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Abstract—A transmission scheme based on the Alamouti code, channel gains at both the transmitters (i.e., global CST'hg
which we call the Li-Jafarkhani-Jafar (LJJ) scheme, was reently  desired Signa|5 were retrieved by Simp|e Zero-forcing_
proposed for the2 x 2 X Network (i.e., two-transmitter (Tx) two- In a recent work by Li et al.[[6] an IA scheme for

receiver (Rx) X Network) with two antennas at each node. This . . .
scheme was claimed to achieve a sum degrees of freedom (DoF) 0(2’ 2,2)— X Network using the Alamouti code and appropriate

£ and also a diversity gain of two when fixed finite constellatins channel depgndent precoding was proposed. In this scheme,
are employed at each Tx. Furthermore, each Tx required the each transmitter needs the knowledge of the channel from

knowledge of only its own channel unlike the Jafar-Shamai jtself to both the receivers (i.e., local CSIT) whereas,he t
scheme which required global CSIT to achieve the maximum Jafar-Shamai scheme, global CSIT is needed. This scheme,

possible sum DoF of?. In this paper, we extend the LJJ scheme . . .
tothe 2 x2 X Neth)rk with four antennas at each node. The which we call the LJJ scheme, claimed to achieve the sum

proposed scheme also assumes only local channel knowledgd®OF of (2,2,2) — X Network which is equal ta. However,
at each Tx. We prove that the proposed scheme achieves the[6] assumed the channel gains to be independently distabut

maximum possible sum DoF of<. In addition, we also prove as circularly symmetric complex Gaussian. Also, the proof
that, using any fixed finite constellation yvith apprppriape rotqtion of achievability of the sum DoF of2,2,2) — X Network is
at each Tx, the proposed scheme achieves a diversity gain of a . .
least four. incomplete. We present a complete proof in Secfion]II-B of
this paper with the assumption that the real and imaginantg pa

of the channel gains are distributed independently acogrdi
to an arbitrary continuous distribution like in the Jaféragai

The problem of capacity region of Gaussian interferensgheme. Further, the LJJ scheme also achieves a diversity
networks has been open for decades except for a few spegaih of two with node-to-node symbol rate <§f complex
cases!([1],[[2]. In the course of pursuit of capacity region afymbols per channel use (cspcu) where, the complex symbols
general Gaussian interference networks, researcherdleave are assumed to take values from a fixed finite constellation.
led into approximating their capacity regions (see for eglem  In this work, we extend the LJJ scheme (2,4) — X
[3]) and their sum-capacities. A popular way of approximgti Network using Srinath-Rajan (S-R) space-time block code
the sum-capacity of a Gaussian interference network iggusi(STBC) which was proposed for the asymmettig 2 single
the concept of degrees of freedom (DoF). The sum DoF o$er MIMO system([7]. The S-R code possesses a repetitive
a Gaussian interference network is said todod the sum- Alamouti structure upto scaling by a constant. This makes it
capacity can be written aslogaSNR + o(log2SNR) [B]. A convenient to adapt the LJJ scheme&202, 4) — X Network.
K x J MIMO X network is a Gaussian interference networkVe prove that the proposed scheme achieves the sum DoF of
where each of the/ receivers (Rx) require one independen{2, 2,4) — X Network which is equal td3—6. This scheme also
message from each of th&€ transmitters (Tx). Henceforth, requires only local CSIT like the LJJ scheme. Furthermore,
a K x J MIMO X network with M antennas at each nodeunder a more practical scenario of fixed finite constellation
shall be abbreviated ag¥, J, M) — X Network. The sum inputs, we prove that the proposed scheme achieves a djersi
DoF of (2,2, M) — X Network was studied in_[4],[15]. In gain of at least four.
[4], it was shown that a sum DoF Qf‘%J is achievable in ~ The contributions of the paper are summarized below.
a (2,2, M) — X Network while the work in[[5] shows that « We provide a complete proof of achievability of sum DoF
a sum DoF of}L is achievable. FurthermoréX! was also of £ by the LJJ scheme (see Theoriem 3 in Sedfionlil-B).
proven to be an outerbound on the sum DoRDQ2, M) — X « We extend the LJJ scheme(®, 2,4) — X Network using
Network [5]. The transmission scheme in [5] that achieved the S-R STBC. It is proved that this scheme achieves
this sum DoF was based on the idea of interference alignment a sum DoF ofil (see Theorerfil5 in SectidnllV). The
(IA). We shall henceforth call this scheme as the Jafar-3tham  proposed scheme requires only local CSIT while the
scheme. Jafar-Shamai scheme requires global CSIT to achieve the

The concept of IA forM > 1 involved linear precoding same sum DoF.
using a3-symbol extension of the channel in such a way « We prove that the proposed scheme also achieves a
that the interference subspaces at the receivers overldp wh  diversity gain of at least four (see TheorEi 4 in Section
being linearly independent of the desired signal subspitus. V) when fixed finite constellations are employed at the
assumed constant channel matrices and knowledge of all the transmitters. Simulation results show that the diversity

I. INTRODUCTION


http://arxiv.org/abs/1304.1432v1

gain of the proposed scheme is strictly greater than fowutput symbols ovel” time slots are related as

The paper is organized as follows. Sectioh Il formally P 2
introduces the system model. A brief overview of the Jafar- Y; =4/ ZHWX + N

Shamai scheme fqR, 2,4) — X Network and the LJJ scheme
for (2,2,2) — X Network along with a complete proof of thewhere, Y; € CM*T denotes the output matrix at Rx-
sum DoF achieved by the LJJ scheme is given in Se€fibon I, < (chT denotes the input matrix at Tx-such that
Extension of the LJJ scheme f(&, 2,4) — X Network based [ [tr (XXH)] < TM, H;; € CM*M denotes the channel
on the S-R STBC is described in Secﬂl_o__ri IV. Simulation resulinatrix between Tx-and Rx5, N; € CM*T denotes the noise
comparing the proposed scheme with the Jafar-Shamai schefgrix whose entries are i.i.d. distributed @4/(0,1). As in
and the time division multiple access (TDMA) scheme ang], we assume that the entries of all the channel matrices
presented in SectidnlV. We conclude the paper with Sectigfe independent and take values from arbitrary continuous
VIl probability distributiofl so that they are almost surely full
Notations:The set of complex number is denoted®yThe rank. Specifically, for the diversity gain evaluations, we a
notationCA (0, 0*) denotes the circularly symmetric complexsume that the channel matrix entries are distributed ak i.i.
Gaussian distribution with mean zero and varianéeFor a CA/(0,1). The channel gains are assumed to be a constant
complex numbetrr, the notationz denotes the conjugate ofover the transmitted codeword length. All the channel gains
z. The real and imaginary parts of a complex numbeare are assumed to be known to both the receivers (i.e., global
denoted bya”™ anda’ respectively. The trace of a matrit  CSIR), and this will not be specifically mentioned hencéfort
is denoted by {r4). For an invertible matrix4, the notation The average power constraints at both the transmitters are
A~ denotes the hermitian of the matrik—!. The i row, assumed to be equal . The achievable rates and sum DoF

7™ column element of a matrix is denoted byu;;. Thei™  of (2,2, M)— X Network are defined in the conventional sense
row and thei™™ column of a matrix4 are denoted byA(i,:) [5].

and A(:, i) respectively. The Frobenius norm of a matrixis
denoted by |A||. The identity matrix of sizex x n is denoted I1l. BACKGROUND - JAFAR-SHAMAI SCHEME AND LJJ

by I,,. The Kronecker product of two matrice$ and B is SCHEME

denoted byA® B. A diagonal matrix with the diagonal entries In the first sub-section we shall briefly review the Jafar-

1)

given by ai,as,--- ,a, is denoted by dia@y,as, - - -, an). Shamai scheme from J[5] and in the second sub-section we
The notationvec(A) denotes the vectorized version of thghall review the LJJ scheme from [6].
matrix A. A. Review of Jafar-Shamai Scheme (@r2,4) — X Network

The Jafar-Shamai scheme f@, 2,4) — X Network aligns
the interference symbols by precoding oved-saymbol exten-
sion of the channel, i.e1’ = 3. Each transmitter transmits
complex symbols to each receiver oechannel uses so that
a sum DoF 0f§ is achieved. The input-output relation over
a 3-symbol extension of the channel is given by

Il. SYSTEM MODEL

Tx-1 Rx-1

! j ll 3P Vi
w, S =1/ Z ( “;H Xik> +N, (2
. . 1 lk 1k)

w,, l\/lj H.. EM where,Y] € (C”Xl denotes the received symbol vector at Rx-
Hy; 0 0O
j over3 channel usesH;;, = | 0 H;; 0 | denotes the
s o ffecti hannel matrix bet ee?1 'li>ar?d RxH%jover3 channel
h effective ¢ iX betw 3
w,, 1 j “ ll uses,V;, € C12%4 denotes the precoding matrix;;, € C4*!
X : v denotes the symbol vector generated byiTreant for Rxk,
w,, V 2 H,, : z and Nj € C™*' denotes the Gaussian noise vector whose
M lM entries are distributed as i.i.dN(0,1). The entries ofX;;
take values from a set such that[X..X)] = I.. The

precoders/;;, are chosen as given below.
F/ F/ F/ !
Vii=E"V", Viao=E" V5",

-1 -1
The (2,2, M) — X Network is shown in Fig[Jl. Each Vor = H'yy HiyVin, Va2 = H'yy Hi3Vio
transmitter Tx¢ has an independent messagg; for each | _ _ _ .
We consider a complex random variable to have a continuonisapility

receiver Rxj, .Wherei’j =1,2. The _message generated bY.Iistribution if its real and imaginary parts are indeperidend distributed
Tx-i for Rx-j is denoted byW;;. The input symbols and the according to some continuous distribution.

