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Distinguishability of Quantum States by Positive
Operator-Valued Measures with Positive Partial

Transpose
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Abstract—We study the distinguishability of bipartite quantum
states by Positive Operator-Valued Measures with positivepartial
transpose (PPT POVMs). The contributions of this paper include:
(1). We give a negative answer to an open problem of [M.
Horodecki et.al, Phys. Rev. Lett. 90, 047902(2003)] showing a
limitation of their method for detecting nondistinguishability.
(2). We show that a maximally entangled state and its orthogonal
complement, no matter how many copies are supplied, can not be
distinguished by PPT POVMs, even unambiguously. This result
is much stronger than the previous known ones [1], [2]. (3). We
study the entanglement cost of distinguishing quantum states. It is
proved that

√

2/3|00〉+
√

1/3|11〉 is sufficient and necessary for
distinguishing three Bell states by PPT POVMs. An upper bound
of entanglement cost of distinguishing ad ⊗ d pure state and
its orthogonal complement is obtained for separable operations.
Based on this bound, we are able to construct two orthogonal
quantum states which cannot be distinguished unambiguously by
separable POVMs, but finite copies would make them perfectly
distinguishable by LOCC. We further observe that a two-qubit
maximally entangled state is always enough for distinguishing
a d ⊗ d pure state and its orthogonal complement by PPT
POVMs, no matter the value ofd. In sharp contrast, an entangled
state with Schmidt number at least d is always needed for
distinguishing such two states by separable POVMs. As an
application, we show that the entanglement cost of distinguishing
a d⊗d maximally entangled state and its orthogonal complement
must be a maximally entangled state ford = 2, which implies
that teleportation is optimal; and in general, it could be chosen
as O( log d

d
).
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I. I NTRODUCTION

One of the main goals of quantum information theory is
to understand the power and limitation of quantum operations
which can be implemented by local operations and classical
communication (LOCC). These are operations wherein two or
more physical distant parties retaining the ability of perform-
ing arbitrary operations on the quantum system one part holds,
and the result of local operations can be “communicated”
classically to another part. The class of LOCC operations
provides a natural setting to address intrinsic problems about
quantum nonlocality and entanglement.

Quantum information is nonlocal in the sense that local
measurements on a multipartite quantum system, prepared in
one of many mutually orthogonal states, may not reveal in
which state the system was prepared. In the widely studied
bipartite case, the scenario is that one of known orthogonal
quantum states is shared by two parties, says Alice and Bob,
and their goal is to identify which of the state it is; see Ref.
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17] as a very incomplete list. In some situations Alice
and Bob are able to accomplish this task without error, but
in others they are not. For example, Walgateet. al [4] proved
that any two orthogonal pure states, no matter entangled or
not, are locally distinguishable with no error. On the other
hand, examples of orthogonal product states that can not be
distinguished by LOCC protocols are presented, for instance,
a two-qutrit orthonormal pure product basis [7] and any set of
states forming an unextendible product bases [8]. Horodecki
et.al [12] discovered a phenomenon of “more nonlocality
with less entanglement”. These examples demonstrate that
entanglement is not always decisive feature of locally dis-
tinguishability. It is thus necessary to further clarify the role
of entanglement in the local distinguishability in differenct
circumstances. Considerable efforts have been devoted to the
local discrimination of maximally entangled states. Largeset
of maximally entangled states cannot be distinguished locally:
if Alice and Bob’s system ared-dimensional spaces, then it
is impossible for them to distinguishd + 1 or more maxi-
mally entangled states perfectly [5], [6], [3], [15], [16],[17],
[18]. It is proved that three orthogonal two-qutrit maximally
entangled states are always locally distinguishable [15].We
showed thatd + 1 is not a tight lower bound for the number
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of locally indistinguishable maximally entangled states by
presenting four locally indistinguishable orthogonal ququad-
ququad maximally entangled states [3]. To circumvent the
difficulty of proving local indistinguishability, our approach
is to show indistinguishability by PPT POVMs, and local in-
distinguishability automatically follows since LOCC POVMs
is a proper subset of PPT POVMs. The advantage of this
approach is that the set of PPT POVMs enjoys a mathematical
structure much simpler than that of LOCC POVMs due to the
complete characterization of PPT condition by semi-definite
programming. After our work, several examples ofd PPT
indistinguishabled⊗ d maximally entangled states are found
by using semi-definite programming [16].

The notion of PPT plays a significant role in quantum
information theory. First, it has been used to provide some
convenient criterion for the separability of quantum states,
which is one of the central topics in quantum information the-
ory and has been extensively studied in the last two decades.
Peres [19] proved that any separable state should obey the
PPT criterion. Horodeckiet.al [20] established a connection
between separability and positive maps acting on operators
and used it to prove that PPT criterion is also sufficient for
the separability of2⊗2 or 2⊗3 states. They also showed that
if a mixed state can be distilled to the singlet form, it must
violate the PPT criterion [21]. It has been conjectured thatNPT
bound entangled state does exist, and this remains one of the
most important open problems in quantum information theory.
Also PPT operations have been used to study the problem of
entanglement distillation and pure state transformation [22],
[23], [24]. Ishizaka [22] showed that bipartite pure entangled
states can be transformed to arbitrary pure states by stochastic
PPT operations.

The first purpose of this paper is to further study the
strength and limitation of PPT POVMs by considering the
distinguishability of quantum states under PPT POVMs. In
other words, given a known set of mutually orthogonal states,
we may wish to know whether it is possible for the parties
to perfectly distinguish the state; that is, given any one of
the states in the set and by using PPT POVMs, can they
with certainty determine which state they were given? We
study this problem by starting with an observation that some
results of state discrimination by separable POVMs in [14]
can be directly generalized to the case by PPT POVMs.
More precisely, we give a necessary and sufficient condition
for the distinguishability of a set of quantum states by PPT
POVMs. Leveraging this condition, the problem of distinguish-
ing (D − 1) bipartite pure states by PPT POVMs is showed
to be equivalent to that of distinguishing them by separable
POVMs, whereD is the total dimension of the state space
under consideration. We show that the orthogonal complement
of a bipartite pure state has a PPT distinguishable basis if and
only if the Schmidt number of this state is less than 3.

In recent years, entanglement has already been shown to be
a valuable resource, allowing remote parties to communicate in
ways that were previously not thought possible. For instance,
any set of orthogonal states that cannot be distinguished
by LOCC alone can nonetheless always be distinguished by
LOCC if the parties share enough entanglement. The reason

is that any global operation can be implemented by LOCC
with help of entanglement by using teleportation. It is of
fundamental interest to understand the role of entanglement
resource plays in certain tasks. That is, how much entangle-
ment is needed to reach the goal which is impossible to be
accomplished without entanglement.

Our second purpose of this work is to study the problem of
entanglement cost of distinguishing those PPT indistinguish-
able quantum states by PPT POVMs. The motivation of this
part is from two side: The first is to approximate the entan-
glement cost of state discrimination by LOCC. Though the
structure of LOCC POVMs are mathematically complicated,
separable POVMs is believed as a good approximation of
LOCC protocols for many cases, and the entanglement cost by
PPT POVMs is a lower bound of that by separable POVMs. On
the other hand, one can learn the difference between separable
POVMs and PPT POVMs by comparing the different costs.
Specifically, we study the entanglement cost of distinguishing
two well-known examples of PPT indistinguishable states. The
first example is to distinguish three Bell states. This example
is interesting because Bell states play very important role
in quantum information theory. The second example is to
distinguish a pure state and its orthogonal complement, there
are the reasons of studying this example: One is it reveals
some major differences between the distinguishability of pure
states and of mixed states. The other reason is that this simple
example shows the sharp difference of distinguishability power
between PPT POVMs and separable POVMs.

The major contributions of this paper include:

1) We solve the open problem proposed in [12] based on
our previous results of [3]. In particular, we show that
the HSSH method presented in [12] is not a “if and only
if” criterion for checking local distinguishability; more
precisely, the indistinguishability of the ququad-ququad
maximally entangled states considered in [3] cannot be
detected by the HSSH method.

2) By employing the technique introduced in [3], we show
that a maximally entangled state and its orthogonal
complement, no matter how many copies are supplied,
can not be distinguished by PPT POVMs, even un-
ambiguously. This is much stronger than the previous
known results of [1], [2].

