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Abstract

We consider the problem of 20 questions with noise for multiple players under the minimum entropy criterion
[1] in the setting of stochastic search, with application to target localization. Each player yields a noisy response
to a binary query governed by a certain error probability. First, we propose a sequential policy for constructing
questions that queries each player in sequence and refines the posterior of the target location. Second, we consider
a joint policy that asks all players questions in parallel at each time instant and characterize the structure of the
optimal policy for constructing the sequence of questions. This generalizes the single player probabilistic bisection
method [1], [2] for stochastic search problems. Third, we prove an equivalence between the two schemes showing
that, despite the fact that the sequential scheme has access to a more refined filtration, the joint scheme performs
just as well on average. Fourth, we establish convergence rates of the mean-square error (MSE) and derive error
exponents. Lastly, we obtain an extension to the case of unknown error probabilities. This framework provides a
mathematical model for incorporating a human in the loop for active machine learning systems.

Index Terms

Optimal query selection, machine-machine-interaction, target localization, convergence rate, minimum entropy,
human-aided decision making.

I. INTRODUCTION

What is the intrinsic value of adding another sensor in a network performing sequential estimation of a target
driven by active queries? How can two or more experts communicating over noisy binary symmetric channels
best collaborate to localize a target when the channel crossover probabilities are unknown? A simple model for
answering these questions is a collaborative multi-player 20 questions game, where the players (sensors or experts)
in the network are repeatedly queried about the location of an unknown target X∗ in order to improve estimation
performance. This paper proposes such a 20 questions framework for sequentially optimizing the queries in a general
setting that can handle multiple players (sensors) with different levels of accuracy, which can be time varying, and
different costs of querying.

Motivated by the approach of Jedynak, et al., [1], which was restricted to the single player case, we model the
player interactions as a noisy collaborative 20 questions game. In this framework a controller sequentially selects
a set of questions about target location and uses the noisy responses of the players to formulate the next set of
questions. Under flexible noisy query-response models for errors in the player’s responses, we derive the optimal
query policy, establish an equivalence theorem, and obtain tight performance bounds. We illustrate the flexibility of
our general framework by specializing the theory to a simple human-machine interaction model, incorporating a time
varying error model previously proposed for modeling human response [3]. The query response models assumed for
the human and the machine are different, but complementary. While the machine’s accuracy is constant over time,
the target localization accuracy of the human degrades over time (as in the derivative-free optimizers (DFO) model
of Jamieson et al [3]), reflecting the human’s decreased ability to resolve questions about the precise target location
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near the end of the game. Our model predicts that the value of including the human-in-the-loop (as measured by a
quantity called the human gain ratio (HGR)) initially increases when localization errors are large, and then slowly
decreases over time as the location errors go below the human’s fine resolution capability.

While not pursued in this paper, another possible application of our collaborative 20 questions framework is
crowdsourcing. Crowdsourcing systems distribute a large number of tasks to many workers in order to efficiently
solve large-scale data-processing tasks in various domains. Under a fairly general model of crowdsourcing tasks,
the problem of minizing the number of task assignments subject to a constraint on the overall reliability is studied
in [4]. Karger et al. [4] propose a non-adaptive algorithm for deciding which tasks to allocate to which workers. The
algorithm also tries to infer the correct answers given the noisy workers’ responses. In [4], it is shown that adaptive
and non-adaptive allocation approaches behave similarly in terms of their ability to optimize the task assignment to
workers subject to the worker reliability constraints. Our framework might be used in the design of crowdsourcing
systems for target search problems to optimize the questions assigned to workers that operate with different levels
of accuracy (and may be unknown).

The roots of optimal query design lie in stochastic control [5], [6]. Applications of this methodology include
active learning [7], [8], [9], [2] and sequential experimental design [10], [11]. For Bayesian formulations it is known
that the Bayes-optimal policy that arises is the solution to a partially observed Markov decision process (POMDP),
which is described by a dynamic programming recursion. While it is sometimes possible to obtain explicit solutions
to this recursion [12], [13], in many cases it is intractable. As a result, when the globally optimal policy is too
difficult to compute, a one-step lookahead heuristic is often used as a greedy approximation [14].

A key motivator for our work is the paper by Jedynak et al [1], where a Bayesian formulation is considered for
sequential estimation of the target location. The problem was formulated in the context of a 20 questions game
and it was shown that the greedy policy is Bayes-optimal under a minimum expected entropy criterion. In addition,
under a noisy response and a symmetric noise model, bisecting the posterior yields globally optimal policies after
a finite number of questions. This posterior bisection policy has been called the probabilistic bisection algorithm
(PBA), or Horstein’s scheme, and has roots in information theory [15] in the context of sequential encoding of
a message through a binary symmetric channel (BSC). The origins of the entropy minimizing 20 questions game
lie in information theoretic formulations of binary search [16]. The binary search procedure was further studied in
[17], where under incoherence conditions, the generalized binary search (GBS) can learn a “correct” binary-valued
function through a sequence of O(logN) queries in a space of N hypothesized functions. This method has also
been applied to the problem of learning halfspaces in machine learning. Another related work is Hegedus’s halving
algorithm [18] that attempts to identify an unknown target concept c∗ chosen from a known concept class C, making
queries about c∗. It was shown in [18] that any target concept can be identified in at most blog |C|c queries. A
variant of the 20 questions problem for target search was also studied in the context of noisy comparison trees [19],
where query complexity bounds were derived for various search-related problems, including binary search, sorting
and merging.

Another problem related to target search is stochastic root-finding. In this problem, the target is the zero of a
decreasing function f , and the task is to locate the root of f given noisy observations of the function. The controller
chooses the query points x1, x2, ... and observes noisy versions of f(x1), f(x2), .... The queries in this setting are
questions of the form “Is f(x) < 0?”, and rates of convergence are well known. In [20], it was shown that under
mild conditions on the noisy response models, a probabilistic bisection method converges to the root of f almost
surely. In addition, for the constant error rate case, it was also shown that it converges exponentially fast; contrary
to the best stochastic approximation rate of n−1/2 [21], [22].

A. Contributions

All the aformentioned works consider the single player case-i.e., a single query is designed at each time instant and
a single noisy response on the target’s location is obtained. In this paper, we consider the collaborative multiplayer
case and derive corresponding optimality conditions for optimal query strategies when there is no restriction on
query complexity. We propose a sequential bisection policy for which each player responds to a single question
about the location of the target, and a joint policy where all players are asked questions simultaneously. We show
that even when the collaborative players act independently, jointly optimal policies require overlapping non-identical
queries. We prove that the maximum entropy reduction for the sequential bisection scheme is the same as that of
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the jointly optimal scheme, and is given by the sum of the capacities of all the players’ channels. This is important
since, while the jointly optimal scheme might be hard to implement as the number of players and dimensions
increase, the sequential scheme only requires a sequence of bisections followed by intermediate posterior updates.
Thus, by implementing the sequential policy, complexity is transferred from the controller to the posterior updates.
Despite the fact that the optimal sequential policy has access to a more refined filtration, it achieves the same
average performance as the optimal joint policy. An anonymous reviewer pointed out that this equivalence result
is good news for applications where it is impractical to perform sequential queries, e.g., in experimental biology
where multiple experiments are most easily performed in a batch instead of sequentially.

We also extend the results to the case where there are costs to querying different players. Specifically, we consider
the player selection problem in addition to the query design problem and strike a balance between uncertainty
reduction on the target’s location and cost of each player. This is important in practice. For example, it may be
that the more accurate a player is, the higher the cost of use.

We extend this equivalence of jointly designed and sequentially designed queries to the setting where the error
channels associated with the players are unknown. In this case, we show that the expected entropy loss at each
iteration is no longer constant; it is time-varying and equals the conditional expectation of the sum of the capacities
of the players’ channels with respect to the filtration up to the current time. In addition, we show that even for
one-dimensional targets, the optimal policy for the unknown channel case is not equivalent to the probabilistic
bisection policy.

The work by Castro and Nowak [2], [8] provides upper bounds on the MSE of the median of the posterior
distribution of the target for the single player case. We extend their MSE bounds to the multiplayer case and provide
new lower bounds on MSE by linking our information theoretic analysis to convergence rates. The combination of
the upper and lower bounds sandwiches the MSE between two exponentially decaying functions of the number of
plays in the 20 questions game.

Our 20 questions framework bears some similarity to other binary forced choice problems that have appeared in
the literature. This includes educational testing, e.g., using dynamic item response models [23], and active learning,
e.g., using paired comparisons for ranking two objects [24]. Like the 20 questions framework, in [23], [24], a
sequence of binary questions is formulated by a controller. However, the 20 questions problem considered in this
paper is quite different. The goals are not the same: in contrast to sequential testing considered in [23], [24], here as
in [1] we consider sequential estimation of a continuous valued target state. Furthermore, in [23], [24] the queries
are posed to a single player whereas we consider multiple players who cooperate to accomplish posterior entropy
minimization.

B. Outline

The outline of this paper is as follows. Section II provides background and introduces some notation for the
20 questions problem. Section III introduces the collaborative player setup. It introduces the sequential bisection
policy and the joint policy, and establishes that the respective optimal policies attain identical performance. Section
IV derives performance bounds on the MSE and Section V develops similar bounds for a human error model.
Section VI extends the analysis to the case when the error probabilities are not known. The theory is illustrated by
simulation in Section VII and is followed by our conclusions in Section VIII.

II. NOISY 20 QUESTIONS WITH A SINGLE PLAYER

Jedynak, et al. [1] formulate the single player 20 questions problem as follows. A controller queries a noisy
oracle about whether or not a target X∗ lies in a measurable set An ⊂ Rd.1 At time n, the noisy response Yn+1

is a probabilistic function of the indicator function Zn = I(X∗ ∈ An) and the mapping is modeled as a binary
memoryless and time-invariant channel. Each query-response pair (An, Yn+1) transforms the posterior distribution
from pn(·) to pn+1(·). Starting with a prior distribution on the target’s location p0(·), the objective in [1] is to
minimize the expected entropy of the posterior distribution pN (·) after having asked N questions:

inf
ζ
Eζ [H(pN )] , (1)

1For technical reasons, this is taken to be the union of at most Jn half-open intervals in the problem formulation of [1].
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where ζ = (ζ0, ζ1, . . . ) denotes the controller’s query policy and Eζ [·] denotes the expectation taken with respect
to the probability measure on {An, Yn+1}N−1

n=0 induced by the policy ζ. The entropy is the standard differential
entropy [16]:

H(p) = −
∫
X
p(x) log p(x)dx.

