3 +
δ

2 + δ + γ

(
log

(
1 +

xP2A

1 + yP2A

)
+ log(1 + 2xP1A + 2yP2A)

)
+

1

2 + δ + γ
log(1 + xP1B) +

1

2 + δ + γ
log(1 + (x+ y + z)P2C

≤ 3 +
δ

2 + δ

(
log

(
1 +

xP2A

1 + yP2A

)
+ log(1 + 2xP1A + 2yP2A)

)
+

1

2 + δ
log(1 + xP1B) +

1

2 + δ
log(1 + (x+ y + z)P2C .

3) V (δ)
From (11),

R1 +R2 ≤ I(X1, S1, X2, S2;Y1, Y3|U1, Y2, Q) + I(X1, S1, X2, S2;Y2, Y4|U2, Y1, Q))

≤ 2H(S1, S2) + I(X1, X2;Y1, Y3|U1, Y2, Q, S1, S2) + I(X1, X2;Y2, Y4|U2, Y1, Q, S1, S2)

≤ 4 + (I(X1, X2;Y3|U1, Q, S1 = S2 = 1) + I(X1, X2;Y4|U2, Q, S1 = S2 = 1))P(S1 = S2 = 1)

+ (I(X1;Y3|U1, Y2, Q, S1 = 1, S2 = 0) + I(X1;Y2, U1|Q,S1 = 1, S2 = 0))P(S1 = 1, S2 = 0)

+ (I(X2;Y1, U2|Q,S1 = 0, S2 = 1) + I(X2;Y4|U2, Y1, Q, S1 = 0, S2 = 1))P(S1 = 0, S2 = 1)

≤ 4 + (I(X1, X2;Y3|U1, Q, S1 = S2 = 1) + I(X1, X2;Y4|U2, Q, S1 = S2 = 1))P(S1 = S2 = 1)

+ I(X1;Y3, U1, Y2|Q,S1 = 1, S2 = 0)P(S1 = 1, S2 = 0)

+ I(X2;Y4, U2, Y1|Q,S1 = 0, S2 = 1)P(S1 = 0, S2 = 1)
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≤ 4 +
δ

2 + δ + γ

(
log

(
1 + yP2A +

2xP1A + yP2A

1 + yP1A

)
+ log

(
1 + yP1A +

2xP2A + yP1A

1 + yP2A

))

+
1

2 + δ + γ
log(1 + (x+ y + z)P1B) +

1

2 + δ + γ
log(1 + (x+ y + z)P2C)

≤ 4 +
δ

2 + δ

(
log

(
1 + yP2A +

2xP1A + yP2A

1 + yP1A

)
+ log

(
1 + yP1A +

2xP2A + yP1A

1 + yP2A

))

+
1

2 + δ
log(1 + (x+ y + z)P1B) +

1

2 + δ
log(1 + (x+ y + z)P2C).

4) Cut′(δ)
From (8),

R1 +R2 ≤ I(X1, S1, X2, S2;Y3, Y4|Q)

≤ H(S1, S2) + I(X1, X2;Y3, Y4|Q,S1, S2)

≤ 2 + I(X1, X2;Y3, Y4|Q,S1 = S2 = 1)P(S1 = S2 = 1)

+ I(X1;Y3, Y4|Q,S1 = 1, S2 = 0)P(S1 = 1, S2 = 0)

+ I(X2;Y3, Y4|Q,S1 = 0, S2 = 1)P(S1 = 0, S2 = 1)
(a)
≤ 2 +

δ

2 + δ + γ

(
log(1 + 2(x+ y)(P1A + P2A) + P1AP2A(x2 + y2 − 2xy cos θ))

)
+

1

2 + δ + γ
log(1 + (x+ y)P1B) +

1

2 + δ + γ
log(1 + (x+ y)P2C)

≤ 2 +
δ

2 + δ

(
log(1 + 2(x+ y)(P1A + P2A) + P1AP2A(x2 + y2 − 2xy cos θ))

)
+

1

2 + δ
log(1 + (x+ y)P1B) +

1

2 + δ
log(1 + (x+ y)P2C),

where (a) follows from the fact that

I(X1, X2;Y3, Y4|Q,S1 = S2 = 1)

= h(Y3, Y4|Q,S1 = S2 = 1)− h(Y3, Y4|X1, X2, Q, S1 = S2 = 1)

