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Abstract—In this paper, we propose an algorithm referred to
as multipath matching pursuit (MMP) that investigates multiple
promising candidates to recover sparse signals from compssed
measurements. Our method is inspired by the fact that the
problem to find the candidate that minimizes the residual is
readily modeled as a combinatoric tree search problem and th
greedy search strategy is a good fit for solving this problemn the
empirical results as well as the restricted isometry propety (RIP)

based performance guarantee, we show that the proposed MMP

algorithm is effective in reconstructing original sparse gynals for
both noiseless and noisy scenarios.

Index Terms—Compressive sensing (CS), sparse signal recov-

ery, orthogonal matching pursuit, greedy algorithm, restricted
isometry property (RIP), Oracle estimator.

I. INTRODUCTION

iteration [4]. Therefore, it is not hard to observe that ifestst
one incorrect index is chosen in the middle of the search, the
output of OMP will be simply incorrect. In order to mitigate
the algorithmic weakness of OMP, modifications of OMP, such
as inclusion of thresholding (e.g., StOMP [9]), selectidime
dices exceeding the sparsity level followed by a pruning.(e.
CoSaMP [[10] and SPL[11]), and multiple indices selection
(e.g., gOMP [[12]), have been proposed. These approaches
are better than OMP in empirical performance as well as
theoretical performance guarantee, but their performance
the noisy scenario is far from being satisfactory, esphcial
when compared to the best achievable bound obtained from
Oracle estimatdf.

The main goal of this paper is to go further and pursue a
smart grafting of two seemingly distinct principlesombina-

In recent years, compressed sensing (CS) has receit@dc approachandgreedy algorithm Since all combinations

much attention as a means to reconstruct sparse signals f@fnd< -sparse indices can be interpreted as candidates in a tree
compressed measuremerits [L]-[8]. Basic premise of CS(s¢e Fig[LL) and each layer of the tree can be sorted by the
that the sparse signats € R™ can be reconstructed frommagnitude of the correlation between the column of sensing
the compressed measuremepts: ®x € R™ even when the matrix and residual, the problem to find the candidate that
system representation is underdeterminec( n), as long as minimizes the residual is readily modeled as a combinatoric
the signal to be recovered is sparse (i.e., number of nonz&i®e search problem. Note that in many disciplines, the tree
elements in the vector is small). The problem to reconsanct Search problem is solved using an efficient search algoyithm
original sparse signal is well formulated asé@pminimization not by the brute-force enumeration. Well-known examples
problem andx -sparse signat can be accurately reconstructednclude Viterbi decoding for maximum likelihood (ML) se-
using m = 2K measurements in a noiseless scendrio [guence detection [13], sphere decoding for ML detection
Since thel,-minimization problem is NP-hard and hence ndkl4], [15], and list sphere decoding for maximum a posterior
practical, early works focused on the reconstruction ofspa (MAP) detection [[16]. Some of these return the optimal
signals using the; -norm minimization technique (e.g., basissolution while others return an approximate solution, it t
pursuit [2]). common wisdom behind these algorithms is that they exploit
Another line of research, designed to further reduce tff@e structure of tree to improve the search efficiency.
computational complexity of the basis pursuit (BP), is the In fact, the proposed algorithm, henceforth referred to as
greedy search approach. In a nutshell, greedy algorithmsltipath matching pursuitMMP), performs the tree search
identify the support (index set of nonzero elements) of theith the help of the greedy strategy. Although each candidat
sparse vecto in an iterative fashion, generating a seriebrings forth multiple children and hence the number of candi
of locally optimal updates. In the well-known orthogona#lates increases as an iteration goes on, the increase @lactu
matching pursuit (OMP) algorithm, the index of column thsat imoderate since many candidates are overlapping in the enidd|
best correlated with the modified measurements (oftenctallef search (see Fid.l 1). Therefore, while imposing reas@nabl
residual) is chosen as a new element of the support in e&gimputational overhead, the proposed method achieves con-
siderable performance gain over existing greedy algostim
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particular, when compared to the variations of OMP which in
essence trace and output the single candidate, MMP examines
multiple full-blown candidates and then selects the finapat
in the last minutes so that it improves the chance of selgctin
the true support substantially.

The main contributions of this paper are summarized as
follows:

1The estimator that has prior knowledge on the support isdabracle
estimator.
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Fig. 1. Comparison between the OMP and the MMP algoritim=(2 and K = 3).

« We present a new sparse signal recovery algorithm, (breadth-first) MMP while achieving substantial savings
termed MMP, for pursuing efficiency in the reconstruction  in complexity.

of sparse signals. Our empirical simulations show that the The rest of this paper is organized as follows. In Sedfibn I,
recovery performance of MMP is better than the existinge introduce the proposed MMP algorithm. In Section lII,
sparse recovery algorithms, in both noiseless and noig¢ analyze the RIP based condition of MMP that ensures
scenarios. the perfect recovery of sparse signals in noiseless saenari

« We show that the perfect recovery of any K-sparse sign@l SectionI¥, we analyze the RIP based condition of MMP
can be ensured by the MMP algorithm in the noiseless identify the true support from noisy measurements. In
scenario if the sensing matrix satisfies the restricted isoiBection[V, we discuss a low-complexity implementation of
etry property (RIP) conditiod,, < % whereL the MMP algorithm (MMP-DF). In Sectiob_ VI, we provide
is the number of child paths for each cancﬁaate (Theoremamerical results and conclude the paper in Sedfioh VII.
[3.9). In particular, if L = K, the recovery condition is  We briefly summarize notations used in this papeiis the
simplified to d2 < 0.33. This result, although slightly i-th element of vectok. I, — I = I\ (I; N12) is the set of all
worse than the condition of BR4x < /2 —1), is fairly elements contained iy but not inl. [A| is the cardinality of
competitive among conditions of state of the art greedy. &, € R/l is a submatrix of® that contains columns
recovery algorithms (Remafk_3]10). indexed byA. For example, if® = [¢; ¢2 ¢3 ¢4] and A =

» We show that the true support is identified by the MMR1, 3}, then ®, = [¢1 ¢3]. Let Q@ = {1,2,...,n} be the
algorithm if min, .o |z| > c||v||2 wherev is the noise column indices of matrix®, thenT = {i | i € Q, z; # 0} and
vector andc is a function ofd,x (Theoren{4R). Under T¢ = {j | j € Q, x; = 0} denote the support of vectarand
this condition, which in essence corresponds to the higls complement, respectively} is thei-th candidate in thé-
signal-to-noise ratio (SNR) scenario, we can remove aH iteration andS* = {s% sk ... sk} is the set of candidates
non-support elements and columns associated with thésehe k-th iteration.Q” is a set of all possible combinations
so that we can obtain the best achievable system modélk columns in®. For example, if2 = {1,2,3} andk = 2,
y = ®rxr+v where®r andxy are the sensing matrix then QF = {{1,2},{1,3},{2,3}}. ®’ is a transpose matrix
and signal correspond to the true supgbrrespectively of ®. If @ is full column rank, thend! = (&'®) ' &’ is
(refer to the notations in the next paragraph). Remarkabtiie Moore-Penrose pseudoinverse®f P, = <I>A‘I>R and
in this case, the performance of MMP becomes equivaleRtt = I — P, are the projections ontepan(®,) and the
to that of the least square (LS) method of the overdetesrthogonal complement ofpan(®, ), respectively.
mined system (often referred to as Oracle LS estimator
[17]). Indeed, we observe from empirical simulations that [I. MMP ALGORITHM