The median of the posterior distribution pN (·) is used to estimate the target location after N questions. Jedynak
[1] shows the bisection policy is optimal under the minimum entropy criterion. To be concrete, in Theorem 2 of
[1], optimal policies are characterized by:

Pn(An) :=

∫
An

pn(x)dx = u∗ ∈ arg max
u∈[0,1]

φ(u), (2)

where
φ(u) = H(f1u+ (1− u)f0)− uH(f1)− (1− u)H(f0)

is nonnegative. The densities f0 and f1 correspond to the noisy channel 2:

P(Yn+1 = y|Zn = z) = f0(y)I(z = 0) + f1(y)I(z = 1),

where Zn = I(X∗ ∈ An) ∈ {0, 1} is the channel input. While the framework applies to both continuous and
discrete random variables y, in [1] the focus was on the binary case-i.e., y ∈ {0, 1}. The noisy channel models the
conditional probability of the response to each question being correct. For the special case of a binary symmetric
channel (BSC), in (2) u∗ = 1/2 and the probabilistic bisection policy [1], [2] becomes an optimal policy.

III. NOISY 20 QUESTIONS WITH COLLABORATIVE PLAYERS: KNOWN ERROR PROBABILITY

Assume that there is a target with unknown state X∗ ∈ X ⊂ Rd. We focus on the case where the target state is
spatial location, i.e., in d = 2 or 3 dimensions. However, our results are applicable to higher dimensions also, e.g.,
where X∗ is a kinematic state or some other multi-dimensional target feature. Starting with a prior distribution
p0(·) on X∗, the aim is to find an optimal policy for querying a set of players about the target state. The policy’s
objective is to minimize the expected Shannon entropy of the posterior distribution pn(·) of the target location after
n questions.

There are M collaborating players that can be asked questions at each time instant n. The objective of the
players is to come up with the correct answer to a kind of 20 questions game. Next, we introduce two types of
query design strategies. The first is a sequential strategy where the controller formulates and asks questions to each
player in sequence. The second is a batch strategy where the questions are formulated and directed to all players
simultaneously. For fixed n both strategies ask the same number of questions. However, the sequential strategy has
the advantage of being able to use the answer of the previous player to better formulate a question to the next one.
Below we show that, despite this advantage, the average entropy reduction performances of these two strategies
are identical.

A. Sequential Query Design

The sequential strategy is the following coordinate-by-coordinate design: ask an optimal query to the first player,
then update the posterior density and ask an optimal query to the second player, and so on (see Figure 1). In [1],
the optimal query policy for the case of a single player (M=1) was shown to be a bisection rule.

For each time epoch, indexed by n and called a cycle, the controller formulates and asks the M players questions
Ant = An,t, t = 0, . . . ,M − 1. We denote by nt = (n, t) the times at which the queries are asked.

Let the mth player’s query at time nt = nm−1 be “does X∗ lie in the region Ant ⊂ Rd?”. We denote the truth
state of the query as the binary variable Znt = I(X∗ ∈ Ant) ∈ {0, 1} and the noisy binary response of the mth
player is Ynt+1

∈ {0, 1}.
The query region Ant chosen at time nt depends on the information available at that time. More formally, define

the multi-index (n, t) where n = 0, 1, . . . indexes over cycles and t = 0, . . . ,M − 1 indexes within cycles. Define
the nested sequence of sigma-algebras Gn,t, Gn,t ⊂ Gn+i,t+j , for all i ≥ 0 and j ∈ {0, . . . ,M − 1− t}, generated

2The function I(A) is the indicator function throughout the paper-i.e., I(A) = 1 if A is true and zero otherwise.
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Fig. 1. Controllers sequentially ask questions to M collaborative players about the location X∗ of an unknown target. At time
n, the first controller chooses the query I(X∗ ∈ An,0) based on the posterior pn. Then, player 1 yields the noisy response
Yn,1 that is used to update the posterior, and the second controller chooses the next query I(X∗ ∈ An,1) for player 2 based
on the updated posterior, and so on.

Player 1

Player M

Fusion 

Center

Joint 

Controller

.

.
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Fig. 2. A controller asks a batch questions of M collaborative players about the location X∗ of an unknown target. At time
n, the controller chooses the queries I(X∗ ∈ A(m)

n ) based on the posterior pn. Then, the M players yield noisy responses
Y

(m)
n+1 that are fed into the fusion center, where the posterior is updated and fed back to the controller at the next time instant
n+ 1.

by the sequence of queries and the players’ responses. The filtration Gn,t carries all the information accumulated
by the controller from time (0, 0) to time (n, t). The queries {An,t} formulated by the controller are measurable
with respect to this filtration.

B. Joint Query Design

Let the mth player’s query at time n be “does X∗ lie in the region A
(m)
n ⊂ Rd?”. We denote this query as

the binary variable Z(m)
n = I(X∗ ∈ A(m)

n ) ∈ {0, 1} to which the player provides a possibly incorrect (i.e., noisy)
binary response Y (m)

n+1 ∈ {0, 1}. We consider a similar setting as in [1], which applied to the M = 1 player case,
but now we have a joint controller that chooses a batch of M queries {A(m)

n }Mm=1 that are addressed to each of
the M players at time n. A block diagram is shown in Figure 2.

As in the sequential query design, the joint queries are selected based on the accumulated information available
to the controller. However, since the full batch of joint queries are determined at the beginning of the n-th cycle,
the joint controller only has access to a coarser filtration Fn, Fn−1 ⊂ Fn, as compared with the filtration Gn,t of
the sequential controller.

C. Definitions & Assumptions

We next present a set of assumptions and definitions that will be used throughout the paper.
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Define the M -tuples Yn+1 = (Y
(1)
n+1, . . . , Y

(M)
n+1 ) and An = {A(1)

n , . . . , A
(M)
n }.

Assumption 1. (Conditional Independence) We assume that the players’ responses are conditionally independent.
In particular, for the joint controller,

P(Yn+1 = y|An, X
∗ = x,Fn)

=

M∏
m=1

P(Y
(m)
n+1 = y(m)|A(m)

n , X∗ = x,Fn), (3)

where

P(Y
(m)
n+1 = y(m)|A(m)

n , X∗ = x,Fn)

=

{
f

(m)
1 (y(m)|A(m)

n ,Fn), x ∈ A(m)
n

f
(m)
0 (y(m)|A(m)

n ,Fn), x /∈ A(m)
n

. (4)

Similar relations hold for the sequential controller under the conditional independence assumption: in (3) and (4)
simply change the subscripts n and n+ 1 to nt and nt+1, respectively, and replace the filtration Fn by Gn,t.

Assumption 2. (Memoryless Binary Symmetric Channels) We model the players’ responses as independent (mem-
oryless) binary symmetric channels (BSC) [16] with crossover probabilities εm ∈ (0, 1/2). In particular, for the
joint query strategy, the conditional probability mass function f

(m)
j = P(Y

(m)
n = j|A(m)

n ,Fn) of the response of
the m-th player is:

f
(m)
j (y(m)|A(m)

n ,Fn) = f
(m)
j (y(m))

=

{
1− εm, y(m) = j

εm, y(m) 6= j

where m = 1, . . . ,M, j = 0, 1. We note that the channel may depend on the posterior distribution pn(·) (or any
function of it). A similar relation holds for the sequential query strategy: replace n by nt and Fn by Gn,t.

Assumption 3. (Query Region Regularity) We restrict the query region A(m)
n for each player m to be the union of

at most J (m)
n rectangles, i.e.,

A(m)
n =

Jn⋃
j=1

R(m)
n (j)

where R
(m)
n (j) = [a

(m)
n (j; 1), b

(m)
n (j; 1)) × · · · × [a

(m)
n (j; d), b

(m)
n (j; d)) ⊆ X . A similar relation holds for the

sequential query strategy: replace n by nt, and the player index m by the player being queried at sub-instant nt.

When the query region A(m)
n is written this way, the space in which A(m)

n lies in is identified with the spaceA(m)
n =

{(a(j; l), b(j; l)) : j = 1, . . . , J
(m)
n , l = 1, . . . , d, a(j; l) ≤ b(j; l)}, a closed subset of R2dJ(m)

n . Then, for a fixed
initial distribution p0(·), the posterior distribution pn(·) can be identified with the set {(a(m)

k (j; l), b
(m)
k (j; l)), Y

(m)
k+1 :

m = 1, . . . ,M, k = 0, . . . , n−1} that lies in the space Sn = (A0×· · ·×An−1)×Yn. It follows that the mapping from
pn ∈ Sn to H(pn) ∈ R is measurable. A similar set of assumptions were made in [1] to guarantee measurability.
Another possible parametrization of the query regions A(m)

n that makes the results in this paper valid is half-spaces,
i.e., A(m)

n = {x ∈ X : (a
(m)
n )Tx ≤ b(m)

n }.
Define the set of dyadic partitions of Rd, induced by the queries {A(m)}m:

γ(A(1), . . . , A(M)) =

{
M⋂
m=1

(A(m))im : im ∈ {0, 1}

}
(5)

where (A)0 := Ac and (A)1 := A. The cardinality of this set of subsets is 2M and each of these subsets partition
Rd.
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Define the density parametrized by An,Fn, i1, . . . , iM , for the joint query strategy:

gi1:iM (y(1), . . . , y(M)|An,Fn) :=

M∏
m=1

f
(m)
im

(y(m)|A(m)
n ,Fn)

where ij ∈ {0, 1}.

D. Equivalence Theorem

We first establish the structure of the optimal joint policy using tools from stochastic control theory. The proof
is based on Bellman’s optimality principle.

Theorem 1. (Joint Optimality Conditions, Known Error Probabilities) Under Assumption 1, an optimal joint policy
that minimizes the Shannon entropy of the posterior distribution pn achieves the following entropy loss:

G∗ = sup
A(1),...,A(M)

{
H

(
1∑

i1:iM=0

gi1:iM (·)Pn
( M⋂
m=1

(A(m)
n )im

))

−
1∑

i1:iM=0

H (gi1:iM (·))Pn
( M⋂
m=1

(A(m)
n )im

)}
, (6)

where H(f) is the Shannon entropy of the probability mass function f .

Theorem 1 generalizes the bisection policy [1], [2] to multiple players. The fusion rule is a posterior update and
by Bayes rule, we have:

pn+1(x) ∝ P(Yn+1 = yn+1|An, X
∗ = x,Fn)× pn(x) (7)

where yn+1 ∈ {0, 1}M are the M observations at time n. Next we establish that a sequential query strategy achieves
the same average entropy reduction as that of the optimal joint query strategy.