3) We study the entanglement cost of distinguishing quan-
tum states. This problem is completely solved for the
case of three Bell states: it is proved that

√

2/3|00〉+
√

1/3|11〉 is sufficient and necessary for distinguishing
three Bell states by PPT POVMs. Then we consider
how much entanglement is needed for distinguishing
a d ⊗ d pure state and its orthogonal complement,
and an upper bound of entanglement cost is obtained
for separable operations. Based on this bound, we are
able to construct two orthogonal quantum states which
cannot be distinguished unambiguously by separable
POVMs, but finite copies would make them perfectly
distinguishable by LOCC. Furthermore, the entangle-
ment cost for distinguishing ad ⊗ d pure state and its
orthogonal complement by PPT POVMs is studied, and
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we show that a two-qubit maximally entangled state
is always enough, no matter the value ofd. In sharp
contrast, an entangled state with Schmidt rankd is
always required for distinguishing such two states by
separable POVMs. An interesting case is to distinguish
a d ⊗ d maximally entangled state and its orthogonal
complement. We show that ford = 2, the entanglement
cost must be maximally entangled state, which can be
interpreted as the optimality of teleportation. However,
for sufficiently larged, the entanglement cost could be
chosen arbitrarily close to 0.

II. N OTATIONS AND PRELIMINARIES

We first recall some notations of entanglement and prelimi-
naries about state discrimination by LOCC POVMs, separable
POVMs and PPT POVMs. Then we give a necessary and
sufficient condition for the distinguishability of a set of quan-
tum states by PPT POVMs. It should be pointed out that this
condition is simply derived from a similar condition for the
distinguishability by separable POVMs provided in [14]. Some
applications of this condition can also be obtained by directly
employing the condition of [14]. For the reader’s convenience,
a detailed proof of this condition is included.

A. Basic linear algebra

In this paper the termcomplex Euclidean space refers to
any finite dimensional inner product space over the complex
numbers. LetX andY be arbitrary complex Euclidean spaces,
and dimX and dimY denote the dimensions ofX and Y,
respectively. A pure quantum state ofX is just a normalized
vector |Ψ〉 ∈ X .

The space of (linear) operators mappingX to Y is denoted
by L(X ,Y), while L(X ) is the shorthand forL(X ,X ). IX
is used to denote the identity operator onX . The adjoint (or
Hermitian transpose) ofA ∈ L(X ,X ) is denoted byA†. The
notationA ≥ 0 means thatA is positive semidefinite, and more
generallyA ≥ B means thatA − B is positive semidefinite.
|A| =

√
A†A is used to denote the positive square root of

A†A, i.e., |A| =
√
A†A.

A general quantum state is characterized by its density
operatorρ ∈ L(X ), which is a positive semi-definite operator
with trace one onX . The density operator of a pure state|ψ〉
is simply the projectorψ := |ψ〉〈ψ|. The support ofρ, denoted
by supp(ρ), is the vector space spanned by the eigenvectors
of ρ with positive eigenvalues. Alternatively, supposeρ can be
decomposed into a convex combination of pure states, say,

ρ =

n
∑

k=1

pk|ψk〉〈ψk|, (1)

where 0 < pk ≤ 1 and
∑n

k=1 pk = 1. Then supp(ρ) =
span{|ψk〉 : 1 ≤ k ≤ n}.

The Schmidt number of a bipartite state|ψ〉 ∈ X ⊗ Y is
defined as the minimumk such that|ψ〉 = ∑k−1

i=0 |αi〉|βi〉 with
unnormalized|αi〉 ∈ X and|βi〉 ∈ Y. A pure state|ψ〉 ∈ X ⊗
Y is called maximally entangled if|ψ〉 = 1√

d

∑d−1
j=0 |j〉X |j〉Y ,

where |j〉X and |j〉Y are orthonormal basis ofX and Y,

respectively. A bipartite mixed stateρ ∈ L(X ⊗ Y) is said
to be separable if in its decomposition of form (1) all|ψk〉
can be chosen as product states.

Lemma 1: Let ρ1 = Φ ∈ L(X ⊗ Y) and ρ2 = (IX⊗Y −
Φ)/(d2 − 1), where|Φ〉 = 1√

d

∑d−1
j=0 |j〉X |j〉Y is maximally

entangled state onX ⊗Y with d = dimX = dimY and|j〉X
and |j〉Y are computational basis ofX and Y, respectively.
Then for any unitaryV ∈ L(X ), we have

(V ⊗ V ∗)ρk(V ⊗ V ∗)† = ρk, k = 1, 2.

Moreover, for anyN ∈ L(X ⊗ Y), we have
∫

V

(V ⊗ V ∗)N(V ⊗ V ∗)†dV = aρ1 + bρ2,

for somea, b ∈ C, whereV ranges over all unitaries inL(X ).
The validity of the above lemma can be verified by direct
calculation.

The following lemma from [14] is useful in the rest of this
section.

Lemma 2: For E ∈ L(X ) such that0 ≤ E ≤ IX , and a
density matrixρ on X , tr(Eρ) = 1 if and only if E−P ≥ 0,
whereP is the projector on the support ofρ.

B. PPT distinguishability

A nonzero positive semi-definite operatorE ∈ L(X ⊗Y) is
said to be a PPT operator (or simply PPT) ifEΓX ≥ 0, where
ΓX means the partial transpose with respect to the partyX ,
i.e.,

(|ij〉〈kl|)ΓX = |kj〉〈il|. (2)

For simplicity, in what follows the subscriptX of ΓX will be
omitted andΓ is used instead ofΓX .

A Positive Operator-Valued Measure (POVM) onX with n
outcomes is ann−tuple of matrices,(Πk)

n
k=1, whereΠk ∈

L(X ) with Πk ≥ 0 and
∑

k Πk = IX .
Let (Πk)

n
k=1 be a POVM acting on a bipartite systemX⊗Y.

It is said to be a separable (SEP) POVM ifΠk/(tr(Πk)) is
a separable quantum mixed state for allk. It is said to be a
PPT POVM if eachΠk is PPT. It is known that any POVM
that can be realized by means of an LOCC protocol is a PPT
POVM. Moreover, we have

LOCC POVMs ⊂ SEP POVMs ⊂ PPT POVMs.

Let S = {ρ1, · · · , ρn} be a collection ofn quantum
states. We say thatS is perfectly distinguishable by PPT
(resp. SEP/LOCC) measurements if there is a PPT (resp.
SEP/LOCC) POVM(Πk)

n
k=1 such that

tr(Πkρj) = δk,j (3)

for any 1 ≤ k, j ≤ n.
We say thatS is unambiguously distinguishable by PPT

(resp. SEP/LOCC) measurements if there is a PPT (resp.
SEP/LOCC) POVM(Πk)

n
k=0 such that

tr(Πkρj) = pkδk,j (4)

with some positivepk for any 1 ≤ k, j ≤ n.
It is obvious that unambiguous distinguishability is less

constrained than “normal” distinguishability.
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C. Distinguishability of quantum states by PPT POVMs

It would be desirable to know when a collection of quantum
states is perfectly distinguishable by PPT POVMs. Generally,
orthogonality is not sufficient for the existence of a PPT
POVM discrimination. Noting the connection between separa-
ble and PPT, a rather simple necessary and sufficient condition
can be obtained by directly rewriting the proof of Theorem 1
in [14].

Theorem 3: Let S = {ρ1, · · · , ρn} be a collection of
orthogonal quantum states ofX⊗Y. ThenS is perfectly distin-
guishable by PPT POVMs if and only if there existn positive
semi-definite operators{E1, · · · , En} such thatPk + Ek is
PPT for each1 ≤ k ≤ n, and

∑n
k=1Ek = P0, wherePk is

the projector onsupp(ρk), andP0 = IH −∑n

k=1 Pk.
Proof.—To show the sufficiency, we suppose that there exist

such {E1, · · · , En}, define a POVMΠ = (Π1, · · · ,Πn) as
follows: Πk = Pk+Ek for each1 ≤ k ≤ n. It is easy to verify
thatΠ is a PPT measurement that perfectly discriminatesS.

Now we turn to show the necessity. SupposeS is perfectly
distinguishable by some PPT POVM, say(Π1, · · · ,Πn). Take
Ek = Πk − Pk for each1 ≤ k ≤ n. Then

∑n
k=1 Ek = P0.