Fig. 1. System Model.



where, EF' ¢ C'2*!2 denotes a matrix whose columns are

the eigen vectors of the matrix’ = H'; Hy H'sy His, o P
Vi =L e[1107, andVd =1, ®[10 1)7. With the above Y1 =4/ THuVqul +14/ TH21V21X21

choice of precoders, the interference symbols are aligndd a 3P L L
@) can be re-written as 44/ a2 + 51’32 a:c12 ba3, Ny
4 |0 axiy+ bri, azi, + bxl,
3P
Y! =/ —= (H{; Vi1 X11 + Hy, Vo1 X where,a = ——L—— andb = ——-———. Let the ef-
2 Vu(HEL HGT) Vu(Hy Hy™)

+H11Via (X12 + X22)) + Ny fective channel matrices corresponding to the desired sjsnb
3p f[om Tx-1 and Tx2 to Rx-1 be denoted by = H;;V7; and
Y, =4/ 5 (H15V1a X190 + HbyVag Xoo (3) G = Hy Vs respectively. Define & x 3 matrix Y’ whose
, first, second and third columns are given by
+HoVin (X114 Xo1)) + N

It is proved in [5] that the above scheme achieves a sumy’(: 1) =y (;,1), Y'(:,2) =Y (5 1), Y'(:,3) = Y(;,3). (5)
DoF of 1 in the (2,2,4) — X Network almost surely when
the channel matrix entries take values from a continuou§imilarly, define the matrixV; obtained fromN;. Denote

probability distribution. the i" rows of the2 x 3 matricesY; and N| by Y/ (i,:) and
Ni(i,:) respectively; = 1,2. The processed output symbols
B. Review of LJJ Scheme at Rx-1 (i.e., Y{) can be written as
In the LJJ transmission scheme @, 2,2) — X Network, A A
every transmitter transmits two superposed Alamouti codes hihiz g gz 00 xil
with appropriate precoding in three time slots, i€.,= 3. T hi2 —hi1 g1z —hin 1 0 Th
Each Alamouti code corresponds to the symbols meant fo[ (; )} = % ﬁo ﬁo AO AO 8 —01 i%l
each receiver. The transmitted symbols are given by _15_), et M2z gm 922 7
v ha2  —ha1 g2z —ha1 0 1 I
! 0 0 0 0 1 0 2
N'T(1,:)
. - + ’ (6)
3P x z2, 0 0 = —x2 {N'T@ 1)}
X, =4/ | v 11 11 Vi 12 Lo 1%
! 4 H rh =z, 0] the 0 3, =zl Ny
—_————— —_————
X11 Xi2 - - R
where,l; = axj,+bzy, andly = axt,+bas,, andh;; andg;;
-l 5 - 1 —5 denote the entries of the matricBsand G respectively. Note
3P 31 —x5; O 0 z32 —w3, N R .
Xo=\7 | V22 |2 o1 0 +Vi2 o 22, i || that whenh;; andg;; are non-zero, the interference symbols
- 2 - —_— 2 I, andI; are aligned in a subspace linearly independent of the
Xz Xz2 signal subspace. So, pre-multiplying the mafriX (defined
in ®)) by the zero-forcing matrix given by

where, :zrk takes values from a set such thaﬂx = 1.

bl

The matrlcesX”, as defined above, correspond to the symbols 1 00 0 0 0
generated by TX-meant for Rx4. The matrix entrleST 01000 -1
denote thek™ symbol generated by Tk-for Rx-j. The F= 001 01 0 Y
precoderd/;; are chosen as 00010 O
1 4 yields
Vilm e Vi = ——
tr (H12 1]¥12 ) tr (H11 1H11 ) @ }312 g11 G12 37%1
Hy, Hy, ; i Gia —h 2
Vor= —— 222 V=72l ) Py = 3P lhiz  —hn 912 —Ahu Tl L ENT (8)
tr (Hy,' Hay'') tr (Hy,' Hy,™) 4 ?21 h?2 g1 g2 21
o ) haz  —har g2z —hor| L2
The coefficients in the square roots above make sure that the
R

transmitters meet the average power constraint. Note that a
the channel matrices and the precoders2ar@ matrices. The Now, note that decoding the symbols i (8) is similar to

above choice of precoders and the usage of Alamouti codicoding symbols in a two user MAC with double antenna
concatenated with all zero columns align the interfereyoe-s transmitters and a double antenna receiver. Heqce, [6] snake
bols while ensuring that the interference subspace isrijpeause of the interference cancellation procedure for MAC [8]

independent of the signal subspace. We briefly describe htwachieve low complexity symbol-by-symbol decoding. This

this happens at Rx: The output symbol matrix at Rx-is procedure is described below.

now given by Denote the sub-matrices @, defined in[(B), by



continuously distributed or not. Further, note that theadaf
Shamai scheme assured a sum DoF% offhen the entries of

H, = [E haz , Gy = P“ g}i} (9) the channel matrices are distributed i.i.d. according tmeso
fuz  —hu g2 mon continuous distribution and not necessadly/ (0, 1). We now

= |:}:121 i‘fi} G = {gzl §a2 } (10) re-state Theorefn 2 and also provide a complete proof.
hoo  —hoi |’ 22 —g21]’ Theorem 3:When the entries off;; are distributed i.i.d.

, i ) according to some continuous distribution, the matgixde-
Denote the first two entries and the last two entries ofitkd ¢ i [@) is almost surely full rank.

1 ~ ~ H H H 7
vectorF_Y1 by 71 and g, respectlyely. Similarly, denote tI/rSt Proof: See AppendifA. -
two entries and the last two entries of the< 1 vector F'N;

by 7, and iy respectively. Let We propose an extension of the LJJ schemgi@, 4) — X

Network in the next section.

g G - G50 = IV. S-R STBC BASED TRANSMISSION SCHEME FOR
Hél(l,:)H Hé2(1,:)H (2,2,4) — X NETWORK

\/@ [ GH i1y GH T, } xél a In this section, t.h.e LJJ sche_me is extend_edmj?,zl) -X
T TA a0 AP Lﬁj Network by exploiting a repetitive Alamouti structure (apt
HGl(l")H HGQ(L‘)H scaling by a constant) in the S-R STBC. This transmission
i scheme is proved to achieve the sum DoF(2f2,4) — X
Gy G iz Network, and a diversity gain of at least four when fixed finite
"@1(17:)"2 HQ(L:)H?' constellations are used at the transmitters. The S-R STBC
proposed fort x 2 single user MIMO system ir_[7] is given

Note that the matrixl also has an Alamouti structure and®y (I2) (at the top of the next page) whesé denotes the'"

hence,z!, and 22, are symbol-by-symbol decodable. Simi£omplex symbol generated by the transmitter, & (0, 2).
larly, %, is decoded at Rx; andz*, and z%, are symbol- Note that8 complex symbols are transmitted4rchannel uses.

by-symbol decodable at Rx-for k& = 1,2. The following If 8 complex symbols are transmitted from each transmitter
theorem, given as Theoreinin [6], states the diversity gain t0 every receiver in6 channel uses in thg2,2,4) — X
achieved for each symbol. Network then, a total 01%6 complex symbols per channel use
Theorem 1: [6] A diversity gain of2 is achieved forxf_, iS transmitted. Th|S iS done Using the S-R STBC as fO||OWS.
for all 4, 5, k. The transmitted symbols are given by
A sum DoF of# is achieved in thg2,2,2) — X Network
with probability one if the effective channel matri® in (8) 3P
and a similar effective channel matrix at Rxare full rank Xy = 4 (Vin X1 + Va2 X12)
almost surely. The following theorem, given as Theorzin 3P
[6], claims that matrixR is almost surely full rank. Xo =/~ (VarXon + Va2 Xo2)

Theorem 2: [6] When the entries offd;; are i.i.d. dis- . . .
tributed asCN(0,1), the matrix R defined in [(8) is almost where, .the matrl‘ceéfil and X Z\re given in[(1B) and.(14)
respectively, fori = 1,2, and z%; take values from a set

surely full rank. ) ij
The proof given in[[B] for the above theorem goes as followsuch thatE Uivf,\ } = 1. The matricesX;; correspond to
“The equivalent channel vectors fo}, andz? are orthogo- the symbols generated by Exmeant for Rxj. The matrix
nal, i.e., the first two columns @t are orthogonal to each otherentrieSxfj denote thek™ symbol generated by Tkfor Rx-j.
and so are the last two columns Bf Further, the equivalent The choice of precoderig; is the same as in the LJJ scheme,
channel vectors of¥, (i.e., first two columns ofR) depend i.e., given by [(#), where the channel matricds; are4 x 4
on the matrices?,; and H,», while those ofr4; (i.e., the last matrices. The output symbol matrix at Rxis given by
two columns ofRR) depend onH,; and Hos. Almost surely,
the equivalent channel vectors of each data stream areliinea
independent and separable at R¥ke., the matrixR is full Y1 = \/:(HuVuXu + Ha21V21X21)
rank almost surely).”
Note that the matrix? is full rank iff the subspaces spanned \/@ ( ! X190 + ! X22> +N;
by the first two and the last two columns Bfdo not intersect. tr (H'H " tr (Hy,' Hy"
We find that it is not obvious from the facts mentioned in the
proof of Theoreni R in[6] that these subspaces do not intersetere,Y; € C*<5. Note that the third and the sixth columns
almost surely. This is because the random variables in thte fiof Vi1 X11 + Va1 X21 are zero. This shall be exploited for
two columns are dependent and so are the random variabifgsrference cancellation as follows.
in the last two columns. So, it is not clear what distribution Define a matrixy] € C*** obtained by processiny; as
the determinant ofR follows or specifically whether it is follows.