Fig. 3. Jointly optimal queries under a uniform prior for two dimensional target search. The target X∗ is indicated by a black
square. The one-player bisection rule (left) satisfies the optimality condition (9) with optimal query A(1) = [0, 1√

2
]× [0, 1√

2
].

The two-player bisection rule (right) satisfies (9) with optimal queries A(1) = [0, 34 ]× [0, 12 ] ∪ [ 14 ,
3
4 ]× [ 12 ,

3
4 ], A(2) = [ 14 , 1]×

[ 12 , 1] ∪ [ 14 ,
3
4 ]× [ 14 ,

1
2 ]. We note that using the policy on the left, if player 1 responds that X∗ ∈ [0, 1√

2
]× [0, 1√

2
], with high

probability, then the posterior will concentrate on that region. When using the policy on the right, if player 1 and 2 respond
that X∗ ∈ A(1) ∩ A(2) with high probability, then the posterior will concentrate more on the intersection of the queries, thus
better localizing the target as compared with the single player policy.

Next, we prove the equivalence theorem that shows the maximal entropy loss of the joint query design is the
same as the entropy loss of sequential query design. This is one of the principal results of the paper.

Theorem 2. (Equivalence, Known Error Probabilities) Under Assumptions 1, 2 and 3:
1) The expected entropy loss under an optimal joint query design is the same as the sequential query design.

This loss is given by:

C =

M∑
m=1

C(εm) =

M∑
m=1

(1− hb(εm)), (8)
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where hb(εm) = −εm log(εm)− (1− εm) log(1− εm) is the binary entropy function.
2) All jointly optimal control laws equalize the posterior probability over the dyadic partitions induced by

An = {A(1)
n , . . . , A

(M)
n }:

Pn(R) =

∫
R
pn(x)dx = 2−M ,∀R ∈ γ(An), (9)

where the set γ(·) was defined in (5).

Theorem 2 shows that the optimal joint policy can be determined and implemented using the simpler greedy
sequential query design. Note that, despite the fact that all players are conditionally independent, the joint policy
does not decouple into separate single-player optimal policies. This is analogous to the non-separability of the
optimal vector-quantizer in source coding even for independent sources [25]. In addition, the optimal queries must
be overlapping-i.e.,

⋂M
m=1A

(m)
n 6= ∅, but not identical. Finally, we remark that the optimal query An is not unique,

so it is possible that there exists an even simpler optimal control law than the sequential greedy policy.
We note that, considering the sequential query design, if the fusion center had the choice of asking one player

at each time, then the optimal selection scheme would be to choose the player with the minimum BSC crossover
probability. This equivalence theorem is a stepping stone to the unknown noisy channel case where it is not clear
which player is most accurate.

We finally remark that the equivalence theorem also holds for non-symmetric binary-output channels, with
appropriate modifications in the non-dyadic partition structure of the optimality conditions (9). For simplicity,
the rest of the paper focuses on the binary symmetric channel (BSC).

1) Equivalence: Intuition: A simple intuitive way to see the equivalence property stated in Theorem 2 is through
the chain rule of the mutual information. Consider the joint query strategy and its associated filtration Fn. According
to Theorem 1, the optimal policy is to choose the queries such that the conditional mutual information is maximized.
The chain rule of conditional mutual information [16] implies:

I(X∗;Yn+1|An,Fn) = I(X∗;Y
(1)
n+1|A

(1)
n ,Fn)

+

M∑
m=2

I(X∗;Y
(m)
n+1 |A

(m)
n , {A(k)

n , Y
(k)
n+1}

m−1
k=1 ,Fn),

which relates the joint mutual information of the LHS (as in the joint scheme) to the mutual information of each
player conditioned on the responses of the previous players (as in the sequential scheme). Letting M = 2 for
concreteness, we observe:

I(X∗;Y
(1)
n+1, Y

(2)
n+1|A

(1)
n , A(2)

n ,Fn)

= I(X∗;Y
(2)
n+1|Y

(1)
n+1, A

(2)
n , A(1)

n ,Fn) + I(X∗;Y
(1)
n+1|A

(1)
n ,Fn),

This relation implies that the mutual information between the target X∗ and the response Y (2)
n+1 of the second player

depends on the response of the first player Y (1)
n+1. It follows that the information available for query design A

(2)
n

for the second player is larger than the information available for query design A(1)
n for the first player.

2) Equivalence: One-dimensional Example: As a specific example, let us consider the one-dimensional case with
M = 2 collaborating players. Consider the query design problem for this case. We assume that the prior density p0 is
uniform over the position of a target in one dimension, i.e., the target state is in the domain X = [0, 1]. We define the
queries as intervals-i.e., A(1)

n = [a, b] and A(2)
n = [c, d]. The optimal policy (9) requires the queries to be overlapping

and so we impose the constraints a < c, c < b and b < d. Choosing a = 1/8, b = 1/2 + 1/8, c = 1/2 − 1/8
and d = 1 − 1/8, we observe that the optimality conditions in (9) are satisfied over the dyadic partition set
γ(An) = {A(1)

n ∩ A(2)
n , A(1)

n ∩ A
(2)
n , A(1)

n ∩ A
(2)
n and A

(1)
n ∩ A

(2)
n }. Thus, this is a jointly optimal law and is

illustrated graphically in Figure 4 (a). We note that the region of uncertainty has size 1/4 (region not covered by
queries).

The sequential policy consists of a sequence of bisections. This policy is illustrated in Figure 4 (b) and the region
of uncertainty also has size 1/4.
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Fig. 4. Illustration of jointly optimal policy (a) and sequential policy (b) for one-dimensional target, uniformly distributed
over [0, 1], and two players. In each case the total length of the intervals not covered by the queries (uncertainty) is equal to
1/4.

E. Costs & Player Selection

In this subsection, we consider the minimum expected entropy criterion with costs. At each time instant, we are
allowed to choose one out of the total M players to query, and for each player being queried, a cost is incurred 3.
This problem formulation trades off the reduction in uncertainty on the target’s location with the cost for obtaining
information.

In the context of the ‘machine+human’ problem, the addition of a cost function for using each sensor allows us
to incorporate human fatigue factors into the design of the algorithm as well as the cost of using the machine. In
the context of agile sensing, a subset of the most informative sensors needs to be selected for query design, while
taking into account the cost of each sensor. Often, higher accuracy sensors are more costly to use.

A similar problem has been recently studied by Sznitman, et al. [26]. Our formulation differs from the work of
[26] as we consider the joint problem of selecting the player to query and the optimal query associated with him,
in addition to having query-dependent costs.

Define the sum of costs incurred after n iterations:

Tn =

n−1∑
k=0

Kk(uk, Ak),

where K(u,A) is the cost associated with the uth player and A is the associated query. We propose to find optimal
collaborative query policies ζ, that account for player costs, by solving:

inf
ζ
Eζ [H(pN ) + γTN ] , (10)

where γ ≥ 0 controls the cost-performance tradeoff. Here ζ is a control policy whose actions include selection of
the active player at time k, i.e., uk, and the associated query Ak. Define the value function Vn(pn, Tn) as:

Vn(p, t) = inf
ζ
Eζ [H(pN ) + γTN |pn = p, Tn = t]. (11)

Policies that achieve this value are optimal. The Bellman optimality principle [27] implies that the solution to (11)
can be found by backwards induction:

Vn(p, t) = inf
u,A

E[Vn+1(pn+1, Tn+1)|pn = p, Tn = t, u,A]. (12)

3This setup can be trivially extended to choosing M0 players out of M .
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In particular, a policy that attains the infimum in (12) for all n, p, t also attains the infimum in (10) [27]. Define
the gain function:

Gk(u,A) = I(X∗;Yk+1|uk = u,Ak = A, pk)− γKk(u,A).

The next theorem characterizes the structure of optimal policies and the entropy loss at each stage.

Theorem 3. All optimal control laws under the criterion (10) achieve the supremum:

sup
1≤u≤M

sup
A
Gk(u,A). (13)

The value function for the problem (10) is:

VN (pN , TN ) = H(pN ) + γTN

Vn(pn, Tn) = H(pn) + γTn −
N−1∑
k=n

sup
u,A

Gk(u,A)

0 ≤ n ≤ N − 1 (14)

The solution can be simplified if the cost does not depend on the query.

Corollary 1. Consider the problem (10) and assume that the cost is independent of the query, i.e., Kk(u,A) =
Kk(u). Then the control policy is optimal if, for n = 1, . . . , N , the players are selected according to:

max
u∈{1,...,M}

{Cn(u)− γKn(u)} , (15)

where Cn(u) is the capacity of the uth player and the associated query satisfies the condition of Theorem 2 (i.e.,
is a bisection of the posterior density).

Corollary 1 makes the tradeoff between entropy loss and cost apparent. This scenario is relevant in the setting
where high quality sensors might be too costly to use, while less informative sensors might be cheaper. The criterion
(15) provides a way to balance this tradeoff through the parameter γ > 0.

IV. MEAN-SQUARE ERROR PERFORMANCE BOUNDS

In this section, we provide exponential lower and upper bounds on the MSE of the sequential Bayesian estimator
in Section III.D.

A. Lower Bounds via Entropy Loss

Theorem 2 yields the value of the cooperative game in terms of expected entropy reduction, which is the sum
of the “capacities” 4 of all the players. This value function is used next to provide a lower bound on the MSE of
the sequential Bayesian estimator.

Theorem 4. (Lower Bound on MSE) Let Assumptions 1, 2 and 3 hold. Assume the entropy H(p0) is finite. Then,
the MSE of the joint or sequential query policies in Theorems 1 and 2 satisfies:

K

2πe
d exp

(
−2nC

d

)
≤ E[‖ X∗ −Xn ‖22] (16)

where K = e2H(p0), d is the dimension of the target space and Xn is the median of the posterior distribution pn(·).
The expected entropy loss per iteration is C =

∑
mC(εm).

Observe that the bound in (16) holds for any policy ζ, and for optimal policies ζ∗ the bound becomes tighter
since Eζ [H(pn)] = H(p0)− nC for this case. We also note that the bound behaves exponentially as a function of
the number of queries n with rate exponent given by the sum of the capacities C.

