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Distinguishability of Quantum States by Positive
Operator-Valued Measures with Positive Partial
Transpose

Nengkun Yu, Runyao Duan and Mingsheng Ying

Abstract—We study the distinguishability of bipartite quantum
states by Positive Operator-Valued Measures with positiveartial
transpose (PPT POVMSs). The contributions of this paper inaide:
(1). We give a negative answer to an open problem of [M.

Horodecki et.al, Phys. Rev. Lett. 90, 047902(2003)] showing a

limitation of their method for detecting nondistinguishability.
(2). We show that a maximally entangled state and its orthogual
complement, no matter how many copies are supplied, can noteb
distinguished by PPT POVMs, even unambiguously. This resul
is much stronger than the previous known ones [1],[[2]. (3). W
study the entanglement cost of distinguishing quantum stas. It is
proved that 1/2/3]00) 4+ +/1/3|11) is sufficient and necessary for
distinguishing three Bell states by PPT POVMs. An upper boud
of entanglement cost of distinguishing ad ® d pure state and
its orthogonal complement is obtained for separable operabns.
Based on this bound, we are able to construct two orthogonal
guantum states which cannot be distinguished unambiguouglby
separable POVMs, but finite copies would make them perfectly
distinguishable by LOCC. We further observe that a two-qubi
maximally entangled state is always enough for distinguishg
a d ® d pure state and its orthogonal complement by PPT
POVMs, no matter the value ofd. In sharp contrast, an entangled
state with Schmidt number at least d is always needed for
distinguishing such two states by separable POVMs. As an
application, we show that the entanglement cost of distingshing
a d®d maximally entangled state and its orthogonal complement
must be a maximally entangled state ford = 2, which implies
that teleportation is optimal; and in general, it could be closen
as O(154),
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I. INTRODUCTION

One of the main goals of quantum information theory is
to understand the power and limitation of quantum operation
which can be implemented by local operations and classical
communication (LOCC). These are operations wherein two or
more physical distant parties retaining the ability of pemi-
ing arbitrary operations on the quantum system one parshold
and the result of local operations can be “communicated”
classically to another part. The class of LOCC operations
provides a natural setting to address intrinsic problenmiib
guantum nonlocality and entanglement.

Quantum information is nonlocal in the sense that local
measurements on a multipartite quantum system, prepared in
one of many mutually orthogonal states, may not reveal in
which state the system was prepared. In the widely studied
bipartite case, the scenario is that one of known orthogonal
guantum states is shared by two parties, says Alice and Bob,
and their goal is to identify which of the state it is; see Ref.
(3], [4], [5], (8], [7], [8], [3], [10], [L1], [12], [13], [14], [15],

[16], [17] as a very incomplete list. In some situations Alic
and Bob are able to accomplish this task without error, but
in others they are not. For example, Walgeteal [4] proved

that any two orthogonal pure states, no matter entangled or
not, are locally distinguishable with no error. On the other
hand, examples of orthogonal product states that can not be
distinguished by LOCC protocols are presented, for inganc
a two-qutrit orthonormal pure product basis$ [7] and any $et o
states forming an unextendible product basés [8]. Horddeck
et.al [12] discovered a phenomenon of “more nonlocality
with less entanglement”. These examples demonstrate that
entanglement is not always decisive feature of locally dis-
tinguishability. It is thus necessary to further clarifyethole

of entanglement in the local distinguishability in diffact
circumstances. Considerable efforts have been devotdteto t
local discrimination of maximally entangled states. Lasgé

of maximally entangled states cannot be distinguishedlioca

if Alice and Bob’s system ar@-dimensional spaces, then it

is impossible for them to distinguisih + 1 or more maxi-
mally entangled states perfectlyl [5]1. [6].! [3I._115], [16L7],

[18]. It is proved that three orthogonal two-qutrit maxitgal
entangled states are always locally distinguishable [W.
showed thatl + 1 is not a tight lower bound for the number
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of locally indistinguishable maximally entangled stateg bis that any global operation can be implemented by LOCC
presenting four locally indistinguishable orthogonal gad- with help of entanglement by using teleportation. It is of
guquad maximally entangled states [3]. To circumvent tiandamental interest to understand the role of entanglemen
difficulty of proving local indistinguishability, our appach resource plays in certain tasks. That is, how much entangle-
is to show indistinguishability by PPT POVMs, and local inment is needed to reach the goal which is impossible to be
distinguishability automatically follows since LOCC POWM accomplished without entanglement.

is a proper subset of PPT POVMs. The advantage of thisour second purpose of this work is to study the problem of
approach is that the set of PPT POVMs enjoys a mathematigatanglement cost of distinguishing those PPT indististgui
structure much simpler than that of LOCC POVMs due to thghle quantum states by PPT POVMs. The motivation of this
Complete characterization of PPT condition by Semi'ddinibart is from two side: The first is to approximate the entan-
programming. After our work, several examples ®fPPT glement cost of state discrimination by LOCC. Though the
indistinguishablel @ d maximally entangled states are foungtrycture of LOCC POVMSs are mathematically complicated,
by using semi-definite programming [16]. separable POVMs is believed as a good approximation of
The notion of PPT plays a significant role in quantumocCc protocols for many cases, and the entanglement cost by
information theory. First, it has been used to provide sonPT POVMSs is a lower bound of that by separable POVMs. On
convenient criterion for the separability of quantum statethe other hand, one can learn the difference between séparab
which is one of the central topics in quantum information-theovMs and PPT POVMs by comparing the different costs.
ory and has been extensively studied in the last two decadggecifically, we study the entanglement cost of distingaigh
Peres [[19] proved that any separable state should obey #8 well-known examples of PPT indistinguishable statéee T
PPT criterion. Horodecket.al [20] established a connectionfirst example is to distinguish three Bell states. This examp
between separability and positive maps acting on operat@sSinteresting because Bell states play very important role
and used it to prove that PPT criterion is also sufficient fQﬁ quantum information theory_ The second examp|e is to
the separability o2 @2 or 2® 3 states. They also showed thayjjstinguish a pure state and its orthogonal complementgthe
if a mixed state can be distilled to the singlet form, it musgre the reasons of studying this example: One is it reveals
violate the PPT criterion [?1] It has been Conjectured NRT some major differences between the d|st|ngu|shab|||tyl_oﬂbp
bound entangled state does exist, and this remains one of dites and of mixed states. The other reason is that thidesimp
most important open problems in quantum information theoryxample shows the sharp difference of distinguishabitityer

Also PPT operations have been used to study the problemghween PPT POVMs and separable POVMs.
entanglement distillation and pure state transformati], The major contributions of this paper include:

[23], [24]. Ishizakal[22] showed that bipartite pure entadg
states can be transformed to arbitrary pure states by sticha 1) We solve the open problem proposed!(inl[12] based on
PPT operations. our previous results of [3]. In particular, we show that
The first purpose of this paper is to further study the  the HSSH method presented in[12] is not a “if and only
strength and limitation of PPT POVMs by considering the if” criterion for checking local distinguishability; more
distinguishability of quantum states under PPT POVMs. In  precisely, the indistinguishability of the ququad-ququad
other words, given a known set of mutually orthogonal states =~ maximally entangled states considered(ih [3] cannot be
we may wish to know whether it is possible for the parties detected by the HSSH method.
to perfectly distinguish the state; that is, given any one of 2) By employing the technique introduced in [3], we show
the states in the set and by using PPT POVMs, can they that a maximally entangled state and its orthogonal
with certainty determine which state they were given? We  complement, no matter how many copies are supplied,
study this problem by starting with an observation that some can not be distinguished by PPT POVMs, even un-
results of state discrimination by separable POVMs[in [14]  ambiguously. This is much stronger than the previous
can be directly generalized to the case by PPT POVMs. known results of([1],[[2].
More precisely, we give a necessary and sufficient condition3) We study the entanglement cost of distinguishing quan-
for the distinguishability of a set of quantum states by PPT  tum states. This problem is completely solved for the
POVMs. Leveraging this condition, the problem of distirghui case of three Bell states: it is proved thg®/3|00) +
ing (D — 1) bipartite pure states by PPT POVMs is showed \/mul) is sufficient and necessary for distinguishing
to be equivalent to that of distinguishing them by separable three Bell states by PPT POVMs. Then we consider
POVMs, whereD is the total dimension of the state space how much entanglement is needed for distinguishing
under consideration. We show that the orthogonal complemen a d ® d pure state and its orthogonal complement,

of a bipartite pure state has a PPT distinguishable basiwif a and an upper bound of entanglement cost is obtained
only if the Schmidt number of this state is less than 3. for separable operations. Based on this bound, we are
In recent years, entanglement has already been shown to be able to construct two orthogonal quantum states which
a valuable resource, allowing remote parties to commumioat cannot be distinguished unambiguously by separable
ways that were previously not thought possible. For inganc POVMs, but finite copies would make them perfectly

any set of orthogonal states that cannot be distinguished distinguishable by LOCC. Furthermore, the entangle-
by LOCC alone can nonetheless always be distinguished by ment cost for distinguishing d ® d pure state and its
LOCC if the parties share enough entanglement. The reason orthogonal complement by PPT POVMs is studied, and



we show that a two-qubit maximally entangled stateespectively. A bipartite mixed state € £L(X ® )) is said
is always enough, no matter the value dflIn sharp to be separable if in its decomposition of forf (1) all;)

contrast, an entangled state with Schmidt rahks can be chosen as product states.

always required for distinguishing such two states by Lemma 1: Let p; = ® € L(X @ V) andps = (Ixgy —

separable POVMs. An interesting case is to distinguish)/(d* — 1), where|®) = Ld Zj;é l7)x|7)y is maximally
a d ® d maximally entangled state and its orthogonaintangled state oA ® Y with d = dim X = dim Y and|j)x

complement. We show that faf= 2, the entanglement and |;),- are computational basis of and ), respectively.
cost must be maximally entangled state, which can bien for any unitaryy’ € £(X), we have

interpreted as the optimality of teleportation. However, . of B

for sufficiently larged, the entanglement cost could be VeV)o(Ve V) =pkk=1,2.

chosen arbitrarily close to 0. Moreover, for anyN € L(X ® )), we have

[I. NOTATIONS AND PRELIMINARIES /(V V)NV @ V)V = ap; + bpa,

We first recall some notations of entanglement and prelimi- v

naries about state discrimination by LOCC POVMs, separaif somea,b € C, whereV’ ranges over all unitaries i(X).
POVMs and PPT POVMs. Then we give a necessary an@e validity of the above lemma can be verified by direct
sufficient condition for the distinguishability of a set afiap- calculation.
tum states by PPT POVMs. It should be pointed out that this The following lemma from([14] is useful in the rest of this
condition is simply derived from a similar condition for theS€ction.
distinguishability by separable POVMs providediin[14]ngo  Lemma 2: For E' € L(X) such that0 < E < Ix, and a
applications of this condition can also be obtained by diyec density matrixp on X, tr(Ep) = 1 if and only if E— P > 0,
employing the condition of [14]. For the reader’s converizn Where P is the projector on the support pf
a detailed proof of this condition is included.
B. PPT distinguishability

A nonzero positive semi-definite operatbre L(X ®Y) is
said to be a PPT operator (or simply PPTEIfx > 0, where

In .th_'s paper the termomplex Euclidean space refers to I'x» means the partial transpose with respect to the party
any finite dimensional inner product space over the compl%

numbgrs. Lety aqdy be arbitrary co_mplex_Euclldean spaces, (lig) kI = |k (il. )
and dim X and dim ) denote the dimensions of and ),
respectively. A pure quantum state &fis just a normalized For simplicity, in what follows the subscript’ of I'x will be
vector |¥) € X. omitted andl" is used instead of y.
The space of (linear) operators mappikigto ) is denoted A Positive Operator-Valued Measure (POVM) ghwith n
by £(X,Y), while £(X) is the shorthand for’(X, X). I, outcomes is am—tuple of matrices(Il);_,, wherell, €
is used to denote the identity operator &n The adjoint (or £(&) with I > 0 and}_, IIj, = Ix.
Hermitian transpose) afl € £(X, X) is denoted byA". The  Let(Ilx);_, be a POVM acting on a bipartite systetiw).
notationA > 0 means that! is positive semidefinite, and morelt is said to be a separable (SEP) POVMIL, /(tr(Il)) is
generallyA > B means thatd — B is positive semidefinite. @ separable quantum mixed state for /alllt is said to be a
|A| = VATA is used to denote the positive square root &tPT POVM if eachll) is PPT. It is known that any POVM
ATA, ie., |Al = VATA. that can be realized by means of an LOCC protocol is a PPT
A general quantum state is characterized by its densfPVM. Moreover, we have
operatorp € L(X), which is a positive semi-definite operator ;oo POV Ms c SEP POV Ms c PPT POV Ms.
with trace one ont. The density operator of a pure sta{e )
is simply the projector) := [1) (). The support op, denoted ~ Let & = {p1,---,pn} be a collection ofn quantum
by supp(p), is the vector space spanned by the eigenvecto?@tes- We say thaf is perfectly dl_stlngwsh_able by PPT
of p with positive eigenvalues. Alternatively, suppgsean be (resp. SEP/LOCC) measurements if there is a PPT (resp.
decomposed into a convex combination of pure states, saySEP/LOCC) POVM(ILx);_, such that