To complete the proof, it suffices to showEk ≥ 0. By the
assumption, we havetr(Πkρk) = 1. Then the positivity ofEk

follows directly from Lemma 2. �

Some special but interesting cases of Theorem 3 deserve
careful investigations. When the supports of the states inS
together span the whole state space, i.e.,supp(

∑n

k=1 ρk) =
X ⊗ Y, S is perfectly distinguishable by PPT POVMs if and
only if Pk is PPT for each1 ≤ k ≤ n. In particular, an
orthonormal basis ofX ⊗ Y is perfectly distinguishable by
PPT POVMs if and only if it is a product basis. This coincides
with the case of discrimination by separable POVMs.

The following nice result was proved in [25].
Lemma 4: Consider a quantum stateρ ∈ L(X ⊗ Y) with

rank(ρ) ≤ max{dimX , dimY}. Thenρ is separable if and
only if it is PPT.

Combining the above lemma with Theorem 3, we can
establish the equivalence between distinguishing many pure
states by PPT POVMs and by separable POVMs.

Corollary 5: Let S = {ψ1, · · · , ψD−1} be a collection
of orthogonal pure quantum states ofX ⊗ Y, whereD =
dimX dimY. Then S is perfectly distinguishable by PPT
POVMs if and only if it can be distinguished by separable
POVMs.
Proof.—SupposeψD be the pure state orthogonal to all ele-
ments ofS, i.e.,ψDψk = 0 for any1 ≤ k ≤ D−1. According
to Theorem 3, we know thatS is PPT distinguishable if and
only if there existn nonnegative numbers{λ1, · · · , λD−1}
with

∑D−1
k=1 λk = 1 such thatψk + λkψD is PPT for each

1 ≤ k ≤ D − 1. Note that the rank ofψk + λkψD is at most
2. Invoking Lemma 4, we know thatψk+λkψD is PPT is and
only if ψk+λkψD is separable. Thus,S is PPT distinguishable
if and only if S is separable distinguishable. �

Also we have the following result.
Theorem 6: Let |Φ〉 be an entangled pure state onX ⊗ Y.

Then{|Φ〉}⊥ has no orthonormal basis perfectly distinguish-
able by PPT measurements if and only ifSch(Φ) > 2, where
Sch(Φ) denotes the Schmidt number of|Φ〉. In particular,

whenSch(Φ) = 2, there always exists an orthonormal basis
B of {|Φ〉}⊥ that is perfectly distinguishable by LOCC.

III. A LIMITATION OF THE HSSHMETHOD

In [12], Horodeckiet.al provided a powerful method allow-
ing for efficient detection of indistinguishability of orthogonal
states via LOCC. Their method, called the HSSH method, is
described as follows:
(1) Given the states{|ψk〉X1Y1

}nk=1 ⊂ X1 ⊗ Y1 to be
distinguished, one choosesn entangled states (detectors)
{|φk〉X2Y2

}nk=1 ⊂ X2 ⊗ Y2 and probability distribution
{pk}nk=1, and constructs a pure state

|ψ〉X1X2Y1Y2
=

∑

k

√
pk|ψk〉X1Y1

|φk〉X2Y2
,

If Alice (X1) and Bob (Y1) are able to distinguish
between the states{|ψk〉X1Y1

}nk=1 by LOCC, they can
tell the result of their measurement to Claire (X2) and
Danny (Y2), who then share states{|φk〉X2Y2

}nk=1 with
probability{pk}nk=1.

(2) Applying entanglement transformation criterion [26],
[27], check if the following transition is possible (in
X1X2 : Y1Y2), i.e., whether the vector

∑

k pkλk ma-
jorizes λ, whereλ and λk are vectors of the Schmidt
coefficients of|ψ〉 and |φk〉 respectively,

|ψ〉X1X2Y1Y2

LOCC−→ {pk, |φk〉X2Y2
}

If the transition is impossible, one can conclude that the
set of orthogonal states{|ψi〉}nk=1 are indistinguishable
by LOCC.

The authors raised an open problem in [12]: whether the HSSH
method gives a “if and only if” criterion. In other words, given
an ensemble, is it true that they are indistinguishable by LOCC
if and only if the HSSH method can detect indistinguishability
of the ensemble?

This problem was not answered primarily due to the fact that
the mathematical structure of LOCC POVMs is complicated.
As a direct consequence, we do not even know how to verify
that whether a general set of qutrit-qutrit states are locally
distinguishable. The second reason is that HSSH method is
quite general and there are too many parameters since the
statement is “there exist a set of entangled states (detectors)
|φk〉X2Y2

and probability distributionpk such that the LOCC
transition is impossible”. Therefore, to show this method is not
complete, we would need to show that for any detectors and
probability distribution, their method does not work. Fortu-
nately, “Entanglement Discrimination Catalysis” phenomenon
can help us to capture these difficulties. The next theorem
gives a negative answer to this problem.

Theorem 7: There are locally indistinguishable quantum
states which cannot be detected by applying the HSSH method
with any detectors.
Proof.—We use the main result of [3] to show the validity of
this theorem:

Let |Ψk〉 denote the standard Bell states,

|Ψk〉 = (I2 ⊗ σk)
1√
2
(|00〉+ |11〉),
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whereσks are the Pauli matrices given byσ0 = I2 and

σ1 =

(

1 0
0 −1

)

, σ2 =

(

0 1
1 0

)

, σ3 =

(

0 −i
i 0

)

.

In [3], we showed thatS = {|χi〉XY : 0 ≤ i ≤ 3} ⊂ X ⊗ Y
cannot be distinguished by any PPT POVM withX = X1⊗X2

and Y = Y1 ⊗ Y2, whereX1,X2, Y1, Y2 are all the two-
dimensional Hilbert space and

|χ0〉XY = |Ψ0〉X1Y1
⊗ |Ψ0〉X2Y2

,

|χ1〉XY = |Ψ1〉X1Y1
⊗ |Ψ1〉X2Y2

,

|χ2〉XY = |Ψ2〉X1Y1
⊗ |Ψ1〉X2Y2

,

|χ3〉XY = |Ψ3〉X1Y1
⊗ |Ψ1〉X2Y2

.

Due to the special structure ofS, we further observe a
quite surprising “Entanglement Discrimination Catalysis” phe-
nomenon happening onS. More precisely, with a two-qubit
maximally entangled state as resource, says|Ψ0〉, we can
distinguish among the members ofS locally, and after the
discrimination, we are still left with an intact copy of|Ψ0〉.

Now we show that the indistinguishability ofS can never be
detected by HSSH method, i.e., for any four entangled states
|φk〉X3Y3

of the X3Y3 system and probability distribution
pk, the transformation|ψ〉XX3YY3

LOCC−→ {pk, |φk〉X3Y3
} can

always be accomplished by LOCC (inXX3 : YY3), where

|ψ〉XX3YY3
=

∑

k

√
pk|χk〉XY |φk〉X3Y3

.

According to “Entanglement Discrimination Catalysis”, we
know that|ψ〉XX3YY3

|Ψ0〉X4Y4

LOCC−→ {pk, |φk〉X3Y3
|Ψ0〉X4Y4

}
is possible (inXX3X4 : YY3Y4).

Notice that a necessary and sufficient condition for the
transformation from a pure state|φ〉 to an ensemble of pure
states{pk, |φk〉} was given in [27]. Namely, letλ andλk be
vectors of the Schmidt coefficients of|φ〉 and|φk〉 respectively.
Then the LOCC transition|φ〉 → {pk, φk} is possible if and
only if the vector

∑

k pkλk majorizesλ.
Apply the above criterion on the entanglement transfor-

mation |ψ〉XX3YY3
|Ψ0〉X4Y4

LOCC−→ {pk, |φk〉X3Y3
|Ψ0〉X4Y4

} in
(in XX3X4 : YY3Y4). According to the fact that|Ψ0〉 is
maximally entangled, we can directly obtain that this criterion
also satisfied for transformation (inXX3 : YY3),

|ψ〉XX3YY3

LOCC−→ {pk, |φk〉X3Y3
}.