4The “capacity” of each player is the Shannon channel capacity of each BSC [16].
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B. Upper Bounds

The performance analysis of the probabilistic bisection algorithm (PBA) is difficult primarily due to the continuous
nature of the posterior [2]. A discretized version of PBA was first proposed in [28], known as the Burnashev-
Zingagirov (BZ) algorithm, which imposes a piecewise constant structure on the posterior distribution. The BZ
algorithm assumes one-dimensional targets and requires an initial distribution to begin and a query-response
mechanism. Due to the discretization of the posterior distribution, the one-dimensional query will either overestimate
or underestimate the median of the true continuous posterior distribution. Thus, a biased coin flip (where the bias
depends on the posterior distribution) is required at each iteration to choose the query point. For more details on
the BZ algorithm, the interested reader can refer to [2] and Appendix A in [9].

For simplicity of discussion, we assume the target location is constrained to the unit interval X = [0, 1]. The
generalization to d > 1 is a challenging open problem. A step size ∆ > 0 is defined such that ∆−1 ∈ N and the
posterior after j iterations is pj : X → R, given by

pj(x) =
1

∆

∆−1∑
i=1

ai(j)I(x ∈ Ii)

where I1 = [0,∆], Ii = ((i − 1)∆, i∆] for i = 2, . . . ,∆−1. We define the discretized posterior at time j as the
probability vector a(j) = [a1(j), . . . , a∆−1(j)]. The initial posterior is ai(0) = ∆,∀i. The posterior is characterized
completely by the discretized posterior a(j) which is updated at each iteration via Bayes rule [9].

Convergence rates were derived for the one-dimensional case in [2] for the bounded noise case (i.e., constant
error probability) and for the unbounded noise case (i.e., error probability depends on distance from target X∗ and
converges to 1/2 as the estimate reaches the target) in [8]. A modified version of this algorithm that is proven to
handle unbounded noise was shown in [8]. Theorem 5 derives upper bounds on MSE using ideas from [8].

First, we need a simple lemma.

Lemma 1. Let X̂n be an estimator of target X∗ lying in domain [0, 1]. Then, for all ∆ ∈ [0, 1], we have:

E[(X∗ − X̂n)2] ≤ ∆2 + (1−∆2)P(|X∗ − X̂n| > ∆)

Now, we are in a position to prove the upper bound on the MSE using Lemma 1.

Theorem 5. (Upper Bound on MSE) Consider the sequential bisection algorithm for M players in one-dimension,
where each bisection is implemented using the BZ algorithm. Then, we have:

P(|X∗ − X̂n| > ∆) ≤ (
1

∆
− 1) exp

(
−nC̄

)
E[(X∗ − X̂n)2] ≤ (2−2/3 + 21/3) exp

(
−2

3
nC̄

)
(17)

where C̄ =
∑M

m=1 C̄(εm), C̄(ε) = 1/2−
√
ε(1− ε).

The combination of the lower bound (Theorem 4) and the upper bound (Theorem 5) imply that the MSE goes
to zero at an exponential rate with rate constant between 2C and 2

3 C̄.

V. APPLICATION: HUMAN-IN-THE-LOOP

In this section, we apply our methodology to a simple human-aided sensing problem. We first consider the case
of two players, one human and a one machine, and then generalize to the case of an arbitrary number of humans
and machines. As a concrete example, consider the problem of chemometric toxin-detection. A machine (robot) and
a human hazmat expert are sent to a remote location where there has been a release of some unknown toxin, e.g.,
a bio-toxin released in a gas leak or fluid spill. On-site mass spectroscopy yields an energy spectrum that can be
used to identify the bio-toxin by detecting locations of spectral peaks. The abilities of the robot and the human are
complementary for this peak localization task: the robot can quantify a peak in the spectrum with very fine spectral
resolution but cannot easily distinguish between true and false peaks, which are more easily disambiguated by
the human chemometrics expert. Our centralized 20 questions controller asks the robot and human an increasingly
refined sequence of binary questions about the location of the bio-toxin peak in the measured spectrum. The errors
in the responses to these questions are binary and error prone, where the different probability of errors of the human
and robot reflect their relative strengths and weaknesses.
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A. Case of Two Players

We first consider the two-player case where player 1 (the machine) has a constant error probability ε1 ∈ (0, 1/2)
and player 2 (the human) has error probability increasing as the target localization error decreases:

P(Y
(2)
n+1 6= z|Z(2)

n = z) =
1

2
−min(δ0, µ|X∗ −Xn|κ−1) (18)

where κ > 1, 0 < δ0 < µ < 1/2 are reliability parameters characterizing the human ability to localize the target
X∗5. Figure 5 illustrates the human error model as a function of |X∗ − Xn|. This is a popular model used for
human-based optimization [3] and active learning of threshold functions [8]. From the nature of the error probability
(18), and under the coarse-to-fine sequential bisection policy in Section IV, we expect that the answers provided
by the human will be helpful in the beginning iterations but their value will go to zero as the number of iterations
grows to infinity. This is because the human propensity for error becomes larger as the questions become more
refined and location of the target more difficult to resolve with precision.

In the context of the bio-toxin detection example, model (18) reflects the decreasing ability of the human to
answer increasingly precise questions about the location of the bio-toxin spectral peak. In particular, the parameter
δ0 in (18) is the error floor for the human, which satisfies ε1 > 1/2−δ0 to represent the coarse resolution advantage
of the human as compared to the machine. The scale and shape parameters µ and κ specify the spectral resolution
threshold |X∗ −Xn| = (δ0/µ)1/κ−1 below which the human starts to lose ground to the machine.
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Fig. 5. Human error probability as a function of distance from target |X∗ −Xn| for δ0 = 0.4, µ = 0.45 and various κ > 1.

Using a similar argument as in the proof of Theorem 5, and using the modified BZ algorithm [8], from Lemma
1 in [8], we have the following. For κ ≥ 2 with α1 =

√
ε1√

ε1+
√

1−ε1
, α2 = 0.09µ(3∆/4)κ−1:

P(|X∗ − X̂n| > ∆) ≤ ∆−1 exp

(
−n

[
C̄(ε1) +

µ2

50

(
3∆

4

)2κ−2
])

.

Applying our Lemma 1 in Section IV, this leads to the MSE upper bound dependent on ∆:

E[(X∗ − X̂n)2] ≤ ∆2

+ ∆−1 exp

(
−n

[
C̄(ε1) +

µ2

50

(
3∆

4

)2κ−2
])

(19)

5The parameter κ controls the resolution of the human. It becomes increasingly difficult for the human to decide between close hypotheses
as κ goes to infinity.
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With the choice ∆ = 2−1/3e−nC̄(ε1)/3,

E[(X∗ − X̂n)2] ≤ exp

(
−2

3
nC̄(ε1)

)
×
[
2−2/3 + 21/3 exp

(
−µ

2

50

(3 · 2−1/3

4

)2κ−2
ne−nC̄(ε1) 2κ−2

3

)]
(20)

which is no greater than the machine alone MSE bound (compare (20) with (17)). Asymptotically as n→∞, the
two bounds both converge to zero at the same rate.

We define the human gain ratio (HGR) as the ratio of MSE upper bounds associated with machine and ma-
chine+human, respectively, given by

Rn(κ) =
2−

2

3 + 2
1

3

2−
2

3 + 2
1

3 exp
(
−µ2

50 (3·2−1/3

4 )2κ−2ne−nC̄(ε1) 2κ−2

3

) (21)

The HGR is plotted in Figure 6 as a function of κ. This analysis quantifies the value of including the human-in-
the-loop for a sequential target localization task. We note that the larger ε1 is, the larger is the HGR. Also, as κ
decreases to 1, the ratio increases, meaning that the human accuracy approaches that of the machine.
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Fig. 6. Human gain ratio (see Eq. (21)) for a pair of players consisting of a human and machine. The human provides the largest gain
in the beginning few iterations and the value of information decreases as n → ∞. The circles are the predicted curves according to (20),
while the solid lines are the optimized versions of the bound (19) (as a fuction of ∆) for each n. The predictions well match the optimized
bounds.

B. Case of More than Two Players

This result is generalized in the next corollary to the case of multiple machines and multiple humans. Consider the
sequential bisection algorithm for M = M1 +M2 players in one-dimension, where each bisection is implemented
using the BZ algorithm. Here, there are M1 machines with constant error probabilities {εm} and M2 humans with
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non-constant error probabilities parameterized by parameters {µl, δ0,l, κl}. Then, we have:

P(|X∗ − X̂n| > ∆) ≤
(

1

∆
− 1

)
× exp

(
−n

{
C̄ +

M2∑
l=1

µ2
l

50

(
3∆

4

)2κl−2
})

E[(X∗ − X̂n)2] ≤ exp

(
−2

3
nC̄

)

×

2−
2

3 + 2
1

3 exp

− M2∑
l=1

µ2
l

50

(
3 · 2−

1

3

4

)2κl−2

ne−nC̄
(2κl−2)

3


where C̄ =

∑M1

m=1 C̄(εm), C̄(ε) = 1/2−
√
ε(1− ε).

VI. NOISY 20 QUESTIONS WITH COLLABORATIVE PLAYERS: UNKNOWN ERROR PROBABILITY

In this section we consider the setting where the error probabilities {εm}Mm=1 of the M players are unknown.
In this case, the Bayes posterior update pn 7→ pn+1 required for implementing the optimal policy in Sec. III is
not implementable as it requires knowledge of the error probabilities. Here we consider the alternative when the
unknown εm ∈ (0, 1/2) and uniformly distributed. For this case we propose a joint estimation scheme to estimate
the target X∗ and the error probabilities ε∗ = (ε∗1, . . . , ε

∗
M ). The method propagates the joint posterior distribution

of the joint random vector (X∗, ε∗) forward in time given the designed queries and noisy responses.
Define the random vector ε = (ε1, . . . , εM ) ∈ [0, 1/2)M and the joint posterior distribution P(X∗ = x, ε∗ =

ε|Fn) = pn(x, ε). We consider policies that minimize the expected entropy (1).

A. Assumptions

We make an analogous conditional independence assumption to Assumption 1 for the unknown channel case.

Assumption 4. We assume that the players’ responses are conditionally independent:

P(Yn+1 = y|An, X
∗ = x, ε∗ = ε,Fn)

=

M∏
m=1

P(Y
(m)
n+1 = y(m)|A(m)

n , X∗ = x, ε∗m = εm,Fn),

where

P(Y
(m)
n+1 = y(m)|A(m)

n , X∗ = x, ε∗m = εm,Fn)

=

{
f

(m)
1 (y(m)|εm, A(m)

n ,Fn), x ∈ A(m)
n

f
(m)
0 (y(m)|εm, A(m)

n ,Fn), x /∈ A(m)
n

.