YR _ 2R M e]i@ $OF 4 j5T1) ejg (—sOF + js8T)
‘ §2R —i—js‘” | sIR —js3l 9 (sOR +j881) oo (S5R —js”) (12)
oo (S7R +js51 oo (_S8R +j561) §3R +js” _ 4R +j521
el (8R4 jsO)  edf (sTR — jgol) sAR 4 g2l §3R g
A 0 ) ot o
O I i S vl WP v UG s (13)
Coln izl Claraim) b st e
L7 (23 + jafl)  e? (aff —jad) 0 i+ JT R 0]
[0 @it + gy —at a0 e (a2 +galy) e (—alt + jaly)]
Xig = 0 ‘0:61221%7; jx.gs[ 0 x%QRST%jx?.QI 61 0 e (??JEQR +j133182]) " (ﬁ%R B jxf?) (14)
0 € éxm +J$i2§ el” (=2 +jz) 0 Tip" + )T —Tiyt 1T
0 & (i +jad) &0 (2l —jal) 0 2l +ja it — jaly
i.i.d. CN(0,2). The matricesX/, is defined in a similar way
Yi(:1) = Yi(s 1), (15) 8SXiy fori=1,2. N
Y{(:3) = Yi(:,4) (16) We now proceed to evaluate the diversity gain achieved
1, 7 T by the above scheme when fixed finite constellation inputs
Yi(1,2) = Y(1,2) - 1(2,3), (A7) are used at the transmitters. Towards that end, we have the
Y{(2,2) = Y1(2,2) + Ya (L, 3), (18)  following definition from [10].
Y{(3,2) = Y1(3,2) — ¢/*'Y1(4,3), (19) Definition 1: [10] The Coordinate Product Distance (CPD)
i i i _ R 5.1 — R0
V{(4,2) = Y1 (4,2) + ¢/*V1(3,3) (20) ?etween any tvxli_o ;tlgnal p(tanfis'[f rz:g _+jdu f_an((jjv =vttju,
Y/(1,4) = Yi(1,5) - 2Vi[36), 21) or u # v, in a finite constellatiors is defined as
Y{(2,4) = Y1(2,5) + *Y1(1,6), (22) CPD(u,v) = |[u"t — o [u" =0T
Y1(3,4) = Y5 ~Yi(4 23 . . : o
1,(37 ) 1(3,5) — Y1(4,6), (23) and the minimum of this value among all possible pairs is
Yi(4,4) = Y1(4,5) + Y1 (3,6). (24)  defined as the CPD dS.

Note that, in [I5) and(16), the first and the fourth columns We assume that each symbof; takes values from a

of Y; are retained without further processing because they diftite constellation whose CPD is non-zero, for alf, k. As
interference free. These are interference free becaudirshe observed in[[10], if a finite constellation has a zero CPD,
and fourth columns of;, are zero, for = 1,2. In (I7)-(20), it can always be rotated appropriately so that the resulting
the interference term associated with the second colunif of constellation has a non-zero CPD. Now, define the difference
is canceled using the third column f. Similarly, in (21)- matrix AXZ %2 by

(24), the interference term associated with the fifth column

of Y7 is canceled using the sixth column Bf. Note that the

conjugation and scaling of terms in the R.H.S.[ofl (I7)}H(24) i
volve only the third and sixth columns &f . This interference o
cancellation procedure does not affect the desired symbbls? K2) Of the matrix ;. _ o
because the third and sixth columnsiaf X11 + Va1 Xa1 are _The. fO||0YVIng lemma shall be useful in establishing the
zero. Note that the LJJ scheme f@r 2, 2) — X Network also diversity gain of the proposed scheme. .
involves similar interference cancellation procedureutito it Lemma 1:There exists? such that the difference matrix

ki,ka ; ..
was explained through zero-forcing of aligned interfeeiic  2Xi; is full rank for all &, # k; and for alli, j.
SectionI-B. Proof: See AppendixB. ]

Now, the matrixY; can be re-written as Henceforth, we shall assume thatis chosen so that the
, , , ) difference matrixAx[;***2 is full rank for all k; # k, and
Yi = HiuVin Xy + Hn Va1 Xo + N (25)  forall i, j. We shall assume that ML Decoding &, and X},
where, X/, is given by [Z6) (at the top of the next page), fots done from[(2b) and ML Decoding of}, and X3, is done
i =1,2, andN] € C*** is a Gaussian noise matrix whosdrom a similar processed received symbol matrix atR¥-he
first and third column entries are distributed as i.Cd/(0,1) diversity gain of the proposed scheme can be obtained from
while the second and fourth column entries are distributed #e following theorem.

1 kike R 7 ko
AXIR = xR XL

where,X{j’“1 andX{j’“2 denote two different realizations (i.e.,



1R | ;.31 2R | . Al 0 (5R | .71 0 6R | ;.81
i+ Jw T3+ )T el éxil +jall) el (—afft + jaf])

9R | i AT 1R _ i 31 0 (6R | i 8T JO (BRI
X = ‘0551'17;'}@1151 o i Sijil 61 ¢ 3561%1 +]1€i1) ¢ (%11}}2 ]:Czl}l) (26)
; ; . o ! ) B :
€ (%‘1 +ﬂ7i1) e ( oyt + jall) i Tipw +JTi

i0 (,.8R | ;.61 i0 (TR _ :..51 AR | ;.21 3R ;.11
e’ (x'l "'3517'1) e’ (xil —inl) Tiw + x5 L1 — J%;1

Theorem 4:The average pair-wise error probabilii; for where,Y € CM*! denotes the output symbol vectdt, €
the pairs of codewordéX{l’“,Xél’”) and (X{l’“ll,Xgl’“é) is CMxM denotes the channel matriQ ¢ CM*M denotes
upper bounded as the precoder matrixX € C*! denotes the transmitted
symbol vector, andV € CM*! denotes the Gaussian noise
vector with the entries distributed as i.i.dA(0,1). The

P, ((X X ’”) - (X’ Moy ’“2)) < P4, _ . . . :
oo o =¢ signal to noise ratio at each receive antenna is denoted by

for some constant > 0. SNR andE [X# X]| = M. The transmitted symbol vector
Proof: See AppendiXC. m is given by X = [z; 22---2n]" Where the symbolse;
Hence, using the union bound on the average probability @ke values from a square QAM whose average power is
error given that a particular symbol is transmitted and gisinaken to be equal to one, for = 1,2,---, M. Let the
Theoreni#, we obtain that ML decoding &, and x5, from singular value decomposition &f be given byH = UDV#
(28) gives a diversity gain of four. where,U and V' are unitary matrices of sizd/ x M, and

We shall now evaluate the DoF achievable using the pr&®- = diag(\1(H), A2(H), - , A (H)) with A\ (H) > X2(H) >
posed scheme. For the DoF evaluation we do not assume any> A (H).

restriction on the value of. The precoding matrix) is given by@ = V P where,P €
Theorem 5:The proposed scheme can achieve a node &> . Multiplying the received vecto¥” by U# we have,
node DoF of% and hence, a sum DoF éf with symbol-by-
i , " [SNR ,
symbol decoding. Y'=U"Y =4/——DPX + N
Proof: See AppendixD. [ M

Thus, the proposed scheme achieves the sum DoF wdiere, N’ = U* N has the same distribution a5 The matrix
(2,2,4)— X Network using local CSIT while the Jafar-ShamaP for M = 4 is given by
scheme requires global CSIT.

In the following section, we shall present some simulation Pi(1,1) 0 0 Pi(1,2)
results comparing the probability of error performancelsf t [ 0 }
proposed scheme with other schemes using finite constellati
inputs.

1 ( b
0 P(2,1) P(2,2) 0
P1(2,1) 0 0 P1(2,2)
where,P;(j.k) denotes thg™ row, £ column element of the
V. SIMULATION RESULTS matrix P; given by

In this section, we present some simulation results that
include comparing the error performance of the proposed p;, = \/ﬁ
scheme for(2,2,4) — X Network with that of a TDMA
scheme, and the Jafar-Shamai scheme. In the TDMA scherhlee values ofr;, ¥;, andd; are selected based on the matrix
the channel is used half the time by one transmitter while tiHé The selection of values of these variables is involved and
other switches off. When Txdis switched on, half the time is hence, the readers are referred[tol [13] for details. Siipilar
allocated to transmit to each of the receivers. To ensurér a fior M = 2, the matrixP is given by
comparison, we assume TDMA with CSIT, and the symbol
vectors meant to be transmitted are precoded using the full
diversity precoders proposed in [13] for single user MIMO

system with square QAM constellation inputs. Among the class of precoders having a real maffix the

We shall briefly review the precoding technique proposed §hove choice o was shown to be approximately optimal in
[13] for single user MIMO system. We shall call the prECOd%inimizing the ML metric given by

as S-R Precoder. Consider a single user MIMO system with )
|SNR
Y'—/——DPX
M

cost; cosh; —cosy; sinb;
sin; sin®;  siny; coso;