Therefore, this entanglement transformation can be accom-
plished by LOCC. Thus, the HSSH method can not detect
the indistinguishability ofS. �

IV. I NDISTINGUISHABILITY OF MAXIMALLY ENTANGLED

STATE AND ITS ORTHOGONAL COMPLEMENT WITH

ARBITRARY COPIES

It is well-known that local measurements on a composite
quantum system, prepared in one of many mutually orthog-
onal states, may not reveal in which state the system was
prepared. In the many copy limit, this kind of nonlocality is
fundamentally different for pure and mixed quantum states [1],
[2]. In particular, two orthogonal mixed states that are notdis-
tinguishable by local operations and classical communication

were discovered, no matter how many copies are supplied,
whereas any set ofN orthogonal pure states can be perfectly
distinguished withN − 1 copies [4]. Thus, mixed quantum
states can exhibit a new kind of nonlocality absent in pure
states. The main tool used in [2] is a well known result, first
proved in [28], that the tensor of two UPBs (unextendible
product basis) is still a UPB. In this section, we present two
quantum states that are not unambiguously distinguishableby
PPT POVMs with an arbitrary number of copies.

Before proving the main result of this section, we first
provide the following interesting lemma.

Lemma 8: Let A,B ∈ L(X ) be Hermitian operators such
that A + B is positive definite andA is not semi-definite,
i.e., ±A � 0. For fixed integerm, defineT = {A,B}⊗m \
{A⊗m, B⊗m}, where the tensor product of two setS1,S2 is
given asS1 ⊗ S2 = {s1 ⊗ s2 : si ∈ Si, i = 1, 2}. Then there
do not exist nonnegative numberspk such that

A⊗m +
∑

Tk∈T
pkTk ≥ 0. (5)

Proof.—SinceA is neither positive semi-definite, nor negative
semidefinite, we know that there is nonzero positive semidef-
inite Q ∈ L(X ) such thattr(QA) = 0. Thus,

q := tr(QB) = tr(QA) + tr(QB) = tr(Q(A+B)) > 0.

By contradiction, assume that there exist nonnegative numbers
pk such that

A⊗m +
∑

Tk∈T
pkTk ≥ 0. (6)

Then we can have

tr1,2··· ,m−1[(Q
⊗m−1 ⊗ IX )(A⊗m +

∑

Tk∈T
pkTk)] ≥ 0, (7)

wheretr1,2··· ,m−1 denotes the operation that tracing out the
first m− 1 parties. Eq. (7) implies that forTk = B⊗m−1⊗A,
we haveqm−1pkA ≥ 0 which means thatpk = 0.

Using the similar technique, we can prove thatpk = 0 for
any Tk ∈ T . According to Eq. (6), we know thatA⊗m ≥ 0.
This is impossible. �

Now we are ready to present the main result of this section.

Theorem 9: Let ρ1 = Φ andρ2 = (IX⊗Y − Φ)/(d2 − 1),
where |Φ〉 = 1√

d

∑d−1
k=0 |k〉X |k〉Y is the standard maximally

entangled state on the bipartite systemX ⊗ Y with d =
dimX = dimY. Then for any integerm, ρ⊗m

1 and ρ⊗m
2

cannot be distinguished unambiguously by PPT POVMs.
Proof.—Supposeρ⊗m

1 and ρ⊗m
2 can be distinguished unam-

biguously by PPT POVMs, then there is some positive PPT
operatorE ∈ L(X⊗m ⊗ Y⊗m) such thattr(Eρ⊗m

1 ) > 0,
tr(Eρ⊗m

2 ) = 0.
We can construct anotherF ∈ L(X⊗m ⊗ Y⊗m) by

F =

∫

V

V EV †dV,

where V ranges over all unitaries⊗m
k=1(VXk

⊗ VYk
) with

VXk
= V ∗

Yk
, andVXk

ranges over all unitaries.
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According to Lemma 1, we know thatF is a positive PPT
operator such thattr(Fρ⊗m

1 ) = tr(Eρ⊗m
1 ) > 0, tr(Fρ⊗m

2 ) =
tr(Eρ⊗m

2 ) = 0, andF ∈ span{P1, P2}⊗m, whereP1 denotes
the projector onsupp(ρ1) and P2 denotes the projector on
supp(ρ2), respectively. Now there arep, q andpk such that

F = pP⊗m
1 +

∑

Rk∈R
pkRk + qP⊗m

2 ,

whereR = {P1, P2}⊗m \ {P⊗m
1 , P⊗m

2 }.
One can obtainp, q, pk ≥ 0 according to the fact thatF ≥ 0.

tr(Eρ⊗m
1 ) > 0 and tr(Eρ⊗m

2 ) = 0 imply p > 0 and q = 0.
Note thatPΓ

1 is not semi-definite,PΓ
2 > 0 andPΓ

1 + PΓ
2 =

IX⊗m⊗Y⊗m > 0. Then

FΓ = p(PΓ
1 )

⊗m +
∑

Rk∈R
pkR

Γ
k .

Lemma 8 implies thatFΓ/p is not positive, i.e.,FΓ is not
positive.

Thus, there is no positive PPT operatorE such that
tr(Eρ⊗m

1 ) > 0 and tr(Eρ⊗m
2 ) = 0. That is,ρ⊗m

1 and ρ⊗m
2

cannot be distinguished unambiguously by PPT POVMs.�

V. ENTANGLEMENT COST OF DISTINGUISHING QUANTUM

STATES

The entanglement cost of state discrimination by LOCC
operations was studied in [29]. In general, it is quite difficult
to deal with the LOCC (separable) POVMs directly. In order
to obtain some information about the entanglement cost of the
distinguishability using LOCC, we consider the entanglement
cost of distinguishing quantum states by PPT POVMs. The
examples we considered are quite simple which enable us to
obtain analytical results through the techniques developed in
[3].

A. Distinguishing three Bell states

Bell states have very nice symmetric properties and they
represent the simplest possible examples of entanglement.
Previously it was known that two Bell states are locally dis-
tinguishable, and three Bell states are locally indistinguishable
[5]. Indeed, the indistinguishability of three Bell statesremain
even under separable operations [14]. In this subsection, we
study the problem of entanglement cost of distinguishing three
Bell states.

First, we can give a lower bound of entanglement cost
for distinguishing three Bell states by LOCC measurements
using the HSSH method [12]: Suppose{|Ψk〉X1Y1

⊗|β〉X2Y2
:

1 ≤ k ≤ 3} can be distinguished locally, where|β〉X2Y2
=√

λ0|00〉+
√
λ2|11〉 such thatλ0 ≥ λ1 ≥ 0 andλ0 + λ1 = 1

is the entanglement resource and|Ψk〉 are Bell states. Now
we can construct another quantum state|ϕ〉XY as

|ϕ〉XY =
1√
3

3
∑

k=1

|Ψk〉X1Y1
|β〉X2Y2

|Ψk〉X3Y3
,

whereX = X1 ⊗ X2 ⊗ X3 and Y = Y1 ⊗ Y2 ⊗ Y3. Since
{|Ψi〉X1Y1

⊗ |β〉X2Y2
} can be distinguished locally, we have

|ϕ〉〈ϕ| LOCC−→ 1

3

3
∑

k=1

|k〉〈k| ⊗ |Ψk〉〈Ψk| LOCC−→ |Ψ0〉〈Ψ0|.

According to the condition for entanglement transformation
between bipartite pure states [26], we can assert that

3

4
λ0 ≤ 1/2 ⇒ λ0 ≤ 2

3
.

This argument shows that
√

2/3|00〉+
√

1/3|11〉 is necessary
for distinguishing three Bell states locally.

The above method can be used directly to show that
maximally entangled state is needed for distinguishing four
Bell states locally. The only remaining case is that how
much entanglement is required to distinguishing three Bell
states since two Bell states are locally distinguishable. It is
worth noting that no LOCC protocol is known to distinguish
three Bell states using

√

2/3|00〉 +
√

1/3|11〉 as a resource.
Therefore a quite interesting problem might be “is partial
entanglement helpful for distinguishing Bell states?”

We can prove that
√

2/3|00〉+
√

1/3|11〉 is both necessary
and sufficient for distinguishing three Bell states by PPT
POVMs.

Theorem 10: T = {|Ψk〉X1Y1
⊗ |α〉X2Y2

: 1 ≤ k ≤ 3} can
be distinguished by some PPT POVM if and only ifλ0 ≤
2/3, where |α〉 =

n−1
∑

i=0

√
λi|ii〉 is normalized with Schmidt

coefficientsλ0 ≥ λ1 ≥ · · · ≥ λn−1 ≥ 0.
Proof —For ease of presentation, we first outline the key proof
ideas for the “only if” part as follows. We can choose(Ck)

3
k=1

from MT , whereMT denotes the set of PPT POVMs that
can distinguishT . One can then construct a new POVM
(Πk)

3
k=1 ∈ MT with a highly symmetrical properties by

exploring the convexity ofMT and symmetries ofT . The
form of (Πk)

3
k=1 enables us to boundλ0 by calculating its

partial transpose directly.
We start to describe how to construct the desired(Πk)

3
k=1

by noticing the following properties ofMT andT :
First,MT is convex, i.e., for any0 ≤ λ ≤ 1,

(Ck)
3
k=1, (Dk)

3
k=1 ∈MT ⇒ (λCk + (1− λ)Dk)

3
k=1 ∈MT .

