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Abstract

A family of quantum codes of increasing block length with positive rate is asymptotically good if

the ratio of its distance to its block length approaches a positive constant. The asymptotic quantum

Gilbert-Varshamov (GV) bound states that there exist q-ary quantum codes of sufficiently long

block length N having fixed rate R with distance at least NH−1
q2

((1 − R)/2), where Hq2 is the

q2-ary entropy function. For q < 7, only random quantum codes are known to asymptotically

attain the quantum GV bound. However, random codes have little structure. In this paper, we

generalize the classical result of Thommesen [1] to the quantum case, thereby demonstrating the

existence of concatenated quantum codes that can asymptotically attain the quantum GV bound.

The outer codes are quantum generalized Reed-Solomon codes, and the inner codes are random

independently chosen stabilizer codes, where the rates of the inner and outer codes lie in a specified

feasible region.
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I. INTRODUCTION

A family of q-ary quantum codes [2] of increasing block length with positive rate is defined

to be asymptotically good if the ratio of its distance to its block length approaches a positive

constant. Designing good quantum codes is highly nontrivial, just as it is in the classical

case. The quantum Gilbert-Varshamov (GV) bound [3–8] is a lower bound on an achievable

relative distance of a quantum code of a fixed rate, and is attainable for various families of

random quantum codes [3, 5, 7]. Explicit families of quantum codes, both unconcatenated

[9, 10] and concatenated [11–14], have been studied, but do not attain the quantum GV

bound for q < 7 [15]. We show that concatenated quantum codes can attain the quantum

GV bound.

We are motivated by the historical development of the idea of concatenating a sequence

of increasingly long classical Reed-Solomon (RS) outer codes with various types of classical

inner codes. In both cases where the inner codes are all identical [16] or all distinct [17],

the resultant sequence of concatenated codes while asymptotically good nonetheless fail to

attain the GV bound. A special case of Thommesen’s result [1] shows that even if the inner

codes all have a rate of one, if they are chosen uniformly at random, the resultant sequence

of concatenated codes almost surely attains the GV bound. Our work extends this classical

observation to the quantum case.

We show the quantum analog of Thommesen’s result – the sequence of concatenated

quantum codes with the outer code being a quantum generalized RS code [14, 18–20] and

random inner stabilizer codes almost surely attains the quantum GV bound when the rates

of the inner and outer codes lie in feasible region (III.1) with an example depicted in Figure 2.

The property of the outer code that we need is that the normalizer of its stabilizer is classical

maximal distance separable (MDS) code [20]. Our work is closest in spirit to that of Fujita

[12], where quantum equivalents of the Zyablov and the Blokh-Zyablov bounds are obtained

(not attaining the quantum GV bound) by choosing a quantum RS code with essentially

random inner codes.

In the proof of the classical result, Thommesen uses a random coding argument to

compute the probability that any codeword of weight less than the target minimum distance

belongs to the random code. Subsequently, he uses the union bound, the spectral property

2



of the Reed-Solomon outer code, and properties of the q-ary entropy function (defined in

II.1), to prove that the proposed random code almost surely does not contain any codeword

of weight less than the prescribed minimum distance.

The proof of our quantum result follows a similar strategy, with codewords replaced by

elements of the normalizer not in the stabilizer. However the feasible region for the rates

of the inner and outer codes for the classical and the quantum result are not analogous,

because the monotonicity of the q-ary entropy function applies in a different feasible region

from that of the classical case.

The organization of this paper is as follows: Section II introduces the notation and

preliminary material used in this paper. This section lays out the formalism of concatenating

stabilizer codes, which is crucial to the proof of the main result. We state our main result

in Theorem III.1 of Section III, and the remainder of the paper is dedicated to its proof.

II. PRELIMINARIES

Let L(Cq) denote the set of complex q by q matrices. Define 1q to be a size q identity

matrix and ωq := e2πi/q to be a primitive q-th root of unity, where q ≥ 2 is an prime power.