≤ log(detK), where K is the covariance matrix of (Y3, Y4)

≤ 1 + (x2 + y2)(1− |ρ|2)P1AP2A + (x+ y)(P1A + P2A) + 2Re(h13h
∗
23ρ)

√
P1AP2A

+ 2Re(h14h
∗
24ρ)

√
P1AP2A − 2Re(h13h

∗
23h
∗
14h24)(1− |ρ|2)P1AP2A

≤ 1 + (x+ y)(P1A + P1A) + 4
√
xy|ρ|

√
P1AP1A cos

θ

2
+ (x2 + y2 − 2xy cos θ)(1− |ρ|2)P1AP2A

≤ log(1 + 2(x+ y)(P1A + P2A) + P1AP2A(x2 + y2 − 2xy cos θ)).

It remains to show that CHD
sum ≤ Csum + 7. By power constraint, we have P1A ≤ 2+δ

δ
, P2A ≤ 2+δ

δ
, P1B ≤

2 + δ, P2C ≤ 2 + δ.
In Cut(δ), Z(δ), Cut′(δ), each term is a monotone increasing function of PiA, PiB, PiC , i = 1, 2, so
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Cut(δ) ≤ 2 +
1

2 + δ

[
δ log(1 + x

2 + δ

δ
) + δ log(1 + x

2 + δ

δ
)

log(1 + (x+ z)(2 + δ)) + log(1 + (x+ z)(2 + δ))
]

Z(δ) ≤ 3 +
1

2 + δ

[
δ log(1 + 2x

2 + δ

δ
+ 2y

2 + δ

δ
) + log(1 + x(2 + δ))

+ log(1 + (x+ y + z)(2 + δ)) + δ log(1 +
x2+δ

δ

1 + y 2+δ
δ

)
]

Cut′(δ) ≤ 2 +
1

2 + δ

[
δ log(1 + 2(x+ y)(

2 + δ

δ
+

2 + δ

δ
) + (

2 + δ

δ
)2(x2 + y2 − 2xy cos θ))

+ log(1 + (x+ y)(2 + δ)) + log(1 + (x+ y)(2 + δ))
]
.

In V (δ), observe that

1 + yP2A +
2xP1A + yP2A

1 + yP1A

≤ 1 + y
2 + δ

δ
+

2xP1A + y 2+δ
δ

1 + yP1A

≤ max

{
1 + y 2+δ

δ
+

(2x+y) 2+δ
δ

1+y 2+δ
δ

1 + 2y 2+δ
δ

}
So we have

V (δ) ≤ 4 +
1

2 + δ

[
δ log

(
max

{
1 + y 2+δ

δ
+

(2x+y) 2+δ
δ

1+y 2+δ
δ

1 + 2y 2+δ
δ

})
+ log(1 + (x+ y + z)(2 + δ))

+ δ log

(
max

{
1 + y 2+δ

δ
+

(2x+y) 2+δ
δ

1+y 2+δ
δ

1 + 2y 2+δ
δ

})
+ log(1 + (x+ y + z)(2 + δ))

]

Comparing them term by term with ui, i = 1, 2, 3, 4, then we get

Cut(δ)− u1 ≤ 2+
1

2 + δ

[
δ log

2 + δ

δ
+ δ log

2 + δ

δ
+ log(2 + δ) + log(2 + δ)

]
Z(δ)− u2 ≤ 3+

1

2 + δ

[
δ log

2 + δ

δ
+ log(2 + δ) + log(2 + δ) + δ log

2 + δ

δ

]
V (δ)− u3 ≤ 4+

1

2 + δ

[
δ log

2 + δ

δ
+ log(2 + δ) + δ log

2 + δ

δ
+ log(2 + δ)

]
Cut′(δ)− u4 ≤ 2+

1

2 + δ

[
δ log

(
2 + δ

δ

)2

+ log(2 + δ) + log(2 + δ)
]
.

For δ ≥ 0,
δ

2 + δ
log(

2 + δ

δ
) ≤ 1

e ln 2
,

1

2 + δ
log(2 + δ) ≤ 1

e ln 2
.

So we can conclude that

CHD
sum = max

δ
min(Cut(δ), Z(δ), V (δ), Cut′(δ))

≤ max
δ

min(u1, u2, u3, u4) +
4

e ln 2
+4 ≤ Csum + 7.
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APPENDIX C
PROOF OF THEOREM 8.1

As in the sum-rate case, we will prove this achievability result in two steps. Instead of directly comparing
CR0 with the rate achievable by the coding scheme in section IV, we will first show that the CR0 is within
a constant of CLDM

R0
, a quantity we define below inspired by the result for the linear deterministic model.

