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Three New Families of Zero-difference Balanced
Functions with Applications

Cunsheng Ding, Qi Wang, and Maosheng Xiong

Abstract

Zero-difference balanced (ZDB) functions integrate a nendf subjects in combinatorics and algebra, and have
many applications in coding theory, cryptography and comigations engineering. In this paper, three new families
of ZDB functions are presented. The first construction,iiespby the recent work 1], gives ZDB functions defined
on the abelian group&GF(¢1) x - - - x GF(gx), +) with new and flexible parameters. The other two construstion
are based oB-cyclotomic cosets and yield ZDB functions @h, with new parameters. The parameters of optimal
constant composition codes, optimal and perfect diffezesystems of sets obtained from these new families of
ZDB functions are also summarized.

Index Terms

Constant composition codes, cyclotomic cosets, diffexeystem of sets, generalized cyclotomy, zero-difference
balanced functions.

. INTRODUCTION

Let (A, +) and (B, +) be two abelian groups with ordersand ¢ respectively. A functionf from A

to B is calledzero-difference balance@DB for short) if

{o e A f(z+a) = f() =0} =\,
for every nonzera: € A, where\ is a non-negative integer. Lém(f) = {by,b1,...,b;_;} C B denote
the image set off and/ = |Im(f)|. DefineA; :== {x € A: f(x) = b} andr; = |A;| for 0 <i < 7 —1.
Let P be the set of all the preimage sets, iB.= {Ay, A1,...,A;_,}. Clearly, P constitutes a partition
of A. Furthermore, by the ZDB property, for eabh< i < ¢ — 1, the list of differences: — a’ with
a,a’ € A; anda # o/, covers all nonzero elements df exactly A times. In this case, the s@t is called
an(n,{r,m,...,7_1}, A)-partitioned difference famil{PDF). Because of the connection with PDF, each
ZDB function can be identified with parametérs {7, 71,...,7_1},A) (all these parameters are needed
in some applications, see Section IV). We also associatey @BB function with the three parameters
(n,£,)\) since in some cases the parametgis,...,7;_,} may not be available.

Zero-difference balanced functions were first introducgdbng in constructing optimal constant
composition coded [2] and optimal and perfect differenceteans of sets [3]. In the literature, perfect
nonlinear functions[[8],[[11],[115],[119],.[20] and diffenee balanced function$ [16], [21] are special
types of ZDB functions. ZDB functions unify different subje in combinatorics, algebra and finite
geometry, and they have found applications not only in thésee areas but also in communications,
coding theory and cryptography. Due to their applicatiadi3B functions have received a lot of attention
recently. Besides constant composition codes and differsgstems of sets, they can also be employed to
construct optimal constant weight codes|[18],/[21] androptisets of frequency hopping sequences [9],
[10], [18]. In Table[ below, we summarize some known ZDB ftiogs with parametersn, 7, \), and
also the parametergr, 1, ..., 7} if they are available. In tables below all the variables avsitive
integers,q is always a prime power, ang’s are primes.
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TABLE | .
SOME KNOWN ZDB FUNCTIONS WITH PARAMETERS(n, £, \)

B Parameters Constraints References
(n, 0, \) | {ro, 71, .., 771}
(" p% 0" %) pisaprimel<s<r M15]
(%, p,p) {2p—1,p—1,...,p— 1} p is an odd prime €]
(50 ) Nl(g — 1), andged (N, r) = 1 2. B
(¢°+1,q,9+1) g=2°s>1 A
”(q—lzd,’?;‘d) {g-1.4..... %} dlg (4]
@ —1,¢q -1 1<s<r [21]
T 1 s ,qm—o— N|(g—1), and gcd(N,r) =1
q 1 s q 1 9 ’
(tzv’q’t y ) 1<t<N,1<s<r 21
nte—1 n=ppy? Pt 2<pr <p2<---<pi
(n, 25=",e 1) {Le,....e} ande|(p; — 1) for 1 <i <k [l
nte1  _ n=pyipy? -t pr <p2 <o <pk
(n, 2= e —1) {1l,e,...,e} ande|(p™ — 1) for 1 < i < k Theoren1L
(2" — 1, TEm=2 4y 1) {1,m,...,m} m is a prime Theoren{ 2
(2m —1, %, 2m — 1) {1,2m,...,2m} m is an odd prime TheoreniB

