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Three New Families of Zero-difference Balanced
Functions with Applications

Cunsheng Ding, Qi Wang, and Maosheng Xiong

Abstract

Zero-difference balanced (ZDB) functions integrate a number of subjects in combinatorics and algebra, and have
many applications in coding theory, cryptography and communications engineering. In this paper, three new families
of ZDB functions are presented. The first construction, inspired by the recent work [1], gives ZDB functions defined
on the abelian groups(GF(q1)× · · · ×GF(qk),+) with new and flexible parameters. The other two constructions
are based on2-cyclotomic cosets and yield ZDB functions onZn with new parameters. The parameters of optimal
constant composition codes, optimal and perfect difference systems of sets obtained from these new families of
ZDB functions are also summarized.

Index Terms

Constant composition codes, cyclotomic cosets, difference system of sets, generalized cyclotomy, zero-difference
balanced functions.

I. INTRODUCTION

Let (A,+) and (B,+) be two abelian groups with ordersn and ℓ respectively. A functionf from A
to B is calledzero-difference balanced(ZDB for short) if

|{x ∈ A : f(x+ a)− f(x) = 0}| = λ,

for every nonzeroa ∈ A, whereλ is a non-negative integer. LetIm(f) = {b0, b1, . . . , bℓ̄−1} ⊆ B denote
the image set off and ℓ̄ = |Im(f)|. DefineAi := {x ∈ A : f(x) = bi} and τi = |Ai| for 0 ≤ i ≤ ℓ̄− 1.
Let P be the set of all the preimage sets, i.e.,P = {A0, A1, . . . , Aℓ̄−1}. Clearly,P constitutes a partition
of A. Furthermore, by the ZDB property, for each0 ≤ i ≤ ℓ̄ − 1, the list of differencesa − a′ with
a, a′ ∈ Ai anda 6= a′, covers all nonzero elements ofA exactlyλ times. In this case, the setP is called
an(n, {τ0, τ1, . . . , τℓ̄−1}, λ)-partitioned difference family(PDF). Because of the connection with PDF, each
ZDB function can be identified with parameters(n, {τ0, τ1, . . . , τℓ̄−1}, λ) (all these parameters are needed
in some applications, see Section IV). We also associate every ZDB function with the three parameters
(n, ℓ̄, λ) since in some cases the parameters{τ0, τ1, . . . , τℓ̄−1} may not be available.

Zero-difference balanced functions were first introduced by Ding in constructing optimal constant
composition codes [2] and optimal and perfect difference systems of sets [3]. In the literature, perfect
nonlinear functions [8], [11], [15], [19], [20] and difference balanced functions [16], [21] are special
types of ZDB functions. ZDB functions unify different subjects in combinatorics, algebra and finite
geometry, and they have found applications not only in thesethree areas but also in communications,
coding theory and cryptography. Due to their applications,ZDB functions have received a lot of attention
recently. Besides constant composition codes and difference systems of sets, they can also be employed to
construct optimal constant weight codes [18], [21] and optimal sets of frequency hopping sequences [9],
[10], [18]. In Table I below, we summarize some known ZDB functions with parameters(n, ℓ̄, λ), and
also the parameters{τ0, τ1, . . . , τℓ̄−1} if they are available. In tables below all the variables are positive
integers,q is always a prime power, andpi’s are primes.
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TABLE I
SOME KNOWN ZDB FUNCTIONS WITH PARAMETERS(n, ℓ̄, λ)

Parameters
Constraints References

(n, ℓ̄, λ) {τ0, τ1, . . . , τℓ̄−1}

(pr, ps, pr−s) p is a prime,0 ≤ s ≤ r [15]
(p2, p, p) {2p − 1, p− 1, . . . , p− 1} p is an odd prime [3]

(

qr−1
N

, q, qr−1
−1

N

)

N |(q − 1), andgcd(N, r) = 1 [2], [3]

(q2 + 1, q, q + 1) q = 2s, s ≥ 1 [2]
(q − 1, d, q−d

d
) { q

d
− 1, q

d
, . . . , q

d
} d|q [4]

