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Abstract—The InterFerence Channel with a Cognitive Relay
(IFC-CR) consists of the classical interference channel with two
independent source-destination pairs whose communication is
aided by an additional node, referred to as the cognitive relay,
that has a priori knowledge of both sources’ messages. This
a priori message knowledge is termedcognition and idealizes
the relay learning the messages of the two sources from their
transmissions over a wireless channel. This paper presentsnew
inner and outer bounds for the capacity region of the general
memoryless IFC-CR that are shown to be tight for a certain
class of channels. The new outer bound follows from argu-
ments originally devised for broadcast channels among which
Sato’s observation that the capacity region of channels with
non-cooperative receivers only depends on the channel output
conditional marginal distributions. The new inner bound isshown
to include all previously proposed coding schemes and it is thus
the largest known achievable rate region to date. The new inner
and outer bounds coincide for a subset of channel satisfyinga
strong interference condition. For these channels there is no loss
in optimality if both destinations decode both messages. This
result parallels analogous results for the classical IFC and for
the cognitive IFC and is the first known capacity result for the
general IFC-CR. Numerical evaluations of the proposed inner
and outer bounds are presented for the Gaussian noise case.

Index Terms—Capacity; Inner bound; Interference channel
with a cognitive relay; Outer bound; Strong interference; Weak
interference;

I. I NTRODUCTION

T HE information theoretic study of cognitive networks –
networks in which a subset of the nodes has a priori

knowledge of the messages of other subsets of nodes – has
focused mostly on the two user Cognitive InterFerence Chan-
nel (CIFC), i.e., a variation of the classical two-user IFC where
one of the transmitters hasnon-causal a priori knowledgeof
both messages to be transmitted. While idealistic, this form of
genie-aidedcognition has provided significant insights of the
rate advantages obtainable through asymmetric or unilateral
transmitter cooperation (please refer to [1] and [2], and ref-
erences therein, for an extensive summary of available results
for the general and Gaussian CIFC, respectively).

In this paper we study a natural extension of the CIFC
where the genie-aided cognition, instead of being provided
to only one of the sources of the IFC, is rather provided to
a third node, referred to a thecognitive relay, that aids the
communication between both source-destination pairs. Oneof
the key challenges of this model is the issue of interference

management at the cognitive relay. Unlike in the Broadcast
Channel (BC) and the CIFC, the cognitive relay in an IFC-CR
has knowledge of the interference seen at each destination but
has no control over the interfering signals that are sent by the
sources. Gel’fand-Pinsker binning [3], or Dirty Paper Coding
(DPC) for Gaussian channels [4], is a celebrated well-known
technique used to mitigate interference known non-causally
at a source through proper pre-coding of the message. This
strategy is known to be capacity achieving for certain classes
of BCs and CIFCs. In the IFC-CR, the cognitive relay can
only manage the interference experienced by the destinations
through its own transmissions, begging the question of how
this single transmission may best be used to simultaneously
aid both source-destination pairs.

The IFC-CR model encompasses many previously studied
multi-terminal networks as special cases: the BC, the classical
IFC and the CIFC, none of whose capacity is known in
general. The generality of the IFC-CR model suggests a certain
level of complexity in the analytical results, but also allows
one to study whether and how results available for smaller
networks may be incorporated into larger networks. For in-
stance, the derivation of inner and outer bounds for the general
memoryless IFC-CR carefully combines ideas developed for
simpler networks, such as Gel’fand-Pinsker binning and genie-
aided outer bounds, adjusted to this more general network
setting. We seek to determine whether these extensions of
previously proposed techniques to our more general channel
is sufficient to achieve capacity (we answer this in the positive
for a subset of the strong interference regime) or whether
our model is sufficiently different such that it requires new
transmission techniques to achieve capacity.

A. Past Work

The information theoretic capacity of the general mem-
oryless IFC-CR remains an open problem for the general
case. The IFC-CR was initially considered in [5] where
the first achievable rate region was proposed, and was later
improved upon in [6] for the Single-Input Single-Output
(SISO) Gaussian channel. The authors of [6] also provided
a sum-rate outer bound for the Gaussian channel based on an
outer bound for the Multiple-Input Multiple-Output (MIMO)
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Gaussian CIFC. In [7]1 a general achievable rate region was
derived that contains all previously known achievable rate
regions in [5], [6]. The first outer bound for a general (i.e.
not necessarily Gaussian) IFC-CR was derived in [8] by using
Sato’s observation that the capacity region of channels with
non-cooperative receivers depends only on the conditional
marginal distribution of the channel outputs [9]. This general
Sato-type outer bound was further tightened in [8] for a class
of semi-deterministic channels in the spirit of [10]. For the
special case where the sources do not interfere at the non-
intended destinations, the tightened bound of [8] was shown
to be capacity for the deterministic approximation of the
Gaussian IFC-CR at high-SNR [11] and to be optimal to
within 3 bits/sec/Hz for any finite SNR [12]. Furthermore, for
a subset of parameters akin to the weak interference regime
for the classical IFC, the tightened bound of [8] was shown
to be capacity for the general deterministic approximationof
the Gaussian IFC-CR at high-SNR; the achievability in this
case suggests an interesting transmission strategy where the
cognitive relay is able to “pre-cancel” the interference atboth
destinations simultaneously.

The channel model under consideration in this work is
closely related to the interference relay channel: an IFC
with an additional relay node which does not have a priori
knowledge of the sources’ messages, but rather learns these
messages over the noisy channel between the sources and
the relays [13]. Although more realistic than the IFC-CR
considered here, the interference relay channel is harder to
study due to the causal cognition. Recently new results were
derived for the interference relay channel where the relay is
assumed to operateout-of-band[14], [15], i.e., a model in
which the link between the relay and the destinations does not
interfere with the underlaying IFC between the sources and the
destinations; in this case, capacity is known to 1.15 bits/s/Hz
in the symmetric Gaussian noise case [14].

The IFC-CR subsumes several well studied channel models
as special case. The CIFC,2 that is, an IFC in which one
transmitter has non-causal a-priori knowledge of the messages
of both transmitters, may be obtained from the IFC-CR by
eliminating the channel input of one of the sources. The CIFC
was first considered from an information theoretic perspective
in [16], where the channel was formally defined and the
first achievable rate region was obtained. The largest known
achievable rate region is due to Riniet al. [19], [1] and
the tightest outer bound to Maricet al. [20]. Capacity has
been established for channels with “very weak interference” in
which (in Gaussian noise) treating interference at the primary
receiver as noise is optimal [18], [21], for the “very strong
interference” regime, where without loss of optimality both
receivers can decode both messages and the cognitive channel
reduces to a compound Multiple Access Channel (MAC) [17],
for the “better cognitive decoding” regime [22], [2] where the

1The authors of [7] refer to the IFC-CR as “broadcast channel with cognitive
relays”, arguing that the model can also be obtained by adding two partially
cognitive relays to a broadcast channel.

2The CIFC has also been referred to as the cognitive channel [16], an
interference channel with “unidirectional cooperation” [17] and an interference
channel with “degraded message sets” [18].

cognitive receiver can decode both messages without loss of
optimality, for the semi-deterministic CIFC [23], [1] where a
BC-type coding scheme is optimal, and for certain Gaussian
CIFC without interference at the primary decoder [24], [2].
For the general Gaussian CIFC capacity is known to within
1 bit/s/Hz and to within a factor 2 regardless of channel
parameters [23], [2], [25].

The classical BC can be obtained from the IFC-CR by
eliminating the channel inputs of both sources. The capacity of
the general BC is unknown. The largest known achievable rate
region is due to Marton [26] and the tightest outer bound to
Nair and El Gamal [27]. In all cases where capacity is known
Marton’s region is optimal (see [28] and references thereinfor
an extensive discussion of all cases where capacity is known
and for the challenges in determining capacity in the open
cases). Many techniques originally developed for the BC will
prove useful for the derivations in this work.

Finally, the classical IFC can be obtained from the IFC-
CR by eliminating the channel input of the cognitive relay.
The largest known achievable rate region is due to Han and
Kobayashi [29], which is optimal in all cases where capacity
is known (see [30] and references therein for an extensive
discussion of all cases where capacity is known). In Gaussian
noise, capacity is known only in strong interference [31],
[32], [33] and known otherwise to within 1 bit/s/Hz [34].
Some techniques originally developed for the IFC, such as
rate splitting and simultaneous decoding, will be adapted to
the IFC-CR model in this work.

B. Paper Main Contributions

In this paper we determine:

1) Outer Bound:

a) Sato-type outer bound.
This outer bound uses Sato’s observation [9] that the
capacity of a channel with non-cooperative receivers only
depends on the channel output conditional marginal dis-
tributions. This bound does not contain any auxiliary
random variables and is thus computable in principle by
determining the optimal distribution of the channel inpus .

b) BC-type outer bound.
This outer bound generalizes the tightest known outer
bound for the general CIFC by Maricet al. [20] to the
general IFC-CR. It uses a technique originally developed to
prove the converse for the “more capable” BC in [35] and
later generalized to obtain an outer bound for the general
BC in [27]. This BC-type outer bound is the tightest known
to date for the general IFC-CR. It is however expressed as
a function of three auxiliary random variables for which no
cardinality bound exists on the corresponding alphabets.

c) A simplification of the BC-type outer bound in the
“strong interference” and “weak interference” regimes.
The “strong interference” regime is defined as the regime
where, loosely speaking, the non-intended destination can
decode more information than the intended destination even
after having removed the interfering signal. This regime
parallels the “strong interference” regime for the IFC [36]
and for the CIFC [37].
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The “weak interference” regime is defined as the regime
in which, loosely speaking, treating interference as noise
is optimal. This regime parallels the “weak interference”
regime for the IFC in [38], [39], [30] and for the CIFC
in [18].

2) Inner Bound:

a) Largest known inner bound.
Our inner bound is shown to include all previously pro-
posed inner bounds as special cases. This region equals
the capacity region when the channel reduces to a simpler
model (i.e. BC, IFC and CIFC ) for which capacity is
known. The novel ingredients are a rate-split in four parts
of the source messages and a very structured nesting of
superposition and binning. Although the expression of the
inner bound is rather involved, it provides a unifying
framework to evaluate the effect of different transmission
strategies on the achievable rate region.

b) The Fourier-Motzkin elimination of the proposed inner
bound in several sub-cases.
The Fourier-Motzkin elimination of our general inner
bound region appears difficult to reduce to a manageable
number of rate bounds. We therefore proceed to analyze
several simpler achievability schemes. Besides being of use
in numerically evaluating regions, the simpler regions are
extensions of regions known to achieve capacity when the
channel reduces to an IFC or a CIFC.

3) Capacity:

a) Capacity in the “very strong interference” regime at
one destination.
This is a subset of the “strong interference” regime under
which our general BC-type outer bound can be simplified.
In this regime both decoders can, without loss of optimal-
ity, decode both messages as in a compound MAC. The
“strong interference” outer bound may be achieved using
superposition coding without rate splitting or binning.

b) Capacity in the “strong interference at both receivers”
regime.
A corollary of the previous capacity result where both
destinations experience “very strong interference”.

4) Gaussian Channels:

a) Capacity in the “very strong interference” regime at
one destination and in the “strong interference at both
receivers” .
We determine the set of channel coefficients that satisfy the
condition of “very strong interference” at one destination
and of “very strong interference” at both destinations,
thereby establishing capacity in these cases.

b) Outer bound for the degraded IFC-CR.
For a special class of channels that satisfies the “weak
interference” condition under which our general BC-type
outer bound could be simplified, we evaluate the outer
bound in closed form. Unfortunately, we have not been
able to find a transmission scheme that achieves this outer
bound yet.

c) Numerical evaluations of the proposed simpler achiev-
able rate regions.

These evaluations visually illustrate the relationships be-
tween the derived inner and outer bounds for the cases
where capacity is open.

C. Paper Organization

In Section II we formally define the general memoryless
IFC-CR. In Section III we proceed to derive our new outer
bounds, two of which hold in general, and two of which
are valid under “strong interference” and “weak interference”
conditions, respectively. In Section IV we derive a general
achievable rate region for the IFC-CR and analytically show
that this contains all other known inner bounds; we further
simply our general inner bound in a number of simpler sub-
cases with a limited number of auxiliary random variables
and rate splits. In Section V we prove capacity for the IFC-
CR in the “very strong interference” regime; this is the first
general capacity result for the IFC-CR and parallels results
for similar regimes for the IFC and the CIFC. In Section VI
we numerically illustrate the “very strong interference” ca-
pacity region and the “weak interference” outer bound for
the Gaussian IFC-CR, as well as numerical results comparing
several of the simplified inner bounds. We conclude the paper
in Section VIII.

II. CHANNEL MODEL

We consider the channel model depicted in Fig. 1. In the
IFC-CR the transmission of the two independent messagesWi

uniformly distributed on[1 : 2NRi ], i ∈ {1, 2}, block-length
N ∈ Z+, and ratesRi ∈ R+, is aided by a singlecognitive
relay, whose input to the channel has subscriptc. We define
Xi,n andYi,n to be the input and output of the channel for the
i-th source-destination pair at then-th channel use,i ∈ {1, 2},
n ∈ [1 : N ], and defineXk

i,j := [Xi,j , Xi,j+1, · · · , Xi,k] for
k ≥ j, and similarly forY k

i,j . The channel is assumed to be
memoryless with transition probabilityPY1,Y2|X1,X2,Xc

. Since
the destinations do not cooperate, the capacity of the mem-
oryless IFC-CR is only a function of the output conditional
marginal distributionsPY1|X1,X2,Xc

andPY2|X1,X2,Xc
.

A non-negative rate pair(R1, R2) is said to be achievable
if there exists a sequence of encoding functions

XN
1 = XN

1 (W1),

XN
2 = XN

2 (W2),

XN
c = XN

c (W1,W2),

and a sequence of decoding functions

Ŵ1 = Ŵ1(Y
N
1 ),

Ŵ2 = Ŵ2(Y
N
2 ),

such that

lim
N→∞

max
i∈{1,2}

Pr
[
Ŵi 6= Wi

]
= 0.

The capacity region is defined as the closure of the region of
all achievable(R1, R2) pairs.

Note that the IFC-CR subsumes three well-studied channels
as special cases:
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Fig. 1. The general memoryless IFC-CR channel model.