Very recently, in[[1], Cai, Zeng, Helleseth, Tang, and Yaogstructedn, (n +e—1)/e,e — 1)-ZDB
functions on(Z,, +), wheren is odd and has the canonical factorization

n=p"py?-ppt, 2<pr <py <o < i,

and e > 1 such thate|(p; — 1) for all 1 < 7 < k. Their construction employs the tool of generalized
cyclotomy in the ringsZ,,, and generates many ZDB functions with new parameters.
In this paper, inspired by the idea 6f [1] and utilizing galized cyclotomy in the ring&F(p™) x
-+« x GF(p;"*), we construc{n, (n+e—1)/e,e — 1)-ZDB functions on the abelian groug&FE (pi™) x
-+ x GF(p,™),+), with
n=p"py?ppts pr<pa <o <pi,

ande > 1 such thate|(p;" — 1) forall 1 <i < k.

One aspect of difference betweén [1] and our constructidnasthe group&.,, are cyclic, while in our
case the group&GF(p") x - - - x GF(p,™*), +) are not cyclic in general. This is an advantage_ of [1] over
our construction, because ZDB functions on cyclic groupg&hmaore applications than those on noncyclic
groups. On the other hand, our construction provides mamyaral more flexible parameters compared
with [1]], since in our construction can be even and the requirementp.” — 1) gives more flexibility.
For example, taker = 7% - 132, thenged(7% — 1,132 — 1) = 24. So fore > 1 and¢|24, we can take
e=2,3,6,4,8,12,24. In comparison with the construction inl[1], however, siged(7 — 1,13 —1) = 6,
the requirement > 1 ande|6 only allows us to take = 2,3, 6. The two constructions may overlap only
whenm; = ... =m; = 1, i.e., whenn is a square-free positive integer.

In addition to this construction, we propose two other faégsilof ZDB functions on the cyclic groups
Z, with new parameters based @rcyclotomic cosets, where = 2™ — 1 for any primem. It may be
noted that these constructions cannot be generalizgecyelotomic cosets ofZ,, wheren = p™ — 1 for
p > 2.

The rest of the paper is organized as follows. In Sedfibn #, present the first construction of ZDB
functions on the group&GF(p") x --- x GF(p;"*),+). In Sectiorll, we describe the second and third
construction of ZDB functions on the grouf,,, +). In Sectiof IV, we summarize some applications of
the ZDB functions. In SectionlV, we make some remarks.



II. THE FIRST FAMILY OF (n,(n+e—1)/e,e —1)-ZDB FUNCTIONS ON THEABELIAN GROUPS
(GF(py") x --- x GF(p™*), +)
The first construction of ZDB functions is described as foloLetq, .. ., ¢, be distinct prime powers
and let

n=aqqz---qk.

For eachi, let GF(¢;) be a finite field of orderg; and g; be a generator of the multiplicative group
GF(¢)* :== GF(¢;) \ {0}. Consider the ring

A =GF(q1) x GF(g2) x - - x GF(qx).
For each non-empty subsetC {1,..., k}, let

Without confusion we may identifyl; with [],_, GF(¢;)*. ThenA; is a multiplicative group with identity
1=(1,...,1).
For eache > 1 with e|(¢; — 1) for all 1 <i <, let

and letg; € A; be given by

Since the order of; is ¢; — 1 for eachi, the order ofg; € A;is e. Let D; C A; be the cyclic subgroup
generated by, then|D;| = e. Clearly,

)(D[ —l)ﬂA[‘ =e— 1.
We can decomposd; into a disjoint union of left cosets ab; as

A[ = H Oé[D[, (l)
whereR; C A; is a fixed set of representatives fdy/D;. We find that

1
|Ri| = |A1|/|Dr| = o [ -0D.
el
Let

S = {Oé[D[ YV ar € R[,v 0 7’é IC {1, . ,k‘}} U{{Q}}
The setS has order”Tf1 + 1. Let () be any bijection fromS to Z.-._,. We definef : A — Zn-1_, by
flz) = n(arD;) : if x € a;D; for someay € Rr, 0 # 1 C{1,...,k},
L= if p =

n ({0}) 0=(0,...,0).

This is well-defined, because each non-zero veeterA belongs to somel; for a unique non-empty,
and by the decompositiofl(1}, belongs to some; D; for a uniquea; € R;. Since|a;D;| = e for each
ay € Ry, it is easily seen that the sizes of the preimage sets afe {1,¢,...,e}.