},fori:l,z

P = /o2 COS13 COY3 —COSYs Sinfds
T V4T3 | sinys sids  sints cods |

M transmit andM receive antennas. Full CSIT and CSIR are

assumed. The channel is assumed to be quasi-static ané all th i (28)
channel gains are distributed as i.i@\V(0,1). The channel
model is given by Further, the precoders were proven to achieve full diversit
We first compare the error probability performance of the
v — SNRHQX+N (27) LJJ scheme with the TDMA scheme using S-R Precoder in
M the (2,2,2) — X Network. Such a comparison was not done



in [6]. The value ofSNR in the S-R precoder is set @ to 8-QAM input so that the achieved spectral efficiency8is
account for time sharing. In the LJJ scheme we perform Maits/sec/Hz per transmitter. We have get 7 in the modified
decoding of the symbols directly from the processed recei® R STBC scheme, and the constellations are rotated by an
symbol vector'Y;” given in [8) rather than symbol-by-symbolangle ¢ = 22 to ensure a non-zero CPD_[10]. It was
decoding as described in Sectionll-B. The transmitted-syrshown in [7] that the difference matrices of the S-R STBC

bols in the LJJ scheme are decoded using the sphere deceglgrfyll rank with6 = Z and¢ = w when 16-QAM

[14]. Since each transmitter achieves a rate;afspcu andl  inputs are used. Since, tHeQAM constellation is a subset
cspeu in the LJJ scheme and the TDMA scheme respectively,the 16-QAM constellation,AX{-k“kz is full rank for all

we use8-QAM constellatiod input for the LJJ scheme and, k, and for all4,j. Hence, by JTheorerﬁ] 4, a diversity of
16-QAM constellation input for the TDMA scheme usingfour is assured for the modified S-R STBC scheme. It can
S-R Precoder so that the spectral efficiency achieved ishe observed from Fig]3 that the TDMA scheme using S-
bits/sec/Hz per transmitter. Figl 2 compares the Word Errgpr precoder with16-QAM input outperforms the modified S-
Probability (WEP) of the LJJ scheme witsrQAM input R STBC scheme witt8-QAM input. Hence, like in the LJJ
with that of the TDMA scheme using S-R Precoder with  scheme, the sum DoF superiority of the modified S-R STBC
QAM input. The TDMA scheme using S-R Precoder clearlycheme for(2,2,4) — X Network over the TDMA scheme
outperforms the LJJ scheme inspite of the higher constatlat doesn't translate to superiority in terms of WEP when finite
size because the former has a diversity gaintafhile the constellation inputs are used, even at low valuesPoiNote
latter has a diversity gain that is strictly greater tHamut that the diversity gain offered by the TDMA scheme using S-
lesser thar3. Thus, the sum DoF optimality of the LJJ schemg precoder is6 whereas the modified S-R STBC scheme has
does not translate to a better WEP performance comparedyfpassured diversity gain of only Fig.[3 however shows that
the TDMA scheme with finite constellation inputs, even at lowhe diversity gain offered by the modified S-R STBC scheme
values of P. is strictly greater thart.

TDMA using
S-R Precoder with —
16-QAM Input

Jafar-Shamai Scheme
with 8-QAM Input
Trivial Alamouti Repetith

10 I Seheme with 8-QAM Input

with ML Decoding

and 8-QAM Input Modified S-R STBC

with 8-QAM Input

WEP
WEP

TDMA using S-R Precoder
with 16-QAM Input

10k : : : : : \n N -4

-6
10 L L L L L L L 5| j j j j j
16 18 20 22 b i%]4dB 26 28 30 32 10 14 16 18 zod 2 2 %
PindB

Fig. 2. WEP of LJJ scheme witht QAM input versus WEP of TDMA using Fig. 3. WEP of modified S-R STBC scheme wighOAM input versus
S-R Prgcoder with 6-QAM input at a spectral efficiency ef bits/sec/Hz per W%P (')f TDMA using S-R Precoder with6-QAM at a sgectral (—Fz)fficiency of
transmitter. 8 bits/sec/Hz per transmitter.

A similar result is observed with the proposed scheme for the precoding technique in [13] however applies only to
(2,2,4) — X Network which we term as the modified S-Rsquare QAM constellations which can be written as a Canesia
STBC scheme. Here, the TDMA scheme achieves a rate (Bbduct of two PAM constellations. Also, optimizing the pre
2 cspeu per transmitter. Sphere decoder is used to deced@er to minimize[(28) for a single user MIMO system while
the transmitted symbols frorl (25) in the modified S-R STBGssuring a particular diversity gain for arbitrary coristinns
scheme. We simulate the TDMA scheme using S-R Precogdeian open problem. In such a scenario, there is no guarantee
with 16-QAM input and the modified S-R STBC scheme withhat TDMA with some precoding would surely outperform

°Here, we take3-QAM constellation input to be the Cartesian product of the L1J scheme fq2, 2,2) — X Network or the modified S-R
4-PAM constellation that constitutes the real part an2-BAM constellation BTBC scheme fo(2,2,4) — X Network at all values of.
that constitutes the imaginary part. Moreover, the TDMA scheme achieves integer rates ecgpcu



and2 cspcu per transmitter in th@, 2,2) — X Network and
the(2,2,4)— X Network respectively whereas the LJJ schen
and the modified S-R STBC scheme achieve fractional rates
% cspcu anc% cspcu per transmitter respectively. So, equatir
the spectral efficiencies for WEP comparison requires tlee L
of higher QAM sizes than what are used in Hig. 2 and Eig.
Further, the decoding complexity, even with sphere deapdir
is enormous for higher constellation sizes for the LJJ sehel
and the modified S-R STBC scheme. Hence, it is not feasit
to compare the WEP performance of the LJJ scheme and
modified S-R STBC scheme with the TDMA scheme usin
S-R Precoding with higher QAM sizes.

We now compare the WEP performance of the modified !
R STBC scheme with the Jafar-Shamai scheme. We shall a
observe the importance of selection ®fso thatAXZ’Jk1 k2
is full rank for all k1,k, and for all i j Let us call the
scheme that use8 = 0 and ¢ = fan (2) as the trivial
Alamouti repetition scheme. It is easy to observe that, with
same constellation used for all the symbols and wien0,
AX’ *1:k2 s not full rank for somek, ko, for all 4, j. Thus,

Fig. 4.

Modified S-R STBC
with 4=QAM Input

Trivial Alamouti Repetition Scheme
with 4-QAM Input .

Jafar=Shamai Scheme
with 4-QAM Input

15 17
PindB

27

WEP of modified S-R STBC scheme versus Trivial Alarhout

Theoreﬂ is not applicable for this case. For Convemen(f@pgtltlon and Jafar-Shamai scheme Wi)AM input at a spectral efficiency

the scheme that usés= 7 and ¢ = % is termed as
the modified S-R STBC scheme. In the Jafar-Shamai schem=
MAP decoding of the desired symbols frofn (3) reduces to M

decoding of all the symbols at high values Bf[15], i.e.,

of 18 bits/sec/Hz per transmitter.

3P y|
(X11, X21) = arg_min Yy — T(HilVllel 10
K11, Xz1, Xazt Xoz Modified S-R Code ™
with 4=QAM Input
+Hi Va1 Xo1) + Hi1Viz (X12 + Xa2)||?
3P 107%
Xig, Xo) = Ys — /= (H12Vi2X
(2, Xo) SR, 1y |12 7V g (V2 Xs ;

+H42V22X22) + HipVin (Xa1 + X21)| !2 .

Hence, as noted in_[15] sphere decoder can be used wl
QAM constellations are employed. F[d. 3 and . 4 compa
the WEP of the modified S-R STBC scheme with that ¢
the trivial Alamouti repetition scheme and the Jafar-Sham
scheme, using-QAM inputs and4-QAM inputs respectively.
It can observed from Figd3 and Fifj] 4 that the modifie Ve s 1w 12 14 1 18
S-R STBC scheme clearly outperforms the trivial Alamou
repetition scheme and the Jafar-Shamai scheme.

In all the figures, the modified S-R scheme is found to Of'fGHig 5. WEP of modified S-R STBC with BPSK input at a spectréitieghcy
a diversity gain that is strictly greater than For additional ©f 3 bits/sec/Hz per transmitter.
clarity, the modified S-R scheme is plotted with BPSK inputs
in Fig.[§ which also shows that the diversity gain is strictly
greater thant. Intuitively, the modified S-R scheme achieve¥ith the Jafar-Shamai scheme, the proposed scheme has

full receive diversity while the transmit diversity is afted reduced CSIT requirements. Moreover, the proposed scheme
because of precoding. was proven to achieve a diversity gain of four when finite

constellation inputs are used. Simulation results confirme
VI. CONCLUSION that the proposed scheme performs better in terms of error
A new transmission scheme based on the S-R STBC war®bability when compared with the Jafar Shamai scheme.
proposed for thg(2,2,4) — X Network as an extension of An interesting question that remains to be addressed is
the LJJ scheme for the, 2,2) — X Network. The proposed - what is the maximum diversity gain achievable at a sum
transmission scheme was proven to achieve the sum DoFrate of 3 8 cspcu and16 cspcu in the(2,2,2) — X Network
the(2,2,4) — X Network which is equal td— In comparison and (2, 2 4) — X Netvvork respectively? Another interesting

20



direction of research is to identify similar schemes foresth where, hggi_) denotes theij!" element of H;,'. Clearly,
values ofM so that the sum DoF of2,2, M) — X Network tr(H;,'H;,”) is non-zero almost surely because
can be achieved with lesser CSIT requirement comparedt¢#;,' #;,¥) = 0 would require all the entries ofi,'
the Jafar-Shamai scheme along with full receive diversiiyng to be equal to zero. Fromi (B0) we have,

when finite constellation inputs are used.

- 1 -
APPENDIX A hi2,,his,) = ——————, andhizy,h;,)) = 0.