We will then prove that the coding scheme in section IV can be used to achieve an R1 which is within
R0 of the point-to-point capacity C0 = log(1 + SNR1) of the primary link and an R2 which is within a
constant of CLDM

R0
. Specifically, we prove the following two lemmas which together imply Theorem 8.1.

To simplify the notation, let xi = SNRi, yi = INRi, z = CNR, i = 1, 2, and define ni = blog xic+, αi =
blog yic+, β = blog zc+, i = 1, 2.

Lemma C.1: Define

CLDM
R0

= max
δ
CLDM
R0

(δ) = max
δ>0

min(u′1 − 10− 2R0, u
′
2 − 5−R0, u

′
3 − 5−R0, u

′
4),

where

u′1 =
1

1 + δ
n2

u′2 =
1

1 + δ
[n2 ∨ α2 − α2 ∧ n1 + δ(β ∨ α2 ∨ n1 − n1)]

u′3 =
1

1 + δ
[(α1 − n1)

+ + (n2 − α1)
+]

u′4 =
1

1 + δ
[(α1 − n1)

+ − α2 ∧ n1 + (n2 − α1) ∨ α2 + δ(β ∨ α2 ∨ n1 − n1)].

Then CR0 < CLDM
R0

+ 13 + 2R0.
Proof: It is easy to verify that u1 ≤ u′1+3, u2 ≤ u′2+8+R0, u3 ≤ u′3+8+R0 and u4 ≤ u′4+13+2R0.

So we get the result.
Next we show that the secondary user can achieve CLDM

R0
within a constant given that the primary user

achieves a rate within R0 of its link capacity.
Lemma C.2: For R0 > 7, (R1, R2) = (C0 −R0, CLDM

R0
− 10) is achievable.

Before proving Lemma C.2, we first prove the following R0-capacity result for the interference channel,
i.e., the cognitive rate achievable without source cooperation.

Lemma C.3: For R0 ≥ 7, C IFC-LDM
cog ≤ C IFC

R0
+ 1, where

C IFC-LDM
cog = min


n2

n2 ∨ α2 − α2 ∧ n1

(α1 − n1)
+ + (n2 − α1)

+

(α1 − n1)
+ − α2 ∧ n1 + (n2 − α1) ∨ α2


and CIFC

R0
is the R0-capacity for the interference channel.

Proof: Let CIFC be the outer bound to the interference channel capacity region derived in [9]. From
the achievability result there, we know that given R1 = log(1 + SNR1)−R0, R2 is achievable if

(log(1 + SNR1)−R0 + 1, R2 + 1) ∈ C IFC.

It is straightforward to verify that R2 = C IFC-LDM
cog − 1 is achievable by considering the weak, mixed,

and strong interference regions separately.
Similar to the symmetric case, let

β1 =
x1x2 + y1y2 − 2

√
x1x2y1y2 cos θ

x1x2

β2 =
x1x2 + y1y2 − 2

√
x1x2y1y2 cos θ

y1y2
,
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and it is easy to show that when x1x2
y1y2
≥ 4(x1x2

y1y2
≤ 1

4
), we have β1 ≥ 1

4
(β2 ≥ 1

4
). Then we can show the

following lemma, which is the counterpart of Lemma 7.1 for the Gaussian case.
Lemma C.4: When x1x2

y1y2
≥ 4 or x1x2

y1y2
≤ 1

4
, we have β1x1(1 ∧ x2

y2
) ≥ 1

4
[x1(1 ∧ x2

y2
)] ∨ [y1(1 ∧ y2

x2
)]

def
= k̃

4
.

Proof: If x1x2
y1y2
≥ 4, we have β1 ≥ 1

4
and x1 ≥ 4y1y2

x2
. Hence

β1x1(1 ∧
x2
y2

) ≥ 1

4
x1(1 ∧

x2
y2

)

β1x1(1 ∧
x2
y2

) ≥ β1
4y1y2
x2

(1 ∧ x2
y2

) ≥ y1(1 ∧
y2
x2

) ≥ 1

4
y1(1 ∧

y2
x2

)

If x1x2
y1y2
≤ 1

4
, we can rewrite the LHS as

β1x1(1 ∧
x2
y2

) = β2
y1y2
x2

(1 ∧ x2
y2

) = β2y1(1 ∧
y2
x2

).