Theorem 1. The functionf defined above is afn, “t<=! ¢ — 1)-ZDB function fromA onto Z.-1 ;.

e

Proof: For eacha = (a;); € A\ {0}, we may assume that € A; for a unique non-empty set
I C{1,...,k}. By definition, f(z + a) = f(z) if and only if z andz + a belong to the same set i\.



This implies thatr # 0. Sayz = (z;); andz + a = (x; + a;); belong to the same setD; for some
a = (o;); € Rp and some non-empty sét. This means that there exig8t< ¢, s < e — 1 such that

T, = aingit, T +a; = ozingis Viel,
.Ti:O, JIZ'—FCLZ':O VZ¢I/

In particular, we havey; = 0 for all 7 ¢ I’, hencel C I'. If I’ # I, then we can find, € I\ I, and
a;, = 0 sincea € A;, and

_ fint _ fiys
Tiy = Q1 G, = iy + Ay = A3y G5,

This implies that
fint fiys .
QinGi, =G, = t=s.

Thus we finda; = 0 for all i € I'. We already know that; = 0 for all 7 ¢ I’. This means: = 0, a
contradiction. Therefore we must have= I wherea € A;. So

Hze A: fz+a)f(x)}|

= Y Hzedr:flz+a)=fa)}
O£ {1k}

= HzeAr: flz+a)=f(2)}

= Z ‘OéD[ﬂ(OzD[—Q)).

aERy

Every element in the setD; () (aD; — a) corresponds one-to-one to uniquey € D; such that
az —a = ay, or equivalentlyl — aa~'z™" = z~'y with 7", 27!y € D;. Here forz € A;, 27! denotes
the multiplicative inverse of in A;. So we have

aD:((@Ds — )| = [Ds() (1 ~a0~'D1)| = |(Dr ~ 1) (a0~ .

It is easy to observe that asruns overR;, a set of representatives fak; /D7, the element-aa~! will
also run over a set of representatives fot/ D;. Therefore we obtain

{zed:fe+a) = f@} = > |[(Dr—=Dabi| = |(Dr = Ar| =e-1.

aERy

This completes the proof of Theordm 1. [ ]

IIl. TWO MORE FAMILIES OFZDB FUNCTIONS ON(Z,, +) FROM 2-CYCLOTOMIC COSETS MODULOn

In this section, employin@-cyclotomic cosets module = 2™ — 1, we present two families of ZDB
functions onZ,,, +) with new parameters. The ZDB functions in one family haveypeterg2™—1, (2™ +
m —2)/m,m — 1), and those in the other family have paramet&?® — 1, (2"~ +m — 1)/m,2m — 1).
Furthermore, the parametefsy, 7, ..., 7_,}, i.e., the sizes of the preimage sets, of the ZDB functions
are also determined.

Let n = 2™ — 1. The 2-cyclotomic coset modula containing: is defined by

{i,i x 2mod n,i x 2> mod n, - -- ,i x 2% mod n} C Z,,

where/; is the least positive integer such thiat 2% (mod n), and is called the size of thiscyclotomic

coset. The leader of 2cyclotomic coset modula is the least integer in the-cyclotomic coset. Clearly,
all the 2-cyclotomic cosets module form a partition ofZ,. It is noted thatn = 2™ — 1 may not be a
prime whenm is a prime. For example; = 2! — 1 = 23 x 89.



A. The family of(2™ — 1, (2™ +m — 2)/m, m — 1)-ZDB functions onZ,, +)

Let m be a prime, and let = 2™ — 1. Sincem is a prime, every nonzerd-cyclotomic coset has size
m, and the total number of nonze?ecyclotomic cosets modulo is equal to(2™ —2) /m. Let T, denote
the set of all2-cyclotomic coset leaders. Then
2m—2  2M4m -2

‘Fm| =1+
m

We now define a functiorf from (Z,, +) to itself by
f(l') = iz,

wherei, is the coset leader of th&-cyclotomic coset containing. Since every nonzer@-cyclotomic
coset hasn elements modul@™ — 1, by definition, the sizes of the preimage setsfoform the set
{1,m,...,m}.

Theorem 2. Let m be a prime. Then the functiofi defined above is ™ — 1, &4£"=2 4, — 1)-ZDB
function on(Z,, +).