• IFC: for Xc = ∅,
• CIFC: for X1 = ∅ or X2 = ∅, and
• BC: for X1 = X2 = ∅.
The capacity region of the general IFC-CR is unknown in

general.

III. O UTER BOUNDS

In this section we present two new outer bounds which we
term the Sato-type and the BC-type outer bound. The names
of these bounds reflect the channels and/or techniques which
inspired them. We then proceed to simplify the expression
of these bounds in the “strong interference” and “weak in-
terference” regime.3 As the IFC-CR generalizes a number of
multi-user channels such as the CIFC, the IFC and the BC, one
expects techniques relevant in those channels to be of use in
the IFC-CR, and conversely, the IFC-CR outer bounds should
reduce to capacity of the simpler sub-channels when they are
known. Indeed, our outer bounds generalize the underlying
sub-channels, as shown in Table I.

A. Sato-type Outer Bound

We start with the outer bound for the general IFC-CR first
derived by the Rini, Tuninetti and Devroye in [8, Thm.3.1]. It
uses Sato’s argument [9] that the capacity region of the IFC-
CR only depends on the channel output conditional marginal
distributions since the destinations do not cooperate.

Theorem III.1. If (R1, R2) lies in the capacity region of the
IFC-CR, then the following must hold for anỹY1 and Ỹ2

having the same conditional marginal distributions asY1 and
Y2, respectively, but otherwise arbitrarily correlated:

R1 ≤ I(Y1;X1, Xc|X2, Q), (1a)

R2 ≤ I(Y2;X2, Xc|X1, Q), (1b)

R1 +R2 ≤ I(Y2;X1, X2, Xc|Q) + I(Y1;X1, Xc|Ỹ2, X2, Q),
(1c)

R1 +R2 ≤ I(Y1;X1, X2, Xc|Q) + I(Y2;X2, Xc|Ỹ1, X1, Q),
(1d)

3 We note that our naming convention is not entirely consistent with past
uses of the term “strong/weak interference”. Here, as in ourprevious work
on the CIFC [1], [2], we use “strong/weak interference” to denote regimes
inspired by similar results for the IFC under which we may obtain either a
tighter or simpler outer bound for the channel of interest, and use the terms
“very strong/very weak” to denote regimes in which additional conditions
(therefore forming subsets of the “strong/weak” regimes) are imposed on top
of the “strong/weak” conditions that allow these outer bounds to be achieved.

for some input distribution that factors as

PQ,X1,X2,Xc
= PQPX1|QPX2|QPXc|X1,X2,Q. (2)

Proof: The proof may be found in Appendix A.

The outer bound of Thm. III.1 has the appealing feature
that is does not contain any auxiliary Random Variable (RV)
and is thus computable. For example (see Section VI) the
“Gaussian maximizes entropy” principle suffices to show that
a jointly Gaussian input exhausts the outer bound of Thm. III.1
for the Gaussian noise channel. It also gives the capacity in
several cases (please refer to Table I). However it does not
reduce to the other cases where capacity is known for simpler
channels subsumed by the IFC-CR (please refer to Table I) nor
to the tightest known outer bounds for the general CIFC and
BC. To remedy this, we next derive an outer bound by using
a bounding technique originally developed for the BC [35].
The derived bound indeed reduces to the tightest known outer
bounds for the general CIFC [20] and the general BC [27]
when the IFC-CR reduces to these channel models.

B. BC-type outer bound

The outer bound in [20] for the CIFC and in [27] for the
BC use in their bounding steps the Csiszár’s sum identity [40].
We extend this technique here to the general IFC-CR.

Theorem III.2. If (R1, R2) lies in the capacity region of the
IFC-CR then the following must hold

R1 ≤ I(Y1;X1, Xc|U2, X2), (3a)

R2 ≤ I(Y2;X2, Xc|U1, X1), (3b)

R1 ≤ I(Y1;V, U1, X1), (3c)

R2 ≤ I(Y2;V, U2, X2), (3d)

R1 + R2 ≤ I(Y2;V, U2, X2) + I(Y1; , X1, Xc|V, U2, X2),
(3e)

R1 + R2 ≤ I(Y1;V, U1, X1) + I(Y2; , X2, Xc|V, U1, X1),
(3f)

such that

V → (U1, U2) → (X1, X2, Xc) → (Y1, Y2) (4)

for some input distribution that factors as

PU1,U2,V,X1,X2,Xc

= PU1PU2PV |U1,U2
PX1|U1

PX2|U2
PXc|U1,U2

. (5)

Proof: The proof may be found in Appendix B.

RemarkIII.3 . Thm. III.2 is the tightest known outer bound for
a general IFC-CR and

1) it reduces to the tightest known outer bound for the gen-
eral BC without common rate [27] whenX1 = X2 = ∅,
which is tight for all cases where capacity is known.

2) it reduces to the tightest known outer bound for the
general CIFC [20, Thm.4] whenX1 = ∅, which is tight
for all cases where capacity is known. The outer bound
in [20, Thm.4] is tighter than the one in [18, Thm. 3.2]
(see [20, Remark 6]). We can obtain the equivalent of the
outer bound in [18, Thm. 3.2] by defining in Thm. III.2
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TABLE I
THE OUTER BOUNDS PRESENTED IN THIS WORK AND THEIR RELATIONSHIP TO UNDERLYING SIMPLER CHANNELS WHERE CAPACITY IS KNOWN.

Outer bound and Theorem in this work Capacity result Reference

Sato-type outer bound “strong interference” IFC-CR Thm. V.1
Gaussian “strong interference” CIFC [37, Thm.6]
Gaussian “primary decodes cognitive” CIFC[22, Thm.3.1]
“strong interference” IFC [36], [31], [32]

BC-type outer bound “very weak interference” CIFC [18, Thm. 3.2]
“better cognitive decoding” CIFC [2, Thm. 7.1]
semi-deterministic CIFC [2, Thm. 8.1]
more capable BC [35, Sec. 3]
semi-deterministic BC [?] [26]

a new pair of auxiliary RVsU ′
2 := [V, U2], U

′
1 := [V, U2]

and then reasoning as in [20, Remark 6].
3) it is tighter than Thm. III.1. In fact, the region in

Thm. III.2 can be enlarged by dropping (3c)-(3d). More-
over, the bound in (3a) is tighter than the one in (1a) by
the “conditioning reduces entropy” principle. Similarly,
to [1, Remark IV.2] the sum-bound in (3e) is tighter than
the bound in (1c). However, the region in Thm. III.2
is expressed as a function of three auxiliary RVs for
which we have not obtained cardinality bounds on the
respective alphabets, while the looser region in Thm. III.1
is expressed only as a function of the inputs and is thus
computable in principle.

4) Thm. III.2 neither reduces to the capacity region of a class
of deterministic IFCs studied in [33] nor reduces to the
outer bound for the semi-deterministic IFC in [10] when
Xc = ∅. The difficulty in deriving outer bounds for the
general IFC-CR that are tight when it reduces to an IFC
is also noted in [8]. The authors of [8, Thm.3.2] were
able to derive tight bounds in this scenario by imposing
additional constraints on the effect of interference on the
channel outputs.

C. Simplified BC-type outer bound in the “weak interference”
and “strong interference” regimes

We next proceed to simplify the proposed BC-type outer
bound under specific “strong interference” and “weak inter-
ference” conditions.

Corollary III.4. “Strong interference at Rx 1” outer bound.
If

I(Y2;X2, Xc|X1) ≤ I(Y1;X2, Xc|X1) (6)

for all distributions that factor as

PX1,X2,Xc
= PX1PX2PXc|X1,X2

, (7)

then, if (R1, R2) lies in the capacity region of the IFC-CR,
the following must hold

R1 ≤ I(Y1;X1, Xc|X2, Q), (8a)

R2 ≤ I(Y2;X2, Xc|X1, Q), (8b)

R1 +R2 ≤ I(Y1;X1, X2, Xc|Q), (8c)

for some distribution that factors as in(2).

Proof: The proof follows from showing that under the
condition in (6) the sum-rate bounds in Thm. III.2 simplify

to (8c). The details of the proof may be found in Appendix C.

Note that, given the symmetry of the channel model,
Cor. III.4 also holds by reversing the role of the sources.
Although not valid for a general IFC-CR, Cor. III.4 is ex-
pressed only as a function of the channel inputs and does not
contain auxiliary RVs as Thm. III.1, which simplifies both the
calculation of the outer bound and the derivation of a capacity
achieving encoding strategy.

Corollary III.5. “Weak interference at Rx 2” outer bound.
If

I(Y2;U |X2) ≤ I(Y1;U |X2) (9)

holds for all distributions

PU,X1,X2,Xc
= PX1PX2PXc|X1,X2

PU|X1,X2,Xc
, (10)

such thatU → (X1, X2, Xc) → (Y1, Y2), then, if (R1, R2)
lies in the capacity region of the IFC-CR, the following must
hold:

R1 ≤ I(Y1;X1, Xc|X2, U) (11a)

R2 ≤ I(Y2;X2, U) (11b)

R2 ≤ I(Y2;X2, Xc|X1) (11c)

for some distribution that factors as in(10).

Proof: The proof may be found in Appendix D.

Again, given the symmetry of the channel model, Cor. III.5
also holds when the sources are reversed.

IV. I NNER BOUNDS

In this section we derive an inner bound for a general IFC-
CR, then analytically show that this region contains all other
previously derived regions, and finally derive simple and easy-
to-understand expressions for a number of sub-schemes of
our general inner bound. Given the generality of the IFC-
CR channel model, the coding scheme we propose contains
a large number of rate bounds and several auxiliary RVs.
Unfortunately, this is unavoidable if one wishes the achievable
scheme to be capacity in all the cases when the channel
reduces to one where capacity is known. Our aim in deriving
this achievable rate region is therefore mainly to provide a
unified framework to efficiently investigate the rate advantages
provided by different transmission strategies.
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A. General achievable rate region

The achievable scheme is obtained as a combination of the
following well established random coding techniques:

• Rate-splitting: This refers to splitting the message of a
source into different independent sub-messages, one for
each possible subset of destinations. Rate splitting was
first introduced by Han and Kobayashi for the classical
IFC [29] (referred to as the Han and Kobayashi region or
rate-splitting from now on) and is a fundamental tool in
achieving capacity in a number of cases when combined
with superposition coding and binning. In our achievable
scheme we rate split each message into private and public
parts at the intended transmitter and at the cognitive relay.

• Superposition coding: Superposition coding was first
introduced in [41] for the degraded BC and intuitively
consists of generating codewords conditional on other
ones, or “stacking” codewords on top of each other. Des-
tinations in the system decode (some of the) codewords
starting from the bottom of the stack, while treating the
remaining codewords as noise. Thus, a given message
may be decoded at one destination but treated as noise at
another. Here we superpose public messages to broadcast
messages and the messages known at the cognitive relay
over the messages at the two sources.

• Gel’fand-Pinsker binning: Often simply referred to
as binning [42], it allows a transmitter to “pre-code”
(portions of) the message against the interference that
message is known to experience at a destination. Binning
is also used in Marton’s largest known achievable rate
region for the general memoryless BC [26]. It is also a
crucial element in other channels, usually with some form
of “broadcast” element, including the CIFC [1]. In this
achievable scheme the cognitive relay performs binning
against the private messages of the sources.

• Simultaneous decoding: As at the destination of a
MAC, a destination jointly decodes its intended message
and some of the sub-messages of non-intended sources
with the objective to reduce the level of interference.
Simultaneous or joint decoding is optimal in many cases
of “strong” interference.

We next derive a transmission scheme that contains a
general combination these encoding techniques. By removing
certain features from this general scheme, one can quickly
obtain simpler and analytically more tractable sub-schemes
that can be compared to each other and to outer bounds, as
we shall do in the next subsection. We shall also show that
this general inner bound includes all known to-date achievable
rate regions. The novelty of our proposed region, which will
allow us to show inclusion in all known regions, is a rate split
into four parts for each source message (as opposed to the
classical rate split in two parts for the classical IFC [29] and
to the rate split in three parts for the CIFC [1]).

Theorem IV.1. Region R
(RTDG). The regionR(RTDG) is

defined as the set of non-negative rate pairs(R1, R2) for which

there exists a non-negative rate vector

(R1c, R2c, R1p, R2p, R1cb, R2cb, R1pb, R2pb, R
′
0cb, R

′
1pb, R

′
2pb)

∈
⋃

P

{
R0 ∩ R1 ∩ R2

}
(12)

such that

Ri = Ric +Rip +Ricb +Ripb, i ∈ {1, 2}, (13)

where the union in(12) is over all input distributionsP given
by

P =PQPU1c,X1|QPU2c,X2|Q

PU1pb,U2pb,U0cb,Xc|U1c,X1,U2c,X2,Q, (14)

where the “binning rate region”R0 in (12) is given in (15)
and the “decoding rate region at destination 1”R1 in (12) is
given in (16) for

Lipb = Ripb +R′
ipb, i ∈ {1, 2},

L0cb = R1cb +R2cb +R′
0cb,

and where the “decoding rate region at destination 2”R2

in (12) is obtained permuting the indices1 and 2 in the
“decoding rate region at destination 1”R1 in (16).

Moreover, in the “decoding rate region at destination 1”R1

in (16) (and similarly forR2 but with the role of the sources
swapped) the following rate bounds can be dropped

• (16a) and (16b): when R1 = R1c = R1p = R1cb =
R1pb = 0,

• (16c) and (16d): whenR1p = R1cb = R1pb = 0,
• (16e)and (16f): whenR1cb = R1pb = 0,
• (16g): whenR1p = R1pb = 0,
• (16h): whenR1pb = 0,

because these bounds correspond to an error event in which
a non-intended common message or a bin index is incorrectly
decoded and no other intended message is incorrectly decoded.

Proof: The achievable rate region in (12) may be obtained
using the result in [43] by specifying how rate splitting,
binning and superposition coding are performed. The details
of the proof are reported in Appendix E for completeness. In
what follows we sketch the main elements of the encoding
and decoding procedures and we give an intuitive explanation
about the proposed choices. We do not consider the time
sharing RVQ to simplify the description.

Rate Splitting: The messageWi, i ∈ {1, 2}, is split into
four sub-messages:

• Private messageWip of rateRip,
• Common messageWic of rateRic,
• Common Broadcasted messageWicb of rateRicb, and
• Private Broadcasted messageWipb of rateRipb,

so that (13) holds.