PROOF OFTHEOREM3 tr (Hip' Hip'™)

Proqf: We_ do not attempt a direct prc_Jof for showing th?"‘rhis necessitates thatz,, = 0 as his,, # 0 almost surely.
the m_atan is full rank as the det_erm!nant EXPression 1§jowever,his,, # 0 almost surely. Thusy;;,, cannot be equal
complicated. Instead, we shall prove it using some infolmnat 4 zero with non-zero probability. Hencg,; is also non-zero
theoretic inequalities and exploit the interference caten 5jmost surely. -
procedure given irf(11). First, note that the entries of hie® | emma 3:1f at least one of the entries in both the matrices

vector N7’ in (8) are i.i.d. with the first and last entries beingg (defined in[(T1L)) and? (defined in[(2D)) are non-zero then
distributed a€ (0, 1), and the second and third entries beinghe matrix R is full rank.

distributed as’ A/'(0,2). We now consider a modified system  p ot Note that /7 and ¢ are Alamouti matrices. If at
. . !
model where, a Gaussian noise vecld’ is added tol(B) SO g5t one of the entries in both these matrices are non-zero

that the entries of the effective noise vector [ (8) shall hgen poth the matrices are full rank. Using chain rule for
distributed as i.i.dCA/(0,2). Henceforth in this proof[{8) is yy¢al information and data processing inequality, for any
considered to be an equation with this extra ng\g€ added. fyad value of channel matrices. we have

The vectory in (1) is also assumed to be derived from the
vector in [8) with the noiseéV{” added. Define the vectar,

.. . I 1 2 1 2 'FY”
similar to g in (I1), as (@11, 27, 31, 35 FY,']

= I[x%lvxithqu +—I[x%1,x§1;F}Y’|x%1,x%£
Al g, Al g, > 1 [zy, 2815 9] + 1 [2hy, 2315 2| 21y, 2] (31)
N 2 |~ 2 = I[aly, 22, 9] + I [z}, 22:5].

“}11(17:)H "112(170” (71, 2715 7] (231, 7315 2]

z=

Assume that the symbols},,z? ,z},, and 23, are dis-

[T H (7 H 1 . . i 1
= ,/% Ay’ Gy 5 - Hy G - Bgl} (29) tributed as |.|.d.CN(O,1H). Note that the covariance matrix
] ] : g R 28k
HH1(17:)H HHz(lvt)H A of the noise vectors—1™t_ _ 9272 gnd _fim
Téanll”  [léa.0]] |[E0]|
G A agy ; 1 1
s . —2"2 are given by2|( = - I, and
L Afm g e o oven by2 (o + e )

HHl(l,:)H2 - HHQ(L:)H2 ).[2 respectively. From Lemmal 2,

1 + 1
[an|” | A2a]]” _ o
these covariance matrices are well defined, invertible and

hence, can be whitened. Now, if and G are full rank then,

following exactly the same steps in Sectiér2 of [9] we

We now have the following useful lemmas.
Lemma 2: The vector norm%‘él(L :)H andHI?ll(L :)H are

almost surely non-zero. hav@

Proof: We shall prove the statement only fH(}‘l(l, :)H ave,
and the proof forHﬁl(l,:)H is similar. To prove this, it is I [21,,27,;9] = 2 log(P) + o(log(P)), and
sufficient to prove thaf;; Is non-zero almost surely. Note I [231,231;2] =2 log(P) + o(log(P)). (32)

that g1, is given by
Suppose that the matrik is not full rank. Then, following

g11 = ha1,,v11,, + ha1,,v11,, - the same steps in SectiG of [9] we have,

Condmone(_:i on thg random matrb(llA an.d the random vari- [5511755%1,55%175551;1’1/1"] = d log(P) + o(log(P)) (33)
able hoy,,, if v11,, IS non-zero theng;; is non-zero almost

surely. This is because the continuously distributed rendavhere, d = rankR) is strictly less than4. However,
variablehy,, is independent 0¥, andhsi,,, anduyq,, just from B31) and [(3R) we haveJ [z1,, 271,231, 25:; FY!'] >
scaleshay,, while hay,,v11,, Shifts the mean. Thus, ifj1,, is 4 log(P) + o(log(P)). This contradicts[(33) which states that
almost surely non-zero thed,; is also non-zero almost surely.! [z1;, 23, z3,, z3,; FY{'] grows asd log(P), whered < 4.

This is explained as follows. Suppose that,, is zero with Hence, the matrix? is full rank. [ ]
some non-zero probability, and consider such events. Sinceemmal3 states that, in order to prove Theolgm 3, it is
Vip= —2"12 e have sufficient to show that both the matricés and G' contain at

tr(H HT)
3The effective chanrllel matrices1 used while following thepsten Section

o o aGY 1. 1
tr <H121H12H> {Zi;ll ZBH} { (1) %311?) = {(1) ﬂ (30) 3.2 0f [9] should bex; 2 H andX, 2 G, whereX; and; are the covariance
21 22] |hig, [ Py, matrices of the noise vectors associated withand G respectively.



least one non-zero entry almost surely. We shall prove thifmost surely is similar to that faff. Thus, at least one entry
statement only fol and the proof ford is similar. of the matrices and GG are non-zero almost surely. Hence,
Since(, is an Alamouti matrix, its columns form a basis fofrom Lemma[3, the matrixg is also full rank. [ |

the two dimensional vector spa€g over the field of complex
numbers. Hence, the first column &f, can be written as a
linear combination of the columns @f;. The entries of the .
first column of G¥ 1, are equal to the dot product of the two ~ Proof: We shall prove the statement f(_mg‘_X{lE (ie.,
columns ofG; with the first column of;. Hence, the first ¢ = J = 1) and the proof for othe\ X;; are similar. Define
column of G 1, is a non-zero vector ift/; and I, are both the sub-matrices oKy, by

non-zero matrices. From Lemra 2, this is true almost surely.

APPENDIXB
PROOF OFLEMMA [1]

[.1R - 31 2R - AT
Letf A= [Tl FITa —Tin +J{Uz'1]
) it el al = g
~ ~ a - . = . . .
crm-[; | [ @ el (e )
b T (@l ) e (@B~ ali)
— = —_— = . P TR - 51 j0 S8R - 61
where,a = g h1~1 +~§12h12, andb = g11h12 — gi2h11. Since the C = eje (xélR + Jxéll) e]jg(_xﬁ% +‘J:§§1 ):|
first column of G H; is a non-zero vector almost surely, one L€ (@i +jail) e (@ - jaii)
of the following must be true almost surelft) a # 0,b =0, D= 1’211; +j£vé1j —%;Z;R +J'£§§1I]
(2) a =0,b#0,0r(3)a+#0,b# 0. We now consider [T FoTin T - T
the casen # 0,b = 0 to prove thatd contains at least one , A B . . .
non-zero entry almost surely. so thatxi, = c b Now, consider the difference matrices
Since H = Hy,V11, we have AX{, such thatAA # 0, AB # 0, AC # 0, andAD # 0.

The determinant oA X{, can be written as

a = g11 (h11y, 115, + P11,,V110, ) + G12 (h111, 01175 + hlllgvllgg) {AX’ { ™ ’AD ACAAAAB’ -
1| = -

Denote the entries o A, AB, AC, andAD by

= hﬁu (g?vun +§12U1112) +jh{111 (g?vun - §12U1112)

+ hﬁm (0110112, + §1271155) +jh{112 (G11v112, — 91271157 -

(39 AA = {“1 ‘_“_2} AB = ¢ {“3 __“_4]
Clearly, if a # 0 then, at least one among the coefficients of a2z @ a4 a3
hEhiy, hf ki, in @4) is non-zero. Without loss of AC = o0 {as —_a_e‘] AD — {M —_a_s] _
generality, consider the coefficient f} to be non-zero. as a5 as a7
Now, let o —
Now, we haveA A~ = — 1 Z_; a‘f , and the product
GHH, = |< d_ matrix ACAA~'AB is given b at the top of the next
2 d —c g y p

page). Note that the product matixCAA~'AB cannot be a
zero matrix because each matrix in the product is an Alamouti
matrix.

Clearly, |AA] # 0. From [3T), for|AX{,| to be non-zero,
B — = . there must exist such thaiAD — ACAA™'AB| is non-zero.
¢ =My (92101100 + G22003) + iy, (9210110 = §2271002) e now prove the existence of sucl§.aDenote the elements

+ hily, (G210115, + 220015;) + 11y, (G210110) — §22vnzz()3-5) of the product matrixACAA~*AB by 7% {‘; __B} . We now
a
have

where,c = Garhar + Goshaz, andd = Gathas — Goshai. Substi-
tuting for hy; and hoa, ¢ can be written as

The first row, first column entry of is given bym -
1 5

m. Note thata depends on the random variali§ |AD — ACAATIAB| =
2 9

while ¢ depends on another independent set of random vari- 2 3% (et ma b 1B 9 (1 4 2
ablesh®_  hl,,  hf%, andnl, . Sincen® ., is continuously 471" Flasl”—e (a7 + @ar + bag + as ) + €77 (Jof? + o)
Qistributed and independent of other ran_dom variabledveed The above equation is quadraticd®® sinceACAA~'AB #

in (34) and BB)’H@M?:)HZ ~ GaoP 'S hon-zero almost o, Therefore,|AX},| can be equal to zero for at most two

zero almost surely conditioned on the fact that 0. Similarly for ¢*° while there are only a finite number of difference

it can be proved for the other cases, i®.= 0,b # 0, and Matrices, there always existssuch that’Athl’l”’ # 0, for

a #+0,b # 0, that at least one entry df is non-zero almost all k1, k.

surely. The proof that at least one entry Gfis non-zero  Now, consider the difference matricesX{,**"** such that
at least one among the difference sub-matrites AB, AC,

ag — e92%p a7 — eI29g

|:a7 —ei?q  —ag+ ej2eﬂ ‘

“Note that the set of Alamouti matrices are closed with respeaenatrix
multiplication [&]. 5We have suppressed the supersckiptks for convenience.