(qr − 1, qs, qr−s − 1) 1 ≤ s ≤ r [21]
(

t q
r
−1
N

, qs, t q
r−s

−1
N

)

N |(q − 1), and gcd(N, r) = 1
1 ≤ t ≤ N, 1 ≤ s ≤ r

[21]

(n, n+e−1
e

, e− 1) {1, e, . . . , e}
n = p

m1

1 p
m2

2 · · · pmk
k , 2 < p1 < p2 < · · · < pk

ande|(pi − 1) for 1 ≤ i ≤ k
[1]

(n, n+e−1
e

, e− 1) {1, e, . . . , e}
n = p

m1

1 p
m2

2 · · · pmk
k , p1 < p2 < · · · < pk

ande|(pmi
i − 1) for 1 ≤ i ≤ k

Theorem 1

(2m − 1, 2m+m−2
m

,m− 1) {1, m, . . . ,m} m is a prime Theorem 2

(2m − 1, 2m−1+m−1
m

, 2m− 1) {1, 2m, . . . , 2m} m is an odd prime Theorem 3

Very recently, in [1], Cai, Zeng, Helleseth, Tang, and Yang constructed(n, (n+ e− 1)/e, e− 1)-ZDB
functions on(Zn,+), wheren is odd and has the canonical factorization

n = pm1
1 pm2

2 · · ·pmk

k , 2 < p1 < p2 < · · · < pk,

and e > 1 such thate|(pi − 1) for all 1 ≤ i ≤ k. Their construction employs the tool of generalized
cyclotomy in the ringsZn, and generates many ZDB functions with new parameters.

In this paper, inspired by the idea of [1] and utilizing generalized cyclotomy in the ringsGF(pm1
1 )×

· · · ×GF(pmk

k ), we construct(n, (n+ e− 1)/e, e− 1)-ZDB functions on the abelian groups(GF(pm1
1 )×

· · · ×GF(pmk

k ),+), with
n = pm1

1 pm2
2 · · ·pmk

k , p1 < p2 < · · · < pk,

ande > 1 such thate|(pmi

i − 1) for all 1 ≤ i ≤ k.
One aspect of difference between [1] and our construction isthat the groupsZn are cyclic, while in our

case the groups(GF(pm1
1 )×· · ·×GF(pmk

k ),+) are not cyclic in general. This is an advantage of [1] over
our construction, because ZDB functions on cyclic groups have more applications than those on noncyclic
groups. On the other hand, our construction provides many new and more flexible parameters compared
with [1], since in our constructionn can be even and the requiremente|(pmi

i − 1) gives more flexibility.
For example, taken = 72 · 132, then gcd(72 − 1, 132 − 1) = 24. So for e > 1 and e|24, we can take
e = 2, 3, 6, 4, 8, 12, 24. In comparison with the construction in [1], however, sincegcd(7− 1, 13− 1) = 6,
the requiremente > 1 ande|6 only allows us to takee = 2, 3, 6. The two constructions may overlap only
whenm1 = . . . = mk = 1, i.e., whenn is a square-free positive integer.

In addition to this construction, we propose two other families of ZDB functions on the cyclic groups
Zn with new parameters based on2-cyclotomic cosets, wheren = 2m − 1 for any primem. It may be
noted that these constructions cannot be generalized top-cyclotomic cosets onZn wheren = pm − 1 for
p > 2.

The rest of the paper is organized as follows. In Section II, we present the first construction of ZDB
functions on the groups(GF(pm1

1 )× · · · ×GF(pmk

k ),+). In Section III, we describe the second and third
construction of ZDB functions on the groups(Zn,+). In Section IV, we summarize some applications of
the ZDB functions. In Section V, we make some remarks.
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II. THE FIRST FAMILY OF (n, (n+ e− 1)/e, e− 1)-ZDB FUNCTIONS ON THEABELIAN GROUPS

(GF(pm1
1 )× · · · ×GF(pmk

k ),+)

The first construction of ZDB functions is described as follows. Letq1, . . . , qk be distinct prime powers
and let

n = q1q2 · · · qk.