MMP performs close to the Oracle LS estimator in the Recall that the/,-norm minimization problem to find out

high SNR regime. the sparsest solution of an underdetermined system is given
« We propose a maodification of MMP, referred to apy

depth-first MMP (MMP-DF), for strictly controlling the ) ]
computational complexity of MMP. When combined min [[x[lo  subjectto ®x =y. (1)
with a properly designed search strategy termemtiulo |, finding the solution of this problem, all candidates (cemb

strategy MMP-DF performs comparable to the original,5ijon of columns) satisfying the equality constraint dtidae
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tested. In particular, if the sparsity level and the sigealgth
are set toK andn, respectively, ther(;) candidates should 5000
be investigated, which is obviously prohibitive for largeand
nontrivial K [1]. In contrast, only one candidate is searche
heuristically in the OMP algorithm_[4]. Although OMP is 4000
simple to implement and also computationally efficient, dL
to the selection of the single candidate in each iteratibn, 8500
is very sensitive to the selection of index. As mentioned, tt
output of OMP will be simply wrong if an incorrect index
is chosen in the middle of the search. In order to redu
the chance of missing the true index and choosing incorre
one, various approaches investigatimyltiple indiceshave
been proposed. In[9], StOMP algorithm identifying morertha 1500
one indices in each iteration was proposed. In this approa
indices whose magnitude of correlation exceeds a deliblgrat 10001 B
designed threshold are choseh [9]. [Inl[10] and [11], CoSal
and SP algorithms maintaininfy’ support elements in each
iteration were introduced. In_[12], another variation of M o 5 & & s 2
referred to as generalized OMP (gOMP), was proposed. | K
choosing multiple indices corresponding ¥(> 1) largest
cqrrelatlon n magmt_l'!de in each Iteratlon’_gOMP rgduces tltlig. 2. The number of candidates féf-sparse signal recovery (averages of
misdetection probability at the expense of increase inateef 1000 trials with L = 2). The MMP algorithm in this section is considered
alarm probability. as the breadth-first MMP. In Sectigd V, we present a low-cexigt MMP
While these approaches explaitultiple indicesto im- algorithm based on the depth-first search (MMP-DF).
prove the reconstruction performance of sparse signady, th
maintain a single candidate in the search process. Whereas,
the proposed MMP algorithm searchesultiple promising child of s3 = {2,5} ands} = {4,5} and s} = {2,1,4} is
candidatesand then chooses one minimizing the residual ithe child of s = {2,1} ands3 = {4,1} so that the number
the final moment. In this sense, one can think of MMP «f candidates in the second iterationdidut that in the third
an approximate algorithm to find the candidate minimizintieration is justs. Indeed, as shown in Figl 2, the number of
the cost function/(x) = ||y — ®x||» subject to the sparsity candidates of MMP is much smaller than that generated by
constraint||x|, = K. Due to the investigation of multiple the exhaustive search. In Talle |, we summarize the proposed
promising full-blown candidates, MMP improves the chand¥MP algorithm.
of selecting the true support. In fact, noting that the dffec
of the random noise vector cannot be accurately judged by |||. PEREECTRECOVERY CONDITION EFOR MMP
just looking at the partial candidate, and more importantly
incorrect decision affects subsequent decision in mangdyre
algorithms@ it is not hard to convince oneself that the strateg ! AR )
to investigate multiple candidates is effective in noisgrerio. cenario. Overall, our analysis IS _d|V|ded |r_1to two parts. |
We compare operations of the OMP and MMP algorithm iWe first part, we consider a condition ensuring the sucakssf

Fig.[d. While a single path (candidate) is maintained for aifcovery in the |n|t|.all iterationi( = 1.)' In the second part, we
iterations of the OMP algorithm, each path generatezhild investigate a condition guaranteeing the success in the non

paths in the MMP algorithrﬂln the k-th iteration, L indices 'E't'al lteration (]r;> DhBy supcer]ss we meanE:hathan |r_1dexhof
of columns#y, - - - 77, that are maximally correlated with thelNe true supporf” is chosen in the iteration. By choosing the

residudl become new elements of the child candidates (i.%”derfo?d't'on betweer(;_';\_/vo ai I(\)Aul\;gnal reg:oygry 5?03"“
(71,71} = arg max | (®'r5 1), |2). Ata glance, it seems e perfect recovery condition o can be identified.
)=

lml=L " _ _ In our analysis, we use the RIP of the sensing madrix
that the number of candidates increases by the factdr of A sensing matrix® is said to satisfy the RIP of orddf if
each iteration, resulting i.” candidates aftek iterations. there exists a constafit®) € (0,1) such that

In practice, however, the number of candidates increases
moderately since large number of paths is overlapping durin (1—6(®@))|x]3 < [|®x|2 < (1 +5(®))||x||3 2
the search. As illustrated in the FIg. 1(b§,= {2, 5,4} is the

—+— Exhaustive search
——&— Breadth—first MMP algorithm (MMP-BF) ||
—<— Depth—first MMP algorithm (MMP-DF)

4500

3000

2500

Number of candidates

In this section, we analyze a recovery condition under which
MP can accurately recovet -sparse signals in the noiseless

for any K-sparse vectok. In particular, the minimum of all
2This phenomenon is similar to the error propagation probienthe ConStantS§(@) satisfying [2) is called the_ restricted isometry

successive interference cancellatibn][18] constantx (®). In the sequel, we us&y instead ofdx (®)
3In this paper, we use path and candidate interchangeably. for notational simplicity. Roughly speaking, we say a matri
“The residual is expressed 8§~ =y — & 1% -1 wheres; ' is  satisfies the RIP ifx is not too close to one. Note thatif, ~

the i-th candidate in th€k — 1)-th iteration and>lé51;71 is the estimate ok 1, then it is possible thdﬁ’XH% ~ 0 (i.e.,x is in the nullspace

using columns indexed by? . of ®) so that the measuremenys = ®x do not preserve
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TABLE |
THE MMP ALGORITHM

Input: measuremeny, sensing matrix®, sparsity K, number of pathL
Output: estimated signak
Initialization: & := 0 (iteration index),r® := y (initial residual), S := {(}
while £ < K do

ki=k+1,u:=0, Sk:=0

for i =1to |S*~1| do

7= arg max [[C: S M (chooseL best indice}
for j =1to L do
Stemp 1= sffl u{7;} (construct a temporary pajh
if stemp & S* then (check if the path already exijts
ui=u+1 (candidate index upda}e
sP = stemp (path updat
Sk .= Sk U {sk} (update the set of path
%k .= (I'Zky (perform estimatiop
rk .=y —U<I>S;C %k (residual update
end if "
end for
end for
end while
w* := argmin ||[rf||2 (find index of the best candidate
s = s

return x = tIJT*y

any information onx and the recovery ok would be nearly Following theorem provides a condition under which at least
impossible. On the other hand,df; ~ 0, the sensing matrix one correct index belonging B is chosen in the first iteration.
is close to orthonormal so that the reconstructionxofiould Theorem 3.5:Supposex € R™ is K-sparse signal, then
be guaranteed almost surely. In many algorithms, therefoeenongL(< K) candidates at least one contains the correct
the recovery condition is expressed as an upper bound of thdex in the first iteration of the MMP algorithm if the sengin

restricted isometry constant (see Remlark13.10). matrix ® satisfies the RIP with
Following lemmas, which can be easily derived from the 5 VL g
definition of RIP, will be useful in our analysis. K+l < e T (8)