Second,T enjoys a number of symmetries:
S1. For any Pauli matrixσ, σX1

⊗σY1
preserves|Ψk〉X1Y1

⊗
|α〉X2Y2

in the following way:

(σX1
⊗ σY1

)|Ψk〉X1Y1
⊗ |α〉X2Y2

= ±|Ψk〉X1Y1
⊗ |α〉X2Y2

.

S2. WX1Y1
rotates|Ψk〉X1Y1

⊗ |α〉X2Y2
,

WX1Y1
|Ψ1〉X1Y1

⊗ |α〉X2Y2
= |Ψ2〉X1Y1

⊗ |α〉X2Y2
,

WX1Y1
|Ψ2〉X1Y1

⊗ |α〉X2Y2
= |Ψ3〉X1Y1

⊗ |α〉X2Y2
,

WX1Y1
|Ψ3〉X1Y1

⊗ |α〉X2Y2
= |Ψ1〉X1Y1

⊗ |α〉X2Y2
,

whereW is defined as

W =
1

2

(

−i 1
−i −1

)

⊗
(

i 1
i −1

)

.

S3. For any diagonal unitaryV = v ⊗ v∗ ∈ L(X2Y2), V
preserves|Ψk〉X1Y1

⊗ |α〉X2Y2
for 0 ≤ k ≤ 3,

V |Ψk〉X1Y1
⊗ |α〉X2Y2

= |Ψk〉X1Y1
⊗ |α〉X2Y2

.
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Noticing that a local unitary does not change the positivityof
partial transpose, we can construct a POVM(Πk)

3
k=1 ∈ MT

by the convexity ofMT andS1-S3such that

Πk+1 =WX1Y1
ΠkW

†
X1Y1

(8)

for k = 1, 2, and forV = v ⊗ v∗ ∈ L(X2Y2),

Πk = VΠkV
† = (σX1

⊗ σY1
)Πk(σX1

⊗ σY1
). (9)

Eqs. (8) and (9) have greatly restricted the form of(Πk)
3
k=1.

So, we shall obtain the required(Πk)
3
k=1 from any POVM

(Ck)
3
k=1 ∈MT by the following three relatively simpler steps:

Step 1: Notice that for a Pauli matrixσ, we have

((σX1
⊗ σY1

)Ck(σX1
⊗ σY1

))3k=1 ∈MT

Invoking S1 and the convexity ofMT , we know that

(Dk)
3
k=1 = (

∑

σ(σX1
⊗ σY1

)Ck(σX1
⊗ σY1

)

4
)3k=1 ∈MT ,

and each measurement operatorDk is of the form
∑

j Ψj ⊗
D(kj) for 1 ≤ k ≤ 3 by noticing that

∑3
i=0(σi⊗σi)M(σi⊗σi)

is diagonal under Bell basis for any4−dimensional matrixM .
Step 2: According toS2, one can verify that

(Fk)
3
k=1 = WX1Y1

(D3, D1, D2)W
†
X1Y1

∈MT ,

(Gk)
3
k=1 = W †

X1Y1
(D2, D3, D1)WX1Y1

∈MT .

Invoking the convexity ofMT again, we have

(Jk)
3
k=1 = (

Dk + Fk +Gk

3
)3k=1 ∈MT .

We know that fork = 1, 2,

Jk+1 =WX1Y1
JkW

†
X1Y1

.

Step 3: InvokingS3, we obtain that for any diagonal unitary
V = v ⊗ v∗ ∈ L(X2 ⊗ Y2),

(Lk)
3
k=1 = (V JkV

†)3k=1 ∈MT .

Then we know that

(Πk)
3
k=1 = (

∫

V

V JkV
†dV )3k=1 ∈MT ,

whereV ranges over all diagonal unitaries of formv ⊗ v∗.
One can readily verify that(Πk)

3
k=1 satisfies Eqs. (8) and (9).

Without loss of generality, assume that

Π1 =
∑

ij

N (ij) ⊗ |ij〉〈ij|+
∑

i6=j

R(ij) ⊗ |ii〉〈jj|),

whereN (ij), R(ij) ∈ L(X1 ⊗ Y1) are Hermitian with eigen-
vectors|Ψk〉. Let

N (ij) = aijΨ0 + bijΨ1 + cijΨ2 + dijΨ3,

R(ij) = eijΨ0 + fijΨ1 + gijΨ2 + hijΨ3.

According to

Π1 +WX1Y1
Π1W

†
X1Y1

+W †
X1Y1

Π1WX1Y1
= IX1X2Y1Y2

,

one can conclude that

a00 = 1/3, b00 + c00 + d00 = 1.

From ΠΓ
1 ≥ 0, we know thatN (00)Γ ≥ 0, then b00 ≤ 2/3.

Invoking Lemma 2, we have

Π1|Ψ1〉 ⊗ |α〉 = |Ψ1〉 ⊗ |α〉
⇒

∑

ij

(bij |ii〉〈ii|+ fij |ii〉〈jj|)|α〉 = |α〉.

Now we can make the following assertion:|e〉 =
n−1
∑

i=0

√
λi|i〉 is

an eigenvector corresponding to eigenvalue 1 of non-negative
matrixMA = (xij), wherexii = bii andxij = fij for i 6= j.
The non-negativity ofMA is derived from the fact thatΠ1 is
semi-definite. Then we obtainλ0 ≤ b00 ≤ 2/3 by noticing
MA−|e〉〈e| ≥ 0, and this ends the proof of the “only if” part.

The proof of the “if” part is accomplished by giving
the construction of some PPT POVM(Πk)

3
k=1 which can

distinguishT with |α〉 =
√

2/3|00〉+
√

1/3|11〉. Put

Π1 =









N (00) 0 0 R

0 N (01) 0 0
0 0 N (10) 0

R 0 0 N (11)









, (10)

whereN (00), N (01), N (10), N (11), R ∈ L(X1Y1) with

N (00) = 1/3Ψ0 + 2/3Ψ1 + 1/6Ψ2 + 1/6Ψ3,

N (11) = 1/3Ψ0 + 1/3Ψ0 + 1/3Ψ2 + 1/3Ψ3 = I/3,

N (01) = N10 = 1/3Ψ0 + 1/6Ψ1 + 5/12Ψ2 + 5/12Ψ3,

R =
√
2/3Ψ1 −

√
2/6Ψ2 −

√
2/6Ψ3.

It is easy to verify that(Π1,Π2 = WX1Y1
Π1W

†
X1Y1

,Π3 =

W †
X1Y1

Π1WX1Y1
) is a PPT POVM which can distinguish

{|Ψk〉X1Y1
⊗ |α〉X2Y2

: 1 ≤ i ≤ 3}. �

B. Distinguishing a pure state and its orthogonal complement

In this subsection, we consider the entanglement cost of
distinguishing a pure state and its orthogonal complement.
Previously, it is known that two pure orthogonal quantum
states can always be distinguished locally[4], but the statement
is not valid for one pure state and its orthogonal complement.
It is quite interesting to study the distinguishability of this set
of two states since it forms the simplest indistinguishablestates
in some sense. Luckily, they can reveal some sharp different
difference between the discrimination powers of separable
POVMs and PPT POVMs.

Let ρ1 = |Ψ〉〈Ψ| ∈ L(X1⊗Y1) be a pure state with Schmidt
numberd and ρ2 = (I − ρ1)/(dimX1 dimY1 − 1), where
|Ψ〉 = ∑d−1

k=0

√
λk|kk〉 with λk ≥ λk+1 for all 0 ≤ k ≤ d− 2.

1) By Separable POVMs: The following theorem gives
a lower bound of the entanglement cost of distinguishing
a pure state and its orthogonal complement by separable
measurements.