For eachi, let GF(qi) be a finite field of orderqi and gi be a generator of the multiplicative group
GF(qi)

∗ := GF(qi) \ {0}. Consider the ring

A = GF(q1)×GF(q2)× · · · ×GF(qk).

For each non-empty subsetI ⊆ {1, . . . , k}, let

AI =

{

x = (x1, . . . , xk) ∈ A :
xi ∈ GF(qi)

∗, if i ∈ I,
xi = 0, if i /∈ I.

}

Without confusion we may identifyAI with
∏

i∈I GF(qi)
∗. ThenAI is a multiplicative group with identity

1 = (1, . . . , 1).
For eache > 1 with e|(qi − 1) for all 1 ≤ i ≤ k, let

qi − 1 = e · fi, 1 ≤ i ≤ k

and letgI ∈ AI be given by

gI =
(

gfii

)

i∈I
.

Since the order ofgi is qi − 1 for eachi, the order ofgI ∈ AI is e. Let DI ⊆ AI be the cyclic subgroup
generated bygI , then |DI | = e. Clearly,

∣

∣

∣
(DI − 1)

⋂

AI

∣

∣

∣
= e− 1.

We can decomposeAI into a disjoint union of left cosets ofDI as

AI =
∐

αI∈RI

αIDI , (1)

whereRI ⊆ AI is a fixed set of representatives forAI/DI . We find that

|RI | = |AI |/|DI | =
1

e
·
∏

i∈I

(qi − 1).

Let

S :=

{

αIDI : ∀ αI ∈ RI , ∀ ∅ 6= I ⊆ {1, . . . , k}

}

⋃

{

{0}
}

.

The setS has ordern−1
e

+1. Let η(·) be any bijection fromS to Zn−1
e

+1. We definef : A → Zn−1
e

+1 by

f(x) =

{

η (αIDI) : if x ∈ αIDI for someαI ∈ RI , ∅ 6= I ⊆ {1, . . . , k},
η ({0}) : if x = 0 = (0, . . . , 0).

This is well-defined, because each non-zero vectorx ∈ A belongs to someAI for a unique non-emptyI,
and by the decomposition (1),x belongs to someαIDI for a uniqueαI ∈ RI . Since|αIDi| = e for each
αI ∈ RI , it is easily seen that the sizes of the preimage sets off are{1, e, . . . , e}.

Theorem 1. The functionf defined above is an(n, n+e−1
e

, e− 1)-ZDB function fromA ontoZn−1
e

+1.

Proof: For eacha = (ai)i ∈ A \ {0}, we may assume thata ∈ AI for a unique non-empty set
I ⊆ {1, . . . , k}. By definition,f(x+ a) = f(x) if and only if x andx + a belong to the same set inS.
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This implies thatx 6= 0. Sayx = (xi)i and x + a = (xi + ai)i belong to the same setαDI′ for some
α = (αi)i ∈ RI′ and some non-empty setI ′. This means that there exist0 ≤ t, s ≤ e− 1 such that

xi = αig
fit
i , xi + ai = αig

fis
i ∀ i ∈ I ′,

xi = 0, xi + ai = 0 ∀ i /∈ I ′.

In particular, we haveai = 0 for all i /∈ I ′, henceI ⊆ I ′. If I ′ 6= I, then we can findi1 ∈ I ′ \ I, and
ai1 = 0 sincea ∈ AI , and

xi1 = αi1g
fi1 t

i1
= xi1 + ai1 = αi1g

fi1s

i1
.

This implies that
αi1g

fi1t

i1
= αi1g

fi1s

i1
=⇒ t = s.

Thus we findai = 0 for all i ∈ I ′. We already know thatai = 0 for all i /∈ I ′. This meansa = 0, a
contradiction. Therefore we must haveI ′ = I wherea ∈ AI . So

|{x ∈ A : f(x+ a)f(x)}|

=
∑

∅6=I′⊆{1,...,k}

|{x ∈ AI′ : f(x+ a) = f(x)}|

= |{x ∈ AI : f(x+ a) = f(x)}|

=
∑

α∈RI

∣

∣

∣
αDI

⋂

(αDI − a)
∣

∣

∣
.