Lemma 3.1 (Monotonicity of the restricted isometry conistan
[L]): If the sensing matrixp satisfies the RIP of both orders

K, and K, thendg, < dg, for any K| < K. 1 Y _ L max 2
Lemma 3.2 (Consequences of RIP [HprI C Q, if §; < VL |24y, VL II|=L ; (@3]
1 then for anyx € R/,

(1= 010 Ixlly < @@ 1x], < (1+81) x5, (@) =max, [ Z (1. )]
1 1 1 '
—— %l < [ (27®1)  x[l2 < ———[x[l,. (4)
L+o 2 ! =4 2 ZM%ZK%WIQ
Lemma 3.3 (Lemma 2.1 in [19]ket 1,1, C Q be two | |i6T

Proof: From 1), we have

disjoint sets {1 NIy = 0). If § < 1, then 1
] Il /2 ) [ 11|+ 12| = \/—? ||‘I>ér}’||2 (9)
@7, @r.x[|, < 61,4121 1]l (5) _
where|T| = K. Sincey = ®pxr, we further have
holds for anyx.
L 3.4F trix ®, | ® tisfi | L
emma orm x n matrix ®, | ®||, satisfies 1@ yll, > - 18 ®rxr ),
||¢)H2 =V )\max(@/q>) < 1+ 5min(m,n) (6) L 5 10
>0/=(01-
where \ .. IS the maximum eigenvalue. VK ( ) Il (10)
where [10) is due to Lemnia_3.2.
A. Success Condition in the First Iteration On the other hand, when an incorrect index is chosen in the
In the first iteration, MMP computes the correlation betwedi{st iteration (i.e., ANT = (),
measurementg and each columm; of & and then selects H<1>’Ay||2 = ||‘1>§\‘1>TXT||2 < Skt x|, (11)

L indices whose column has largest correlation in magnitude, . : iat o .
Let A be the set ofL indices chosen in the first iteration, thenWhere the mequz_;lhty follows from Lem -3. This inequalit
contradicts[(ID) if

[®}yll, = max (i, y)[* @) L
A =L ; O+ |xlly <4/ 5o (1= 0x) x5 (12)
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In other words, undef(12) at least one correct index shouldLemma 3.8Suppose acandidaté_1 includes indices only
be chosen in the first iteratiof)f € A). Further, sincefx < in T, thenﬂf satisfies

dr+n by Lemma3.1L,[(A2) holds true if
i & V14 0k —kt1y/1+ 010k
By = |1 —=0Kk—ks1 —

L _
Srcar xly < /2 A= 0kar) Ixl, (23) b O
. HXTisl_cfl
Equivalently, ) i 2 (19)
VL K—k+1
SkiL < ————. (14) .

VK +VL Proof: See AppendiXB. n
lln Sltjmmakr)y,l 'f5K+t%,< ; KJrf\/Zt .tthertl- am(}nl\gleMEdlces at Proof of TheoremB.& From the definitions ofi¥ and
east one belongs 10 In the Tirst iteration o ' u ﬁ’“ it is clear that a sufficient condition under WhICh at least

one out of L indices is true in the:-th iteration of MMP is
B. Success Condition in Non-initial Iterations (see Fig[#h)
k k
Now we turn to the analysis of the success condition for B > ar (20)

non-initial iterations. In the:-th iteration ¢ > 1), we focus First, from Lemmd3]1 and 3.7, we have
on the cand|date’C ! whose elements are exclusively from

the true supporf’ (see Fig[B). Our key finding is that at least

1) _10 HXT—Sffl
one of L indices generated fromk L'is the element ofl’ o/z (6L+K k+1 T+ Likdl K) NG 2
underdgr < \f\/;f Formal description of our finding is bt
as follows. SL+KOL+K HXT—S’M
Th . ; —1 " <|9¢ + -2
eorem 3.6:Suppose a candidat€ ' includes indices = + 1—dr4x VL
only in T, then amond_. child candidates at least one chooses
an index inT under 4k HXT—SQH ) 1)
VL 1=k VL

(15)

Ortr < VK + 2L Also, from Lemmd 31 and 3.8, we have

Before we proceed, we provide definitions and lemmas . 52 HXT—S- 1
useful in our analysis. Lef; be thej-th largest correlated B > (1 — 0K —ft+1 — K ) L2
index in magnitude between!~! and {¢;},crc (set of 1=/ VK —k+1
incorrect indices). That is, 52 HXT—S’?*
> (1 —0L+K — LR > L
fj = arg max ’< u,rf_1>‘. (1-9r+x)) VK —k+1
: wu€TCN\{f1,--,fj—1)}
Let F;, be the set of these indice§'( = {f1, f: fh L= 2004k HXT_S;H 2 (22)
L e 17 2’ DY ) L . = .
Also, let of be the j-th largest correlation in magnitude 1= 0pik VK —k+1
betweenr®~! and columns indexed by;. That is, Using [21) and[(22), we obtain the sufficient condition[of)(20
as
o " | |
— X —gh—1 X —gh—1
Note thata’ are ordered in magnitudex{ > of > --.). L= 20pm |TTe OL+K i Py (23)

Finally, let ﬁ’“ be the j-th largest correlation in magnitude L=dr4x VK—k+1  1-014x VL
betweenr’ ! and columns whose indices belongffe- s*~*  Rearranging[(23), we further have

(the set of remaining true |nd|ces) That is, NG
Orir < . (24)
B = [{dg;ori )] (17) VR —k+1+2VL
wherey; = arg max (¢, x5 1)|. Similar  Since VK —k+1 < VK for k > 1, 24) holds under
uS(T=s* " )\{p1,. 051} Spix < \/_‘/_\/_, which completes the proof. ]
to af, B are ordered in magnitudgs{ > g5 > ---). In the K+2
followmg lemmas, we provide an upper boundcdz and a . .
lower bound of8¥, respectively. C. Overall Sufficient Condition
Lemma 3.7Suppose a candidaté ! includes indices only  In Theorem$§3]5 arld 3.6, we obtained the RIP based recov-
in T, thena® satisfies ery conditions guaranteeing the success of the MMP algurith
] ] HXT . in the initial |terat|on\/(_§K+L < m) and non-initial
L+k—19K =5 H : L H
ok < (6L+K k1 F 1t 5 ) Ni7 2. (18) |terat|ons(§;ﬁ% < m) FQIIOW|ng theorem states the
-1 overall condition of MMP ensuring the accurate recovery of

Proof: See AppendifCA. B K-sparse signals.
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(k-2)-th iteration sk=2
|f ____________ %
|
-1-thi ion! k- k-1 k—
(k-1)-th |terat|on: g " | s/ S A
i |
' [
I |
. . |
- | K
k-th iteration ! sk 5] sk, 4 |
)

\

Fig. 3. Relationship between the candidates in (he- 1)-th iteration and those in thk-th iteration. Candidates inside the gray box contain efémef
true supportl” only.