B. Sequential Query Design

As in the case of known {εm}, in the sequential setup, the fusion center designs queries for each of the M
players in sequence and refines the posterior belief of the target location given the response of each player (see
Figure 1). Recall the sub-time scale of sub-instants {nt : t = 0, . . . ,M − 1} for each time instant n and consider
the filtration Gn,t defined in Section III.A. Assuming that all players are queried in sequence starting from m = 1
and ending at m = M , the posterior updates (after querying the (t+ 1)th player) become:

pnt+1
(x, ε) = P(Ynt+1

= ynt+1
|Ant , X∗ = x, ε∗t+1 = εt+1,Gn,t)

× pnt(x, ε)
P(Ynt+1

= ynt+1
|Ant , X∗ = x, ε∗t+1 = εt+1,Gn,t)

=

{
f

(t+1)
1 (ynt+1

|εt+1), x ∈ Ant
f

(t+1)
0 (ynt+1

|εt+1), x /∈ Ant
.
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C. Joint Query Design

In the joint setup, we assume that the fusion center designs queries for the M players at each time instant n
and after querying all players, the responses are fused by the controller and the next set of questions is formulated.
Recall the filtration Fn defined in Section III.B.

Define the density parametrized by ε = (ε1, . . . , εM ) and i1, . . . , iM ∈ {0, 1}:

gi1:iM (y|ε) =

M∏
m=1

f
(m)
im

(y(m)|εm).

At the nth time instant, the posterior update becomes:

pn+1(x, ε) = P(Yn+1 = yn+1|An, X
∗ = x, ε∗ = ε,Fn)

× pn(x, ε)

P(Yn+1 = yn+1|X∗ = x, ε∗ = ε,Fn)

=

M∏
m=1

{
f

(m)
1 (y

(m)
n+1|εm), x ∈ A(m)

n

f
(m)
0 (y

(m)
n+1|εm), x /∈ A(m)

n

.

D. Equivalence Theorems

Since the error probabilities of the players are unknown, the joint policy derived in Theorem 1 is no longer
applicable or valid. The next theorem derives the jointly optimal policy for all players under the unknown channel
case.

Theorem 6. (Jointly Optimal Policy, Unknown Error Probabilities) Let Assumptions 4, 2 and 3 hold. Consider the
problem (1), where the joint policy is made up of the query regions for the M players. leftmargin=*

1) Optimal policies An = (A
(1)
n , . . . , A

(M)
n ) at time n satisfy:

G∗n

= sup
A

{
H

(
1∑

i1:iM=0

∫ 1/2

ε=0
gi1:iM (·|ε)Pn

(⋂
m

(A(m))im , ε

)
dε

)

−
1∑

i1:iM=0

∫ 1/2

ε=0
H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im , ε

)
dε
}
. (22)

2) The maximum information gain at time n is:

G∗n =

M∑
m=1

E[C(εm)|Fn], (23)

where E[C(εm)|Fn] =
∫ 1/2
εm=0C(εm)pn(εm)dεm.

Next, we show a version of the equivalence theorem (Theorem 2) for the unknown channel case. This result is
interesting since it implies that on average the joint query design is equivalent to the sequential query design, even
when the error probabilities are unknown.

Theorem 7. (Equivalence, Unknown Error Probabilities) Let Assumptions 4 and 2 hold. Consider the sequential
and joint schemes described in Section VI.B and Section VI.C. 6 Then, it follows that G∗seq,n = E[

∑
mC(εm)|Gn]

and G∗n = E[
∑

mC(εm)|Fn] for all n.

6For the one-dimensional case, the sequential scheme implements (26) for each sub-instant to design a question for each player and the
posterior is updated in sequence (see Figure 1).
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1) Lower Bound on MSE Performance: The maximum entropy loss derived in Theorem 6 is used next to provide
a lower bound on the MSE of the joint sequential estimator.

Theorem 8. (Lower bound on Joint MSE) Assume H(p0) is finite. Then, the joint MSE of the joint query policy
in Theorem 6 satisfies:

K

2πe
d exp

(
−2nC̄n

d

)
≤ E[‖Xn −X∗‖22] + E[‖εn − ε∗‖22], (24)

where K = exp(2H(p0)) is a constant and Xn = E[X∗|Fn], εn = E[ε∗|Fn]. The expected entropy loss per iteration
is C̄n = 1

n

∑n−1
k=0 G

∗
k.

Proof: The proof follows using the result of part 2 of Theorem 6 and similar bounding arguments as Theorem
4.

E. Discussion

The jointly optimal policy derived for the unknown probability case in Theorem 6 is reminiscent of the jointly
optimal policy of Theorem 1. We remark that in the unknown probability setting, the maximum entropy loss G∗n
given in (22) is not time-invariant, unlike in the case of known probability, in which the maximum entropy loss was
the sum of the capacities of the players’ channels (6) and (8). This observation motivates a player selection scheme;
if we have the hard constraint that only one player may be used at a time, then, unlike in the known probability
case, it may be that at different times, the maximal information gain may be obtained by different players.

F. Player Selection Scheme

We assume that at each time instant, only one player can be queried. We assume that the control un = u implies
that the uth player is to be queried at time n and A

(u)
n = A is the associated query region. Similarly to (7), the

joint posterior update in this case becomes:

pn+1(x, ε) ∝ P(Y
(u)
n+1|un = u,A(u)

n , X∗ = x, ε∗u = εu)

× pn(x, ε)

P(Y
(u)
n+1 = y(u)|un = u,A(u)

n , X∗ = x, ε∗u = εu)

=

{
f

(u)
1 (y(u)|εu), x ∈ A(u)

n

f
(u)
0 (y(u)|εu), x /∈ A(u)

n

Theorem 9. (Player Selection Policy, Unknown Error Probabilities) Consider the problem (1), where the policy
consists of which player to choose and the associated query region. At each time n: leftmargin=*

1) All optimal query policies satisfy:

max
u∈{1,...,M}

G∗n(u) = sup
A

{
H

(∫ 1/2

εu=0
f1(·|εu)P (u)

n (A, εu)

+ f0(·|εu)P (u)
n (Ac, εu)dεu

)

−
∫ 1/2

εu=0

(
H (f1(·|εu))P (u)

n (A, εu)

+H (f0(·|εu))P (u)
n (Ac, εu)

)
dεu

}
. (25)

2) The maximum entropy loss is:

G∗n = max
u

G∗n(u) = max
u

E[C(εu)|Fn].

The optimal policy for the minimum expected entropy criterion (1) shown in Theorem 9 is intuitive. The player
u with the maximum information gain (or entropy loss) is chosen, where the entropy loss is measured as a function



17

of the u-th sub-marginal distribution p
(u)
n (x, εu). While the form (25) bears some similarity to the form (6), the

bisection policy is no longer optimal. In addition, in this unknown probability setting, it may not always be the
case that the player with the largest capacity will be chosen (this is the case in the known probability setting). The
integral over ε ∈ [0, 1/2) essentially averages out the contribution of the unknown error probabilities with respect
to the observed data up to the current time n.

1) One-dimensional Case: The next corollary specifies the form of the optimal policy derived in Theorem 9 for
one-dimensional targets. For simplicity, consider the unit interval X = [0, 1] as the target domain.

Corollary 2. (Player Selection Policy, Unknown Error Probabilities, One-dimensional Target) Consider the problem
(1) for the optimal player and query selection policy. Consider the query regions An = [0, xn]. The optimal player
u and associated query region A = [0, x] at time n is given by:

max
u

{
max
x∈[0,1]

hB(g
(u)
1,n(x))− c(u)

n

}
, (26)

where hB(·) is the binary entropy function [16] and

c(u)
n =

∫ 1/2

εu=0
hB(εu)p(u)

n (εu)dεu

g
(u)
1,n(x) =

∫ x

0
µ(u)
n (t)dt+

∫ 1

x
(pn(t)− µ(u)

n (t))dt

µ(u)
n (t) =

∫ 1/2

εu=0
εup

(u)
n (t, εu)dεu

pn(t) =

∫ 1/2

ε1=0
· · ·
∫ 1/2

εM=0
pn(t, ε1, . . . , εM )dε1 · · · dεM .

We note that the optimal policy derived for the unknown probability case in (26) is not equivalent to the
probabilistic bisection policy-i.e., obtaining P

(u)
n ([0, x

(u)
n ]) = 1/2 for each player u and then evaluating the

information gain and choosing the player with the maximum information gain. This heuristic scheme would
yield a suboptimal information gain as compared to the maximal information gain given by (26). Thus, in the
unknown probability setting, the optimal control law is no longer equivalent to the known probability setting (after
marginalizing out the noise parameters ε1, . . . , εM ). This result shows that the two settings are quite different and
the answers to the unknown channel case are more complex. We empirically observed that there is a unique query
point x = x∗n = x

(u∗)
n that maximizes the function (26). This is similar to the one-dimensional case for the known

probability setting when the query region is of the form A = [0, x]; i.e., the optimal point is the median.

VII. SIMULATIONS

This section contains a few illustrative simulations that validate the methodology presented throughout the paper.
In all simulations, MATLAB R2012b was used.

A. Known Error Probability

Figures 7 and 8 show the empirical performance of the human-in-the-loop by comparing the mean-square error
(MSE) of target localization for three scenarios: a 20 questions game with only a single player (machine alone);
a 20 questions game with two machine players (machine + machine); and a 20 questions game with one machine
and one human player (human + machine).

Figure 7 and 8 show the MSE for the respective cases of uniform and nonuniform prior distributions on the target
location. The BSC crossover probability for the machine was set to ε1 = 0.4 while the BSC crossover probability
for the human were determined by (18) with κ = 1.1, δ0 = 0.4 and µ = 0.45. These are the same parameter settings
as used to generate the blue curve shown in Figure 5, where the human is significantly more accurate than the
machine in initial iterations while the opposite is true in the final iterations. A total of 8000 Monte Carlo runs were
averaged to generate the curves in Figures 7 and 8. Each Monte Carlo run consists of implementing the sequential
query design via the BZ algorithm with a discretization of the interval [0, 1] into 1500 equal cells representing
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possible target positions. The target position was set to X∗ = 0.75, the BSC error channel was simulated using
biased coin flipping and the posterior distributions were updated at every iteration according to (7). We note that
BZ algorithm was used to implement each bisection, and no query costs or sensor selection were used. In this
setting, we assumed that the BSC crossover probabilities are known to the controller.