Every element in the setαDI

⋂

(αDI − a) corresponds one-to-one to uniquex, y ∈ DI such that
αx− a = αy, or equivalently1− aα−1x−1 = x−1y with x−1, x−1y ∈ DI . Here forx ∈ AI , x−1 denotes
the multiplicative inverse ofx in AI . So we have

∣

∣

∣
αDI

⋂

(αDI − a)
∣

∣

∣
=

∣

∣

∣
DI

⋂

(

1− aα−1DI

)

∣

∣

∣
=

∣

∣

∣
(DI − 1)

⋂

(

−aα−1
)

DI

∣

∣

∣
.

It is easy to observe that asα runs overRI , a set of representatives forAI/DI , the element−aα−1 will
also run over a set of representatives forAI/DI . Therefore we obtain

|{x ∈ A : f(x+ a) = f(x)}| =
∑

α∈RI

∣

∣

∣
(DI − 1)

⋂

αDI

∣

∣

∣
=

∣

∣

∣
(DI − 1)

⋂

AI

∣

∣

∣
= e− 1.

This completes the proof of Theorem 1.

III. T WO MORE FAMILIES OFZDB FUNCTIONS ON(Zn,+) FROM 2-CYCLOTOMIC COSETS MODULOn

In this section, employing2-cyclotomic cosets modulon = 2m − 1, we present two families of ZDB
functions on(Zn,+) with new parameters. The ZDB functions in one family have parameters(2m−1, (2m+
m− 2)/m,m− 1), and those in the other family have parameters(2m − 1, (2m−1 +m− 1)/m, 2m− 1).
Furthermore, the parameters{τ0, τ1, . . . , τℓ̄−1}, i.e., the sizes of the preimage sets, of the ZDB functions
are also determined.

Let n = 2m − 1. The 2-cyclotomic coset modulon containingi is defined by

{i, i× 2 mod n, i× 22 mod n, · · · , i× 2ℓi mod n} ⊂ Zn,

whereℓi is the least positive integer such thati ≡ i2ℓi (mod n), and is called the size of this2-cyclotomic
coset. The leader of a2-cyclotomic coset modulon is the least integer in the2-cyclotomic coset. Clearly,
all the 2-cyclotomic cosets modulon form a partition ofZn. It is noted thatn = 2m − 1 may not be a
prime whenm is a prime. For example,n = 211 − 1 = 23× 89.
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A. The family of(2m − 1, (2m +m− 2)/m,m− 1)-ZDB functions on(Zn,+)

Let m be a prime, and letn = 2m − 1. Sincem is a prime, every nonzero2-cyclotomic coset has size
m, and the total number of nonzero2-cyclotomic cosets modulon is equal to(2m−2)/m. Let Γm denote
the set of all2-cyclotomic coset leaders. Then

|Γm| = 1 +
2m − 2

m
=

2m +m− 2

m
.

We now define a functionf from (Zn,+) to itself by

f(x) = ix,

where ix is the coset leader of the2-cyclotomic coset containingx. Since every nonzero2-cyclotomic
coset hasm elements modulo2m − 1, by definition, the sizes of the preimage sets off form the set
{1, m, . . . , m}.

Theorem 2. Let m be a prime. Then the functionf defined above is a(2m − 1, 2m+m−2
m

, m − 1)-ZDB
function on(Zn,+).

Proof: Note that|Im(f)| = |Γm| =
2m+m−2

m
. It suffices to prove that for everya 6≡ 0 (mod 2m − 1),

the number ofx with 1 ≤ x ≤ 2m − 1 such thatx + a and x belong to the same2-cyclotomic set is
alwaysm− 1. The existence of such anx means that there is an integerk with 1 ≤ k ≤ m− 1, such that

x+ a ≡ 2kx (mod 2m − 1),

or equivalently,

(2k − 1)x ≡ a (mod 2m − 1).