A. Basic linear algebra

n tr(Ilkp;) = Ok, 3)
p= ;pklwwkl, @ anyl <k j<n
We say thatS is unambiguously distinguishable by PPT
where0 < p, < 1 and Y ;_ pr = 1. Then supp(p) = (resp. SEP/LOCC) measurements if there is a PPT (resp.
span{|ir) 11 < k <n}. SEP/LOCC) POVM(IT})7_, such that
The Schmidt number of a bipartite sta’fﬁ} eEX®)Yis

defined as the minimurh such thaty) = 31~ |a;)|8;) with tr(Mep;) = Prdr.; )
unnormalizedo;) € X and|3;) € V. A pure statgy) € ¥®  with some positivep, for any1 < k, j < n.
Y is called maximally entangled ji/) = ﬁ Zj;é l7)x17)v It is obvious that unambiguous distinguishability is less

where |j)x and |j)y are orthonormal basis o’ and ), constrained than “normal” distinguishability.



C. Distinguishability of quantum states by PPT POVMs when Sch(®) = 2, there always exists an orthonormal basis

It would be desirable to know when a collection of quanturi Of {|®)} that is perfectly distinguishable by LOCC.
states is perfectly distinguishable by PPT POVMs. Gengrall
orthogonality is not sufficient for the existence of a PPT IIl. A LIMITATION OF THE HSSHMETHOD
POVM discrimination. Noting the connection between separa In [12], Horodeckiet.al provided a powerful method allow-
ble and PPT, a rather simple necessary and sufficient conditing for efficient detection of indistinguishability of oxigonal
can be obtained by directly rewriting the proof of Theorem gtates via LOCC. Their method, called the HSSH method, is

in [14]. described as follows:

Theorem3: Let S = {p1, - ,pn} be a collection of (1) Given the states{|¢x) a3, 1, C X ® )y to be
orthogonal quantum states &f2). Thens is perfectly distin- distinguished, one choosesentangled states (detectors)
guishable by PPT POVMs if and only if there exispositive {lo) 23, Y7y C X2 ® Y, and probability distribution
semi-definite operator§$E,,--- , E,} such thatP, + Ej is (e}, and constructs a pure state
PPT for eachl < k < n, and)_;_, Ex = P, whereP; is -
the projector onsupp(px), and Py = Iy — S 1, Pr. [0) i3 = D VPEIUR) 2, 61) 203

Proof.—To show the sufficiency, we suppose that there exist k
such{Ey,---,E,}, define a POVMII = (II,--- ,II,) as If Alice (X;) and Bob () are able to distinguish
follows: I, = P+ E), for eachl < k < n. Itis easy to verify between the state§|vy.) v, y, 17—, by LOCC, they can
thatIl is a PPT measurement that perfectly discrimindes tell the result of their measurement to Clair&,} and

Now we turn to show the necessity. Suppdses perfectly Danny (V»), who then share statg§¢x) x,y, }7_, With
distinguishable by some PPT POVM, s@¥,, - - - ,IL,). Take probability {p }7_; -

Ep =11 — P, for eachl < k <n. Then) ,_, B, = Po. (2) Applying entanglement transformation criterion [26],
To complete the proof, it suffices to shof, > 0. By the [27], check if the following transition is possible (in
assumption, we have (Il p) = 1. Then the positivity ofFy, X1Xy 1 V1)%), i.e., whether the vectod , px\x ma-

follows directly from Lemma2. u jorizes \, where X\ and )\, are vectors of the Schmidt

Some special but interesting cases of Theokém 3 deserve coefficients of|y)) and|¢y) respectively,
careful investigations. When the supports of the state§ in
together span the whole state space, kepp(>7_, pr) = V)2, 203,30 5 {Pks | Dk) 203 }
X ®), S is perfectly distinguishable by PPT POVMs if and
only if Py is PPT for eachl < k£ < n. In particular, an
orthonormal basis oft' ® ) is perfectly distinguishable by
PPT POVMs if and only if it is a product basis. This coincide
with the case of discrimination by separable POVMs.

If the transition is impossible, one can conclude that the
set of orthogonal state§y;)},_, are indistinguishable
by LOCC.

%he authors raised an open problentiin/[12]: whether the HSSH
The following nice result was proved in [25]. method gives a “if and only if” criterion. In other words, giv

Lemma 4: Consider a quantum stajee £(X @ V) with an ensemb_le, is it true that they are indistinguighgble_b@(:(_)_
rank(p) < max{dim X, dim Y}. Then is separable if and if and only if the HSSH method can detect indistinguishapili
only if it is PPT. of th(_e ensemble? o

Combining the above lemma with Theordih 3, we can This problemwas not answered pnmanlydueto thefgctthat
establish the equivalence between distinguishing mansg plﬁlf’e mgthemat|cal structure of LOCC POVMs is comphcate_d.
states by PPT POVMs and by separable POVMs. As a direct consequence, we do nof[ even know how to verify

Corollary 5: Let S = {¢1,--- ,¢p_1} be a collection that. Whgther a general set of qutnt-gutnt states are lpcal _
of orthogonal pure quantum states &f® ), where D = dls_tmgwshable. The second reason is that HSSH m(_ethod is
dim X dim Y. Then S is perfectly distinguishable by ppTduite gene_ral and the_re are too many parameters since the
POVMs if and only if it can be distinguished by separablgi@tement is “there exist a set of entangled states (desgcto
POVMs. |ok)x,y, @and probability distributiorp,, such that the LOCC

Proof —Suppose)p be the pure state orthogonal to all eletransition is impossible”. Therefore, to show this methodat
ments ofS, i.e., ¥ py. = 0 foranyl < k < D—1. According COMPplete, we would need to show that for any detectors and

to TheorenB, we know thaf is PPT distinguishable if and probability distribution, their method does not work. Rort

only if there existn nonnegative number§\;, -, Ap_1} nately, “Entanglement Discrimination Catalysis” phenome

with ZkDfl Ax = 1 such thatyy + \wtop is PPT for each €@n help us to capture these difficulties. The next theorem
=1 -