Proof: Note that|Im(f)| = |I,,| = Z£2=2_ |t suffices to prove that for every # 0 (mod 2™ — 1),
the number ofr with 1 < x < 2™ — 1 such thatz + a and = belong to the same-cyclotomic set is
alwaysm — 1. The existence of such anmeans that there is an integewith 1 < & < m — 1, such that

r+a=22 (mod 2™ —1),
or equivalently,
(28 — 1)z =a (mod2™ —1).
Sincem is a prime andk < m, we have
ged(2F —1,2m — 1) = 28cdlbm) _ 1 — 1
We denote by2* — 1 the multiplicative inverse of* — 1 modulo2™ — 1. Thus,
r=(2F-1)-a (mod 2™ —1),

and this holds for all < k < m—1. Itis also clear tha?*—1 # 2'—1 (mod 2™—1)for1 < k # 1 < m—1,
hence the number of suchis alwaysm — 1. This completes the proof of Theordm 2. [ |

B. The family of(2™ — 1, (2"~ +m — 1)/m, 2m — 1)-ZDB functions onZ,, +)

Let m be an odd prime and let = 2™ — 1. Same as in Sectidn_II[JA, lef,, denote the set of all
2-cyclotomic coset leaders and furthéy, denote the set of all-cyclotomic cosets modula. Sincem is
prime, every nonzer@-cyclotomic cosets module has the sizen and|T',,| = 1 + (2 — 2)/m. Define

A, ={BU(-B): B ell,,},
where—B = {n —i:i € B}. Similarly, the leader of any3 U (—B) is the least integer in this set. It is
easy to prove thaB and —B are disjoint for eacH0} # B € I1,,,, and hence
e N |

|Am| =1+
m

We now define a functiog from (Z,,, +) to itself by

9(x) = Ja,

where j,. is the leader of the seB U (—B) containingz. Since every nonzero sdét U (—B) has2m
elements, the sizes of the preimage setg &rm the set{1,2m,...,2m}.
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Theorem 3. Letm be an odd prime. Then the functigrdefined above is g™ — 1, 2" —+m=1 2y —1)-
ZDB function on(Z,,, +).

Proof: Note that|Im(g)| = |A,,| = ngm‘l We only need to prove that for eagh# 0 (mod 2" —
1), the number ofr with 1 < x < 2™ — 1 such thatr + a belongs to the-cyclotomic set that contains
eitherz or —z is always2m — 1. The existence of such an means that there is an integkerwith
1 <k <m-—1, such that

r+a=2r (mod 2™ —1), (2)
or there is an integer with 1 <t < m such that
r+a= -2z (mod?2™ —1). (3)
As for (2), similar to the proof of Theorefd 2, the number ofusimins forx is m — 1. As for (3), we get
2"+ 1)z =—-a (mod 2™ —1).
Notice that ift < m, sincem is an odd prime, we have
ged (22 —1,2m — 1) = 28cd@m) _ 1 — 1
and furtherged(2' 4+ 1,2™ — 1) = 1. If t = m, we have
ged(2™+1,2" — 1) = ged(2,2™ — 1) = 1.

Hence,2! + 1 is invertible modulo2™ — 1 for all 1 < k£ < m. It then follows that the number of
satisfying [(B) ism. On the other hand[{2) and] (3) can not be satisfied simultehgdecause otherwise
we obtain forsomd <k <m-—-1,1<t<m

(28 +2")a=0 (mod 2™ —1).

However, we note that
ged (28 28 2™ — 1) =1,

implying thata = 0 (mod 2™ — 1), which is a contradiction to the assumptianZ 0 (mod 2™ — 1).
Then the total number of satisfying either[(R) orf{3) i€m — 1. This completes the proof. [ |

IV. TWO APPLICATIONS OF THEZDB FUNCTIONS PRESENTED IN THIS PAPER

In this section, we deal with the applications of the ZDB flimas of this paper in constant composition
codes and difference systems of sets.

A. Optimal constant composition codes

Let F, denote the sef0,1,...,¢ — 1} (also calledalphabe}, and letF; be the set of all-tuples
over F;, (also calledwords. An (n, M,d,w), constant weight codéCWC) is a codeC C F;' with
size M and minimum Hamming distancé such that the Hamming weight of each codewordvisAn
(n, M, d, [wo, w1, ..., we_1]), constant composition codeCCC) is a codeC' C F;' with size M and
minimum Hamming distancé such that in every codeword the elemérdppears exactly; times for
everyi € F,. An (n, M,d, [wy,ws,...,w,1])y CCC is called gpermutation codeéf n = ¢ andw; = 1
for all i € F,. By definition, constant composition codes are a specialsotd constant weight codes and
permutation codes are a further special class of constanpasition codes.