Sincem is a prime andk < m, we have

gcd(2k − 1, 2m − 1) = 2gcd(k,m) − 1 = 1.

We denote by2k − 1 the multiplicative inverse of2k − 1 modulo2m − 1. Thus,

x ≡ (2k − 1) · a (mod 2m − 1),

and this holds for all1 ≤ k ≤ m−1. It is also clear that2k−1 6≡ 2l−1 (mod 2m−1) for 1 ≤ k 6= l ≤ m−1,
hence the number of suchx is alwaysm− 1. This completes the proof of Theorem 2.

B. The family of(2m − 1, (2m−1 +m− 1)/m, 2m− 1)-ZDB functions on(Zn,+)

Let m be an odd prime and letn = 2m − 1. Same as in Section III-A, letΓm denote the set of all
2-cyclotomic coset leaders and furtherΠm denote the set of all2-cyclotomic cosets modulon. Sincem is
prime, every nonzero2-cyclotomic cosets modulon has the sizem and |Γm| = 1 + (2m − 2)/m. Define

∆m = {B ∪ (−B) : B ∈ Πm},

where−B = {n− i : i ∈ B}. Similarly, the leader of anyB ∪ (−B) is the least integer in this set. It is
easy to prove thatB and−B are disjoint for each{0} 6= B ∈ Πm, and hence

|∆m| = 1 +
2m−1 − 1

m
=

2m−1 +m− 1

m
.

We now define a functiong from (Zn,+) to itself by

g(x) = jx,

where jx is the leader of the setB ∪ (−B) containingx. Since every nonzero setB ∪ (−B) has2m
elements, the sizes of the preimage sets ofg form the set{1, 2m, . . . , 2m}.
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Theorem 3. Let m be an odd prime. Then the functiong defined above is a(2m− 1, 2
m−1+m−1

m
, 2m− 1)-

ZDB function on(Zn,+).

Proof: Note that|Im(g)| = |∆m| =
2m−1+m−1

m
. We only need to prove that for eacha 6≡ 0 (mod 2m−

1), the number ofx with 1 ≤ x ≤ 2m − 1 such thatx+ a belongs to the2-cyclotomic set that contains
either x or −x is always2m − 1. The existence of such anx means that there is an integerk with
1 ≤ k ≤ m− 1, such that

x+ a ≡ 2kx (mod 2m − 1), (2)

or there is an integert with 1 ≤ t ≤ m such that

x+ a ≡ −2tx (mod 2m − 1). (3)

As for (2), similar to the proof of Theorem 2, the number of solutions forx is m− 1. As for (3), we get

(2t + 1)x ≡ −a (mod 2m − 1).

Notice that if t < m, sincem is an odd prime, we have

gcd(22t − 1, 2m − 1) = 2gcd(2t,m) − 1 = 1,

and furthergcd(2t + 1, 2m − 1) = 1. If t = m, we have

gcd(2m + 1, 2m − 1) = gcd(2, 2m − 1) = 1.

Hence,2t + 1 is invertible modulo2m − 1 for all 1 ≤ k ≤ m. It then follows that the number ofx
satisfying (3) ism. On the other hand, (2) and (3) can not be satisfied simultaneously, because otherwise
we obtain for some1 ≤ k ≤ m− 1, 1 ≤ t ≤ m

(2t + 2k)a ≡ 0 (mod 2m − 1).

However, we note that
gcd(2t + 2k, 2m − 1) = 1,

implying that a ≡ 0 (mod 2m − 1), which is a contradiction to the assumptiona 6≡ 0 (mod 2m − 1).
Then the total number ofx satisfying either (2) or (3) is2m− 1. This completes the proof.

IV. TWO APPLICATIONS OF THEZDB FUNCTIONS PRESENTED IN THIS PAPER

In this section, we deal with the applications of the ZDB functions of this paper in constant composition
codes and difference systems of sets.