Codebook Generation:The sources and the cognitive relay
generate the following codebooks:

• Common message:wic ∈ [1 : 2NRic ] is encoded into
UN
ic (wic) with iid distributionPUic , i ∈ {1, 2}.

• Private message: for a givenwic, wip ∈ [1 : 2NRip ] is
encoded intoXN

i (wip|wic) with iid distributionPXi|Uic

(i.e., XN
i is superimposed toUN

ic ), i ∈ {1, 2}.
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R′
0cb ≥ I(X1, X2;U0cb|U1c, U2c, Q) (15a)

R′
1pb ≥ I(X2;U1pb|U1c, X1, U2c, U0cb, Q) (15b)

R′
2pb ≥ I(X1;U2pb|U1c, X2, U2c, U0cb, Q) (15c)

R′
1pb + R′

2pb ≥ I(X2;U1pb|U1c, U2c, X1, U0cb, Q) + I(X1;U2pb|U1c, U2c, X2, U0cb, Q)

+ I(U1pb;U2pb|U1c, X1, U2c, X2, U0cb, Q), (15d)

R1c +R1p +R2c + L0cb + L1pb ≤ I(U0cb;X1|U1c, U2c, Q) + I(Y1;U1c, U2c, X1, U0cb, U1pb, Q) (16a)

R1c +R1p + L0cb + L1pb ≤ I(U0cb;X1|U1c, U2c, Q) + I(Y1;U1c, X1, U0cb, U1pb|U2c, Q) (16b)

R1p +R2c + L0cb + L1pb ≤ I(U0cb;X1|U1c, U2c, Q) + I(Y1;U2c, X1, U0cb, U1pb|U1c, Q) (16c)

R1p + L0cb + L1pb ≤ I(U0cb;X1|U1c, U2c, Q) + I(Y1;X1, U0cb, U1pb|U1c, U2c, Q) (16d)

R2c + L0cb + L1pb ≤ I(U0cb;X1|U1c, U2c, Q) + I(Y1;U2c, U0cb, U1pb|U1c, X1, Q) (16e)

L0cb + L1pb ≤ I(U0cb;X1|U1c, U2c, Q) + I(Y1;U0cb, U1pb|U1c, U2c, X1, Q) (16f)

R1p + L1pb ≤ I(U0cb;X1|U1c, U2c, Q) + I(Y1;X1, U1pb|U1c, U2c, U0cb, Q)) (16g)

L1pb ≤ I(Y1;U1pb|U1c, U2c, X1, U0cb, Q), (16h)

• Common broadcasted messages: for a given pair
(w1c, w2c), the pair (w1cb, w2cb) ∈ [1 : 2NR1cb ] × [1 :
2NR2cb ] is encoded intoUN

0cb(w1cb, w2cb, b0cb|w1c, w2c),
b0cb ∈ [1 : 2NR′

0cb ], with iid distributionPU0cb|U1c,U2c
.

• Private broadcasted message: for a
given (w1c, w2c, w1cb, w2cb, b0cb, , wip),
wipb ∈ [1 : 2NRipb ] is encoded into
UN
ipb(wipb, bipb|w1c, w2c, w1cb, w2cb, b0cb, wip),

bipb ∈ [1 : 2NR′
ipb ], with distribution

PN
Uipb|U1c,U2c,U0cb,Xi

, i ∈ {1, 2}.

Encoding: The cognitive relay has knowledge of both mes-
sagesW1,W2 and is thus able to perform binning with the goal
to create the most general distribution among conditionally
independent RVs/codebooks. It does the following:

• UN
0cb was generated only based on(UN

1c , U
N
2c). The cog-

nitive relay binsUN
0cb against(XN

1 , XN
2 ), as for channel

with states known non-causally at the encoder [42], to
make it look like it were generated iid with distribution
PU0cb|X1,X2,U1c,U2c

. For this to be possible, the “binning
rate” R′

0cb must satisfy (15a).
• UN

1pb, resp. UN
2pb, was generated independently of

(XN
2 , UN

2pb), resp.(XN
1 , UN

1pb), conditioned on the “com-
mon” RVs (UN

1c , U
N
2c , U

N
0cb). The cognitive relay bins

UN
1pb andUN

2pb against each other, as in Marton’s region
for the general BC [26], and against(XN

1 , XN
2 ) to make

them look like they were generated iid with distribution
PU1pb,U2pb|X1,X2,U1c,U2c,U0cb

. For this to be possible, the
“binning rate” pair (R′

1pb, R
′
2pb) must satisfy (15b)-

(15d).
• to send wi = (wic, wip, wicb, wipb) source i sends

XN
i (wip|wic), i ∈ {1, 2}.

Fig. 2. A graphical representation of the coding scheme for the inner bound
region in Section IV. The RVs for message 1 are in blue diamondboxes
while the RVs for message 2 are in red square boxes. A solid line among
RVs indicates that the RVs are superposed while a dashed linethat the RVs
are binned against each other.

• to send (w1, w2) =
(
(w1c, w1p, w1cb, w1pb),

(w2c, w2p, w2cb, w2pb)
)

the cognitive relay sends
XN

c obtained as a deterministic function of the tuplet
(UN

1c , U
N
2c , X

N
1 , XN

2 , UN
0cb, U

N
1pb, U

N
2pb) found after the

different binning operations.

Fig. 2 is a graphical representation of the proposed achiev-
able scheme. Each box represents an auxiliary RV/codebook
carrying the sub-message with the same subscript (note
that the RVsX1 and X2 carry the sub-messagesW1p and
W2p, respectively, andU0cb carries the pair of sub-messages
(W1cb,W2cb)).

Decoding: Destination i, i ∈ {1, 2}, simultaneously de-
codes all RVs/codebooks except(XN

i
, UN

ipb
) with i 6= i. This

is successful with high probability if the rates belong to the
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“decoding rate region at destinationi” Ri defined in (16),
i ∈ {1, 2}.

Remark IV.2 (Intuitive interpretation of the proposed cod-
ing scheme). Loosely speaking the achievable rate region
is obtained by considering a Han and Kobayashi transmis-
sion scheme for the IFC among the two source-destination
pairs and extending this coding scheme with the scheme
for the CIFC [19] for each source-destination pair. The
RVs U1c, U2c, X1, X2 correspond to the Han and Kobayashi
scheme [29] for the IFC. The common broadcasted message
U0cb is superposed to both the common messagesU1c, U2c

and carries the common broadcasted messages for both users,
W1cb and W2cb. Since these messages are to be decoded
at both decoders, there is no rate advantage in assigning a
different RV to each rate split. Note thatU0cb cannot be
stacked over to the private messages(X1, X2) since these
messages are not decoded at the non-intended destinations.
To achieve the most general input distribution, the cognitive
relay performs binning ofU0cb against the known interfering
signals (X1, X2). The private broadcasted messageU1pb is
stacked onto(U1c, U2c, U0cb, X1) – this can be done since
this RV is to be decoded only at destination 1 which also
decodesX1. The same procedure is applied toU2pb. At the
last encoding step at the cognitive relay,U1pb andU2pb are
binned against each other and against the non-intended private
messages to achieve the most general distribution.

Finally, note that the proposed scheme with only the
“broadcast” RVs(U0cb, U1pb, U2pb) corresponds to Marton’s
achievable rate region for the general BC [26], without the
“broadcast” RVs it corresponds to Han and Kobayashi’s
achievable rate region for the general IFC [29], and with
the “broadcast” RVs only for one source it corresponds to
Rini et al’s achievable rate region for the general CIFC [1].
Therefore, our proposed achievable rate region reduces to the
largest known achievable rate regions for the simpler channels
subsumed by the IFC-CR, which are capacity-achieving for all
cases where capacity is known.

B. Inclusion of the Jiang et al. region [7] for the IFC-CR:
scheme with(U1c, X1, U2c, X2, U1pb, U2pb)

We now show that the achievable rate region in Thm. IV.1
includes all previously proposed achievable rate regions for the
IFC-CR by showing that the region in Thm. IV.1 includes the
region in [7] as a special case, which is currently the largest
known region for this channel and contains the regions of [5]
and [6] .

Theorem IV.3. The achievable rate region in Thm. IV.1
contains the achievable rate region in [7, (21)-(31)].

Proof: SetU0cb = ∅ in Thm. IV.1. The resulting achiev-
able rate region includes the region in [7, (20)-(31)] (which
includes the region in [7, (1)-(19)]) as shown in Appendix F.

C. Sub-schemes from the general achievable rate region in
Thm. IV.1

The inner bound of Thm. IV.1 provides a unified framework
from which we may derive simpler inner bounds that may
be more easily manipulated and understood. In particular one
would like an achievable rate region to be expressed in terms
of the rate bounds directly onR1 and R2 rather than on
the rates corresponding to the rate-split messages. Such a
region may be obtained by eliminating the sub-rates from the
rate region expression using the Fourier-Motzkin elimination
procedure. Fourier-Motzkin elimination yields an analytically
manageable number of rate bounds only for a relatively small
number of rate splits. In this section we introduce a series
of sub-schemes containing a limited number of auxiliary RVs
and derive the corresponding Fourier-Motzkin eliminated rate
regions (resulting in(R1, R2) rate regions) which are then
compared to the outer bounds derived in Section III. In ad-
dition to these sub-schemes being more analytically tractable
due to the small number of auxiliary random variables and
rate-splits, these particular sub-schemes were chosen as they
are natural extensions of schemes that achieve capacity when
the IFC-CR reduces to specific classes of CIFC, IFC and BC
channels. Table II illustrates the different sub-schemes and for
which classes of channels this reduces to capacity.

1) All private messages: scheme with only
(X1, X2, U1pb, U2pb): This sub-scheme is obtained by
setting the rate of the common messages to zero. It illustrates
the effect of binning performed at the cognitive relay to
pre-code against the interference due to the non-intended
message at each destination.

Corollary IV.4. By consideringU1c = U2c = U0cb = ∅ in
Thm. IV.1 the following rate region is achievable

R1 ≤ I(Y1;X1, U1pb|Q)− I(X2;U1pb|X1, Q) (17a)

R2 ≤ I(Y2;X2, U2pb|Q)− I(X1;U2pb|X2, Q) (17b)

R1 +R2 ≤ I(Y1;X1, U1pb|Q) + I(Y2;X2, U2pb|Q)

− I(X2;U1pb|X1, Q)− I(X1;U2pb|X2, Q)

− I(U1pb;U2pb|X1, X2, Q) (17c)

for all the distributions that factors as

PQPX1|QPX2|QPXc,U1pb,U2pb|X1,X2,Q.

Proof: The proof may be found in Appendix G.
The graphical representation of the achievable scheme in

Cor. IV.4 is provided in Fig 3(a).
The scheme in Cor. IV.4 achieves capacity (see Table II)

when the channel reduces to a semi-deterministic BC [45],
[42] and to a semi-deterministic CIFC [1]; in these two
cases the private broadcasted RV for the destination with
noiseless output must equal the noiseless channel output; if
both destination outputs are noiseless, the optimal assignment
is U1pb = Y1 andU2pb = Y2.

2) All common messages: scheme with only
(U1c, U2c, U0cb): We now consider an achievability scheme
where both decoders decode both messages and where,
therefore, no binning or rate splitting is necessary.
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(a) Scheme “all private messages” in Section IV-C1 (b) Scheme “all common messages” in Section IV-C2

(c) Scheme “one common and one private message” in Section IV-C3 (d) Scheme “common from sources and private from relay messages”
in Section IV-C4

Fig. 3. Specific choice of RVs for the general coding scheme inFig. 2. The missing nodes in each figure indicates that the associated auxiliary RV has rate
zero. The remaining nodes are encoded as prescribed by Th. IV.1.

TABLE II
THE CAPACITY RESULTS AVAILABLE FOR BC, IFC AND CIFC AND THE ASSIGNMENT OFRVS IN THE REGION IN(12) THAT ACHIEVE THE

CORRESPONDING REGION.

Sub-scheme # RVs used Capacity result Reference

1 (all private) X1,X2, U1pb, U2pb semi-deterministic BC, semi-det. CIFC [?], [1]
2 (all common) U1c, U2c, U0cb very strong interference CIFC, IFC, IFC-CR [37], [31]
3 (one common, one private) U1p, U2c, U1pb very weak CIFC [18]
4 (common from sources, private from relay)U1c, U2c, U1pb very weak CIFC [18]
Han and Kobayashi region X1,X2, U1c, U2c a class of deterministic IFC [33]
Marton region U0cb, U1pb, U1pb a More capable BC, BC with degraded message set[35], [44]

Corollary IV.5. By consideringX1 = U1c, X2 = U2c, Xc =
U0cb and U1pb = U2pb = ∅ in Thm. IV.1 the following rate
region is achievable

R1 ≤ I(Y1;X1, Xc|X2, Q), (18a)

R2 ≤ I(Y2;X2, Xc|X1, Q), (18b)

R1 +R2 ≤ I(Y1;X1, X2, Xc|Q), (18c)

R1 +R2 ≤ I(Y2;X1, X2, Xc|Q), (18d)

for all distribution that factors as

PQPX1|QPX2|QPXc|X1,X2,Q.

Proof: The proof may be found in Appendix H.
A graphical representation of the achievable rate region in

Cor. IV.5 is depicted in Fig. 3(b).
This scheme achieves capacity (see Table II) when the

channel reduces to a CIFC in the “very strong interference”
regime of [37] and to a IFC in the “strong interference” regime
of [31].

3) One common and one private message: scheme with only
(X1, U2c, U1pb): For a CIFC in the “very weak interference”
regime, capacity is achieved by a fully common primary
message and full private cognitive message [18]. We extend
this transmission strategy to the IFC-CR by considering the
case where one of the two source messages is private while
the other is common.

Corollary IV.6. By consideringU1c = ∅, X2 = U2c =
U0cb, U2pb = ∅, U1pb = Xc in Thm. IV.1 the following rate
region is achievable

R1 ≤ I(Y1;X1, Xc|X2, Q), (19a)

R2 ≤ I(Y2;X2|Q), (19b)

R2 ≤ I(Y1;Xc, X2|X1, Q)}}, (19c)

R1 +R2 ≤ I(Y1;X2, X1, Xc|Q), (19d)

for all distribution that factors as

PQPX1|QPX2|QPXc,U1pb|X1,X2,Q.
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Proof: The proof may be found in Appendix I.
A graphical representation of the achievable rate region of

Cor. IV.6 is depicted in Fig. 3(c).
This scheme achieves capacity (see Table II) when the

channel reduces to a CIFC in the very weak interference
regime [18].