Now, using the fact that β2 ≥ 1
4

and y1 ≥ 4x1x2
y2

when x1x2
y1y2
≤ 1

4
, we can show similarly that

β2y1(1 ∧
y2
x2

) ≥ 1

4
[x1(1 ∧

x2
y2

)] ∨ [y1(1 ∧
y2
x2

)].

Proof of Lemma C.2: When z ≤ x1 ∨ y2, y2 ≤ 1, x1 ≤ 1 or x2 ≤ 1, it is easy to see from the LDM
that the cooperate is not needed and CLDM

R0
can be achieved by the scheme for the interference channel.

So we assume z > x1 ∨ y2 and x1, x2, y2 > 1 below.
When 1

4
≤ x1x2

y1y2
≤ 4, it corresponds to the region n1 +n2 = α1 +α2 for the LDM. As the channel gains

are aligned, the cooperation is also not helpful. In fact, CLDM
R0

is dominated by u′1 and u′3 in this region,
and it is not hard to verify that it is smaller than C IFC

R0
using Lemma C.3. Hence CLDM

R0
can be achieved

by the scheme for the interference channel. Below we further assume that x1x2
y1y2
≥ 4 or x1x2

y1y2
≥ 1

4
.

We assume that y1 > 1. According to the LDM, we set δA = 1, δB = δ, and δC = 0, and cooperation is
achieved through cooperative-private messages. For simplicity, we will require that R1B, R1A ≥ log(1 +
x1)−R0.

In mode B, source 1 uses power 1
x1

to share bits with source 2 and power 1 − 1
x1

to send data to
destination 3. Under the natural order of superposition coding, the following rates are suppported.

R1B = log(1 +
(1− 1

x1
)x1

2
) = log(1 + x1)− 1

C12

δ
= log(1 +

z

x1
) ≥ β − n1 − 1.

For the virtual channel, source 1 uses three messages W1, U1, V1 and source 2 uses two messages
W2, U2. For source 1, we allocate powers σ2

W1
= 1

3
, σ2

U1
= 1

3y2
,Var (XV1) = 1

3
(1 ∧ x2

y2
), and for source 2,

σ2
W2

= 1
3
, σ2

U2
= 1

3y1
,Var (XV2) = y2

x2
Var (XV1) = 1

3
(1 ∧ y2

x2
). Destination 1 gets W1, U1, V1,W2, U2 with

powers x1
3
, x1
3y2
, β1x1

3
(1 ∧ x2

y2
), y1

3
, 1
3
, resp., and U2 is treated as noise. Destination 2 gets W2, U2,W1, U1

with powers x2
3
, x2
3y1
, y2

3
, 1
3
, resp., and U1 is treated as noise. Using lemma C.4, it is easy to verify that the
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following constraints on non-negative rates imply all the relevant constraints in Theorem 4.1.

RW1 +RU1 +RW2 +RV1 ≤ log(1 +
x1 + y1

4
)

RU1 +RW2 +RV1 ≤ log(1 +
y1 + k̃/4

4
)

RW1 +RU1 +RV1 ≤ log(1 +
x1 + k̃/4

4
)

RW1 +RU1 ≤ log(1 +
x1
4

)

RU1 +RW2 ≤ log(1 +

x1
y2

+ y1

4
)

RU1 +RV1 ≤ log(1 +
k̃/4

4
)

RU1 ≤ log(1 +
x1
4y2

)

RV1 ≤ C12

RW1 +RW2 +RU2 ≤ log(1 +
x2 + y2

4
)

RW1 +RU2 ≤ log(1 +

x2
y1

+ y2

4
)

RW2 +RU2 ≤ log(1 +
x2
4

)

RU2 ≤ log(1 +
x2
4y1

).

First we will get the condition on R0 such that R1A = log(1 + x1) − R0 is supported by the above
constraints. Set R2 = 0. In the worst case, we have C12 = 0 when RV1 = 0. So at least we can achieve
R1A = RW1 +RU1 , where non-negative RW1 and RU1 satisfy the constraints

RW1 +RU1 ≤ log(1 +
x1
4

)

RU1 ≤ log(1 +
x1

16y2
)

RW1 ≤ log(1 +
x2 + y2

4
).