A. Optimal constant composition codes

Let Fℓ denote the set{0, 1, . . . , ℓ − 1} (also calledalphabet), and letFn
ℓ be the set of alln-tuples

over Fℓ (also calledwords). An (n,M, d, w)ℓ constant weight code(CWC) is a codeC ⊂ Fn
ℓ with

sizeM and minimum Hamming distanced such that the Hamming weight of each codeword isw. An
(n,M, d, [w0, w1, . . . , wℓ−1])ℓ constant composition code(CCC) is a codeC ⊂ Fn

ℓ with size M and
minimum Hamming distanced such that in every codeword the elementi appears exactlywi times for
every i ∈ Fℓ. An (n,M, d, [w0, w1, . . . , wℓ−1])ℓ CCC is called apermutation codeif n = ℓ andwi = 1
for all i ∈ Fℓ. By definition, constant composition codes are a special class of constant weight codes and
permutation codes are a further special class of constant composition codes.

Let Aℓ(n, d, [w0, w1, . . . , wℓ−1]) denote the maximum size of an(n,M, d, [w0, w1, . . . , wℓ−1])ℓ CCC. The
following upper bound on the maximum size of a CCC was derivedin [14].
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Lemma 4. If nd− n2 + (w2
0 + w2

1 + · · ·+ w2
ℓ−1) > 0,

Aℓ(n, d, [w0, w1, . . . , wℓ−1]) ≤
nd

nd− n2 + (w2
0 + w2

1 + · · ·w2
ℓ−1)

. (4)

An (n,M, d, [w0, w1, . . . , wℓ−1])ℓ constant composition code is said to beoptimal if the bound of (4) is
met. In [2], [6], the link between ZDB functions and optimal CCCs was established, and PDFs and ZDB
functions were used to construct optimal CCCs.

Lemma 5. Suppose thatf is an (n, ℓ̄, λ)-ZDB function from an abelian group(A,+) of order n to
an abelian group(B,+) of order ℓ and Im(f) is the image set off with |Im(f)| = ℓ̄. Let A =
{a0, a1, . . . , an−1} and Im(f) = {b0, b1, . . . , bℓ̄−1}. Defineτi = |{x ∈ A : f(x) = bi}| for 0 ≤ i ≤ ℓ̄− 1.
Then the code

C = {(f(a0 + ai), . . . , f(an−1 + ai)) : 0 ≤ i ≤ n− 1}

is an (n, n, n− λ, [τ0, τ1, . . . , τℓ̄−1])ℓ̄ CCC overIm(f) meeting the bound of (4).

TABLE II
SOME KNOWN OPTIMAL CCCS WITH PARAMETERS(n,M, d, [w0, w1, . . . , wℓ−1])ℓ

Parameters Constraints References
(

3r−1
2

, 3r−1
2

, s,
[

s−1
2

, s−s1/2

2
, s+s1/2

2

])

3
r is odd,s = 3r−1 [7]

(q, q, q − r, [2r − 1, 2, . . . , 2])r q ≡ 1 (mod 4), r = q+3
4

[6]
(q, q, q − s+ 1, [s, . . . , s, 1])r q ≡ 1 (mod s), r = q+s−1

s
[6]

q ≡ 1 (mod 2s)
(q, q, q − s−1

2
, [s, . . . , s, 1, . . . , 1])r r = q−1

2s
+ q+1

2
, [6]

s appearsq−1
2s

times
(q(q + 1), q2, q2, [q + 1, . . . , q + 1])q [6]

(q2r, q2r, (q − 1)q2r−1, [q2r−1 + (q − 1)qr−1,
[5]

q2r−1 − qr−1, . . . , q2r−1 − qr−1])q
(

qr−1
2

, qr−1
2

, qr−qr−1

2
, [τ0, τ1, . . . , τq−1]

)

q
q is odd [5]

(9s, 9r, 6 · 9r−1, [5s, 2s, 2s])3 s = 9r−1
8

[14]
(8s, 8r, 6 · 8r−1, [3s, 3s, 2s]3 s = 8r−1

7
[14]

(10s, 5r, 7 · 5r−1, [6s, 2s, 2s])3 s = 5r−1
4

[14]
(qt, qr, qr, [t, . . . , t])q t = qr−1

q−1
[14]