4) Common messages for the sources and private messages
from the cognitive relay: scheme with only(U1c, U2c, U1pb):
Here we aim to expand the scheme that achieves capacity
it the “very weak interference” regime for the CIFC [18]
(see Table II) by having the two sources transmit common
messages while the cognitive relay sends part of a private
message for source 1.

Corollary IV.7. By consideringX1 = U1c, X2 = U2c, Xc =
U1pb, U0cb = U1pb, U2pb = ∅ in Thm. IV.1 the following rate
region is achievable

R1 ≤ I(Y1;X1, Xc|X2, Q) (20a)

R1 ≤ I(Y1;Xc|X1, X2) + I(Y2;X1|X2, Q) (20b)

R2 ≤ I(Y1;X2, Xc|X1, Q) (20c)

R2 ≤ I(Y2;X2|X1, Q) (20d)

R1 +R2 ≤ I(Y1;X1, X2, Xc, Q) (20e)

R1 +R2 ≤ I(Y1;X2, Xc|X1, Q) + I(Y2;X1|X2, Q) (20f)

R1 +R2 ≤ I(Y1;Xc|X1, X2, Q) + I(Y2;X2, X2, Q)
(20g)

R1 + 2R2 ≤ I(Y1;X2, Xc|X1) + I(Y2;X1, X2, Q) (20h)

for some distributions that factor as

PQPX1|QPX1|QPXc|X1,X2,Q.

Proof: The proof may be found in Appendix J.
A graphical representation of the achievable rate region of

Cor. IV.7 is depicted in Fig. 3(d).

V. CAPACITY IN “ VERY STRONG INTERFERENCE ATRX 1”
AND IN “ STRONG INTERFERENCE AT BOTHRXS”

In this section we show the achievability of the outer bound
in Cor. III.4 in the “very strong interference at Rx 1” and the
“strong interference at both Rxs” regime (to be defined later),
which are two subsets of the “strong interference” regime
defined by (6). These results parallel the “very strong inter-
ference” capacity result for the IFC [36] and the CIFC [37],
where, the channel reduces to a compound two-user MAC.
For this class of channels the interfering signal at each
receiver can be decoded without loss of optimality. Since the
interference can always be distinguished from the intended
signal, there is no need to perform interference pre-coding
at the cognitive relay. This greatly simplifies the achievable
scheme required to match the outer bound in Cor. III.4 and
the simple superposition coding scheme in Cor. IV.5 will be
shown to be optimal.

Theorem V.1. Capacity in “very strong interference at
Rx 1”. If

I(Y2;X2, Xc|X1) ≤ I(Y1;X2, Xc|X1) (21a)

I(Y1;X1, X2, Xc) ≤ I(Y2;X1, X2, Xc) (21b)

holds for all distributions that factor asPX1,X2,Xc
=

PX1PX2PXc|X1,X2
(same factorization as in(7)), then the

region in Cor. III.4 is capacity.

Proof: Under the condition in (21a) (which is the same as
the “strong interference at Rx 1” condition in (6)) the region
in (8) is an outer bound for the considered IFC-CR. Consider
now the achievable rate region in Cor. IV.5 given by (18).
Under the condition in (21b) the sum-rate bound in (18d) is
redundant and the resulting region coincides with the outer
bound in (8).

Theorem V.2. Capacity in “strong interference at both
Rxs”. If

I(Y2;X2, Xc|X1) ≤ I(Y1;X2, Xc|X1) (22a)

I(Y1;X1, Xc|X2) ≤ I(Y2;X1, Xc|X2) (22b)

holds for all distributions that factor asPX1,X2,Xc
=

PX1PX2PXc|X1,X2
(same factorization as in(7)), then the

region in (18) is capacity.

Proof: The proof follows similarly to that of Thm. V.1.

VI. T HE GAUSSIAN CASE

In the following, to obtain more of a feel for the channel
model and the conditions under which capacity holds, we
evaluate the “strong interference” outer bound conditionsand
the region in Cor. III.4, as well as the “very strong interfer-
ence” capacity conditions and the region in Thm. V.1 for the
Gaussian IFC-CR (G-IFC-CR).

A. Channel Model

The G-IFC-CR is shown in Fig. 4. Without loss of generality
(see Appendix K) we can restrict our attention to the G-IFC-
CR in standard formgiven by:

Y1 = |h11|X1 + |h2c|Xc + h12X2 + Z1, (23a)

Y2 = |h22|X2 + |h2c|Xc + h21X1 + Z2, (23b)

where hi ∈ C, i ∈ {11, 1c, 12, 22, 2c, 21}, are constant
and known to all terminals,Zi ∼ NC(0, 1), i ∈ {1, 2},
and E[|Xi|2] ≤ 1, i ∈ {1, 2, c}. The channel linkshi, i ∈
{11, 22, 1c, 2c} can be taken to be real-valued without loss of
generality because receivers and transmitters can compensate
for the phase of the signals. The correlation among the noises
is irrelevant because the capacity of the channel without
receiver cooperation only depends on the noise marginal
distributions.

B. Gaussian Channel under “strong interference at Rx 1”

We now evaluate Cor. III.4 and Thm. V.1 for the G-IFC-CR.

Theorem VI.1. The “strong interference at Rx 1” outer
bound for the G-IFC-CR. If

∣∣∣|h22|+ β̃2 |h2c|
∣∣∣
2

≤
∣∣∣h12 + β̃2 |h1c|

∣∣∣
2

(24)
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Fig. 4. The Gaussian IFC-CR in standard form.

for

∡β̃2 = ∡
(
|h2c||h22| − |h1c|h12

)
, (25a)

|β̃2|2 =





1 if |h2c| ≥ |h1c|
min

{
1,

∣∣|h2c||h22|−|h1c|h12

∣∣∣∣|h2c|2−|h1c|2
∣∣

}
if |h2c| < |h1c|

(25b)

the capacity of a G-IFC-CR is contained in the set:

R1 ≤ C

(
||h11|+ β∗

1 |h1c||2 + |h1c|2(1 − |β1|2 + |β2|2)
)
,

(26a)

R2 ≤ C

(
||h22|+ β∗

2 |h2c||2 + |h2c|2(1 − |β1|2 + |β2|2)
)
,

(26b)

R1 +R2 ≤ C
(
||h11|+ β∗

1 |h1c||2 + |h12 + β∗
2 |h1c||2

+|h1c|2(1− |β1|2 + |β2|2)
)
, (26c)

taken over the union of all(β1, β2) ∈ C2 : |β1|2 + |β2|2 ≤ 1,
whereC(x) := log(1 + x).

Proof: The proof may be found in Appendix L.

Theorem VI.2. Capacity in “very strong interference at
Rx 1” for the Gaussian IFC-CR.

If in addition to the condition in(24) the following also
holds
{
(|h11|2 + |h1c|2 + |h12|2)− (|h21|2 + |h2c|2 + |h22|2)

+ 2

√∣∣|h11||h1c| − h21|h2c|
∣∣2 +

∣∣h12|h1c| − |h22||h2c|
∣∣2
}
≤ 0,

(27)

then the region in(26) is capacity.

Proof: The proof may be found in Appendix M.

RemarkVI.3. Thm. VI.2 reduce to known capacity results
in the “very strong interference” regime when the IFC-CR
reduces to a simpler channel:

• When the IFC-CR reduces to an IFC, i.e.,|h1c| = |h2c| =
0, the condition in (24) reduces to the well-known “strong
interference at Rx 1”|h22|2 ≤ |h12|2, and the condition
in (27) to |h11|2 + |h12|2 ≤ |h21|2 + |h22|2 (larger total
received power at Rx 2 than at Rx 1).

• When the IFC-CR reduces to a C-IFC with user 1 as
primary user, i.e.,|h22| = h12 = 0, the condition in (24)

reduces to|h2c|2 ≤ |h1c|2 (strong interference at the
primary receiver) and the condition in (27) to

|h11|2 + |h1c|2 − |h21|2 − |h2c|2
+ 2

∣∣|h11||h1c| − h21|h2c|
∣∣ ≤ 0,

which is the same as the condition in [2, Thm.II.3].
• When the IFC-CR reduces to a C-IFC with user 2 as

primary user, i.e.,|h11| = h21 = 0, the conditions
in (24) and (27) are equivalent toI(Y1;X2, Xc) =
I(Y2;X2, Xc) for all input distributions, that is,

{h12 = |h22|, |h1c| = |h2c|}
or {h12 = |h2c|, |h22| = |h1c|}.

• When the IFC-CR reduces to a BC. i.e.,|h11| = h21 =
|h22| = h12 = 0 the conditions in (24) and (27)
are equivalent toI(Y1;Xc) = I(Y2;Xc) for all input
distributions, that is, a BC with statistically equivalent
receivers, i.e.,|h2c| = |h1c|.

Theorem VI.4. Capacity in “strong interference at both
Rxs” for the G-IFC-CR. When the condition in(24) along
with the symmetric condition for source-destination pair 2
hold, the region

R1 ≤ C

(
||h11|+ β∗

1 |h1c||2 + |h1c|2(1− |β1|2 + |β2|2)
)
,

(28a)

R2 ≤ C

(
||h22|+ β∗

2 |h2c||2 + |h2c|2(1− |β1|2 + |β2|2)
)
,

(28b)

R1 +R2 ≤ C
(
||h11|+ β∗

1 |h1c||2 + |h12 + β∗
2 |h1c||2

+|h1c|2(1 − |β1|2 + |β2|2)
)
, (28c)

R1 +R2 ≤ C
(
|h21 + β∗

1 |h2c||2 + ||h22|+ β∗
2 |h2c||2

+|h2c|2(1 − |β1|2 + |β2|2)
)
, (28d)

taken over the union of all(β1, β2) ∈ C2 : |β1|2 + |β2|2 ≤ 1
is capacity.

Proof: The proof follows similarly to the one of
Thm. VI.1.

RemarkVI.5. Thm. VI.4 reduce to known capacity results
when the IFC-CR reduces to a simpler channel:

• When the IFC-CR reduces to an IFC, i.e.,|h1c| = |h2c| =
0, the condition in (24) reduces to the well-known “strong
interference” regime,{|h22|2 ≤ |h12|2, |h11|2 ≤ |h21|2}.

• When the IFC-CR reduces to a C-IFC with user 1 as
primary user, i.e.,|h22| = h12 = 0 or X2 = ∅, inter-
estingly, the “very strong interference at Rx 1” condition
is equivalent to the “strong interference at both Rx’s”
condition. This can be seen by noticing that forX2 = ∅
the conditions in (21) coincide with the conditions in (22).

• When the IFC-CR reduces to a C-IFC with user 2 as
primary user, i.e.,|h11| = h21 = 0, we have the
equivalent of case|h22| = h12 = 0 in the above bullet
point but with the role of the users swapped.

• When the IFC-CR reduces to a BC. i.e.,|h1c| = |h2c| =
|h22| = h12 = 0 the “strong interference at both
Rx’s” condition and the “very strong interference at
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Rx 1” conditions are the same and are equivalent to
I(Y1;Xc) = I(Y2;Xc) for all input distributions, that
is, |h1c| = |h2c|.

C. Gaussian Channel under “weak interference”

The condition in (9) for the “weak interference at Rx 2”
outer bound in Cor. III.5 is, in general, very hard to verify
as it must hold for a large set of distribution involving an
auxiliary RV. In this section we restrict attention to a special
class of G-IFC-CR in which the condition in (9) is easily
verified, namely a class of “degraded” G-IFC-CR defined by

h21

|h11|
=

|h2c|
|h1c|

:= |ρ| ∈ [0, 1], (29)

so that the channel input/output relationship becomes

Y1 = |h11|X1 + |h1c|Xc + h12X2 + Z1 (30a)

Y2 = |ρ|(|h11|X1 + |h1c|Xc) + |h22|X2 + Z2. (30b)

Since the noise correlation among the noises is irrelevant for
capacity, conditioned onX2 we have the following Markov
chain

Xeq → Y1 → Y2, (31)

Xeq := |h11|X1 + |h1c|Xc,

Y2 ∼ |ρ|Y1 +
√
1− |ρ|2Z0,

Z0 ∼ NC(0, 1) independent of everything else,

in other words, conditioned onX2, the channel in (29) is
equivalent to a SISO degraded BC with inputXeq. From (31)
and for anyPU,X1,X2,Xc

such thatU → (X1, X2, Xc) →
(Y1, Y2) we have that

I(U ;Y2|X2) ≤ I(U ;Y1|X2),

which is exactly the “weak interference at Rx 2” condition
in (9).

Theorem VI.6. The “weak interference at Rx 2” outer
bound for the degraded G-IFC-CR. For the degraded G-
IFC-CR in(29) the capacity region is contained into the region

R1 ≤ C

(
||h11|+ |h1c|β∗

1 |2 α
)

(32a)

R2 ≤ C

(
|ρ|2 ||h11|+ |h1c|β∗

1 |2 + (|h22|+ |ρ||h1c|β∗
2 )

2
)

− C

(
|ρ|2 ||h11|+ |h1c|β∗

1 |2 α
)

(32b)

R2 ≤ C

(
(|h22|+ |ρ||h1c|β∗

2 )
2
)
, (32c)

taken over the union of allα ∈ [0, 1] and (β1, β2) such that
|β1|2 + |β2|2 = 1.

Proof: The proof can be found in Appendix N.

RemarkVI.7. Special cases for the outer bound in Thm. VI.6:

• When |h1c| = 0, the channel in (30) reduces to an IFC
with “weak interference” at receiver 2 whose capacity is
not known. The outer bound in Thm. VI.6 in this case is
looser than the outer bounds in [46], [34]. However, the

Sato-type outer bound in Thm. III.1 reduces to [46] and
the tightened outer bound in [8] reduces to [34].

• When the IFC-CR reduces to a C-IFC with user 1 as
primary user, i.e.,|h22| = h12 = 0, the channel in (30)
reduces to a Gaussian degraded CIFC [1] whose capacity
is not known. The outer bound in Thm. VI.6 in this case
is looser that the outer bound in [1, Cor. 3.5]. In this
case, the best known outer bound in [1, Cor. 3.5] is still
of BC-type, from a MIMO BC with degraded message
set however.