1 <k < D —1. Note that the rank ofy,, + \gyp is at most gives a negative answer to this p_rob_ler_n. )
2. Invoking Lemma}, we know that, + Ay is PPT is and Theorem 7: There are locally indistinguishable quantum
only if v+ st is separable. Thus is PPT distinguishable states which cannot be detected by applying the HSSH method

if and only if S is separable distinguishable. m With any detectors. -
Also we have the following result. Pr.oof.—We use the main result of[[3] to show the validity of
Theorem 6: Let |®) be an entangled pure state ahp . this theorem:

Then {|®)} has no orthonormal basis perfectly distinguish- L€t [Vx) denote the standard Bell states,

able by PPT measurements if and onlySifh(®) > 2, where B 1

Sch(®) denotes the Schmidt number ¢b). In particular, Vi) = (L2 ®U’“)_2(|00> + 1),



whereos are the Pauli matrices given by = I, and were discovered, no matter how many copies are supplied,
1 0 0 1 0 —i whereas any set a¥ orthogonal pure states can be perfectly
o1 = < 0 1 > ,02 = < 10 > 03 = < i 0 ) . distinguished withN — 1 copies [[4]. Thus, mixed quantum
states can exhibit a new kind of nonlocality absent in pure
In [3], we showed thatS = {[xi)xy : 0<i <3} CX®Y states. The main tool used in [2] is a well known result, first
cannot be distinguished by any PPT POVM with= X1®@X>  proved in [28], that the tensor of two UPBs (unextendible
and)y = Y, ® ), where Xy, X5, Vi, ), are all the two- product basis) is still a UPB. In this section, we present two
dimensional Hilbert space and quantum states that are not unambiguously distinguishable
) PPT POVMs with an arbitrary number of copies.
Before proving the main result of this section, we first
provide the following interesting lemma.
IX2)xy = [V2)x 3, @ [¥1) ., Lemma 8: Let A, B € L(X) be Hermitian operators such
Ix3)xy = |Us)x,p @ [¥1)anys- that A + B is positive definite and4 is not semi-definite,
i.e., £A # 0. For fixed integemn, defineT = {4, B}®™ \
{A®™m p®m} where the tensor product of two s8t, S, is
given asS; ® Sy = {51 ® s2: s; € S;,i = 1,2}. Then there
do not exist nonnegative numbess such that

Ix0)xy = [Wo)x, 31 @ [Wo)x,,,
IX1)xy = (Y1) a0, @ (V1) 2,5,
)

Due to the special structure of, we further observe a
quite surprising “Entanglement Discrimination Catalyysike-
nomenon happening of. More precisely, with a two-qubit
maximally entangled state as resource, sa¥s), we can
distinguish among the members 6f locally, and after the A®m Z Ty > 0. (5)
discrimination, we are still left with an intact copy ¢¥). TheT

Now we show that the indistinguishability 6fcan never be i i i . . )
detected by HSSH method, i.e., for any four entangled stafe@0f-—Since is neither positive semi-definite, nor negative
l6) .y, Of the A3Y; system and probability distribution semidefinite, we know that there is nonzero positive semidef

b, the transformations) vx,yy, <S5 {pr, [éx)xsy,} can inite @ € £(X) such thattr(QA) = 0. Thus,

always be accomplished by LOCC (itiX; : YYs), where q:=tr(QB) = tr(QA) + tr(QB) = tr(Q(A + B)) > 0.

V) xxsyy, = Z VPEIXE) 2 |Pk) X5 s - By contradiction, assume that there exist nonnegative rusnb
k pr. such that
According to “Entanglement Discrimination Catalysis”, we A®M Z pTi > 0. (6)
know that|v)) x sy, [Wo) v, = {Pks |61) s [Wo) ., } TeT

is possible (iNXX3Xy : YY3)4).

Notice that a necessary and sufficient condition for thTehen we can have
transformation from a pure stat_¢) to an ensemble of pure tryo m 1 [(QFM ' @ Ix)(A®™ + Z »Te)] >0, (7)
states{px, |¢x)} was given in[[27]. Namely, leh and )\, be ToeT
vectors of the Schmidt coefficients [af) and|¢.) respectively. : .

Then the LOCC transition) — {px, éx )} is possible if and v_vheretrm...,m__l denotes_the_operatmn that tracing out the
only if the vector) , pxA, majorizesi. firstm —1 parties. Eq.[(7) implies that fdfj, = B™ ™1 © 4,

m—1 i —
Apply the above criterion on the entanglement transfof’® haveg™~"pyA > 0 which means thapy, = 0.

. . Using the similar technique, we can prove that= 0 for
Mation 1) x x5 | Wo) vy, == {Pk, [$k) 2535 Po) 2,3, } N -
: T : 3 . any Ty € T. According to Eq.[{(6), we know that®™ > 0.
(in XX5X, : YY3V4). According to the fact thatWly) is This is impossible. n

maximally entangled, we can directly obtain that this ciite
also satisfied for transformation (i3 : V)%s),

) yys = (P |00) aam ) Theorem 9: Let py = ® andp, = (Lyey — ©)/(d” — 1),
Therefore, this entanglement transformation can be accovrlrlwr-]ere@> - ﬁzk:o [k)x|k)y is the standard maximally

plished by LOCC. Thus, the HSSH method can not detegntangled state on the bipartite systethe 3 with d =

t . ;
A . imX = dim). Then for any integer, p{™ and p5™
the indistinguishability ofS. u cannot be distinguished unambiguously by PPT POVMs.
Proof.—Supposen{™ and p$™ can be distinguished unam-

STATE AND ITS ORTHOGONAL COMPLEMENT WITH blguo?sl)f/gby IZPI((;?VM;&E?E“ thﬁr?hls;tsog%gosnwg PPT
ARBITRARY COPIES operator & < ( ® ) such thattr(Epy™) > 0,
tr(Eps™) = 0.

It is well-known that local measurements on a composite We can construct anothd? € £(X®™ @ Y&m) b
guantum system, prepared in one of many mutually orthog-
onal states, may not reveal in which state the system was F— / VEVV.
14

Now we are ready to present the main result of this section.

IV. INDISTINGUISHABILITY OF MAXIMALLY ENTANGLED

y

prepared. In the many copy limit, this kind of nonlocality is

fundamentally different for pure and mixed quantum stetgs [

[2]. In particular, two orthogonal mixed states that arediet where V' ranges over all unitarie®}’ | (Vx, ® Vy,) with
tinguishable by local operations and classical commuiinat Vx, = V3, , andVx, ranges over all unitaries.



