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Abstract—In multi-terminal communication systems, signals interest, but also for the rest of the messages being jointly
carrying messages meant for different destinations are ofn  decoded. It is now well-known that employing such a joint
observed together at any given destination receiver. Han ah nique decoder in the code design provides an achievable

Kobayashi (1981) proposed a receiving strategy which perfms . O . .
a joint unique decoding of messages of interest along with aibset region which is, in general, larger than if the receiver a0

of messages which are not of interest. It is now well-known ¢t the messages of interest while treating all messages not of
this provides an achievable region which is, in general, lajer than  interest as noise. Recently, Nair and El Garhal [4] and Chong,

if the receiver treats all messages not of interest as noisdlair  Motani, Garg, and El Gamal[5] independently proposed a
and EI Gamal (2009) and Chong, Motani, Garg, and El Gamal ganergjization calledndirect or non-unique decodinghere

(2008) independently proposed a generalization called ingkct . . .
or non-unique decoding where the receiver uses the codebook the decoder looks for the unique messages of interest while

structure of the messages to uniquely decode only its messsg Using the codebook structure of all the messages (inclutimg
of interest. Non-unique decoding has since been used in vats ones not of interest). Unlike the joint unique decoder, sach

scenarios. o . . . ) decoder does not necessarily uniquely decode messaget not o
The main result in this paper is to provide an interpretation  jntarest, though it might narrow them down to a smaller list.

and a systematic proof technique for why non-unique decodig, . .
in all known cases where it has been employed, can be replacedWe refer to such a decoder as a non-unique decoder. With

by a particularly designed joint unique decoding strategywithout ~ Such a distinction, non-unique decoders perform at least as
any penalty from a rate region viewpoint. well as joint-unique decoders. Coding schemes which employ

Index Terms—broadcast channel, joint decoding, non-unique non-uniqu_e dgcoders haye singe played a role in achieyabili
decoding, indirect decoding. schemes in different multi-terminal problems such[as [], [

[8], [9], [LQ]. It is of interest, therefore, to see if theyrca
achieve higher reliable transmission rates compared tesod
that employ joint unique decoders.

Coding schemes for multi-terminal systems with many |n [4], the idea of non-unique (indirect) decoding is stublie
information sources and many destinations try to explait thn the context of broadcast channels with degraded message
broadcast and interference nature of the communicatiofiemedets. Nair and El Gamal consideraeceiver general broad-

A consequence of this is that in many schemes the signalgst channel where a source communicates a common message
received at a destination carry information, not only about/, to three receiverd;, Y, andYs and a private message
messages that are expected to be decoded at the destinatigronly to one of the receiverd (Fig.[). They characterize
(messages of intergsbut also about messages that are not of

|. INTRODUCTION

interest to that destination. Y1 My, My
Standard methods in (random) code design (at the encodé&f), M; X ) _ A

are rate splitting, superposition coding and Marton’s ngdi Encode p(Y1, Y2, ys|z) Y- M

[1], [2]. On the other hand, standard decoding techniques ar

successive decoding and joint decodihg [I], [3]. [Ih [3], Han
and Kobayashi proposed a receiving strategy which perforrlﬁg. 1. The ‘3-recei‘ver broadcast channel with two degr'_cldedsa_ge sets:
a joint decodingof messages of interest along with a subs@iiilae%‘;%’ is destined fo all receivers and messabg is destined to
of messages which are not of interest. We will refer to
this receiving strategy as jointnique decoding (and to the an inner-bound to the capacity region of this problem using
decoders as joinunique decoders) to emphasize the fachon-unique decoding and show its tightness for some special
that it seeks a unique choice not only for the messages d@fses. It turns out that the same inner-bound of [4] can be
achieved using a joint unique decoding strategy at all vecei
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In this paper, we will provide a proof technique which  Joint unique decoder vs. non-unique decodéfe con-
systematically shows an equivalence between the raterregsider joint typical set decoding. A decoder at a certainidest
achievable through non-unique decoders and joint unigoation may, in generakxaminea subset of messages which
decoders in several examples. In particular, our line ofi-argincludes, but is not necessarily limited to, the messages of
ment is applicable to all known instances where non-uniqugerest to that destination. By the term examine, we mean
decoding has been employed in the literature as we disctisat the decoder will try to make use of the structure (of the
in SectionI]. Our technique is based on designing a spec@debook) associated with the messages it examines. We say a
auxiliary joint unique decoder which replaces the non-urig coding scheme employsjaint unique decodeif the decoder
decoder and sheds some light on why this equivalence holttges to uniquely decode all the messages it considers (and
However, we would like to note that analysis using nordeclares an error if there is ambiguity in any of the messages
unigue decoding is often simpler and gives a more compacespective of whether such messages are of interest to the
representation of the rate-region — a fact observedJin [B}], [destination or not). In contrast, we say that a coding scheme
— which still makes it a valuable tool for analysis. employs anon-unique decodef the decoder tries to decode

Three remarks follow. uniquely only the messages of interest to the destinatiah an

Remark 1:The reader might wonder if such an equivalenc®lerates ambiguity in messages which are not of interest.
holds on the rate-regions of schemes employing joint uniqueWithin this framework, Propositios of [4] establishes an
decoders and non-unique decoders more generally. Whalehievable rate region for the problem3feceiver broadcast
our proof technique is systematic and general, it is coupletannel with degraded message sets. The achievability is
with the random nature of the codebook generation and ttigough a coding scheme that employs a non-unique decoder.
encoder design. Indeed, any decoding scheme is coupleturns out that employing a joint unique decoder, one can
with the encoding scheme and therefore asking for a matll achieve the same inner-bound of [4]. In this section,
general equivalence (for any encoding scheme) seems to beeadevelop a new proof technique to show this equivalence
challenging problem (even to properly pose). systematically. The same technique allows us to show the

Remark 2: Non-unique decoders are usually easier to workquivalence in all the examples considered in Sedfidn III.
with (analytically), and they capture the correct errorrése
(conceptually). One might wonder what the advantages ijo'A. Non-unique decoding in the achievable scheme of Nair and
unique decoders are. It is generally interesting to know Bl Gamal
certain messages may be uniquely decoded at a receiver ahe main problem studied iri[4] is that of sending two
no rate-cost. In principle, such messages may be explaitechiessages over &-receiver discrete memoryless broadcast
improve the encoding schemes. We refer the interested rrea@}wnne|p(y17y2,y3|x), The source intends to communicate
to [15] where an application of using joint unique decodsrs messagesV/, and M, to receiverl and messagél/, to
illustrated in designing a block Markov encoding scheme feeceivers2 and3. Rates of messaged, and A/, are denoted
the broadcast channel with degraded messages. by R, and R;, respectively. In[[4] an inner-bound to the

Remark 3:In a related line of research, [16] proves opcapacity region is proved using a standard encoding scheme
timality of non-unique decoding for general discrete menbased on superposition coding and Marton’s coding, and a
oryless interference channels, when encoding is resdrictgon-unique decoding scheme called indirect decoding. We
to randomly generated codebooks, superposition codingd), atiefly review this scheme.
time sharing. The result of this paper and the techniques wel) Random codebook generation and encodifig:design
develop indicate that the same performance can be achietesl codebook, split the private messagf into four in-
by employing joint unique decoding, and that joint uniqueependent partd4,q, Mi;, Mo, and M3 of non-negative
decoding is also optimal in the sense discussed_ih [16]. rates Sy, S;, Sz, S3, respectively. LetR; = Sy + S +

In Sectior{l, we develop our proof technique in the contexd, + S5, 7, > S, and T3 > Ss. Fix a joint prob-
of [4]. While much of the discussion in this paper is confinedbility distribution p(u,vs,v3,z). Randomly and indepen-
to this framework, we show in Secti¢nllll that the techniqudently generate2”(o+50) sequencesU™(mq, sq), mo €
applies more generally. [1 : 2nFo] and sy € [1 : 2™%], each distributed accord-

ing to [[, pu(u;). For each sequenc&”(my,sy), gener-

Il. WHY JOINT UNIQUE DECODING SUFFICES IN THE ate randomly and conditionally independently ¢ 7> se-

INNER-BOUND OF NAIR AND EL GAMAL IN [4] quencesVy (mo, so. t2), t2 € [1 : 2"T2], each according

We start this section by briefly reviewing the work o1 [41to [T, pv, v (vai|us), and i) 2"75 sequenced’y* (mo, so, t3),
where inner and outer bounds are derived for the capacitye [1 : 2"%5], each distributed according fq, pv, | (vs:|us).
region of a3-receiver broadcast channel with degraded meRandomly partition sequence¥y(mq, so,t2) into 2752
sage sets. In particular, we consider the case where a sounice B2 (myg, so, s2) and sequenceg;’(mo, so, t3) into 2nSs
communicates a common message (of fafgto all receivers, bins Bs(myg, so, s3). In each product binBs(mq, sg, s2) x
and a private message (of rdtg) only to one of the receivers. Bs(my, so, s3), choose one (random) jointly typical sequence
A coding scheme is a sequence (@@"f, 2n51) n) codes pair (V4 (mo,so,t2), Va*(mo, so,t3)). If there is no such
consisting of an encoder and a decoder and is said to achiped, declare an error whenever the message, so, s2, $3)

a rate-tuplg Ry, R;) if the probability of error at the decodersis to be transmitted. Finally for each chosen jointly typi-
decays to zero as grows large. cal pair (V3*(mo, so, t2), V4" (mo, so, t3)) in each product bin



(s2,s3), randomly and conditionally independently generate considers and regimes where it decodes some of the

2751 sequencesX ”(mo, so, 52, 83,51), §1 € [1 @ 2791, messages non-uniquely.

each distributed according tQ[; px|uv,v, (wi|ui, vas,vs3:).  (2) For each of the regimes, we deduce that the non-unique
To send the message paimg,mi), where m; is ex- decoder may be replaced by a joint unique decoder.
pressed agso, s1,52,53), the encoder sends the codeworgtor the rest of this section, we only consider decoding s@sem
X"™(mo, so, 52, 53, 51)- at receiverYs. Similar arguments are valid for receives due

2) Non-unique decodingReceiverY; jointly uniquely de- to the symmetry of the problem. We refer to inequallfyl (11),
codes all message¥, Mo, M1, M1z, and M. Receivers hich is shown in[[4] to ensure reliability of the non-unique
Y; and Ys, however, decodel/, indirectly, through a non- decoder at receiver,, as the non-unique decoding constraint
unigue decoding scheme. More precisely, @1).

o Receiver Y; declares that the message tuple Let the rate pair(Ry, R1) be such that the non-unique
(mo, so, S2, 83, 1) was sent if it is the unique quintupledecoder of receiveY> decodes messagd, with high proba-
such that the received signaly* is jointly typical bility; i.e., the non-unique decoding constrainfl(11) issfeed.
with (U™(mo, s0), V5" (mo, so, t2), V5*(mo, so,t3), Consider the following two regimes:

X™(mo, so, S2, S3,51)), Where sy is the bin index of @) Ro+ Sy < I(U;Ys),
V3" (ma, so, t2) @ndsg is the bin index ol3" (mo, s0,t3).  (b) Ry + So > I(U: Ya).