It is observed that employing a human in the loop reduces the MSE for a wide range of n. We note that as
n → ∞, the machine + human curve will cross the machine + machine curve, being consistent with the upper
bounds shown in (17) and (20) since the human’s contribution is strongest in the first few iterations, while its
value decreases to zero as n → ∞. Also, note that the human model does not yield a different exponent in the
exponential rate of convergence, while adding a second player does (as predicted in Theorems 4 and 5).

Next, we observe the effect of the prior distribution associated with the target location on the MSE performance.
We observe that the machine + human provides a larger gain when the initial distribution is trimodal with larger
variance on the true component centered at X∗ = 0.75 (see Figure 9) as shown in Figure 8, as compared to the
gain when starting from a uniform distribution as shown in Figure 7. In fact, the human-in-the-loop combined with
a machine outperforms two machines for a wide range of iterations n.
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Fig. 7. Monte Carlo simulation for MSE performance of the sequential estimator as a function of iteration for a single player 20 questions
game (machine alone), a two player game without human-machine collaboration (machine+machine), and a two player game with human-
machine collaboration (human+machine). 8000 Monte Carlo trials were used. The human player’s parameters were set to κ = 1.1, µ =
0.45, δ0 = 0.4, the machine players’ parameters were ε1 = ε2 = 0.4, and the length of the pseudo-posterior was ∆−1 = 1500. The target
location was set to X∗ = 0.75. The initial distribution was uniform.

Figures 10 and 11 show the empirical MSE as a function of ε1 ∈ (0, 1/2) for κ = 2.0 and κ = 1.5, respectively.
As expected, larger MSE gains are obtained for κ = 1.5. For fixed κ, we observe from both figures that the MSE
associated with the machine alone increases as ε1 increases, and in addition, the MSE associated with “machine
+ human” yields a larger improvement over just using the machine for larger ε1. In other words, the worse the
machine is, the larger the value of the human in reducing the MSE.
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Fig. 8. Monte Carlo simulation for MSE performance of the sequential estimator as a function of iteration for a single player 20 questions
game (machine alone), a two player game without human-machine collaboration (machine+machine), and a two player game with human-
machine collaboration (human+machine). 8000 Monte Carlo trials were used. The human player’s parameters were set to κ = 1.1, µ =
0.45, δ0 = 0.4, the machine players’ parameters were ε1 = ε2 = 0.4, and the length of pseudo-posterior was ∆−1 = 1500. The target was
set to X∗ = 0.75. The initial distribution was a mixture of three Gaussian distributions as shown in Figure 9.

B. Unknown Error Probability

Figure 12 numerically evaluates the MSE performance for M = 1 player with unknown error probability. This
simulation implies that the binary responses obtained from one player carry enough information to accurately
estimate the target and its error probability.

VIII. CONCLUSION

We studied the problem of collaborative 20 questions with noise for the multiplayer case. We derived an
equivalence theorem that shows the joint query design has the same performance on average as the sequential
bisection query design, despite the fact that the sequential bisection query design has access to a more refined
filtration. In addition, the sequential bisection query design is easily implemented due to the low complexity of the
controllers (unlike the jointly optimal design). Using this framework, we obtained mean-square-error bounds for
the performance of the sequential estimator. The methodology was applied to human-in-the-loop target localization
systems.

The framework was generalized to the case of unknown error probabilities associated with noisy players. For this
case, it was shown that the maximum entropy loss per iteration is time-varying (unlike in the known probability case)
and the optimal policy that achieves this gain is not equivalent to the probabilistic bisection policy. Simulations
were provided to numerically evaluate the performance of the proposed sequential estimator. Worthwhile future
work could include the following extensions: 1) query design for target detection and classification; 2) more
sophisticated query-response models that account for state-dependent response (channel) errors; 3) optimal query
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Fig. 9. Initial distribution for BZ algorithm. The distribution is a mixture of three Gaussians with means 0.25, 0.5 and 0.75, and variances
0.02, 0.05 and 0.08, respectively. The target was set to be the center of the mode at X∗ = 0.75 with the largest variance. The resulting
MSE performance of the sequential estimator is shown in Figure 8.

design that restricts the complexity of the questions, e.g., to half planes as in [17]; 4) extension of theory to the
case where there are additional query-dependent costs on acquisition of information from each player.
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APPENDIX A
PROOF OF THEOREM 1

Proof: Using (3) and (4), we have:

P(Yn+1 = y|An, X
∗ = x,Fn)

=

M∏
m=1

{
f

(m)
1 (y(m)|A(m)

n ,Fn)I(x ∈ A(m)
n )

+ f
(m)
0 (y(m)|A(m)

n ,Fn)I(x /∈ A(m)
n )

}
=

1∑
i1:iM=0

gi1:iM (y|An,Fn)I

(
x ∈

M⋂
m=1

(A(m)
n )im

)
. (27)

By integrating over x ∈ X , we have:

P(Yn+1 = y|An,Fn) = E[P(Yn+1 = y|An, X
∗,Fn)]

=

1∑
i1:iM=0

gi1:iM (y|An,Fn)Pn

(
M⋂
m=1

(A(m)
n )im

)
. (28)

The expected one step entropy loss is related to the conditional mutual information as:

H(pn)− E[H(pn+1)|An,Fn] = I(X∗;Yn+1|An,Fn)

= H(Yn+1|An,Fn)− E[H(Yn+1)|X∗,An,Fn]. (29)

From (28), we have:

H(Yn+1|An,Fn) = H

(
1∑

i1:iM=0

gi1:iM (·)Pn

(
M⋂
m=1

(A(m)
n )im

))
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Fig. 10. Monte Carlo simulation for MSE performance of the sequential estimator as a function of iteration and ε1 ∈ (0, 1/2). 2000 Monte
Carlo trials were used. The human parameters were set to κ = 2.0, µ = 0.45, δ0 = 0.4, the length of pseudo-posterior was ∆−1 = 1500.
The target was set to X∗ = 0.75. The initial distribution was a mixture of three Gaussian distributions as shown in Figure 9.

and using (27):

E[H(Yn+1)|X∗,An,Fn]

=

∫
X
pn(x)H(Yn+1|X∗ = x,An,Fn)dx

=

1∑
i1:iM=0

H (gi1:iM )Pn

(
M⋂
m=1

(A(m)
n )im

)
.

Thus, taking the supremum of both sides in (29), we conclude that the entropy can be reduced at most by G∗, i.e.,

sup
A
{H(pn)− E[H(pn+1)|An = A,Fn]} = G∗ (30)

where G∗ is defined in (6).
Consider the optimal control problem (1), and define the value function:

Vn(p) = inf
ζ
Eζ [H(pN )|pn = p], n = 0, . . . , N (31)

It is well known from stochastic control theory that the value function (31) satisfies Bellman’s recursion ([27]):

Vn(p) = inf
A

E[Vn+1(pn+1)|An = A, pn = p], n < N (32)

and any policy attaining the infimum in (32) is optimal. To finish the proof, we find an explicit form for the value
function and show that the policy achieving the supremum (6) achieves the infimum in (32). We remark that the
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Fig. 11. Monte Carlo simulation for MSE performance of the sequential estimator as a function of iteration and ε1 ∈ (0, 1/2). 2000 Monte
Carlo trials were used. The human parameters were set to κ = 1.5, µ = 0.45, δ0 = 0.4, the length of pseudo-posterior was ∆−1 = 1500.
The target was set to X∗ = 0.75. The initial distribution was a mixture of three Gaussian distributions as shown in Figure 9.
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Fig. 12. Monte Carlo simulation for MSE performance of the joint sequential estimator (of the target X∗ and the error probability ε∗).
The MSE for target location X is shown on the left and MSE for BSC crossover probability ε on the right, as a function of iteration. Note
that both decay to zero over iteration. Interestingly, the target location estimator achieves nearly zero MSE well before that of the channel
estimation error, indicating a certain robustness of estimates of X∗ to errors in estimates of ε. 100 Monte Carlo trials were used. The true
error probability was set to ε∗ = 0.3 and the true target location was X∗ = 0.75. The initial distribution was a joint uniform density p0(x, ε).

function Vn(·) is Borel measurable since the entropy functional H(·) is measurable under on the query regions An

[1]. We claim that the value function (31) is given by:

Vn(pn) = H(pn)− (N − n)G∗, n = 0, . . . , N (33)

We proceed by backward induction. The base case is trivial since VN (pN ) = H(pN ). Fix an arbitrary n < N and



23

assume that Vn+1(pn+1) = H(pn+1)− (N − (n+ 1))G∗. Then, from (32) and the induction hypothesis:

Vn(pn) = inf
A

E[Vn+1(pn+1)|An = A, pn]

= inf
A

E[H(pn+1)|An = A, pn]− (N − n− 1)G∗

= H(pn)−G∗ − (N − n)G∗ +G∗

= H(pn)− (N − n)G∗

where we used (30). It follows that the optimal query set An must satisfy (6).

APPENDIX B
PROOF OF THEOREM 2

Proof: Let Gseq denote the maximum expected entropy loss after querying M players sequentially. The
bisection policy yields an expected entropy loss of C(εm) = 1 − hb(εm) 7 after querying the mth player [1].
Thus, Gseq =

∑M
m=1C(εm). The expected entropy loss at sub-time instant nt is H(pnt)−E[H(pnt+1

)|Ant ,Gnt ] =
I(X∗;Ynt+1

|Ant ,Gnt). To show this rigorously, observe:

Gseq

= sup
{Ant}

M−1
t=0

E[H(pn)−H(pn+1)|Gn]

= sup
{Ant}

M−1
t=0

E

[
M−1∑
t=0

H(pnt)−H(pnt+1
)

∣∣∣∣∣Gn
]

= sup
{Ant}

M−1
t=0

M−1∑
t=0

E

[
E

[
H(pnt)−H(pnt+1

)

∣∣∣∣∣Ant ,Gnt
] ∣∣∣∣∣Gn

]

= sup
{Ant}

M−1
t=0

E

[
M−1∑
t=0

I(X∗;Ynt+1
|Ant ,Gnt)

∣∣∣∣∣Gn
]

= E

[
M−1∑
t=0

sup
Ant

I(X∗;Ynt+1
|Ant ,Gnt)

∣∣∣∣∣Gn
]

= E

[
M−1∑
t=0

C(εt+1)

∣∣∣∣∣Gn
]

=

M∑
m=1

C(εm).