• When the IFC-CR reduces to a C-IFC with user 2
as primary user, i.e.,|h11| = 0, the channel in (30)
reduces to a Gaussian CIFC in weak interference [18]
whose capacity is known [18], [21]. The outer bound in
Thm. VI.6 in this case reduces to capacity.

• When the IFC-CR reduces to a BC. i.e.,|h11| = h21 =
|h22| = 0, the channel in (30) reduces to a degraded SISO
BC whose capacity is known [47]. The outer bound in
Thm. VI.6 in this case reduces to capacity.

VII. N UMERICAL EVALUATIONS

In this section we present a series of numerical evaluations
of the results presented in the paper for the G-IFC-CR with
real-valued inputs and real-valued channel coefficients. Using
numerical examples, we investigate the relationship between
inner and outer bounds as well as the position and extension of
the “strong”, “weak” and “very strong” interference regimes.

In Fig. 5 we depict
• Fig. 5(a): the “strong interference at Rx 1” regime of (24)

and the “very strong interference at Rx 1” regime of (27),
• Fig. 5(b): the “strong interference at Rx 2” regime of (24)

and the “very strong interference at Rx 2” regime of (27),
• Fig. 5(c): the “strong interference” regime of (24) at Rx 1

and at Rx 2 and the “strong interference at both Rxs”
regime of Thm. VI.4,

• Fig. 5(d): the degraded G-IFC-CR of (29) and the “weak
interference” regime of Thm. VI.6,

for fixedh11 = h22 = h1c = h2c = 1 on the plane[h12, h21] ∈
[−10, 10]× [−10, 10].

Since |hc| = |h1c| = |h2c|, from (25) we have that the
“strong interference” condition becomes linear inh21 andh12,
i.e. condition (24) becomes:

∣∣∣|h11|+ |h2c|
∣∣∣
2

≤
∣∣∣h21 + |h2c|

∣∣∣
2

(33)

(|h11| − h21) (|h11|+ h21 + 2|hc|) ≤ 0 (34)

Similarly, since|hc| = |h1c| = |h2c|, the degraded condition
at destination 1 in (29) coincides with|h11| = h21: from
this consideration and given (34), we have that the degraded
channel at destination 1 is also in “strong interference” at
destination 2. Given the symmetry of the channel, we also have
that the degraded channel at destination 2 is also in “strong
interference” at destination 1.

In Fig. 6 we plot the conditions

I(Y1;X1, X2, Xc) = I(Y2;X1, X2, Xc) (35a)

I(Y2;X2, Xc|X1) = I(Y1;X2, Xc|X1) (35b)

I(Y1;X1, Xc|X2) = I(Y2;X1, Xc|X2) (35c)
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(a) The “strong” (blue, hatched) and the “very strong interference at Rx 1”
(blue, cross-hatched) regimes

(b) The “strong” (green, hatched) and the “very strong interference at Rx 2”
(green, cross-hatched) regimes.

(c) The “strong interference at Rx 1” (green hatched) and the“strong
interference at Rx 2” (blue-hatched) regimes.

(d) The degraded the G-IFC-CR for Rx 1(blue, dotted) and Rx 2 (green,
dotted ) and the “weak interference” regime for Rx 1 (blue solid) and Rx 2
(green solid)

Fig. 5. Different parameter regimes for G-IFC-CR withh11 = h22 = 1, h1c = h2c = 2 and [h12, h21] ∈ [−10, 10]× [−10, 10].

for increasing values of|hc| = |h1c| = |h2c| ∈ [1, 5] for
fixed |h11| = |h22| = 1 on the plane[h12, h21] ∈ [−10, 10]×
[−10, 10]. The line corresponding to each condition marks the
boundary of the “strong interference” and the “very strong
interference” conditions at destination 1 and 2. The darker
hues are associated with smaller values of|hc| while lighter
hues with larger values. While the boundaries of the “strong
interference” regime are always linear inh12, h21 for any |hc|,
the “very strong interference” condition is approximated by an
hyperbole for largeh21 andh12.

In Figs. 7, 8 and 9 we compare inner and outer bounds for
three points in the plane[h12, h21] ∈ [−10 : 10] × [−10, 10]
for fixed |h11| = |h22| = |h1c| = |h2c| = 1 :

• Fig. 7: (h12, h21) = (−2,−2), where the Sato type outer
bound of Thm. III.1 holds, but not the outer bounds of
Thm. VI.1 or Thm. VI.6;

• Fig. 8: (h12, h21) = (−2,+1), where the Sato type outer
bound of Thm. III.1 and the “strong interference at Rx 2”
outer bound of Thm. VI.1 hold;

• Fig. 9: (h12, h21) = (0.5,+1), where the Sato type outer
bound of Thm. III.1, the “strong interference at Rx 2”
outer bound of Thm. VI.1 and the “weak interference at
Rx 1” outer bound of Thm. VI.6 hold.

In Fig. 7 we notice that a combination of common and
private message, the scheme in Sec. IV-C3, outperforms the

schemes that utilize only common or only private messages,
the schemes in Sec. IV-C1 and Sec. IV-C2, respectively.
Despite of the good performance of the scheme in Sec. IV-C3,
a substantial distance between inner and outer bound can be
observed. The outer bound of Thm. III.2 is known to be
capacity for the CIFC in “weak” interference, “very strong”in-
terference and for the “primary decodes cognitive” regime [2].
This result shows that the outer bound in Thm. III.2 is not tight
far all the parameter region.

Fig. 8 shows that the “strong interference” outer bound
of Cor. III.4 is tighter than the Sato-type outer bound in
Thm. III.2 for some rate pairs. The scheme with one com-
mon and one private message in Sec. IV-C3 outperforms the
schemes in Sec. IV-C2, Sec. IV-C1 and Sec. IV-C4 although
the performance is comparable for some parameter values.

In Fig. 9 we observe that the “weak interference” outer
bound in VI.6 is tighter than the Sato-type outer bound in III.1
for some rate pairs, although the “strong interference” outer
bound of VI.1 remains the tightest in this case. For this
specific choice of parameters the channel is both in “weak
interference” at destination 1 as well as in “strong interfer-
ence” at destination 2. In this specific regime the scheme
in IV-C3 approaches the strong interference outer bound for
some parameter values. SinceY2 is a degraded version of
Y1 conditioned onX2, loosely speaking, there is no loss of
generality in having receiver 1 decode the message inX2; for
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(a) The conditionI(Y1;X1,X2,Xc) = I(Y2;X1, X2, Xc) for increasingh1c = h2c

(b) The conditionI(Y1;X2,Xc|X1) = I(Y2;X2,Xc|X1) for increasingh1c = h2c

(c) The conditionI(Y1;X1,Xc|X2) = I(Y2;X1,Xc|X2) for increasingh1c = h2c

Fig. 6. The conditions in (35) for|h11| = |h22| = 1 andh1c = h2c ∈ {1 . . . 5}.
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Fig. 7. A plot for |h11| = |h22| = |h1c| = |h2c| = 1 andh12 = h21 = −2.

Fig. 8. A plot for |h11| = |h22| = |h1c| = |h2c| = 1 andh12 = −2, h21 = +1.
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Fig. 9. A plot for |h11| = |h22| = |h1c| = |h2c| = 1 andh12 = .5, h21 = +1.

this reasons one expects the scheme in Sec. IV-C3 to perform
well in this case.

VIII. C ONCLUSION AND FUTURE WORK

We introduce new, general outer bounds for the IFC-CR
that are inspired by capacity results available for the broadcast
channel and the cognitive interference channel. We show the
achievability of one outer bound in the “very strong interfer-
ence” regime by having both decoders decode both messages
as in a compound multiple access channel. This result is very
similar in nature to the “very strong interference” capacity re-
sults for the interference channel and the cognitive interference
channel. We also derive the provably largest achievable rate
region for this channel model by using classical random coding
arguments such as rate splitting, superposition coding and
binning. This region contains all the key transmission features
using in achieving capacity in channels and classes of channels
for which capacity is known. As such, this general achievable
rate region is algebraically complex, but fairly general, and
is shown to reduce to capacity for all sub-channels for which
capacity is known. The contributions of this paper are a first
step to a better understanding of the capacity region of the
cognitive interference channel with a cognitive relay which
remains largely undiscovered.
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APPENDIX A
PROOF OFTHEOREM III.1

From Fano’s inequality, ifPe → 0 asN → ∞ then

H(Wi|Y N
i ) ≤ NǫN with ǫN → 0 as N → ∞,

with i ∈ {1, 2} and thus

N(Ri−ǫN ) ≤ I(Wi;Y
N
i ) ≤ I(Wi;Y

N
i |Wi), i ∈ {1, 2}, i 6= i,

where the last inequality in the above expression follows from
the independence of the source messages.

The rateR1 can be bounded as in (1a) (and similarly for
R2 in (1b)) since

N(R1 − ǫN)

≤ I(W1;Y
N
1 |W2)

Fano’s inequality

= H(Y N
1 |W2)−H(Y N

1 |W1,W2)

Definition of mutual information

= H(Y N
1 |W2, X

N
2 (W2))

−H(Y N
1 |W1,W2, X

N
1 (W1), X

N
2 (W2), X

N
c (W1,W2))

Deterministic encoding

= H(Y N
1 |W2, X

N
2 )−

∑

t

H(Y1,t|X1,t, X2,t, Xc,t)

Memoryless channel

=
∑

t

H(Y1,t|W2, X
N
2 , Y t−1

1 )−
∑

t

H(Y1,t|X1,t, X2,t, Xc,t)

Chain rule for entropy

≤
∑

t

H(Y1,t|X2,t)−
∑

t

H(Y1,t|X1,t, X2,t, Xc,t)

Conditioning reduces entropy

=
∑

t

I(Y1,t;X1,t, Xc,t|X2,t)

Definition of mutual information

= N I(Y1;X1, Xc|X2, Q),

Introduction of time-sharing RV

where, in the last equality,Q is a time sharing RV that is
independent of all other RVs and uniformly distributed on[1 :
N ].
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Next, let Ỹ N
i have the same conditional marginal distribu-

tion as Y N
i , i ∈ {1, 2}. The Sato-type bound [9] sum-rate

bounds in (1c) and (1d) follow since

N(R1 +R2 − 2ǫN)

≤ I(Y N
1 ;W1|W2) + I(Y N

2 ;W2)

Fano’s inequality

≤ I(Y N
1 , Ỹ N

2 ;W1|W2) + I(Y N
2 ;W2)

Non-negativity of mutual information

= I(Y N
1 ;W1|W2, Ỹ

N
2 ) + I(Y N

2 ;W1,W2)

Ỹ N
2 andY N

2 have the same marginal cdf

≤ I(Y N
1 ;XN

1 , XN
c |Ỹ N

2 , XN
2 ) + I(Y N

2 ;XN
1 , XN

2 , XN
c )

≤ N
(
I(Y1;X1, Xc|Ỹ2, X2, Q) + I(Y2;X1, X2, Xc|Q)

)
,

and where the last two inequalities follows from steps similar
to the derivation of the bound onR1 above.

APPENDIX B
PROOF OFTHEOREM III.2

The bound in (3d), and similarly for (3c) but with the role
of the users swapped, is obtained as follows

N(R2 − ǫN)

≤ I(Y N
2 ;W2)

Fano’s inequality

=

N∑

i=1

H(Y2,i|Y N
2,i+1)−H(Y2,i|Y N

2,i+1,W2)

Chain rule for entropy

≤
N∑

i=1

H(Y2,i)−H(Y2,i|Y i−1
1 , Y N

2,i+1,W2, X2,i)

Conditioning reduces entropy

=

N∑

i=1

I(Y2,i;Vi, U2,i, X2,i),

where we defined

Uu,i := [Wu], u ∈ {1, 2},
Vi := [Y N

2,i+1, Y
i−1
1 ].

The bound of (3b), and similarly for (3a) but with the role

of the users swapped, is obtained as follows

N(R2 − ǫN )

≤ I(Y N
2 ;W2|W1)

=

N∑

i=1

H(Y2,i|Y N
2,i+1,W1, X1,i)

−H(Y2,i|Y N
2,i+1,W2, X2,i,W1, X1,i, Xc,i)

≤
N∑

i=1

H(Y2,i|W1, X1,i)

−H(Y2,i|Y i−1
1 , Y N

2,i+1,W2, X2,i,W1, X1,i, Xc,i)

=
N∑

i=1

I(Y2,i;Vi, U2,i, X2,i, Xc,i|U1,i, X1,i)

=
N∑

i=1

I(Y2,i;X2,i, Xc,i|U1,i, X1,i).

The sum-rate bound in (3e), and similarly for (3f) but with
the role of the users swapped, is obtained as

N(R1 +R2 − 2ǫN )

≤ I(Y N
1 ;W1|W2) + I(Y N

2 ;W2)

≤
N∑

i=1

I(Y1,i;W1, Y
N
2,i+1|Y i−1

1 ,W2, X2,i)

+ I(Y2,i;W2, X2,i, Y
N
2,i+1)

=

N∑

i=1

I(Y1,i;Y
N
2,i+1|Y i−1

1 ,W2, X2,i)

− I(Y2,i;Y
i−1
1 |W2, X2,i, Y

N
2,i+1)

+ I(Y1,i;W1|Y i−1
1 , Y N

2,i+1,W2, X2,i)

+ I(Y2,i;W2, X2,i, Y
N
2,i+1, Y

i−1
1 )

(a)
=

N∑

i=1

I(Y1,i;W1|Y i−1
1 , Y N

2,i+1,W2, X2,i)

+ I(Y2,i;Y
N
2,i+1, Y

i−1
1 ,W2, X2,i)

=
N∑

i=1

I(Y1,i;U1,i, X1,i, Xc,i|Vi, U2,i, X2,i),

+ I(Y2,i;Vi, U2,i, X2,i),

=

N∑

i=1

I(Y1,i;X1,i, Xc,i|Vi, U2,i, X2,i) + I(Y2,i;Vi, U2,i, X2,i)

where the equality in (a) follows from the “Csiszár’s sum
identity” [40]. Note that the Markov chain in (4) holds since
for all i ∈ [1 : N ] we have

Vi → (U1,i, U2,i) → (X1,i, X2,i, Xc,i) → (Y1,i, Y2,i)

owing to the cognition structure and the memoryless channel
that imply

PW1,W2,X
N
1 ,XN

2 ,XN
c ,Y N

1 ,Y N
2

= PW1PW2

N∏

i=1

δ(W1 − U1,i)δ(W2 − U2,i)PX1,i|U1,i
PX2,i|U2,i

PXc,i|U1,i,U2,i
PY1,i,Y2,i|X1,i,X2,i,Xc,i

,
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from which the factorization in (5) also follows.
Note that we do not need a time sharing RV here sinceQ

can be incorporated in the RVV without loss of generality.