(

qt, qr,
(q+3)qr−1

2
,
[

(q−1)t
2

,
(q−1)t

2
, t
])

3
t = qr−1

q−1
, q is odd [14]

(

qr−1
N

, qr−1
N

, qr−qr−1

N
, [τ0, τ1, . . . , τq−1]

)

q
N |(q − 1), gcd(N, r) = 1 [2]

(q2 + 1, q2 + 1, q2 − q, [τ0, τ1, . . . , τq−1])q q = 2s, s ≥ 1 [2]
(q − 1, q − 1, q − q−d

d
− 1, [ q

d
− 1, q

d
, . . . , q

d
])d d|q [4]

(qr − 1, qr − 1, qr − qr−s, [τ0, τ1, . . . , τqs−1])qs 1 ≤ s ≤ r [21]

(t q
r
−1
N

, t q
r
−1
N

, t q
r
−qr−s

N
, [τ0, τ1, . . . , τqs−1])qs

N |(q − 1), gcd(N, r) = 1
1 ≤ t ≤ N, 1 ≤ s ≤ r

[21]

(n, n, n− e+ 1, [1, e, . . . , e])n+e−1

e

n = p
m1

1 p
m2

2 · · · pmk
k , 2 < p1 < p2 < · · · < pk

and e|(pi − 1) for 1 ≤ i ≤ k
[1]

(n, n, n− e+ 1, [1, e, . . . , e])n+e−1

e

n = p
m1

1 p
m2

2 · · · p
mk
k , p1 < p2 < · · · < pk

ande|(pmi
i − 1) for 1 ≤ i ≤ k

Theorem 1

(2m − 1, 2m − 1, 2m −m, [1,m, . . . ,m]) 2m+m−2

m
m is a prime Theorem 2

(2m − 1, 2m − 1, 2m − 2m, [1, 2m, . . . , 2m]) 2m−1+m−1

m

m is an odd prime Theorem 3

We remark that every ZDB function corresponds to an optimal CCC using this standard method in
Lemma 5. In Table II we summarize some known optimal CCCs withparameters(n,M, d, [w0, w1, . . . , wℓ−1])ℓ,
including the new parameters of the CCCs obtained from the three new families of ZDB functions of this
paper.
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B. Optimal and perfect difference systems of sets

Difference systems of sets (DSS) were introduced by Levenstein [12] (see also [13]) for the construction
of comma-free codes for synchronization. Letn be a positive integer, and letZn be the integer ring modulo
n. An (n, {τ0, τ1, . . . , τℓ−1}, ρ) difference system of set(DSS) is a collection ofℓ disjoint setsDi ⊆ Zn

such that|Di| = τi for all 0 ≤ i < ℓ and the multiset

{∗(b− b′) mod n : b ∈ Di, b′ ∈ Dj , i 6= j, , 0 ≤ i, j ≤ ℓ− 1∗} (5)

contains every nonzero elementx ∈ Zn at leastρ times. A DSS is calledperfectif every nonzero element
x ∈ Zn is contained exactlyρ times in the multiset of (5). A DSS is saidregular if all the subsetsDi’s
are of the same size.

For the application of DSS to code synchronization, the number

rℓ(n, ρ) =

ℓ−1
∑

i=0

|Di|

is required to be as small as possible. A lower bound onrℓ(n, ρ) is the following [17].

Lemma 6. For any DSS with parameters(n, {τ0, τ1, . . . , τℓ−1}, ρ),

rℓ(n, ρ) ≥

√

SQUARE

(

ρ(n− 1) +

⌈

ρ(n− 1)

ℓ− 1

⌉)

, (6)

whereSQUARE(x) denotes the smallest square number that is no less than the positive integerx, and
⌈x⌉ denotes the ceiling function.

A perfect(n, {τ0, τ1, . . . , τℓ−1}, ρ) DSS is calledoptimal if the bound of (6) is met. The correspondence
between ZDB functions and perfect DSSs was first establishedin [3] (see also [21]).