To finish the proof, we show Gseq = G∗. The consequence Gseq = G∗ follows from the chain rule of conditional
mutual information, but we show an argument based on convex optimization that characterizes the jointly optimal

7This is the capacity of the mth BSC [1], [16].
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policy as well. From Theorem 1,

G∗ = sup
A(1),...,A(M)

{
H

(
1∑

i1:iM=0

gi1:iM (·)Pn
( M⋂
m=1

(A(m)
n )im

))

−
1∑

i1:iM=0

H (gi1:iM (·))Pn
( M⋂
m=1

(A(m)
n )im

)}
= sup

p

{
H

(
1∑

i1:iM=0

gi1:iM (·)pi1,...,iM

)

−
1∑

i1:iM=0

H(gi1:iM (·))pi1,...,iM : p � 0, 1Tp = 1
}

= sup
p
{H(pTg)− pTH(g) : p � 0, 1Tp = 1} (34)

= Gseq

where the probability vector p ∈ R2M contains pi1,...,iM , and g contains the distributions gi1:iM (·). The last equality
follows by the symmetry of the BSC. The supremum in the strictly concave problem (34) is achieved by the uniform
distribution. This is justified by noting that the second term is independent of p since for 1Tp = 1, we obtain:

pTH(g) =

1∑
i1:iM=0

H

(
M∏
m=1

f
(m)
im

(·)

)
pi1,...,iM

=

1∑
i1:iM=0

M∑
m=1

H
(
f

(m)
im

(·)
)
pi1,...,iM

=

M∑
m=1

hB(εm) ·
1∑

i1=0

· · ·
1∑

iM=0

pi1,...,iM

=

M∑
m=1

hB(εm).

Thus, the supremum of (34) can be restricted to the first term which is achieved by p∗i1,...,iM = 2−M since:

H

(
1∑

i1:iM=0

gi1:iM (y)p∗i1,...,iM

)

= H

(
2−M

1∑
i1=0

· · ·
1∑

iM=0

M∏
m=1

(1− εm)I(y
(m)=im)ε1−I(y

(m)=im)
m

)
= H(u(·)) = log2(2M ) = M

where u(·) is the uniform distribution over {0, 1}M .

APPENDIX C
PROOF OF THEOREM 3

Proof: It suffices to show that for each n = 0, . . . , N that the value function is given by (14) and that optimal
policies satisfy Bellman’s recursion. We do this by backward induction. We remark that the value function is
measurable since the entropy functional is measurable [1]. The base case is trivial:

VN (pN , TN ) = E[H(pN ) + γTN |pN , TN ] = H(pN ) + γTN
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Now, fixing n < N and assuming that the value function is of the form (31) for n + 1, we have by Bellman’s
recursion (12):

Vn(pn, Tn)

= inf
1≤u≤M,A

E[Vn+1(pn+1, Tn+1)|un = u,An = A, pn, Tn]

= inf
u,A

E
[
H(pn+1) + γTn+1

−
N−1∑
k=n+1

sup
u′,A′

Gk(u
′, A′)

∣∣∣un = u,An = A, pn, Tn

]
(35)

= H(pn) + γTn −
N−1∑
k=n+1

sup
u,A

Gk(u,A)

− sup
u,A
{I(X∗;Yn+1|un = u,An = A, pn)− γKn(u,A)}

= H(pn) + γTn −
N−1∑
k=n

sup
u,A

Gk(u,A) (36)

where we used the identities:

E[H(pn+1)|un, An, pn] = H(pn)− I(X∗;Yn+1|un, An, pn)

Tn+1 = Tn +Kn(un, An)

The optimality condition of the policy follows from the condition that the infimum in Bellman’s equation (36) is
achieved.

APPENDIX D
PROOF OF COROLLARY 1

Proof: From Theorem 2, we have:

inf
A

E[H(pn+1)|un = u,An = A, pn] = H(pn)− Cn(u)

Using this in the proof of Theorem 3, it follows that the optimality condition (13) satisfies (15).

APPENDIX E
PROOF OF THEOREM 4

Proof: We note from the proof of Theorem 1 or Theorem 2, for any policy ζ, we have Eζ [H(pn)] ≥ H(p0)−
nC 8. Let Kn denote the conditional error covariance of the random vector en = X∗ − E[X∗|Yn], i.e., Kn =
Cov(en|Yn). From Theorem 17.2.3 in [16] and Jensen’s inequality, we have:

Eζ [H(pn)] ≤ Eζ
[

1

2
log((2πe)d det(Kn))

]
≤ 1

2
log((2πe)d) +

1

2
log(det(Eζ [Kn]))

=
1

2
log((2πe)d det(Eζ [Kn]))

8For optimal policies ζ, this becomes an equality.
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where det(·) denotes the determinant. Rewriting this:

K exp(−2nC)

(2πe)d
≤ exp(2Eζ [H(pn)])

(2πe)d

≤ det(Eζ [Kn]) ≤
(
Eζ [tr(Kn)]

d

)d
where tr(·) denotes the trace of a matrix. Note that we also used the inequality of arithmetic and geometric means
in the last step. Using the fact that the conditional mean minimizes the mean-square error yields the final result.

APPENDIX F
PROOF OF LEMMA 1

Proof: From the definition of the expectation of a bounded random variable En = (X∗ − X̂n)2:

E[(X∗ − X̂n)2] =

∫ 1

0
P((X∗ − X̂n)2 > t)dt

=

∫ ∆2

0
P((X∗ − X̂n)2 > t)dt+

∫ 1

∆2

P ((X∗ − X̂n)2 > t)dt

≤ ∆2 + (1−∆2)P(|X∗ − X̂n| > ∆).

APPENDIX G
PROOF OF THEOREM 5

Proof: Assume the pseudo-posterior after the mth player’s response is a(M−m)(j+1), with the notation a(0)(j+
1) = a(j+1). Let k∗ denote the index of the bin that contains X∗-i.e., X∗ ∈ Ik∗ . Define M (m)(j) = 1

a
(M−m)

k∗ (j)
−1,

with the notation M (0)(j) = M(j). Define the improvement ratio N(j+ 1) = M(j+1)
M(j) for the jth time instant, and

the improvement ratios N (m)(j + 1) = M (m−1)(j+1)
M (m)(j+1) for m = 1, . . . ,M − 1and N (M)(j + 1) = M (M−1)(j+1)

M (0)(j) . Let
{αm}m denote the parameters associated with each player’s pseudo-posterior update. By an application of Markov’s
inequality and repeated conditioning:

P(|X∗ −Xn| > ∆) ≤ P(ak∗(n) < 1/2)

= P(M(n) > 1) ≤ E[M(n)]

= E[E[M(n− 1)N(n)|a(n− 1)]]

= E[M(n− 1)E[N(n)|a(n− 1)]]

= · · · = M(0)E

[
n∏
l=1

E[N(l)|a(l − 1)]

]

≤M(0)

(
max

0≤j≤n−1
max
a(j)

E[N(j + 1)|a(j)]

)n
.

Theorem 1 in [2] implies that after every discretized bisection m, we have the bound on the improvement ratio:

E[N (m)(j + 1)|a(m)(j + 1)] ≤ 1− εm
2(1− αm)

+
εm

2αm
< 1 (37)
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Using the tower property of conditional expectations repeatedly again and using (37):

E[N(j + 1)|a(j)] = E
[
M (0)(j + 1)

M (0)(j)

∣∣∣a(0)(j)

]
= E

[
M (M−1)(j + 1)

M (0)(j)
×
M−1∏
k=1

M (k−1)(j + 1)

M (k)(j + 1)

∣∣∣a(0)(j)

]

= E

[
M∏
m=1

N (m)(j + 1)
∣∣∣a(0)(j)

]

= E

[
E[

M∏
m=1

N (m)(j + 1)
∣∣∣a(1)(j + 1), a(0)(j)]

∣∣∣a(0)(j)

]

= E

[
M∏
m=2

N (m)(j + 1)E[N (1)(j + 1)
∣∣∣a(1)(j + 1)]

∣∣∣a(0)(j)

]

≤
(

1− εM
2(1− αM )

+
εM

2αM

)
E

[
M∏
m=2

N (m)(j + 1)
∣∣∣a(0)(j)

]

≤ · · · ≤
M∏
m=1

(
1− εm

2(1− αm)
+

εm
2αm

)
.

To optimize the bound, we choose αi =
√
εi√

εi+
√

1−εi
, i = 1, 2 to obtain:

P(|X∗ −Xn| > ∆) ≤ (
1

∆
− 1)

(
M∏
m=1

(
1− C̄(εm)

))n

≤ (
1

∆
− 1) exp

(
−n

M∑
m=1

C̄(εn)

)
.

This concludes the first part. The second part follows by applying Lemma 1:

E[(X∗ − X̂n)2] ≤ ∆2 + ∆−1e−nC̄ .

Optimizing the bound, we choose ∆ = ∆n = 2−1/3e−nC̄/3, from which we conclude the second part.