Theorem 11: If ρ1 ⊗α andρ2 ⊗α can be distinguished by
separable POVMs unambiguously, thenSch(α) ≥ d.
Proof.—Suppose there is some|α〉 ∈ X2 ⊗ Y2 with Schmidt
numberr such thatρ1 ⊗ α andρ2 ⊗ α can be distinguished
by separable POVMs unambiguously, wheredimX2 =
dimY2 = r. Without loss of generality, we assume that
|α〉 = ∑r−1

i=0 |ii〉/√r.
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According to the unambiguous distinguishability condition
[30], there exist two quantum states|ϕ〉 ∈ X1 ⊗X2 and|χ〉 ∈
Y1 ⊗ Y2, such that

(ρ1 ⊗ α)|ϕ ⊗ χ〉 6= 0, and (ρ2 ⊗ α)|ϕ⊗ χ〉 = 0.

Thus,〈α|ϕ⊗χ〉 = c|Ψ〉 for some nonzeroc ∈ C. Furthermore,
there exist matricesN1 ∈ L(X2,X1) andN2 ∈ L(Y2,Y1)
such that |ϕ〉 = (IX1

⊗ N1)|Φ〉X1X2
and |χ〉 = (IY1

⊗
N2)|Φ〉Y1,Y2

with |Φ〉 =
∑r−1

i=0 |ii〉/√r. Then we have

c|Ψ〉 = 〈α|ϕ ⊗ χ〉 = 〈α|(N1 ⊗N2)|Φ〉X1X2
⊗ |Φ〉Y1,Y2

= (N1 ⊗N2)|Φ〉X1,Y1
.

Compare the Schmidt number, we have

d = Sch(|Ψ〉) = Sch(c|Ψ〉) = Sch((N1 ⊗N2)|Φ〉X2,Y2
)

≤ Sch(|Φ〉X2,Y2
) = r.

This ends the proof. �

It is not hard to obtain the following theorem,
Theorem 12: Let |β〉 be a pure entangled state with

Sch(β) < d. Thenρ1 ⊗β andρ2 ⊗β cannot be distinguished
by LOCC measurements unambiguously, but for some finite
integerm, (ρ1 ⊗ β)⊗m and(ρ2 ⊗ β)⊗m can be distinguished
perfectly by LOCC measurements.
Proof.—The first part can be directly obtained by applying
Theorem 11. To show(ρ1 ⊗ β)⊗m and (ρ2 ⊗ β)⊗m can be
distinguished perfectly by LOCC measurements for somem,
we only need to choose sufficient largem such that|β〉⊗m

AB

can be transformed into ad⊗ d maximally entangled state by
LOCC [26], then distinguishρ1 andρ2 by using teleportation.
�

Another direct consequence of Theorem 12 is the following:

Corollary 13: Let S = {|ψ1〉, · · · , |ψD〉} be an orthonor-
mal basis ofX ⊗Y with D = dimX dimY. ThenS ⊗{|β〉}
can be distinguished by separable POVMs unambiguously
only if Sch(β) ≥ Sch(ψk) for any k.
Proof.—For anyk, let ρ1 = ψk andρ2 = (I − ψk)/(D − 1).
SinceS ⊗ {|β〉} can be distinguished by separable POVMs
unambiguously, we can conclude that{ρ1, ρ2} ⊗ {|β〉} is
unambiguously distinguishable by separable POVMs. Then
Theorem 12 leads us toSch(β) ≥ Sch(ψk). �

2) By PPT POVMs: We shall see that a two-qubit maxi-
mally entangled state is always enough for distinguishing a
pure state and its orthogonal complement by PPT POVMs.
This can be regarded as the fact that PPT POVMs does not
always provide a well enough approximation for separable
POVMs, even for this quite simple case.

Before proving this result, we first note the following useful
lemma.

Lemma 14: Any eigenvalue ofρΓ1 lies between−
√
λ0λ1

andλ0. Moreover, all the eigenvalues ofρΓ1 are±
√

λiλj for
i 6= j andλi.
Proof.—It suffices to note that

ρΓ1 =
∑

i

λi|ii〉〈ii|

+
∑

i>j

√

λiλj(
|ij + ji〉〈ij + ji|

2
− |ij − ji〉〈ij − ji|

2
).

�

Now we are ready to prove the following:
Theorem 15: ρ1 ⊗ α and ρ2 ⊗ α can be distinguished by

PPT POVMs, where|α〉 = 1√
2
(|00〉+ |11〉 ∈ X2 ⊗ Y2.

Proof.—Consider PPT POVM(Π1,Π2) of the following form:

Π1 =









A 0 0 B
0 I/2 0 0
0 0 I/2 0
B 0 0 A









,

Π2 =









I −A 0 0 −B
0 I/2 0 0
0 0 I/2 0

−B 0 0 I −A









,

whereA,B ∈ L(X1 ⊗ Y1), andI = IX1⊗Y1
.

Let p =
√
λ0λ1/(1 +

√
λ0λ1), q = 1/2− p and

A = pΨ+ qI, B = (1 − p)Ψ− qI.

Notice that0 ≤ p ≤ 1/3, 1/6 ≤ q ≤ 1/2 andΠ1,Π2 ≥ 0.
We can verify the following

Πk(ρk ⊗ α) = ρk ⊗ α.

The positivity ofΠk comes from

|B| = 1

2
Ψ + q(I −Ψ) = A ≤ I −A.

It is clear that(Π1,Π2) is a POVM which can distinguish
ρ1 ⊗ α and ρ2 ⊗ α. The rest part is to showΠ1,Π2 both
enjoys positive partial transpose. We only need to verify that

I ≥ AΓ ≥ 0 and I/2 ≥ |BΓ|,
⇔ I ≥ pΨΓ + qI ≥ 0 and I/2 ≥ |(1− p)ΨΓ − qI|.

Invoking Lemma 14, the largest eigenvalue and smallest
eigenvalue ofpΨΓ + qI satisfy that

1 ≥ q + p ≥ q + pλ0,

q −
√

λ0λ1p ≥ q − 1

2
p ≥ 0.

Also, the largest eigenvalue and smallest eigenvalue of(1 −
p)ΨΓ − qI satisfy that

(1− p)λ0 − q ≤ 1− p− q = 1/2,

−q − (1− p)
√

λ0λ1 = −1/2.

Thus,Π1,Π2 is a PPT POVM. �

The next result shows that one can always find a partial
entangled state to accomplish the task of distinguishing a pure
quantum state and its orthogonal complement, provided the
pure state is not a two-qubit maximally entangled state.

Theorem 16: Suppose|Ψ〉 =
∑d−1

k=0

√
λk|kk〉 ∈ X1 ⊗Y1 is

an entangled state withλ0 ≥ λ1 ≥ · · · ≥ λd−1 > 0 and r =√
λ0λ1 <

1
2 . Thenρ1⊗α andρ2⊗α can be distinguished by

PPT POVMs for some partial entangled state|α〉 = √
ι|00〉+√

1− ι|11〉 ∈ X2 ⊗ Y2 with ι < 1/2.
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Proof.—We construct PPT POVM(Π1,Π2), which can dis-
tinguishρ1 ⊗ α andρ2 ⊗ α, of the following form:

Π1 =









A 0 0 B
0 I/2 0 0
0 0 I/2 0
B 0 0 C









,

Π2 =









I −A 0 0 −B
0 I/2 0 0
0 0 I/2 0

−B 0 0 I − C









,

whereA,B,C ∈ L(X1 ⊗ Y1), andI = IX1⊗Y1
.

Let t =
√

1−ι
ι

≥ 1, we require that

Π1(ρ1 ⊗ α) = ρ1 ⊗ α and Π1(ρ2 ⊗ α) = 0.

=⇒ A+ tB = Ψ and C +B/t = Ψ.

For simplicity, we study the case thatA,B,C enjoys very
simple form. More precisely, we try to find somet > 1 and
real numbersx, y such that(Π1,Π2) is a PPT POVM with

B = xΨ− yI, A = (1− tx)Ψ+ tyI, C = (1−x/t)Ψ+ y/tI.

To ensure(Π1,Π2) is a POVM, we would need

Π1 ≥ 0 ⇔ (x− y)(t+ 1/t) ≤ 1, y ≥ 0,

Π2 ≥ 0 ⇔ y(t+ 1/t) ≤ 1, x− y ≥ 0.