Define 0 logq 0 := 0. Define the q-ary entropy function and its inverse to be Hq : [0, 1]→ [0, 1]

and H−1q : [0, 1]→ [0, q−1
q

] respectively where

Hq(x) := x logq(q − 1)− x logq x− (1− x) logq(1− x). (II.1)

The q-ary entropy function is important here because it helps us to count the size of sets

with q symbols. The base-q logarithm of the number of vectors from Fnq that differ in at

most xn components from the zero-vector is dominated by nHq(x) as n becomes large.

For a ground set Ω and n-tuples x ∈ Ωn, define xj to be j-th element of the n-tuple

x. Given tuples x ∈ Ωn and y ∈ Ωm, define the pasting of the tuples x and y to be

(x|y) := (x1, . . . , xn, y1, . . . , ym). When M1 and M2 are matrices with the same number

of columns, define (M1;M2) :=

M1

M2

 . For positive integer `, define [`] := {1, . . . , `}.

Define the Hamming distance dH(x,y) between x ∈ Ωn and y ∈ Ωn as the number of

indices on which x and y differ. Define the minimum distance of any subset C ⊂ Ωn to be

mindist(C) := minx,y∈C{dH(x,y) : x 6= y}.
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A code over a vector field Fnq is q-ary linear code of length n if it is a subspace of Fnq .

An additive code is a subgroup of the field under the field addition operation. A classical

q-ary linear code [16] of block length n and k generators with minimum distance of d is said

to be an [n, k]q code or an [n, k, d]q code. A classical [n, k, d]q code is maximally distance

separated (MDS) if d = n − k + 1. A quantum q-ary stabilizer code [2] of block length n

encoding k qudits is said to be an Jn, kKq code. The rates of an Jn, kKq code and an [n, k]q

code are both defined to be k
n
.

A. Finite Fields and q-ary Error Bases

We briefly review q-ary error bases [5]. Given a prime number p, let q = pk where k is a

positive integer. Let generalizations of the qubit Pauli matrices be

X :=

p−1∑
j=0

|(j + 1) mod p〉〈j|

Z :=

p−1∑
j=0

(ωp)
j|j〉〈j| (II.2)

which satisfy the commutation property XaZb = (ωp)
abZbXa for non-negative integers a

and b. We define the matrix

XaZb := Xa1Zb1 ⊗ . . .⊗XakZbk (II.3)

as a single qudit q-ary error basis element. We define a q-ary error basis on a single qudit

as the set Eq := {XaZb : a,b ∈ Zk
p}. A q-ary error basis on n qudits is defined as E⊗nq and

its basis elements have the form

Xa(1)Zb(1) ⊗ . . .⊗Xa(n)Zb(n) = X(a(1)|...|a(n))Z(b(1)|...|b(n)).

Now let t be any positive integer. Observe that for a,b, c,d ∈ Zt
p, the matrices XaZb and

XcZd satisfy the commutation relation

(XaZb)(XcZd) = (XcZd)(XaZb)(ωp)
∑t

i=1 aidi−bici .

Hence the symplectic scalar product

〈(a|b), (c|d)〉s :=
t∑
i=1

aidi − bici = adT − bcT
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quantifies the commutation relation between the matrices XaZb and XcZd. When this scalar

product is zero, we say that the vectors (a|b) and (c|d) are s-orthogonal, and the matrices

XaZb and XcZd commute under matrix mutiplication.

We now elucidate the connection between q-ary error bases and finite fields. Define

the trace function from the field Fq to Fp to be Tr : x 7→ ∑k−1
i=0 x

pi . Also let {γ, γq} be

a basis of Fq2 over Fq, where γ and γq are the distinct roots of an irreducible degree-2

polynomial over Fq. Now let a := (α1, . . . , αk) and b := (β1, . . . , βk) be dual bases of Fq

so that aTb is a size k identity matrix. Also let a,b, c, and d be vectors from Zk
p. Then

Tr((aaT )(bbT )) = Tr(aaTbbT )) = abT , which implies that

Tr((aaT )(dbT )− (baT )(cbT )) = adT − bcT . (II.4)

Given the vectors x and y in Fnq2 , the Hermitian scalar product (see (28) of [5]) between x

and y is

〈x,y〉h :=
n∑
i=1

(xi)
qyi.