According to Lemmd&ll, we know thdt is a positive PPT According to the condition for entanglement transfornmmatio
operator such thatr(Fp™) = tr(Ep$™) > 0, tr(Fp5™) = between bipartite pure statés [26], we can assert that
tr(EpS™) = 0, andF € span{P;, P,}®™, whereP,; denotes 5 5
the projector onsupp(p1) and P, denotes the projector on A <1/2= X < -.
supp(p2), respectively. Now there ang ¢ andp;. such that 4 3

F = pP®™ | Z peRy 4+ qPE™ This argument shows thgf'2/3|00) + /1/3|11) is necessary
! ReR 2 for distinguishing three Bell states locally.
The above method can be used directly to show that
_ ®@m Xm Xm
Whg;eeza_n ({)ﬁéiSQ};] » \>{§gcéo€éin5:{0 the fact that > 0 maximally entangled state is needed for distinguishing fou
k = = U. .. .
' . Bell states locally. The only remaining case is that how
tr(Ep™) > 0 andtr(Ep$™) = 0 imply p > 0 andq = 0. y y g

: 2 much entanglement is required to distinguishing three Bell
r _ r r r _
Note thatP; is not semi-definite/, >0 and Py + P, = states since two Bell states are locally distinguishatilés |
Iyemgyem > 0. Then

worth noting that no LOCC protocol is known to distinguish

F' = p(PhY®™ 4 Z iRy three Bell states using/2/3|00) + /1/3|11) as a resource.
RLER Therefore a quite interesting problem might be “is partial

LemmalB implies that™™ /p is not positive, i.e.,F" is not entanglement helpful for distinguishing Bell states?”

positive. We can prove tha{./ 2./3|OQ> + +/1/3|11) is both necessary
Thus, there is no positive PPT operaté such that and sufficient for distinguishing three Bell states by PPT
tr(EpP™) > 0 andtr(EpS™) = 0. That is, p{™ and p$™ POVMs. _
cannot be distinguished unambiguously by PPT POvvl.  Theorem 10: 7 = {[Wi) 1,3, © ) x,p, 1 1 < k < 3} can
be distinguished by some PPT POVM if and onlyA§ <

n—1
V. ENTANGLEMENT COS'SI';I-:I-IIEDSISTINGUISHING QUANTUM 2/3’ Where|a> _ Z /_/\z|”> is normalized with Schmidt

_ 1=0
The entanglement cost of state discrimination by Locéoef?melznts/\o 2 Alfz 2 2 0%. fine the k ;
operations was studied i [29]. In general, it is quite diffic |00 ——FOr €ase of presentation, we first outline the key proo

to deal with the LOCC (separable) POVMs directly. In ordef €as for the "only if” part as follows. We can choos® );_,

to obtain some information about the entanglement costeof t om MT WhereMT denotes the set of PPT POVMs that
distinguishability using LOCC, we consider the entangIE}tneCan S'St'ngu'ShT' .One can then constr_uct a neW_POVM
cost of distinguishing quantum states by PPT POVMs. Tr(g[’“)k:_l € My W'th_ a highly symmetrlcal_propertles by
examples we considered are quite simple which enable usefg)lorlng the3 convexity oMy and symmetries Ofr.‘ The
obtain analytical results through the techniques develdpe form of (Ilx);—, enables us to bound, by calculating its

© partial transpose directly.
We start to describe how to construct the desifEd)?_,
A. Distinguishing three Bell states by noticing the following properties af/7 and 7"

Bell states have very nice symmetric properties and theyF'rSt’ My is convex, i.e., for anp < A <1,

represent the simplest possible examples of entangleme 3 3 _ 3

Previously it was known that two Bell states are locally disgr&c)k:l’ (Di)i=r € My = (ACk + (1= M) Di)je=y € M

tinguishable, and three Bell states are locally indistisigable  second;7 enjoys a number of symmetries:

[5]. Indeed, the indistinguishability of three Bell statesnain S1 For any Pauli matrix, oy, @y, preserve$ly,) x, y, @

even under separable operations|[14]. In this subsectien, ¥4) x, v, in the following way:

study the problem of entanglement cost of distinguishimgeh

Bell states. (UXl ® O—yl)|\11k>9\’1y1 ® |04>X2y2 = i|\Ijk>X1y1 ® |04>X2y2.
First, we can give a lower bound of entanglement cost

for distinguishing three Bell states by LOCC measurementsS2 Wy, y, rotates|Ux)x,y, ® |&)x,ys,

using the HSSH method [12]: SuppoS& ) x,y, ®18)x,, :

1 < k < 3} can be distinguished locally, whe8)x,y, =  Wan|¥1)xy @ @y, = [V2)x, @ |a)x,y,,

V20l00) + vAz[11) such thatvg > Ay >0 andXo + A1 =1 Wayp [T2)ay, @ (@), = [Ta)a0, @ a) 2.y,

is the entanglement resource ane,) are Bell states. Now Wy, [¥3) 2,9, @ [a)ay, = [U1) sy, @ [) sy

we can construct another quantum staigyy as

138 whereW is defined as
lp)xy = 7 D 1) 94 18) 0 [ Wk) a5 s wo (=i 1Y (i1
k=t B -1 )

whereX = X1 @ A, @ X3 and) = Y1 ® Jb ® V3. Since
{1213, @ B)x,y,} can be distinguished locally, we have  S3 For any diagonal unitary’ = v ® v* € L(X2)%), V
preserves¥y) vy, ® |a)x,y, for 0 <k <3,

3
1 Locc
o) (ol 25 2> k) (k| @ [5) (B | 25 [Wo) (Wol.
3 k=1 V|\Ijk>X1y1 ® |a>X2y2 = |\Ijk>X1y1 ® |04>X2y2.



Noticing that a local unitary does not change the positiety From IT}' > 0, we know thatN ()" > 0, then boo < 2/3.
partial transpose, we can construct a POVNL)?_, € Mr Invoking Lemma 2, we have
by the convexity ofM and S1-S3such that

y y ofMr IL|01) & |e) = [¥1) @ |a)

_ T
M1 = Wy LW, y, ®) = "y lii) ] + fiyii) (G o) = |a).
for k=1,2, and forV = v ® v* € L(X)%), g
n—1
I, = VILVT = (ox, ® oy, )k(ox, ®@0y,).  (9)  Now we can make the following assertiday = S v/A;]i) is

=0
Egs. [8) and[(9) have greatly restricted the formdf,)?_,. an eigenvector corresponding to eigenvalue 1 of non-negati
So, we shall obtain the requiredl;);_, from any POVM matrix M4 = (z;;), wherex;; = b;; andx;; = f;; for i # j.
(Cr)3_, € Mt by the following three relatively simpler steps:The non-negativity of\/, is derived from the fact thdil; is