Invoking Lemma 14,

ΠΓ
1 ≥ 0 ⇔ ty − (1− tx)r ≥ 0, y/t− (1 − x/t)r ≥ 0,

|xλ0 − y| ≤ 1/2, |xr + y| ≤ 1/2,

ΠΓ
2 ≥ 0 ⇔ (1− tx)λ0 + ty ≤ 1, (1− x/t)λ0 + y/t ≤ 1,

|xλ0 − y| ≤ 1/2, |xr + y| ≤ 1/2.

Our goal is to find real numberst > 1, x, y such that the
above inequality holds. In order to do so, we chooset =

min{
√

1+r
r
, 1
2r}, thent > 1 and ι = 1

t2+1 .
We assign values ofx, y such that

xr + y = rt ≤ 1

2
, (x− y)(t+ 1/t) = 1.

That is,

x =
rt3 + rt+ t

(r + 1)(t2 + 1)
, y =

rt3

(r + 1)(t2 + 1)
.

One can verify that all these inequalities are satisfied by first
noticing that

0 ≤ y ≤ x− y =
t

t2 + 1
≤ 1/2,

ty − (1− tx)r = rt2 − r ≥ 0,

y/t− (1− x/t)r = rt/t− r = 0,

|xλ0 − y| ≤ max{|y|, |x− y|} ≤ 1/2,

(1 − tx)λ0 + ty ≤ max{1− tx+ ty, ty} ≤ 1,

(1− x/t)λ0 + y/t ≤ max{1− x/t+ y/t, y/t} ≤ 1.

Thus,(Π1,Π2) is a PPT POVM which can distinguishρ1⊗α
andρ2 ⊗ α perfectly. �

C. Distinguishing a maximally entangled state and its orthog-
onal complement

Maximally entangled states play a curial role during the
development of quantum information theory. As a special case
of the problem we studied in the previous subsection, we want
to know how much entanglement is required to distinguish a
maximally entangled state and its orthogonal complement by
PPT measurements. Letρ1 = Φ ∈ L(X1 ⊗ Y1) and ρ2 =
(IX1⊗Y1

− Φ)/(d2 − 1), where |Φ〉 = 1√
d

∑d−1
k=0 |kk〉 is the

standard maximally entangled state onX1 ⊗ Y1 with d =
dimX1 = dimY1.

Theorem 17: If ρ1 ⊗α andρ2 ⊗α can be distinguished by
PPT POVMs withd = 2 and |α〉 = sinβ|00〉 + cosβ|11〉 ∈
X2 ⊗ Y2 with 0 ≤ β ≤ π/4, then |α〉 = |Φ〉.
Proof.—For given|α〉, let (M1,M2) be the PPT POVM which
can distinguishρ1 ⊗α andρ2 ⊗α. One can construct another
PPT POVM(Π1,Π2) satisfying the same property, where

Πk =
1

2
(

∫

V

VMkV
† +

∫

V

VM∗
kV

†)dV,

whereV ranges over all unitaries with formvX1
⊗v∗Y1

⊗uX2
⊗

u∗Y2
for unitary v and diagonal unitaryu. Direct calculation

leads us to the fact that

Π1 =









N (00) 0 0 R

0 N (01) 0 0
0 0 N (10) 0

R 0 0 N (11)









,

whereN (ij), R ∈ L(X1⊗Y1) with N (ij) = aijΦ+bij(IX1Y1
−

Φ), andR = xΦ + y(IX1Y1
− Φ) with aij , bij ≥ 0, and real

numbersx, y.
According toΠ1(ρ1 ⊗ α) = ρ1 ⊗ α andΠ1(ρ2 ⊗ α) = 0,

we know that

a00 + x cotβ = 1, a11 + x tanβ = 1.

b00 + y cotβ = 0, b11 + y tanβ = 0.

Note thatΠΓ
1 ≥ 0 andI −ΠΓ

1 ≥ 0 implies that0 ≤ N (ij)Γ ≤
IX1Y1

for i, j = 0, 1. Therefore,

N (ij)Γ ≥ 0 ⇒ aij ≤ 3bij ,

N (ij)Γ ≤ IX1Y1
⇒ 3bij − aij ≤ 2,

a00 ≤ 3b00 ⇒ 1 ≤ (x− 3y) cotβ,

a11 ≤ 3b11 ⇒ 1 ≤ (x− 3y) tanβ.

According to the equations obtained above, we see that

1 ≤ (x − 3y) cotβ × (x− 3y) tanβ = (x− 3y)2.

On the other hand, fromΠΓ
1 ≥ 0 andΠΓ

2 ≥ 0, one can obtain

(3y − x)2 ≤ (3b10 − a10)(3b01 − a01),

(3y − x)2 ≤ (2 + a10 − 3b10)(2 + a01 − 3b01).

Thus,(3y − x)4 is less than or equal to

(3b10 − a10)(2 + a10 − 3b10)(3b01 − a01)(2 + a01 − 3b01).
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Applying the inequality of arithmetic and geometric means,
we obtain

(3b10 − a10)(2 + a10 − 3b10) ≤ 1,

(3b01 − a01)(2 + a01 − 3b01) ≤ 1.

Therefore,

(x− 3y)4 ≤ 1 ⇒ (x− 3y)2 ≤ 1.

Together the inequality,

1 ≤= (x − 3y)2

we can conclude that|x − 3y| = 1 and | tanβ| = 1. That is,
|α〉 is maximally entangled, i.e.,|α〉 = |Φ〉. �

As a direct consequence of Theorem 17, we have the
following interesting corollary ford = 2.

Corollary 18: Among all 2 ⊗ 2 states, only the maximally
entangled state can help to distinguish a two-qubit basis
{|ϕ0〉, |ϕ1〉, |ϕ2〉, |ϕ3〉} with |ϕ0〉 = 1√

2
(|00〉 + |11〉) by

LOCC, Separable or PPT POVMs.
For generald, we have the following:
Theorem 19: For ρ1 = Φ ∈ X1 ⊗ Y1 be the maximally

entangled state withdimX1 = dimY1 = d, ρ2 = (I −
ρ1)/(d

2 − 1) and |α〉 =
√
ι|00〉 +

√
1− ι|11〉 ∈ X2 ⊗ Y2

with

ι =

{

1
d+2 if d ≥ 5,

4
d2+4 otherwise.

Thenρ1⊗α andρ2⊗α can be distinguished by PPT POVMs.
Proof.—This is a special case of Theorem 16, we use the
notations from the proof of Theorem 16 freely. Consider PPT
POVM {Π1,Π2} constructed in the proof of Theorem 16,

Π1 =









A 0 0 B
0 I/2 0 0
0 0 I/2 0
B 0 0 C









,

Π2 =









I −A 0 0 −B
0 I/2 0 0
0 0 I/2 0

−B 0 0 I − C









.

whereA,B,C are with the following form,

B = xΦ− yI, A = (1 − tx)Φ + tyI, C = (1− x/t)Φ + y/tI.

Notice thatr = 1
d
, we have the following two cases:

Case 1:d ≥ 5, t =
√
d+ 1, thenι = 1

d+2 , we choose

x =
2
√
d+ 1

d+ 2
, y =

√
d+ 1

d+ 2

Case 2:2 ≤ d ≤ 4, t = d
2 , thenι = 4

d2+4 , we choose

x =
d(d+ 2)2

2(d+ 1)(d2 + 4)
, y =

d3

2(d+ 1)(d2 + 4)
.

One can easily verify that{Π1,Π2} is a PPT POVM which
can distinguishρ1 ⊗ α andρ2 ⊗ α. �

Based on the above theorem, we know that the entanglement
cost of distinguishing a two-qudit maximally entangled state
and its orthogonal complement can go toO( log d

d
) by PPT

POVMs.

VI. CONCLUSIONS

This paper systematically studied the distinguishabilityof
bipartite quantum states by Positive Operator-Valued Measures
with positive partial transpose (PPT POVMs). Several results
of [14] about separable distinguishability were generalized to
the case of PPT distinguishability, and an open problem raised
in [12] was negatively answered. It was proved that maximally
entangled state and its orthogonal complement, no matter how
many copies are supplied, cannot be distinguished by PPT
POVMs, even unambiguously.