—_—————e—e—e—e— e e ———

ai | ay | v | e | api

pi | B%

Fig. 4. Comparison betweam‘f\, and 6{“. If 6{“ > af\,, then amongL indices chosen in thé-th iteration, at least one is from the true suppbrt

Theorem 3.9MMP recoversK-sparse signak from the measurementy = ®x + v where v is the noise vector.

measurementsy = &x accurately if the sensing matrixIn contrast to the noiseless scenario, our analysis is elivid
satisfies the RIP with into three parts. In the first and second parts, we consider
NG conditions guaranteeing the success in the initial iterati
O+ < ————. (25) (k = 1) and non-initial iterations { > 1). Same as the
VK +2VL noiseless scenario, the success means that an ind&xisn

Proof: Since the stricter condition between two becomeahosen in the iteration. While the candidate whose magaitud

the final recovery condition, it is immediate from Theoremsf the residual is minimal (which corresponds to the outgut o
3.3 and[3.b that MMP accurately recovdissparse signals MMP) becomes the true support in the noiseless scenarib, suc
under [25). B is not the case for the noisy scenario. Therefore, other than

Remark 3.10When L = K, the perfect recovery conditiontwo conditions we mentioned, we need an additional conitio
of MMP becomesdx < 0.33. When compared to the for the identification of the true support in the last mirllite.
conditions of the CoSaMP algorithndsf < 0.1) [10], the Indeed, noting that one of candidates generated by MMP is the
SP algorithm {35 < 0.165) [11], the ROMP algorithm true support’ by two conditions, what we need is a condition
(b2rc < \/%) [20], and the gOMP algorithm foN = K under which the candidate whose magnitude of the residual is
(8> < 0.25) [12], we observe that the MMP algorithm pro-minimal becomes the true support. By choosing the strictest
vides more relaxed recovery condition, which in turn imgliecondition among three, we obtain the condition to identify t
that the set of sensing matrices for which the exact recovéfye support in the noisy scenario.
of the sparse signals is ensured gets Iaﬁger.

A. Success Condition in the First Iteration
IV. RECOVERY FROM NOISY MEASUREMENTS . . .
. _ . _ _Recall that in the first iteration, MMP computes the correla-
In this section, we Investigate the RIP based Condlthn)n betweer‘ry and¢i and then selectg indices of columns
of MMP to identify the true support sef” from noisy
6Note that the accurate identification of the suppBrtannot be translated

5Note that since these conditions are sufficient, not necgssal sufficient, into the perfect recovery of the original sparse signal duthe presence of
direct comparison is not strictly possible. the noise.
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having largest correlation in magnitude. The followingahe From [31) and[(32), we obtain a lower bound|@#’.y||
rem provides a sufficient condition to ensure the success of

MMP in the first iteration. @yl > B = (1= 0z+x) xzlly = VI + 024 [IVIlo
Theorem 4.1:f all nonzero elements; in the K-sparse VK (33)
vectorx satisfy So far, we have obtaine8,, in (30) andB; in (33). Using
|z > [lv]l2 (26)  these, we obtain the sufficient condition bf1(27) as
V14604 k (VI+VE) .
wherey = , then amongd. candidates at
VLK—(VLE+K)S 1-96 1406
least one contains true mégg in the first iteration of MMP. (1= dr+x) XT”i/_ Lk Vil
Proof: Before we proceed, we present a brief overview K
of the proof. Recalling the definition af} in (I6), it is clear < Sr+k |xrlly + 1+ 004k ||VH2. (34)
that a (sufficient) condition of MMP for choosing at least one
correct index in the first iteration is After some manipulations, we have
@7yl > aL (27) VIt 0k (VL + VE) vll.  (35)

x|z > vl
. . L—-(VL+VK)j
wherea} is the L-th largest correlation betwegnand ® ;. VI-(VI+ VoL
If we denote an upper bound: asB, (i.e., B, > at)anda Since ||x7r|2 = .. p22 > |T|miner|z” =

. JET 7J
lower bound||®%y| . asB (i.e. || @7yl > By), thenitis K min,.r |z;|°, (38) holds if

clear that[(2I7) hoIds true undés;, > B,. Smce bothB; and
1> V1+0:k(VL+VK)

B, are a function ofx7, we can obtain the success condition

: NS . min |z [vll2,  (36)
in the first iteration, expressed in terms:of (see [(26)). €T VE (\/Z (VI + \/E)éL-i—K)
First, using the norm inequality, we have
which completes the proof. ]
/ H@%'LYHI
1@, ¥l > —F— . .
I/f B. Success Condition in Non-initial Iterations
> ﬁ - \/Zai, (28) When compared to the analysis for the initial iteration,non
L initial iteration part requires an extra effort in the canstion
Also, of the upper bound ofeX and the lower bound of¥.
Theorem 4.2If all the nonzero elements; in the K-sparse
| @' sz = ||®%, (®rxr +V)H2 vectorx satisfy
< | @, @rr ], + 2, V], il = vl 4D

(@) V14001 k(1= k) (VI+VE) )
NN A ST , then amongL can

< 04k ||x7|y + ||<I>FLVH2
didates at least one contains the true |ndex inktltle iteration
< Optk [[x7lly + V14 6L v, of MMP.

® Similar to the analysis of the noiseless scenario, key mint
< Spik %zl + VI + 00k IV, (29 Imilar y arno, key
< Ovr [l L [Ivlly - (29) the proof is that'¥ < 8% ensures the successkrth iteration.

where (a) and (b) follow from Lemma 3.3 and13.1, resped:ﬂ the following two lemmas, we construct a lower bound of
tively. Using [28) and[(29), we obtain an upper bounchéf o} and an upper bound off, respectively.

wherey =

as Lemma 4.3Suppose a cand|da$é Yincludes indices only
in T, thena® satisfies
! _Opr Ixrlly + /1 + 0ns i Vo
ap, < B, = . (30)
VL 5 b Xp_gh=1
k< <5L+Kk+1 4 Lkl K) _12
We next consider a lower bound; of ||®%.y|__. First, it 1 =0k VL

is clear that ARX) vl (38)

- \/K Proof: See Appendix C [ |
Furthermore, Lemma 4.4Suppose a candidaté ! includes indices only

in T, thenB¥ satisfies
[@7yll, = (27 (‘I>TxT+v)H2
14+ 0x—kt1v/1+ 0p—10K
> | @5 @rxr |, — |27V, By > (1 e Y Ly