Step 1 Notice that for a Pauli matrix-, we have semi-definite. Then we obtainy < by < 2/3 by noticing
M4 —|e){e| > 0, and this ends the proof of the “only if” part.
3
(o2, ® 0y, )Crl02, ® 031))imy € M7 The proof of the “if” part is accomplished by giving
Invoking S1 and the convexity of\/-, we know that the construction of some PPT POVNII,)}_, which can
distinguish7 with =4/2/3|00) + +/1/3|11). Put
D)3 _ ZO’(UXI ®Uy1)ck(0X1 ®0’y1) 3 M g |a> / | > / | >
( k)k:l = ( 4 )k:l € M, N (00) 0 0 R
and each measurement operai®y is of the form) . ¥; ® I, = 0 NOU 0 0 (10)
ki - 3 ’ ! 0 0 NO g ’
D) for 1 < k < 3 by noticing thaty";_ (0:®0;) M (0;®0;) an
is diagonal under Bell basis for ady-dimensional matrix\/. R 0 0 N
Step 2 According toS2, one can verify that where N0, NOU N0 NV R e £(X,);) with
(Fi)iei = Waup, (D3, Dy, Dy)Wh € My, N = 1/30y+2/30; + 1/6W, + 1/6Us,
(Gi)izi = WLy, (D2, D3, D1)Wayy, € Mr. NOD = 1/30441/3W¢ +1/3Uy +1/305 = /3,
Invoking the convexity of\/; again, we have NOD = N =1/309+1/60; + 5/12¥5 + 5/12F3,
R = 2/301 —V2/6Ws —/2/6Ws5.
ey = (2L G ey | VRIS T B0 T B/ T
3 It is easy to verify that(Tl;, Ty = Wx,y, ILiWy, 13 =
We know that fork = 1,2, W1 5 IiWx,y,) is a PPT POVM which can distinguish
1 << 3L
Jes1 = Wa,y, JkWQT(]y]- {llyk)lel ® |04>X2y2 I<i< 3} u

Step 3 Invoking S3, we obtain that for any diagonal unitaryg  pj«ti nguishing a pure state and its orthogonal complement

V=vev € L0 ), In this subsection, we consider the entanglement cost of
(Li)j—y = (VILVT)i_, € M. distinguishing a pure state and its orthogonal complement.
Previously, it is known that two pure orthogonal quantum
states can always be distinguished locally[4], but theestant
(I)3_, = (/ VI Viav)3_, e My, is_not v_aliq for one pure state and i_ts _orth_ogong! complement
It is quite interesting to study the distinguishability big set
v of two states since it forms the simplest indistinguishabd¢es
where V' ranges over all diagonal unitaries of form® v*.  in some sense. Luckily, they can reveal some sharp different
One can readily verify thafll;.);_, satisfies Eqs[{8) an@l(9). ditference between the discrimination powers of separable

Then we know that

Without loss of generality, assume that POVMs and PPT POVMs.
_ (GF) o 15\ fi (5) o i\ /s Letp; = |U)(T] € L(X;®)4) be a pure state with Schmidt
= ;N @ 1i) g1+ ;R @ i) {jil); numberd and p; = (I — p1)/(dim X; dim )y — 1), where

7 (W) = 3070 Ak kE) with A > Ay forall 0 <k < d—2.
where N R(9) € £(X; ® Y1) are Hermitian with eigen- 1) By Separable POVMs: The following theorem gives
vectors|¥y). Let a lower bound of the entanglement cost of distinguishing
N ) — 1530 + by Uy + iy s + dy; U, ?nep;usrfresr;aetﬁtsand its orthogonal complement by separable
(id) — o.. g - ) ' o
R = e€ijWo + fij V1 + gij W2 + hij Us. Theorem 11: If p; ® a andp, ® a can be distinguished by
separable POVMs unambiguously, th&ah(a) > d.

According to , ; .
Proof —Suppose there is some) € X> ® Vs with Schmidt

I + leylmwjglyl + W;T(lylmWlel = Ix 20,09, numberr such thatp; ® @ and p2 ® o can be distinguished
one can conclude that by separable P_OVMs unamblguously, whedém X, =
dim ), = r. Without loss of generality, we assume that

agp = 1/3, boo + coo + dog = 1. |Oé> = Z::_(} |ZZ>/\/F



According to the unambiguous distinguishability conditio |
[30], there exist two quantum statgs) € X3 ® X» and|x) € Now we are ready to prove the following:
Y1 ® Vs, such that Theorem 15: p; ® @ and p; ® « can be distinguished by
— L
(/)1 ® a)|(p ® X> £0, and (p2 ® a)|(p ® X) —0. PPT POVMS, Wher¢a> = \/5(|OO> + |11> € X ® 3-72.
Proof.—Consider PPT POVMII,, II,) of the following form:
Thus,(a|p®x) = c|¥) for some nonzere € C. Furthermore,

there exist matricesV; € L(X2, X1) and Ny € L(V2, V1) A 0 0 B
such that|p) = (Ix, ® N12|<I>)X1X2 and [x) = (Iy, ® o /2 0 0
No)|®)y, v, with |®) = ST~ |ii)/+/r. Then we have Y7 lo o 172 0 |’

d¥) = falp©x) = (al(Ni® M) B)xx, ©[B)y,., Booo0o4
= (Vi@ N2)[@)x, . Sy S
Compare the Schmidt number, we have I = 0 0 I/2 0 ’
d = Sch(|W)) = Sch(c|B)) = Sch((Ny @ No)|®)x,.y,) -B 0 0 I-4
< Sch(|P)xy,y,) =T where A, B € L(X; @ V1), and] = Iy, gy, .
This ends the proof. m Letp=VAA/(1+VAA), ¢=1/2—pand

It is not hard to obtain the following theorem,

Theorem 12: Let |3) be a pure entangled state with
Sch() < d. Thenp, ® § andp2 ® B cannot be distinguished Notice that0 < p < 1/3,1/6 < g < 1/2 andTl;, Tl > 0
by LOCC measurements unambiguously, but for some fin%e can verif_the_foIIO\’Ning_ - e =
integerm, (p1 ® 8)¥™ and(pe ® §)®™ can be distinguished y
perfectly by LOCC measurements. I, (pr ® @) = pr ® v
Proof.—The first part can be directly obtained by applying
Theorem 11. To shovjp; ® 3)®™ and (p2 ® 3)®™ can be The positivity ofII;, comes from
distinguished perfectly by LOCC measurements for some
we only need to choose sufficient large such that|3)37% |B| = 1y tgI—-T)=A<T— A
can be transformed into @® d maximally entangled state by 2 -

LOCC [2€], then distinguistp: andp, by using teleportation. 1t js clear that(II;, IIo) is a POVM which can distinguish

u . . P11« and p2 ® a. The rest part is to showvl,, I, both
Another direct consequence of Theorem 12 is the followmgnjoyS positive partial transpose. We only need to verif th

A=pU+ql,B=(1—p)¥ —ql.