When this Hermitian scalar product is zero, we say that x and y are h-orthogonal. This

scalar product is called Hermitian because taking an element of Fq2 to the q-th power is

analogous to conjugation over the complex field. For any subset C ⊂ Fnq2 , we also define its

Hermitian dual to be C⊥h := {y ∈ Fnq2 : 〈x,y〉h = 0,x ∈ C}.

The following proposition shows that if two error basis elements are to commute, it suffices

for their q2-ary finite field counterparts to be h-orthogonal.

Proposition II.1 ([5]). Let x,y ∈ Fnq2, and suppose that 〈x,y〉h = 0. For all i ∈ [n], let xi

and yi have the decompositions

xi = xi,1γ + xi,2γ
q = a(i)aTγ + b(i)bTγq,

yi = yi,1γ + yi,2γ
q = c(i)aTγ + d(i)bTγq,

where xi,1, xi,2, yi,1, yi,2 ∈ Fq and a(i),b(i), c(i),d(i) ∈ Zk
p. Then the matrices

X(a(1)|...|a(n))Z(b(1)|...|b(n)) and X(c(1)|...|c(n))Z(d(1)|...|d(n)) from the set E⊗nq commute under matrix

multiplication.

Proof. Since 〈x,y〉h = (〈y,x〉h)q and 0q = 0, we have 〈x,y〉h = 0 implying that 〈y,x〉h = 0.
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W ∈ E⊗nq

w ∈ F2n
q

w̃ ∈ Fnq2

ϕ̃
ϕ

ψ

FIG. 1: Equivalent representations of an n-qudit q-ary error basis element.

Thus 〈x,y〉h − 〈y,x〉h = 0, which implies that
∑n

i=1 x
q
iyi − yqi xi = 0. Hence

0 =
n∑
i=1

((xi,1γ
q + xi,2γ)(yi,1γ + yi,2γ

q)− (yi,1γ
q + yi,2γ)(xi,1γ + xi,2γ

q))

= (γ − γ2)
n∑
i=1

(xi,1yi,2 − xi,2yi,1). (II.5)

If γ = γ2, then γ = γq which is a contradiction. Hence γ 6= γ2 which implies that

n∑
i=1

(xi,1yi,2 − xi,2yi,1) = 0.

Let a = (a(1)| . . . |a(n)), b = (b(1)| . . . |b(n)), c = (c(1)| . . . |c(n)), and d = (d(1)| . . . |d(n)).

Tracing both sides of the above equation gives 〈(a|b), (c|d)〉s = 0, which implies that the

matrices XaZb and XcZd commute.

In view of Proposition II.1 and (II.4), each element of a q-ary error basis over n qubits

W = X(a(1)|...|a(n))Z(b(1)|...|b(n)) can be represented by the codewords ϕ(W ) := w ∈ F2n
q and

ϕ̃(W ) := w̃ ∈ Fnq2 , where for i ∈ [n],

wi = a(i)aT ,

wi+n = b(i)bT ,

w̃i = wiγ + wi+nγ
q.

We define the map ψ to take w to w̃. Let the maps ψ, ϕ and ϕ̃ act component-wise on

sets and matrices. Consequently, elements of an error basis can be studied in their different

finite field representations, with the bijective maps ϕ, ϕ̃ and ψ depicted in Figure 1.
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B. Stabilizer Codes

Given a prime number p, let q = pk where k is a positive integer. Given a subset

S ⊂ E⊗nq where ϕ(S) is an additive group with s independent additive generators, the

maximal subspace of (Cq)⊗n left invariant under the action of all elements of S is called an

Jn, n− s
k
Kq stabilizer code. The sets S, ϕ(S) and ϕ̃(S) are the stabilizers of our stabilizer code

in the matrix representation, the F2n
q -representation and the Fnq2-representation respectively.

We study stabilizer codes in the language of finite fields [3, 5].