« ReceiverY; declares that the message pdify, M1o) =
(mg, sp) was sent if it finds a unique pair of indicest
(myg, so) for which the received signaly® is jointly typ-
ical with (U™(my, s0), V3" (mao, so,t2)) for some index
ty € [1:27712],

In regime (a), it is clear from the defining condition
hat a joint unique decoder which decode¥, M1g) =
(mo, s9) by finding the unique sequendé™(my, so) such
that (U™ (my, so), Yg") is jointly typical will succeed with high
. o . . probability. This is the joint unique decoder we may use in

° RecelvgrY3 IS similar to receivery; with Vs and ts, place of the non-unique decoder for this regime. Notice that

respectively, instead dfy andts. in this regime, while the non-unique decoder obtding, s¢)

The above encoding/decoding scheme achieves rate pgffyuely with high probability, it may not necessarily seed
(Ro, R1) for which inequalities[{}1) to[(12) below are satisfiegn uniquely decoding.. Indeed, in this regime insisting on
for a joint distributionp(u, va, vs, ). The reader is referred tOjoim unique decoding ol/™(m, so), V4 (mo, so, t2) could,

[4] for the analysis of the error probabilities. in some cases, result in a strictly smaller achievable regio
Regime (b) is the more interesting regime. Here it is

Rate splitting constraints: : _ .
clear that simply decoding fofM,, M) and treating all

Ry = S0+ 51+ 5+ 5 @) other messages as noise will not work. Non-unique decoding
Ty > Sy (2) must indeed be taking advantage of the codewbit as
T3> S3 (3) well. The non-unique decoder looks for a unique pair of
S0, 51,8, 55 >0 (4) messagesgmy, sop) such that there exists sone for which

(U™(mo, s0), V"™(mo, o, t2), Y3") is jointly typical. One may,

Encoding constraint: in general, expect that there could be several choices, of

Ty + T3> Sy + Sz 4 1(Va; Va|U) (5) even in this regime. An important observation is that, irs thi
Joint unique decoding constraints at receiver regime, there is (with high probability) only one choice for

Sy < I(X:YA|U, Va, V3) (6) In other_wordsjn this regime, r(_aceive_r 2 decod@g u_niquely_
along withmg and s,. To see this, notice that using inequality

S1+ 82 < I(X;1|UVs) (") @) and (b) above, we have

S1+ 83 < I(X;Y1|UVs) (8)

Sy + S5+ 85 < I(X; Y4|U) ©) Ty <I(Va; Y2|U). (13)

Ro+ So+ 51+ 524 S5 <I(X;Y1) (10) Inequalities[(I]L) and(13) together guarantee that a joiitue

decoder can decode messadés, Mo, and Mo with high

Non-unique decoding constraint at receivgr - >C J
probability. Note that conditiof (11) makes the probapitf

1.30 + S0+ T_z < I(UVQQ.}/Q) _ (1) an incorrect estimate fdiMy, M) vanish; and condition on
Non-unique decoding constraint at receivgr My, M1, being correctly estimated, inequalify {13) drives the
Ro+ So+ T3 < I(UV3;Y3). (12) probability of an incorrect estimate fdv/;5 to zero. In other

words, in regime (b) the non-unique decoder ends up with a
B. Joint unique decoding suffices in the achievable schem%ug*gue dscg.‘ﬂ'”?."f the satellite c?dew?]@l(mo, 50, ) Vé'th q
Nair and EI Gamal in [4] igh probability; i.e., we may replace the non-unique deco
with a joint unique decoder for messagés,, Mg, Mis.

Fix the codebook generation and encoding scheme to ¢ summarize loosely, whenever the non-unique decoder is
that of SectioiLIl-A. We will demonstrate how a joint uniquorced to derive information from the codeword' (i.e., when
decoding scheme suffices by following these steps: treating V" as noise will not result in correct decoding), the
(1) We first analyze the non-unique decoder to characterizen-unique decoder will recover this codeword also uniguel

regimes where it uniquely decodes all the messageswe make this loose intuition more concrete in Secfion]ll-C.



The same argument goes through for receivgr and We now define the auxiliary decoder. The auxiliary decoder
this shows that insisting on jointly uniquely decoding dt aht receiverY; is a more involved decoder which has access to
receivers is not restrictive in this problem. Thus, we @@ two component (joint unique) decoders:
the following:

Theorem 1:For every rate pair(Ry, Ry) satisfying the
inner-bound of[{(11)E(T12), there exists a coding scheme eynaplo
ing joint unique decoders which achieves the same rate pair.

The idea behind the proof of Theordrh 1 was simple and
general. Consider a non-unique decoder which is decoding
some messages of interest. The message of interest in our
problem is My. Along with this message of interest, the
decoder might also decode certain other messalgs,and
M- for example. The two main steps of the proof is then as
follows.

o Decoder1 is a joint unique decoder which decodes
messaged/, and M. It finds M,, and M, by looking

for the unique sequendg™ (my, so) for which the pair
(U™(mo, s0), Y3") is jointly typical, and declares an error

if there exists no such unique sequence.

Decoder2 is a joint unique decoder which decodes mes-
sagesMy, M1g, M1s. It finds My, Myo, M12 by looking

for the unique sequencég*(my, so) and V" (mo, so, t2)

such that triple (U™ (mo, so), Va'(mo, so,t2), Y5") IS
jointly typical, and declares an error when such sequences

do not exist.
(1) Analyze the non-unique decoder to determine what mes-

sages it decodes uniquely. Depending on the regirﬁ@e auxiliary decoder declares an error if either (a) both

of operation, the non-unique decoder ends up uniquégmponent decoders declare errors, or (b) if both of them

decoding a subset of its intended messages, and nfgcode, but their decodéd/o, M10) messages do not match.

uniquely the rest of its intended messages. For exampleall other cases it declares th@/o, Mio) output of the

in regime (a) above, the non-unique decoder uniquefpmponent decoder which did not declare an error as the

decodes onlyM, and M, and it might not be able decoded message.

to settle onMi>. While in regime (b), the non-unique We analyze the error probability under the random coding

decoder ends up decoding all of its three messddgs experiment of such an auxiliary decoder at receiverand

Mo, and M;5 uniquely. prove that for any > 0, there is a large enough such that

(2) In each regime of operation characterized in stgpse

a joint unique decoder to only decode the messages that p
. . r

the non-unique decoder uniquely decodes. In the above

proof, this would be a joint unique decoder that decodes

My and Mo in regime (a) and a joint unique decoder

that decodes messagéh), Mo, andM,, in regime (b). where~(¢) — 0 ase — 0. Inequality [I#) shows that for
Verify that the resulting joint unique decoder does suppagrge enough: and under the non-unique decoding constraint

the corresponding part of the rate region achieved by t{fg]), the auxiliary decoder has an arbitrary small profigbil
non-unique decoding scheme. of failure.

Though the idea is generalizable, analyzing the non-uniqueTo prove [I%), assume that(mo, so, 51, s2,53) =
decoder in step (1) is a tedious task. Even for this very 1,1,1,1) is sent and indice¢; andt, in the encoding
specific problem, it may not be entirely clear how the conditi procedure ardt,,t3) = (1,1). This assumption causes no
dividing cases (a) and (b) can be derived. Next, we try 18ss of generality due to the symmetry of the codebook
resolve this using an approach which generalizes moreyeasgonstruction. We denote the random variables correspgndin

to these indices byZ,,,, Zs,, .., Z:, and we refer to the
) - tuple (Zino, Zso s Zs, s Lo, Lss s Lt Ity ) DY Z. In the rest of this
C. An alternative proof to Theorei 1. an auxiliary decoderggction we assum@ — 1. the all 1’s vector. and analyze

We take an alternative approach in this section to pro¥e probability that receiver; declares)M, # 1. Receivery;
TheorentL. The proof technique we present here has the saffkes an error in decoding/, only if at least one of the
spirit as the proof in Sectidn 1B, but the task of determini following events occur:

W.hiCh sgbsgt .Of messages shou_ld_ be decoded in Wh"_ﬂ regir@?_s The channel and/or the encoder is atypicéthe triple
will be implicit rather than explicit as before. To this end, (U™ (1,1), Vr(1,1,1), VA(1,1,1), Y3) is not jointly
we introduce an auxiliary decoder which serves as a tool to Pz s A 2
help us develop the proof ideas. We do not propose this mo&e:
complicated auxiliary decoder as a new dec_()(_jmg tec“?‘"ﬂ“ev declare errors: there are at least two distinct
buft only as a prqof technique to show sufficiency of joint pairs (1o, ) and (1o, 5) such that both pairs
unique decoding in the problem df|[4]. We analyze the error (U™ (7o, 30), ") and (U™ (1no, %), Y") are jointly
probability of the auxiliary decoder at receivés and show 07207272 A
that under the random coding experiment, it decodes cdyrect
with high probability if the non-unique decoding consttain
(I1) holds. From this auxiliary decoder and its performance
we will then be able to conclude that there exists a joint uaiq
decoding scheme that succeeds with high probability. Therefore, the probability that receivés makes an error is

(error at the auxiliary decodgr
< ¢ 4 2(RoFSo+Te=I(UVe;Y2)+7(e)) (14)

typical.
Both decoders fail to decode wuniquely and

typical; and similarly there are at least two distinct
triples (1o, S0,t2) and (1o, 50,%2) such that
both triples (U™ (110, 80), Vi (1ho, 50, 12), Yy') and
(U™ (1o, 30), Va* (110, 30, 12), Yo*) are jointly typical.



upper-bounded in terms of the above events.