Let A,(n,d, [wo, w, ..., wy_1]) denote the maximum size of &n, M, d, [wo, w, ..., w,—1])¢ CCC. The
following upper bound on the maximum size of a CCC was derinefd4].



Lemma 4. If nd —n? + (wi +w? +--- +w? |) >0,

nd
nd —n?+ (Wi +wi+--wl )

AZ(”? d7 [w(]u Wiy .. 7w5—1]) < (4)
An (n, M, d, [wo,wn, ..., we1]), cOnstant composition code is said to dygtimal if the bound of [(4) is

met. In [2], [€], the link between ZDB functions and optimaCCs was established, and PDFs and ZDB
functions were used to construct optimal CCCs.

Lemma 5. Suppose thatf is an (n, ¢, \)-ZDB function from an abelian groupA,+) of order n to
an abelian group(B,+) of order ¢ and Im(f) is the image set off with [Im(f)] = /. Let A =
{ao,al, .. .,an_l} and Im(f) = {bo,bl, .. .,b[_l}. De'ﬁne’Ti = |{Ilf eA: f(flf) = bl}| for0<i< Z— 1.
Then the code

C:{(f<a0+ai)7"'7f(an—1_'_ai)) 0 Slgn_l}

is an (n,n,n — \, [10,71,...,77_1])7 CCC overIm(f) meeting the bound ofl(4).

TABLE 1l
SOME KNOWN OPTIMAL CCCS WITH PARAMETERS(n, M, d, [wo, w1, ..., we—1])e
Parameters | Constraints | References|
(3"2717 Sy =y 57821/27 s+s21/2]) ris odd,s = 37! [7]
3
q,49,9q —1,12T — L, 4,..., T q= mo , T =
2r—1,2,...,2 1 (mod 4 s
(¢, — s+ 1,[s,...,5,1])r g=1 (mod s), r = -1 [6]
g=1 (mod 2s)
(@00 = F s s,1,.., 1), r=92 4+ 4, 6l
s appearsi-! times
(g(a+1), ¢ Mg+ 1L, g+ 1) [6]
(@ a7 (@=Dg g" T+ (g - D, 5]
q2 - q7717 s 7q2r71 _ q771])q
™ ™ ™ r—1 .
(‘12;1,‘12;1,q —4 ,[Tg,n,...,Tq,l]) q is odd B
q
(95,97,6- 9", [5s, 25, 25])3 s =21 [14]
(85,87,6-8""1 [3s, 35, 253 s=-1 ]
(10s,5",7-5" 1, [6s, 2s,25])3 s =2 [12]
(at.q",q",[t,. - t])q t=1 [14]
- r—1 T .
gt.q", W [0 Lo 4] ==L ¢is odd 4]
L 3
™ ™ ™ r—1
(q§17q§17q716\17 7[7—077—17-"77—11*1]) N|(q_1)1ng(N7T):1 I]Zn
q
(q2+17q2+17q2—q7[7—077—17"'77—4*1])q q:2s1321 m
—d
(q_lvq_17q_qd _17[%_17%7“‘7%)61 d|q [m
(q’l‘_17q7‘_17q7‘_q7‘*S7[TO7,7_17...7Tq571])q5 1§S§T I]E]
r_ . S N|(g—1), ged(N,r) =1
a -1 49 -1 14 —q . . ) )
(t N it N it N 7[7—07717"'7761"*1])(1 1<t< N, 1<s<r ﬂﬁﬂ
B n=pyipy 2 pr k. 2<pr<p2< - <Dpp
(n,n—et1[le. .. el atem ande|(p; — 1) for 1 <i <k [
(n,n,n e—i—l,[l’e,...,e])yw:q ande|(p™ ~ 1) for 1 <i < k Theoren!1L
2™ —-1,2" —1,2™ —m,[1,m,...,m]) 2mim—2 m is a prime Theoren 2
2" —1,2" —=1,2" = 2m,[1,2m, ..., 2m]) ym—1_ 1 m is an odd prime Theoren{ B

We remark that every ZDB function corresponds to an optim@CQusing this standard method in
Lemmd®. In Tablg]l we summarize some known optimal CCCs pattametersn, M, d, [wg, w1, . . ., we_1])e,
including the new parameters of the CCCs obtained from treeethew families of ZDB functions of this
paper.