Consider the full rank generator matrix G = (Gstb;Gx;Gz) over Fq with (2kn − s) rows

and 2n columns where the stabilizer generator Gstb = (s(1); . . . ; s(s)), the logical-X generator

Gx = (x(1); . . . ;x(kn−s)), and the logical-Z generator Gz = (z(1); . . . ; z(kn−s)) are submatrices

of G. We also require G = (Gstb;Gx;Gz) to have the properties:

1. Each row of Gstb is s-orthogonal to every row of G.

2. For all i, j ∈ [kn− s], 〈x(i), z(i)〉s = δi,j, where δi,j is the Kronecker delta.

The error basis elements corresponding to the rows of Gx and Gz are generators for logical

operations that can be applied on the stabilizer code.

We denote the additive (not necessarily linear) classical codes generated by Gstb and G

under field addition by Cstb and Cnrm respectively. The set of all elements in F2n
q that are

s-orthogonal to all elements in Cstb is Cnrm. The minimum distance of our stabilizer code

is the minimum distance of the punctured code C̃pnc := {x ∈ ψ(Cnrm) : x /∈ ψ(Cstb)} [5].

We denote an Jn, n − s
k
Kq stabilizer code with distance d as Jn, n − s

k
, dKq. The rate of the

stabilizer code is 1− s
kn

and its relative distance is d
n
.

We define a random Jn, n− s
k
Kq stabilizer code to be a stabilizer code corresponding to a

generator matrix G = (Gstb;Gx;Gz) chosen uniformly at random from all possible generator

matrices with (2kn− s) rows and 2n columns over the vector field F2n
q .

Let the rates and relative distances of an infinite code sequence of {Jn, nrn, nδnKq}n
converge to the positive numbers r and δ respectively. If

δ ≥ H−1q2

(
1− r

2

)
, (II.6)

we say that the code sequence attains the asymptotic quantum q-ary GV bound.
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C. Concatenation of Stabilizer Codes

Concatenation makes a longer code from an appropriately chosen set of shorter codes.

We consider only the concatenation of stabilizer codes. Let q = pk where p is prime.

The quantum message that we wish to encode into a concatenated quantum code is

a qK-dimension quantum state which is first encoded into an JN,KKq outer code. Let

our JN,KKq outer code be generated by G(out) = (G
(out)
stb ;G

(out)
x ;G

(out)
z ). The outer code

comprises of N blocks of dimension q complex Euclidean spaces, with each of these N

blocks further encoded as an Jn, kKp inner code. Let the j-th Jn, kKp inner code be generated

by G(j) = (G
(j)
stb;G

(j)
x ;G

(j)
z ), with G

(j)
x = (x(j),1; . . . ;x(j),k) and G

(j)
z = (z(j),1; . . . ; z(j),k) for

j ∈ [N ]. The resultant code is a concatenated code with parameters JnN, kKKp generated

by G(concat) = (G
(concat)
stb ;G

(concat)
x ;G

(concat)
z ).

We now elucidate the construction of the generator of the concatenated code G(concat)

using the generator of the outer code G(out) and the generators of the inner codes G(j) for

j ∈ [N ].

Using the notation defined in Section II A, let the letter w ∈ Fq2 have the decomposition

w = aaTγ + bbTγq where a,b ∈ Zk
p. We define the image of w over the smaller field Fp2

with respect to the j-th inner code to be the ψ(C
(j)
stb)-coset representative given by

π(j)(w) :=
k∑
`=1

(
a`x

(j),` + b`z
(j),`
)
. (II.7)

Given vectors s ∈ [N ]m and w ∈ Fmq2 , we define πs(w) := (π(s1)(w1)| . . . |π(sm)(wm)). As a

shorthand we define π := π(1,...,N). Let π also act component-wise on both matrices and

sets. Then the Fp2-representations of the stabilizer generator, the X-logical generator and

the Z-logical generator of our concatenated code are given by

ψ(G
(concat)
stb ) =

π(ψ(G
(out)
stb ));


ψ(G

(1)
stb) 0 0 0

0 ψ(G
(2)
stb) 0 0

0 0
. . . 0

0 0 0 ψ(G
(N)
stb )




ψ(G(concat)

x ) = π(ψ(G(out)
x )), ψ(G(concat)

z ) = π(ψ(G(out)
z )) (II.8)
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respectively. The Fp2-representations of the stabilizer and the normalizer of the

concatenated code are ψ(C
(concat)
stb ) := π(ψ(C

(out)
stb )) + ψ(C

(1)
stb × . . . . × C

(N)
stb ) and

ψ(C
(concat)
nrm ) := π(ψ(C

(out)
nrm )) + ψ(C

(concat)
stb ) respectively.