APPENDIX C
PROOF OFCOROLLARY III.4

Similar to [48, Lem. 4] and [36, Lem. 1], if the condition
in (6) holds for all distributions in (7), then

I(Y2;X2, Xc|X1, U) ≤ I(Y1;X2, Xc|X1, U), (36)

for all PX1,X2,Xc,U = PX1PX2PXc|X1,X2
PU|X1,X2,Xc

. From
this, it follows that when condition (6) holds, the bound in (3f)
may be upper bounded as:

I(Y1;V, U1, X1) + I(Y2;U2, X2, Xc|V, U1, X1)

= I(Y1;V, U1, X1) + I(Y2;X2, Xc|V, U1, X1)

≤ I(Y1;V, U1, X1) + I(Y1;X2, Xc|V, U1, X1)

= I(Y1;X2, Xc, V, U1, X1)

= I(Y1;X1, X2, Xc),

where the last equality follows from the Markov chain in (4)

APPENDIX D
PROOF OFCOROLLARY III.5

Consider dropping from the outer bound in Thm. III.2 all
rate constraints but (3a), (3d) and (3e), i.e., consider theouter
bound

R1 ≤ I(Y1;X1, Xc|U2, X2), (37a)

R2 ≤ I(Y2;V, U2, X2), (37b)

R1 +R2 ≤ I(Y2;V, U2, X2) + I(Y1;X1, Xc|V, U2, X2),
(37c)

We intend to show that when the condition in (9) holds for all
distributions in (10), the region in (37) can be rewritten as

R1 ≤ I(Y1;X1, Xc|V, U2, X2), (38a)

R2 ≤ I(Y2;V, U2, X2), (38b)

which is equivalent to the region in (11a)–(11b) by defining
U = [V, U2]. Successively we show how the rate bound in
(11c) can be added to the region in (38) to obtain a tighter
outer bound.

For any fixedPV,U2,X1,X2,Xc
, the region in (37) has three

Pareto optimal points:

• P1 = (0, (37b)),
• P2 = ((37c)− (37b), (37b)),
• P3 = ((37a), (37c)− (37a)).
• P4 = ((37a), 0).

We now show that the outer bound in (38) contains each of
these points. By considering the union over all the possible
distributionsPV,U2,X1,X2,Xc

we can conclude that the outer
bound in (38) is looser than (37). The corner pointsP1,P2

and P4 are also corner points of the region in (38) for the

samePV,U2,X1,X2,Xc
. Consider the region of (38) forV = ∅,

then the corner pointP3 is included in such region when

I(Y2;U2, X2) ≥ I(Y2;V, U2, X2) + I(Y1;X1, Xc|V, U2, X2)

− I(Y1;X1, Xc|U2, X2)

I(Y2;V |U2, X2) ≥ I(Y1;V |U2, X2)− I(Y1;V |U2, X2, X1, Xc)

I(Y2;V |U2, X2) ≥ I(Y1;V |U2, X2), (39)

where (39) follows from the Markov chain in (4). As for the
App. C, the result of [48, Lem. 4] and [36, Lem. 1] assures
that condition in (9) forU = V implies that

I(Y2;V |U2, X2) ≥ I(Y1;V |U2, X2),

for anyPX2,U2,V , from which it follows that (37) is contained
into (38) when (9) holds. Finally the rate bound in (11c) is
obtained from (11b) by noticing that

R2 ≤ I(Y2;X2, Xc|U1, X1) ≤ I(Y2;X2, Xc|X1) (40)

The bound in (40) is not required to prove capacity for the
CIFC in “weak interference” [18], [21] but it can be tighter
than (11b) for Gaussian IFC-CR in “weak interference” of
Sec. VI-C.

APPENDIX E
PROOF OFTHEOREM IV.1

For easy of notation we omit the time sharing RVQ in the
following. The coding scheme is as follows.

• Class of input distributions
Consider a distribution from (14).

• Rate-splitting
Each independent messageWi, i ∈ {1, 2}, uniformly
distributed on[1 : 2NRi ], is split into four sub-messages:

– Wic: a common message transmitted by sourcei for
both destinations,

– Wip: a private message transmitted by sourcei for
destinationi,

– Wicb: a common message transmitted by the cogni-
tive relay to both destinations,

– Wipb: a private message transmitted by the cognitive
relay to destinationi.

The sub-messages{Wk}k∈{1c,2c,1p,2p,1cb,2cb,1pb,2pb},
are independent withWk uniformly distributed on[1 :
2NRk ] so that

W1 = (W1c,W1p,W1cb,W1pb), (41a)

R1 = R1c +R1p +R1cb +R1pb, (41b)

W2 = (W1c,W2p,W2cb,W2pb), (41c)

R2 = R2c +R2p +R2cb +R2pb. (41d)

• Code-book generation
Given any distribution in (14), the sources and the cog-
nitive relay generate the following codebooks:

– Common message:wic ∈ [1 : 2NRic ] is encoded into
UN
ic (wic) with iid distributionPUic , i ∈ {1, 2}.

– Private message: for a givenwic, wip ∈ [1 : 2NRip ]
is encoded intoXN

i (wip|wic) with iid distribution
PXi|Uic

, i ∈ {1, 2}.
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– Common broadcasted messages: for a
given pair (w1c, w2c), the pair w1cb ∈
[1 : 2NR1cb ], w2cb ∈ [1 : 2NR2cb ] is
encoded into UN

0cb(w1cb, w2cb, b0cb|w1c, w2c),
b0cb ∈ [1 : 2NR′

0cb ], with iid distribution
PU0cb|U1c,U2c

.
– Private broadcasted message: for a

given (w1c, w2c, w1cb, w2cb, b0cb, wip),
wipb ∈ [1 : 2NRipb ] is encoded into
UN
ipb(wipb, bipb|w1c, w2c, w1cb, w2cb, b0cb, wip),

bipb ∈ [1 : 2NR′
ipb ], with distribution

PN
Uipb|U1c,U2c,U0cb,Xi

, i ∈ {1, 2}.

• Encoding
Given w1 = (w1p, w1c, w1cb, w1pb) and w2 =
(w2p, w2c, w2cb, w2pb):

– source 1 sendsXN
1 (w1p|w1c).

– source 2 sendsXN
2 (w2p|w2c).

– First binning step: the cognitive relay looks for an
index b0cb such that

(UN
1c(w1c), X

N
1 (w1p|w1c), U

N
2c(w2c), X

N
2 (w2p|w2c),

UN
0cb(w1cb, w1cb, b0cb|w1c, w2c))

∈ TN
ǫ (PU0cb,X1,X2,U1c,U2c) (42)

If more than one such index satisfies the relationship
in (42), it selects one uniformly at random; if no such
index exists, it setsb0cb = 1 and in this case we say
that a encoding error at the first binning step has
occurred.

– Second binning step: Letb∗0cb be the index deter-
mined at the first binning step. The cognitive relay
looks for a pair of indexes(b1pb, b2pb) such that

(UN
1c(w1c), X

N
1 (w1p|w1c), U

N
2c(w2c), X

N
2 (w2p|w2c),

UN
0cb(w1cb, w1cb, b

∗
0cb|w1c, w2c),

UN
1pb(w1pb, b1pb|w1c, w2c, w1cb, w2cb, b

∗
0cb, w1p),

UN
2pb(w2pb, b2pb|w1c, w2c, w1cb, w2cb, b

∗
0cb, w2p))

∈ TN
ǫ (PU1pb,U2pb,U0cb,X1,X2,U1c,U2c). (43)

If more than one such pair of indices satisfies the re-
lationship in (43), it selects one uniformly at random;
if no such pair exists, it sets(b1pb, b2pb) = (1, 1)
and in this case we say that a encoding error at the
second binning step has occurred.

– For the found triplet(b∗0cb, b
∗
1pb, b

∗
2pb) the cognitive

relay sends a codeword

XN
c (w1pb, b

∗
1pb, w2pb, b

∗
2pb,

w1cb, w2cb, b
∗
0cb, w1c, w2c, w1p, w2p)

jointly typical with all the selected codewords.

• Encoding error analysis
Given the symmetry of the codebook generation, we can
assume without loss of generality that the messages

W1 = (W1c,W1p,W1cb,W1pb) = (1, 1, 1, 1),

W2 = (W2c,W2p,W2cb,W2pb) = (1, 1, 1, 1),

were transmitted. We now derive the conditions under
which encoding is successful with high probability. Let
also (B∗

0cb, B
∗
1pb, B

∗
2pb) be the triplet found by the cog-

nitive relay during the two binning steps of the encoding
process.
Let Ecb, resp.Epb, denote the event that the first binning
step in (42), resp. the second binning step in (43), is not
successful. The probability of encoding error is bounded
by:

Pr[encoding error] ≤ Pr[Ecb] + Pr[Epb|Ec
cb]

whereEc
cb denotes the complement of the eventEcb.

We start by noting that the encoded sequences are gen-
erated iid according to

P (gen) , PU1c,X1PU2c,X2PU0cb|U2c,U1c

PU1pb|U2c,U1c,U0cb,X1
PU2pb|U2c,U1c,U0cb,X2

(44)

but after binning they look as if generated iid according
to

P (enc) , PU1c,X1PU2c,X2PU0cb|U2c,U1c,X1,X2

PU1pb,U2pb|U2c,U1c,U0cb,X1,X2
; (45)

we thus expect the encoding error probability to be of the
form

E

[
log

P (gen)

P (enc)

]

= I(U0cb;X1, X2|U1c, U2c)

+ I(U1pb;X2|U1c, U2c, U0cb) + I(U2pb;X1|U1c, U2c, U0cb)

+ I(U1pb;U2pb|U1c, U2c, U0cb, X1, X2). (46)

The rigorous error analysis is as follows.

– First binning step.Ecb is the event that for allb0cb ∈
[1 : 2NR′

0c ]

(UN
1c(1), X

N
1 (1|1), UN

2c(1), X
N
2 (1|1), UN

0cb(1, 1, b1c|1, 1)
6∈ TN

ǫ (PU1c,X1,U2c,X2,U0cb
),

By standard arguments,Pr[Ecb] → 0 asN → ∞ if

R0cb ≥ I(X1, X2;U0cb|U1c, U2c),

as in (15a).
– Second binning step. Letb∗0cb be the index that was

found to satisfy (42) at the first decoding step. We
bound the probability of error in the second encoding
step as

Pr[Epb|Ec
cb] = Pr

[ 2
NR′

1pb⋂

b1=1

2
NR′

2pb⋂

b2=1

(UN
1c(1), X

N
1 (1|1),

UN
2c(1), X

N
2 (1|1), UN

0cb(1, 1, b
∗
0cb|1, 1),

UN
1pb(1, b1|1, 1, 1, 1, b∗0cb),

UN
2pb(1, b2|1, 1, 1, 1, b∗0cb)) 6∈ TN

ǫ (P (enc))
]

= Pr[K = 0] ≤ Var[K]

E[K]2
,
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whereP (enc) is given in (45), where

K =

2
NR′

1pb∑

b1=1

2
NR′

2pb∑

b2=1

Kb1,b2 ,

with Kb1,b2 the indicator function of the event

(UN
1c(1), X

N
1 (1|1), UN

2c(1), X
N
2 (1|1), UN

0cb(1, 1, b
∗
0cb|1, 1),

UN
1pb(1, b1|1, 1, 1, 1, b∗0cb), UN

2pb(1, b2|1, 1, 1, 1, b∗0cb))
∈ TN

ǫ (P (enc))

The mean value ofK (neglecting all terms that
depend onǫ and that eventually go to zero as
N → ∞) is:

E[K] =

2
NR′

1pb∑

b1=1

2
NR′

2pb∑

b2=1

Pr[Kb1,b2 = 1]

= 2N(R′
1pb+R′

2pb−A)

with

2−NA = Pr[Kb1,b2 = 1] = E[Kb1,b2 ]

=
∑

(uN
1pb,u

N
2pb)∈TN

ǫ (P (enc)|uN
1c,x

N
1 ,uN

2c,x
N
2 )

PN
U1pb|U1c,U2c,X1,U0cb

PN
U2pb|U1c,U2c,X2,U0cb

= 2−N [I(U1pb;X2|U1c,U2c,X1,U0cb)+I(U2pb;X1|U1c,U2c,X2,U0cb)]

2−NI(U1pb;U2pb|U1c,X1,U2c,X2,U0cb)].

The variance ofK (neglecting all terms that depend
on ǫ and that eventually go to zero asN → ∞) is:

Var[K] =

2
NR′

1pb∑

b1=1

2
NR′

2pb∑

b2=1

2
NR′

1pb∑

b′1=1

2
NR′

2pb∑

b′2=1(
Pr[Kb1,b2 = 1,Kb′1,b

′
2
= 1]− Pr[Kb1,b2 = 1]Pr[Kb′1,b

′
2
= 1]

)

≤
∑

b1=b′1, b2=b′2

Pr[Kb1,b2 = 1]

︸ ︷︷ ︸
=E[K]

+
∑

b1=b′1, b2 6=b′2

Pr[Kb1,b2 = 1]Pr[Kb1,b
′
2
= 1|Kb1,b2 = 1]

︸ ︷︷ ︸
=E[K] 2

N(R′
2pb

−B)

+
∑

b1 6=b′1, b2=b′2

Pr[Kb1,b2 = 1]Pr[Kb′1,b2
= 1|Kb1,b2 = 1]

︸ ︷︷ ︸
=E[K] 2

N(R′
1pb

−C)

+
∑

b1 6=b′1, b2 6=b′2

Pr[Kb1,b2 = 1]Pr[Kb′1,b
′
2
= 1|Kb1,b2 = 1]

︸ ︷︷ ︸
=E[K] 2

N(R′
1pb

+NR′
2pb

−D)

with

2−NB = Pr[Kb1,b
′
2
= 1|Kb1,b2 = 1]

=
∑

uN
2pb∈TN

ǫ (P (enc)|uN
1c,x

N
1 ,uN

2c,x
N
2 ,uN

0cb,u
N
1pb)

PN
U2pb|U2c,U1c,U0cb,X2

= 2−NI(U2pb;X1,U1pb|U2c,U1c,X2,U0cb),

and similarly, i.e., swap the role of the users in the
expression above,

2−NC = 2−NI(U1pb;X2,U2pb|U1c,X1,U2c,U0cb),

and finally

2−ND = Pr[Kb′1,b
′
2
= 1|Kb1,b2 = 1]

=
∑

(uN
1pb

,uN
2pb

)∈TN
ǫ (P (enc)|uN

1c,x
N
1 ,uN

2c,x
N
2 ,uN

0cb
)

PN
U2pb|U1c,U2c,X2,U0cb

PN
U1pb|U1c,U2c,X1,U0cb

= 2−NA.