B. Optimal and perfect difference systems of sets

Difference systems of sets (DSS) were introduced by Leean§t2] (see alsa [13]) for the construction
of comma-free codes for synchronization. kdbe a positive integer, and I&t, be the integer ring modulo
n. An (n,{m,m,...,7_1}, p) difference system of s@DSS) is a collection of disjoint setsD; C Z,
such that|D;| = 7; for all 0 < i < ¢ and the multiset

{x(b—=V)modn:be D;, V' € D;, i #j,, 0<4,5 <{l—1x} (5)

contains every nonzero element Z, at leastp times. A DSS is callegerfectif every nonzero element
x € Z, is contained exactly times in the multiset of_{5). A DSS is saidgular if all the subsetsD;’s

are of the same size.
For the application of DSS to code synchronization, the nrermb

/-1

rin.p) = 3" | D

=0
is required to be as small as possible. A lower bound-@n, p) is the following [17].

Lemma 6. For any DSS with parametels:, {7, 71,..., 71}, p),

re(n, p) > \/ SQUARE (,o(n —1)+ [%W ) (6)

where SQUARE(z) denotes the smallest square number that is no less than thigveointegerz, and
[x] denotes the ceiling function.

A perfect(n, {m, 71, ...,70_1}, p) DSS is calledbptimalif the bound of [(6) is met. The correspondence
between ZDB functions and perfect DSSs was first establigh¢®)] (see also[[21]).

Lemma 7. Suppose thaff is an (n,?,\)-ZDB function from(Z,,+) to an abelian group(B,+) of
order ¢ and Im(f) is the image set off with |Im(f)| = ¢. Let Im(f) = {bo,b1,...,b;_,}. Define
D, ={x€Z,: f(x)=0b},andr, = |D;| for 0 <i < ¢ — 1. Then the set

D={D;:0<i< (-1}

is an (n, {ro,71,...,7.1},n — A) perfect DSS. Furthermore, i\ < n, D is optimal with respect to the
bound of [(6).

TABLE Il
SOME KNOWN OPTIMAL AND PERFECTDSSS WITH PARAMETERS(n, {70, T1, ..., Te—1}, p)
| Parameters | Constraints | References|
T_ r_ r—1
(52 (o me e, S N(g— 1), ged(N,7) = 1 2l
(¢ +1{r0,7,...., 7g-1},¢° —q) g=2",s>1 [2]
(p27{2p_17p—177p_1}7p2_p) p IS aprime m
—d
(q_lv{%_]*?%?"'v%}vq_qd _1) d|q [m
(qr—17{7—077—17---7Tq5*1}7qr_qris) 1<s<r [@]
r_q r_gr— N|(g—1), ged(N,r) =1
(5 {70, 71,y e -1} ) 1<t<N 1<s<r 21
Ty, g ),
_ n=p; Py pp2<p1<p2<--<pg
(n{Le,....eln—e+1) ande|(p, — 1) for 1 <i < kyn > (e — 1)2 [
™ -1,{1,m,..., m},2" —m) m is a prime Theoren{ P
2™ —1,{1,2m,...,2m},2™ — 2m) m is an odd primem > 11 Theoren{ B




We emphasize that the DSSs constructed from ZDB functiomsgusemmal¥ may not be optimal
unless the conditiod)\ < n is satisfied. It is easy to check that the DSSs given by the Zitfons
in Theorem 2 are optimal for all primes, and those constructed by the ZDB functions in Theofém 3
achieve optimality for primes: > 11.

Note that the groupGF(p™) x --- x GF(p;™*), +) is cyclic only whenm; = --- = m; = 1, that is,
n = p;---p IS square-free. The ZDB functions in Theoréim 1 can be empldgeconstruct DSSs only
whenm; = --- =my = 1.

In Table[Ill, we summarize the parameters of some known agtmmd perfect DSSs, including the
parameters of the DSSs obtained from the two families of ZDcfions in Sectiof 1l.

V. CONCLUDING REMARKS

In this paper, we present three new families of ZDB functiatith parametergn, {7, ..., 771}, ¢, \}.
The parameters of optimal constant composition codesmaptand perfect difference systems of sets
obtained from these new families of ZDB functions are alsmsarized.

As we have seen, with respect to applications in constangposition codes and difference systems
of sets, every parameter in the det, {r,...,7_,},/, A} makes a difference. Hence, when comparing
the parameters of two ZDB functions, it may be more appropria compare not only., 7, \, but also
To,T1, -+ , 77— as well. Therefore, the parameters of a ZDB function shailb® considered new only
when all of the parametergn, {7, ..., 7_,},¢, A} of this ZDB function can be obtained by an earlier
constructed ZDB function.
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