Pr(error at the auxiliary decodér = 1)

< Pr(é’l |I = 1) + Pr(Eg N 5_1 |I = 1)

<e+ PI’(gg N glll- = 1)

where [I5)

follows becausePr(&;|Z

(15)

1)

Pr((U™(1,1), V5" (1,1,1), V' (1,1,1),Y5") ¢ AZ[T = 1) < e

(ensured by the encoding and the Asymptotic Equipartition

Property). To upper-bounBr(&, N & |Z = 1), we write

PI’(gg n 5_1 |I = 1)
(Un(la 1)7 VQn(la 1, 1)’ VZ}n(la L, 1)’ YQn)EA?,
and
(Un(m0’§0)7}/2n) € A?
for some(mo, So) # (1,1),
and
(U™ (110, 30), V3™ (110, 30, 12), Y3" )GA”

(a)
< Pr

(16)

for some (g, 40, t2) # (1,1,1)

(U™(1,1), VH(1,1,1), Vi (1,1, 1),
and
(U™ (10, 50), Y3') € A?
for some(rnyg, $0) # (1,1),
and
(U™ (10, 80), Vo' (1120, S0, t2), Y-
for some (1o, So) # (1, 1)
(U™(1,1), VgH(1,1,1), Vi(1,1,1
and
(Un(ﬁlo, 50), }/271) EA?
for some(myg, 59) # (1,1),
and
n(mo’ §0)7 ‘/Qn(mOa <§07 t?)a
are s.t.(rmo, $o)=(1,1)
with at least one s.tp #1

Y3 e AL,

< Pr

3') €AY
adf
), Y3 €

+ Pr

all (U Yo ) e A?

In the above chain of inequalitie$q) holds because event Pr

& N & is a subset of the event on the right han

It is worthwhile to interpret inequality (18). The error exe

of interest, roughly speaking, is partitioned into t
two events:

(1) The auxiliary decoder makes an error and the non-unique

(17)

7

(18)

d side.

he daling

decoder of Sectiop TI-A also makes an error.

(@)

from Sectiof II-B more concrete.

The auxiliary decoder makes an error but the non-uniqu
decoder of Section T[#A decodes correctly. We will show ™
that the probability of this event is small. Note that under
this error event, (a) component decoder 1 fails (i.e., it
is not possible to decod@\, M) by treatingVy* as
noise), but still (b) non-unique decoder succeeds (i.e., th
non-unique decoder must be deriving useful information
by considering/;*). By showing that this error event has
a small probability, we in effect show that whenever (a)
and (b) hold, it is possible to jointly uniquely decode
the V' codeword as well. This makes the rough intuition

To bound the error probability, we bound the

two terms of

inequality [I8) separately. The first term €f{18) is bounded
by the probability of the non-unique decoder making an error

©"(1,1), V3" (1,1,1), V3' (1,1, 1),
and
(U™ (mo, %0), Y3") € AL
for some(mnyg, $0) # (1,1)
and,
(Un(mOv 30)7 VQn(mOv ‘§07 t2)7 }/Qn) GA A?
for some(rig, 80) # (1,1) andt,

Y3 € A7,

Pr

=

< Pr (Un(m()véo)v%n(m05307£2)7}/2n) EA A?
- for some(mo,éo) #(1,1) andts
< Z PI’ mo,So) ‘/2 (mo, So,tQ) }/2 EAn’I = 1)

(m0,80)#(1, 1)
ta

< 2’nT2277,(R0+S())2—774(1(UV2§Y2)_'71(5))'

(19)

The second term of(18) is upper-bounded by the expression

in 20), as we elaborate.

(Un"(1,1),V3"(1,1,1), ViH (1,1, 1),
and
(U™ (o, 30), Yo') € AY
for some(myg, So) # (1,1),
and
" (10, 80), V3 (1o, 80, t2), Y3') € A7
are s.t.(rhg, 80) = (1,1)
with at least one s.tiy # 1
< on(Ro+So+T2)9—n(I(UV2;Y2)—=72(€)=6(€))

Y3 e AL,

Pr
all (U

(20)

We derive the bound[(20) as follows. First, we write the

following chain of inequalities .

(Un(]" 1)7 ‘/Qn(]" 17 ]‘)’ ‘/3”(1’ 17 ]‘)?
and
(Un(mO’ 50)7 YQn) EA?
for some(myg, S0) # (1,1),
and
all (U™ (10, 80), V3 (1o, 80, 1), Y9") € A7
are s.t.(rhg, 80) = (1,1)
with at least one s.ti; # 1
(Un(]" 1)7 ‘/271(17 1’ 1)7 ‘/3"(17 ]" 1)7
and
(U™ (Mo, $0), Y3") € A?
for some(myg, So) # (1,1),
and
(U™(1,1), Vg (1,1,12),Yy") € A?
for somety # 1
(U™(1,1),vyr(1,1,1)
7‘/371(1’ 1, 1)’Y2n) EA?,

Y3 e AL,

gPr

Z Pr and
U" 7 ) g 7Y'n. S A?
(1M0,80)7#(1,1) ( (mo S(;)ndz )

ta#1

(Un(lv 1)’ V2n(1’ 17{2)7 YZn) € A??

Yy e Az,




< gn(Rot+So+To) < 9n8()9—n(I(UsY2) =7 (€) g —n(I(Vai¥a 1) =7 ()

@D Ly D D AN N N1
7V3 (1 1d1) 2)€Aev (umvl vyl ) EAD
an
— < 9= n(I(UVa;Y2)—v2(e)=d(e))
P @y e [PTH @D =2 A
and Step(a) follows from the fact that;* — U™, V5*, V", T — Y3
(U™(1,1),V(1,1,£2),Yg") € AP forms a Markov chain. In order to prove step (b), we show that

. ) ~ conditioned orlU™, V" is “almost” independent of;*, Vy*, T
where we have(rig, 50) # 1 and iy # 1 in the event in \ore precisely, we use similar steps as nl[17, Lemma 1]
inequality [21). and show in AppendiXA that for any jointly typical tuple

Next, we bound the probability term if{21). In What(u w2 vl € A" and anye > 0, there is a large enough
follows, U™, Vi, Vi, U™, V3 denoteU™(1,1), V3'(1,1,1), n such thatp (5 [u™, v, v3, 1) < 279 p(57[u™), whered(e)
Vi(1,1,1), U"™(o,30), V3'(1,1,%2), respectively. Also tends to zero as — 0.
PUn|I(U"|1) denotesPr(U" = u"|Z = 1). We sometimes  \we conclude the error probability analysis by putting to-
drop the subscripts of probabilities if there is no ambiguitgether inequalities[(15)[(IL8)[{19), and20) to obtaint tha
e.g.,p(u"[1) is just pyn z(u”[1). the error probability at the auxiliary decoder is boundedhas

In order to bound the probability term i (21), one shoulghequality [I#). So for large enough the auxiliary decoder
treat pUnVnVnynUnV"\I(u vy, v, Yy, a”, 03[1).  This  succeeds with high probability if the non-unique decoding
would have’ been a straightforward task if the generatednstraint[[Tll) is satisfied; i.e., when the non-unique deco
codebook was independent of indicEsNonetheless, it is an succeeds with high probability.
important observation that this is not the ¢hdeor example,  One can now argue that if the auxiliary decoder succeeds
given U™ (and under the conditioning = 1), Y3* may not with high probability for an operating point, then therecals
be independent ofy". Interestingly however, almost the samexists a joint unique decoding scheme that succeeds with hig
result holds. We address this in the following. We follow thgrobability. The idea is that for all operating points (eptce
proof idea in [17] to address this technicality. in a subset of the rate region of measure zero), each of the

n T Trm U " two component (joint unique) decodetsand 2 have either
Pr <Eg"7}‘é”;‘2/71?za)n(€1 (AUEn aV”S Yy € A 7= 1> a high or a low probability of success. So, if the operating
2 2072 € point is such that the auxiliary decoder decodes correditly w
= Z Z Z p(u'y vy, vg, Yy, w051 high probability, then at least one of the component decder
@ vg,ys) € An Zany ")eA . y")eA" should also decode correctly with high probability, giviag
U U27 2

the joint unique decoding scheme we were looking for. This
is summarized in LemmAal 1, and the reader is referred to
Appendix(B for the proof.
= > > > [pnvs,vgy5 1) Lemma 1:Given any operating point (except in a subset
Wy gy EAr o ><p( "u" g, vl ys, 1) of the rate region of measure zero), if the auxiliary decoder
@HEAT ragaear xpy|u vy, vy, y5, 4"t 1)]  succeeds with high probability under the random coding
experiment, then there exists a joint unique decoding sehem
that also succeeds with high probability.

= Z Z Z Pl vy v, yy|1) A similar argument goes through for receivég. The
@Ry eAr @ X pyn (@) random coding argument for the joint unique decoding scheme
@ )GA (u”vg,y;‘)eAe (8 [um v}, v, B, 1) can now be completed as usual.

D. Discussion

(@) Remark 4:In SectiondI[-B andII-C, we did not consider
Z Z Z U 1}2,1)3,y2|1) :
cases wheré, + Sy = I(U;Ys) or Ry+ So = I(U;Y3) (i.e.,
a subset of measure zero). This is enough since we may get
arbitrarily close to such points.
Remark 5:In Sectiong II-B and 1-C, we fixed the encoding
scheme to be that of[4]. The message splitting and the

Wy vghyy) AL a AP - nn XpU”( n)
( Y 2)6 Whoy,ys)e AL Xp(UQ |u’v£l’ ’U?, 1)]

®) structure of the codebook is therefore a priori assumed to be
< 1

= Z Zﬂ Z { s 02103’y2| ) that of [4], even whenR, + Sy < I(U;Y2) and message
(u7§v2 ’U y2)€_An u 2 : XpUn( )

M35 is not jointly decoded a¥5. However, in such cases this
c ><2”‘5(6)an‘Un @5 |u™ } extra message structure is not required and one can consider
messagelli» as a part of messagel;.

iy EA
@y (u WSy EAL

I1l. M ORE EXAMPLES
1This was pointed out to us by anonymous reviewers, to whom we Wi hat ioi . d di ffici hi
are grateful. Similar observations are made[in] [17] dnd [W&kre proof e saw that joint unique decoding was sufficient to achieve

techniques were developed to handle such technicalities. the inner-bound of[J4]. This is not coincidental and the same



phenomenon can be observed for example in the work ofWe now analyze the error probability. Assume, without
Chong, Motani, Garg and EI Gamdll[5] where the regioany loss of generality, that the originally sent indices aver
obtained by non-unique decoding turned out to be equivadent(m, ly,l1,12) = (1,1,1,1). We denote this event by = 1.
that of Han and Kobayashi in][3]. Similarly for noisy networkProceeding as in Sectidn_1IrC, the error probability of the
coding [6], it has been shown that the same rate region camxiliary decoder is bounded by the following probability
be obtained employing joint unique decodingl[11],][12].][13 term.