Hence a rate R1A which is the minimum of log(1 + x1
4

) and log(1 + x1
16y2

) + log(1 + x2+y2
4

) is acheivable.
Thus, we may conclude that R1A = (log(1 + x1)−R0)

+ is achievable when R0 ≥ 7.
Now in the original constraints, set R1A = (log(1 + x1)−R0)

+. Then by Fourier-Motzkin elimination,
we can show that R2A = min(v1− 9, v2 +C12− 7 +R0, v3− 19, v4 +C12− 16 +R0) is achievable, where
vi, i = 1, 2, 3, 4 are defined in Proposition 7.1. When R0 ≥ 7, using the fact that C12 ≥ δ(β−n1− 1), we
get

R2(δ) =
1

1 + δ
R2A ≥ min(u′1 − 9, u′2 − 7 +R0 − 1, u′3 − 19, u′4 − 16 +R0 − 1).

Hence CLDM
R0

can be achieved within 10 bits in this region.
The case y1 ≤ 1 is similar and we can show that CLDM

R0
can be achieved in this region. The proof is

omitted due to space limit.
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APPENDIX D
PROOF OF THEOREM 8.2

We prove the outerbound by first proving an outerbound for a more general channel with generalized
feedback of which ours is a special case. Specifically, we consider the following two user cognitive
interference channel p(y2, y3, y4|x1, x2) whose input alphabets are X1, X2 respectively for primary and
secondary sources, output alphabets are Y3, Y4 respectively for primary and secondary destinations, and
Y2 is the output alphabet for the secondary source. Let W1 and W2 be the messages of the primary and
secondary sources. At time t, the secondary sources signal X2,t may depend only on its past outputs Y t−1

2

and its message W2. We also have cost functions c1 : X1 → R+ and c2 : X2 → R+ and there are average
cost constraints P1 and P2, respectively, on the primary and secondary sources. Along the lines of [23],
we focus on channels of the following form p(y2, y3, y4|x1, x2) =

∑
u1,u2

p(u1, u2, y2, y3, y4|x1, x2), where

p(u1, u2, y2, y3, y4|x1, x2) = p(u1, y2|x1)p(u2|x2)δ(y3 − f3(x1, u2))δ(y4 − f4(x2, u1)),
where U1 and U2 take values in alphabets U1 and U2 respectively, and, for every x1 ∈ X1, the map
f3(x1, .) : U2 → Y3 defined as u2 7→ f3(x1, u2) is invertible, and similarly, for f4. The capacity region of
this channel may be defined as usual.

The following gives an outerbound on the capacity region of the above channel.
Theorem D.1: If (R1, R2) belongs to the capacity region of the above channel, there there is a p(q, x1, x2)

with E[c1(X1)] ≤ P1 and E[c2(X2)] ≤ P2 such that for the joint distribution

p(u1, u2, y2, y3, y4, x1, x2) = p(u1, u2, y2, y3, y4|x1, x2)p(q, x1, x2),

R2 ≤ I(X2;Y4|X1, Q), (17)
R1 +R2 ≤ I(X1;Y2, Y3|Y4, X2, Q) + I(X1, X2;Y4|Q), (18)
R1 +R2 ≤ I(X2;Y4|Y3, X1, Q) + I(X1, X2;Y3|Q), (19)

2R1 +R2 ≤ I(X1, X2;Y3|Q) + I(X1;Y2|Q) + I(X1, X2;Y4|U2, Y2, Q) + I(X1;Y3|X2, Y2, Y4, Q). (20)

Proof: The first bound (17) is a simple cutset bound. The next two (18)-(19) were proved in [26,
Theorem II.1]. We omit the proofs here. The last one is new and its proof follows.

By Fano’s inequality, for any ε > 0, we have a sufficiently large blocklength n such that

n(R1 − ε) ≤ I(W1;Y
n
3 ) = H(Y n

3 )−H(Y n
3 |W1) = H(Y n

3 )−H(Y n
3 |Xn

1 ,W1).

But, H(Y n
3 |Xn

1 ,W1) = H(Un
2 |Xn

1 ,W1) ≥ H(Un
2 |Y n

2 , X
n
1 ,W1) = H(Un

2 |Y n
2 ), where the last equality

follows from the facts that Un
2 −Xn

2 −(W2, Y
n
2 )−(W1, X

n
1 ) is a Markov chain and W1,W2 are independent.