_ ; 1 a1a3a5 — 20405 — A1040¢6 — 2030 —G10A405 — A20305 — G1A306 + A204Q
ACAA-TARB — 920 . _ 10305 — 020405 — 010406 20306 1a4as5 20305 156 + A20405| (34
|a1]? 4 |az|? |@104T5 + Gza3a5 + Trazas — a2a406  G1A305 — 020405 — 010406 — A20306

and AD is a zero matrix, fork, # ko. Since we assumed UAUY where,U is a4 x 4 unitary matrix formed by the eigen
that each symbot¥, takes values from finite constellationsvectors of K/, and A = diag(\1(K"), A2(K'), A3(K"), \a(K"))
whose CPD is non-zerdh A = 0 iff AD =0, andAB =0 denotes the matrix whose diagonal entries are ordered eigen
iff AC =0[0]. If AA=AD =0 then,AX},,""* is full values of K’ with X\, (K’) > Aa(K’) > Xs(K') > M(K') > 0.
rank ask, # k, implies thatAB # 0, andAC # 0. Similarly Denote a square-root matrix ok’ by K'z, i.e., K’
AX}"F2 s full rank whenAB = AC = 0, for ky # ko, K'3K'3" where, K’ = UA%. The vectorH’ is now sta-

B tistically equivalent to the following vector

APPENDIXC

1
PROOF OF THEOREMHZ] géfll
Proof: Consider a modified system where a Gaussian H" = K’%Hz
noise matrix is added t@_(R5) so that the entries of the affect K'Y H,
noise matrix in [(2b) are distributed as i.i.dA(0,2). The .
average pair-wise error probability for this modified systs Where, H; € C*%, i = 1,2,3,4, are Gaussian vectors
given by whose entries are distributed as i.i@dN(0,1). Now, (38)

can be successively re-written as [n](41)}(47) (given at the
Wk RV top of the next page) wherd, (42) follows from the statistica
Fe ((Xilkl’kaz) - (X“kl’ka )) = eqpuivalence bet?/vegeg{’ andé}%, @) follows from the fact
/ > that ||A||?> = tr(A# A), and follows from the definition
E |:Q (P \/||H11V11AX11 + Ho1 Vo1 AXon || /2):| (38) of KlJ/%” Now,(defin)e K/ IKEQ-)AXﬂvlﬁ) (AXEVE)H and
Ky = (AXLVE) (AXAVE)Y so thatK’ = K} + Kj. Let
A; (K1) denote the eigen values &f; in non-increasing order
from j = 1to j = 4 . Using Weyl's inequalitie@ (see
Section 1.2, pp.62 of [11]), we have);(Ki) < X\ (K'),
i = 1,2,3,4. Thus, we have the inequalit_(46) frorh {45)
where, H;(j) denotes thej™ entry of the vectorH,. Let
K| = UA U denote the eigen decomposition @f;
where, A1 = diag(\1 (K1), A1 (K3), M (K3), M (KL)), andUy is a
|[H11Vin AX 1y + Hor Vo AXo || = unitary matrix composed of eigen vectorsfof. Equation[(4l)
H follows from the fact that the argument inside the Q-funttio
in (6) is independent affy,. Let the singular valye decompo-
sition of AXT, Vi be given byAXT VL = U; A7 ViH. Note
H' that AXT, V{4 is a square root matrix of(; and hence, we
[(AXﬂVf{ ® 14) vec(Hi1) + (AXQQV;{ ® 14) vec(Ha1)| . shall denote this byq%. Now, (48) follows from the fact that
(39) the distribution ofH is invariant to multiplication by the uni-
Note that, conditioned o0#l;5 and H,s, the vectord’ defined tary _matrix V1, and using s_traight-forward _s_implificationiwe
in (39) is a Gaussian vector with mean zero and covarian(():gta'.n (51). Now, let the eigen decomposition/si; AX
H H
matrix K given by be given byA)(_'uAX11 = Unxy Aaxi Unxy, where,AAX_n
denotes the eigen value matrix whose eigen values in non-
increasing order are given by; (AX11), j =1,2,3,4. Note
K= (40) that Ay (AX1;) > 0 as @ was chosen such thahX;; is
full rank. Now, substituting this eigen decomposition [il{5
(AXﬂVf’{) (AXEVE)HJF(AX;VQJ;) (AX%VQ{)H ©1,. We have[(5R). The inequality (53) follows from the fact that
A4 (AX7q1) is the minimum eigen v?lue af X1, and [54) fol-
. lows fromVi; being equal t% and the fact that the
In other lwords, when the successive elementszif are distribution of V1, is invariant to 1rzﬁulltzipfication by the unitary
grouped in blocks of four entries each, the blocks are di

. . . A atrix U becauseH, is Gaussian distributed). Usin
tributed i.i.d. as Gaussian matrix with zero mean and cevafﬁ] axi 12 ) 9

. . ™H N
ance matrix given byK’ which is defined in the R.H.S of the eigen decomposition ofVi1)" Vii = Uv;,Avy, Uvs,

(4Q0). _SII’]C&K Isa po_S|.t|ve semi-definite Hermman matrix, let SWeyl's inequalities relate the eigen values of sum two of riféian
the eigen decomposition of the matr&’ be given byK’ = matrices with the eigen values of the individual matrices.

where, AXy;, = X{," — X[\, AXo = X5, — X4,*2, and
P’ = 32 Note that eitherA X1, # 0,AXz =0 or AXyy =
0,AX21 # 0 ofr AXy1 # 0,AXe1 # 0. We shall prove the
statement of the theorem only for the cas&’; # 0, and the
proof for the rest of the cases are similar. The Frobeniusno
in 38) can be re-written as

(AX1T1 Vi ® 14) vec(H11) + (AXQTl Vil @ 14) vec(Ha1)| x

K’/
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and some straight-forward techniques involved in evahgati symbols:c;’; are defined in[{62). Considering the last two
diversity as in [[12], we obtain[{$8)). Now, note that the columns ofY]’, an equation similar to[{60) involving the

eigen values o/, are given by symbolsz% can be written, fork = 3,4,5,6 andi = 1,2.
1 We however avoid it for the sake of brevity. We now proceed
A (Viy) = %Hli) to prove thatz/}, /3,27, and /5 can be recovered using
ZFl N ED interferenc (/:/ancellation as follows.

| Yy ) — i -
where, \; (H,;) denote the eigen values off;; in non- Let z; = |77/t |, fori = 1,2, 3, 4. The interference cancel

. . Lio .
increasing order fronj = 1 to j = 4. Thus, \; (V4;) can lation is performed in three steps.
be lower bounded as Step 1: Define the symbols obtained by eliminating the

1 symbolsz4, and 2% from b
Yo M(Hu) Y 2 (€0) by
A(Vin) 2 =~ — = 7% (Hip)
i=1 Xa(Hi1) =i ML o Giz Gz
1= - .
For j = 1, the above lowerbound is equal ti) and for lIG2(L, )12 ”Glg")”Q
j = 2,3,4 the above lowerbound is in turn trivially lower- 2= Gi'2s - Giz _ (63)
bounded by). Hence, we obtain the inequality in {%8), and ||G3(Hv-)|| ||G1(I}v:)||
the approximation m[(BiB):) holds good at high values d?, o= Giza  Gra
Ga(1,9)]? G1(1,:)|]*
where the constant = m ] [Ga(1,)|? (G (1,2)]]
APPENDIXD The symbolsz{, 24, andz} can be written as
PROOF OFTHEOREM[G B
Proof: We shall employ an interference cancellation pro- i/ﬁ
cedure similar to that used in the LJJ scheme in SefionlI11-B 2 Hy Hy Gy |om )
to achieve symbol-by-symbol decoding. The symbdisare 22 = g; ZZ g; 28 T Wy (64)
assumed to be distributed as i.i@dA(0,1). We now need 3 3 311 ah
to decodeX;, and X}, from (28) with symbol-by-symbol x5y
delcodmg fV)\(/(/a shdall deél:OdtT the first two and the last tVWhere the Alamouti matrice8! € C2*2, for i = 1,2, -- -6,
columns ot4;, Independently. G € C?*2, for i = 1,2,3, are defined in[{85), ané[zl’[/1

Consider a modified system where a Gaussian noise ma@gxl
N/ is added to[(25) so that the entries of the effective noise
matrix in (28) are distributed as i.i.d N (0, 2). The matrixYy
defined in[[2b) is now taken to be a matrix with the nalég
added. Denote the effective channel matrices fromlTand L L
Tx-2 to Rx-1 by H = Hy1Vy; andG = Ha, Vay respectively. 2= Cf? 2 Cfl A
Define the matrice$/ and G by 1G2 (LI Gl

denotes the relevant Gaussian noise matrix.
Step 2: Define the signals obtained by eliminating the
symbolszy; andzfy from 2! (defined in [EB)) by

" GéHZIIS GllHZ{
7 —1r7—H\ £ -1 Z2 = Iel NIEERIEs A2 (66)
H = \/tr (Hy' Hy,") H = Hy Hy, [ACDIEREATI
= 1 A _ The symbolszy, 24, andz{ can be written as
G = \Jtr (Hp' Hy,"') G = Hy Hy,'. (59) y 2 3
Define a processed received symbol matfjx € C*** by zh
— 2 _ [HY HY| |z "
V(1) = Y{(,1), ¥1'(2) = V(5 2) = ] [ e ©7)
YI(3) = Y{(:,3), ¥{'(:,4) = Y{(:,4). il
Now, the first two columns o¥’ can be re-written as where, the Alamouti matrice’, fori = 1,2, 3,4, are defined
in 68), andW{’ € C**! denotes the relevant Gaussian noise
ryt ] r/l ] matrix.
yﬁ; 3 Step3: Finally, define the signals obtained by eliminating
Yy, Hi Hs Gi1 Gs ““"1;1 the symbolse); andz7§ from 2/ (defined in [66)) by
" /7
U | = | e G2 Col T LN (60)
Y1 1 H3 H7 GS G7 To1 H//H / H//H "
yh Hs Hs Ga Gs x? S — _ 4 22
152 21 1 "1 3 H (L)
. < I i{( .)|| I 1l
/8 " ! " 1 1
. o - | ~ T [t e
where, H; and G; are defined in[{61) (at the top of the next sl A
page), fori = 1,2,---,8, and Nj” € C3<! is a Gaussian where, W{” € C?>*! denotes the relevant Gaussian noise

vector whose entries are distributed as i.ilV(0,2). The matrix.