[14]. 1t was also observed in][7] that non-unique decoding is

not essential to achieve the capacity region of certairestat *(ermoiZ = 1)

dependent multiple access channels and joint unique degodi (Wn(1,1),8™,U™(1,1,1)
suffices. Non-unique decoding schemes have appeared also ,V(1,1,1), Y € A7,
in [8], [@], [L0]. We consider these three problems next and and
show that employing joint unique decoders, one can achieve (W™ (n, lp), Y") € A”
the same proposed inner-bounds. To show such equivalent%,6 +Pr for some (7, ZO) £ (1,1), I=1
we use the proof technique that we developed in Se€fion 11-C and
(W™ (1, lo), U™ (1, lo, 1), Y{") € A™
A. Two-receiver compound channel with state noncausally for some(ri, o, 1) # (1,1,1)
available at the encoder (22)

An inner-bound to the common message capacity region

of a 2-receiver compound channel with discrete memoryle58€ Probability term on the right hand side of inequalify)(22
state noncausally available at the encoder is derivedlin [ Very Similar to what we obtained in inequality {17) and
The inner-bound is established using superposition codifdg @nalyzed in the same manner (with the subtle difference

Marton’s coding, and non-unique decoding schemes. Mdfat W"(m,lo) is indexed not only by the message but
precisely, the achievable scheme is as follows: also by the state, which asks for a more careful treatment).

1) Codebook generation: Fix pwoy(w,u,v) and See Ap_p_endbEC. We follow simil_ar steps to conclude that
f(w,u,v,s). For each messagen, generate randomly the au_X|I|ary decher performs reliably u_nder 11h_mx_1-umq_ue
and independently2"> sequencesW"(m, l,) according decod!ng constraint®f [8]. So, there exists a joint unique
to I, pw(w:). For each(m,ly), generate randomly anddecodmg scheme that.p.erforms reliably upder thc_)se degodin
conditionally independently (ip"”: sequence®”(m, Iy, I1) ponstramts. More exphgt_ly, thg proposed j_omt unlqu«f:(ui.;i,L
according to [[, puw (u:Jw:;) and (i) 9nT>  sequences N9 scheme would be JOl_nt_ unique decodmgmfandlo, if
V™ (m, lo, 1) according to[ [, pyy (vi|w;). Ro+To <_I(W; Y71); and joint unique decoding of., [, and

2) Encoding: Given messagen and states”, the encoder '1» otherwise.
finds Iy such that(W™(m,ly),s™) € A”. If there is more
than one such index, one is chosen uniformly at ralony Three-user deterministic interference channel

If there is no such index, a random index is chosen among ) ) )
{1,...,2°To}. Next, the encoder findé and l, such that In [9], an inner-bound to the capacity region of a class of
(m}n(,n’?j ), 5" Un(’m o, 11), V"'(m, Iy, I»)) € A". If thereis deterministic interference channels with three user paide-

more than one such index pair, one pair is chosen unifornﬁyed' The key idea is to simultaneously decode the combined
at random. If there is none, a random index pdir, l») is interference signal and the intended message at eacheeceiv

chosen among{1...,2"7} x {1,...,2"™:}. The encoder and this is done by a non-unique decoding scheme. We focus
transmitsz™. 7, — f(;v‘ Wi s s-)’whéarew” = W"(m, lo) on Theorem1 of [9] and to have the paper self contained
o — U”(m’lozll) ané’vnz’zz"/ﬁ(;n lo. Io). "7 we briefly mention the encoding and decoding scheme. The

3) Decoding: ReceiverY; declares messag¥/ to be the determini_stic interference c_:hannels tha_lt are co_nsidemfd h
unique indexm for which (W™ (m,lo), U™ (m,lo, 1), Y7") are Qescrlbed by the following deterministic relationsamsn
is jointly typical for somel, € {1,...,2"7} andi, ¢ the inputsand the outplitsYy, = /(X Sk) where $; =
{1,...,2"T1}, ReceiverY; follows a similar scheme. hi(X21, X31), S2 = ha(Xi2, X32), @n S = hy(Xos, X13)

In this problem, we show that employing joint uniqué"d Xu = gu(Xi) for everyl,k € {1,2,3}. It is assumed
decoders lets us achieve the same inner-bound of TheordJt functionsi. and f, are one-to-one mappings when either
1 of [8]. We outline the proof which is built on the proof©f their arguments is fixed. - _
technique of Subsectidm II}C. Define the auxiliary decoder ( Codebook generationFix the probability mass function
receiverY;) to have access to two component (joint uniqudP™?) P(9)p(z1lg)p(z2[q)p(xs]q). Sequenc&)” is generated
decoders: one jointly uniquely decoding indices, l,, and according to[[; po(q:). For eachk = 1,2,3, sequences
one jointly uniquely decoding indicesy, lo, I;. The auxiliary X,?(m_k). my € {1,...,2"7%}, are generated randomly and
decoder declares an error if either (a) both component desodconditionally independently according {d; px, ¢ (wx,il¢:)-
declare an error or (b) neither of them declare an error yt th ~ Encoding: To send message:, transmitterk transmits
do not agree on their decodea, andl, indices. X (myg).

2We allow a small modification td_[8] in randomly choosing tmaléx lo 3All results easily generalize to interference channelswibisy observa-
whenever there is not a unique choice. tions (e.g.,[[®, Theorem 4]).



Decoding: Upon receivingYy, decoderl declares that As before, the first probability term of inequality_{23)
my IS sent if it is the unique message such that is upper-bounded by the probability of an indirect decoder

" oon N " " N ,  Mmaking an error; i.e., by the expression below.
(Q le (ml)v Sl (va m3)7X21 (mQ)v XSl(m3)7 }/1 ) € 'Ae
(@™ XT{ (), ST (112, 103)
Pr X3 (mg), X5 (ms), Y1) e AT [ ZT=1
for some (g, 7hg) andig # 1

for somemsy € [1 : 27%2] andms € [1 : 2"3]. Decoders2
and 3 work similarly.

Here, we use the proof technique of Secfionll-C to prove
that a code design that employs joint unique decoders aehiev
the same inner-bound. In [9], constraints on rates have been derived under which

Define the auxiliary decoder (at receivir) to have ac- this error probability approachésas n grows large and an
cess to four component (joint unique) decoders: one joinththievable rate region has been characterized. We refeese t
uniquely decodingX™(m1), one jointly uniquely decod- constraints as theon-unique decoding constrainté [9]. One
ing X{"(m1) and X3, (mz), one jointly uniquely decod- can show that under these decoding constraints, the second
ing XT'(m1) and X3, (m3) and finally one jointly uniquely probability term can also be made arbitrarily small by cliogs
decoding all sequenceX™(m,), X3 (m2), X3(m3), and a sufficiently largen (Appendix[D). It then becomes clear
ST (m2,m3). The auxiliary decoder declares an error if eithethat the auxiliary decoder succeeds with high probability i
(a) all component decoders declare error, or (b) not all ef thhe non-unique decoding constraints of [9] are satisfied. So
decoders that decode without declaring an error agree on #ralogous to Sectidn Il3C, we conclude that there existina jo
decoded indexn (i.e., among those component decoders thahique decoding scheme that achieves the same inner-bound
do not declare an error, there is not a common agreementgfheoreml in [9].
the decoded indexu).

We now analyze the error probability of the auxiliary
decoder. We assume without any loss of generality th@ Three-receiver broadcast channel with common and confi-
(my,ma,ms3) = (1,1,1) was sent. Proceeding as in Sectiodential messages
[T=C] the error probability of the auxiliary decoder is balaul
by inequality [28) as follows.

(24)

In [10] a general 3-receiver broadcast channel with one
common and one confidential message set is studied. Inner-
bounds and outer-bounds are derived for the capacity region
Pr(erron) under two setups of this problem: when the confidential

n ms - n n message is intended for one of the receivers and when the
(@, Xi (ml)’ Yi') € Al confidential message is intended for two of the receivers. We
" fgr ?ome”,}l Zé L a:d " only address the first setup here, and in particular Theorem 2
(@", X] (mlz’X%l (172), Y7") € AC of [10]. The other inner-bounds can be similarly dealt with.
f?lr sonmg(ml, 732),7& 1, 711)’ anti B Theorem 2, the authors establish an inner-bound to thesecre
Set+Prf (@"X] (ml?’ X3fl(m3)’ yeA |I=1 capacity region using the ideas of superposition coding &y
f?{ so;nei(ml, T3) 7 gl’ 1), and wiretap channel coding, and non-unique decoding. We briefly
(@ ’)‘)é} (7111),}9(}n(m3, mi’/)n r explain the achievable scheme.
o sc?r%rgg(lﬁm); 7;21 (gzg’#l& 61 1)6 Codebook constructionEix puv, v; v,.x (1, vo, v1, V2, ).
e T Choose R, > 0 such that Ry, — R. + R, >

)

(Q", X7'(ma),YY") € A7 I(Vo; Z|U) + 6(e). Randomly and independently generate
for somem; # 1, and 2nflo sequencesu™(mg), each according to[]; Pu(u;).
(@, XT'(ma), X33 (m2), Y1") € A2 For eachm,, randomly and conditionally independently
for some(mn,m2) # (1,1), and generate sequencesy (mg,my,m,), (mi,m,) € [1 :
setPr| (@ X{(riu), X5 (is), Y") € AL | T =11 on(Ri+R)) each according to[[; Py, (u(vy u,)- FOr €ach
for some(riy, 7i3) # (1,1), and (mo, m1,m,): (i) generate sequencesy(mo,m1,m,,t1),
(@", X1 (1), ST (1112, 113 t1 € {1,...,2"1}, each according tq 7, pvi (v, (or:[ve)» @Nd
ngl(m2)v?f§1§m3>aY1") €A partition the set{1,...,2"T'} into 27" equal size bins
for some(ring, 1its), 1 # 1 B(mo, m1,m,, 1), (i) generate sequences (mg, mym,., ta),
(Q", X7 (m1), Y7") € AY ty € {1,...,27T2}, each according to the product distri-
for somem, # 1, and bution [T, pv,|vs (v2i|ve:) and partition the sefl,..., 27}
(@Q", XT' (1), X3 (2), YT") € AZ into 27/t equal size binsB(mg, m1, m,,l2). For each
for Som?(mlaﬁ"@)i’é (1,1), and product bin B(l;) x B(l), find a jointly typical sequence
+Pr| (@ XY (), X3y (), Y1") € A | T=11 pair (v} (mg, my, mr, t1(11)), v§ (mo, m1, mr, t2(I)), and as-
for some(siny, 7in3) # (1, 1), and sociate it to the product bin. If there is more than one
(Q"vX?(”fl)vS?(”}%m@ pair, one of the jointly typical pairs is picked uniformly
ngl(T2)X§ll(m3)vY1n) €AY at random. If there is no such pair, one pair is picked
for some(riny, 1iz) # (1,1), i = 1 uniformly at random from the set of all possible pairs. Fi-