Hence,

n(R1 − ε) ≤ H(Y n
3 )−H(Un

2 |Y n
2 ). (21)

Another application of Fano’s inequality gives

n(R1 − ε) ≤ I(W1;Y
n
3 )

≤ I(W1;Y
n
3 , Y

n
2 , Y

n
4 ,W2)

= I(W1;Y
n
3 , Y

n
2 , Y

n
4 |W2)

= H(Y n
2 |W2) +H(Y n

4 |Y n
2 ,W2) +H(Y n

3 |Y n
2 , Y

n
4 ,W2)−H(Y n

2 , Y
n
3 , Y

n
4 |W2). (22)

Again, using Fano’s inequality,

n(R2 − ε) ≤ I(W2;Y
n
4 )

≤ I(W2;Y
n
4 , Y

n
2 , U

n
2 )

(a)
= I(W2;Y

n
4 , U

n
2 |Y n

2 )

= H(Y n
4 , U

n
2 |Y n

2 )−H(Y n
4 , U

n
2 |Y n

2 ,W2)

= H(Un
2 |Y n

2 ) +H(Y n
4 |Un

2 , Y
n
2 )−H(Y n

4 |Y n
2 ,W2)−H(Un

2 |Y n
4 , Y

n
2 ,W2),
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where (a) follows from the fact that Y n
2 −Xn

1 −W1 −W2 is a Markov chain and W1 is independent of
W2. Furthermore, H(Un

2 |Y n
4 , Y

n
2 ,W2) = H(Un

2 |Xn
2 , Y

n
4 , Y

n
2 ,W2) = H(Un

2 |Xn
2 ), where the first equality

is due to the fact that Xn
2 is a deterministic function of (W2, Y

n
2 ) and the second equality follows from

Un
2 −Xn

2 − (Y n
4 , Y

n
2 ,W2) being a Markov chain. Thus,

n(R2 − ε) ≤ H(Un
2 |Y n

2 ) +H(Y n
4 |Un

2 , Y
n
2 )−H(Y n

4 |Y n
2 ,W2)−H(Un

2 |Y n
4 , Y

n
2 ,W2). (23)

Adding up (21)-(23), we have

n(2R1 +R2 − 3ε) ≤ H(Y n
3 ) +H(Y n

2 |W2) +H(Y n
3 |Y n

2 , Y
n
4 ,W2) +H(Y n

4 |Un
2 , Y

n
2 )

−H(Y n
2 , Y

n
3 , Y

n
4 |W2)−H(Un

2 |Y n
4 , Y

n
2 ,W2) (24)

But,

H(Y n
3 ) ≤

n∑
t=1

H(Y3,t),

H(Y n
2 |W2) =

n∑
t=1

H(Y2,t)

H(Y n
3 |Y n

2 , Y
n
4 ,W2) = H(Y n

3 |Xn
2 , Y

n
2 , Y

n
4 ,W2) = H(Y n

3 |Xn
2 , Y

n
2 , Y

n
4 ) ≤

n∑
t=1

H(Y3,t|X2,t, Y2,t, Y4,t),

H(Y n
4 |Un

2 , Y
n
2 ) ≤

n∑
t=1

H(Y4,t|U2,t, Y2,t),

H(Y n
2 , Y

n
3 , Y

n
4 |W1,W2) = H(Y n

2 |W1,W2) +H(Y n
3 , Y

n
4 |Y n

2 ,W1,W2)

= H(Y n
2 |Xn

1 ,W1,W2) +H(Y n
3 , Y

n
4 |Xn

1 , X
n
2 , Y

n
2 ,W1,W2)

=
n∑
t=1

(H(Y2,t|X1,t) +H(Y3,t, Y4,t|X1,t, X2,t, Y2,t))

=
n∑
t=1

(H(Y2,t|X1,t) +H(Y3,t|X1,t, X2,t, Y2,t) +H(Y4,t|X1,t, X2,t, Y2,t)) ,

=
n∑
t=1

(H(Y2,t|X1,t) +H(Y3,t|X1,t, X2,t, Y2,t, Y4,t) +H(Y4,t|X1,t, X2,t, U2,t, Y2,t)) ,

H(Un
2 |Y n

4 , Y
n
2 ,W2) = H(Un

2 |Xn
2 , Y

n
4 , Y

n
2 ,W2)

= H(Un
2 |Xn

2 )

≥ H(Un
2 |Xn

1 , X
n
2 )

= H(Y n
3 |Xn

1 , X
n
2 )

=
n∑
t=1

H(Y3,t|X1,t, X2,t).