APPENDIX H
PROOF OF THEOREM 6

Proof: 1) Optimality conditions
The solution of (1) yields the Bellman recursion [27]:

Vn(pn) = inf
A

E [Vn+1(pn+1)|An = A,Fn]

Using a similar argument as in the proof of Theorem 1, the optimal solution at time n is given by maximizing the
entropy loss at time n:

G∗n = sup
A
I((X∗, ε∗);Yn+1|An = A,Fn)

= sup
A
{H(pn)− E [H(pn+1)|An = A,Fn]}

and the value function is given by Vn(pn) = H(pn)−
∑N−1

k=n G
∗
k for n < N and VN (pN ) = H(pN ). We can expand

the mutual information as:

I((X∗, ε∗);Yn+1|An,Fn)

= H(Yn+1|An,Fn)− E [H(Yn+1)|X∗, ε∗,An,Fn]
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The conditional probability of Yn+1 given the query An = A can be written as:

P(Yn+1|An = A,Fn) = E[P(Yn+1|An = A, X∗, ε∗,Fn)]

=

∫ 1/2

ε=0

∫
x∈X

P(Yn+1|An = A, X∗ = x, ε∗ = ε)pn(x, ε)dxdε

=

∫ 1/2

ε=0

∫
x∈X

(
M∏
m=1

f1(Y
(m)
n+1 |εm)I(x ∈ A(m))

+ f0(Y
(m)
n+1 |εm)I(x /∈ A(m))

)
pn(x, ε)dxdε

=

∫ 1/2

ε=0

1∑
i1:iM=0

gi1:iM (y|ε)

×

{∫
x∈X

I

(⋂
m

(A(m))im

)
pn(x, ε)dx

}
dε

=

1∑
i1:iM=0

∫ 1/2

ε=0
gi1:iM (y|ε)Pn

(⋂
m

(A(m))im , ε

)
dε

where pn(x, ε) = pn(x, ε1, . . . , εM ). This gives the first term in (22). To obtain the second term, notice:

E[H(Yn+1)|X∗, ε∗,An = A,Fn]

=

∫
ε

∫
x∈X

pn(x, ε)H(Yn+1|X∗ = x, ε∗ = ε,An = A,Fn)dxdε

=

∫
ε

{
1∑

i1:iM=0

∫
x∈

⋂
m(A(m))im

pn(x, ε)H(gi1:iM (·|ε))dx

}
dε

=

1∑
i1:iM=0

∫ 1/2

ε=0
H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im , ε

)
dε

The proof is complete.
2) Bounds on maximum entropy loss
First, we prove the upper bound. Note that the second term in (22) is independent of the queries, so the supremum
can be restricted to only the first term without loss of generality. This is justified by using the additivity of the
entropy of a product density:

H(gi1:iM (·|ε)) = H

(
M∏
m=1

f
(m)
im

(·|εm)

)

=

M∑
m=1

H(f
(m)
im

(·|εm)) =

M∑
m=1

hb(εm)
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From part 1), the maximum entropy loss can be bounded from above as:

G∗n

= sup
A
H

(
1∑

i1:iM=0

∫ 1/2

ε=0
gi1:iM (·|ε)Pn

(⋂
m

(A(m))im , ε

)
dε

)

−
1∑

i1:iM=0

∫ 1/2

ε=0
H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im , ε

)
dε
}

≤ log2(card(Y))−
∫ 1/2

ε=0

{∑
m

hB(εm)

}

×

{
1∑

i1:iM=0

Pn

(⋂
m

(A(m))im , ε

)}
dε (38)

= M −
∑
m

{∫ 1/2

εm=0
hb(εm)pn(εm)dε

}
=
∑
m

(1− E[hb(εm)|Fn])

= E

[∑
m

C(εm)
∣∣∣Fn]

where we used the fact that the capacity of a BSC is C(εm) = 1− hb(εm). In (38), we also used the fact that the
uniform distribution maximizes the entropy (see Ch.2 in [16]).

Second, we prove the lower bound. By the concavity of H(·), we obtain:

G∗n

= sup
A

{
H

(
1∑

i1:iM=0

∫ 1/2

ε=0
gi1:iM (·|ε)Pn

(⋂
m

(A(m))im , ε

)
dε

)

−
1∑

i1:iM=0

∫ 1/2

ε=0
H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im , ε

)
dε
}

≥ sup
A

{∫ 1/2

ε=0
H

(
1∑

i1:iM=0

gi1:iM (·|ε)Pn

(⋂
m

(A(m))im
∣∣∣ε))

× pn(ε)dε

−
∫ 1/2

ε=0

1∑
i1:iM=0

H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im
∣∣∣ε) pn(ε)dε

}
= sup

A(1),...,A(M)

E
[
H

(
1∑

i1:iM=0

gi1:iM (·|ε)Pn

(⋂
m

(A(m))im
∣∣∣ε))

−
1∑

i1:iM=0

H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im
∣∣∣ε)∣∣∣Fn]
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= sup
p:p≥0,1T p=1

E
[
H

(
1∑

i1:iM=0

gi1:iM (·|ε)pi1,...,iM

)
(39)

−
1∑

i1:iM=0

H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im
∣∣∣ε)∣∣∣Fn]

= E
[

sup
p:p≥0,1T p=1

H

(
1∑

i1:iM=0

gi1:iM (·|ε)pi1,...,iM

)

−
1∑

i1:iM=0

H(gi1:iM (·|ε))pi1,...,iM
∣∣∣Fn]

= E

[
M∑
m=1

C(εm)
∣∣∣Fn] (40)

where we used the consistent reparameterization Pn

(⋂
m(A(m))im

∣∣∣ε) = pi1,...,iM in (39) and Theorem 2 in (40).

APPENDIX I
PROOF OF THEOREM 7

Proof: After querying all M players in sequence, the entropy loss is:

G∗seq,n = sup
{Ant}

M−1
t=0

E[H(pn)−H(pn+1)|Gn]

= sup
{Ant}

M−1
t=0

E

[
M−1∑
t=0

H(pnt)−H(pnt+1
)

∣∣∣∣∣Gn
]

(41)

= sup
{Ant}

M−1
t=0

M−1∑
t=0

E

[
E

[
H(pnt)−H(pnt+1

)

∣∣∣∣∣Ant ,Gnt
] ∣∣∣∣∣Gn

]
(42)

= sup
{Ant}

M−1
t=0

E

[
M−1∑
t=0

I((X∗, ε∗);Ynt+1
|Ant ,Gnt)

∣∣∣∣∣Gn
]

(43)

= E

[
M−1∑
t=0

sup
Ant

I((X∗, ε∗);Ynt+1
|Ant ,Gnt)

∣∣∣∣∣Gn
]

= E

[
M−1∑
t=0

C(εt+1)

∣∣∣∣∣Gn
]

= E

[
M∑
m=1

C(εm)

∣∣∣∣∣Gn
]

where we used a telescoping sum in (41) and the tower property of expectation with Gnt ⊇ Gn in (42). In (43), we
used the optimality condition of maximum entropy loss by applying Theorem 6 with M = 1 for each sub-instant
nt with m = t+ 1:

sup
Ant

{
H(pnt)− E[H(pnt+1

)|Ant ,Gnt ]
}

= sup
Ant

I((X∗, ε∗);Ynt+1
|Ant ,Gnt)

= E[C(εt+1)|Gnt ]

The second part follows from Theorem 6 part 2).
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APPENDIX J
PROOF OF THEOREM 9

Proof: The solution of (1) yields the Bellman recursion:

Vn(pn) = inf
u,A

E [Vn+1(pn+1)|un = u,An = A,Fn]

Using a similar argument as in Theorem 2 in [1], the optimal solution at time n is given by maximizing the entropy
loss at time n:

Gn = max
u

sup
A
I((X∗, ε∗);Y

(u)
n+1|un = u,A(u)

n = A,Fn)

= H(pn)− E
[
H(pn+1)|un = u,A(u)

n = A,Fn
]

and the value function is given by Vn(pn) = H(pn)−
∑N−1

k=n Gk for n < N and VN (pN ) = H(pN ). We can expand
the mutual information:

I((X∗, ε∗);Y
(u)
n+1|un, A

(u)
n ,Fn)

= H(Y
(u)
n+1|un, A

(u)
n ,Fn)− E

[
H(Y

(u)
n+1)|X∗, ε∗, un, A(u)

n ,Fn
]

The conditional probability of Y (u)
n+1 given the selection un = u and the query A(u)

n = A:

P(Y
(u)
n+1|un = u,A(u)

n = A,Fn)

= E[P(Y
(u)
n+1|un = u,A(u)

n = A,X∗, ε∗,Fn)]

=

∫
ε

∫
x∈X

(
f1(Y

(u)
n+1|εu)I(x ∈ A) + f0(Y

(u)
n+1|εu)I(x /∈ A)

)
× pn(x, ε)dxdε

=

∫ 1/2

εu=0

∫
x∈X

(
f1(Y

(u)
n+1|εu)I(x ∈ A) + f0(Y

(u)
n+1|εu)I(x /∈ A)

)
× p(u)

n (x, εu)dxdεu

=

∫ 1/2

εu=0
f1(Y

(u)
n+1|εu)P (u)

n (A, εu) + f0(Y
(u)
n+1|εu)P (u)

n (Ac, εu)dεu

where p(u)
n (x, εu) =

∫
{εm∈[0,1/2):m 6=u} pn(x, ε)d{εm : m 6= u} denotes the uth sub-marginal. This gives the first

term in (25). To obtain the second term, notice:

E[H(Y
(u)
n+1)|X∗, ε∗, un = u,A(u)

n = A,Fn]

=

∫
ε

∫
x∈X

H(Y
(u)
n+1|X

∗ = x, ε∗ = ε, un = u,Aun = A,Fn)

× pn(x, ε)dxdε

=

∫
ε

{∫
x∈A

pn(x, ε)H(f1(Y
(u)
n+1|εu))dx

+

∫
x/∈A

pn(x, ε)H(f0(Y
(u)
n+1|εu))dx

}
dε

=

∫ 1/2

εu=0
H(f1(·|εu))P (u)

n (A, εu)

+H(f0(·|εu))P (u)
n (Ac, εu)dεu

The proof of the first part is complete. The second part follows from part (2) of Theorem 6.
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APPENDIX K
PROOF OF COROLLARY 2

Proof: From Theorem 9, we have the optimality condition shown in (25). Under Assumption 2, we have
H(f0(·|εu) = H(f1(·|εu)) = hB(εu). Using this in the second term in the supremum of (25):∫ 1/2

εu=0
H (f1(·|εu))P (u)

n (A, εu) +H (f0(·|εu))P (u)
n (Ac, εu)dεu

=

∫ 1/2

εu=0
hB(εu)

(
P (u)
n (A, εu) + P (u)

n (Ac, εu)
)
dεu

=

∫ 1/2

εu=0
hB(εu)p(u)

n (εu)dεu = c(u)
n (44)

Thus, we conclude that the second term in (25) is independent of the query region A, but still depends on the
player u.

Rewriting the first term in the supremum of (25), we have for A = [0, x]:

H

(∫ 1/2

εu=0
f1(·|εu)P (u)

n (A, εu) + f0(·|εu)P (u)
n (Ac, εu)dεu

)

= H

(∫ 1/2

εu=0
f1(·|εu)

{∫ x

0
p(u)
n (t, εu)dt

}

+ f0(·|εu)

{∫ 1

x
p(u)
n (t, εu)dt

}
dεu

)

= H

(∫ x

0

{∫ 1/2

εu=0
f1(·|εu)p(u)

n (t, εu)dεu

}
dt

+

∫ 1

x

{∫ 1/2

εu=0
f0(·|εu)p(u)

n (t, εu)dεu

}
dt

)
= hB(g

(u)
1,n(x)) (45)

where g(u)
1,n(x) is defined in the statement of the theorem.
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