(23) nally, for all (mg, m1,m,.) and all their associated sequence



pairs(v?(mo,ml,mr,tl(ll)),vg(mo,ml,mr,tg(b)) a code- (Un(l)avon(L11127‘/171(17111712 .
word X" (mq, m1, m., t1(l1), t2(I2)) is generated according to Vo' (1,1,1,1), Y1) € AL

and
Y Ti|V0oi, V1i, V24 )
[Lspxivoviva aloos, s, ) (U (10), Vi (9, 17, 1), YIT) € AT

)
<e+Pr for some(rmg, my, m,)#(1,1,1) =1
and
(U™ (1ho), V5" (1o, 1ha, )
s ‘Gn(m07 M, My, tl), Yln) EA?
for some(rig, 11,1, ) # (1,1,1), #;

Encoding: To send the message pairmg,m1), the
encoder chooses a random index, < {1,...,2"f"}
and thus the sequence paiu"(mo),v§(mo, m1, m;)).
It then chooses a product bin indeXL;,L,) at
random and selects the corresponding jointly typical

pair (01 (mo, ma, my, t1(L1)), vy (mo, m1, my, ta(L2)) (U”(l),VO"(L1,17271/1"(171,1712 .
in it. Finally the  corresponding  codeword Vo' (L1,1,1), Y1) e A
X"(mo,ml,mr,tl(Ll),tQ(Lg)) is sent. and

(Un(m0)7%n(m07mlva)=Y1n)€A?
+Pr for some(mg, m1, m,)#(1,1,1) =1
and

(U™ (1), Vi (1o, mllmr)
7V1"(m0,m17mr,t1),Y1")€A§
for (1o, m1,m,)=(1,1,1), 1 #1

Decoding: Both legitimate receiversy; and Y, de-
code their messages of interest/, and M;, by non-
unigue decoding schemes. More precisely, receivgr
looks for the unique triple(mg, m1,m,) such that the tu-
ple (U™(mo), V§*(mo.ma, my), Vi*(mo, m1, mp, t1), Y{") is
jointly typical for somet; € [1 : 2"T1]. ReceiverY; follows (2 ¢ + 9(RotRat T+ Ry —1(UVo,VasY1)+71(€)
a similar scheme. Receivef decodesn directly by finding
the jointly typical pair(U™(mg), Z™).

4 9(Ri+T1+ R =1 (VoVisYi |[U) 471 (€)

+ 2n(R0+R1+T1+RT—I(UVo,V1;Y1)+'yg(e)+6(e))
We use the proof technique of SubsecfionllI-C to show that L+ BTy R — (Vo VasYi |U) 95 (0)+6(6))
a code design that employs joint unique decoders achieees th
same inner-bound. To do so, we first present an auxiliary de-
coder which succeeds with high probability under the daugpdi
constraints of[[10], and then conclude that there existsra joHere, v1(e), 71 (€), y2(€),73(€), d(¢) all go to zero asg — 0.

unique decoding scheme that succeeds with high probabiliffp Prove the inequality in steu), we bound each probability
term separately.

(25)

Define the auxiliary decoder (at receiver) to have access  The first probability term above is upper-bounded

to two component (joint unique) decoders, one jointly ueigu by the probabilty of a non-unique decoder making
decoding indicesng, m, m, and the other jointly uniquely 54  error (ie., 2M(BotRi+Ti+R,—I(UVoViYi)+m(e)
decoding indicesng, m1,m,,t;. The auxiliary decoder de- 2n(R1+T1+Rr—I(VoV1;Y1\U)—‘r'y{(e)))_ This non-unique decoder

clares an error if either (a) both component decoders declag analyzed in [[I0] and shown to be reliable under the

errors, or (b) if both of them decode and their declargdiowing two constraints to which we refer as then-unique
(mg, m1, m,) indices do not match. In all other cases 'Hecoding constraintsf [10].

declares the index tripleng, m1, m,) according to the output

of the component decoder which did not declare an error.
Proceeding as in Sectidn IIFC, the error probability of the
auxiliary decoder can be bounded Hy](25) as follows. As Ro+ By + T+ By < I(UVoV3; Y1) = m(€) (26)
before, we assume without any loss of generality that the all Ri+ T+ Ry < I(VoVi; YA|U) = 7i(e) (27)
1-indices are chosen at the encoding stage, and we denste thi

event byZ = 1.

The second term is upper-bounded by further splitting the
event and following steps similar to that of Subsecfionlll-C

Pr(error| Z =1)

(U™(1), V(1,1,1), ViH(1,1,1,1) (U™(1), Vr(1,1,1), Vr(1,1,1,1)
JVE(1,1,1,1), Y € A7 JVE(1,1,1,1), V") e A7,
and and
(U™ (), Vi (1o, 11, ,), V) € AT (U™ (), Vi (1o, 11, ), V) € AT
<e+Pr for some(mg, my,m,)#(1,1,1) I=1 Pr for some(mg, my,m,)#(1,1,1) I=1
and and
(Un(m0)7%n(m07mlam7“) (Un(mo)vvon(m07mlvm7“)
,‘Gn(ﬁlo,ml,ﬁlr,fl),yln) EA? ,‘Gn(ﬁlo,ml,ﬁlr,fl),yln) EA?
for some (1, 11, 10y, 11) #(1,1,1,1) for some(rg, 11, M, )= (1,1,1), t; #1
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(Um(1),vg'(1,1,1), V"(1,1,1,1) succeeds with high probability, we conclude that joint wreiq

V(L 1,1,1), YY) € AT, decoding ofmg ,m1 , m,, t; succeeds with high probability.
. . a’]d ~ . . So the following joint unique decoding scheme achieves the
(U™ (o), Vg (Mo, 11, ma), YY) € Al inner-bound of [10]: If inequalitied(30) anB{31) hold, rjdy

< Pr | for some(mo, 11, my) #(1,1,1), mo#1 | I=1 uniquely decode indicesny, m;, and m,, and otherwise,

and jointly uniquely decode all four indicesi, m1, m,, t1.
(Un(mo),‘/on(ﬁlo,ml,?j’l,r)
3 Vln(mOa mh ’l’hr, tl)a Yln) EA?
for some(rg, 11, 1) = (1,1,1), £ #1

(Un(l)aVOn(lv111)7‘/171(1711171) IV. CONCLUSION
) ‘/271(17 17 17 1)5 Yln) EAgv
and ) . )
(U™ (1g), Vi (g, 1101, ), Y) € AT We examined the _non-unique decodlng_gtrategy [of [4]
+ Pr | for some (i, a1, my)#(1,1,1), me=1|T=1 where messages of interest are decoded jointly with other
and messages even when the decoder is unable to disambiguate
(U™ (1ho), V& (g, 1y, 10y, _uniquely some of thg messages which are not qf interest to
Vi (i, i, g, £1), YY) € AP it. We showed that in all known cases where it has been
for some(ing, i, iy ) = (1,1, 1), &1 £1 employed, non-unique decoding can be replaced by the classi

joint unique decoding strategy without any penalty from a
rate region viewpoint. We believe that this technique may
be applicable more generally to show the equivalence of
+ 9n(Ra+Ti+Rr—I(VoVi:Y1|U)+75(€)+6(€)) (29) rate regions achievable using random coding employing non-
unigue decoders and joint unique decoders.
In the last step, the first probability term is bounded by
on(Rot Rt Ti+Re—I(UVoVi:Y1)+72(€)+0(€)) hased on the deriva-
tion in Section[J[=C, and the second probability term is
bounded b)Qn(R1+T1+R7‘_I(V0V1§Y1‘U)"‘Vé(f)""s(e)) for similar APPENDIX A
reasons (ln the Concgional form), the details of which AlBOR ANY 6 > 0 AND JOINTLY TYPICAL TRIPLES (u",vg,vg)
presented in Appendix]E. it e (D2 [T, 07 07, 1) < 2Mpo (90 u™) FORN
It becomes clear froni(25), that the auxiliary decoder als]z)v2 REAERE (7% LiRéE E)NOUGHpV2 o (5 ")
succeeds with high probability under the non-unique deapdi
constraints of[[I0]. Similar to Subsectifn II-C, one can-con
clude that if for an operating point the non-unique decoder\We proceed along the lines of [17, Lemma 1]. Re-
succeeds with high probability, then there also exists atjoicall the codebook structure, where (iy3*(mo, so, t2)
unique decoding scheme that succeeds with high probabilignd V3'(mo, so,t3) are superposed orU™(myg,so), (ii)
One can also use the auxiliary decoder to (explicitly) devid’z" (Mo, so.t2) and Vz(mo, so,t3) are distributed into bins
the joint unique decoding scheme. Analogous to SubsectiBn(10, s0, s2) andBs(mo, so, s3) and (iii) that a jointly typ-
=C] the decoding scheme could be joint unique decoding @l pair (V3 (mo, so, t2), V5 (m, s0,t3)) is chosen randomly
mo, m1, m, in the regime where it succeeds (with high probdd €ach product bin. In the error analysis of Secfionlll-C, we
bility) and joint unique decoding of.o, m1, m,, t; otherwise. assumed all sent indices to beand we considered the event
To express the two regimes, we analyze the error probabiltfdecoding a wrong inde# (and thus an incorrect sequence
of the component (joint unique) decoder that decadgsm, V2" (mo, So,12)). We denotd/" (1, 1), V3'(1,1,1), V5'(1,1,1),
andm,.. Vo (1,1,t2) by U™, V¥, Vi, V', respectively. If1;*(1,1,1)
and V3*(1,1,%,) belong to two different binsB (1,1, sz)
and By(1,1,s5), s2 # sh, then it is easy to see that the
4 9n(Bi+Re—I(Vo;Ya|U)+0(e) relation pVZnIUnvznvng(@gﬂu",vg,vg,1) = Dypun (f;glu”)
) L ) . holds. Here we only need to consider the case wheris
whereo(e) — 0 if € — 0. Therefore, joint unique decodingg,.p, thatl*(1,1,1) and VJ*(1, 1, ,) belong to the same bin,

of mog, m1 andm, succeeds with high probability if the; o 5, 1 1 1) we assume without any loss of generality that
following two inequalities hold in addition to the |nd|recth2 —9

decoding constraints of [10].