Substituting in (24), we get

n(2R1 +R2 − 3ε)

≥
n∑
t=1

I(X1,t, X2,t;Y3,t) + I(X1,t;Y2,t) + I(X1,t, X2,t;Y4,t|U2,t, Y2,t) + I(X1,t;Y3,t|X2,t, Y2,t, Y4,t).

Proceeding as usual by picking Q to be uniformly distributed over {1, . . . , n} and letting X1 = X1,Q and
so on, we obtain (20).
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We will use the above theorem to prove our outerbound. Notice that our channel fits the model if we
identify the primary and secondary sources’ channel inputs as X1 and (X2, S2) respectively, the output
for the secondary source is Y2, and U1 = h14X1 +Z4, U2 = h23X21S2=1 +Z3. The primary and secondary
destinations’ channel outputs are Y3 = h13X1 +U2, and Y4 = h24X21S2=1 +U1 respectively. And the cost
functions are c1(x1) = |x1|2 and c2(x2, s2) = |x2|21s2=1 with unit power constraints P1 = P2 = 1.

In Theorem D.1, let δ = P(S2 = 0)/P(S2 = 1). Also, let

P1A = E
[
|X1|2 | S2 = 1

]
, P1B = E

[
|X1|2 | S2 = 0

]
, and

P2A = E
[
|X2|2 | S2 = 1

]
, P2B = 0.

We have E [|X1|2] = (P1A + δP1B)/(1 + δ) ≤ 1, and E [|X2|21S2=1] = P1A/(1 + δ) ≤ 1. We now derive
the outerbounds:

1) R2

From (17),

R2 ≤ I(X2, S2;Y4|X1, Q)

≤ H(S2) + I(X2;Y4|X1, Q, S2 = 1)P(S2 = 1)

≤ 1 +
1

1 + δ
log(1 + x2P2A).

2) R1 +R2

From (18),

R1 +R2 ≤ I(X1;Y2, Y3|Y4, X2, S2, Q) + I(X1, X2, S2;Y4|Q)

≤ I(X1;Y2, Y3|Y4, Q, S2 = 0)P(S2 = 0) + I(X1;Y3|Y4, X2, Q, S2 = 1)P(S2 = 1)

+H(S2) + I(X1;Y4|Q,S2 = 0)P(S2 = 0) + I(X1, X2;Y4|Q,S2 = 1)P(S2 = 1)

= H(S2) + I(X1;Y2, Y3, Y4|Q,S2 = 0)P(S2 = 0)

+ (I(X1, X2;Y4|Q,S2 = 1) + I(X1;Y3|Y4, X2, Q, S2 = 1))P(S2 = 1)

≤ 1 +
δ

1 + δ
log(1 + (x1 + y2 + z)P1B)

+
1

1 + δ

(
log(1 + 2x2P2A + 2y2P1A) + log

(
1 +

x1P1A

1 + y2P1A

))
3) R1 +R2

From (19),

R1 +R2 ≤ I(X2, S2;Y4|Y3, X1, Q) + I(X1, X2, S2;Y3|Q)

≤ H(S2) + I(X2;Y4|Y3, X1, Q, S2 = 1)P(S2 = 1)

+H(S2) + I(X1;Y3|Q,S2 = 0)P(S2 = 0) + I(X1;Y3|Q,S2 = 1)P(S2 = 1)

= 2H(S2) + I(X1;Y3|Q,S2 = 0)P(S2 = 0)

+ (I(X2;Y4|Y3, X1, Q, S2 = 1) + I(X1;Y3|Q,S2 = 1))P(S2 = 1)

≤ 2 +
δ

1 + δ
log(1 + x1P1B) +

1

1 + δ

(
log

(
1 +

x2P2A

1 + y1P2A

)
+ log(1 + 2x1P1A + 2y1P2A)

)
4) 2R1 +R2
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From (20),

2R1 +R2

≤ I(X1, X2, S2;Y3|Q) + I(X1;Y2|Q) + I(X1, X2, S2;Y4|Q,U2, Y2) + I(X1;Y3|Q,X2, S2, Y2, Y4)