H = ]}11 B}i H— h21 hao Hs— f:L31 fALAsz CH = hai iljtz 7
|12 —hu hos  —ha hz2 —hs1 has  —ha
[ i}, 30, . 30}, 30 . 30}, 30 F, . 30,
e T T e N B I - N ()
e hiy —e 7%hi3 e 7%hos  —e ?%has e 7"h3s —e 7" hss e hyys —e 7hys
Gy = [ _gii}, G = [?21 _gfi], Gy = [gi _g?i], Gi = [gi _gfiy
|G12 g11 go22 g21 Js2 gs1 a2 ga1
[ €953 %414 e Gos &% Goa %33 €% G4 e’ Gus e’’ 944
Gs= | € 913 9 Qe = . Gy = 934 | o= | € 043 )
T e —e s ¢ e —e % T e %Ga —e%Gss) " T €70 —e s
x;i = :EZJ +]ZL’?]I, IE;? = :EZJ _|_in1]17 ‘T;j = :EZJ +J:E21f7 ‘T;AJL - _xL] +.]x?]1
x’r? = xr] +.]:EZJ7 x’r? = _xL] +.]xZJ7 ZL’Z = xr] +.]xZJ7 x’r? - _xL] +.]x§JI (62)
, G H, G H, , G H; G Hy ,  Gi'H, G{'H,
- - ) 2 — - ] 3 — -
[|G2(1, 9[> [IG1(1, )] [1Gs(1, )7 [IG1(1, )] Ga(L)I? (G (1, )]
g GYHs  Gi'Hs ., GYH. _ Gi'Hs ., GYHs __Gi'H ©5)
4= - , 15 = - , He = -
[|G2(1, 9[> [IG1(1, )] [1Gs(1, )7 [IG1(1, )] Ga(L )2 (G (1,9
o - GH G GHGs o - GH @G, GHGs o - GHGg GHas
1 — - ) 2 — - ) 3 — - .
[1G2(1,9)[]2 [IG1(1, )] [1Gs(1, )12 [|G1(1, )] Ga(L )2 (G2 (1,9
- Gy'Hy  G'H] - Gy'Hy  G'H] - Gy'Hy  GYH) " Gy'Hg  GYTH,
G (L )l12 [1GL(L, )2 1G5(1, 9112 IG1(1, )2 G (L )l12 1GL(L, )2 [1G5(1, )2 HGE(L:)H(ES

A S|m|Iar |nterference cancellation algorithm involviniget

the matrices//; and H; whereasH;’ and Hy do not depend

symbols 2%, and %, for & = 3,4,5,6, can be written on hs;, for j = 1,2,3,4. This crucial observation shall be

starting from the last two columns oY” The proof for epr0|ted t0 show that the first row, first column entry of the
1" 1H 1"

decodmg these symbols with van|sh|ng probab|lrty of errqhatnx[ " Hy Ay 1y ] is non-zero. Thefrrst row, first

HH”(l )\\2 B HH”(l )\\2

af; and af;, for k = 1,2,7,8, and hence, we avoid the(77) respectively. SmcH Huvll,the entries off are given

details. To prove that the proposed scheme achieves a nagles,, . — =S hu,on,,, fori,j = 1,2,3,4. Conditioning
L i Al

to-node DoF of3 almost surely, it is sufficient to prove thatgn all the random variables eXC@@Ilgl and substituting for

at least one of the first column entries of the Alamouti matnfg in (1) we have[(713) which is re-written as {74), where

H// H// H
[HH”(l E T HH”(l,.)2H2 is non-zero almost surely. This is. are functions of the conditioned random variables. Note
//H " 1H 17
because |f[HH,,<1H)H2 - Hg,,(lH)H2] is a non-zero Alamouti that the expression dizi” #y'], | in (Z2) and||H{(1,:)[|* are

matrix then, at least one among the matndéﬁ or HY i
a non-zero Alamouti matrix. Hence, f”

with vanishing probability of error then clearly, frorh {67)
\Lj}sl can also be decoded with vanishing probability of error.
11
e shall now prove that the first row, first column entry o

H//HHN HNHH// .
THIAO? ~ THG, )H2 is non-zero almost surely.

Subst|tut|ng forH’ in (€8), the matricedd;’ can be written
as in [70). Define the matrices; € C2*2 andF € C?*2 as
in (Z0). Denote the entries of the matricEs by

€6 :|

[6_1 _} B = [_ 64_] s = [_ o
ey —eq1 €4 —e€3 €6 —€s
Similarly, define the entries of the matricés, i = 1,2,3.
Note that the matrice$?{ and H{ depend onhs; through

Ey

independent ohi1,,, for all j. Now, the coefficients ok} :

can be decoded @nd hm1 in (Z4) are given by and —p respectively where

p=e"[(lea]? + le2]?) Tris 011, (75)

+ e [(lex]? + leal?) va1,, 7155 -

rf p is non-zero then, clearlyfy is a non-zero Alamouti matrix
and hence||Hj(1,:)||? is also non-zero. We now have the
following useful lemmas.

Lemma 4:At least one among; ande, (considered now
as random variables) are non-zero almost surer

Proof: It is easy to prove that

é o IS a
non-zero Alamouti matrix almost surgdly

Srnce E

"The proof for this is on the same lines as that of Lenitha 2 given i
Appendix[A.



'H H 1H 1H
HY = ,G2 . G S Hr — ,G 2 2H6+< ,Gl s — T 2) 5 Hs,
1G5(1, )12 TG (1, )] 1GA(1, )] ||Gz Bl EATBI ||G O] ||Gl O]
Eq Eq
" Gy Gy G G G’H
HY = — Hs — — H +< - )
L TIGROENIGS L ) NIGh (A, >||2||G2 ||2 PTG )R IGS(, )P ||G1 ||2 i,
GIH GH G/H G/H G/H
H = /3_ _ 4. 2H8— : : 2H6+< : 2_ - 2) 5 Hs, (70)
1G5 (L, )1 TIGa (L, )] G (L, ]| ||02 O] CATBIEENIEACSI ||G1 ]
Fy Fy
G{H GH G/H G/H G/H
H//: 3 4 H _ H +< )
S e ATA RN AR i TEA >||2||G2 HIE T IGH ) TG, )P ||G1 e

{H;/H Hil] n= (e1efj9i133 +eze’has + ese I hos + ez’ hos + ese 0 hs +%€j9i114) (aﬁal + e2hs2 +Eho1 + eahas +E5ha1 + 66?7412)
+ (8287j9f122 —ere’®hgy + ese % hos —eze’®hoy + ege I hys — aejeilm) (5331 — e1hsa +€ghoy — ezhas +e5h11 — 65312) (71)
{H"L’HH;’] " <j1e h4g + Faehaa + fae hog + Fae®hoa + fse I hug + foe! h14) (E}AMI + fahaz + fahar + fahaz + fshar + f“’ﬁm)

+ (f2€7j9ﬁ43 — Jre?% has + f4€7j9i123 — Tae?% hos + f6€7j9H13 - ﬁejeilm) (Eihu — fihao + Fahar — fahao + foh11 — fsihz) -(72)

1H pr11 -0 | —_J6 — —_—
[H3 Hl}u = (ele Vlly5P115; + €2€° Vi1, h114, + 01) (elvuu hi14, + e2v11,5,h114, + 02)
—_ 0 g — 46 —_ —_—
+ (828 PP o3 hi1g, —e1e’ viry hiig, + Cs) (62711111 hi13; — e1V11,5 k115, + C4) (73)
_ (R [ P — ') T N N R I T __ N
= (h1131 [616 Vi1,5 T €2€ 711114} + ki1, {*818 Uil +e2e iy, | ter) (b1, [eTvi1,, + e2i1,5] +Jh11g, [e1vi1,, — e2V11,5) + 2

R —je-———  __ jo —je-———  __ jo R [— -
+ (h1131 [626 Vi1, —€1e’ vi1y, | + 7h11,§1 —eze Uiy —ere vy, | +es) (i, [ezvi1,, — 10115 +Jh1131 [ezvi1,; +e1Vi1,5] +ca
(74)

'H H . . . . . . - .
Hc/% 37 HGg,C(;l iz is @ product of Alamouti matrices, it is expression in[(747) is non- zero almost surely. Substltutmg

now sufficient to prove that; is a non-zero matrix almost vyy,;, we have[(7B) whereh 1) denotes the entries df22
surely. Substituting o7y, Gs, G5, andG7 from (€1) in the  Sinceg;; = Y27, hai,, b, the coefficient & | o1, |2 in the

definition of G, we have term inside the parenthe5|s &f(78) is given by
’ 1
9210 = aZ £ 1552 (16 + [6127) O RED P ((ORED D | =i~ 50D
(1512 +1g52[?) (19112 + [12]?) ‘h%l +‘h2222 (enSs ) + h2212h2214) (79)
(19227 + 19121%) [7G31933 + e 7% §32G34] (76) ) )
R K 0T A _ig. (=1) (=1) 07 (=1) 7 ( 1) =303 (=1) 3 (—1)
— (1g31]* + 19321%) [¢"G11G13 + €7 Gr2g14] ) - (‘h2211 + ‘hzzlz ) ( P hing; Mgy €7 iy h2224)-