In this paper, we use some of the q-ary quantum codes of Li, Xing and Wang [20] as the

outer codes of our concatenated codes. The stabilizers and normalizers of these codes are

classical MDS codes in the Fq2-representation, which is not necessarily the case for other

quantum codes [19].

Theorem II.2 (Li, Xing, Wang [20] ). Let N be a prime power and K be an even integer

in [0, N ] such that N−K
2

is also an integer. Then there exists a quantum generalized Reed-

Solomon code with parameters JN,K, N−K
2

+ 1KN . Moreover, the stabilizer ψ(Cstb) and

normalizer ψ(Cnrm) of this code in the FN2-representation are classical generalized Reed-

Solomon codes (are hence classical MDS codes), with ψ(Cnrm) = ψ(Cstb)⊥h.

III. THE MAIN RESULT

Our main result is that our sequence of concatenated p-ary quantum codes asymptotically

attains the quantum GV bound. The outer code is a quantum generalized RS code with

ψ(Cnrm) = ψ(Cstb)⊥h given by [20], and the inner codes are independently chosen random

stabilizer codes. Theorem III.1 is our main result.

Theorem III.1. Let r, R ∈ Q ∩ [0, 1] be the rates of the inner and outer code respectively.

Let p be a prime number and n be a positive integer such that rn, N = prn, and 1−R
2
N ∈ Z

are also integers. Also suppose that

R < min
{

1− 2Hp2(1− pr−1), 1
}
. (III.1)

Let JnN, rRnN, dKp be a concatenated quantum code with a JN,RNKN outer code of given by

Theorem II.2 concatenated with N independent and identically distributed random Jn, rnKp

inner quantum codes. Then with probability at least 1− 1
p2−1p

−2N( 1−R
2

),

d

nN
> H−1p2

(
1− rR

2

)
− 3c(p2, 1+r

2
)

2n

where c(p2, 1+r
2

) is a continuity constant as defined in the Appendix in equation (IV.4).
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Corollary III.2. Let p be a prime and r, R ∈ [0, 1] such that the inequality (III.1) holds.

For all positive integers n, let kn = dnre, Nn = pkn and Kn = Nn − 2d1−R
2
e. Let Cn be a

code formed by concatenating an JNn, KnKNn outer code given by Theorem II.2 with Nn

independent and identically distributed random Jn, knKp stabilizer codes. Then the code

sequence {Cn}n∈Z+ asymptotically attains the quantum Gilbert-Varshamov bound.

r

Feasible Region: 0 ≤ R < 1 − 2H4(1 − 2r−1)

R

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

FIG. 2: When p = 2, the shaded region depicts the rates r and R for which Theorem III.1 applies.

We proceed to introduce Proposition III.3 and Lemma III.4, which are used in the random

coding aspects of the proof of Theorem III.1.

Proposition III.3. Let w be any nonzero element of Fnp2. Let ψ(Cnrm) and ψ(Cstb)

be the normalizer and stabilizer over Fp2 of a random Jn, kKp stabilizer code, and
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let the corresponding punctured code be C̃pnc := {w ∈ ψ(Cnrm) : w /∈ ψ(Cstb)}. Then

Pr[w ∈ C̃pnc] < p−(n+k).