The entanglement cost of distinguishing quantum states by
PPT POVMs was carefully examined. The cost of discriminat-
ing three Bell states was completely figured out:

√

2/3|00〉+
√

1/3|11〉 is sufficient and necessary for distinguishing three
Bell states by PPT POVMs. The problem of how much
entanglement is needed for distinguishing ad⊗d pure state and
its orthogonal complement was considered. An upper bound of
entanglement cost for this problem was derived for separable
operations. We constructed two orthogonal quantum states
which cannot be distinguished unambiguously by separable
POVMs, but finite copies would make them perfectly distin-
guishable by LOCC. It was showed that a two-qubit maximally
entangled states is always enough for discrimination by PPT
POVMs, whereas an entangled state with Schmidt number
d is always needed for distinguishing these two states by
separable POVMs. As a special case, the entanglement cost
of distinguishing ad ⊗ d maximally entangled state and its
orthogonal complement is estimated: for the two-qubit case,
the resource must be a maximally entangled state, but with
the increasing ofd, the entanglement resource could chosen
arbitrarily close to 0. Our results show that PPT POVMs do
not always give a well enough approximation of separable
POVMs.

There are still several unsolved problems concerning PPT
distinguishability. First, it is interesting to clarify the relation
between distinguishability by PPT POVMs, separable POVMs,
and LOCC POVMs. A more explicit question would be:
when PPT POVMs provide a good enough approximation to
separable POVMs and LOCC POVMs? For example, in [3]
we showed that four orthogonal ququad-ququad orthogonal
maximally entangled states is locally indistinguishable by
proving they are PPT indistinguishable. In that case, PPT
POVMs form sufficiently good approximations to LOCC
POVMs. However, here we observed that that for the case
of higher-dimensional spaces, PPT POVMs may behave very
differently from LOCC POVMs. Motivated by Theorem 10,
we could ask the following interesting question is: whether
√

2/3|00〉 +
√

1/3|11〉 is sufficient for distinguishing three
Bell states by separable POVMs or LOCC POVMs? Second,
the entanglement cost problem of distinguishing ad ⊗ d
maximally entangled state and its orthogonal complement by
separable POVMs (or LOCC POVMs) is of special interest,
for instance, is ad ⊗ d maximally entangled state always
required? Another problem for further study is to find more
applications for PPT distinguishability. In particular, it would
be of great interest to obtain some connection between PPT
distinguishability to other important concepts in quantum
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information theory; for instance, we may try to employ PPT
distinguishability as a tool to give an upper bound of the
environment-assisted classical capacity of quantum channels.

ACKNOWLEDGMENT

We are grateful to Dr. Cheng Guo for useful discussions.
Part of this work was completed during the N. Yu’s visit
to Center for Quantum Information Science and Technolog,
Tsinghua University.

REFERENCES

[1] R. Duan. Quantum Entanglement Transformation and Quantum Opera-
tion Discrimination. PhD thesis.

[2] S. Bandyopadhyay. More Nonlocality with Less Purity.Phys. Rev. Lett.
106, 210402 2011.

[3] N. Yu, R. Duan and M. Ying. Four Locally Indistinguishable Ququad-
Ququad Orthogonal Maximally Entangled States.Phys. Rev. Lett. 109,
020506 (2012).

[4] J. Walgate, A. J. Short, L. Hardy and V. Vedral. Local Distinguishability
of Multipartite Orthogonal Quantum States.Phys. Rev. Lett. 85, 4972
2000.

[5] S. Ghosh, G. Kar and A. Roy, A. Sen(De) and U. Sen Distinguishability
of Bell States.Phys. Rev. Lett. 87, 277902 (2001)

[6] S. Ghosh, G. Kar, A. Roy and D. Sarkar Distinguishabilityof maximally
entangled states.Phys. Rev. A 70, 022304, 2004.

[7] C. Bennett, D. DiVincenzo, C. Fuchs, T. Mor, E. Rains, P. Shor, J.
Smolin, and W. Wootters. Quantum nonlocality without entanglement.
Phys. Rev. A, 59:1070-1091, 1999.

[8] C. H. Bennett, D. P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, and
B. M. Terhal. Unextendible Product Bases and Bound Entanglement.
Phys. Rev. Lett. 82, 5385 (1999).

[9] S. Bandyopadhyay, S. Ghosh and G. Kar. LOCC distinguishability of
unilaterally transformable quantum states.New J. Phys. 13 123013,
2011.

[10] J. Watrous. Bipartite Subspaces Having No Bases Distinguishable by
Local Operations and Classical Communication.Phys. Rev. Lett. 95,
080505 2005.

[11] N. Yu, R. Duan and M. Ying. Any2 ⊗ n subspace is locally
distinguishable.Phys. Rev. A 84, 012304 2011.

[12] M. Horodecki, A. Sen(De), U. Sen, and K. Horodecki. Local Indistin-
guishability: More Nonlocality with Less Entanglement.Phys. Rev. Lett.
90, 047902 2003.

[13] R. Duan, Y. Feng, Z. Ji, and M. Ying. Distinguishing Arbitrary
Multipartite Basis Unambiguously Using Local Operations and Classical
Communication.Phys. Rev. Lett. 98, 230502 2007.

[14] R. Duan, Y. Feng, Y. Xin and M. Ying. Distinguishabilityof quantum
states by separable operations.IEEE Transactions on Information
Theory 55, 1320 2009.

[15] M. Nathanson. Distinguishing Bipartite Orthogonal States using LOCC:
Best and Worst Cases.J. Math. Phys. 46, 062103 2005.

[16] Alessandro Cosentino. Positive-partial-transpose-indistinguishable states
via semidefinite programming.Phys. Rev. A 87, 012321 (2013)

[17] M. Hayashi, D. Markham, M. Murao, M. Owari and S. Virmani. Bounds
on Multipartite Entangled Orthogonal State Discrimination Using Local
Operations and Classical Communication.Phys. Rev. Lett. 96, 040501
2006.

[18] M. Owari and M. Hayashi. Local copying and local discrimination as
a study for non-locality of a set.Phys. Rev. A 74, 032108 2006.

[19] A. Peres. Separability Criterion for Density Matrices. Phys. Rev. Lett.
77, 1413 1996.

[20] M. Horodecki, P. Horodecki, and R. Horodecki. Separability of mixed
states: necessary and sufficient conditions.Phys. Lett. A 223, 1 1996.

[21] M. Horodecki, P. Horodecki, and R. Horodecki. Mixed-State Entan-
glement and Distillation: Is there a ”Bound” Entanglement in Nature?
Phys. Rev. Lett.80, 5239 1998.

[22] S. Ishizaka. Bound entanglement provides convertibility of pure entan-
gled states.Phys. Rev. Lett. 93, 190501 2004.

[23] W. Matthews and A. Winter. Pure-state transformationsand catalysis
under operations that completely preserve positivity of partial transpose.
Phys. Rev. A 78, 012317 2008.

[24] E. M. Rains. A semidefinite program for distillable entanglement.IEEE
Transactions on Information Theory 47(7): 2921-2933 2001.

[25] P. Horodecki, M. Lewenstein, G. Vidal and I. Cirac. Operational criterion
and constructive checks for the separability of low-rank density matrices.
Phys. Rev. A 62, 032310, 2000.

[26] M. A. Nielsen. Conditions for a class of entanglement transformations.
Phys. Rev. Lett. 83, 436 (1999).

[27] D. Jonathan and M. B. Plenio. Minimal Conditions for Local Pure-State
Entanglement Manipulation.Phys. Rev. Lett. 83, 1455 (1999).

[28] D. P. DiVincenzo, T. Mor, P.W. Shor, J.A. Smolin, and B. M. Terhal.
Unextendible Product Bases, Uncompletable Product Bases and Bound
Entanglement.Commun. Math. Phys. 238, 379 2003.

[29] S. M. Cohen. Understanding entanglement as resource: locally distin-
guishing unextendible product bases.Phys. Rev. A 77, 012304, 2008.

[30] A. Chefles. Condition for unambiguous state discrimination using local
operations and classical communication.Phys. Rev. A 69, 050307, 2004.


	I Introduction
	II Notations and Preliminaries
	II-A Basic linear algebra
	II-B PPT distinguishability
	II-C Distinguishability of quantum states by PPT POVMs

	III A limitation of the HSSH method
	IV Indistinguishability of maximally entangled state and its orthogonal complement with arbitrary copies
	V Entanglement cost of distinguishing quantum states
	V-A Distinguishing three Bell states
	V-B Distinguishing a pure state and its orthogonal complement
	V-B1 By Separable POVMs
	V-B2 By PPT POVMs

	V-C Distinguishing a maximally entangled state and its orthogonal complement

	VI Conclusions
	References