≤ I(X1, X2, S2;Y3|Q) + I(X1, S2;Y2|Q) + I(X1, X2, S2;Y4|Q,U2, Y2) + I(X1;Y3|Q,X2, S2, Y2, Y4)

≤ 3H(S2) + (I(X1;Y3|Q,S2 = 0) + I(X1;Y3, Y2, Y4|Q,S2 = 0))P(S2 = 0)

+ (I(X1, X2;Y3|Q,S2 = 1) + I(X1, X2;Y4|Q,U2, S2 = 1) + I(X1;Y3|Q,X2, Y4, S2 = 1))P(S2 = 1)

≤ 3 +
δ

1 + δ
(log(1 + x1P1B) + log(1 + (x1 + y2 + z)P1B))

+
1

1 + δ

(
log(1 + 2x1P1A + 2y1P2A) + + log(1 + y2P1A +

2x2P2A + y2P1A

1 + y1P2A

) + log(1 +
x1P1A

1 + y2P1A

)

)
.

APPENDIX E
PROOF OF LEMMA 8.1

The power constraint implies that we have P1A ≤ 1 + δ, P2A ≤ 1 + δ, P1B ≤ 1+δ
δ

. In the upper bound
of R2 and R1 +R2, each term is a monotone increasing function of P1A, P2A, P1B. So

R2 ≤ 1+
1

1 + δ
log(1 + x2(1 + δ)) ≤ 1+

1

1 + δ
log(1 + x2) +

1

1 + δ
log(1 + δ),

R1 +R2 ≤ 1+
1

1 + δ

[
log(1 + 2x2(1 + δ) + 2y2(1 + δ)) + δ log

(
1 + (x1 + y2 + z)

1 + δ

δ

)

+ log

(
1 +

x1(1 + δ)

1 + y2(1 + δ)

)]

≤ 1+
1

1 + δ

[
log(1 + 2x2 + 2y2) + δ log(1 + (x1 + y2 + z)) + log

(
1 +

x1
1 + y2

)]
+

δ

1 + δ
log

(
1 + δ

δ

)
+

2

1 + δ
log(1 + δ),

R1 +R2 ≤ 2+
1

1 + δ

[
log(1 + 2x1(1 + δ) + 2y1(1 + δ)) + δ log(1 + x1

1 + δ

δ
) + log(1 +

x2(1 + δ)

1 + y1(1 + δ)
)

]
≤ 2+

1

1 + δ

[
log(1 + 2x1 + 2y1) + δ log(1 + x1) + log

(
1 +

x2
1 + y1

)]
+

δ

1 + δ
log

(
1 + δ

δ

)
+

2

1 + δ
log(1 + δ).

In the upper bound for 2R1 +R2, observe that

1 + y2P1A +
2x2P2A + y2P1A

1 + y1P2A

≤ 1 + y2(1 + δ) +
2x2P2A + y2(1 + δ)

1 + y1P2A

≤ max

{
1 + y2(1 + δ) + (2x2+y2)(1+δ)

1+y1(1+δ)
,

1 + 2y2(1 + δ)

}
≤ (1 + δ) max

{
1 + y2 + 2x2+y2

1+y1
,

1 + 2y2

}
.
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So we have

2R1 +R2 ≤ 3+
1

1 + δ

[
log(1 + 2x1(1 + δ) + 2y1(1 + δ)) + δ log

(
1 + x1

1 + δ

δ

)
+ log

(
1 +

x1(1 + δ)

1 + y2(1 + δ)

)
+ log

(
max

{
1 + y2(1 + δ) + (2x2+y2)(1+δ)

1+y1(1+δ)
,

1 + 2y2(1 + δ)

})
+ δ log

(
1 + (x1 + y2 + z)

1 + δ

δ

)]
≤ 3+

1

1 + δ

[
log(1 + 2x1 + 2y1) + δ log(1 + x1) + log(1 +

x1
1 + y2

)

+ max

(
log

(
1 + y2 +

2x2 + y2
1 + y1

)
, log(1 + 2y2)

)
+ δ log(1 + (x1 + y2 + z))

]
+

2δ

1 + δ
log

(
1 + δ

δ

)
+

3

1 + δ
log(1 + δ).

We finish the proof by noticing that for δ ≥ 0,

δ

1 + δ
log(

1 + δ

δ
) ≤ 1

e ln 2
and

1

1 + δ
log(1 + δ) ≤ 1

e ln 2
.
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