Corollary 13: Let S = {|¢1),---,|¥p)} be an orthonor- I>A">0 and I/2>|BY],
mal basis of¥ ® Y with D = dim X dim ). ThenS ® {|5)} > ool > S 11— r
can be distinguished by separable POVMs unambiguousl? Fzp¥ el 20 and 122 [(1=p)¥" —all.
only if Sch(B) > Sch(vy) for any k. Invoking Lemma 14, the largest eigenvalue and smallest

Proof.—For anyk, let p1 = ¢ andps = (I — ¥x)/(D — 1). eigenvalue ofp¥" + ¢I satisfy that
SinceS ® {|B)} can be distinguished by separable POVMs

unamg@guous:y, (;/ye_ can r(ioglcluge thép,, pél} ®P(g|\€|z/|} isTh 1>q+p>q+po,
unambiguously distinguishable by separable s. Then 1
Theorem 12 leads us t8ch(3) > Sch(yy). [ | 7= VAdohp2qg—5p20.

2) By PPT POVMs: We shall see that a two-qubit maxi- ] ]
mally entangled state is always enough for distinguishingAdSOF' the largest eigenvalue and smallest eigenvalugl of
pure state and its orthogonal complement by PPT POVMYY" — ¢l satisfy that
This can be regarded as the fact that PPT POVMs does not

always provide a well enough approximation for separable I-pro—qsl-p—q=1/2

POVMs, even for this quite simple case. —q— (1 =p)VAor =—1/2.
Before proving this result, we first note the following udefu )
lemma. Thus,I1;, 11, is a PPT POVM. |

Lemma 14: Any eigenvalue ofpl lies between—y/ oA, The next result shows that one can always find a partial
and \o. Moreover, all the eigenvalues pf are=+./X;\; for entangled state to accomplish the task of distinguishingra p

i+ j and\;. guantum state and its orthogonal complement, provided the

Proof.—It suffices to note that pure state is not a two-qubit maximally entangled state.
PN i Theorem 16: Supposg¥) = > 0—1 \/A¢|kk) € X1 @ is

P1 = Z ilie) (il an entangled state withy > \; > --- > \;_; > 0 andr =

N e VAoA1 < 3. Thenp; ® o and p; @ o can be distinguished by
+3 \/T/\j(m +giig + il ig — 5i)(ij — jil ). PPT POVMs for some partial entangled state = /200 +
> 2 2 VI=11) € X, ® Yy with ¢ < 1/2.




Proof.—We construct PPT POVMII, II;), which can dis-
tinguish p; ® o and p2 ® «, of the following form:

A 0 0 B
o | 0 1/2 0 0
Y~ o o 1/2 0 |
B 0 0 C
I-A 0 0 -B
1 0 I/2 0 0
2T 0 0 I/2 0 ’
-B 0 0 I-C

where A, B,C € L(X; ® Y1), and] = Iy, gy, .

Lett = /2= > 1, we require that

IIi(p1 ®@a)=p1 @a and II;(p2 ® a) =0.
= A+tB=V and C+ B/t=1V.
For simplicity, we study the case that, B, C' enjoys very

simple form. More precisely, we try to find some> 1 and
real numbers:, y such that(Il;, IT,) is a PPT POVM with

B=2V—yl,A=(1—tz)¥+tyl,C = (1 —x/t)V +y/tl.
To ensureg(Ily, I1,) is a POVM, we would need

I >0& (z—y)(t+1/t) <1, y >0,
I, >0 yt+1/t) <1, x —y >0.

Invoking Lemma 14,

I >0ety— (1 —tx)r >0, y/t—(1—a/t)r >0,
[zAo —yl < 1/2, Jar +y| < 1/2,
M >0e (1—t)ho+ty <1, (1—x/t)ho+y/t <1,
lzho —y| < 1/2, |or +y| < 1/2.
Our goal is to find real numbers > 1,z,y such that the
above inequality holds. In order to do so, we choose
min{/4EL, -}, thent > 1 and. =
We assign values of, y such that

1
241

1
xr+y:rt§§, (x—y)t+1/t)=1.

That is,
rt3
(r+12+1)

Pt 4t
D ICE A

One can verify that all these inequalities are satisfied tsy fir

noticing that

0<y<az—y=-——<1/2,

t2+1 "
ty — (1 —ta)r =rt> —r >0,
y/t— (1 —a/t)r=rt/t —r =0,
[zAo — y| < max{|y[, [z —y|} <1/2,
(1 —tx)Xo + ty < max{l — tz + ty, ty} <1,
(I—z/t) o +y/t <max{l—z/t+y/t,y/t} < 1.
Thus,(I1;,II,) is a PPT POVM which can distinguish ® «
and p; ® «a perfectly. |

C. Digtinguishing a maximally entangled state and its orthog-
onal complement

Maximally entangled states play a curial role during the
development of quantum information theory. As a speciat cas
of the problem we studied in the previous subsection, we want
to know how much entanglement is required to distinguish a
maximally entangled state and its orthogonal complement by
PPT measurements. Ley = ® € L£(X; ® Y1) and py =
(Ivay, — ®)/(d* — 1), where|®) = —- S0 |kk) is the
standard maximally entangled state éh ® ); with d =
dim Xl = dim yl.

Theorem 17: If p; ® a andps ® o can be distinguished by
PPT POVMs withd = 2 and |a) = sin 8]00) + cos 8|11) €
Xo ® Vo with 0 < B < 7T/4, then|a) = |(I)>
Proof—For given|«), let (M7, Ms) be the PPT POVM which
can distinguistp; ® v and p2 ® a. One can construct another
PPT POVM(II,, II,) satisfying the same property, where

I, = %(/ VMVT +/VM,:VT)dV,
% v
whereV ranges over all unitaries with formy, ®vy, Qux, ®
uy,, for unitary v and diagonal unitary:. Direct calculation
leads us to the fact that

N (00) 0 0 R
0o NOD 0 0
T = 0 0 NI g :
R 0 0o NUD

WhereN(U),R S E(X1®y1) with N () = aijq)—i-bij (IX1371 —
®), andR = z® + y(Ix,y, — @) with a;;,b;; > 0, and real
numberse, y.