(28)
S 2n(Ro+R1 +T1+R-—I(UVoV1;Y1)+72(e)+0(¢€))

Pr(errorj <e+ gn(Ro+Ri+Rr-—I(UVo;Y1)+0o(e))

Define the random ensemb® < C’ as the overall collec-
Ro+ Ry + R, < I(UVy; Y1) (30) tion of all sequencesl;'(1,1,,)) and (V3*(1,1,t3)), where
Ri+ R, < I(Vi:Y1|U) 31) f2 € {3;...,2"(T2—52>} andtz € {2,...,20Ts=5:)1, For a
given ¢/, define Ny (vy,v%,c’) to be the number of jointly
If either of the above inequalities does not hold, then joitypical pairs (v5(1,1,%2),v5(1,1,¢3)) for all to # 2,ts.
unique decoding ofng, m1, m, fails with high probability Similarly, givenc’ andv%(1,1,2), let No(v3(1,1,2),v%,c’)
(see AppendikF). Nonetheless, while the non-unique degodibe the number of jointly typical pair@4 (1,1, 2),v5(1,1,t3))
constraint of [[10] is satisfied, since the auxiliary decodédor all ¢3.



We now write

"N n n n
pV2"\U7lV2"V3"I(U2 [u”, vy, vg, 1)
I An|.n . n .n
= PUp Un VP T, Thy (03 u", vy, vy, 1,1)

- 2 : . ~n J,m o, n ,n
= pv2nc/‘U71V2nvgnIt271t3 (’027C |U’ 7’0251)35171)
c’eC’

-y [zo(c’lu”,v;’,v;},1,1>pvzn|m<@;|u”,v;’,vg,&
c’eC’
p(Itzzla It3:1|una vgv U§7 1751, C/):|
p(Z1,=1, Iy, =1|um, v5, v, c’)

iz o (0310 3 (el 05, 1,1)
c’'eC’
p(It2:1, It3:1|un, vy, vy, Uy, c’)
p(Z1,=1, Ly, =1|u™ vg, v§, )

32)

To continue boundind(32), we consider two cases.

1) T3 — S3 — I(Va; V3|U) < 0: We bound the fraction
in (32). The numerator is bounded from above by
disregardingy.

p(It2 - 1aIt3 - 1|u”,v§,v§,ﬁg,c/)
1
Ni(vg, v, ¢) + Na(03, 0%, ')
1
<— . (33)

Nl(vgvvgv C’)

The denominator is bounded from below by the expres-

sion in [33).

p(Zi, = 1, T, = 1|u™, 05, v}, c)
> p(Z1,=1, Ty, =1, No(V3*, v, ¢ )=0[u"™, vl v}, c')
2 p(NQ(Vva Ugv C/) = Olunv U;, Ugv C/)
X p(Z1,=1, Tp,=1| Na (V" 0%, ¢/ )=0, u™, v, v¥, c')
= p(No(V3", 03, ¢') = Olu”, w5, vy, ')
1
ACRTXD
> (1 _ 2n<T3—53>2—n<I<v2;v3\U)—a(e)))
1
* N0F 5. 0) ¢y

Comparing [(3B) and[(34) (under the assumption that
T3 — S5 — I(Va; V5|U) < 0), it becomes clear that we
have p(95 [u", vy, v}) < 2™p(d%|u™) for everys > 0
andn large enough.

2) T3—S3—1(Va; V3|U) > 0:in this case, we first re-write
expression[(32) as follows.

11

iz B S el oo 1,1

p(Z1,=1, Ly, =1|u™ vy, v, 0%, c’)}
p(Ze,=1, Ly, =1|u" v3, v, )
o “n)z {p(Itzzl,Itszl, c|u vf, o)
p(Zr,=1, Ly =1|u™ vy, v})

p(It2:17 It3:1|un7 ’Uga Ug, ’037 C/)
p(Z1,=1, Ty, =1|u™ vy, v}, )
p(c'|u" vy, vy)

= p(0%|u™
p( 2| )C§,|:p(zt2_17zt3_1|un7 ’US,’U:?)

J— — n n n ~n /
X p(Itz_LIts_Hu ,Ug, U3, U, C )

/ n n n nn
—plagln) Y | )
ot p(Zi,=1, Ly, =1|um vf, vY)

J— — n n n ~n /
X p(Itz_LIts_Hu , U2, V3,02, C )

(35)

= p(’[)”|u")p(zt2 =1,2;,= 1|un7 vy, vy, ’03)
2 p(Zy, =1, Ty, =1|um v, vf)

The following claim will be the key in bounding the
fraction in [35).

Claim 1: Let all sequenced7'(1,1,t2), t2 # 1, and

Vi (1,1,t3), t3 # 1, be picked randomly in the product
bin of interest. The event where the number of jointly
typical pairs in a row is much larger than the total
remaining number of jointly typical pairs in the bin
has a probability which decays to zero double expo-
nentially fast withn (under the assumptiohs — S3 >
I(Va; V3|U)); i.e., for some constant, 3 > 0,

Pr(N (V' vg, C') > 22H205N, (v, €)| U= ")
< ﬁexp (-Oé?n(T375371(V2;VS\U)*‘S(E))) (36)

Proof: Let N3(v§,C’) be the number of
jointly  typical pairs (V3'(1,1,3),V3*(1,1,t3)),
where 3 = 1,...,2Ts=Ss)  Obviously,

Ny (v3, vy, C") > N3(v,C’). To prove the claim, it is
sufficient to show that

Pr(Na(V20f, €521 750 5100y

< B, exp (_alzn(T375371(V2;V%\U)*J(E))) (37)

for someay, 81 > 0, and that
Pr (Ng (Ugv C/) < 2_1_"5(6)2"(%_53_[(‘/2;‘/3‘U))‘U": u")
< By exp (_azzn(T375371(V2;V3\U)fé(é)))

(38)

for someas, B2 > 0. Both of the above inequalities can
be shown using standard Chernoff bounding techniques.
We defer the interested reader to Apperfldix G. m



The numerator of (35) is bounded from above by disre- <c

gardingos.

Pr(Zy, = 1,7;, = 1|u", vy, 05, v%)
1

< ") ——————

Zp T Nl(U2=U3a )

1

:E _
[Nl(vgvvgvc/)

Un = u"} (39)

Similarly for the denominator we have the lower bound

in (4Q0).
Pr(Zi, = 1,7, = 1ju", 05, 05)

=D |porip (€ T u)

c’, vy
N n,n ,n ~n ./
XDz, 1, [Unvpvpvp o (L e’ vz, 05,05, )}

= Z pc/f/zn\Un(clv'Dgwn)
C,.,ﬁg L

1
X
Nl(Ug’vg’C/)+N2(637Ugacl)}
> Z [pC/VZnIUn(C/,f)an)

! ~n

Cc ,Ug:
N (93,05 ,¢') <2212 Ny (vF 07 ,¢')

1
X
Nl(Ug’vg’C/) +N2(637Ugacl):|

1
z : ~ —3—2nd
- [pc"é"lU"(C/’ Oy ut)2 (E)Nl(vél oY C’)]
<,y ’ ’

No (93 vy ,e) <2 T2 Ny (v 0F e')

1
— 9~ 3—2nd(e) i
CZU pCV v (C ’02|u )Nl(vgavgvcl)
2

1
= 2 Poripid ) s

cv2 7’U3,C)

N2(U;1 U;L C/)>22+2715(5)N1(Un U;L c,)

U”—u’a

U":un} , ¢>0
(40)
In the above, (a) holds becausé (vy, vy, C') > 1
(ensured by the assumption that, v}) € A”). Step
(b) holds, for any constant > 0 and large enough,
by Claim[1 as follows.
PT(NZ(V%U?,’C/) QQHM(&)Nl(U%U&C/)|Un—u )
< Bexp (_azn(T375371(V2;V3\U)fé(é)))

(2 Co—n(Ta—S2+Ts—S3—1(Va;Va|U)+5(e))

-2

(a)
—3—2nd(e
> 932 ()E[ -

/
vy UQC

_ 27372715(6) Pr NQ(‘/Q ,1)3, C/)
22+2n6(6)N1 (U27 ,Ug’ Cl)

‘U"—u ]

(b)2 3— 2n6(5)(

1
C)E |:N1 (v3,vg,C")

12

1
E[Nl(vg,vg,},C’ﬂU" =u"|
<E| mupagoy | Ut =u" }

In step (a) above, we have used the fact that S; >
I(Va; V3|U) —d(e), To > Sz, and that is large enough.
Finally, upper bounding the numerator 6f135) hy1(39)
and lower bounding its denominator Hy {40), we reach
to a factor with an exponent of order(e). Inserting
this back into [(3b), we conclude that for evefy> 0
andn large enoughp(93 [u™, v, vy) < 2™0p (0% |u™).

APPENDIXB
PROOF TOLEMMA [

We start by proving the following claim.

Claim 2: Component decoddr succeeds with high proba-
bility (averaged over codebooks) Ry + Sy < I(U;Y>), and
fails with high probability, if Ry + So > I(U;Y2).

Proof of Claim[2: Component decoddr makes an error
in decoding only if one of the following events occur:

(i) (U™(1,1),Y5") is not jointly typical. The probability of
this event can be made arbitrarily small by choosing a
large enough.

(i) There exists a pair of indicdshg, 59) # (1, 1) such that
(U™ (rng, 80), Yg") is jointly typical.

To analyze the error probability, we assume without any loss
of generality that the originally sent indices argy = 1 and
sop = 1. The error probability is thus upper-bounded by

Pr(error at component decodey

Ut s V) € 2
€+Pr (for some (i, so) £(1,1) |07 Lso=1
< e+ 2”(R0+SO*I(U;Y2)+5(€))7

IN

whered(e) — 0 if ¢ — 0. This proves that for large enough
the error probability of component decodercould be made
arbitrary small ifRy + Sy < I(U;Y3).