1—0k_1
> (1= 0k) [[xrlly — |27V,

= (1=6x) Ixrlly = vV1+ 0k [[v], , HXT—Sffl AR et \4 Y (39)
> (L=br4r) [Ixrlly = V14004 VI, (32) VK —k+1 VK —k+1
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Proof: See AppendixD B noisy scenario, an additional condition ensuring the $elec
Proof of Theorem of true support is required. The following theorem provides
Using Lemmd 413, we have condition under which the output of MMP (candidate whose
magnitude of the residual is minimal) becomes the true sup-
ok < (s n Or+k—10K HXT—SZC*I 2 port. . _
L= \ O ARkl s VL Theorem 4.51f all the nonzero coefficients; in the K-
. VIToL vl “0) sparse signal vector satisfy
VL il > Allv]]2 (48)
Xp_ k-1 _ 2(1-6k)?
< <§L+K N 51L+K55L+K> H T\/;j 5 where\ = ¢(175K)37(1ﬁ5K)5§K, then
—O0L+K .
[e7|[ < min [lrr| (49)
+«/1+5L+K vl (a1) reQk
VL whereQX is the set of all possible combinations&fcolumns

X k—1
O+ K H T—s;

2V L+oryx vl

in ®.
(42) Proof: First, one can observe that an upper bound of

S 1- OL+K VL VL HrT”§ is
where [[41) follows from the monotonicity of the restricted ) 1o
i i e[z = [[PFyll
isometry constant. Using Lemrba¥.4, we also have 2 T2
= [Pz (®rxr + V) |3
B > (1 — 0K —ky1 — - ) ‘XTis;H 2 = |Pr®rxr + Prv]3
= 1—0p 1) VE —k+1 = [(®rxr — Pr®rxr) + P73
VIt 0k Vi, (43) = || ®rxs — B (DL Br) DL Brxy + P2
VE = k+1 = |Pzvl3
s (1 ) e < VI3 )
= —OUL+K —
(1-6r+x)) VK —k+1 Next, a lower bound of|rr | is (see AppendiKE)
V1t+orik |viy 2
_ (44) (1 + 5\F|)5 T+ |T—T
VE _Ei1 (1= br) = g g e | Ixe—rl = v

_1-20n4k HXT*Sffl o V1+dLiklvl, (45) <|lerf3. (52)
1—br+x VK —k+1 VK _k+1

where [@&) follows from Lemma3.1. From [50) and[{(51), it is clear thdf (49) is achieved if

Now, using [42) and{245), we obtain the sufficient condition 2 > 2|lv|3 (52)
of B¥ > ok as 2= A+80)0% 17 py
B > af (1_5|T—F\)_W
HXTfs;H s Further, noting thafl'| = K, |T-T'| < K, and|T'|+|T-T'| <
VI+00ik(1 =004 k) VL +VE =k +1) vl (46) 2K, one can see thdt (52) is guaranteed under
\/Z— (2\/Z+\/K—k+1)5L+K . HXT FH% > 2(1 _6K)2”VH% (53)
rll3 > m—r— -
In the non-initial iterationsI < k < K), VK —k+ 1 < VK (1=0k)? = (14 0K)d3x¢
and Finally, since |xr_rl|3 = Y jer—r T >
. 2 ’
[P Z 2 > T — 1| miCpriIQ > a2, |T — T'| min;er |2;|°, (B3) holds true under
i : 1€
jeT—sk1 . 2 2(1 - 5K)2||VH%
; 2> 54
minleilz 2 g5 55— 0 )02, (54)

so that [[46) holds if

\/m(l — 614 ) (VI + VE) which completes the proof. [ ]
[vlly (47)
VL — (VL +VE)dr+k

which is the desired result.

min |z;| >
1€
D. Overall Sufficient Condition

Thus far, we investigated conditions guaranteeing the suc-
S ] cess of the MMP algorithm in the initial iteration (Theorem
C. Condition in the Final Stage [4.1), non-initial iterations (Theorem 4.2), and also tha-co
As mentioned, in the noiseless scenario, the candidaligon that the candidate whose magnitude of the residual is
whose magnitude of the residual is minimal becomes thginimal corresponds to the true support (Theokem 4.5).€5inc
true supportl’. In other words, ifs* = arg min, Hrs||§, then one of candidates should be the true support by Theorem
[lrs= g = 0 and alsos* = T. Since this is not true for the[d.d and[4.P2 and the candidate with the minimal residual
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corresponds to the true support by Theorem 4.5, one can TABLE I
Conclude that MMP Outputs the true Support under the SH']cte RELATIONSHIP BETWEEN THE SEARCH ORDER AND ITERATION ORDER
condition among three. (L=2K=4)

~Theorem 4.61f all the nonzero coefficients; in the sparse Search ordef | Layer order(cy, 3, ca,ca) Of 5K

signal vectorx satisfy 1 (1,1,1,1)
2 (2,1,1,1)

3 (1,2,1,1)

4 2,2,1,1

il > ClIvll2 (55) : e

6 2,1,2,1)

7 VTP R(VIHVE) : :

where( = max (v, u, A) andy = VIK—(VLK+K)or 1" H= 16 (2,2,2,2)

v 1+5L+K(1*5L+K)(ﬁ+\/?), and )\ — \/( 2(1—6x)>

\/ZM2\/Z+\/?)5HK 1-6x)3—(1+0K)85,
then MMP chooses the true suppofts
: ; we have
Proof: Immediate from[(26),[(37), and_(U8). [ |
. dr(x X
Remark 4.7\When the condition in[{85) is satisfied, which [|x7 — X« ||, < ” T\(/lT_T Mz
is true for high SNR regime, the true support is identified and 7
hence all non-support elements and columns associated with Prxr — ‘I’T‘I’l*}’H
H _ 2

these can be removed from the system model. In doing so, N

one can obtain the overdetermined system model
brxp — @T(I)l* (@TXT + V)H2

(56) vV 1 - (SK
@TXT - @T(I)l* @TXT - @T(I)l*VHQ

y = ®rxp + V.

Interestingly, the final output of MMP is equivalent to thdt o V1-ok
the Oracle LS estimator _ [[®rxp — @rxr — Prv|,
V1-—96k
. : : _ [Prv],
X=®py =x7+ P,V (57) V1I—10x
vl
and the resulting estimation error becomegx) = V1- ok
|xr —%||* = ||®}.v|2. Also, when thea prior information which is the desired result. n
on signal and noise is available, one might slightly modify t
final stage and obtain the linear minimum mean square error
(LMMSE) estimate. For example, if the siggal and n_oise are V. DEPTH-FIRST MMP
uncorrelated and their correlations atgando2, respectively, . ] ] ) .
then The MMP algorithm described in the previous subsection
can be classified as a breadth first (BF) search algorithm that
4= U)%@/T(qu)Tq)/T +o2D) . (58) performs parallel investigation of candidates. Althoudharge

number of candidates is merged in the middle of the search,
complexity overhead is still burdensome for high-dimenaio

) » ) systems and also complexity varies among different retidiza
In short, under[(55), MMP fully identifies the location ofo¢ g andx. In this section, we propose a simple modification

nonzero elements, converting the underdetermined system int the MMP algorithm to control its computational complexit
the overdetermined system [0 (56). As a final remark, we Nqf¢ the proposed approach, referred to as MMP-DF, search
that the conditior((35) is sufficient for the stable recamstion 5 herformed sequentially and finished if the magnitude of
of K-sparse signals in the noisy scenario. the residual satisfies a suitably chosen termination cimmdit
Remark 4.8Under [55), the output of MMP satisfies (e.g.,||r¢]|? = 0 in the noiseless scenario) or the number of
candidates reaches the predefined maximum valyg,. Ow-
ing to the serialized search and the limitation on the number
x =%, < 7llv]2 (59) of candidates being examined, the computational complexit
of MMP can be strictly controlled. For example, MMP-DF