According toll; (p1 ® ) = p1 ® a and1l;(p2 ® @) = 0,
we know that

ago +xcotB=1,a11 +xtan = 1.
boo—l-ycotﬂ = O,bll —l—ytanﬂz 0.

Note thatTl} > 0 and] —II} > 0 implies that0 < NG <
Ix,y, for i,j =0,1. Therefore,

Zv(ij)F > 0= Q;j < 3bij7
N(ij)r < I)(lyl = 31)” — Qij < 2,

ago < 3bgp = 1 < (x — 3y) cot S,
a11 < 3b11 = 1 < (xz — 3y)tanps.

According to the equations obtained above, we see that
1 < (z —3y)cotB x (x — 3y)tan B = (x — 3y)°.
On the other hand, frorfl} > 0 andII} > 0, one can obtain

(3y — x)? < (3b1o — a10)(3bo1 — ao1),
(31/ - ZC)Q S (2 + alo — 3b10)(2 + apl — 3b01).

Thus, (3y — z)* is less than or equal to

(3b10 — @10)(2 + a10 — 3b10)(3bo1 — a01)(2 + ao1 — 3bo1).
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Applying the inequality of arithmetic and geometric means, VI. CONCLUSIONS
we obtain

(3b1o — a10)(2 + a19 — 3b1o)
(3bo1 — ap1)(2 + ao1 — 3bo1)

This paper systematically studied the distinguishabitify

1, bipartite quantum states by Positive Operator-Valued Miess
1. with positive partial transpose (PPT POVMS). Several tssul

of [14] about separable distinguishability were geneealizo

<
<

Therefore, e - J" .
the case of PPT distinguishability, and an open problenedais
(z=3y)'<1=(z—3y?*> <1 in [12] was negatively answered. It was proved that maxiynall
Together the inequality, entangled state and its orthogonal complement, no matter ho
) many copies are supplied, cannot be distinguished by PPT
1 <= (z - 3y) POVMs, even unambiguously.
we can conclude thdt: — 3y| = 1 and|tan 3| = 1. That is, The entanglement cost of distinguishing quantum states by
|a) is maximally entangled, i.e|q) = |P). m PPT POVMs was carefully examined. The cost of discriminat-
As a direct consequence of Theorem 17, we have thwg three Bell states was completely figured oyf2/3|00) +
following interesting corollary foul = 2. \/muw is sufficient and necessary for distinguishing three

Corollary 18: Among all2 ® 2 states, only the maximally Bell states by PPT POVMs. The problem of how much
entangled state can help to distinguish a two-qubit bagatanglementis needed for distinguishingsad pure state and

{leo)s le1)s |@2), |e3) T with |po) = %(|OO> + |11)) by its orthogonal complement was considered. An upper bound of
LOCC, Separable or PPT POVMs. entanglement cost for this problem was derived for separabl
For generall, we have the following: operations. We constructed two orthogonal quantum states

Theorem 19: For p; = ® € A} ® )y be the maximally which cannot be distinguished unambiguously by separable
entangled state withlimX; = dim)Y; = d, p» = (I — POVMSs, but finite copies would make them perfectly distin-
p1)/(d?> — 1) and |a) = /2|00) + /1 —¢|11) € Xy ® V> guishable by LOCC. It was showed that a two-qubit maximally
with entangled states is always enough for discrimination by PPT

L 5 ifd>5, POVMs, whereas an entangled state with Schmidt number
d%ﬂ otherwise. d is always needed for distinguishing these two states by
Thenp, ® @ andps ® « can be distinguished by PPT POVMsfseparable .PO.VMS' As a spe_C|aI case, the entanglemenfc cost
o : of distinguishing ad ® d maximally entangled state and its
Proof.—This is a special case of Theorem 16, we use thetho onal complement is estimated: for the two-qubit case
notations from the proof of Theorem 16 freely. Consider P 9 P ! , ' WO-qubit £ast
the resource must be a maximally entangled state, but with

POVM {I1;, I} constructed in the proof of Theorem 16, the increasing ofi, the entanglement resource could chosen
A 0 0 B arbitrarily close to 0. Our results show that PPT POVMs do

L — 0 I/2 0 0 7 not always give a well enough approximation of separable
0 0 I/2 0 POVMs.
B0 0 C There are still several unsolved problems concerning PPT
I-A 0 0 -B distinguishability. First, it is interesting to clarify ¢hrelation
- 0 I/2 0 0 between distinguishability by PPT POVMs, separable POVMs,
2 0 0 I/2 0 ' and LOCC POVMs. A more explicit question would be:
-B 0 0o I-C when PPT POVMs provide a good enough approximation to
where A, B, C are with the following form, separable POVMs and LOCC POVMs? For example/[in [3]

we showed that four orthogonal ququad-ququad orthogonal
B=2®—yl,A=(1—-tx)®+tyl,C=(1—2/t)®+y/tl. maximally entangled states is locally indistinguishable b

Notice thatr = é, we have the following two cases: proving they are PPT indistinguishable. In that case, PPT
Case 1d >5,t=+d =+ 1, then, = d%?, we choose POVMs form sufficiently good approximations to LOCC
POVMs. However, here we observed that that for the case
> = 2vd+1 y= vd+1 of higher-dimensional spaces, PPT POVMs may behave very
d+2 "’ d+2 differently from LOCC POVMs. Motivated by Theorem 10,
Case 22<d<4,t=4,then. = ﬁv we choose we could ask the following interesting question is: whether
9 3 V2/3]00) + +/1/3|11) is sufficient for distinguishing three
T = d(d +2) y = d . Bell states by separable POVMs or LOCC POVMs? Second,
2(d+1)(d? +4)’ 2(d+1)(d* +4) the entanglement cost problem of distinguishingd & d
One can easily verify thafll;, 15} is a PPT POVM which maximally entangled state and its orthogonal complement by
can distinguistp; ® o andps ® «. B separable POVMs (or LOCC POVMsS) is of special interest,

for instance, is ad ® d maximally entangled state always
Based on the above theorem, we know that the entanglemeaguired? Another problem for further study is to find more
cost of distinguishing a two-qudit maximally entangledtesta applications for PPT distinguishability. In particularwould
and its orthogonal complement can go (ﬂi%) by PPT be of great interest to obtain some connection between PPT

POVMs. distinguishability to other important concepts in quantum



11

information theory; for instance, we may try to employ PPT5] P. Horodecki, M. Lewenstein, G. Vidal and I. Cirac. Ogt#nal criterion

distinguishability as a tool to give an upper bound of the
environment-assisted classical capacity of quantum alann 26]
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