Proof. Let U ⊂ F2n
p be a set of independent mutually s-orthogonal vectors. Then the

number of vectors in F2n
p that are s-orthogonal to all elements of U is p2n−|U |. Hence

Pr[w ∈ ψ(Cnrm)] =
∏n−k−1

i=0 (p2n−1−i−pi)∏n−k−1
i=0 (p2n−i−pi)

< p−(n−k). The number of cosets of Cstb in Cnrm distinct

from Cstb is p2k − 1. Hence Pr[w ∈ C̃pnc] < p−(n−k) 1
p2k−1 < pn+k.

Lemma III.4. Let W be any nonzero vector in FNq2 of weight w, and h be a positive integer

no greater than p2−1
p2
nw. Let S = π(W) + ψ(C

(1)
stb × . . . × C

(N)
stb ) be a random coset. Then

Pr [minwt(S) ≤ h] < (p2)nwHp2 (
h
nw

)p−(n+k)w.

Proof. The minimum weight of S is equal to the minimum weight of the random coset

S ′ = π((W1, ...,Ww))+ψ(C
(1)
stb× . . .×C

(w)
stb ), where W1, . . . ,Ww are the nonzero letters of W.

When h ≤ p2−1
p2
nw, there are at most (p2)nwHp2 (

h
nw

) members of Fnp2 of weight no more than

h (see [16]). Let w = (v1| . . . |vw) be any such member of Fnwp2 , where v1, . . . ,vw ∈ Fnp2 . If

w is also an element of S ′, each vi is necessarily an element of the non-trivial random coset

π(i)(Wi) + ψ(C
(i)
stb), the probability of which is less than p−(n+k) by the Proposition III.3.

Hence the probability that w is an element of the random set S ′ is less than p−(n+k)w.

Subsequently, applying the union bound on the number of w with a weight no more than h

gives the result.

Now we proceed to prove our main result, Theorem III.1.

Proof of Theorem III.1. To prove our main result, we have to find a designed distance h > 0

such that:

1. The probability that the distance of our concatenated quantum code is less that h is

negligible.

2. The designed relative distance h
nN

asymptotically attains the quantum GV bound.

We first determine a sufficient condition for Pr[d ≤ h] to vanish as n becomes large.

Now our outer code’s normalizer ψ(C
(out)
nrm ) is a classical MDS code [20] with parameters

[N,NRnrm, D]q2 where D = N(1 − Rnrm) + 1 and Rnrm := 1+R
2

. The MDS property of

11



our outer code’s normalizer implies that the spectrum of the normalizer Aw, defined as the

number of codewords in ψ(C
(out)
nrm ) with weight w ∈ [D,N ], is at most

(
N

w

)
(p2k)w−D+1 (see

the references [1, 16]). Let C̃
(concat)
pnc := {W ∈ ψ(C

(concat)
nrm ) : W /∈ ψ(C

(concat)
stb )}. Our upper

bound on the spectrum Aw, the union bound and Lemma III.4 imply that

Pr[d ≤ h] = Pr[minwt(C̃(concat)
pnc ) ≤ h]

≤
∑

W∈ψ(C(out)
nrm )

W 6=0

Pr
[
minwt(π(W) + ψ(C

(1)
stb)× . . .× C(N)

stb )) ≤ h
]

<
N∑

w=D

2N(p2k)w−D
′+1(p2)nwHp2 (

h
nw

)−n+k
2
w ≤

∞∑
w=D

(p2)−nwη,

where

η := − N

2nw
− r

(
1− D

w
+

1

w

)
−Hp2

(
h

nw

)
+

1 + r

2
. (III.2)

Now let θ = 1− D
w

+ 1
w

and observe that 0 ≤ θ < Rnrm for our feasible values of w. If η ≥ 1
n

for all w ∈ [D,N ], then Pr[d ≤ h] ≤ (p2)−D 1
1−p−2 . We will determine feasible values of the

designed distance h for which the inequality η ≥ 1
n

holds.