On the other hand, decodémakes an error if there exists
an index pair(mo, 59) # (1,1) such that(U™ (7, $0), Y5")
is jointly typical. The probability of error at decodér is,
therefore, lower-bounded by

pr( et s ) A ‘mo_lso_l) (41)

and we want to show that it is arbitrarily close fto if
Ry + Sy > I(U;Yz2). We instead look at the complementary
event, { (U™ (o, 0),Ys") ¢ AP for all (o, 50) # (1,1)},
and show that its probability can be made arbitrarily small.

(U (0, 30), Y ¢ AT |
Pr ( for all (Emg,so)?g(l 1) ‘mo—l,so—l)

= Z Pr(Yy = yy|lmo=1,s0=1)

Yy

R R n " Yn: n’
< pyp (U0, 50),93) & A7 | 2 T2

for all (1110, 40) # (1, 1) ;"(:1’
=
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. . component decoder 1 fails, component decoder 2 succeeds
Set Z Pr(Yy' = yy[mo=1,50=1) with high probability if the auxiliary decoder succeeds wit

y3eAL high probability.
n (45 o n n }/én:ygv
e 2|
0> 0 so=1 THE ERROR PROBABILITY ANALYSIS OF(22)
(SECTIONII=A)
_ n_om -~ We proceed as in Sectidn IFC. We start by splitting the
et ; Pr(Yy" = yzlmo=1,50=1) error event into two events:
Yy &
i (W™ (1,1), ™, U"(1,1,1)
JV(1,1,1),Y7") € A7,
}/2 _y27 ( and) ! )
< |7 o s0). £ A2 mo =1, b (W™ (1, o), Y1) € A7 .
(10,30)#£(1,1) 0 ' for some(m, ly) # (1,1), o
. . and
S €+Z |:PI‘(Yv2 =y2|m0=1,80=1) (Wn(ﬁl,lo) Un(m lO,ll) )eAn
vieA? for some (i, o, I) # (1, 1,1)
. (2n(R0+SO)71) n n n
< (11— garruw) } (Wn(1,1), 87, U (1,1,1)
( (Ro+5g) ) 7Vn(13171)ayln) EA?,
on o+So —1 d
< 1—(1— 2—n(I(U;Y2)+25) ~an
<e+ ( ( 6) ) P (Wn(mJo)’}/ln) EA? 71
In the limit of n — oo, we have sertr for some(m,ly) # (1, 1), -
(2n(Ro+50) _1) . andA A
lim (1 —(1- 6)2—"<1<U%Y2>+26>) (W (i, Io), U™ (1, Io, 1h), Yi7) € A7
n—oo ~ ~
for some(in, lp) # (1,1) and [y
— _ n(Ro+So) _ —n(I(U;Y2)+2¢)
i eXp{ (2 (1=€)2 )} (Wn(1,1), 8™, U™(1,1,1)
which (for any0 < ¢ < 1) goes to0 asn grows large, if Vi (1,1,1), Y1) € AZ,
Ro+ So > 1(U; Ya) + 2. m and
From Claim[2, it becomes clear that for each operating , |, (W™ (1, lo), Y{*) € A7 T-1
point, averaged over codebooks, component decoder 1 either for some(my, lo) #(1,1), o
succeeds with high probability iRy + Sy < I(U;Y2) or and
fails with high probability if Ry + Sy > I(U;Y2). In the (Wn(1,1), U”(l,l,l ), Y e A?
former case, we let the joint unique decoding scheme be that for somel; £1
of decoder, and in the latter, we let the joint unique decoding (42)
scheme be that of decodgr We prove in the following that , . .
this joint unique decoding scheme is reliable (averaged ove The first ternl in [4P) |s_b(iunded by
the codebooks) since the auxiliary decoder is reliable. (W (m, lo), U™ (m, o, 1), Yi") € AT | 24 (43)
Consider an operating point for which decodefails with for some(m, lo) #(1,1) andl; '

high probability. In such cases, we assumed the decodlﬁlgwn (m, o) was independent of; (for (m, ) # (1,1)),
scheme to be joint unique decoding of messaligs Mo, this would have been the non-unique decodmg error prob-

and M;». For this operating point, the probability of error of ability. However, the conditioning off — 1 makes this

our joint unique decoder is not exactly true. Nonetheless, this probability term idl sti

Pr(error at component decodgy “almost” the non-unique decoding error probability. We mak
- b error at component decoder tblls statement more pre(::se. LW”R, ur, ve, 7II/V” and
= and component decodérsucceeds U™ denote respectively?" (1, 1), U"(1,1,1), V"(1,1,1),
W™ (m,ly), andU"™(m,ly,11). The above probability term is
Lpe( O at component decoder upper-bounded by
and component decodérfails ( )
n(R+To+T n o-n
(@) 54 pr ( €or at component decoder 2 o Z Pypwngnz(yr, 0", a"(1),
= and component decodérfails (wr,umyi) €AY
< 4§+ Pr(error at the auxiliary decodgr and the inner pmf may be written as follows.

In the above chain of inequalitiega) follows from the Pypwnomz(yr,w", a"[1)

assumption on the operating point. Alsb,and ¢ can both = Py iz )P vz (@Y1, )pgm jnypz (W@, yy', 1)
be taken arbitrarily close t@ for large enoughn. It is (a)

now easy to see that given an operating point for which< py (@0™)(1 + c(e))py 1z (v 11)pom jwn (0" [@™)
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In the above inequality(a) follows by pyn vz (@" |y}, 1) < Q" XT(ma),Y7") € AZ

(1 + c(e))pwn (w™) (see [17, Lemma 1]) ‘and(e) — 0 as for somermn, 3& 1, and

n grows large. Standard typicality arguments then bound this @ X{l(ml).ngl (), Y1) € A?

term (for everye > 0 and for some large enough) by (1 + < Pr| for some(i, i) # (1,1), and |7 =1
c(€))2nBATo+T1) g=n(I(WU;Y) =71 (€)) (Q™ X7 (1), ST (12, Tha)

X21(m2) X5 (ma), Y") € A7

To analyze te second probability term, [6t™ and U™ ! L 1
for somerms#1, m3=1, my=1

denoteW ™ (rm, ly) and U™(1,1,1;) respectively. The second

term of [42) is bounded from above by (@™ X7 (M), Y") € A?
for somem; # 1, and
gr(RHTotT) (Q", X7 (M), X2 (1Ma), V") € A
n.n,n,n A~ + Pr for Some(ﬁ’l,l ﬁ’LQ) 7§ (1 1) and =1
X w', s, u,v L a1 ’ 10
Z Z Z yl | ) (Qn X"(ml) S (mg,mg)

(wnsnunvn n)eAn

@ AT iy e A" le(mz) X3 (ms), Y") €AY
for somerms =1, m3#1, m;=1
(an X{l(ml)v Yln) € A?
for somem; # 1, and

and we treat the inner pmf in a similar way as in Secfion]lI-C.

n n n n n ~n AN
anSnUnVnYIHWnOn'I(w 75 7u 7'U 7y17w ?u |1)

_ (wn s ou o™ n|1) (’U~}"|w" stoum o oy ]_) +PI’ (QH,X?(ﬁ’Ll),S?(ﬁ’LQ,ﬁ’Lg) =1
=t ST R o X3 (1), X (), Y € AZ
X p(a™ ™, w", 8" u vy, 1) for somermg #1, msz#£1, my=1
(44)

It is now easy to see that (e.g., s€el[17])
The first probability term of[{44) (and similary the second

p(@™w™, s" u" 0"y, 1) = p(a™|w",s™, 1) term) is analyzed below.
< (L4 (e)pypn (@), (Q, XJ(mn), Y}) € AP
Similarly, it t t that (see Appendixl A and foll for somerm, 7 1, and
_|m_|| ar Iy i furns ou ! at (see Appen and follow a (Q", X7 (1), X, (1723), Y7) € AP
similar line of argument) Pr for some(riy, ms) # (1,1), and |Z=1 | (45)
AN | ~n n .n .n n ,n . ~n|,n n _n ,n (Qn Xl (ml) S (m27m3)
p(u |’LU YW, § U,V 7y171) - pfj;(elw ) S auAvn’U 7711) le(m2) Xgl(m3)7y'ln)eA?
< 2 pU"\W"(u [w™). for somerg #1, m3=1, mi=1
Therefore, the second term of__{42) is bounded by @ X{I(ml.)’Xgl(m?)’Yln)EA?
on(R+To+T1)9—n(I(WU3Y ) —y2(€)—6(e)) for somer; # 1, 3 =1, and

One sees that the non-unique decoding constraints are- | * (@ X (mnl)’fgl (m%;m?) . =1
, X5 (ma), X5, (), YT") € AL

sufficient to drive both terms of (#2) to zero, agjoes large.
£2) 9 9 for somemsy#1, ms=1, mi;=1

(46)
APPENDIXD Q" X7 (1), X3 (13), Y1) € AZ
THE SECOND PROBABILITY TERM OF INEQUALITY(23) CAN for some 7 # 1, s # 1, and
BE MADE ARBITRARILY SMALL BY CHOOSING +Pr| (Q" X7 (1), S} (m27m3) =1
SUFFICIENTLY LARGE 2 UNDER THE NON-UNIQUE X21(m2) X5 (m3), Yi) € A?
DECODING CONSTRAINTS IN[Q] for somermqe #1, mg=1, m1=1
- . . 47
To upper-bound the second probability term of inequality o . . (47)
(23), we use union bound and inclusion of events to obtain the Q" X] (m})v Yi") e A
expression in[{44). We then show that each probability term . fgr somenm, # L, agd .
of inequality [44) can be made arbitrarily small by choosing (@™ X7 (m1.)7X31(m{5’)vY1 ) € AL
a sufficiently largen, if the non-unique decoding constraints + Fr for some 7y =1, 3 # 1, and | ZT=1
of [9] hold. Q" X7 (1), 57 (1na, i)
X21(m2) X3 (), Y1) € AZ
Q™ X1(my), Y]") € A? for somerms#1, tz=1, m;=1
for somem; # 1, and (48)
(62117 X?(ml)anl (m2) ) c _A? <2nR12nmin{R2,H(X21\Q)}2nt(X1X21;Yl\QX31)+2n5(E) (49)
for some(my,me) # (1,1), and CouR i Re ET(X :
) n n min R Q)}onmin{ Rz, H(X21|Q)
Pr| (Q" X7 (i), X§i(3), Y1) € A7 |T=1 + 2nfagrmin{fe, H(Xar Q) gn min{ e, H(Xa1|Q)}
for some(riq, mh3) # (1,1), and w 9~ (X1X21 X51;¥1|Q)+2n6(c) (50)
(Q" X7 (1), ST (12, 1in3) 4 gnRignmin{Rs H(X1|Q)}gn min{Re,H(X21|Q).H (51 X21Q)}
X21(m2) X31(m3) Yln)E'An T(X1 Xo1 Xa1:Yi
’ € -n ;Y1|Q)+2nd (e
for some (g, 13) # (1,1), 1 =1 x 27X XY@ +2no(0 (51)
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where §(e) vanishes to zero as — 0. The first inequal-  Finally, the third probability term of[{44) is bounded as
ity above is obtained by considering the different cases fufllows.