Hence, we can boundPr[K = 0] as:

Pr[K = 0]

≤ 1 + 2N(R′
1pb−C) + 2N(R′

2pb−B) + 2N(R′
1pb+R′

2pb−A)

2N(R′
1pb+R′

2pb−A)

andPr[K = 0] → 0 if

R′
1pb +R′

2pb −A > 0

R′
1pb +R′

2pb −A− (R′
2pb −B) > 0

R′
1pb +R′

2pb −A− (R′
1pb − C) > 0

that is, if

R′
1pb + R′

2pb > A = eq.(15d)

R′
1pb > A−B = eq.(15b)

R′
2pb > A− C = eq.(15c)

since

A = I(U1pb;X2|U1c, U2c, X1, U0cb)

+ I(U2pb;X1|U1c, U2c, X2, U0cb)

+ I(U1pb;U2pb|U1c, X1, U2c, X2, U0cb)

= I(U1pb;X2|U1c, U2c, X1, U0cb) +B

= I(U2pb;X1|U1c, U2c, X2, U0cb) + C.

• Decoding.We only describe the decoding at destination 1
as the same applies to destination 2 with the role of
the users swapped. Destination 1 looks for a unique
quadruplet(w1p, w1c, w1cb, w1pb) and for some quadru-
plet (w2c, w2cb, b0cb, b1pb) such that

(UN
1c(w1c), X

N
1 (w1p|w1c), U

N
2c(w2c),

UN
0cb(w1cb, w1cb, b0cb|w1c, w2c),

UN
1pb(w1pb, b1pb|w1c, w2c, w1cb, w2cb, b0cb, w1p),

) ∈ TN
ǫ (P (dest.1)) (47)
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where

P (dest.1) =
∑

X2,U2pb,Xc

PU1c,X1PU2c,X2

= PU1pb,U2pb,U0cb,Xc|U1c,X1,U2c,X2

= PU1c,X1PU2cPU1pb,U0cb|U1c,X1,U2c
(48)

If none or more than one quadruplet
(w1p, w1c, w1cb, w1pb) is found an error has occurred.

• Decoding Error Analysis.
Let Edest.1 denote the event that the relationship in (47)
is not satisfied by any(w1p, w1c, w1cb, w1pb) or that is it
satisfied by more than one such a quadruplet. We have

Pr[decoding error] ≤ Pr[encoding error]

+ Pr[Edest.1|encoding successful],
wherePr[encoding error] → 0 if the rates are chosen
form the “binning rate region”R0 defined by (12). Hence
we only need to analyze the probability of decoding error
assuming the encoding was successful.
Table III summarizes the possible error events at destina-
tion 1, where a “0” means that the corresponding message
index is in error, a “X” that the corresponding message
index, and bin index if any, is correct, and the “. . .” that
is does not matter whether the corresponding message
index is correct or not as in either case the joint density
needed to evaluate the error event probability factorizes
as if the message were in error (because of superposition
to at least one codeword with a message index in error).
For the cases whereU0cb does not have the correct
dependency on(U1c, U2c, X1), i.e., for all cases listed
in Table III but for eventE8 which is marked as “spe-
cial”, an intuitive analysis of the probability of error is
as follows. Depending on which messages are wrongly
decoded at destination 1, and assuming the encoding steps
were successful, the decoded codewords and the received
Y N
1 are iid jointly distributed according to

P1|⋆ , PU1c,X1PU2cPU0cb|U2c,U1c
PU1pb|U2c,U1c,X1,U0cb

PY1|⋆,
(49)

where “⋆” in (49) indicates the set of correctly decoded
messages. However, the actual transmitted codewords and
the receivedY N

1 considered at destination 1 look as if
they were generated iid according to

P1 , PU1c,X1PU2cPU0cb,U1pb|U2c,U1c,X1
PY1|U2c,U1c,X1,U0cb,U1pb

.
(50)

Hence we expect the probability of error at destination 1
to depend on terms of the type

I1|⋆ = E

[
log

P1

P1|⋆

]

= E

[
log

PU0cb|U1c,U2c,X1
PY1|U2c,U1c,X1,U0cb,U1pb

PU0cb|U1c,U2c
PY1|⋆

]

= I(U0cb;X1|U1c, U2c) + I(Y1;U1c, U2c, X1, U0cb, U1pb|⋆).
(51)

WhenU0cb has the correct dependency on(U1c, U2c, X1),
i.e., only for the “special” eventE8 in Table III, the

densityP1|⋆ in (49) must be modified as follows. We
must usePU0cb|U2c,U1c,X1

(i.e., correct dependency on
(U1c, U2c, X1)) rather thanPU0cb|U2c,U1c

. This results in
the absence of the termI(U0cb;X1|U1c, U2c) in (51).
The rigorous analysis of the error probability is as fol-
lows.

– Pr[E1] andPr[E2]: U1c is in error.
If the decoding of U1c fails, the codewords
(X1, U1cb, U2cb, U1pb) cannot be successfully de-
coded since they are superposed to a wrongU1c.
U2c, which is generated independently ofU1c, can
be in error or not and we shall distinguish the two
cases in the following.
EventE1 in Table III corresponds to the case where
both U1c and U2c are in error (and thus all the
messages superposed to them are in error too); its
probability can be bounded as

Pr[E1] = Pr


 ⋃

w̃1c 6=1,w̃2c 6=1,w̃1p,w̃1cb,w̃2cb,w̃1pb ,̃b0cb ,̃b1pb

(Y N
1 , UN

1c(w̃1c), X
N
1 (w̃1p|w̃1c), U

N
2c(w̃2c),

UN
0cb(w̃1cb, w̃2cb, b̃0cb|w̃1c, w̃2c),

UN
1pb(w̃1pb, b̃1pb|w̃1c, w̃1p, w̃1cb, w̃2cb, b̃0cb)

∈ TN
ǫ (P (dest.1))

]

≤ 2N(R1c+R1p+R2c+L0cb+L1pb)

∑

(yN
1 ,uN

1c,u
N
2c,x

N
1 ,uN

0cb,u
N
1pb)∈TN

ǫ (P (dest.1))

P1|⋆|⋆=∅

≤ 2N(R1c+R1p+R2c+L0cb+L1pb−I1|⋆|⋆=∅),

for P1|⋆ given in (50) andI1|⋆ given in (51) evaluated
for ⋆ = ∅. HencePr[E1] → 0 asN → ∞ if (16a)
holds.
EventE2 in Table III corresponds to the case where
U1c is in error (and thus all the messages superposed
to it are in error too) andU2c is correctly decoded.
Similarly to what done for eventE1, the probability
of eventE2 goes to zero if (16b) holds.

– Pr[E3], Pr[E4] andPr[E5]: X1 is in error.
Similarly to what done for eventE1, the probability
of eventE3 goes to zero if (16c) holds, the probabil-
ity of eventE4 goes to zero if (16d) holds, and the
probability of eventE5 goes to zero if (16f) holds.

– Pr[E6] andPr[E7]: U0cb is in error.
Similarly to what done for eventE1, the probability
of event E6 goes to zero if (16g) holds, and the
probability of eventE7 goes to zero if (16e) holds.

– Pr[E8]: U1pb is in error.
Similarly to what done for eventE1, the probability
of eventE8 goes to zero if (16h) holds.

APPENDIX F
PROOF OFTHM . IV.3

Without loss of generality we may introduce in Thm. IV.1
a new RV Uip and let Xi be a deterministic function of
(Uic, Uip), i.e. Xi = Xi(Uic, Uip), i ∈ {1, 2}.
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TABLE III
POSSIBLE DECODING ERRORS AT DESTINATION1. LEGEND: A “0” MEANS THAT THE CORRESPONDING MESSAGE IS IN ERROR, A “X” THAT THE

CORRESPONDING MESSAGE IS CORRECT, AND THE “ . . .” THAT IS DOES NOT MATTER WHETHER THE CORRESPONDING MESSAGE ISCORRECT OR NOT AS
IN EITHER CASE THE JOINT DENSITY NEEDED TO EVALUATE THE ERROREVENT PROBABILITY FACTORIZES AS IF THE MESSAGE WERE IN ERROR

(BECAUSE OF SUPERPOSITION TO AT LEAST ONE MESSAGE IN ERROR). THE EVENTE8 IS “ SPECIAL” IN THAT THE TERM I(U0cb;X1|U1c, U2c) IN (51)
MUST BE OMITTED.

U1c U2c X1 U0cb U1pb Set⋆ to be used in (51)
w1c w2c w1p (w1cb, w2cb, b0cb) (w1pb, b1pb)

E1 0 0 . . . . . . . . . ∅
E2 0 X . . . . . . . . . U2c

E3 X 0 0 . . . . . . U1c

E4 X X 0 0 . . . U1c, U2c

E5 X X 0 X . . . U1c, U2c, U0cb

E6 X 0 X . . . . . . U1c,X1

E7 X X X 0 . . . U1c,X1, U2c

E8 X X X X 0 U1c,X1, U2c, U0cb (special)

TABLE IV
THE CORRESPONDENCE OFRVS IN THE COMPARISON BETWEEN THE

REGION IN [7] AND THE REGION IN (52).

Region in [7] Region in (52)
U1 U1c

U2 U2c

V1 U1p

V2 U2p

W1 U1pb

W2 U2pb

With

R′
0cb = R1cb = R2cb = R1pb = R2pb = 0, U0cb = ∅,

the achievable rate region in Thm. IV.1 given by (12) becomes

R′
1pb ≥ I(U1pb;U2p|U1c, U2c, U1p) (52a)

R′
2pb ≥ I(U2pb;U1p|U1c, U2c, U2p) (52b)

R′
1pb +R′

2pb ≥ I(U1pb;U2p|U1c, U2c, U1p)

+ I(U2pb;U1p|U1c, U2c, U2p)

+ I(U1pb;U2pb|U1c, U1p, U2c, U2p)
(52c)

R1c +R2c + L1p ≤ I(Y1;U1c, U2c, U1p, U1pb|Q) (52d)

R2c + L1p ≤ I(Y1;U2c, U1p, U1pb|U1c, Q) (52e)

R1c + L1p ≤ I(Y1;U1c, U1p, U1pb|U2c, Q) (52f)

L1p ≤ I(Y1;U1p, U1pb|U1c, U2c, Q) (52g)

L1p = R1p +R′
1pb

R1c +R2c + L2p ≤ I(Y2;U1c, U2c, U2p, U2pb|Q) (52h)

R2c + L2p ≤ I(Y2;U2c, U2p, U2pb|U1c, Q) (52i)

R1c + L2p ≤ I(Y2;U1c, U2p, U2pb|U2c, Q) (52j)

L2p ≤ I(Y2;U2p, U2pb|U1c, U2c, Q) (52k)

L2p = R2p +R′
2pb

for all distributions that factors as

PQPU1c,U1p,X1|QPU2c,U2p,X2|Q

PU1pb,U2pb,Xc|U1c,U1p,U2c,U2p,X1,X2,Q. (53)

In order to compare the special case of our achievable rate
region given by (52) with the region in [7], consider the
correspondence of RVs in Table IV. With this correspondence
we see that the regions in [7, (20)-(31)] and (52) have the same

rate bounds and holds for the same set of input distributions.
Since the region in (52) is a special case of our general
achievable rate region, we conclude that the region in (52)
contains the region in [7].

APPENDIX G
PROOF OFCOROLLARY IV.4

Let R1 = R1p andR2 = R2p, i.e.,

R1c = R2c = R′
0cb = R1cb = R2cb = R1pb = R2pb = 0.

The region in (16) becomes

R′
1pb ≥ I(X2;U1pb|X1) (54a)

R′
2pb ≥ I(X1;U2pb|X2) (54b)

R′
1pb +R′

2pb ≥ I(X2;U1pb|X1) + I(X1;U2pb|X2)

+ I(U1pb;U2pb|X1, X2) (54c)

R1p +R′
1pb ≤ I(Y1;X1, U1pb) (54d)

R2p +R′
2pb ≤ I(Y2;X2, U2pb) (54e)

With

R′
1pb = I(X2;U1pb|X1) + a1, a1 ≥ 0,

R′
2pb = I(X1;U2pb|X2) + a2, a2 ≥ 0,

a1 + a2 = I(U1pb;U2pb|X1, X2),

the achievable rate region in (54) becomes

⋃{
R1p ≤ I(Y1;X1, U1pb)− I(X2;U1pb|X1)− a1,
R2p ≤ I(Y2;X2, U2pb)− I(X1;U2pb|X2)− a2,

where the union is over all(a1, a2) ∈ R2
+ such that

a1 + a2 = I(U1pb;U2pb|X1, X2), which coincides with (17).
Interestingly, we point out that the Fourier-Motzkin elimi-

nation of the region with only(X1, X2, U1pb, U2pb) and with
R1pb ≥ 0 and R2pb ≥ 0 is the same as withR1pb =
0, R2pb = 0.