Note that the term outside the parenthesis [inl (76), i.e.,

1 i . _ . .
(oo P+ T5a ) (o PHlaral) 'S NON-2€ro almost surely. We shall - Note that the entries aff;;' are rational polynomial func-

now prove that the term inside the parenthesis[in (76) ti®ns in the var|able3z22 and h22 ,fori,j =1,2,3,4. If
also non-zero almost surely. Since = H» Va1, the entries the expression in{79) is a non- constant rat|onaI polynbm|a

gsg and g1; are given bygs; = >3_, ha1,,v21,, @and gi; = function in hss,, and hi,, . then, clearly [(7B) is non-zero
!, hou,,ven,, Tespectively, forj = 1,2,3,4. Conditioning almost surely, for any. This is because, under a common
on all the random variables excebbln, we havegs; = denominator, the numerator df {79) would be a non-constant

ha15,v21,; + ¢; Where,g; is some function of the conditionedpolynomial function inhf;, . andhj,,, which are independent
random variables. Note thgs ;, for all j, are independent of and continuously distributed random variables foriajl. To
ha1,, - Considering the terms inside the parenthesis ih (76), tiRow that the expression il {79) is a non-constant rational
coefficient of|ha1,,|* is given by [ZF) (at the top of the nextpolynomial function inaZ, . andhl,, for some(i, j) and for
page). If this coefficient is non-zero then, further comdithng any 6, it is sufficient to show that[(]g) evaluates to different
on hi,, , the terms inside the parenthesis [nl(76) constitutalues for different choices off,,. Choose two values for

a non-zero polynomial of degrekin hf . Sincehl is H,, to be

continuously distributed, the term inside the parenthieg[£86)

is almost surely non-zero. 8The coefficient ofho1,, |2 is equal to zero. So, we consider the coefficient
Hence, the proof shall be complete if we prove that th@ |hs1,, |2



(\.(711 1>+ \.@12|2) ej9v2111v2113 + (|f]11\2 + |f]12\2) €7j9’02112’02]14 - (‘U2111 12 + |21,y \2) (ejeg}iy}ls + eijefhz.@j) 77)
4
= ( tr (Hz' Hz’z”)) [('911'2 +131212) @ hG DG Y + (190 + 13122) e ORG DRG D — (15012 + 11 012) (5 +6,j9§12§7)]
(78)
REFERENCES
0 0 1 0 0 0 1 0 [1] H. Sato, “The Capacity of the Gaussian Interference Wn8eong
Hoo = 0 0 0 1 0 0 0 1 Interference”, IEEE Trans. Info. Theory, Vol. 27, no.6, pi86-788,
1.5 -1 —-0.5 -0.5(" 1 —-05 —-0.5 0.5 Nov. 1981.
-1 1 0 0 =05 05 0 0 [2] R. K. Farsani, “Fundamental Limits of Communicationdriterference
so that for the first matrix, Networks-Part llI: Information Flow in Strong Interferendregime”,
Available at arXiv:1207.3035v2 [cs.IT].
Ny L L L [3] R. Etkin, D. Tse, and H. Wang, “Gaussian Interference r@ieh
hég“) hé212) hégﬂ) = h§g2; =1, Capacity to Within One Bit", IEEE Trans. Info. Theory, Vol45no.
(—1) (1) (1) (—1) 12, pp. 5534-5562, Dec. 2008.
h2213 = h2214 = h2223 =2, h2224 =3 [4] M. A. Maddah-Ali, A. S. Motahari, and A. K. Khandani, “Camunica-
HY(3.) =11 H4.)=1001 ) tion Over MIMO X Channels: Interference Alignment, Decomposition,
22 (3,:)=[1000], Hyy (4,:)=[0100] and Performance Analysis”, IEEE Trans. Info. Theory, Ve, Bo. 8,
and for the second matrix all the entriesi,' are the same pp. 3457-3470, Aug. 2008. _

1) [5] S.Jafar and S. Shamai, “Degrees of Freedom Region of &X'
as above except th&é2 = 4. Thus, for any value of, (79) Channel”, IEEE Trans. Info. Theory, Vol. 54, no. 1, pp. 1501Jan.
evaluates to—e ¢ and —2¢~ for the two chosen values 2008.

; ; ; [6] L. Li, H. Jafarkhani, and S. A. Jafar, “When Alamouti cadeneet
of Hy,. Hence, for, any value 00’_ the expresslon ||1:(_79_) IS interference alignment: transmission schemes for two-¥sghannel”,
a non-constant rational polynomial function in the entiiés IEEE ISIT 2011, Jul. 31 - Aug. 5, 2011, pp. 2577-2581.

Hos. [ ] [7] K. Pavan Srinath and B. Sundar Rajan, “Low ML-Decodingn@tex-
. ; : ; ; _ ity, Large Coding Gain, Full-Rate, Full-Diversity STBCgf2x 2 and
Lemma 5:The random Varlabl@ defined in ) IS non 4 x 2 MIMO Systems”, IEEE Journal of Selected Topics in Signal
zero almost surely. Processing, Vol. 3, no. 6, pp. 916-927, Dec. 2009.
Proof: We have [8] A. Naguib, N. Seshadri, and A. Calderbank, “Applicatonf space-
5 50 time block codes and interference suppression for high aigpand
p=(le1]* + e2]?) [e V1,011, + € Y011, V115, | - high data rate wireless systems”, IEEE Asilomar ConferemeeSig-
. nals, Systems and Computers, Nov. 1-4, 1998, pp. 1803 - 1840,
From LemmaH#, since, ande, are non-zero almost surely, we 1998.
only need to need to prove thabﬁvlluvu14 + et U1111v1113 [9] 1. E. Teletar, “Capacity of Multi-antenna Gaussian Chels”, Available
| | H! at: 'http://mars.bell-labs.com/papers/proof/proof.pdf
is non-zero almost surely. Sincei; _"(H—lH—H) W€  [10] z. A. Khan and B. Sundar Rajan, “Single-Symbol Maximurikell-

only need to show tha’ezeh§2]12)h§21lj e Phi VRS, s

non-zero because (H;,'H;,”) is non-zero almost surely. [11]

Using similar arguments as in Lemnia 4, it can be show#t?]
q -1 -1 —i -1 —1) ; H

that e @h§_21;h§214) +e 9h§2n)h§21_3) is a non-constant rational

polynomial function in the entries aff,,, for any . Hence,

PhGURGY 4 e ?n{VR(Y is non-zero almost surely. m

[13]
1215 1214 1297 71213
Let us now complete the proof for the statement

that the first row, first column entry of the ma- [14]
. H//H H// H//HH// .
trix [HH”U S~ TE )\\2] is nczm-zero almost surely.
The coefﬂments of hf;., and hi;, in the expression [15]
NH 2 HYYH] .
W [H ||H ( I T )\\2] can be derived
to be equal to
H//HH//
_ 2 2 2 2 4 2 and
(|el‘ + lez2] )(\v1213| + [vi2,,4] ) [HY (1, )2
HA/{HHél

== (le1? + leal?) (loazia | + 012, 2)
@ A

respectively. Clearly, sinceis non-zero almost surely, both of
the above coeﬁicients cannot be equal to zero simultangousl

Thus, [ HYPHY —||HY (1, )||2ﬁ] is a quadratic poly-

nomial in the continuously distributed random vanatﬁ%;
and hl1 , and hence, non-zero almost surely.
|

hood Decodable Linear STBCs”, IEEE Trans. Info. Theory,. \&2,
no. 5, pp. 2062-2091, May 2006.

R. Bhatia, “Matrix Analysis”, Springer-Verlag, 1996.

V. Tarokh, N. Seshadri, and A. R. Calderbank, “SpaceTigodes for
High Data Rate Wireless Communication: Performance Qiteand
Code Construction”, IEEE Trans. Info. Theory, Vol. 44, nopR. 744-
765, Mar. 1998.

K. Pavan Srinath and B. Sundar Rajan, “A Low ML-Decodi@gm-
plexity, Full-Diversity, Full-Rate MIMO Precoder”, IEEEr@ns. Sig.
Proc., Vol. 59, no. 11, pp. 5485-5498, Nov. 2011.

E. Viterbo and J. Boutros, “A Universal Lattice Code Dder for
Fading Channels,” IEEE Trans. Inf. Theory, Vol. 45, no. 5, pf39-
1642, Jul. 1999.

P. Razaghi and G. Caire, “A Nonlinear Approach to Irgeshce
Alignment”, IEEE ISIT 2011, Jul. 31 - Aug. 5, 2011, pp. 274143,


http://arxiv.org/abs/1207.3035
http://mars.bell-labs.com/papers/proof/proof.pdf

	I Introduction
	II System Model
	III Background - Jafar-Shamai Scheme and LJJ Scheme
	III-A Review of Jafar-Shamai Scheme for (2,2,4)-X Network
	III-B Review of LJJ Scheme

	IV S-R STBC Based Transmission Scheme for (2,2,4)-X Network
	V Simulation Results
	VI Conclusion
	Appendix A: Proof of Theorem ??
	Appendix B: Proof of Lemma ??
	Appendix C: Proof of Theorem ??
	Appendix D: Proof of Theorem ??
	References