(rh1, 1h2), and using inclusion of events. In the second inequal- Q™ XT(my), V) € A"

ity, the probability terms in[{46)[(47), and (48) are bouthde f(;r somern, # ande

by (49), [50), and(31), respectively. Essentially, the\dgion Pr|@Q", X7 (1), ST (s, 1i23) T—1 (55)
follows from an analysis similar to that of (20) in Section ,XP, (o), X, (1123), Y7) € AP

[I=C] together with the bounding techniques [of [9] (where th
key is in that depending on the input pmfs and the message
rates, the number of possible combined interference segsen

for somerms#1, m3#1, mi=1
(Q", X7(m1),Y(") € A?
for somem; # 1, and

can be equal to the number of interfering message pairs, the< Pr|, ... . - g n n | IT=1
number of typical combined interference sequences, or some (? » X1 (1), 81 im%’ m?’)’lyl ) 6:415
combination of the two— se¢][9, Lemma 2 and Lemma 3]). or someriny # 1, iy # 1, 11 =
Here, we briefly outline how(46) is bounded thy](49), and we ' (56)
leave the derivation of the other two terms to the interested < 2" 2m mintfztfs Rot H(Xs1 Q) H(Xon [Q)+ s H(S11Q)}
reader. x 2~ (X1511|Q)+5(e) (57)

We start with the following bound.

whered(e) — 0 whene — 0.
Q" XT (ri1), X3 (m3), Y1) € AL
for somer; # 1, s =1, and APPENDIX E
Prf o (Qn X{L(m}% S{l(m21m3) I=1 THE SECOND PROBABILITY TERM IN(28) IS BOUNDED BY
s X3 (2), X5 (Ms), Y") € A7 on(R1+T1+Ry—I(VoVi;Y1|U)+72(€)+6(e))

for somers#1, m3=1, m;=1
: We now show that for any > 0, the second proba-
(Q", X7, X5, Y7") € A7

h 1 ¢, and bility term in (28) is bounded (for a large enougl) by

< 2" Pr (anX?ngl(mQ)nglvYln)EA? I=1] (52) on(Ri+T1+Rr—I(VoVi;Y1{U)+v2(€)+5(€)) | | et us denoteU"(l),
for somerig # 1 Vi (1,1,1), Vg (1,11,7m,), and Vi (1,1,1,4,) by U™, V§,

Using the bounding technique dfI[9], the above probabilitys’, and Vi" respectively. Proceeding as in Sectlon JI-C, we
term can be upper bounded in two different manners. gpund [28) in [(BD)(B6) at the top of Pagel 16. Note that
counting the number of different messaggs, we find inequality [€%) follows for the same reasons as in Appehdix A

(Q™, X7, X5, Y ) e A”, and
Pr [ (Q", X7, X3y (M2), X351, V") €AY | T =1
for somermy # 1

APPENDIXF
THE PROBABILITY THAT THE JOINT UNIQUE DECODER OF
mg, m1 AND m,. IN SUBSECTION[II-CIFAILS

< onR2 py <(QnaXfla X?ﬁu Yi')e A, and T = 1) We analyze the probability that a joint unique decoder fails
(@™, X7, X34, X5y, ") €AY to uniquely decode indices,, m1, m, and show that it fails
< gnR29—nI(X1X213Y1]|QX51)+2n6(e) (53) with high probability if either [3D) or[{31) is violated. Net
that
Furthermore, by counting the number of typical sequences . NN
Xun et Yy unting u ypI qu o (U"(mo), Von(mmml, mr)7 }/In) GA? 71
20 for some (1, 1, M) #(1,1,1)
(QnaX{LnglAvifln)EA?’ and >P Un(mo)vVon(mOvmlva)vifln)EA? T=1
Pr (anX{legl(mQ)nglaYln)EA? 7= =r for Some(mO,ﬁ’Ll,ﬁlr)¢(1,1,1), T?L():l - ’
for someri, # 1 (58)
and
S Z p(qnv'rgl) (Un(mo)aVon(m07m17m7”)7}/1n)6"4? _
Pr PR =
(q™,x8, ) EAD for some(rig, 71, h,) # (1,1, 1)

; U™ (o), Vg (mo, i, my), Y1) € A?
(qn’X{I’xAgl,Yin)e_A? Zprc (mO) O(mO mq m) 1) ‘I:])

n xn X (s Qr=q", for some(rig, 71, ) £ (1,1, 1), g #£1
«Pr | (€% 21(;/”2)) | X3=at (59)
7:17” Ll " S ? — ’ . -
for So,‘?ﬁeﬁ; #£1 I=1 I'F is now not hard_to see that th_e prol_oab|_I|ty term on the
< gnH(Xa1|Q)g—nI(X1 Xa1Ya|QXa1) +2n3(c) (54) right hand side of inequality ($8) is arbitrarily close toif

Ry + R, > I(Vp; Y1|U) and the probability term on the right

Putting togethel(82)[(53), and {54) results in the bolir@).(4 hand side of inequality(9) is arbitrarily close toif R; +
R, > I(UVy; Y1).
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(Un(l)v ‘/On(la 17 1)5 Vl (15 17 15 1) V2n(15 17 15 1)7 }/171) € 'A? and
(U”(Tho),VO (m07m17mT)7Y1n)€A?
Pr for some(mg, m1,m,)#(1,1,1), mp=1 and I=1 (60)
(Un(m ) VOn(mOamlva) Vln(movmlamTltl)vifln)eA?
for some(ring, 1, m,)=(1,1,1), t1 #1
(Un( )7VO (1 1 1)7‘/171(1 17171) (17171 1) Yln) € A? and

< 9Bt Bt Ty) ppe (U™(1), ”(1 ma,m,), Y{*) € A® and =1 (61)
©™(1), Vg (1,1,1), V(1,1 1,t1),Y1")6A?
< gr(RtReth) R > Z Punvpvavpy v vz (W V5, 0Pyt T3, 07 1) (62)
(u™vg 07,05, yT ) €A Ty ':

0
(u™ 08 97 )AL (U™ vy ,vl R )EA"

< 2n(R1+RT+T1) § : 2 : p(u"vf v 112 YT \1) ( \u" 'u[”f 'uf vy Yy ,1) (63)
=~ § : xp(07 |u™ vl vl vy YT, o8,1)
(u™vg 07,05, yT ) €A ~ by :
(u™, 05, y7 ) EAL (v 7'”1 W) EAL

= gt N > > plul g, o, o3yt [1)p(Eg [u)p(af [u”, vy, of, 05, 1) (64)
(U«n,US,'U?fU;L,yIl)EA" ,561 ’Dn'
(u™ 0 ,y7)EAL (u™ vl 07 ,yT ) EAL
S 2n(R1+RT+T1) Z Z Z 2n6(6) (u UO ’ 1}1 7U2 » Y1 |1) (UO |u ) ( 17.|un7 ’Ug') (65)
(um,og o7 vl YT ) EAD B :
(u™ 097 ) AL (U™ vy ,vl W) EAD
< Qn(Rat R+ T1) 9= n(I(VoVisY [U)=2(€)=6(e)) (66)
E —et Eg:Z X2, tg Un = un}
< - et2Np,—t ’ t>0
APPENDIX G Elr {et Lty Xoas | Yo = un} - u"}
CHERNOFFBOUNDS AND INEQUALITIES (37) AND (38) — -
t Pu—t
Let N = 2nTs=Ss) N = 27(T2=52) To simplify N i ‘ e 1
notation, we defineX;; to be a binary random vari- - E _Ht3:2 [e 3‘ V3L U = } Ut =u }
able which takes valu® when (V3*(1,1,4), V5*(1,1,5)) € a et2Npu—t
AZ. For example, X;; = 1 by the assurr]1vpt|on that E Hgf Q(p‘yne“r(l—p‘;n))‘ Un:un:|
(vf,v}) € AZ. Also, Ng(V2 ,vg,08,C") = D Xo, = 2 BN 2
and N3(vg,C") = Ztg 1 X3.,. Furthermore, we define . ~
pry = Pr((@3, V(1. 1,2)) € AP|VS'(1,1,2) = @5,U" = < (Lt pu(e = 1)
u™). For ¢;-typical sequencesy (wheree; < €), we have et2Npu=t
2 n(I(VasVa|U)+6(e) < vy < 2—n(VesValU)=3(9) We let .
b = 2 nI(VaVal)+69) and p, = 2-nI(VeValt)-5) 1o St =3 Then
prove Claim(1, we show that R
) Pr (NQ(VQ”, w2 o7, C) > 2Np,| U = u")
Pr (No (V3 v3,v8, C') > 2Np, |U" =u") < B1 exp(—a1Npy) v
(67) (1 +puler — 1))
for someay, 8, > 0, and < e—3+Npu
N
Pr(N3(vy,C') < $Np |U" =u") < Brexp (—a2Np;) (68) . (1 + pule? — 1))
Pu
for someas, 82 > 0. €
We start with [GF). < ereNPu(2- e?)
o 1 1
Pr (NZ(‘A/an'USavgvc/)>2Npu U’n.:un) Sﬁle 1sz7 for a1:2_627 Bl =ez.
N
—Pr( 3 Xag, > 2Np, | U = .
ol Similarly, to show[(6B) we proceed as follows.

N
Pr (Z Xo,4, > 2Np, — 1

t3=2

n __ n 1
Ul =u ) Pr (N3(U;},c') < 5 Np

U" = u")
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