Since the inverse entropy function is monotone increasing on the open unit interval, it

suffices to require that our choice of h satisfies the inequality

h

nN
≤ w

N
H−1p2

(
1 + r

2
− rθ − N

2nw
− 1

n

)
. (III.3)

It suffices to have h
nN

equal to some lower bound on the right hand side of the inequality

(III.3). Continuity of the inverse entropy (Lemma IV.1) and the substitution w
N

= 1−Rnrm

1−θ

gives

1−Rnrm

1− θ H−1p2

(
1 + r

2
− rθ − 1

n

(
N

2w
+ 1

))
≥1−Rnrm

1− θ H−1p2

(
1 + r

2
− rθ

)
−
(

1

2
+
w

N

)
c(p2, 1+r

2
− rθ)

n
. (III.4)

The inequality (III.1) together with our restriction that r, R ∈ [0, 1] imply that r

and R satisfy the requirements of Lemma IV.1. Hence Lemma IV.1 implies that

1−Rnrm

1−θ H−1p2
(
1+r
2
− rθ

)
is a monotonic non-increasing function of θ. Since

c(p2, 1+r
2
−rθ)

n
is also

a monotonic non-increasing function of θ for feasible values of r and R, the right hand side

of (III.4) is at least H−1p2
(
1−rR

2

)
− 3c(p2, 1+r

2
)

2n
by setting θ to be Rnrm. We set h

nN
to be this

lower bound so that the inequality (III.3) holds, from which the result follows.

12



IV. APPENDIX : THE Q-ARY ENTROPY AND ITS INVERSE

In this section, we derive properties of the q-ary entropy function and its inverse. Since

Hq is a strictly increasing concave function on (0, q−1
q

), H−1q is a strictly increasing convex

function on the open interval (0, 1). Observe that for x ∈ (0, 1),

H ′q(x):=
d

dx
Hq(x) = logq(q − 1)− logq x+ logq(1− x), (IV.1)

(1− x)H ′q(1− x) = Hq(1− x) + logq x. (IV.2)

Since Hq(y) is a continuously differentiable function for y ∈ (0, 1− 1
q
), by the inverse function

theorem, we have that

(H−1q )′(y) =
1

H ′q(H
−1
q (y))

(IV.3)

for y ∈ (0, 1), where (H−1q )′(y):= d
dy
H−1q (y). These technical properties of the q-ary

entropy function are used to obtain Lemma IV.1 which pertains to the monotonicity of

1
1−θH

−1
q

(
1+r
2
− rθ

)
with respect to θ, and Lemma IV.2 which is about continuity.

Now define f := 1 − H−1q (1+r
2
− rθ). Observe that df

dθ
= r(H−1q )′(1+r

2
− rθ) =

r
H′q(H

−1
q ( 1+r

2
−rθ)) = r

H′q(1−f)
. We now introduce Lemma IV.1 which makes an assertion on

the monotonicity of the function 1−f
1−θ .

Lemma IV.1. [Monotonicity] Let p be prime, q = p2, and r, R ∈ [0, 1] such that (III.1)

holds. Then 1−f
1−θ is a non-increasing function with respect to θ ∈ [0, 1+R

2
].

Proof. Now d
dθ

1−f
1−θ = 1−f

(1−θ)2 − 1
1−θ

df
dθ

and df
dθ

= r
H′q(1−f)

. Hence d
dθ

1−f
1−θ ≤ 0 if and only if

(1− f)H ′q(1− f) ≤ r(1− θ). From (IV.2), we get

(1− f)H ′q(1− f) = Hq(1− f) + logq f =

(
1 + r

2
− rθ

)
+ logq f.

Thus (1− f)H ′q(1− f) ≤ r(1− θ) holds if and only if r ≥ 1 + 2 logq f , the latter inequality

of which holds because of (III.1).

Lemma IV.2. [Continuity] Let x, y ∈ (0, q−1
q

) where the integer q is greater than 2 and

x > y. Then H−1q (y) ≥ H−1q (y)− (x− y)c(q, x), where our continuity constant is

c(q, x) :=

(
logq(q − 1) + logq

(
1

H−1q (x)
− 1

))−1
. (IV.4)

13



Proof. The convexity and continuous differentiability of H−1q on the unit open interval imply

that H−1q (y) ≥ H−1q (x)− (x− y)(H−1q )′(x). Use of (IV.1) with (IV.3) then gives the result.
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