L returns to OMP forN,.. = 1 and the output of MMP-DF

wherer =

Vi-on' will be equivalent to that of MMP-BF folV,,.. = L¥.
Proof: Since s* = T under [5b), |x — x||, equals  Since the search operation is performed in a serialized

||lx7 — %4 ||, by ignoring non-support elements. Furthermorenanner, a question that naturally follows is how to set the
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search order of candidates to find out the solution as ea
as possible. Clearly, a search strategy should offer a low 1
computational cost than MMP-BF, yet ensures a high chan
of identifying the true support even wheN,,,, is small.
Intuitively, a search mechanism should avoid exploring le: 08
promising paths and give priority to the promising paths. 1
meet this goal, we propose a search strategy so caltetlilo
strategy The main purpose of the modulo strategy is, whil
putting the search priority to promising candidates, tadtioe
local investigation of candidates by diversifying searethg
from the top layer. Specifically, the relationship betwéeh
candidates (i.e., the candidate being searched at orfer

0.9

0.7

0.6

Exact recovery ratio
o
(6]

. . 0.3} | —+—owmp
and the layer order;, of the modulo strategy is defined as > SIOMP
K 0.2k —A— CoSaMP
E1 —k— MMP-BF
=1+ (cx—1)L"" (60) oal | —=— wwp-oF
k=1 —e—BP
By order we mean the order of columns based on the me %% 15 20 25 30 3 40
nitude of correlation between the colurgn and residuat”. K

Notice that there exists one-to-one correspondence betwee

the candidate ordef and the set of layer (iteration) orderssig. 6. ERR performance of recovery algorithms as a funatibsparsity .
(c1y. ey cK)E For example, ifL = 2 and K = 4, then the set

of layer orders for the first candidaté® is (ci, co,c3,c4) =

(1,1,1,1) so thats¥ traces the path corresponding to th

best index (index with largest correlation in magnitude) fc 10" :
all iterations (see Fid.]5). Hencel will be equivalent to the 8, Z;__SPSLP
path of the OMP algorithm. Whereas, for the second candid: N imﬂs;}"ai
s, the set of layer orders i1, ca,c3,c4) = (2,1,1,1) so 107F NN . —&— MMP-DF |3
that the second best index is chosen in the first iteration a SO NN RN
the best index is chosen for the rest. "'\,\ >

Table[Il summarizes the mapping between the search or 107 '
and the set of layer orders fdr = 2 and K = 4. When the u
candidate ordef is given, the set of layer orde(s,, - - - , ck) =
are determined by (60) and MMP-DF traces the path usi 107
these layer orders. Specifically, in the first layer, index- co
responding to the:;-th largest correlation in magnitude is .
chosen. After updating the residual, in the second laydexn 10
corresponding to the.-th largest correlation in magnitude is

added to the path. This step is repeated until the index )
the last layer is chosen. Once the full-blown candidgfte 10 10 15 20 2 20 % 20
is constructed, MMP-DF searches the next candidgtg . SNR (48)
After finding N,,.x candidates, a candidate whose magnitude
of the residual is minimum is chosen as the final output. Th&. 7. MSE performance of recovery algorithms as a funcidnSNR
operation of MMP-DF is summarized in Talilel lll. (K=20).

Although the modulo strategy is a bit heuristic in nature, we
observe from numerical results in Section VI that MMP-DF

performs comparable to MMP-BF. Also, as seen in Elg. 2, thgnose entries are chosen independently from Gaussian dis-
number of candidates of MMP-DF is much smaller than that gfpytion A7(0,1/m). We generatek-sparse signal vectat
MMP-BF, resulting in significant savings in the computaéibn yhose nonzero locations are chosen at random and their
cost. values are drawn from standard Gaussian distributi@n, 1).
As a measure for the recovery performance in the noiseless
VI. NUMERICAL RESULTS scenario,exact recovery ratio(ERR) is considered. In the
. . ERR experiment, accuracy of the reconstruction algorithms
In this section, we evaluate the performance of recovery ) : :
. . : : ; : n be evaluated by comparing the maximal sparsity level of
algorithms including MMP through numerical simulations. | . . :
: : . the underlying signals beyond which the perfect recovenpis
our simulation, we use a random matdx of size 100 x 256 . S . . .
guaranteed (this point is often calledtical sparsity). Since

7One can think of.c; — 1, ..., ¢; — 1) as an unsigned’s complement .the perfe_Ct recovery of original sparse signals is not [éessi
representation of the numbér— 1 in the noisy scenario, we use theean squared erro(MSE)
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2"d candidate

- "@"'
——-—;-’ \..\..£11C21C3ic4):(2!111!1)

D

I1stcandidate

3d candidate
(c1,09,€3,€04)=(1,2,1, 1)

Fig. 5. lllustration of MMP-DF operation/{ = 2 and K = 4).

TABLE Il
THE MMP-DF ALGORITHM

Input:
Measuremeny, sensing matrix®, sparsity K, number of expansiot,,
stop threshold, max number of search candidatg,
Output:
Estimated signak
Initialization:
¢ := 0 (candidate order)y := oo (min. magnitude of residual)
while £ < £, ande < p do

=041
r’ =y
[c1,...,ck] := computeck(, L) (compute layer ordgr
for k=1to K do (investigatel-th candidateg
7= arg max [(®'r*1) 1|2 (chooseL best indice}
sk = sé?*l U {7¢, } (construct a path ink-th layer
xF = ‘I’Zky (estimatex® in k-th layen
rf =y 2 P x" (update residugl
end for
if [r%| < p then (update the smallest residyal
p = r&
%= xK
end if
end while
return x*
function computeck (¢, L)
temp: =4 —1

for k=1to K do
¢k := mod (temp, L)+ 1
temp := floor(temp/L)
end for
return [cy,...,cK]
end function
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10° 0.7 .
—+— OMP
—p— StOMP
—&A— CoSaMP ||
~1go —— MMP-BF
10 & —&— MMP-DF
10
o
=
L [N
[}
2 10
—+— OMP
107*L| —p— stomp
—A— CoSaMP
—— MMP-BF ,
10°L| —8— MMP-DF k
—e— BPDN o ; ‘ ; ; ; ‘ R
.= .= Oracle-LS 10 15 20 25 30 35 40
-6 SNR (dB)
10 L L i i
10 15 20 25 30 35 40
SNR (dB) (a) Miss detection

Fig. 8. MSE performance of recovery algorithms as a funcdnSNR
(K=30).

as a metric to evaluate the performance:

N
MSE = > [xln] — %[n]l3 6y
n=1

where x[n| is the estimate of the originak’-sparse vector
x[n] at instancen. In obtaining the performance for each
algorithm, we perform at least0, 000 independent trials. In
our simulations, following recovery algorithms are conwgzhr

1) OMP algorithm_ 10 15 20 2 30 3 : 40

SNR (dB)
2) BP algorithm: BP is used for the noiseless scenario and
the basis pursuit denoising (BPDN) is used for the noisy (b) False alarm
scenario.