APPENDIX H
PROOF OFCOROLLARY IV.5

Let R1 = R1c andR2 = R2c, that is

R1p = R2p = L1pb = L2pb = L0cb = 0.
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The region in (16) with U1pb = U2pb = ∅ and
I(X1, X2;U0cb|U1c, U2c) = 0 becomes

R1c +R2c ≤ I(Y1;U1c, U2c, U0cb, X1) (55a)

R1c ≤ I(Y1;U1c, U0cb, X1|U2c) (55b)

R2c +R1c ≤ I(Y2;U1c, U2c, U0cb, X2) (55c)

R2c ≤ I(Y2;U2c, U0cb, X1|U1c) (55d)

which coincides with the region in (18) by choosingX1 =
U1c, X2 = U2c, Xc = U0cb.

APPENDIX I
PROOF OFCOROLLARY IV.6

Let R1 = R1p +R1pb andR2 = R2c, that is

R1c = R2p = L2pb = L0cb = 0.

The region in (16) withU1c = ∅, X2 = U2c, U0cb = U2c and
U2pb = U0c becomes

R2c +R1p +R1pb ≤ I(Y1;X1, U2c, U1pb) (56a)

R2c + R1pb ≤ I(Y1;U2c, U1pb|U1p) (56b)

R1p +R1pb ≤ I(Y1;U1p, U1pb|U2c) (56c)

R1pb ≤ I(Y1;U1pb|X1, U2c) (56d)

R2c ≤ I(Y2;U2c). (56e)

which coincides with the region in (19) by choosingX2 =
U2c, Xc = U1pb.

APPENDIX J
PROOF OFCOROLLARY IV.7

Let R1 = R1c +R1pb andR2 = R2c, that is

R1p = R2p = L2pb = L2pb = L0cb = 0.

The region in (16) withX1 = U1c, X2 = U2c, U0cb = U2c

andU2pb = U0c becomes

R1c +R2c +R1pb ≤ I(Y1;U1c, U2c, U1pb) (57a)

R2c +R1pb ≤ I(Y1;U2c, U1pb|U1c) (57b)

R1c +R1pb ≤ I(Y1;U1c, U1pb|U2c) (57c)

R1pb ≤ I(Y1;U1pb|U1c, U2c) (57d)

R1c +R2c ≤ I(Y2;U1c, U2c) (57e)

R2c ≤ I(Y2;U2c|U1c) (57f)

R1c ≤ I(Y2;U1c|U2c). (57g)

which coincides with the region in (20) by choosingX1 =
U1c, X2 = U2c, Xc = U1pb .

APPENDIX K
THE IFC-CR IN STANDARD FORM

A general IFC-CR is expressed as

Ỹ1 = h̃11X̃1 + h̃1cX̃c + h̃12X̃2 + Z̃1, (58a)

Ỹ2 = h̃22X̃1 + h̃2cX̃c + h̃21X̃1 + Z̃2, (58b)

for h̃i, i ∈ {11, 22, 1c, 2c, 12, 21}, E[|X̃j |2] ≤ P̃j , j ∈
{1, 2, c} and E[|Z̃k|2] = σ2

k, k ∈ {1, 2}. Assuming without

loss of generality that all the entries of(P̃1, P̃2, P̃c, σ
2
1 , σ

2
2)

are strictly positive,4 consider now the transformation

Y1 =
Ỹ1

σ1
e−j∠h̃1c Y2 =

Ỹ2

σ2
e−j∠h̃2c

X1 =
X̃1√
P̃1

e−j(∠h̃11+∠h̃1c) X2 =
X̃2√
P̃2

e−j(∠h̃22+∠h̃2c)

Xc =
X̃c√
P̃c

|h11| =

√
P̃1|h̃11|
σ1

|h22| =

√
P̃2|h̃22|
σ2

|h1c| =

√
P̃c|h̃1c|
σ1

|h2c| =

√
P̃c|h̃2c|
σ2

|h12| =

√
P̃2h̃12

σ1
e−j∠h̃11 |h21| =

√
P̃1h̃21

σ2
e−j∠h̃22 .

Since the above transformation is invertible, the channel
in (58) is equivalent to the channel in (23).

APPENDIX L
PROOF OFTHEOREM VI.1

Given the “Gaussian maximizes entropy” property [50] we
have that the union over all the distributions in (2) of the
region in (8) is equal to the union over all distributions with
Q = ∅ and [X1, X2, Xc] zero-mean proper-complex Gaussian
with covariance matrix

Cov(X1, X2, Xc) =




1 0 β1

0 1 β2

β∗
1 β∗

2 1


 := S, (59)

for (β1, β2) ∈ C2 such that|β1|2 + |β2|2 ≤ 1. With (59) we
write:

Xc = β∗
1X1 + β∗

2X2 +
√
1− |β1|2 + |β2|2Xc,in.,

for X1, X2, Xc,in. iid N(0, 1), from which

Yj =
[
hj1 + β∗

1 |hjc|
]
X1 +

[
hj2 + β∗

2 |hjc|
]
X2

+ |hjc|
√
1− |β1|2 + |β2|2Xc,in. + Zj, j ∈ {1, 2}.

and thus, conditioned onX1, we have thatYj is distributed as

[
hj2+β∗

2 |hjc|
]
X2+|hjc|

√
1− |β1|2 + |β2|2Xc,in.+Zj, j ∈ {1, 2}.

4 If P̃1 = 0, P̃2 = 0, P̃c = 0 the channel capacity is triviallyR1 = R2 =
0. If P̃1 = 0, P̃2 = 0, P̃c > 0 the channel is equivalent to a Gaussian BC
with input Xc whose capacity is known [47]. If̃P1 = 0, P̃2 > 0, P̃c = 0,
and similarly if P̃1 > 0, P̃2 = 0, P̃c = 0, the channel is a Gaussian point-to-
point channel whose capacity is known [49]. IfP̃1 = 0, P̃2 > 0, P̃c > 0, and
similarly if P̃1 > 0, P̃2 = 0, P̃c > 0, the channel is equivalent to a Gaussian
CIFC whose capacity is known to within 1 bit [2]. If̃P1 > 0, P̃2 > 0, P̃c =
0, the channel is a Gaussian IFC whose capacity is known to within 1 bit [34].
If either of the noise variances is zero, the corresponding channel has infinite
capacity, which does not have any physical meaning.
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Since the condition in (6) must hold for all(β1, β2) ∈ C2 such
that |β1|2 + |β2|2 ≤ 1, we obtain

for all Gaussian inputsI(Y2;X2, Xc|X1) ≤ I(Y1;X2, Xc|X1)

⇐⇒ ∀(β1, β2) ∈ C
2 : |β1|2 + |β2|2 ≤ 1

C(||h22|+ β∗
2 |h2c||2 + |h2c|2(1 − |β1|2 + |β2|2))

≤ C(|h12 + β∗
2 |h1c||2 + |h1c|2(1− |β1|2 + |β2|2))

⇐⇒ ∀(β1, β2) ∈ C
2 : |β1|2 + |β2|2 ≤ 1

|h2c|2(1− |β1|2) + |h22|2 + 2|h2c||h22|ℜ{β2}
≤ |h1c|2(1− |β1|2) + |h12|2 + 2|h1c|ℜ{h12β2}

⇐⇒ max
|β1|2+|β2|2≤1

{(|h2c|2 − |h1c|2)(1− |β1|2)

+ 2ℜ{(|h2c||h22| − |h1c|h12)β2}} ≤ |h12|2 − |h22|2

⇐⇒ max
|β1|2≤1

{(|h2c|2 − |h1c|2)(1− |β1|2)

+ 2
∣∣∣|h2c||h22| − |h1c|h12

∣∣∣
√
1− |β1|2} ≤ |h12|2 − |h22|2,

where in the last step the optimalβ2 is

β2 = e−j∡(|h2c||h22|−|h1c|h12)
√
1− |β1|2.

Let now
√
1− |β1|2 = x,

|h2c|2 − |h1c|2 = a,∣∣∣|h2c||h22| − |h1c|h12

∣∣∣ = |b|.

The quadratic functionf(x) = ax2 + 2|b|x is non-decreasing
in x ∈ [0, 1] if ax + |b| ≥ 0. If a ≥ 0: +|a|x + |b| ≥ 0 for
all x ∈ [0, 1] hencex = 1 is optimal. Else (i.e., ifa < 0):
−|a|x + |b| ≥ 0 for x ≤ |b|/|a|. Thus, if a < 0, |b|/|a| ≤ 1:
x = |b|/|a| ∈ [0, 1] is optimal, and ifa < 0, |b|/|a| > 1: x = 1
is optimal. This shows the optimalβ2 is the one given in (25).

APPENDIX M
PROOF OFTHEOREM VI.2

With the parameterization in (59) the condition in (21b) can
be rewritten as

for all Gaussian inputs: I(Y1;X1, X2, Xc) ≤ I(Y2;X1, X2, Xc)

⇐⇒ ∀(β1, β2) ∈ C
2 : |β1|2 + |β2|2 ≤ 1

C(||h11|+ β∗
1 |h1c||2 + |h12 + β∗

2 |h1c||2

+ |h1c|2(1− |β1|2 + |β2|2))
≤ C(|h21 + β∗

1 |h2c||2 + ||h22|+ β∗
2 |h2c||2

+ |h2c|2(1− |β1|2 + |β2|2))
⇐⇒ (|h11|2 + |h1c|2 + |h12|2)− (|h21|2 + |h2c|2 + |h22|2)
+ max

|β1|2+|β2|2≤1
2ℜ(β1 (|h1c||h11| − |h2c|h21)

+ β2 (|h1c|h12 − |h2c||h22|)) ≤ 0

⇐⇒ (|h11|2 + |h1c|2 + |h12|2)− (|h21|2 + |h2c|2 + |h22|2)
+ 2 max

|β1|2+|β2|2≤1
{
∣∣∣β1

∣∣∣
∣∣∣|h1c||h11| − |h2c|h21

∣∣∣

+
∣∣∣β2

∣∣∣
∣∣∣|h1c|h12 − |h2c||h22|

∣∣∣} ≤ 0

⇐⇒ (|h11|2 + |h1c|2 + |h12|2)− (|h21|2 + |h2c|2 + |h22|2)

+ 2

√∣∣∣|h1c||h11| − |h2c|h21

∣∣∣
2

+
∣∣∣|h1c|h12 − |h2c||h22|

∣∣∣
2

≤ 0.

We next show that, givenA ≥ 0 andB ≥ 0:
√
A2 +B2 = max{xA+ yB} s.t. x2 + y2 ≤ 1

Indeed, fort ≥ 0 let the Lagrangian be:

L = xA+ yB − 2/t(x2 + y2 − 1)

then at the optimal point

dL/dx = A− x/t = 0 ⇐⇒ x = At

dL/dy = B − y/t = 0 ⇐⇒ y = Bt

hence the optimal Lagrangian multiplier is

x2 + y2 = (A2 +B2)t2 = 1 ⇐⇒ t =
1√

A2 +B2
.

APPENDIX N
“W EAK INTERFERENCE” OUTER BOUND FOR THEIFC-CR

We now evaluate the “weak interference at Rx 1” outer
bound in Cor. III.5 for the channel model in (30). We proceed
as in [18]. We must evaluate the region

R1 ≤ I(Y1;X1, Xc|X2, U)

= h(Y1 − h12X2|X2, U)− log(πe),

R2 ≤ I(Y2;X2, U) = h(Y2)− h(Y2|X2, U)

≤ log(Var
[
Y2])− [h(Y2 − |h22|X2|X2, U)− log(πe)],

for all distribution that factors as in (10). As for the El Gamal’s
converse for the degraded BC we have

h(Z1) = h(Y1|X1, X2, Xc) ≤ h(Y1|X2U) ≤ h(Y1 − h12X2|X2)

⇐⇒ log(1) ≤ h(Y1|X2U)− log(πe)

≤ log
(
1 + Var

[
Xeq

∣∣X2

])
,

whereXeq := |h11|X1 + |h1c|Xc as defined in (31).
Hence there must exist anα ∈ [0, 1] such that

h(Y1|X2U)− log(πe)

= log
(
1 + αVar

[
Xeq

∣∣X2

])
.

Moreover, since conditioned onX2 the channel in (30) is
degraded, the (scalar) Entropy Power Inequality (EPI) [51]
for complex-valued RVs grants

2h(Y2|X2,U) = 2h(|ρ|Xeq+
√

1−|ρ|2Z0|X2,U)

≥ |ρ|22h(Y1|X2,U) + (1− |ρ|2)2h(Z0)

which implies

h(Y2|X2, U)− log(πe) ≥ log
(
1 + αVar

[
Xeq

∣∣X2

])
.

With this we obtain

R1 ≤ C
(
αVar

[
Xeq

∣∣X2

])
,

R2 ≤ C
(
Var

[
|ρ|Xeq + |h22|X2

])
− C

(
α|ρ|2Var

[
Xeq

∣∣X2

])
.

Moreover, from (1b) we also have

R2 ≤ I(Y2;X2, Xc|X1Q)

≤ log
(
1 + Var

[
Y2 − |ρ||h11|X1 | X1

])
.
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By considering the input covarianceS defined in (59), for a
fixed (β1, β2) : |β1|2 + |β2|2 ≤ 1 we obtain

Var
[
X1 + |ρ|Xc

∣∣ X2

]

= 1 + |ρ|2(1− |β2|2) + 2|ρ|ℜ{β1}
≤ 1 + |ρ|2 |β1|2 + 2|ρ|ℜ{β1}
=

∣∣1 + |ρ|β1

∣∣2

Var
[
|h21|(X1 + |ρ|Xc) + |h22|X2

]

= |h21|2(1 + |ρ|2) + |h22|2 + 2|h21||h22||ρ|ℜ{β2}
≤ |h21|2(1 + |ρ|2) + |h22|2 + 2|h21| |h22| |ρ| |β2|
≤ |h21|2(1 + |ρ|2) + |h22|2 + 2|h21| |h22| |ρ|

√
1− |β1|2

Var
[
|h21||ρ|Xc + |h22|X2

∣∣ X1

]

= |h21|2|ρ|2(1− |β1|2) + |h22|2 + 2|h21||ρ||h22|ℜ{β2}
≤ |h21|2|ρ|2(1− |β1|2) + |h22|2 + 2|h21| |ρ| |h22| |β2|
≤ |h21|2|ρ|2(1− |β1|2) + |h22|2 + 2|h21| |ρ| |h22|

√
1− |β1|2

= (|h21||ρ|
√
1− |β1|2 + |h22|)2

Note that the above shows that we can only consider|β1|2 +
|β2|2 = 1 without loss of generality. With this, we obtain the
region in (32).
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