Lemma 7. Suppose thatf is an (n, ℓ̄, λ)-ZDB function from(Zn,+) to an abelian group(B,+) of
order ℓ and Im(f) is the image set off with |Im(f)| = ℓ̄. Let Im(f) = {b0, b1, . . . , bℓ̄−1}. Define
Di = {x ∈ Zn : f(x) = bi}, and τi = |Di| for 0 ≤ i ≤ ℓ̄− 1. Then the set

D = {Di : 0 ≤ i ≤ ℓ̄− 1}

is an (n, {τ0, τ1, . . . , τℓ̄−1}, n− λ) perfect DSS. Furthermore, if̄ℓλ ≤ n, D is optimal with respect to the
bound of (6).

TABLE III
SOME KNOWN OPTIMAL AND PERFECTDSSS WITH PARAMETERS(n, {τ0, τ1, . . . , τℓ−1}, ρ)

Parameters Constraints References
(

qr−1
N

, {τ0, τ1, . . . , τq−1},
qr−qr−1

N

)

N |(q − 1), gcd(N, r) = 1 [2]

(q2 + 1, {τ0, τ1, . . . , τq−1}, q
2 − q) q = 2s, s ≥ 1 [2]

(p2, {2p − 1, p− 1, . . . , p− 1}, p2 − p) p is a prime [3]
(q − 1, { q

d
− 1, q

d
, . . . , q

d
}, q − q−d

d
− 1) d|q [4]

(qr − 1, {τ0, τ1, . . . , τqs−1}, q
r − qr−s) 1 ≤ s ≤ r [21]

(t q
r
−1
N

, {τ0, τ1, . . . , τqs−1}, t
qr−qr−s

N
)

N |(q − 1), gcd(N, r) = 1
1 ≤ t ≤ N, 1 ≤ s ≤ r

[21]

(n, {1, e, . . . , e}, n− e+ 1)
n = p

m1

1 p
m2

2 · · · pmk
k , 2 < p1 < p2 < · · · < pk

ande|(pi − 1) for 1 ≤ i ≤ k, n ≥ (e− 1)2
[1]

(2m − 1, {1, m, . . . , m}, 2m −m) m is a prime Theorem 2
(2m − 1, {1, 2m, . . . , 2m}, 2m − 2m) m is an odd prime,m ≥ 11 Theorem 3
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We emphasize that the DSSs constructed from ZDB functions using Lemma 7 may not be optimal
unless the condition̄ℓλ ≤ n is satisfied. It is easy to check that the DSSs given by the ZDB functions
in Theorem 2 are optimal for all primesm, and those constructed by the ZDB functions in Theorem 3
achieve optimality for primesm ≥ 11.

Note that the group(GF(pm1
1 )× · · · × GF(pmk

k ),+) is cyclic only whenm1 = · · · = mk = 1, that is,
n = p1 · · · pk is square-free. The ZDB functions in Theorem 1 can be employed to construct DSSs only
whenm1 = · · · = mk = 1.

In Table III, we summarize the parameters of some known optimal and perfect DSSs, including the
parameters of the DSSs obtained from the two families of ZDB functions in Section III.

V. CONCLUDING REMARKS

In this paper, we present three new families of ZDB functionswith parameters{n, {τ0, . . . , τℓ̄−1}, ℓ̄, λ}.
The parameters of optimal constant composition codes, optimal and perfect difference systems of sets
obtained from these new families of ZDB functions are also summarized.

As we have seen, with respect to applications in constant composition codes and difference systems
of sets, every parameter in the set{n, {τ0, . . . , τℓ̄−1}, ℓ̄, λ} makes a difference. Hence, when comparing
the parameters of two ZDB functions, it may be more appropriate to compare not onlyn, ℓ̄, λ, but also
τ0, τ1, · · · , τℓ̄−1 as well. Therefore, the parameters of a ZDB function shall not be considered new only
when all of the parameters{n, {τ0, . . . , τℓ̄−1}, ℓ̄, λ} of this ZDB function can be obtained by an earlier
constructed ZDB function.
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