. Fig. 9. Miss detection and false alarm ratio of greedy athors = 30).
3) StOMP algorithm: we use false alarm rate control strat- greedy albors (€ )

egy because it performs better than the false discovery
rate control strategy.

4) CoSaMP algorithm: we set the maximal iteration nunflgorithms diminishes as the SNR increases, the perforenanc

ber to50 to avoid repeated iterations. of MMP improves with the SNR and performs close to the
5) MMP-BF: we useL = 6 and also set the maximalorade,'l- estimator (see Remarkl4.7).

number of candidates 0 in each iteration. In Fig.[8, we plot the MSE performance f&f = 30 sparse
6) MMP-DF: we setNy.. = 50. signals. Although the overall trend is somewhat similar to

In Fig.[d, we provide the ERR performance as a functio
of the sparsity level. We observe that the critical sparsitie
of the proposed MMP-BF and MMP-DF algorithms are larger,
than those of conventional recovery algorithms. In paldicu

we see that MMP-BF is far better than conventional alg?:-ig and 9(B), both MMP-BF and MMP-DF have better
rithms, both in critical sparsity as well as overall recqver(srﬁa"er) miss det’ection rat,.; and false alarm rate
behavior. ” ’

In Fig.[d, we plot the MSE performance of sparse signai’
(K = 20) in the noisy scenario as a function of the SNR where

the SNR (in dB) is defined as SNR 101og,, 122L° . In this

lIvi?

case, the system model is expressegt as ®x+v wherev is

the noise vector whose elements are generated from Gausgigp, processor and Microsoft Window# environment.
N(0,10~ S%R). Generally, we observe that the MSE perfor-

i i i 8 __ Number of missed | tsindi
mance of the recovery algorithms improves with the SNR.swe use p,,;, = Numbero missed nonzero elementsindicegng

While the performance improvement of conventional greedyymberof detected zero indices

Number of nonzero

ronounced. In fact, one can indirectly infer the supetyoof

enaritﬂ

as a function of K. The running time is measured using

the result of K = 20, we can observe that the performance
ain of MMP over existing sparse recovery algorithms is more

MP by considering the results of Figl 6 as the performance
results for a very high SNR regime. Indeed, as supported in
hich exemplifies the effectiveness of MMP for the noisy

Fig.[I0 shows the running time of each recovery algorithm

the MATLAB program on a personal computer under Intel
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10° — .
—+— OMP

—p— StOMP
@&+ —A— CoSaMP

Time

—k— MMP-BE A

—&— MMP-DF
.| | —e—BPDN

Fig. 10. Running time as a function of sparsifty.

|| Residual ||2
= N
u N (4]

[N

0.5

T T
—6— Path of OMP
—~A— Path of the final output of MMP

Fig. 11. Snapshot of the magnitude of residual of candidetddMP as a

function of iteration number.

15

i
20 25 30 35
Iteration number

13

VII. CONCLUSION AND DISCUSSION

A. Summary

In this paper, we have taken the first step towards the
exploration of multiple candidates in the reconstructidn o
sparse signals. While large body of existing greedy algor#
exploits multiple indices to overcome the drawback of OMP,
the proposed MMP algorithm examines multiple promising
candidates with the help of greedy search. Owing to the in-
vestigation of multiple full-blown candidates instead aftpal
ones, MMP improves the chance of selecting true support
substantially. In the empirical results as well as the RIBeba
performance guarantee, we could observe that MMP is very
effective in both noisy and noiseless scenarios.

B. Direction to Further Reduce Computational Overhead

While the performance of MMP improves as the dimension
of the system to be solved increases, it brings out an issue
of complexity. We already discussed in Section IV that one
can strictly bound the computational complexity of MMP by
serializing the search operation and imposing limitatiartiee
maximal number of candidates to be investigated. As a result
we observed in Section VI that computational overhead of the
modified MMP (MMP-DF) is comparable to existing greedy
recovery algorithms when the sparsity level of the signal is
high. When the signal is not very sparse, however, MMP
may not be computationally appealing since most of time the
number of candidates of MMP will be the same as to the
predefined maximal number.

In fact, in this regime, more aggressive tree pruning gjsate
is required to alleviate the computational burden of MMP.
For example, in the probabilistic pruning algorithm poplyla
used in ML detection[[15], cost function often called path
metric is constructed by combining (causal) path metric of
the visited nodes and (noncausal) path metric generated fro
rough estimate of unvisited nodes. When the generated cost
function which corresponds to the sum of two path metrics is
greater than the deliberately designed threshold, theclsear
path has little hope to survive in the end and hence is
immediately pruned. This idea can be nicely integratedtimeo
MMP algorithm for bringing further reduction in complexity
Another way is to trace the single greedy path (which is
equivalent to the path of OMP) initially and then initiate
the MMP operations afterwards. In fact, since OMP works
pretty well in the early iterations (see FIg.J11), one caredef
the branching operation of MMP. Noting that the complexity

Overall, we observe that MMP-BF has the highest runnirfg@vings by the pruning is pronounced in early layers of the
time and OMP and StOMP have the lowest running timéearch tree, one can expect that this hybrid strategy will
among algorithms under test. Due to the strict control of tigleviate the computational burden of MMP substantiallg W

number of candidates, MMP-DF achieves more than two ordéve these interesting explorations for our future work.

of magnitude reduction in complexity over MMP-BF. When Finally, we close the paper by quoting the well-known

compared to other greedy recovery algorithms, we see tlittum: “Greed is good”[[21]. Indeed, we have observed that
MMP-DF exhibits slightly higher but comparable complexitygreedy strategy performs close to optimal one when it is

for small K.

controlled properly.
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APPENDIXA
PrROOF OFLEMMA [3.7

k—1

Proof: The ¢5-norm of the correlatior@}%r is ex-

pressed as

H‘PFL v Hz
— @;Lpﬁ,léTxT}lz

_ / i
- FLP51.€7

(3] k—1X k—1
LET—s; T—s; 9

/
- FL§T75f71XT75f71

&, P ®

k—1X k—1
T—s; T—s;

2

/
< q>FL (I)T—sffle—sffl 2

+ "@%Lpskfl‘I)Tiskfleisx_cfl (62)

SinceFy, andT — s¥~! are disjoint ¢, N (T — s¥71) = 0)
and also noting that the number of correct indices/in® is
k — 1 by the hypothesis,

|Fp|+|T —s* =L+ K — (k—1). (63)

Using this together with Lemnia 3.3, the first term in the right, o,

hand side of[(62) becomes

|22

) <OrL4K—kt1 HXT—sf’l . (64)

T— Sk 1XT -1

Similarly, noting thatFy, N s¥~* = ¢ and |FL| + [s"7!| =

14

we have,
1 L
L L (67)
Li:l
1
> —LLO/Z =VLa¥ (68)
where [€Y) follows from the norm inequality

(Izll, < /2], 1z]l,) and [8B) is becausel > af >
-+ > ok . Combining [6b) and(88), we have

Or+4k-10
<6L+K—k+1 + 71Lik - K) Hfosffl

, 2 VLak, (69)

Ok—1
and hence
1) 10 HXT—S’?*1
k<(5 _ +L+’“K> 2 (70
> L+K—k+1 1_5k71 \/Z ( )
[ ]

APPENDIXB
PrRoOOF oFLEMMA [3.8

Proof: Since ¥ is the largest correlation in magnitude
weenef " and{;}, 1 (|(d,, vi )], itis clear

that

By = |(65,ry )| (71)

for all j € T — sF~'. Noting that|T — s¥ ™| = K — (k — 1),

L + k — 1, the second term in the right-hand side pfi(62ye have

becomes

I
H(}FLPSffl ‘I)T75571XT75?71

2

T
< Sptk—1 H(Psffl(}T—Sfile—Sfil ,

—1
. / !
= Opik|(BLe @) Bl @y Xy o

2
(@) Op 41

1—6k—1
(2) OL+k—10(k—1)4 K —(k—1)
- 1—6p—1

~ Op4k-10k
1=,

IN

‘I)I P k—1X k—1
H sif LET—s; T—s; 9

X k—1
H T=si " la

HXT_SQC71 ) (65)

where (a) and (b) follow from Lemma_3.2 ahd 3.3, respec-

tively.
Using [62), [64), and_(65), we have

OL+k—10
@58y < (Spseosnr + 0 [,

(66)
Further, recalling that

=" (o)

Jj=1

@, 2, =

L
Z |<¢fj’rfil
j=1

], 2
\/_7_1 >
WH rg P, (9
where [7B) follows from? ™! = y - & o 1<I> oy = P
Using the triangle inequality,
H(E/ _ kflpj_kfl(:besk*lefsk*l
B 2 A — (19
H(I)T Sk 1(I>T75?71XT75§71 )
vK—-k+1
H‘I)T st P @ paXp )
: - . - . (75)
vK —k+1
Since|T — sf~'| = K — (k — 1), using Lemma&3]2, we have

’
H(}T—sf’l @T75?71XT75571 > (1 — 0K —k+1) HXT75§71

max
k—1
ue(T=sF ")\ {p1pj1}

(owrt )

%; = arg
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and also and hence

l
Hq>T—sf71PS§71 ¢T—S?71XT—S£€71

2

6 1) Hfos’?*I
k L+k—10K i
12 ay, < (5L+K—k+1 +

‘@’ By (@D y) DD S VI
= — k—1 — k—1 — k-1X k—1
751 Pk b1 Pk st Bt X | +\/T£”V|2. (@)
(a) -1 L
§5k—1+K—<k—1> ’@’;’?I‘I’sfl) LIUSL JEEE S n
®) APPENDIXD
< || 2L @y
= 1—6k . H e P PROOF OFLEMMA [44
(9) K O(k—1)4K—(k—1) Proof: Using the definition of3 (see [IV) and{75)), we
< =3 Xp_gh=1|l, - (77) have
ook ' ? k 1 ! k—1
where (a) and (c) follow from Lemmia_3.3, and (b) follows B = m H‘I’T_Sfflri H2 (86)
from Lemmal3.R. Finally, by combining (I75), (76) ar@(??)
we have )
k—1
, g\ [ VT @ rt
> (1= 0K py1 — L2 78
ot 2 (1= - i) e -
. W T— Sk 1 k 1
Plos (@rxr+v)|
APPENDIXC T VK - k:+ H 7o P (Brxr +v) 2
PROOF OFLEMMA [4.3 H pL <I>TXTH
k—1 k 1
Proof: Using the triangle inequality, we have VK VE —k+ 11Tl 2
@5, r ], = |[ @, Pl (@rxr + ) WH Pl 87)
H‘I> pL 4 By Xy Recalling from [[7B6) and{77) in Appendix B, we further have
—s; T T—s; 2
& .., PL.® H
Jonrs ], oo T e,
: 1)
Using [66) in AppendiXA, we have > (1 — OK—t1 — %}H) HXTfsjffl - (88)
1
H¢/FLP55’1(I)T75§71XT75?71 9 Next, the upper bound (ﬁ‘ 1PL,HvH becomes
S Si 2
Or+k—10K
s ==y | =l INENCL T VAN S ey PV [ S |
. (a)
In addition, we have < \/mHPjPIVHQ
/ €L 1L °
H‘PFLPS;MH |5, |, |- HVHQ < V1t oxrmt vl (89)
Z VI+oL HP . 1VH where (a) follows from Lemmia 3.4. Combinirfg(88) ahd](89),
we get the desired result. [ ]
< V1+6r v, (81)
APPENDIX E

where (a) is from Lemmpg_3.4.

THE LOWER BOUND OF RESIDUAL
Plugging [8D) and[(81) intd (79), we have

Proof: Let I be the set ofK indices, then we have

| @i, < Jerl = PRy I3
(rowesn+ 2259 el
_ Pt/ _ z [[Pr@rxrl; — [[Prvl;
Further, using the norm mequallty (s¢€](68)), we have > [PL@rxr|2 - [lv]2. (90)
R D) z% > Lo =VIah (g9 FUhemere
IPr ®rxr(3
Combining [82) and[(EIB), we have = |P+®7_rx7 |3
Or4+k-10K = || ®r_rx7-r — Pr®r_rxr_r|3
0Lt K ksl + ———— HX g + /1461 |v
( Sy | ol A M E > |7 rxrrl3 — [Pr@r rxr ol

> VLo, (84) > (1= 6r—r)lxr-rll3 = [|[Pr®r_rxr_rl3, (91)
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[Pr@r_rxr_r|3
= |®r (@} @r) ' ®pPr_rxr_r|3

(a) _
< (1460 (Bh@r) ' @1 @ rxr_r|3

(b) 1+5|F\

< — || ®®r_rxp_1||?

< (1—5|F\)2H r®r_rxr_rl3

© (1+6|F\)5\2F|+\T7F|

< _rl? 92
< TRETE [xr-rll3 (92)

16

[10] D. Needell and J. A. Tropp, “Cosamp: iterative signataeery from
incomplete and inaccurate sample€Commun. ACMvol. 53, no. 12,
pp. 93-100, Dec. 2010.

[11] W. Dai and O. Milenkovic, “Subspace pursuit for commigs sensing
signal reconstruction,” IEEE Trans. Inf. Theoryvol. 55, no. 5, pp.
2230-2249, May 20009.

[12] J. Wang, S. Kwon, and B. Shim, “Generalized orthogonaitaiing
pursuit,” IEEE Trans. Signal Processvol. 60, no. 12, pp. 6202-6216,
Dec. 2012.

[13] A. J. Viterbi, “Error bounds for convolutional codescahan asymptot-
ically optimum decoding algorithm,IEEE Trans. Inf. Theoryvol. 13,
no. 2, pp. 260-269, April 1967.

[14] E. Viterbo and J. Boutros, “A universal lattice code deer for fading
channels,”IEEE Trans. Inf. Theoryvol. 45, no. 5, pp. 1639-1642, July
1999.
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we have
|PE®rxr|3
(1 + 0100y 4 -1
> 1 _ _ B 2 _ B 2
> (1= jp—r)lxr—rlz TEEE l[xr-r2
(1+6|p‘)52 _
= (0 =dpr) - T Jler—rll3. (93)

(1 —=46yr))?

Finally, using [@D) and{33), we have

(1+ §\F|)§\2F|+\T7F|

2> Q=67 1) — _rlI2
[rellz > | ( \7—1)) TETE Ixr—r|l5
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